WO2012032797A1 - 放射線画像検出器の製造方法および放射線画像検出器 - Google Patents
放射線画像検出器の製造方法および放射線画像検出器 Download PDFInfo
- Publication number
- WO2012032797A1 WO2012032797A1 PCT/JP2011/053470 JP2011053470W WO2012032797A1 WO 2012032797 A1 WO2012032797 A1 WO 2012032797A1 JP 2011053470 W JP2011053470 W JP 2011053470W WO 2012032797 A1 WO2012032797 A1 WO 2012032797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rigid plate
- scintillator panel
- scintillator
- image detector
- photoelectric conversion
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2018—Scintillation-photodiode combinations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
- H10F39/189—X-ray, gamma-ray or corpuscular radiation imagers
- H10F39/1898—Indirect radiation image sensors, e.g. using luminescent members
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/024—Manufacture or treatment of image sensors covered by group H10F39/12 of coatings or optical elements
Definitions
- the present invention relates to a radiological image detector used for forming a radiographic image of a subject and a method for manufacturing the radiographic image detector for manufacturing the same.
- radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
- a radiographic image by an intensifying screen-film system has long been used as a general imaging system in the medical field because of its high sensitivity and high image quality.
- an X-ray image detection device using a solid-state image pickup device (CCD, CMOS, etc.) is known as a direct method. Used for dentistry to collect images.
- a phosphor layer (scintillator layer) containing a phosphor is used, X-rays are once converted into visible light, and the visible light is converted into a photoelectric having a photoelectric conversion element such as a photodiode, CCD, or CMOS.
- the signal is converted into signal charges by the conversion substrate and led to the charge storage capacitor.
- the indirect method is used in a wide range of applications because it is simpler and has higher sensitivity than the direct method.
- the radiation image detector used in the indirect method includes a radiation image detector of a method in which a phosphor layer is directly provided on the surface of a planar light receiving element, a phosphor layer provided on a scintillator panel substrate, and a photoelectric conversion substrate.
- a radiation image detector of a type in which a photoelectric conversion element that is two-dimensionally arranged thereon is bonded is known.
- the uniformity of adhesion between the phosphor layer and the photoelectric conversion element affects the image quality.
- a transparent adhesive is applied to the photoelectric conversion substrate and bonded to the scintillator panel under reduced pressure, and then returned to atmospheric pressure to return to the transparent adhesive.
- the manufacturing method (refer patent document 1) which has the process of hardening an agent is known.
- An object of the present invention is to provide a method of manufacturing a radiographic image detector that can be easily manufactured and provides a radiographic image detector excellent in image uniformity, and a radiographic image detector obtained thereby.
- a scintillator panel having a scintillator layer on a base material, a rigid plate disposed on the base material side of the scintillator panel, and a plurality of surfaces on one side of the base disposed on the scintillator layer side of the scintillator panel
- a photoelectric conversion substrate having a photoelectric conversion element, and a method for producing a radiation image detector, (1) A scintillator panel production process for producing a scintillator panel by forming a scintillator layer on the substrate; (2) A composite rigid plate production step of producing a composite rigid plate by bonding a flexible polymer film to the rigid plate via an adhesive.
- the surface of the photoelectric conversion substrate on which the photoelectric conversion element is disposed and the surface of the scintillator layer side of the scintillator panel with the composite rigid plate face each other, and the photoelectric conversion substrate and the scintillator panel with the composite rigid plate
- a radiological image detection member production process for producing a radiographic image detection member by bonding The manufacturing method of the radiographic image detector characterized by having.
- the method of manufacturing the scintillator panel with the composite rigid plate by bonding the composite rigid plate and the scintillator panel is an adhesive between the composite rigid plate and the scintillator panel.
- a scintillator panel having a scintillator layer on a base material, a rigid plate disposed on the base material side of the scintillator panel, and a plurality of surfaces on one side of the base disposed on the scintillator layer side of the scintillator panel
- a radiation image detector comprising: a photoelectric conversion substrate having a photoelectric conversion element; and a flexible polymer film on a side opposite to the scintillator panel side of the rigid plate.
- a method for manufacturing a radiographic image detector which can be easily manufactured and provides a radiographic image detector having excellent image uniformity due to a small ratio of deformation (warping) of the apparatus, and a method obtained thereby It is to provide a radiation image detector.
- the present invention provides a scintillator panel having a scintillator layer on a substrate, a rigid plate disposed on the substrate side of the scintillator panel, and one of the bases disposed on the scintillator layer side of the scintillator panel.
- the present invention can provide a method for manufacturing a radiation image detector that provides a radiation image detector having excellent image uniformity, particularly by using a rigid plate having a flexible polymer film for the scintillator panel.
- FIG. 1 is a schematic cross-sectional view of an example of a radiation image detector of the present invention.
- the radiation image detector 1 includes a scintillator panel 10, a rigid plate 21, and a photoelectric conversion substrate 30.
- the scintillator panel 10 has a scintillator layer 12 on a base material 11.
- the photoelectric conversion substrate 30 has a photoelectric conversion element 31 on a base 53.
- a plurality of photoelectric conversion elements 31 are two-dimensionally arranged on the base 53.
- the rigid plate 21 has a flexible polymer film 23 through an adhesive layer A22 formed of an adhesive.
- the rigid plate 21 and the base material 11 of the scintillator panel 10 are bonded via an adhesive layer B13.
- the rigid plate 21 and the photoelectric conversion substrate 30 are bonded to each other through the bonding layer C40 at a portion where the scintillator panel 10 does not exist.
- the production method of the present invention includes the steps (1) to (4).
- a scintillator layer is formed on a base material to manufacture a scintillator panel.
- the scintillator panel according to the present invention has a scintillator layer on the base material, but an embodiment having an undercoat layer between the base material and the scintillator layer is preferable, and a reflective layer is provided on the base material. And a structure of a scintillator layer.
- each constituent layer and constituent elements will be described.
- the scintillator layer according to the present invention contains a phosphor.
- CsI cesium iodide
- CsI alone has low luminous efficiency
- various activators are added and used.
- a mixture of CsI and sodium iodide (NaI) in an arbitrary molar ratio can be mentioned.
- CsI as disclosed in Japanese Patent Application Laid-Open No. 2001-59899 is deposited, and thallium (Tl), europium (Eu), indium (In), lithium (Li), potassium (K), rubidium (Rb) ), CsI containing an activating substance such as sodium (Na) is preferred.
- sodium (Na), thallium (Tl), and europium (Eu) are preferable, and thallium (Tl) is particularly preferable.
- the scintillator layer containing cesium iodide is formed using, as raw materials, an additive containing one or more thallium compounds and cesium iodide. That is, thallium activated cesium iodide (CsI: Tl) is preferable because it has a wide emission wavelength from 400 nm to 750 nm.
- thallium compound as an additive containing one or more kinds of thallium compounds, various thallium compounds (compounds having oxidation numbers of + I and + III) can be used.
- Preferred thallium compounds are thallium iodide (TlI), thallium bromide (TlBr), thallium chloride (TlCl), or thallium fluoride (TlF, TlF 3 ).
- the melting point of the thallium compound is preferably in the range of 400 to 700 ° C. from the viewpoint of luminous efficiency.
- fusing point here is melting
- the content of the additive is preferably an optimum amount according to the target performance and the like, but is 0.001 mol% to 50 mol% with respect to the content of cesium iodide. Further, it is preferably 0.1 mol% to 10.0 mol% from the viewpoint of maintaining the light emission luminance and the properties and functions of cesium iodide.
- the thickness of the scintillator layer is preferably 50 to 600 ⁇ m, more preferably 120 to 400 ⁇ m.
- a reflective layer is preferably provided on the substrate.
- the reflective layer reflects light emitted from the phosphor (scintillator) to increase the light extraction efficiency.
- the reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
- the thickness of the reflective layer is preferably 0.005 to 0.3 ⁇ m, more preferably 0.01 to 0.2 ⁇ m, from the viewpoint of emission light extraction efficiency.
- the undercoat layer includes a method of forming a polyparaxylylene film by a CVD method (vapor phase chemical growth method) and a method using a polymer binder (binder). From the viewpoint of attaching a film, a polymer binder ( A method using a binder is more preferable.
- the thickness of the undercoat layer is preferably 0.5 to 4 ⁇ m from the viewpoints of sharpness and prevention of columnar crystal disorder.
- the undercoat layer is preferably formed by applying and drying a polymer binder (hereinafter also referred to as “binder”) dissolved or dispersed in a solvent.
- a polymer binder hereinafter also referred to as “binder”
- the polymer binder include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
- Polymer polyamide resin, polyvinyl butyral, polyester, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicone resin , Acrylic resins, urea formamide resins, and the like.
- polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, and nitrocellulose are preferably used.
- polyurethane polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose and the like are particularly preferable in terms of close contact with the scintillator layer.
- a polymer having a glass transition temperature (Tg) of 30 to 100 ° C. is preferable from the viewpoint of attaching a film between the deposited crystal and the substrate. From this viewpoint, a polyester resin is particularly preferable.
- Solvents that can be used to prepare the undercoat layer include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
- the undercoat layer may contain a pigment or a dye to prevent scattering of light emitted from the phosphor (scintillator) and improve sharpness.
- the substrate according to the present invention is a resin film made of resin, and as the resin film, cellulose acetate film, polyester film, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polyamide film, polyimide (PI)
- a polymer film (plastic film) such as a film, a triacetate film, a polycarbonate film, or a carbon fiber reinforced resin sheet can be used.
- a resin film containing polyimide or polyethylene naphthalate is suitable when a phosphor columnar crystal is formed by a vapor phase method using cesium iodide as a raw material.
- the thickness of the substrate is preferably 100 ⁇ m to 1 mm, more preferably 300 to 500 ⁇ m.
- a metal thin film (Al film, Ag film, etc.) as a reflective layer is formed on one surface of the substrate by sputtering.
- a resin film is used as a base material
- various types of films in which an Al film is sputter-deposited on the resin film are available on the market, and these can also be used as a base material.
- the undercoat layer is formed by applying and drying a composition in which a polymer binder is dispersed and dissolved in an organic solvent.
- the polymer binder is preferably a hydrophobic resin such as a polyester resin or a polyurethane resin from the viewpoint of adhesiveness and corrosion resistance of the reflective layer.
- the scintillator layer can be formed by a vapor deposition method such as an evaporation method. Below, the typical example of the vapor deposition method is demonstrated.
- the vapor deposition apparatus 961 has a box-shaped vacuum vessel 962, and a vacuum vapor deposition boat 963 is arranged inside the vacuum vessel 962.
- the boat 963 is a member to be deposited as an evaporation source, and an electrode is connected to the boat 963. When current flows through the electrode to the boat 963, the boat 963 generates heat due to Joule heat.
- a mixture containing cesium iodide and an activator compound is filled in the boat 963 so that an electric current flows through the boat 963 so that the mixture can be heated and evaporated. It has become.
- an alumina crucible around which a heater is wound may be applied, or a refractory metal heater may be applied.
- a holder 964 for holding the base material 11 is disposed inside the vacuum vessel 962 and immediately above the boat 963.
- the holder 964 is provided with a heater (not shown), and the base material 11 attached to the holder 964 can be heated by operating the heater.
- the base material 11 is heated, the adsorbate on the surface of the base material 11 is removed or removed, or an impurity layer is formed between the base material 11 and the phosphor layer formed on the surface. It is possible to prevent, to enhance the adhesion between the base material 11 and the scintillator layer formed on the surface thereof, or to adjust the film quality of the scintillator layer formed on the surface of the base material 11. ing.
- the holder 964 is provided with a rotation mechanism 965 that rotates the holder 964.
- the rotating mechanism 965 includes a rotating shaft 965a connected to the holder 964 and a motor (not shown) as a driving source for the rotating shaft 965. When the motor is driven, the rotating shaft 965a rotates to disengage the holder 964 from the boat. It can be rotated in a state facing 963.
- a vacuum pump 966 is disposed in the vacuum vessel 962.
- the vacuum pump 966 exhausts the inside of the vacuum vessel 962 and introduces gas into the inside of the vacuum vessel 962.
- the inside of the vacuum vessel 962 has a gas atmosphere at a constant pressure. Can be maintained below.
- the base material 11 provided with the reflective layer and the undercoat layer as described above is attached to the holder 964, and a plurality of (not shown) boats 963 are filled with a powdery mixture containing cesium iodide and thallium iodide. (Preparation process).
- the distance between the boat 963 and the base material 11 is set to 100 to 1500 mm, and the vapor deposition process described later is performed while remaining within the set value range. More preferably, the distance between the boat 963 and the base material 11 is set to 400 mm or more and 1500 mm or less, and the plurality of boats 963 are heated at the same time for vapor deposition.
- the vacuum pump 966 is operated to evacuate the inside of the vacuum vessel 962, and the inside of the vacuum vessel 962 is brought to a vacuum atmosphere of 0.1 Pa or less (vacuum atmosphere forming step).
- under vacuum atmosphere means under a pressure atmosphere of 100 Pa or less, and preferably under a pressure atmosphere of 0.1 Pa or less.
- an inert gas such as argon is introduced into the vacuum vessel 962, and the inside of the vacuum vessel 962 is maintained in a vacuum atmosphere of 0.001 to 5 Pa, more preferably 0.01 to 2 Pa.
- the heater of the holder 964 and the motor of the rotation mechanism 965 are driven, and the base material 11 attached to the holder 964 is rotated while being heated while facing the boat 963.
- the temperature of the substrate 11 on which the phosphor layer is formed is preferably set to room temperature 25 to 50 ° C. at the start of vapor deposition, and is preferably set to 100 to 300 ° C., more preferably 150 to 250 ° C. during vapor deposition. preferable.
- the rigid plate according to the present invention refers to a plate-like body having an elastic modulus of 10 GPa or more.
- Examples of the rigid plate include metal, glass, carbon, and composite materials thereof.
- the thickness value of the rigid plate is preferably 300 ⁇ m to 5000 ⁇ m, more preferably 300 ⁇ m to 1000 ⁇ m.
- the flexible polymer film refers to a film made of a polymer compound and having an elastic modulus (E120) at 120 ° C. of 1000 to 6000 N / mm 2 .
- “Elastic modulus” is a tensile tester and is used to calculate the slope of the stress relative to the strain amount in a region where the strain indicated by the standard line of the sample conforming to JIS C 2318 and the corresponding stress show a linear relationship. It is a thing. This is a value called Young's modulus, and in the present invention, the Young's modulus is defined as an elastic modulus.
- polymer films include polymer films containing polyimide or polyethylene naphthalate.
- a flexible film has a thermal expansion coefficient equivalent to the above-mentioned scintillator panel.
- the equivalent thermal expansion coefficient of the thermal expansion coefficient epsilon a scintillator of the flexible film and epsilon b that is in the formula is established relationship 0.8 ⁇ ⁇ b ⁇ ⁇ a ⁇ 1.2 ⁇ ⁇ b Say.
- the flexible film has a high ultraviolet transmittance.
- High ultraviolet transmittance means having a transmittance of 30% or more in a wavelength region of 360 nm or less.
- the adhesive used in the composite rigid plate production process according to the present invention is not particularly limited as long as it is an adhesive capable of adhering the polymer film and the rigid plate, but an adhesive mainly composed of a thermoplastic resin is preferable. Can be used.
- the thickness of the adhesive layer A formed of an adhesive is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 60 ⁇ m or less, from the viewpoint of preventing adhesive strength and image quality unevenness.
- the hot melt adhesive described below is preferably used.
- the hot melt sheet refers to a hot melt adhesive formed in a sheet shape.
- a hot-melt adhesive is an adhesive mainly composed of a thermoplastic resin and is solid at room temperature and liquefied by being heated and melted. Bonding is formed by liquefying the hot melt adhesive and bonding the joining members together, further cooling and solidifying the hot melt adhesive.
- the rigid plate (composite rigid plate) to which the flexible polymer film is bonded is obtained by placing the adhesive between the flexible polymer film and the rigid plate and pressing them. In particular, heating at the time of pressure bonding is a preferred embodiment.
- a method using a hot melt sheet as an adhesive which is a particularly preferable embodiment, will be described.
- the hot polymer sheet is sandwiched between the flexible polymer film and the rigid plate, and the flexible polymer film and the rigid plate are joined by pressurization and subsequent heat melting.
- Hot melt sheets do not produce adhesive force at room temperature, so positioning is much easier when joining flexible polymer films and rigid plates than room temperature adhesives such as double-sided adhesive tape. It is. That is, since positioning is performed in a state where no adhesive force is generated, and the resultant is heated and melted to generate an adhesive force and bonded, alignment of the flexible film and the rigid plate can be performed accurately and easily.
- the hot melt sheet As the hot melt sheet, a known one can be used. Moreover, as a kind of hot-melt sheet, polyolefin type, polyamide type, polyester type, polyurethane type, EVA type etc. are mentioned by the main component, for example. However, it is not limited to these.
- the pressure at the time of bonding the hot melt sheet is preferably 0.001 MPa to 10 MPa, more preferably 0.01 MPa to 1 MPa.
- the amount of pressurization is preferably 0.001 MPa to 10 MPa, more preferably 0.01 MPa to 1 MPa.
- the heat treatment temperature is preferably 70 ° C. to 200 ° C., more preferably 90 ° C. to 160 ° C., although it depends on the type of hot melt sheet.
- the adhesive In order to bond the composite rigid plate and the scintillator panel, it is preferable to bond the composite rigid plate and the scintillator panel via an adhesive.
- the adhesive the above-described adhesive may be used. it can.
- a method having a heating step is particularly preferable, and for example, a method using the hot melt sheet is a particularly preferable embodiment.
- the composite rigid plate after the composite rigid plate is manufactured, it may be bonded to the scintillator panel.
- the composite rigid plate is manufactured and bonded to the scintillator panel at the same time to prevent image unevenness and productivity. To a particularly preferred embodiment.
- the conditions for using the hot melt sheet can be the same as those described above.
- the surface on which the photoelectric conversion element of the photoelectric conversion substrate is arranged faces the surface on the scintillator layer side of the scintillator panel with a rigid plate, and the photoelectric conversion substrate and the scintillator panel with a rigid plate are attached. In combination, a radiological image detection member is produced.
- the above scintillator layer and a photoelectric conversion element described later are bonded to each other.
- a portion where the scintillator panel does not exist is provided on the rigid plate, and as shown in FIG. 1, the scintillator panel 10 with the photoelectric conversion substrate 30 and the rigid plate attached thereto.
- the adhesive C for example, a photo-curing adhesive that is cured when irradiated with light such as ultraviolet rays or a thermosetting adhesive that is cured by heating is preferably used.
- the space formed by the adhesive layer C and the scintillator panel is decompressed and the above bonding is performed.
- FIG. 3 is a schematic configuration diagram of a photoelectric conversion substrate in the radiation image detector.
- 3A is a top view of the device
- FIG. 3B is a cross-sectional view.
- the photoelectric conversion element portion 51 on which the photoelectric conversion element is formed is bonded onto the base 53 by the adhesive layer D54.
- This is a photoelectric conversion substrate 30.
- the photoelectric conversion elements formed in the photoelectric conversion element unit 51 are typified by CCD, CMOS, A-Si photodiode (PIN type, MIS type), and are arranged in the photoelectric conversion element unit 51 in two dimensions. ing.
- a plurality of photoelectric conversion element portions 51 (10 in FIG. 3) are bonded together and regularly arranged in a two-dimensional manner.
- the base 53 is made of a material such as glass, ceramic, CFRP, or aluminum. In consideration of heat applied during manufacture, the scintillator panel 10, the photoelectric conversion element 51, and the base 53 have a thermal expansion coefficient as much as possible. It is desirable to choose to be close.
- Example 1 (Production of radiation image detector 1)) (Production of scintillator panel) Formation of Reflective Layer A nickel chromium alloy thin film having a thickness of 20 nm was formed as a first metal thin film on one surface of a 125 ⁇ m thick polyimide substrate by sputtering. Subsequently, a silver thin film having a thickness of 100 nm was formed by sputtering deposition as the second metal thin film.
- protective layer Byron 630 (manufactured by Toyobo Co., Ltd .: polymer polyester resin) 100 parts by weight Methyl ethyl ketone 90 parts by weight Toluene 90 parts by weight
- the above formulation was mixed and dispersed in a bead mill for 15 hours to obtain a coating solution for coating. .
- This coating solution was applied to the sputtering surface of the polyimide substrate with a bar coater so that the dry film thickness was 1.0 ⁇ m, and then dried at 100 ° C. for 8 hours to form a protective layer.
- the base material (CsI: no activator) and activator (TlI) are filled into a resistance heating crucible, and the substrate is placed on a metal frame of a rotating holder, and the distance between the substrate and the evaporation source is adjusted to 400 mm. did.
- the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.5 Pa, and then the substrate was rotated at a speed of 6 rpm. Also, heating of the substrate was started simultaneously with the resistance heating crucible, and the temperature was maintained at 200 ° C. after the substrate temperature reached 200 ° C. After completion of vapor deposition, the substrate was removed from the holder to obtain a plate on which a scintillator layer was formed. The plate was cut to 300 mm with a cutter.
- a hot melt sheet NP608 (same as above) is sandwiched between the side surface of the scintillator layer of the scintillator panel and the side surface of the composite rigid plate opposite to the flexible polymer film, and the pressure is reduced to 100 kPa.
- a scintillator layer and a rigid plate were joined by heating and melting at 10 ° C. for 10 minutes to produce a scintillator panel with a composite rigid plate.
- a 350 mm ⁇ 350 mm photoelectric conversion substrate having TFTs on a base is prepared.
- a photocurable adhesive (NOA68, manufactured by Norland) is applied at a thickness of 5 mm from the end of the scintillator to a photoelectric conversion substrate. And stuck.
- the adhered panel was put into a vacuum desiccator, and the pressure was reduced while irradiating light of 6 kW and 9000 J using a metal halide lamp manufactured by Oak Co. in the desiccator.
- the pressure in the chamber was 1000 Pa, and after holding at 1000 Pa for 1 minute, the pressure was returned to atmospheric pressure to obtain a radiation image detection member. This was put in a housing to obtain a radiation image detector 1.
- a hot melt sheet M1083 (manufactured by Lichtlab) is installed on the opposite side of the scintillator layer, and a rigid plate (glass), hot melt sheet M1083 (manufactured by Lichtlab), a flexible film (polyethylene terephthalate (0.125 mm thick) ) In this order.
- the pressure is reduced to 100 kPa, and then heated and melted at 100 ° C. for 10 minutes, whereby the scintillator layer, the rigid plate, and the flexible film are joined via the hot melt sheet, and the scintillator with the composite rigid plate A panel was obtained.
- a 350 mm ⁇ 350 mm photoelectric conversion substrate having TFTs on a base is prepared.
- an adhesive epoxy UV curable resin
- the adhered panel was put into a vacuum desiccator, and the pressure was reduced while irradiating light of 6 kW and 9000 J using a metal halide lamp manufactured by Oak Co. in the desiccator.
- the pressure in the chamber was 1000 Pa, and after holding at 1000 Pa for 1 minute, the pressure was returned to atmospheric pressure to obtain a radiation image detection member. This was put in a housing to obtain a radiation image detector 2.
- the radiation incident surface side of the produced radiation image detector is irradiated with 1.0 mR X-rays at a tube voltage of 70 kVp, and a digital signal indicating light emission of the scintillator is recorded on a hard disk to obtain an image.
- the luminance is measured for 25 points in a range divided at equal intervals of 1 mm, and the average value is calculated.
- the difference between the maximum value and the minimum value of the measured luminance was calculated, and the result obtained by dividing the difference by the average value was taken as the luminance unevenness value.
- a smaller value indicates less luminance unevenness.
- a practically good range is 1.5 or less.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
- Conversion Of X-Rays Into Visible Images (AREA)
Abstract
Description
(1)該基材上にシンチレータ層を形成してシンチレータパネルを作製するシンチレータパネル作製工程、
(2)該剛性板に、接着剤を介して可撓性高分子フィルムを貼合し、複合剛性板を作製する複合剛性板作製工程
(3)該複合剛性板の、該剛性板の該可撓性高分子フィルム側とは反対側の面と、該シンチレータパネルの、基材の該シンチレータ層とは反対側の面とを対面させ、該複合剛性板と該シンチレータパネルとを貼合して複合剛性板付きシンチレータパネルを作製する、複合剛性板付きシンチレータパネル作製工程および、
(4)該光電変換基板の該光電変換素子が配置された面と、該複合剛性板付きシンチレータパネルの該シンチレータ層側の面とを対面させ、該光電変換基板と該複合剛性板付きシンチレータパネルとを貼合して放射線画像検出部材を作製する放射線画像検出部材作製工程、
を有することを特徴とする放射線画像検出器の製造方法。
図1は、本発明の放射線画像検出器の例の模式断面図である。
本発明の製造方法は、上記(1)から(4)の工程を有する。
シンチレータパネル作製工程では、基材上にシンチレータ層を形成してシンチレータパネルを作製する。
本発明に係るシンチレータパネルは、基材上にシンチレータ層を有するが、基材とシンチレータ層の間に下引層を有する態様が好ましく、また基材上に反射層を設け反射層、下引層、およびシンチレータ層の構成であってもよい。以下、各構成層および構成要素等について説明する。
本発明に係るシンチレータ層は、蛍光体を含有する。
基材上には反射層を設けることが好ましい。反射層は、蛍光体(シンチレータ)から発した光を反射して、光の取り出し効率を高めるためのものである。当該反射層は、Al,Ag,Cr,Cu,Ni,Ti,Mg,Rh,PtおよびAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。特に、上記の元素からなる金属薄膜、例えば、Ag膜、Al膜などを用いることが好ましい。また、このような金属薄膜を2層以上形成するようにしても良い。なお、反射層の厚さは、0.005~0.3μm、より好ましくは0.01~0.2μmであることが、発光光取り出し効率の観点から好ましい。
本発明においては、基材とシンチレータ層の間、または反射層とシンチレータ層の間に下引き層を設けることが好ましい。当該下引層は、CVD法(気相化学成長法)によりポリパラキシリレン膜を成膜する方法や高分子結合材(バインダー)による方法があるが、膜付の観点から高分子結合材(バインダー)による方法がより好ましい。また下引層の厚さは、鮮鋭性、柱状結晶の乱れ発生防止性などの面から0.5~4μmが好ましい。
本発明に係る基材は、樹脂からなる樹脂フィルムであり、樹脂フィルムとしては、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリアミドフィルム、ポリイミド(PI)フィルム、トリアセテートフィルム、ポリカーボネートフィルム、炭素繊維強化樹脂シート等の高分子フィルム(プラスチックフィルム)を用いることができる。
基材の一方の表面に反射層としての金属薄膜(Al膜、Ag膜等)をスパッタ法により形成する。樹脂フイルムを基材として使用する場合、樹脂フイルム上にAl膜をスパッタ蒸着したフイルムは、各種の品種が市場で流通しており、これらを基材として使用することも可能である。
下引層は、有機溶剤に高分子結合材を分散・溶解した組成物を塗布、乾燥して形成する。高分子結合材としては接着性、反射層の耐腐食性の観点でポリエステル樹脂、ポリウレタン樹脂等の疎水性樹脂が好ましい。
シンチレータ層は、蒸着方法などの気相堆積法で形成することができる。以下に、蒸着方法の典型例について説明する。
図2に示す通り、蒸着装置961は箱状の真空容器962を有しており、真空容器962の内部には真空蒸着用のボート963が配されている。ボート963は蒸着源の被充填部材であり、当該ボート963には電極が接続されている。当該電極を通じてボート963に電流が流れると、ボート963がジュール熱で発熱するようになっている。放射線用シンチレータパネルの製造時においては、ヨウ化セシウムと賦活剤化合物とを含む混合物がボート963に充填され、そのボート963に電流が流れることで、上記混合物を加熱・蒸発させることができるようになっている。
複合剛性板作製工程では、剛性板に、接着剤を介して該可撓性高分子フィルムを貼合し、複合剛性板を作製する。
本発明に係る剛性板とは、弾性率が10GPa以上の板状体を指す。剛性板としては、金属、ガラス、カーボン、これらの複合材料などが挙げられる。
可撓性高分子フィルムは、高分子化合物からなるフィルムであって、120℃での弾性率(E120)が1000~6000N/mm2であるフィルムを指す。
本発明に係る、複合剛性板作製工程に用いられる接着剤は、高分子フィルムと剛性板を接着し得る接着剤であれば特に制限はないが、熱可塑性樹脂を主成分とする接着剤を好ましく用いることができる。
可撓性高分子フィルムが貼合された剛性板(複合剛性板)は、上記可撓性高分子フィルムと剛性板の間に上記接着剤を配置して圧着することにより得られる。特に圧着時加熱することが好ましい態様である。
複合剛性板付きシンチレータパネル作製工程では、上記複合剛性板の、剛性板の可撓性高分子フィルム側とは反対側の面と、上記シンチレータパネルの、基材のシンチレータ層とは反対側の面とを対面させ、複合剛性板とシンチレータパネルとを貼合して複合剛性板付きシンチレータパネルを作製する。
放射線画像検出部材作製工程では、光電変換基板の光電変換素子が配置された面と、剛性板付きシンチレータパネルのシンチレータ層側の面とを対面させ、光電変換基板と剛性板付きシンチレータパネルとを貼合して放射線画像検出部材を作製する。
本発明に係る光電変換基板について、図3を参照して説明する。図3は、放射線画像検出器における光電変換基板の概略構成図である。図3(a)は当該装置の上面図、図3(b)は断面図である。図3(b)に示すように、基台53上に接着層D54によって、光電変換素子が形成される光電変換素子部51が接着されている。これを光電変換基板30とする。
(シンチレータパネルの作製)
反射層の形成
厚さ125μmのポリイミド基板の一方の表面に第1の金属薄膜として厚さ20nmのニッケルクロム合金薄膜をスパッタ法により形成した。続いて第2の金属薄膜として厚さ100nmの銀薄膜をスパッタ蒸着で形成した。
バイロン630(東洋紡社製:高分子ポリエステル樹脂) 100質量部
メチルエチルケトン 90質量部
トルエン 90質量部
上記処方を混合し、ビーズミルにて15時間分散し、塗設用の塗布液を得た。この塗布液を上記ポリイミド基板のスパッタ面に乾燥膜厚が1.0μmになるようにバーコーターで塗布した後、100℃で8時間乾燥することで保護層を形成した。
保護層を形成した基板を金属製の枠に合わせ、図2に示す蒸着装置のホルダ964にセットした。
基板の保護層側に母材(CsI:賦活剤なし)および賦活剤(TlI)を、図2に示した蒸着装置を使用して蒸着させ、次のようにシンチレータ層(蛍光体層)を形成した。
可撓性高分子フィルムとしてポリエチレンテレフタレート(0.125mm厚)を、剛性板としてガラス(0.5mm厚)を用い、接着剤としてホットメルトシートNP608(ソニーケミカル製)を用い、可撓性高分子フィルムと剛性板との間に、可撓性フィルムと同じ大きさの接着剤を挟み、100kPaに減圧、続いて100℃で10分間加熱溶融することにより、剛性板と可撓性フィルムを接合して、接着剤の厚さが0.05mmである複合剛性板を作製した。
続いて、上記のシンチレータパネルのシンチレータ層側面と上記複合剛性板の可撓性高分子フィルムと反対側面との間にホットメルトシートNP608(上記と同じ)を挟みこみ、100kPaに減圧、続いて100℃で10分間、加熱溶融することにより、シンチレータ層と剛性板を接合して、複合剛性板付きシンチレータパネルを作製した。
得られた複合剛性板付きシンチレータパネルと、光電変換基板とを貼り合わせ、放射線画像検出部材を作製した。
(シンチレータパネルの作製)
実施例1に記載の方法と同様にして、シンチレータパネルを作製した。
以下のようにして、複合剛性板の作製と、複合剛性板付きシンチレータパネルの作製を同時に行った。
得られた複合剛性板付きシンチレータパネルと、光電変換基板とを貼り合わせ、放射線画像検出部材を作製した。
実施例1の放射線画像検出器1の作製において、可撓性高分子フィルムを貼合する工程を有さない他は、実施例1と同様にして、放射線画像検出器3を作製した。
(画像均一性)
下記のように、反り量および輝度ムラを測定して、画像均一性の指標とした。
得られた放射線画像検出器を水平な台に静置したときの端部の浮き量を、隙間ゲージを用いて測定する。なお、端部の浮き量は0.5mm以下ならば実用的に良好な範囲内である。
作製した放射線画像検出器の放射線入射面側に管電圧70kVpで1.0mRのX線を照射し、シンチレータの発光を示すデジタル信号をハードディスクに記録し画像を得る。
10 シンチレータパネル
11 基材
12 シンチレータ層
13 接着層B
21 剛性板
22 接着層A
23 可撓性高分子フィルム
30 光電変換基板
40 接着層C
51 光電変換素子部
53 基台
54 接着層D
961 蒸着装置
962 真空容器
963 ボート
964 ホルダ
965 回転機構
966 真空ポンプ
Claims (8)
- 基材上にシンチレータ層を有するシンチレータパネルと、該シンチレータパネルの該基材側に配置された剛性板と、該シンチレータパネルの該シンチレータ層側に配置された、基台の一方の面に複数の光電変換素子を有する光電変換基板と、を有する放射線画像検出器の製造方法であって、
(1)該基材上にシンチレータ層を形成してシンチレータパネルを作製するシンチレータパネル作製工程、
(2)該剛性板に、接着剤を介して可撓性高分子フィルムを貼合し、複合剛性板を作製する複合剛性板作製工程
(3)該複合剛性板の、該剛性板の該可撓性高分子フィルム側とは反対側の面と、該シンチレータパネルの、基材の該シンチレータ層とは反対側の面とを対面させ、該複合剛性板と該シンチレータパネルとを貼合して複合剛性板付きシンチレータパネルを作製する、複合剛性板付きシンチレータパネル作製工程および、
(4)該光電変換基板の該光電変換素子が配置された面と、該複合剛性板付きシンチレータパネルの該シンチレータ層側の面とを対面させ、該光電変換基板と該複合剛性板付きシンチレータパネルとを貼合して放射線画像検出部材を作製する放射線画像検出部材作製工程、
を有することを特徴とする放射線画像検出器の製造方法。 - 前記複合剛性板付きシンチレータパネル作製工程において、前記複合剛性板と前記シンチレータパネルとを貼合して前記複合剛性板付きシンチレータパネルを作製する方法が、前記複合剛性板と前記シンチレータパネルとを接着剤を介して貼合して前記複合剛性板付きシンチレータパネルを作製する方法であることを特徴とする請求項1に記載の放射線画像検出器の製造方法。
- 前記複合剛性板作製工程で用いられる接着剤がホットメルト接着剤であることを特徴とする請求項1または2に記載の放射線画像検出器の製造方法。
- 前記複合剛性板付きシンチレータパネル作製工程が、加熱工程を有することを特徴とする請求項1から3のいずれか1項に記載の放射線画像検出器の製造方法。
- 前記複合剛性板作製工程と、複合剛性板付きシンチレータパネル作製工程とが同時に行われることを特徴とする請求項1から4のいずれか1項に記載の放射線画像検出器の製造方法。
- 前記放射線画像検出部材作製工程における前記光電変換基板と前記複合剛性板付きシンチレータパネルとの貼合が、減圧下に行われることを特徴とする請求項1から5のいずれか1項に記載の放射線画像検出器の製造方法。
- 請求項1から6のいずれか1項に記載の放射線画像検出器の製造方法により製造されたことを特徴とする放射線画像検出器。
- 基材上にシンチレータ層を有するシンチレータパネルと、該シンチレータパネルの該基材側に配置された剛性板と、該シンチレータパネルの該シンチレータ層側に配置された、基台の一方の面に複数の光電変換素子を有する光電変換基板と、を有する放射線画像検出器であって、該剛性板の該シンチレータパネル側と反対側に可撓性高分子フィルムを有することを特徴とする放射線画像検出器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012532874A JP5966925B2 (ja) | 2010-09-07 | 2011-02-18 | 放射線画像検出器の製造方法 |
US13/819,123 US9269741B2 (en) | 2010-09-07 | 2011-02-18 | Production method of radiation image detector and radiation image detector |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010199673 | 2010-09-07 | ||
JP2010-199673 | 2010-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012032797A1 true WO2012032797A1 (ja) | 2012-03-15 |
Family
ID=45810405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/053470 WO2012032797A1 (ja) | 2010-09-07 | 2011-02-18 | 放射線画像検出器の製造方法および放射線画像検出器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9269741B2 (ja) |
JP (1) | JP5966925B2 (ja) |
WO (1) | WO2012032797A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105319573A (zh) * | 2014-06-03 | 2016-02-10 | 柯尼卡美能达株式会社 | 放射线图像检测装置及其制造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013129611A1 (ja) * | 2012-02-29 | 2015-07-30 | 昭和電工株式会社 | エレクトロルミネッセント素子の製造方法 |
JP2015025682A (ja) * | 2013-07-24 | 2015-02-05 | キヤノン株式会社 | 放射線撮影装置 |
CN108966642A (zh) * | 2017-03-22 | 2018-12-07 | 富士胶片株式会社 | 放射线检测器以及放射线图像摄影装置 |
EP3770644B1 (en) * | 2018-03-19 | 2023-08-09 | FUJIFILM Corporation | Radiation detector, and radiographic image capturing device |
EP3770641A4 (en) * | 2018-03-19 | 2021-04-28 | FUJIFILM Corporation | RADIATION DETECTOR, RADIOLOGICAL IMAGING DEVICE AND PRODUCTION PROCESS |
WO2019181570A1 (ja) * | 2018-03-19 | 2019-09-26 | 富士フイルム株式会社 | 放射線検出器、放射線画像撮影装置、及び製造方法 |
WO2019181639A1 (ja) * | 2018-03-19 | 2019-09-26 | 富士フイルム株式会社 | 放射線検出器及び放射線画像撮影装置 |
CN112789524B (zh) * | 2018-09-27 | 2024-05-03 | 富士胶片株式会社 | 放射线检测器、放射线图像摄影装置及制造方法 |
US10825855B2 (en) * | 2018-12-13 | 2020-11-03 | Palo Alto Research Center Incorporated | Flexible x-ray sensor with integrated strain sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002341038A (ja) * | 2001-05-15 | 2002-11-27 | Canon Inc | 放射線撮像装置の製造方法 |
JP2007285709A (ja) * | 2006-04-12 | 2007-11-01 | Canon Inc | 放射線撮像装置の製造方法及び放射線撮像システム |
JP2008215951A (ja) * | 2007-03-01 | 2008-09-18 | Toshiba Corp | 放射線検出器 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3805031B2 (ja) * | 1995-10-20 | 2006-08-02 | キヤノン株式会社 | 光電変換装置 |
JP2001042041A (ja) | 1999-07-30 | 2001-02-16 | Toshiba Corp | 放射線シンチレータ装置およびその製造方法 |
JP2003075543A (ja) | 2001-08-31 | 2003-03-12 | Canon Inc | 放射線変換シート、放射線撮影装置とその製造方法、および放射線撮影システム |
JP4289913B2 (ja) * | 2003-03-12 | 2009-07-01 | キヤノン株式会社 | 放射線検出装置及びその製造方法 |
JP4594188B2 (ja) * | 2004-08-10 | 2010-12-08 | キヤノン株式会社 | 放射線検出装置及び放射線検出システム |
JP2008170314A (ja) * | 2007-01-12 | 2008-07-24 | Konica Minolta Medical & Graphic Inc | 放射線用シンチレータプレート及び放射線画像撮影装置 |
EP2141708B1 (en) * | 2007-03-27 | 2017-04-19 | Toshiba Electron Tubes & Devices Co., Ltd. | Scintillator panel and radiation detector |
JP5774806B2 (ja) * | 2008-08-11 | 2015-09-09 | コニカミノルタ株式会社 | 放射線検出パネルの製造方法および放射線画像検出器の製造方法 |
JP2010078415A (ja) * | 2008-09-25 | 2010-04-08 | Fujifilm Corp | 放射線検出装置及び放射線画像撮影システム |
JP2010190610A (ja) * | 2009-02-16 | 2010-09-02 | Konica Minolta Medical & Graphic Inc | 放射線検出パネルの製造方法および放射線画像検出器の製造方法 |
-
2011
- 2011-02-18 US US13/819,123 patent/US9269741B2/en active Active
- 2011-02-18 JP JP2012532874A patent/JP5966925B2/ja not_active Expired - Fee Related
- 2011-02-18 WO PCT/JP2011/053470 patent/WO2012032797A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002341038A (ja) * | 2001-05-15 | 2002-11-27 | Canon Inc | 放射線撮像装置の製造方法 |
JP2007285709A (ja) * | 2006-04-12 | 2007-11-01 | Canon Inc | 放射線撮像装置の製造方法及び放射線撮像システム |
JP2008215951A (ja) * | 2007-03-01 | 2008-09-18 | Toshiba Corp | 放射線検出器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105319573A (zh) * | 2014-06-03 | 2016-02-10 | 柯尼卡美能达株式会社 | 放射线图像检测装置及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130154039A1 (en) | 2013-06-20 |
US9269741B2 (en) | 2016-02-23 |
JP5966925B2 (ja) | 2016-08-10 |
JPWO2012032797A1 (ja) | 2014-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5966925B2 (ja) | 放射線画像検出器の製造方法 | |
US8895932B2 (en) | Scintillator plate and radiation detection panel | |
JP5343970B2 (ja) | 放射線画像検出装置 | |
JP5720566B2 (ja) | シンチレータパネル、シンチレータパネルの製造方法、放射線画像検出器および放射線画像検出器の製造方法 | |
JP5799953B2 (ja) | フラットパネルディテクタ | |
WO2011125383A1 (ja) | フラットパネルディテクタの製造方法 | |
EP2360697B1 (en) | Scintillator panel, radiation detector, and processes for producing these | |
JP5862302B2 (ja) | 放射線画像変換パネルとそれを用いた放射線画像検出器 | |
JP2008209124A (ja) | シンチレータパネル | |
JP2015230175A (ja) | 放射線画像検出装置及びその製造方法 | |
JP2008185393A (ja) | シンチレータパネル | |
JP2009068888A (ja) | フラットパネルディテクタ | |
WO2010010725A1 (ja) | シンチレータパネル及びそれを具備した放射線画像検出装置 | |
JP5668691B2 (ja) | シンチレータパネル、その製造方法、及び放射線画像検出器 | |
JP2012083186A (ja) | シンチレータパネル、及びそれを用いた放射線像検出装置 | |
JP2008224422A (ja) | シンチレータパネル | |
JP5597930B2 (ja) | 放射線画像検出装置とその製造方法 | |
JP5267458B2 (ja) | シンチレータパネル及び放射線イメージセンサ | |
JP5577644B2 (ja) | 放射線画像検出装置およびその製造方法 | |
JP5369906B2 (ja) | 放射線像変換パネル、及び放射線像検出装置 | |
JP2008232781A (ja) | シンチレータパネル及び放射線イメージセンサ | |
WO2010032504A1 (ja) | 放射線画像変換パネルとその製造方法 | |
JPWO2008102645A1 (ja) | シンチレータパネル及び放射線イメージセンサ | |
JPWO2008149659A1 (ja) | シンチレータパネル及びイメージセンサ | |
JP2010107354A (ja) | 放射線変換パネルおよび放射線変換パネルの作製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823276 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012532874 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13819123 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11823276 Country of ref document: EP Kind code of ref document: A1 |