WO2012026206A1 - 波長変換素子、光源及び液晶用バックライトユニット - Google Patents
波長変換素子、光源及び液晶用バックライトユニット Download PDFInfo
- Publication number
- WO2012026206A1 WO2012026206A1 PCT/JP2011/064909 JP2011064909W WO2012026206A1 WO 2012026206 A1 WO2012026206 A1 WO 2012026206A1 JP 2011064909 W JP2011064909 W JP 2011064909W WO 2012026206 A1 WO2012026206 A1 WO 2012026206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength conversion
- layer
- light
- conversion element
- alloy containing
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 132
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 19
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 52
- 239000000956 alloy Substances 0.000 claims abstract description 52
- 230000005284 excitation Effects 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 239000010410 layer Substances 0.000 claims description 166
- 229910000679 solder Inorganic materials 0.000 claims description 34
- 239000000843 powder Substances 0.000 claims description 25
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 24
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- 230000004888 barrier function Effects 0.000 claims description 15
- 239000011651 chromium Substances 0.000 claims description 15
- 239000011521 glass Substances 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- 229910052718 tin Inorganic materials 0.000 claims description 8
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 7
- 229910001120 nichrome Inorganic materials 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- 230000001629 suppression Effects 0.000 claims description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 5
- 239000005751 Copper oxide Substances 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 5
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 5
- 229910000431 copper oxide Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 3
- 239000012790 adhesive layer Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 239000002612 dispersion medium Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 229910052712 strontium Inorganic materials 0.000 description 6
- 229910052688 Gadolinium Inorganic materials 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910017639 MgSi Inorganic materials 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 3
- 229910004283 SiO 4 Inorganic materials 0.000 description 3
- 229910003668 SrAl Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- -1 rare earth sulfide Chemical class 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910008484 TiSi Inorganic materials 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910015999 BaAl Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910012506 LiSi Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133617—Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2/00—Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
- G02F2/02—Frequency-changing of light, e.g. by quantum counters
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
Definitions
- the present invention relates to a wavelength conversion element, a light source including the same, and a backlight unit for liquid crystal.
- white light sources used for applications such as backlights for liquid crystal displays have been actively developed.
- a white light source for example, in Patent Document 1 below, a part of light from an LED is absorbed on the light emitting side of an LED (Light Emitting Diode) that emits blue light, and yellow light is emitted.
- a light source in which a wavelength conversion member is arranged is disclosed. From this light source, white light that is a combined light of blue light emitted from the LED and transmitted through the wavelength conversion member and yellow light emitted from the wavelength conversion member is emitted.
- the present invention has been made in view of the above points, and an object of the present invention is to prevent the wavelength conversion element from being damaged during use of the light source or from reducing the intensity of light emitted from the light source including the wavelength conversion element.
- An object of the present invention is to provide a wavelength conversion element that can be used.
- the wavelength conversion element according to the present invention includes a wavelength conversion substrate and a reflective layer.
- the wavelength conversion substrate absorbs part of the excitation light and emits light having a wavelength different from that of the excitation light.
- the reflective layer is disposed on one surface of the wavelength conversion substrate.
- the reflective layer is made of a metal or an alloy.
- the “substrate” includes a sheet-like or film-like member.
- the wavelength conversion element according to the present invention is formed on the other surface of the wavelength conversion substrate, and further includes a reflection suppression layer that suppresses reflection of light entering from the other surface of the wavelength conversion substrate. It is preferable.
- the reflection suppressing layer is formed by a laminate in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are alternately stacked. It is preferable.
- the reflective layer is at least one metal selected from the group consisting of Ag, Al, Au, Pd and Ti, or from the group consisting of Ag, Al, Au, Pd and Ti. It is preferably made of an alloy containing a metal.
- the wavelength conversion element according to the present invention is preferably formed between the reflective layer and the wavelength conversion substrate, and further includes an adhesion layer that increases the adhesion strength between the reflection layer and the wavelength conversion substrate.
- the adhesion layer is preferably made of aluminum oxide, chromium oxide, copper oxide, titanium, chromium or an alloy containing chromium.
- the wavelength conversion element according to the present invention preferably further includes a solder fixing layer formed on the reflective layer.
- the solder fixing layer is made of Au or an alloy containing Au, an alloy containing Sn or Sn, an alloy containing In or In, an alloy containing Pb or Pb, an alloy containing Al or Al, or an alloy containing Ag or Ag. It is preferable.
- the wavelength conversion element according to the present invention is preferably formed between the solder fixing layer and the reflective layer, and further includes a barrier layer made of Ni, NiCr alloy, Pt or Pd.
- the wavelength conversion substrate is preferably made of glass or ceramic in which inorganic phosphor powder is dispersed.
- the light source according to the present invention includes the wavelength conversion element according to the present invention and a light emitting element that emits excitation light to the other surface of the wavelength conversion substrate.
- the light emitting element is preferably constituted by a semiconductor light emitting element.
- the wavelength conversion element is preferably formed on the reflective layer, and further has a solder fixing layer made of Au or an alloy containing Au, or an alloy containing Sn or Sn.
- the light source according to the present invention preferably further includes a housing and a solder layer that joins the housing and the solder fixing layer of the wavelength conversion substrate.
- the backlight unit for liquid crystal according to the present invention includes the light source according to the present invention and a light guide.
- the light guide has a main surface and side surfaces.
- the light guide receives light from the wavelength conversion element on its side surface and emits it as planar light from the main surface.
- the present invention it is possible to provide a wavelength conversion element that can suppress a breakage of the wavelength conversion element and a decrease in intensity of light emitted from the light source including the wavelength conversion element during use of the light source.
- FIG. 1 is a schematic diagram of a light source according to an embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view of a wavelength conversion element according to an embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view of the antireflection layer.
- FIG. 4 is a schematic diagram of a light source according to a modification.
- FIG. 5 is a schematic view of a backlight unit for liquid crystal according to the second embodiment.
- FIG. 6 is a schematic diagram of a backlight unit for liquid crystal according to the third embodiment.
- FIG. 7 is a schematic diagram of a backlight unit for liquid crystal according to a fourth embodiment.
- the present invention is implemented using the light source 1 shown in FIG. 1 as an example.
- the light source 1 and the wavelength conversion element 20 included in the light source 1 are merely examples.
- the light source and the wavelength conversion element according to the present invention are not limited to the light source 1 and the wavelength conversion element 20 at all.
- FIG. 1 is a schematic diagram of a light source according to the present embodiment.
- FIG. 2 is a schematic cross-sectional view of the wavelength conversion element in the present embodiment.
- FIG. 3 is a schematic cross-sectional view of the reflection suppressing layer in the present embodiment.
- the light source 1 includes a light emitting element 10, a wavelength conversion element 20, a dichroic mirror 11, and a housing 12.
- the light emitting element 10, the dichroic mirror 11, and the wavelength conversion element 20 are housed and fixed inside the housing 12.
- the housing 12 is not particularly limited as long as it can hold the light emitting element 10, the dichroic mirror 11, and the wavelength conversion element 20.
- the housing 12 can be formed of, for example, resin, metal, or alloy.
- casing 12 consists of material with high heat conductivity, such as a metal and an alloy.
- the housing 12 is preferably formed of, for example, a metal such as iron, aluminum, or copper, or an alloy such as stainless steel.
- the light emitting element 10 emits excitation light of the wavelength conversion element 20 toward the wavelength conversion element 20.
- the light emitting element 10 is not particularly limited as long as it can emit excitation light.
- the light emitting element 10 can be composed of, for example, an LED (Light Emitting Diode), a laser light emitting element, an EL (Electro Luminescent) light emitting element, a plasma light emitting element, or the like.
- the wavelength conversion element 20 includes a wavelength conversion substrate 21.
- the wavelength conversion substrate 21 has first and second main surfaces 21a and 21b.
- the wavelength conversion substrate 21 is arranged such that the first main surface 21a faces the light emitting element 10 (see FIG. 1), and the excitation light L0 emitted from the light emitting element 10 is incident on the first main surface 21a. ing.
- the wavelength conversion substrate 21 includes a phosphor that absorbs the excitation light L0 and emits light having a wavelength different from that of the absorbed excitation light.
- the wavelength conversion substrate 21 is made of glass in which inorganic phosphor powder is dispersed. For this reason, the wavelength conversion substrate 21 absorbs a part of the excitation light L0 and emits light having a wavelength different from that of the absorbed excitation light. Since the inorganic phosphor powder and glass have high heat resistance, it is possible to realize the high heat resistance of the wavelength conversion substrate 21 by forming the wavelength conversion substrate 21 with glass in which the inorganic phosphor powder is dispersed. .
- the thickness of the wavelength conversion substrate 21 is not particularly limited, but can be, for example, about 0.5 mm to 3.0 mm. If the wavelength conversion substrate 21 is too thick, the proportion of light absorbed by the wavelength conversion substrate 21 in the excitation light L0 increases, and the intensity of the reflected light L2 may be too low. On the other hand, if the wavelength conversion substrate 21 is too thin, the intensity of the fluorescence L1 may be too low.
- the inorganic phosphor powder can be appropriately selected according to the wavelength of the light L3 to be emitted from the light source 1, the wavelength of the excitation light L0 emitted from the light emitting element 10, and the like.
- examples of inorganic phosphor powders include oxide inorganic phosphors, nitride inorganic phosphors, oxynitride inorganic phosphors, sulfide inorganic phosphors, oxysulfide inorganic phosphors, rare earth sulfide inorganic phosphors, and aluminate chlorides. Inorganic phosphors and halophosphate inorganic phosphors can be used.
- Examples of inorganic phosphor powder that emits green visible light (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm include SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ , ZnS : Al 3+ , Cu + , CaS: Sn 2+ , CaS: Sn 2+ , F, CaSO 4 : Ce 3+ , Mn 2+ , LiAlO 2 : Mn 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , ZnS: Cu + , Cl
- Inorganic phosphor powders that emit green visible light (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ and the like.
- non-fluorescent powder that emits yellow visible light (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm
- Sr 3 WO 6 U
- SrSO 4 Eu 2+ , Mn 2+
- Examples of inorganic phosphor powders that emit red visible light (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm include CaS: Yb 2+ , Cl, Gd 3 Ga 4 O 12.
- Inorganic phosphor powders that emit red visible light (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+ , SrS: Eu 2+ , CaS: Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+ , CdS: In, Te, CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , Eu 2 W 2 O 7 and the like.
- a plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, and red fluorescence may be mixed and used.
- the dispersion medium of the inorganic phosphor powder is not particularly limited.
- examples of the dispersion medium include glass, ceramics, and resins.
- the glass as the dispersion medium is not particularly limited as long as it can stably hold the inorganic phosphor powder.
- Specific examples of the glass that can be used as the dispersion medium include, for example, silicate glass, borate glass, SiO 2 —B 2 O 3 —RO glass (R is at least Mg, Ca, Sr, and Ba).
- Borosilicate glass such as SnO—P 2 O 5 glass, borophosphate glass and the like. Of these, SiO 2 —B 2 O 3 —RO glass and SnO—P 2 O 5 glass are preferably used.
- the ceramic as the dispersion medium include metal nitrides such as alumina, zirconia, barium titanate, silicon nitride, and titanium nitride.
- the content of the inorganic phosphor powder in the wavelength conversion substrate 21 is not particularly limited, but is preferably 0.01% by mass to 95% by mass, and more preferably 10% by mass to 90% by mass, It is particularly preferably 50 to 90% by mass.
- a reflective layer 24 made of a metal or an alloy is formed on the second main surface 21 b of the wavelength conversion substrate opposite to the light emitting element 10. For this reason, in the present embodiment, the light that is not absorbed by the wavelength conversion substrate 21 in the excitation light L0 and the light emitted to the reflection layer 24 among the fluorescence generated in the wavelength conversion substrate 21 is reflected in the reflection layer. 24 is reflected to the light emitting element 10 side.
- the excitation light L0 enters the wavelength conversion substrate 21 the fluorescence L1 emitted from the inorganic phosphor powder that has absorbed the excitation light L0 and the reflected light L2 of the excitation light L0 are the first main surface 21a of the wavelength conversion substrate 21. Is emitted toward the light emitting element 10 side. Therefore, the light L3 emitted from the wavelength conversion substrate 21 shown in FIG. 1 to the light emitting element 10 side is a combined light of the fluorescence L1 and the reflected light L2. Therefore, for example, a white light source 1 useful as a light source of a liquid crystal display is realized by using an LED that emits blue light as the light emitting element 10 and a wavelength conversion element 20 that absorbs blue light and emits yellow light. can do. The combined light L3 is reflected by the dichroic mirror 11 and is extracted in a direction different from the light emitting element 10.
- the material of the reflective layer 24 is not particularly limited as long as it is a metal or alloy that can reflect the excitation light L0.
- the metal and alloy preferably used for forming the reflective layer 24 include at least one of these metals such as a metal selected from the group consisting of Ag, Al, Au, Pd, and Ti, and an Ag—Pd alloy. An alloy containing a kind of metal can be given.
- the reflective layer 24 is preferably formed of a metal such as Ag or Al or an alloy containing at least one of Ag and Al. In that case, the light reflectance of the reflective layer 24 can be increased, and the intensity of the combined light L3 emitted from the light source 1 can be increased.
- the reflective layer 24 is formed of Ag will be described.
- the thickness of the reflective layer 24 is not particularly limited as long as it is a thickness that can suitably reflect the excitation light L0.
- the thickness of the reflective layer 24 can be, for example, about 100 nm to 300 nm. If the thickness of the reflective layer 24 is too thin, the reflectance of the excitation light L0 may be too low. On the other hand, if the thickness of the reflective layer 24 is too thick, an increase in film stress or surface scattering may occur.
- a reflection suppression layer 22 is formed on the first main surface 21a of the wavelength conversion substrate 21.
- the reflection of the excitation light L0 about to enter from the first main surface 21a on the first main surface 21a is suppressed.
- the reflection of the fluorescence L1 and the reflected light L2 on the first main surface 21a is also suppressed.
- the utilization efficiency of the excitation light L0 can be increased, and the intensity of the synthesized light L3 can be increased.
- the reflection suppressing layer 22 is not particularly limited as long as it can suppress the reflection of the excitation light L0 on the first main surface 21a.
- the reflection suppression layer 22 can be configured by a stacked body in which low refractive index layers 22L and high refractive index layers 22H are alternately stacked.
- the low refractive index layer 22L is a layer having a relatively low refractive index.
- the low refractive index layer 22L can be formed of, for example, silicon oxide, magnesium fluoride, or the like.
- the high refractive index layer 22H is a layer having a relatively high refractive index.
- the high refractive index layer 22H can be formed of, for example, tantalum oxide, yttrium oxide, zirconium oxide, aluminum oxide, niobium oxide, titanium oxide, hafnium oxide, or the like.
- the refractive index of the high refractive index layer 22H and the refractive index of the low refractive index layer 22L are preferably different by 0.1 or more.
- the total number of the low refractive index layer 22L and the high refractive index layer 22H is not particularly limited, but is preferably about 2 to 50, more preferably about 4 to 20, and more preferably about 4 to 10. More preferably.
- the reflection suppressing effect may not be sufficiently obtained.
- the total number of the low-refractive index layers 22L and the high-refractive index layers 22H is too small, the reflection suppressing effect may not be sufficiently obtained.
- the total number of the low-refractive index layers 22L and the high-refractive index layers 22H is too large, the film stress may increase and the film may be easily peeled off. Further, the time required for forming the low refractive index layer 22L and the high refractive index layer 22H may be too long.
- the thicknesses of the low refractive index layer 22L and the high refractive index layer 22H can be appropriately set according to the wavelength for which reflection is to be suppressed.
- the thicknesses of the low refractive index layer 22L and the high refractive index layer 22H can be set to, for example, about 10 nm to 200 nm.
- An adhesion layer 23 is formed between the reflective layer 24 and the wavelength conversion substrate 21.
- the adhesion layer 23 has an adhesion strength with the reflection layer 24 higher than an adhesion strength between the reflection layer 24 and the wavelength conversion substrate 21, and has an adhesion strength with the wavelength conversion substrate 21 between the reflection layer 24 and the wavelength conversion substrate 21. It is a layer higher than the adhesion strength. Therefore, the adhesion strength between the reflective layer 24 and the wavelength conversion substrate 21 is enhanced by the adhesion layer 23.
- the adhesion layer 23 is not particularly limited as long as the adhesion strength between the reflective layer 24 and the wavelength conversion substrate 21 can be improved.
- the adhesion layer 23 can be formed of, for example, aluminum oxide, chromium oxide, copper oxide, titanium, chromium, an alloy containing chromium, or the like.
- Specific examples of the alloy containing chromium include a NiCr alloy.
- the thickness of the adhesion layer 23 can be set to, for example, about 5 nm to 500 nm. If the adhesion layer 23 is too thin, the effect of improving the adhesion strength may not be sufficiently obtained. On the other hand, if the adhesion layer 23 is too thick, peeling may occur due to an increase in film stress. In particular, in the case of chromium oxide and copper oxide, if the adhesion layer 23 is too thick, light absorption by the adhesion layer 23 becomes too large, and the intensity of reflected light may decrease.
- the thickness of the adhesion layer 23 is preferably 10 nm or less, for example. If the adhesion layer 23 is too thick, light absorption by the adhesion layer 23 becomes too large, and the intensity of reflected light may decrease. On the other hand, if the adhesion layer 23 is too thin, the effect of improving the adhesion strength may not be sufficiently obtained. For this reason, when the adhesion layer 23 is made of a metal or an alloy such as titanium, chromium, or an alloy containing chromium, the thickness of the adhesion layer 23 is preferably 0.1 nm or more, for example.
- the adhesion layer 23 may not be formed between the reflection layer (Al) and the wavelength conversion substrate 21.
- solder fixing layer 26 made of Au or an alloy containing Au, or an alloy containing Sn or Sn and having high solder wettability is laminated via a barrier layer 25.
- the solder fixing layer 26 is joined to the housing 12 by a solder layer 13 formed of various solders such as Sn alloy.
- the solder fixing layer 26 is a layer for increasing the bonding strength of the solder layer 13.
- the thickness of the solder fixing layer 26 can be, for example, about 100 nm to 500 nm. If the thickness of the solder fixing layer 26 is too thin, wettability may be reduced. On the other hand, if the thickness of the solder fixing layer 26 is too thick, the productivity may decrease.
- the barrier layer 25 is composed of a NiCr alloy layer made of Ni or NiCr alloy, a Pt layer made of Pt, or a Pd layer made of Pd. This barrier layer 25 can effectively suppress damage to the reflective layer 24 due to solder during bonding with solder.
- the thickness of the barrier layer 25 can be, for example, about 100 nm to 2000 nm. If the thickness of the barrier layer 25 is too thin, a sufficient barrier effect cannot be obtained, and the reflective layer 24 may be damaged. On the other hand, if the barrier layer 25 is too thick, the solder fixing layer 26 may be cracked due to film stress.
- the molar ratio (Ni / Cr) of Ni and Cr can be 50 or more and less than 100.
- the reflective layer 24 made of metal or alloy is provided. For this reason, as supported by the following examples and comparative examples, it is possible to effectively suppress the intensity reduction of the combined light L3 during use of the light source 1.
- the reason why this effect is obtained is made of a metal or an alloy, and by forming the reflective layer 24 having a high thermal conductivity on the second main surface, the thermal quenching accompanying the temperature rise of the wavelength conversion substrate 21 is suppressed.
- the barrier layer 25, the solder fixing layer 26, and the solder layer 13 made of metal or alloy and having high thermal conductivity are formed on the reflective layer 24. For this reason, the heat dissipation is higher, and it is considered that the thermal quenching accompanying the temperature rise of the wavelength conversion substrate 21 is more effectively suppressed.
- the casing 12 is preferably made of a material having high thermal conductivity such as metal or alloy.
- a material having high thermal conductivity such as metal or alloy.
- an inorganic adhesive layer made of a cured product of an inorganic adhesive may be provided. In this case, it is not always necessary to provide the barrier layer 25 and the solder fixing layer 26.
- the semiconductor light emitting element 10 that easily generates heat, such as a high-power LED or a laser element, is used, and wavelength conversion is performed. This is considered to be more remarkable when the temperature of the substrate 21 is likely to rise.
- the reflective layer 24 made of a metal or an alloy and having a low light transmittance on the second main surface 21b of the wavelength conversion substrate 21 makes the wavelength conversion element 20 a reflective type instead of a transmissive type. This is the first time it is realized.
- the wavelength conversion substrate 21 is made of an inorganic material such as glass and inorganic phosphor powder.
- a phosphor powder made of an organic material may be used, and a dispersion medium of the phosphor powder may be a ceramic or an organic resin.
- the present invention is not limited to this configuration.
- the light emitting element 10 may be arranged so that the excitation light L0 is obliquely incident on the wavelength conversion substrate 21, and the light source may be configured without using the dichroic mirror 11.
- FIG. 4 is a schematic diagram of a light source according to this modification. As shown in FIG. 4, in this modification, a recess 12 b is formed on the surface 12 a of the housing 12. The wavelength conversion element 20 is disposed in the recess 12b. The surface 20 a of the wavelength conversion element 20 is flush with the surface 12 a of the housing 12. Therefore, in this modification, the side surface of the wavelength conversion element 20 is covered with the housing 12. For this reason, emission of light from the side surface of the wavelength conversion element 20 is suppressed. Therefore, the intensity of light emitted from the surface 20a of the wavelength conversion element 20 can be increased. Therefore, the intensity of the emitted light L3 can be increased.
- FIG. 5 is a schematic view of a backlight unit for liquid crystal according to the second embodiment.
- the liquid crystal backlight unit 2 of the present embodiment is used as a backlight unit of a liquid crystal display device.
- the liquid crystal backlight unit 2 includes a light source 1 a and a light guide 30.
- the light source 1 a includes a light emitting element 10, a dichroic mirror 11, and a wavelength conversion element 20 attached to the housing 12 by a solder layer 13.
- the excitation light L0 emitted from the light source 10 is guided to the wavelength conversion element 20 by the dichroic mirror 11.
- the light L3 that is the combined light of the fluorescence and the reflected light is transmitted through the dichroic mirror 11.
- the light L3 transmitted through the dichroic mirror 11 enters from the side surface 30a of the light guide 30.
- the light that has entered the light guide 30 is guided through the light guide 30 and emitted from the main surface 30b as the planar light L4.
- a reflective layer made of a metal or an alloy is provided. For this reason, the intensity
- FIG. 6 is a schematic diagram of a backlight unit for liquid crystal according to the third embodiment.
- FIG. 7 is a schematic diagram of a backlight unit for liquid crystal according to a fourth embodiment.
- the liquid crystal backlight units 2a and 2b of the third and fourth embodiments differ from the liquid crystal backlight unit 2 of the second embodiment only in the configuration of the light source. As shown in FIGS. 6 and 7, the light sources 1 b and 1 c used in the third and fourth embodiments do not have the dichroic mirror 11.
- the emitted light L0 from the light emitting element 10 is directly incident on the wavelength conversion element 20, and the light L3 emitted from the wavelength conversion element 20 is directly incident on the side surface 30a of the light guide 30.
- the light emitting element 10 and the wavelength conversion element 20 are arranged.
- an aluminum oxide adhesion layer is formed on the opposite surface on which the antireflection layer is formed so as to have a thickness of 134 nm
- Ag is formed on the adhesion layer so as to have a thickness of 200 nm.
- a reflective layer was formed.
- a barrier layer made of NiCr alloy is formed on the reflective layer so as to have a thickness of 500 nm
- a solder fixing layer made of Au is formed on the barrier layer so as to have a thickness of 300 nm.
- the wavelength conversion element After joining the produced wavelength conversion element and the metal casing using solder, the wavelength conversion element is arranged so that light is irradiated onto the surface on the side where the antireflection layer is formed at a current of 30 mA.
- the irradiated laser beam (wavelength 440nm to 450nm) is continuously irradiated for 30 minutes, the intensity of the light that is converted by the wavelength conversion substrate immediately after the start of irradiation and 30 minutes after the start of irradiation is measured, and the light emission over time The amount of strength reduction was evaluated. Moreover, it was confirmed visually that there was no damage. As a result, the amount of decrease in emission intensity of the wavelength conversion element in this example was as small as 15%. Further, no damage was observed in the wavelength conversion element and its surroundings.
- the wavelength conversion element produced by the same method as in the example was adhered to the housing using an epoxy resin so that light was irradiated on the surface on the side where the antireflection layer was formed, and then the same evaluation as in the example was performed. It was. As a result, the wavelength conversion element was damaged about 20 minutes after the start of irradiation.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Led Device Packages (AREA)
- Planar Illumination Modules (AREA)
- Luminescent Compositions (AREA)
- Liquid Crystal (AREA)
Abstract
Description
図4は、本変形例に係る光源の模式図である。図4に示すように、本変形例では、筐体12の表面12aに凹部12bが形成されている。波長変換素子20は、その凹部12b内に配置されている。波長変換素子20の表面20aは、筐体12の表面12aと面一である。よって、本変形例では、波長変換素子20の側面が筐体12により覆われている。このため、波長変換素子20の側面からの光の出射が抑制されている。よって、波長変換素子20の表面20aから出射する光の強度を高めることができる。従って、出射光L3の強度を高めることができる。
図5は、第2の実施形態に係る液晶用バックライトユニットの模式図である。本実施形態の液晶用バックライトユニット2は、液晶表示装置のバックライトユニットとして用いられるものである。
図6は、第3の実施形態に係る液晶用バックライトユニットの模式図である。図7は、第4の実施形態に係る液晶用バックライトユニットの模式図である。
まず、ホウケイ酸系ガラスからなるガラス粉末85質量%に対し、CaS:Ce3+の蛍光体粉末15質量%を添加し、混合した後、焼成し、厚み0.2mmの波長変換基板を作製した。
実施例と同じ方法で作製した波長変換素子を、反射抑制層を形成した側の表面に光が照射されるようにエポキシ樹脂を用いて筐体と接着した後、実施例と同様の評価を行った。その結果、照射開始から約20分後に波長変換素子に破損が生じた。
2、2a、2b…液晶用バックライトユニット
10…発光素子
11…ダイクロイックミラー
12…筐体
12a…筐体の表面
12b…凹部
13…半田層
20…波長変換素子
20a…波長変換素子の表面
21…波長変換基板
21a…第1の主面
21b…第2の主面
22…反射抑制層
22H…高屈折率層
22L…低屈折率層
23…密着層
24…反射層
25…バリア層
26…半田固定層
30…導光体
30a…導光体の側面
30b…導光体の主面
Claims (14)
- 励起光が入射したときに、前記励起光の一部を吸収し、前記励起光とは波長が異なる光を発する波長変換基板と、
前記波長変換基板の一方の表面の上に配置されており、金属または合金からなる反射層と、
を備える波長変換素子。 - 前記波長変換基板の他方の表面の上に形成されており、前記波長変換基板の他方の表面から入射しようとする光の反射を抑制する反射抑制層をさらに備える、請求項1に記載の波長変換素子。
- 前記反射抑制層は、屈折率が相対的に低い低屈折率層と、屈折率が相対的に高い高屈折率層とが交互に積層された積層体により形成されている、請求項2に記載の波長変換素子。
- 前記反射層は、Ag、Al、Au、Pd及びTiからなる群から選ばれた金属またはAg、Al、Au、Pd及びTiからなる群から選ばれた少なくとも一種の金属を含む合金からなる、請求項1~3のいずれか一項に記載の波長変換素子。
- 前記反射層と前記波長変換基板との間に形成されており、前記反射層と前記波長変換基板との密着強度を高める密着層をさらに備える、請求項1~4のいずれか一項に記載の波長変換素子。
- 前記密着層は、酸化アルミニウム、酸化クロム、酸化銅、チタン、クロムまたはクロムを含む合金からなる、請求項5に記載の波長変換素子。
- 前記反射層の上に形成されており、半田固定層をさらに備える、請求項1~6のいずれか一項に記載の波長変換素子。
- 前記半田固定層は、AuまたはAuを含む合金、SnまたはSnを含む合金、InまたはInを含む合金、PbまたはPbを含む合金、AlまたはAlを含む合金、若しくは、AgまたはAgを含む合金からなる、請求項7に記載の波長変換素子。
- 前記半田固定層と前記反射層との間に形成されており、Ni、NiCr合金、PtまたはPdからなるバリア層をさらに備える、請求項7または8に記載の波長変換素子。
- 前記波長変換基板は、無機蛍光体粉末が分散しているガラスまたはセラミックスからなる、請求項1~9のいずれか一項に記載の波長変換素子。
- 請求項1~10のいずれか一項に記載の波長変換素子と、
前記波長変換基板の他方の表面に対して前記励起光を出射する発光素子と、
を備える光源。 - 前記発光素子は、半導体発光素子により構成されている。請求項11に記載の光源。
- 前記波長変換素子は、前記反射層の上に形成されており、AuまたはAuを含む合金、もしくは、SnまたはSnを含む合金からなる半田固定層をさらに有し、
筐体と、
前記筐体と前記波長変換基板の半田固定層とを接合している半田層と、
をさらに備える、請求項11または12に記載の光源。 - 請求項11~13のいずれか一項に記載の光源と、
主面と側面とを有し、前記波長変換素子からの光を前記側面で受光し、前記主面から面状光を出射する導光体と、
を備える液晶用バックライトユニット。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11819677.3A EP2610540A4 (en) | 2010-08-26 | 2011-06-29 | WAVELENGTH CONVERSION ELEMENT, LIGHT SOURCE AND LIGHT CRYSTAL WATER LIGHT UNIT |
JP2011527538A JP5678885B2 (ja) | 2010-08-26 | 2011-06-29 | 波長変換素子、光源及び液晶用バックライトユニット |
KR1020137000316A KR20130099912A (ko) | 2010-08-26 | 2011-06-29 | 파장 변환 소자, 광원 및 액정용 백라이트 유닛 |
US13/807,956 US20130107573A1 (en) | 2010-08-26 | 2011-06-29 | Wavelength conversion element, light source, and backlight unit for liquid crystals |
CN2011800413282A CN103080633A (zh) | 2010-08-26 | 2011-06-29 | 波长变换元件、光源和液晶用背光单元 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-189407 | 2010-08-26 | ||
JP2010189407 | 2010-08-26 | ||
JP2010245366 | 2010-11-01 | ||
JP2010-245366 | 2010-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012026206A1 true WO2012026206A1 (ja) | 2012-03-01 |
Family
ID=45723219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064909 WO2012026206A1 (ja) | 2010-08-26 | 2011-06-29 | 波長変換素子、光源及び液晶用バックライトユニット |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130107573A1 (ja) |
EP (1) | EP2610540A4 (ja) |
JP (1) | JP5678885B2 (ja) |
KR (1) | KR20130099912A (ja) |
CN (1) | CN103080633A (ja) |
TW (1) | TWI616710B (ja) |
WO (1) | WO2012026206A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2848861A4 (en) * | 2012-07-02 | 2015-11-04 | Lg Innotek Co Ltd | ILLUMINATION DEVICE |
JP2016058378A (ja) * | 2014-09-05 | 2016-04-21 | 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. | 波長変換機器およびそれを用いた照明システム |
JP2016070975A (ja) * | 2014-09-26 | 2016-05-09 | 日亜化学工業株式会社 | 液晶表示装置用バックライトユニット及びこれを用いた液晶表示装置 |
JP2016100090A (ja) * | 2014-11-18 | 2016-05-30 | スタンレー電気株式会社 | 発光モジュール及びそれを用いた発光装置 |
JP2016194697A (ja) * | 2016-05-10 | 2016-11-17 | ウシオ電機株式会社 | 蛍光光源装置 |
JP2017517771A (ja) * | 2014-05-28 | 2017-06-29 | 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation | 波長変換装置及びその関連発光装置 |
WO2017110031A1 (ja) * | 2015-12-24 | 2017-06-29 | パナソニックIpマネジメント株式会社 | 発光素子および照明装置 |
JP2017194706A (ja) * | 2012-08-02 | 2017-10-26 | 日亜化学工業株式会社 | 波長変換装置の製造方法 |
WO2018042826A1 (ja) * | 2016-08-30 | 2018-03-08 | パナソニックIpマネジメント株式会社 | 色変換素子及び照明装置 |
JP2018041003A (ja) * | 2016-09-09 | 2018-03-15 | パナソニックIpマネジメント株式会社 | 波長変換部材、プロジェクタおよび照明装置 |
KR20180056762A (ko) * | 2015-09-25 | 2018-05-29 | 마테리온 코포레이션 | 솔더 부착을 갖는 인광체 요소를 사용하는 높은 광출력 광 변환 장치 |
WO2021010272A1 (ja) * | 2019-07-16 | 2021-01-21 | 日本特殊陶業株式会社 | 波長変換部材、光源装置、および、波長変換部材の製造方法 |
JPWO2021010273A1 (ja) * | 2019-07-16 | 2021-01-21 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9355986B2 (en) * | 2012-02-14 | 2016-05-31 | Mitsubishi Materials Corporation | Solder joint structure, power module, power module substrate with heat sink and method of manufacturing the same, and paste for forming solder base layer |
DE102013013296B4 (de) * | 2013-08-12 | 2020-08-06 | Schott Ag | Konverter-Kühlkörperverbund mit metallischer Lotverbindung und Verfahren zu dessen Herstellung |
KR102126277B1 (ko) * | 2013-12-27 | 2020-06-25 | 삼성디스플레이 주식회사 | 백라이트 어셈블리 및 이를 포함하는 표시 장치 |
JP6540050B2 (ja) | 2014-04-09 | 2019-07-10 | 日亜化学工業株式会社 | 発光装置 |
JP2016081054A (ja) * | 2014-10-13 | 2016-05-16 | 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. | 光波長変換デバイス及びこれを用いた照明システム |
DE102015101330A1 (de) | 2015-01-29 | 2016-08-04 | Osram Opto Semiconductors Gmbh | Vorrichtung zur Konversion der Wellenlänge einer elektromagnetischen Strahlung |
CN104752453B (zh) * | 2015-03-30 | 2017-09-19 | 深圳市华星光电技术有限公司 | 一种发光装置及液晶显示装置 |
JP6536212B2 (ja) * | 2015-06-23 | 2019-07-03 | セイコーエプソン株式会社 | 波長変換素子、光源装置およびプロジェクター |
WO2017029255A2 (de) | 2015-08-17 | 2017-02-23 | Schott Ag | Verfahren zur justierung eines auf einem optischen konverter erzeugten leuchtflecks, vorrichtung mit leuchtfleck und deren verwendung sowie konverter-kühlkörperverbund mit metallischer lotverbindung |
WO2018083953A1 (ja) * | 2016-11-07 | 2018-05-11 | 東レ株式会社 | 光源ユニット |
JP6981086B2 (ja) * | 2017-08-03 | 2021-12-15 | セイコーエプソン株式会社 | 波長変換素子、光源装置及びプロジェクター |
CN109523908A (zh) * | 2017-09-19 | 2019-03-26 | 群创光电股份有限公司 | 显示装置 |
CN107678238A (zh) * | 2017-10-27 | 2018-02-09 | 扬州吉新光电有限公司 | 一种波长转换装置及其制造方法 |
EP3614045B1 (en) * | 2018-08-20 | 2021-11-03 | Nichia Corporation | Fluorescent module and illumination device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004252384A (ja) * | 2003-02-21 | 2004-09-09 | Mitsui Chemicals Inc | 反射シート |
JP2005209852A (ja) | 2004-01-22 | 2005-08-04 | Nichia Chem Ind Ltd | 発光デバイス |
JP2005347263A (ja) * | 2004-06-04 | 2005-12-15 | Lumileds Lighting Us Llc | 照明装置における離間した波長変換 |
JP2006244779A (ja) * | 2005-03-01 | 2006-09-14 | Matsushita Electric Works Ltd | 照明光源、照明装置、及び表示装置 |
JP2007207615A (ja) * | 2006-02-02 | 2007-08-16 | Mitsubishi Electric Corp | 面状光源装置およびこの面状光源装置を用いた表示装置 |
WO2009039820A1 (de) * | 2007-09-28 | 2009-04-02 | Osram Opto Semiconductors Gmbh | Dünnfilm-led mit einer spiegelschicht und verfahren zu deren herstellung |
JP2009128543A (ja) * | 2007-11-21 | 2009-06-11 | Panasonic Corp | 反射防止構造体の製造方法 |
JP2010004035A (ja) * | 2008-05-22 | 2010-01-07 | Mitsubishi Chemicals Corp | 半導体発光装置、照明装置、および画像表示装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55163527A (en) * | 1979-06-05 | 1980-12-19 | Canon Inc | Optical system |
JPH0470740A (ja) * | 1990-07-12 | 1992-03-05 | Fujitsu Ltd | X線画像変換シート |
WO1998035180A1 (en) * | 1997-02-11 | 1998-08-13 | Mcdonnell Douglas Corporation | Reflector and associated light assembly |
JPH10177896A (ja) * | 1998-01-05 | 1998-06-30 | Hitachi Ltd | 有機発光素子 |
FR2835065B1 (fr) * | 2002-01-22 | 2004-04-02 | Centre Nat Rech Scient | Composant a absorbant saturable et procede de fabrication de composant a absorbant saturable |
JP4362696B2 (ja) * | 2003-03-26 | 2009-11-11 | ソニー株式会社 | 発光素子およびその製造方法、ならびに表示装置 |
DE102004034369B4 (de) * | 2004-07-16 | 2007-04-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Halogenlampe |
KR20070090889A (ko) * | 2004-11-02 | 2007-09-06 | 교세라 케미카르 가부시키가이샤 | 광반사경, 그 제조 방법 및 프로젝터 |
US7703945B2 (en) * | 2006-06-27 | 2010-04-27 | Cree, Inc. | Efficient emitting LED package and method for efficiently emitting light |
GB0801509D0 (en) * | 2008-01-28 | 2008-03-05 | Photonstar Led Ltd | Light emitting system with optically transparent thermally conductive element |
KR100974776B1 (ko) * | 2009-02-10 | 2010-08-06 | 엘지이노텍 주식회사 | 발광 소자 |
JP2010278355A (ja) * | 2009-05-29 | 2010-12-09 | Fujifilm Corp | 発光デバイス |
US8556437B2 (en) * | 2009-12-17 | 2013-10-15 | Stanley Electric Co., Ltd. | Semiconductor light source apparatus and lighting unit |
-
2011
- 2011-06-29 US US13/807,956 patent/US20130107573A1/en not_active Abandoned
- 2011-06-29 CN CN2011800413282A patent/CN103080633A/zh active Pending
- 2011-06-29 KR KR1020137000316A patent/KR20130099912A/ko not_active Withdrawn
- 2011-06-29 JP JP2011527538A patent/JP5678885B2/ja not_active Expired - Fee Related
- 2011-06-29 EP EP11819677.3A patent/EP2610540A4/en not_active Withdrawn
- 2011-06-29 WO PCT/JP2011/064909 patent/WO2012026206A1/ja active Application Filing
- 2011-07-11 TW TW100124415A patent/TWI616710B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004252384A (ja) * | 2003-02-21 | 2004-09-09 | Mitsui Chemicals Inc | 反射シート |
JP2005209852A (ja) | 2004-01-22 | 2005-08-04 | Nichia Chem Ind Ltd | 発光デバイス |
JP2005347263A (ja) * | 2004-06-04 | 2005-12-15 | Lumileds Lighting Us Llc | 照明装置における離間した波長変換 |
JP2006244779A (ja) * | 2005-03-01 | 2006-09-14 | Matsushita Electric Works Ltd | 照明光源、照明装置、及び表示装置 |
JP2007207615A (ja) * | 2006-02-02 | 2007-08-16 | Mitsubishi Electric Corp | 面状光源装置およびこの面状光源装置を用いた表示装置 |
WO2009039820A1 (de) * | 2007-09-28 | 2009-04-02 | Osram Opto Semiconductors Gmbh | Dünnfilm-led mit einer spiegelschicht und verfahren zu deren herstellung |
JP2009128543A (ja) * | 2007-11-21 | 2009-06-11 | Panasonic Corp | 反射防止構造体の製造方法 |
JP2010004035A (ja) * | 2008-05-22 | 2010-01-07 | Mitsubishi Chemicals Corp | 半導体発光装置、照明装置、および画像表示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2610540A4 |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2848861A4 (en) * | 2012-07-02 | 2015-11-04 | Lg Innotek Co Ltd | ILLUMINATION DEVICE |
JP2017194706A (ja) * | 2012-08-02 | 2017-10-26 | 日亜化学工業株式会社 | 波長変換装置の製造方法 |
JP2017517771A (ja) * | 2014-05-28 | 2017-06-29 | 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation | 波長変換装置及びその関連発光装置 |
JP2016058378A (ja) * | 2014-09-05 | 2016-04-21 | 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. | 波長変換機器およびそれを用いた照明システム |
US9696013B2 (en) | 2014-09-05 | 2017-07-04 | Delta Electronics, Inc. | Illumination system multi-layered wavelength-converting device |
US9995870B2 (en) | 2014-09-26 | 2018-06-12 | Nichia Corporation | Backlight unit and liquid crystal display device |
JP2016070975A (ja) * | 2014-09-26 | 2016-05-09 | 日亜化学工業株式会社 | 液晶表示装置用バックライトユニット及びこれを用いた液晶表示装置 |
US10495808B2 (en) | 2014-09-26 | 2019-12-03 | Nichia Corporation | Backlight unit and method of lighiting backlight unit |
US10281642B2 (en) | 2014-09-26 | 2019-05-07 | Nichia Corporation | Backlight unit and liquid crystal display device |
US20180259703A1 (en) | 2014-09-26 | 2018-09-13 | Nichia Corporation | Backlight unit and liquid crystal display device |
JP2016100090A (ja) * | 2014-11-18 | 2016-05-30 | スタンレー電気株式会社 | 発光モジュール及びそれを用いた発光装置 |
JP7113745B2 (ja) | 2015-09-25 | 2022-08-05 | マテリオン コーポレイション | はんだ取付を伴う蛍光体要素を用いる高光学パワー光変換デバイス |
US11658252B2 (en) | 2015-09-25 | 2023-05-23 | Materion Corporation | High optical power light conversion device using a phosphor element with solder attachment |
US12034092B2 (en) | 2015-09-25 | 2024-07-09 | Materion Corporation | High optical power light conversion device using a phosphor element with solder attachment |
KR20180056762A (ko) * | 2015-09-25 | 2018-05-29 | 마테리온 코포레이션 | 솔더 부착을 갖는 인광체 요소를 사용하는 높은 광출력 광 변환 장치 |
JP2018531415A (ja) * | 2015-09-25 | 2018-10-25 | マテリオン コーポレイション | はんだ取付を伴う蛍光体要素を用いる高光学パワー光変換デバイス |
JP7170073B2 (ja) | 2015-09-25 | 2022-11-11 | マテリオン コーポレイション | はんだ取付を伴う蛍光体要素を用いる高光学パワー光変換デバイス |
US11289616B2 (en) | 2015-09-25 | 2022-03-29 | Materion Corporation | High optical power light conversion device using a phosphor element with solder attachment |
KR102315807B1 (ko) * | 2015-09-25 | 2021-10-22 | 마테리온 코포레이션 | 솔더 부착을 갖는 인광체 요소를 사용하는 높은 광출력 광 변환 장치 |
JP2021067957A (ja) * | 2015-09-25 | 2021-04-30 | マテリオン コーポレイション | はんだ取付を伴う蛍光体要素を用いる高光学パワー光変換デバイス |
WO2017110031A1 (ja) * | 2015-12-24 | 2017-06-29 | パナソニックIpマネジメント株式会社 | 発光素子および照明装置 |
JPWO2017110031A1 (ja) * | 2015-12-24 | 2018-06-21 | パナソニックIpマネジメント株式会社 | 発光素子および照明装置 |
JP2016194697A (ja) * | 2016-05-10 | 2016-11-17 | ウシオ電機株式会社 | 蛍光光源装置 |
JPWO2018042826A1 (ja) * | 2016-08-30 | 2018-12-20 | パナソニックIpマネジメント株式会社 | 色変換素子及び照明装置 |
US10876711B2 (en) | 2016-08-30 | 2020-12-29 | Panasonic Intellectual Property Management Co., Ltd. | Color conversion element and lighting device |
WO2018042826A1 (ja) * | 2016-08-30 | 2018-03-08 | パナソニックIpマネジメント株式会社 | 色変換素子及び照明装置 |
JP2018041003A (ja) * | 2016-09-09 | 2018-03-15 | パナソニックIpマネジメント株式会社 | 波長変換部材、プロジェクタおよび照明装置 |
WO2021010273A1 (ja) * | 2019-07-16 | 2021-01-21 | 日本特殊陶業株式会社 | 半田付け用波長変換部材、波長変換装置、および、光源装置 |
JPWO2021010272A1 (ja) * | 2019-07-16 | 2021-01-21 | ||
WO2021010272A1 (ja) * | 2019-07-16 | 2021-01-21 | 日本特殊陶業株式会社 | 波長変換部材、光源装置、および、波長変換部材の製造方法 |
TWI788684B (zh) * | 2019-07-16 | 2023-01-01 | 日商日本特殊陶業股份有限公司 | 波長轉換構件、光源裝置及波長轉換構件的製造方法 |
US11692699B2 (en) | 2019-07-16 | 2023-07-04 | Ngk Spark Plug Co., Ltd. | Wavelength conversion member, light source device, and method for manufacturing wavelength conversion member |
JP7307799B2 (ja) | 2019-07-16 | 2023-07-12 | 日本特殊陶業株式会社 | 波長変換部材、光源装置、および、波長変換部材の製造方法 |
JP7312829B2 (ja) | 2019-07-16 | 2023-07-21 | 日本特殊陶業株式会社 | 半田付け用波長変換部材、波長変換装置、および、光源装置 |
EP4001752A4 (en) * | 2019-07-16 | 2023-12-06 | Ngk Spark Plug Co., Ltd. | WAVELENGTH CONVERSION ELEMENT, LIGHT SOURCE DEVICE AND METHOD FOR MANUFACTURING A WAVELENGTH CONVERSION ELEMENT |
JPWO2021010273A1 (ja) * | 2019-07-16 | 2021-01-21 |
Also Published As
Publication number | Publication date |
---|---|
US20130107573A1 (en) | 2013-05-02 |
KR20130099912A (ko) | 2013-09-06 |
JP5678885B2 (ja) | 2015-03-04 |
EP2610540A1 (en) | 2013-07-03 |
CN103080633A (zh) | 2013-05-01 |
EP2610540A4 (en) | 2015-04-29 |
TW201209500A (en) | 2012-03-01 |
TWI616710B (zh) | 2018-03-01 |
JPWO2012026206A1 (ja) | 2013-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5678885B2 (ja) | 波長変換素子、光源及び液晶用バックライトユニット | |
EP3637482B1 (en) | Wavelength conversion element and light source comprising the same | |
US10047285B2 (en) | Wavelength conversion member and light emitting device using same | |
CN102798085B (zh) | 光源装置以及照明装置 | |
JP2015050124A (ja) | 発光装置 | |
JP5919968B2 (ja) | 波長変換部材及び発光デバイス | |
JP5585421B2 (ja) | 波長変換素子及びそれを備える光源 | |
CN104048264A (zh) | 光源装置及照明装置 | |
JP2013168602A (ja) | 光源装置および照明装置 | |
US11262046B2 (en) | Phosphor element, method for producing same, and lighting device | |
JP2012094741A (ja) | 波長変換素子及びそれを備える光源 | |
WO2011058497A2 (en) | Led assembly | |
JP5585411B2 (ja) | 波長変換素子及びそれを備える光源 | |
WO2019021846A1 (ja) | 波長変換部材及び発光装置 | |
JP5585410B2 (ja) | 波長変換素子及びそれを備える光源 | |
WO2023006671A1 (en) | A laser lighting device | |
WO2019061818A1 (zh) | 一种波长转换装置及发光装置 | |
JP2013214629A (ja) | 波長変換部材及び発光デバイス | |
US11635189B2 (en) | Phosphor element and lighting device | |
WO2023058541A1 (ja) | 蛍光体デバイス及び発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011527538 Country of ref document: JP Ref document number: 201180041328.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819677 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13807956 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137000316 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011819677 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |