[go: up one dir, main page]

WO2012026158A1 - Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof - Google Patents

Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof Download PDF

Info

Publication number
WO2012026158A1
WO2012026158A1 PCT/JP2011/059180 JP2011059180W WO2012026158A1 WO 2012026158 A1 WO2012026158 A1 WO 2012026158A1 JP 2011059180 W JP2011059180 W JP 2011059180W WO 2012026158 A1 WO2012026158 A1 WO 2012026158A1
Authority
WO
WIPO (PCT)
Prior art keywords
divided
teeth
stator core
steel plate
yoke
Prior art date
Application number
PCT/JP2011/059180
Other languages
French (fr)
Japanese (ja)
Inventor
詠吾 十時
信一 山口
敏則 田中
大輔 司城
秋田 裕之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010189201A external-priority patent/JP5818414B2/en
Priority claimed from JP2010225976A external-priority patent/JP5777869B2/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201190000692.XU priority Critical patent/CN203368163U/en
Publication of WO2012026158A1 publication Critical patent/WO2012026158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/021Magnetic cores
    • H02K15/022Magnetic cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to, for example, a rotating electrical machine such as an electric motor and a stator core manufacturing apparatus for manufacturing the stator core.
  • a rotating electrical machine using a conventional stator is manufactured by arranging the rotor and the conventional stator coaxially so that a predetermined gap is formed between the outer peripheral surface of the rotor and the magnetic pole teeth.
  • the gap between the adjacent magnetic pole portions is skewed with respect to the stacking direction of the annular magnetic member (the axial direction of the core member), so torque ripple at start-up and cogging torque during operation Can be reduced.
  • the magnetic pole portion extends with the same width from the base end portion to the tip end portion.
  • torque decreases due to an increase in leakage magnetic flux
  • magnetic saturation occurs in the magnetic pole part.
  • cogging torque and torque ripple increase.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotating electrical machine and a stator core manufacturing apparatus capable of simultaneously reducing cogging torque and torque ripple and increasing torque.
  • the present invention includes a rotor and a stator having a stator core coaxially disposed on the rotor so as to surround the rotor.
  • the stator core includes a yoke coaxially disposed on the rotor, and an axial direction of the yoke. Consists of a teeth base projecting between both ends and a teeth collar projecting to both sides from the tip of the teeth base, and a plurality of teeth arranged adjacent to each other in the circumferential direction of the yoke.
  • the opening of the slot formed between the teeth is a rotating electrical machine that is skewed with respect to the axial direction of the yoke, and the width of the teeth flange portion decreases from the connecting portion between the teeth base portion and the teeth flange portion toward the tip. Yes.
  • the width of the teeth ridge is narrowed from the connecting portion of the teeth base and the teeth ridge toward the tip of the teeth ridge, the cogging torque and torque ripple are reduced, and the torque Both increases can be realized.
  • Embodiment 1 is a top view of an electric motor according to Embodiment 1 of the present invention. It is a perspective view of the stator core which comprises the electric motor which concerns on Embodiment 1 of this invention. It is principal part sectional drawing of the stator which comprises the electric motor which concerns on Embodiment 1 of this invention. It is the A section enlarged view of FIG. It is a principal part enlarged view of the stator which comprises the electric motor which concerns on Embodiment 2 of this invention. It is a figure which shows the result of having measured the relationship between the cogging torque of the electric motor which concerns on Embodiment 1 and 2 of this invention, and the rotation angle of a rotor.
  • FIG. 5 It is a figure which shows the relationship between the skew angle with respect to the axial direction of the yoke of the slot opening of the electric motor which concerns on Embodiment 4 of this invention, and a skew coefficient.
  • FIG. 5 It is a perspective view of the core member of the stator manufactured using the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of this invention.
  • the shape of the rotationally moving mold for punching out the teeth flange portion of the split core member into a contour having a predetermined protruding length is described.
  • FIG. 7 It is a perspective view of the core member of the stator manufactured using the manufacturing apparatus of the stator core member of the invention which concerns on Embodiment 7 of this invention. It is a side view of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of this invention. It is a top view of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of this invention. It is principal part side sectional drawing of the 2nd press mechanism of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of this invention.
  • FIG. 1 is a top view of an electric motor according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view of a stator core that constitutes the electric motor according to Embodiment 1 of the present invention
  • FIG. 3 is according to Embodiment 1 of the present invention.
  • FIG. 4 is an enlarged view of a portion A in FIG. 3.
  • an electric motor 1 ⁇ / b> A as a rotating electric machine includes a rotor 2 that is integrally attached to a rotating shaft (not shown), and a stator 5 that is disposed so as to surround the rotor 2.
  • the rotor 2 includes a columnar or cylindrical rotor core 3 and a plurality of permanent magnets 4 attached to the outer peripheral surface of the rotor core 3 at a predetermined pitch in the circumferential direction.
  • the number of permanent magnets 4, that is, the number of field poles (number of poles) of the rotor 2 is ten.
  • the permanent magnet 4 a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, or the like is used.
  • the stator 5 includes a stator core 6A disposed coaxially with the rotor 2 so as to surround the rotor 2, and a stator winding 12 wound around the stator core 6A.
  • the stator core 6A includes an annular yoke 7 and a plurality of teeth 8 protruding from the inner peripheral surface of the yoke 7 in the circumferential direction at intervals.
  • the number of teeth 8 is twelve.
  • the plurality of teeth 8 are continuous from one end to the other end in the axial direction of the yoke 7 so as to connect both ends.
  • Each tooth 8 protrudes in the circumferential direction of the yoke 7 from the inner peripheral surface of the yoke 7 from the both sides in the width direction of the tooth base portion 8a protruding in the circumferential direction of the yoke 7 and the distal end portion of the teeth base portion 8a.
  • Teeth collars 8b and 8c facing the yoke 7 are provided.
  • the slot 10 is formed by a space defined by the adjacent teeth 8 and the yoke 7. More specifically, the slot 10 is located at a portion of the adjacent tooth base 8a, the teeth flanges 8b and 8c extending from the teeth base 8a in a direction opposite to each other, and the yoke 7 located between the adjacent tooth bases 8a. It is formed by a partitioned space. At this time, the protruding amount of the tooth flange portions 8b and 8c from the tooth base portion 8a is different from one end in the axial direction of the yoke 7 so that the slot opening 10a is skewed at a predetermined angle with respect to the axial direction of the yoke 7. It gradually changes toward the end. Further, the slot opening 10a extends from one end to the other end in the axial direction of the yoke 7 (axial direction of the stator core 6A) so that the angle with respect to the axial direction of the yoke 7 becomes the same angle.
  • the teeth collar parts 8b and 8c become narrow toward the front-end
  • the teeth flanges 8b and 8c have the same width from the connecting portion with the teeth base 8a to the vicinity of the tip, and the tips of the teeth flanges 8b and 8c are related to the radial direction of the yoke 7,
  • the protrusions from the teeth base 8a are formed so as to increase from the yoke 7 side (outer peripheral side) to the inner peripheral side. Thereby, the space
  • the stator core 6 ⁇ / b> A having the above shape is configured as a laminated body in which a plurality of plate-like annular magnetic members 15 made of silicon steel are laminated in respective thickness directions.
  • Each of the annular magnetic members 15 includes a ring plate-shaped yoke structure 16 and twelve divided teeth 17 that protrude from the inner peripheral surface of the yoke structure 16 at intervals in the circumferential direction.
  • Each of the divided teeth 17 includes a divided tooth base portion 17a protruding from the inner peripheral surface of the yoke component 16, and a divided tooth flange portion protruding substantially in the circumferential direction of the yoke component 16 on both sides of the tip of the divided tooth base portion 17a. 17b, 17c.
  • the cross-sectional shape of the annular magnetic member 15 perpendicular to the thickness direction naturally matches the cross-sectional shape of the stator core 6A.
  • distal end surface of the divided tooth base portion 17a and the inner peripheral surfaces (surfaces opposite to the yoke component 16) of the divided tooth flange portions 17b and 17c are on the same curved surface having a slightly larger radius of curvature than the radius of the rotor core 3. positioned.
  • the distance from the axial center of the yoke structure 16 to the distal end surface of the divided tooth base portion 17a and the inner peripheral surface of the divided tooth flanges 17b and 17c is greater than the distance from the axial center of the rotor core 3 to the outer peripheral surface of the permanent magnet 4. It is set slightly longer.
  • the protruding lengths of the divided teeth flange portions 17 b and 17 c from the divided tooth base portion 17 a are different for each annular magnetic member 15.
  • the protruding length of the divided teeth flanges 17b and 17c from the divided tooth base 17a is set to a length that is gradually increased or decreased by the same length in the order of the laminated annular magnetic members 15.
  • the yoke 7 and the teeth 8 are formed by the yoke structure 16 and the divided teeth 17 constituting the plurality of laminated annular magnetic members 15.
  • the stator core 6A is obtained in which the slot opening 10a is skewed with respect to the stacking direction of the annular magnetic member 15, in other words, the axial direction of the yoke 7.
  • stator windings 12 are prepared and wound around the tooth bases 8 a of the respective teeth 8. That is, the stator winding 12 is provided on the teeth 8 by a magnetic pole concentrated winding method.
  • the stator 5 as described above is disposed coaxially with the rotor 2 so as to surround the rotor 2 so as to be predetermined between the permanent magnet 4 and the teeth base 8a and the teeth flanges 8b and 8c.
  • An electric motor 1A having an air gap is obtained. Further, by passing a current through the stator winding 12, the permanent magnets 4 adjacent in the circumferential direction are magnetized in opposite polarities, and the torque of the rotor 2 is controlled by controlling the current of the stator winding 12. Can be controlled to a desired size.
  • the width of the teeth flange portions 8b and 8c of the stator core 6A is from the connecting portion of the teeth base portion 8a and the teeth flange portions 8b and 8c toward the tips of the teeth flange portions 8b and 8c. It is narrower. For this reason, it is possible to reduce the leakage magnetic flux by narrowing the tip end portions of the teeth flange portions 8b and 8c while increasing the base end portions of the teeth flange portions 8b and 8c to alleviate magnetic saturation. That is, in the electric motor 1A, both reduction of cogging torque and torque ripple and increase of torque can be realized.
  • the slot opening 10a is skewed so that the angle with respect to the axial direction of the yoke 7 takes the same angle from one end to the other end of the yoke 7 in the axial direction.
  • the method of skewing the slot opening 10a with respect to the axial direction of the yoke 7 is not limited to this.
  • the slot opening 10 a is formed to be zigzag in a triangular wave shape or a sine wave shape from one end of the yoke 7 in the axial direction to the other end, and the slot opening 10 a is skewed with respect to the axial direction of the yoke 7. May be.
  • the slot opening 10a may be skewed with respect to the yoke 7 so that an angle with respect to the axial direction of the yoke 7 changes from one axial end to the other end.
  • the slot opening 10a in a zigzag manner, for example, even if a thrust force that is biased in any of the axial directions with respect to the axial direction of the yoke 7 occurs due to a manufacturing error of the rotor 2, the thrust force can be reduced. Can do.
  • FIG. FIG. 5 is an enlarged view of a main part of the stator constituting the electric motor according to Embodiment 2 of the present invention.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the teeth 8 of the stator core 6 ⁇ / b> B constituting the electric motor 1 ⁇ / b> B have teeth flange portions 8 d and 8 e instead of the teeth flange portions 8 b and 8 c.
  • the teeth flanges 8d and 8e are formed in the same manner as the teeth flanges 8b and 8c, except that the base end side portion is made to gradually increase in width toward the connecting portion with the teeth base 8a. ing.
  • the teeth ridges 8b and 8c are formed to have the same width from the connecting portion (base end) to the teeth base 8a to the vicinity of the tip, but in the electric motor 1B, the teeth ridges The base end side of 8d and 8e is wider than the middle part of the teeth flanges 8d and 8e.
  • the configuration of the other electric motor 1B is the same as that of the first embodiment.
  • the width of the teeth flanges 8d, 8e is from the connecting portion of the teeth base 8a and the teeth flanges 8b, 8c to the tips of the teeth flanges 8b, 8c. It becomes narrower. Therefore, in the electric motor 1B manufactured using the stator core 6B, both the reduction of the cogging torque and the torque ripple and the increase of the torque can be realized as in the electric motor 1A.
  • the base end sides of the tooth flanges 8d and 8e are formed so that the width gradually increases toward the connecting portion with the teeth base 8a. Thereby, the cogging torque can be further reduced.
  • FIG. 6 is a diagram showing a result of measuring the relationship between the cogging torque of the electric motor according to the first and second embodiments of the present invention and the rotation angle of the rotor
  • FIG. 7 is a diagram according to the first and second embodiments of the present invention. It is a figure which shows the analysis result of the cogging torque measured with the electric motor, and has shown the component of the cogging torque by the working error of the rotor, the component of the cogging torque resulting from the number of poles / slots, and the maximum amplitude of the cogging torque.
  • the horizontal axis represents the rotation angle of the rotor 2
  • the vertical axis represents the magnitude of the cogging torque. Note that the magnitude of the cogging torque is shown as a standard value that is normalized with the maximum value of the cogging torque when the rotor 2 is rotated once as one.
  • the number of slots 10 of the stator cores 6A and 6B of the electric motors 1A and 1B is twelve.
  • the rotation angle of the rotor 2 is set to 30 °, which is the arrangement interval of the slots 10.
  • a cogging torque component is generated that oscillates as a cycle.
  • the number of poles of the rotor 2 of the electric motors 1A and 1B is ten.
  • a component of cogging torque that repeats the amplitude only 60 times which is the least common multiple of the number 12 of the slot 10 and the number 10 of the poles of the rotor 2
  • a cogging torque component is generated that has an amplitude with a period of 6 ° as the rotation angle of the rotor 2.
  • the magnitude of the cogging torque component that swings with a rotation angle of the rotor 2 at a cycle of 30 ° corresponds to that caused by a work error of the rotor 2 (distortion or variation with respect to a desired dimension), and a cycle of 6 °.
  • the magnitude of the cogging torque component that swings at is equivalent to the fluctuation due to the number of poles and the number of slots.
  • FIG. 7 shows the magnitude of the amplitude (Peak-Peak value) when it is set.
  • the base end sides of the tooth flange portions 8d and 8e are formed so that the width becomes wider toward the connecting portion with the teeth base portion 8a.
  • the connecting portion between the tooth base portion 8 a and the tooth flange portions 8 d and 8 e is a place where magnetic saturation is most likely to occur in the tooth 8. That is, in such a place, the degree of magnetic saturation changes sensitively due to variations in the working error of the rotor 2 and the magnet residual density, and cogging torque and torque ripple are likely to occur.
  • the base end sides of the teeth flanges 8d and 8e are formed wide toward the connecting portion with the teeth base 8a, so that magnetic saturation is unlikely to occur and the work of the rotor 2 is performed. It is determined that the component of cogging torque resulting from the error is significantly reduced. As described above, the electric motor 1B according to the second embodiment can obtain a further effect of reducing the cogging torque than the electric motor 1A.
  • FIG. FIG. 8 is an enlarged cross-sectional view of the main part of the stator constituting the electric motor according to Embodiment 3 of the present invention, and shows a cross section of a portion of the stator located in the vicinity of one end side in the axial direction of the yoke.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and illustration of the stator winding is omitted for convenience of description.
  • the electric motor 1C is configured in the same manner as the electric motor 1A, except that the stator core 6C is provided instead of the stator core 6A.
  • the slot opening 10 a is formed so as to enter the teeth base portion 8 a located on one end side.
  • the entry of the slot opening 10a into the teeth base 8a refers to the following. This means that the opening of the slot is formed so that the width on the distal end side of the teeth base portion 8a is narrower than the width on the proximal end side of the teeth base portion 8a.
  • the slot opening 10a enters the teeth base 8a formed so that the slot opening 10a enters on one end side and the teeth base 8a facing in the circumferential direction. It is formed as follows. That is, one end and the other end of the slot opening 10a skewed at the same angle with respect to the axial direction of the yoke 7 enter the teeth base 8a throughout the entire length direction.
  • the configuration of the other electric motor 1C is the same as that of the electric motor 1A.
  • the slot opening 10 a at one end in the axial direction of the yoke 7 in other words, at the position in the axial direction of the yoke 7 where the slot opening 10 a most entering the teeth base 8 a is located.
  • An angle between the center in the width direction and the center between the pair of teeth bases 8a constituting the slot 10 having the slot opening 10a is defined as a °.
  • the slot opening 10a is formed so as to occupy an angular width corresponding to 2a ° in the circumferential angle of the yoke 7. If the slot opening 10a is not allowed to enter the teeth base portion 8a, the value of a becomes small. That is, the skew angle of the slot opening 10a when the slot opening 10a enters the teeth base portion 8a can be larger than that at which the slot opening 10a does not enter the teeth base portion 8a.
  • the electric motor 1C of the third embodiment since the skew angle of the slot opening 10a can be increased, the cogging torque and torque having a lower frequency component than those in which the slot opening 10a does not enter the teeth base 8a. Ripple can be reduced.
  • the slot opening 10a has been described as extending over the entire length direction with the same skew angle with respect to the axial direction of the yoke 7. 7 is extended in a zigzag from one end to the other end in the axial direction, the portion corresponding to the peak portion of the slot opening 10a enters the teeth base portion 8a, and the skew angle of the slot opening 10a is increased. I can take it big. That is, since the teeth 8 are formed so that the opening of the slot 10 enters the teeth base portion 8a at a predetermined portion in the axial direction of the yoke 7, the skew angle of the slot opening 10a with respect to the axial direction of the yoke 7 can be increased. It becomes possible to reduce the torque ripple of the low frequency component.
  • FIG. 9 is a diagram showing the relationship between the skew angle and the skew coefficient with respect to the axial direction of the yoke of the slot opening of the electric motor according to Embodiment 4 of the present invention.
  • the electric motor according to the fourth embodiment is assumed to be the same as that of the electric motor 1A.
  • the number of poles and the number of slots are not limited to 10 and 12, but any of those in which Z is a natural number, the number of poles is set to 10Z, and the number of slots is set to 12Z is used.
  • the skew angle of the slot opening 10a is set to ⁇ (3k / Z) ° where k is 1, 2, or 3.
  • the horizontal axis represents the skew angle of the slot opening 10a
  • the vertical axis represents the theoretical value of the skew coefficient with respect to the skew angle of the slot opening 10a.
  • the skew coefficient is expressed as a theoretical value of the cogging torque with respect to the skew angle of the slot opening 10a when the magnitude of the amplitude of the cogging torque when the skew angle of the slot opening 10a is zero.
  • a cogging torque is generated due to the machining error of the stator core 6A.
  • This cogging torque is the interval between the first component and the half of the first component with respect to the rotation angle of the rotor 2, with an interval of (36 / Z) ° that is the arrangement interval of the permanent magnets 4 (18 / Z) has a second component that has an amplitude with a period of °.
  • the first component of the cogging torque resulting from the machining error of the stator core 6A is indicated by a bold line, and the second component is indicated by a broken line.
  • the value of the skew coefficient theoretically significantly reduces the cogging torque component due to the number of poles and the number of slots when the skew angle is ⁇ (3 k / Z) °. Therefore, according to the fourth embodiment, since the skew angle of the slot opening 10a is set to ⁇ (3 k / Z) °, the cogging torque can be effectively reduced.
  • a mechanical angle (hereinafter, referred to as a mechanical angle per slot) of the yoke 7 per slot including the tooth base portion 8a that defines the slot 10 is (30). / Z) °.
  • the teeth base 8a that partitions adjacent slots 10 one side and the other side of the center in the width direction are regarded as partitioning one and the other slots 10, respectively. That is, one tooth base 8a is included in the mechanical angle per slot.
  • the angle occupied by the tooth base 8a is (15 / Z) ° to (20 / Z) °. Therefore, in the electric motor in which the slot opening 10a is skewed without entering the teeth base 8a, it is difficult to set the skew angle of the slot opening 10a to ⁇ (6 / Z) °, ⁇ (9 / Z) °. Become.
  • the slot opening 10a on one end and the other end side in the axial direction is inserted into the tooth base 8a, so that the skew angle of the slot opening 10a is ⁇ (6 / Z). It can be easily set to °, ⁇ (9 / Z) °.
  • the electric motor according to the fourth embodiment has been described in the electric motor 1A, in which the number of poles is 10Z, the number of slots is 12Z, and the skew angle is set to ⁇ (3k / Z) °.
  • the number of poles may be 10Z
  • the number of slots may be 12Z
  • the skew angle may be set to ⁇ (3k / Z) °.
  • the rotating electric machine is described as being the electric motors 1A to 1C.
  • the rotating electric machine may be a generator including a stator and a rotor having the same configuration as each of the embodiments.
  • the stator core 6 ⁇ / b> A is configured by laminating a plurality of plate-like annular magnetic members 15.
  • the stator core core member of the stator
  • two kinds of annular magnetic members may be prepared as follows, and the two kinds of annular magnetic members may be alternately stacked.
  • a stator core is demonstrated as a core member of a stator.
  • FIG. 10 is a perspective view of a stator core member manufactured using a stator core member manufacturing apparatus according to Embodiment 5 of the present invention
  • FIG. 11 is a view of a stator core member according to Embodiment 5 of the present invention
  • FIG. 12 is a plan view of a stator core member manufactured using the manufacturing apparatus, and FIG. 12 shows the stator core member manufactured using the stator core member manufacturing apparatus according to Embodiment 5 of the present invention from the inner peripheral side.
  • FIG. 13 is an enlarged view of part B of FIG. 11.
  • the core member 101A of the stator is formed by connecting, for example, a plurality of plate-like first annular magnetic members 102A and second annular magnetic members 102B made of silicon steel in the respective thickness directions. It is comprised as a laminated body.
  • Each of the first annular magnetic members 102A includes a plurality of divided core members 103 arranged in an annular shape.
  • the number of the split core members 103 constituting the first annular magnetic member 102A is 12, but the number of the split core members 103 is not particularly limited.
  • the split core member 103 protrudes in a direction perpendicular to the thickness direction of the split yoke 104 from the split yoke 104 made in the shape of a long flat plate and an intermediate portion between one end and the other end of the split yoke 104 in the longitudinal direction.
  • the divided teeth base 105a and the divided teeth 105 having divided teeth flanges 105b and 105c projecting in a direction substantially parallel to the divided yoke 104 (circumferential direction of the divided yoke 104) on both sides of the tip of the divided teeth base 105a. Is done.
  • the main part of the other side facing the one side of the divided yoke 104 from which the divided tooth base portion 105a protrudes is formed in an arc shape having a predetermined radius of curvature. Further, in the vicinity of one end of the divided yoke 104, a connecting portion 104a is formed in which one surface side is a convex portion and the other surface side is a concave portion.
  • the divided teeth flanges 105 b and 105 c are formed such that the width Wb of the distal end is narrower than the width Wa on the base end side connected to the divided teeth base 105 a, and the divided teeth flange The widths 105b and 105c are narrowed from the base end portion toward the tip end portion.
  • the divided teeth flange portions 105b and 105c are formed to have the same width.
  • the first annular magnetic member 102 ⁇ / b> A is configured by arranging a plurality of divided core members 103 such that the divided yokes 104 are arranged in a ring shape and the divided tooth base portion 105 a is disposed inside the divided yoke 104. That is, in the first annular magnetic member 102A, the divided yoke 104 is connected along the connecting direction of the divided core member 103, and the divided tooth base 105a is divided from the intermediate portion of each divided yoke 104 with respect to the connecting direction of the divided yoke 104. It protrudes inside the yoke 104.
  • each of the second annular magnetic members 102B is composed of a plurality of divided core members 103 arranged in an annular shape, like the first annular magnetic member 102A.
  • the split core member 103 of the second annular magnetic member 102B is divided from the first annular magnetic member 102A except that the connecting portion 104a is formed near the other end opposite to one end of the split yoke 104 in the longitudinal direction.
  • the configuration is the same as that of the core member 103.
  • Each of the first and second annular magnetic members 102A and 2B includes a plurality of divided core members 103 arranged in an annular shape so that one end and the other end of the divided yoke 104 of the adjacent divided core member 103 are arranged next to each other. It is configured.
  • the outer shapes of the first and second annular magnetic members 102A and 102B are circles having a radius of curvature equal to the radius of curvature of the other side of the divided yoke 104 formed in an arc shape.
  • a flat and annular (flat plate-shaped) yoke structure 108 is constituted by divided yokes 104 arranged in an annular shape.
  • stator core member 101A is formed by alternately stacking the first and second annular magnetic members 102A and 102B by fitting the connecting portions 104a to each other so that the divided tooth base portions 105a overlap each other. Configured as a laminate.
  • Each split core member 103 is formed with an end portion of the split yoke 104 so as to be rotatable around the connecting portion 104a.
  • the protruding lengths of the divided teeth flange portions 105b and 105c from the tip of the divided tooth base portion 105a to the one side and the other side in the width direction of the divided tooth base portion 105a are different for each layer.
  • the protruding lengths of the first and second annular magnetic members 102A and 102B from the divided tooth base portions 105a of the divided teeth flange portions 105b and 105c are set so as to satisfy the following conditions.
  • the protruding lengths of the divided teeth flange portions 105b and 105c from the divided tooth base portion 105a of the divided teeth 105 are first to the other side in the stacking direction of the first and second annular magnetic members 102A and 102B.
  • the gap is sequentially increased and a gap formed between the tips of the adjacent divided teeth flange portions 105b and 105c continues from one end to the other end of the stator core member 101A. It is set to be.
  • the cylindrical yoke is configured by the yoke structure 108 of the first and second annular magnetic members 102A and 102B stacked. Further, teeth that protrude in the axial direction of the yoke at intervals from each other in the circumferential direction of the yoke are constituted by the divided teeth 105 of the first and second annular magnetic members 102A and 102B that are stacked.
  • the slot 107 is located between the divided tooth base 105a of the adjacent divided teeth 105, the divided teeth flanges 105b and 105c extending from the divided teeth base 105a in the direction opposite to each other, and the adjacent divided teeth base 105a.
  • a space surrounded by a portion of the yoke 104 is formed.
  • segmentation teeth rib parts 105b and 105c is a lamination direction toward the other side from the one side of the lamination direction of 1st and 2nd annular magnetic member 102A, 102B. Is skewed against.
  • FIG. 14 is a side view of a stator core member manufacturing apparatus according to Embodiment 5 of the present invention
  • FIG. 15 is a plan view of a stator core member manufacturing apparatus according to Embodiment 5 of the present invention
  • FIG. It is principal part sectional drawing of the 2nd press mechanism of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of invention.
  • the stator core member manufacturing apparatus 110A includes a first press mechanism 111A and a second press mechanism 111B as a moving mold mechanism.
  • the first press mechanism 111A includes an upper base plate 117 and a lower base plate 118 that are disposed so as to be opposed to each other vertically, and a long steel plate 119 made of silicon steel between the upper base plate 117 and the lower base plate 118 in a predetermined direction (FIG. 14).
  • a conveyance mechanism (not shown) that conveys in the direction of the arrow in the middle, and an upper mold 113A and a lower mold 113B that are disposed on the upstream side in the conveyance direction of the steel plate 119 and are installed on the upper base plate 117 and the lower base plate 118.
  • the second press mechanism 111 ⁇ / b> B has the axial direction orthogonal to both the front and back surfaces of the steel plate 119 conveyed on the lower base plate 118, at a position corresponding to the central portion in the width direction of the steel plate 119.
  • the thrust bearing 121 disposed on the lower base plate 118 is supported by the thrust bearing 121 and is disposed so as to be rotatable around the axial center of the thrust bearing 121.
  • a linear motor 124 that generates torque to rotate around the axis of 121 and a rotary moving table 122 are driven by the servo motor 126 via the lower die 128B and the crankshaft 125 to pressurize the lower die 128B.
  • the movement which consists of the upper mold
  • FIG. 17 is a plan view for explaining the operation of the stator core member manufacturing apparatus according to Embodiment 5 of the present invention and the process of forming the split core member constituting the annular magnetic member.
  • the formation regions of the plurality of divided core members 103 for configuring the first and second annular magnetic members 102A and 102B are set so as to be arranged at a predetermined pitch in the circumferential direction.
  • the stator core member manufacturing apparatus 110 ⁇ / b> A is obtained by punching the steel plate 119 so as to leave the formation regions of the plurality of divided core members 103 set on the steel plate 119 to obtain the divided core member 103. Composed.
  • the number of the divided core members 103 for constituting each of the first and second annular magnetic members 102 ⁇ / b> A and 102 ⁇ / b> B is illustrated as eight. As in the case of twelve.
  • the pilot hole 131 is formed on the steel plate 119 at the position indicated by the arrow A in FIG.
  • the formation of the circular punching 132 for arranging the rotor (not shown) at the position indicated by the arrow B, and the punching 133 for forming the respective contours of the divided yoke 104 and the divided teeth 105 at the position indicated by the arrow C are performed. , 134 are formed.
  • the first and second molds 112A and 114A have the predetermined protruding lengths of the divided teeth flange portions 105b and 105c of the divided core member 103 that constitutes the first and second annular magnetic members 102A and 102B. Punching processing other than punching for forming a contour other than the contour is performed.
  • any one of the punching processes at the positions of arrows D and E can be selectively performed.
  • any one of the caulking processes by pressing at the positions indicated by the arrows F and G can be selectively performed. That is, the part of the steel plate 119 punched at the position of arrow D is moved to arrow H without being stamped at arrow E, at the position of arrow F, and without being crimped at the position of arrow G. Can be made. Further, the steel sheet 119 is punched at the position of the arrow D without being punched at the position of the arrow D, and then is crimped at the position of the arrow G without being crimped at the position of the arrow F, until the arrow H. The steel plate 119 can be moved.
  • the caulking 138 and 139 form an uneven portion at a predetermined portion of the steel plate 119, similarly to the connecting portion 104a, and are arranged vertically when the first and second annular magnetic members 102A and 102B are stacked.
  • the caulking 138 and 139 formed on the split core member 103 of the first and second annular magnetic members 102A and 102B to be fitted are fitted together.
  • a cutout 141 is formed for forming a contour of a predetermined protruding length of the divided teeth flange portions 105b and 105c of the divided core member 103 constituting the first and second annular magnetic members 102A and 102B.
  • FIG. 18 illustrates the shape of a rotationally movable mold for punching out the divided teeth flange portion of the divided core member into the contour of a predetermined protruding length in the stator core member manufacturing apparatus according to Embodiment 5 of the present invention. It is a figure to do.
  • the press work of the steel plate by the rotational moving die 128 is performed prior to the press work of the steel plate 119 by the second die 114A, in FIG. 18, the press work by the second die is performed for convenience of explanation.
  • the shape of the subsequent first annular magnetic member 102A is illustrated.
  • the upper mold 128A is configured to punch out the divided teeth flanges 105b and 105c of the divided core member 103 with a predetermined protruding length and a tip end side with a predetermined outline.
  • the upper die 128A has a trapezoidal part 129a and a trapezoidal part 129a, each having the same width as the upper base of the trapezoidal part 129a, as shown in FIG. And a plurality of punched portions 129 each having a rectangular portion 129b extending on the opposite side.
  • the plurality of punched portions 129 are the same number as the number of divided core members 103 constituting each of the annular magnetic members 102A and 102B to be formed at a predetermined interval in the circumferential direction around the axial center (rotating shaft) of the thrust bearing 121. Arranged. Further, the distance between the axial center of the thrust bearing 121 and the punched portion 129 corresponds to the distance between the axial center of the core member 101A of the stator to be manufactured and the divided tooth flange portions 105b and 105c.
  • the rotary moving mold 128 is configured to rotate in conjunction with the rotation of the rotary moving table 122 driven by the linear motor 124. That is, the punching portion 129 is rotated around the axial center of the thrust bearing 121 in conjunction with the driving of the linear motor 124.
  • the rotational movement mold 128 is installed on the steel plate 119 so that the axial center of the thrust bearing 121 is orthogonal to each other, and the conveyance path of the steel plate 119 is formed by punching the formation area of the plurality of divided core members 103 by the rotational movement mold 128.
  • the center of the region where the split core member 103 is formed intersects with the axial center of the thrust bearing 121 orthogonal to the steel plate 119 when moved to the position (indicated by the arrow H).
  • the lower bottom side of the trapezoidal portion 129a of each punched portion 129 is the punched 137 side when viewed from the punching direction by the upper die 128A.
  • the rectangular portion 129 b is disposed so as to be located inside the punching 132. At this time, a part of the rectangular portion 129 b on the trapezoidal portion 129 a side is arranged at a position that approaches a portion of the steel plate 119 that separates the punching 137 and the punching 132.
  • the shapes of the trapezoidal portion 129a and the rectangular portion 129b are set so that the interval La on the outer peripheral side of the adjacent divided teeth flange portions 105b and 105c formed after punching is larger than the interval Lb on the inner peripheral side.
  • the respective annular magnetic members 102A and 102B are formed, by rotating each of the annular magnetic members 102A and 102B, the one side of the divided teeth base 105a from the tip of the divided teeth base 105a and The protruding lengths of the divided teeth flanges 105b and 105c to the other side are increased or decreased by the same length.
  • the other first annular magnetic member 102A and the second annular magnetic member 102B are manufactured.
  • the first and second annular magnetic members 102A and 102B are fixed and integrated by the stacked caulking 138 and 139, and as shown in FIGS. 10 and 12, the gap between the adjacent divided tooth flanges 105b and 105c is obtained.
  • the slot opening 107a is skewed with respect to the stacking direction of the first and second annular magnetic members 102A and 102B, and the tips of the divided teeth flange portions 105b and 105c are connected to the divided tooth base portion 105a.
  • the stator core member 101A which is narrower than the side portion, is completed.
  • the rotational movement mold 128 is connected to the distal ends of the divided teeth flange portions 105b and 105c from the connecting portion of the divided teeth base portion 105a and the divided teeth flange portions 105b and 105c.
  • the steel plate 119 has a shape that is punched so that the width becomes narrower toward the front.
  • the formation positions in the steel plate 119 of the plurality of divided core members 103 constituting the first and second annular magnetic members 102A and 102B are set to be arranged at a predetermined pitch in the circumferential direction.
  • the rotational movement mold 128 rotates the punched portion 129 for the steel plate 119 around an axis (rotation axis) orthogonal to the steel plate 119, and the center of the formation region of the plurality of divided core members 103 is the rotation axis.
  • the steel plate 119 is installed so as to be punched out at a position where it intersects the heart.
  • the punching part 129 of the steel plate 119 in the rotationally moving mold 128 is such that the width becomes narrower from the connecting part of the divided tooth base part 105a and the divided tooth flange parts 105b and 105c toward the tip of the divided tooth flange parts 105b and 105c.
  • the steel plate 119 has a shape for punching.
  • Each of the plurality of divided core members 103 manufactured by the stator core member manufacturing apparatus 110A can change the protruding length of the divided teeth flanges 105b and 105c from the divided teeth base portion 105a. is there. Then, in the core member 101A of the stator configured by laminating the first and second annular magnetic members 102A and 102B each configured by annularly connecting the divided core members 103 so that the slot opening 107a is skewed. The widths of the divided teeth flange portions 105b and 105c become narrower from the connecting portion between the divided teeth base portion 105a and the divided teeth flange portions 105b and 105c toward the tips of the divided teeth flange portions 105b and 105c. Therefore, in the rotating electric machine having the stator core member 101A manufactured using the stator core member manufacturing apparatus 110A, both reduction of cogging torque and torque ripple and increase of torque can be realized.
  • Embodiment 6 First, prior to the description of the stator core member manufacturing apparatus according to the sixth embodiment, in the stator core member manufacturing apparatus, a first die for forming the contours of the split yoke and the magnetic teeth. The shape of will be described.
  • FIG. 19 is a plan view of a stator core member manufactured using the stator core member manufacturing apparatus according to Embodiment 6 of the present invention
  • FIG. 20 is a view of the stator core member according to Embodiment 6 of the present invention. It is a top view explaining the shape of the 1st metal mold
  • the connecting portion between the divided teeth base portion 105 a and the divided teeth flange portions 105 b and 105 c is wider than the intermediate portion between the divided teeth flange portions 105 b and 105 c.
  • the other stator core member 101B has the same configuration as the stator core member 101A.
  • the stator core member manufacturing apparatus according to the sixth embodiment is configured in the same manner as the stator core member manufacturing apparatus 110A.
  • the stator core member 101B is manufactured in substantially the same manner as the stator core member 101A.
  • the portion of the upper mold 113A that punches the steel plate 119 of the first mold 112A is set so that the connecting portion between the divided tooth base portion 105a and the divided tooth flange portions 105b and 105c is wider than the portion from the intermediate portion of the divided tooth flange portions 105b and 105c to the tip. That is, as shown in FIG.
  • the cross-sectional shape of the portion of the upper mold 113A of the first mold 112A for punching the steel plate 119 is punched on the side close to the split tooth flanges 105b and 105c connected to the split tooth base 105a.
  • the part is formed so as to become gradually narrower.
  • the first mold 112A for punching the steel plate 119 in the step of punching 133, 134 for forming the contours of the split yoke 104 and the split tooth 105 is provided.
  • the cross-sectional shape of the portion of the upper mold 113A is such that the connecting portion of the divided teeth base portion 105a and the divided teeth flange portions 105b and 105c obtained after punching the steel plate 119 reaches the tip from the intermediate portion of the divided teeth flange portions 105b and 105c. It is formed to be wider than the part.
  • gear 105 which goes to the front-end
  • the portion of the divided tooth 105 from the connecting portion of the divided tooth base portion 105a and the divided teeth flange portions 105b and 105c to the tip of the divided teeth flange portions 105b and 105c is divided into the divided teeth flange portions 105b and 105c. It can also be realized by using the first mold 112A so that the width becomes narrower toward the tip of the first mold 112A. Therefore, in the rotating electric machine having the stator core member 101B manufactured by using the core member manufacturing apparatus of the sixth embodiment, both reduction of cogging torque and torque ripple and increase of torque can be realized.
  • the rotary teeth 128 are formed so that the distal end sides of the divided teeth flange portions 105b and 105c are also narrowed toward the distal end, but the divided teeth flange portions 105b,
  • the width of the front end side of 105c may be the same width.
  • Embodiment 7 First, prior to the description of the stator core member manufacturing apparatus according to the seventh embodiment, the configuration of the stator core member manufactured using the stator core member manufacturing apparatus will be described.
  • FIG. 21 is a perspective view of a stator core member manufactured using the stator core member manufacturing apparatus according to the seventh embodiment of the present invention.
  • a stator core member 101 ⁇ / b> C manufactured using a stator core member manufacturing apparatus has the same configuration as that described in Japanese Patent No. 3933890, the connecting portion is omitted, and adjacent divided cores are included.
  • the structure is the same as that of the core member 101A of the stator except that the end portions of the divided yoke 104 of the member 103 are integrally formed by connecting the end portions of the divided yoke 104 so that they can be refracted. Has been.
  • FIG. 22 is a side view of a stator core member manufacturing apparatus according to Embodiment 7 of the present invention
  • FIG. 23 is a plan view of a stator core member manufacturing apparatus according to Embodiment 7 of the present invention
  • FIG. It is principal part sectional drawing of the 2nd press mechanism of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of invention.
  • the stator core member manufacturing apparatus 110B includes a third press mechanism 111C and a fourth press mechanism 111D as a moving mold mechanism.
  • the third press mechanism 111C includes an upper base plate 117 and a lower base plate 118, a transport mechanism (not shown) for transporting the steel plate 119 in a predetermined direction between the upper base plate 117 and the lower base plate 118, and a transport direction of the steel plate 119.
  • a third mold 112B which is arranged on the upstream side and is installed on the upper base plate 117 and the lower base plate 118 and made up of an upper mold 113C and a lower mold 113D, and a third mold 112B on the downstream side in the conveying direction of the steel plate 119 and a predetermined mold
  • a fourth mold 114 ⁇ / b> B composed of an upper mold 115 ⁇ / b> C and a lower mold 115 ⁇ / b> D, which is disposed on the upper base plate 117 and the lower base plate 118, is disposed at intervals.
  • the fourth press mechanism 111D includes a moving table 140 that is movably disposed on the lower base plate 118 so as to cross the conveying direction of the steel plate 119, and between the moving table 140 and the lower base plate 118.
  • a linear motor 142 having a stator 141a and a movable element 141b fixed to be opposed to the lower base plate 118 side and the movable base 140 side, and a lower mold 144B and a crankshaft 125 arranged on the movable base 140.
  • a linear moving mold 143 as a moving mold composed of an upper mold 144A driven by a servo motor 126.
  • FIG. 25 is a plan view for explaining the operation of the stator core member manufacturing apparatus according to Embodiment 7 of the present invention and the process of forming the split core member constituting the annular magnetic member.
  • the formation regions of the plurality of divided core members 103 for configuring the first and second annular magnetic members 102A and 102B are arranged in the width direction.
  • a plurality of divided core members 103 are obtained by punching the steel plates 119 set to be arranged at predetermined intervals.
  • the steel plate 119 is conveyed in a direction parallel to the longitudinal direction.
  • the number of the divided core members 103 for constituting each of the first and second annular magnetic members 102A and 102B is shown as six. As in the case of twelve.
  • the adjacent divided core members 103 serve as connecting portions where one ends or the other ends of the divided yokes 104 are connected to each other.
  • the divided core member 103 is obtained by punching the steel plate 119 with the member manufacturing apparatus 110B, the adjacent divided core members 103 are connected to bendable.
  • the pilot hole 152 is formed on the steel plate 119 at the position indicated by the arrow A in FIG. 25 by the third mold 112B, and the caulking 155 is provided at the position indicated by the arrow B.
  • V-shaped holes 156 for forming the outlines of the connecting portions of the adjacent divided core members 103 at the positions indicated by the arrows C are respectively formed, and the steel plates are formed at the positions indicated by the arrows E by the fourth mold 114B.
  • Punching 158 for forming each contour of the split core member 103 continuous in the width direction of 119 is performed.
  • the predetermined protruding lengths of the divided teeth flange portions 105b and 105c of the divided core member 103 constituting the first and second annular magnetic members 102A and 102B are obtained.
  • a punching process for forming a contour other than the contour is performed.
  • a through hole 159 is formed for forming a contour of a predetermined protruding length of the divided teeth flange portions 105b and 105c of the divided tooth 105 of the divided core member 103.
  • FIG. 26 is a plan view for explaining the shape of the linearly movable mold of the stator core member manufacturing apparatus according to Embodiment 7 of the present invention. Note that the steel plate 119 is pressed by the linearly moving die 143 prior to the pressing of the steel plate by the fourth die 114B, but in FIG. 26, the punching by the fourth die 114B is performed for convenience of explanation. The shape of the steel plate 119 is shown.
  • the upper molds 144A for cutting out the divided teeth flange portions 105b and 105c of the divided core member 103 into the contours of a predetermined protruding length are the upper bottom sides of the first and second trapezoidal portions 145a and 145b, respectively.
  • the plurality of punched portions 145 are arranged in a predetermined linear direction.
  • the linearly moving mold 143 configured as described above is arranged so that the arrangement direction of the punched portions 145 changes to each annular magnetism.
  • the plurality of divided core members 103 for constituting the members 102A and 102B are installed so as to coincide with the arrangement direction of the formation regions.
  • the linear moving mold 143 is configured to be moved in the arrangement direction of the formation regions of the plurality of divided core members 103 in conjunction with the driving of the linear motor 142. That is, the punching portion 145 is moved in the arrangement direction of the formation regions of the plurality of divided core members 103 in conjunction with the driving of the linear motor 142.
  • the upper die 144A is arranged so that the connecting portion of the first and second trapezoidal portions 145a and 145b of each punched portion 145 can punch the portion of the steel plate 119 including the space between the adjacent divided tooth flange portions 105b and 105c.
  • the lower bottom side of one trapezoidal portion 145a is disposed on the outer peripheral side of the divided teeth flange portions 105b and 105c from the region where the divided teeth flange portions 105b and 105c are formed, and the lower bottom side of the other trapezoidal portion 145b is the divided teeth flange portion 145b. It arrange
  • the shapes of the first and second trapezoidal portions 145a and 145b are set so that the outer peripheral side interval Lc of the divided teeth flanges 105b and 105c is larger than the inner peripheral side interval Ld.
  • the distal ends of the divided teeth flange portions 105b and 105c have a shape that gradually becomes narrower toward the distal end.
  • the movable base 140 forms the divided core members 103 of the first and second annular magnetic members 102A and 102B arranged in the respective layers
  • the divided core of the first and second annular magnetic members 102A and 102B of the respective layers is formed.
  • the distal end side of the divided teeth base portion 105a of the divided core member 103 is moved in the arrangement direction of the formation region of the divided core member 103 in accordance with the increase and decrease of the protruding length of the divided teeth flange portions 105b and 105c of the member 103.
  • the protruding lengths of the split tooth flanges 105b and 105c from one side to the other side of the split tooth base 105a are increased or decreased by the same length.
  • the plurality of divided core members 103 obtained in the connected state are formed into the first annular magnetic member 102B or the second annular magnetic member 102B by bending the connecting portion into an annular shape.
  • the first and second annular magnetic members 102A and 102B are laminated and fixedly integrated by the crimping caulking 33, and as shown in FIG. 12, the gaps are formed between the adjacent divided tooth flange portions 105b and 105c.
  • the slot opening 107a is skewed with respect to the stacking direction of the first and second annular magnetic members 102A and 102B, and the tip ends of the divided teeth flange portions 105b and 105c are wider than the portion on the connection portion side with the divided tooth base portion 105a.
  • a narrow core member 101C of the stator is completed.
  • the linearly moving mold 143 is connected to the distal ends of the divided teeth flange portions 105b and 105c from the connecting portion of the divided tooth base portion 105a and the divided teeth flange portions 105b and 105c.
  • the steel plate 119 has a shape that is punched so that the width becomes narrower toward the front.
  • regions in the steel plate 119 for forming the plurality of divided core members 103 constituting the first and second annular magnetic members 102A and 102B are arranged at predetermined intervals in a predetermined linear direction,
  • the moving mold 143 is installed so that the steel plate 119 can be punched by moving the punching portion 145 for the steel plate 119 in a predetermined linear direction.
  • each of the plurality of divided core members 103 manufactured by the stator core member manufacturing apparatus 110B can change the protruding lengths of the divided teeth flange portions 105b and 105c from the divided teeth base portion 105a. .
  • the stator core member 101A which is formed by laminating the first and second annular magnetic members 102A and 102B each formed by annularly connecting the divided core members 103 so that the slot opening 107a is skewed.
  • the width becomes narrower from the connecting portion between the divided tooth base portion 105a and the divided tooth flange portions 105b and 105c toward the tips of the divided tooth flange portions 105b and 105c. Therefore, the rotating electrical machine having the stator core member 101C manufactured using the core member manufacturing apparatus 110B can realize both reduction of cogging torque and torque ripple, and increase of torque.
  • Embodiment 8 FIG.
  • the stator core member manufactured using the stator core member manufacturing apparatus according to the eighth embodiment is the same as that of the fifth embodiment.
  • FIG. 27 is a plan view for explaining the shapes of the first die and the rotationally movable die of the stator core member manufacturing apparatus according to the eighth embodiment of the present invention. Shows a state of punching a predetermined portion of the steel plate.
  • the parts are separated.
  • the shape of the upper mold 113C of the third mold 112B for punching the steel plate 119 at the arrow C in FIG. 25 is as shown in FIG. 27 in the formation scheduled region of the adjacent split core member 103 of the steel plate 119.
  • the end portions of the divided yoke 104 are set to be separated.
  • a caulking process for forming the connecting portion 104a at a place where the steel plate 119 is disposed at a predetermined position is also performed by pressing with the third mold 112B.
  • the core member 103 is obtained.
  • the split core member 103 is annularly arranged to be the first and second annular magnetic members 102A and 102B, and the first and second annular magnetic members 102A and 102B are similar to the fifth embodiment.
  • the divided core member 103 is separated from the connecting portion of the divided teeth base portion 105a and the divided teeth flange portions 105b and 105c.
  • the rotating electric machine having the stator core member 101A manufactured using the stator core member manufacturing apparatus 110B can reduce cogging torque, torque ripple, and torque. Both increases can be realized.
  • FIG. 28 is a plan view of a stator core member manufactured by the stator core member manufacturing apparatus according to Embodiment 9 of the present invention.
  • the core member 101D of the stator has substantially the same configuration as the core member 101A of the stator.
  • the split core member 103 constituting the first annular magnetic member arranged at the end in the stacking direction A portion of one side or the other side in the width direction on the distal end side of the divided tooth base portion 105a is deleted, and the protrusions of the divided tooth flange portions 105b and 105c are omitted on the side where the divided tooth base portion 105a is cut.
  • one end of the slot opening 107a in the extending direction is one divided tooth base portion 105a among the adjacent divided tooth base portions 105a of the first annular magnetic member 102A constituting one end side in the stacking direction.
  • the other end of the divided tooth base portion 105a adjacent to the first or second annular magnetic member 102A, 102B constituting one end side in the stacking direction is opened at the other end of the slot opening 107a.
  • An opening is made so as to enter the teeth base 105a.
  • FIG. 29 is a view for explaining the shape of the rotationally moving mold of the stator core member manufacturing apparatus according to Embodiment 9 of the present invention.
  • the stator core member manufacturing apparatus of this embodiment is configured in the same manner as the stator core member manufacturing apparatus 110B.
  • the rotary moving mold 128 that performs punching processing to form the contour of the predetermined protruding length of the divided teeth flange portions 105b and 105c is provided.
  • the punched portion 129 of the upper mold 128A that is configured can move to a circumferential position corresponding to the circumferential position at the proximal end of the divided tooth base 105a to punch the steel plate 119. It is configured to be possible.
  • one end of the slot opening 107a is inserted into one of the adjacent divided tooth bases 105a, and the other end of the slot opening 107a is connected to the adjacent divided tooth.
  • the stator core member 101D can be manufactured so as to enter the other of the base portions 105a. Accordingly, the slot opening 107a can be greatly skewed with respect to the stacking direction of the first and second annular magnetic members 102A and 102B, and the cogging torque and torque ripple reducing effect and the torque increasing effect can be further increased. Obtainable.
  • the shapes of the punched portions 129 and 145 of the upper molds 128A and 144A for performing the punching process for forming the contours of the predetermined protruding lengths of the divided teeth flange portions 105b and 105c are as follows.
  • the trapezoidal portion 129a and the rectangular portion 129b or the first and second trapezoidal portions 145a and 145b have been described as being combined, but the shape of the punched portions 129 and 145 is not limited to this.
  • the shape of the punched portions 129 and 145 only needs to have a shape in which the steel plate 119 is punched so that the distal end side is narrower than the proximal end portion side of the teeth flange portion 5b.
  • the linear motor 124 or the linear motor 142 is used as a drive source for moving the rotational movement mold 128 or the linear movement mold 143.
  • the rotational movement mold 128 is used.
  • another drive source may be used as a drive source for moving the linear moving mold 143.
  • 1A to 1C motor (rotary electric machine), 2, rotor, 5 stator, 6A to 6C stator core, 7 yoke, 8 teeth, 8a teeth base, 8b to 8e teeth collar, 10 slots, 101A to 101D stator core members (stator core) , 102A, 102B, annular magnetic member, 103 divided core member, 104 divided yoke, 105 divided tooth, 105a divided tooth base, 105b, 105c divided tooth collar, 10A, 10B stator core member manufacturing apparatus, 112A, 112B mold 114A, 114B mold, 119 steel plate, 128 rotary moving mold (moving mold), 129 punching part, 143 linear moving mold (moving mold), 145 punching part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The purpose of the present invention is to obtain a rotary electric machine capable of simultaneously achieving reductions in cogging torque and torque ripple and an increase in torque. This rotary electric machine is an electric machine (1A) which is provided with a rotor (2) and a stator (5) comprising a stator core (6A) disposed coaxially with the rotor (2) so as to surround the rotor (2), the stator core (6A) being provided with a yoke (7) which is disposed coaxially with the rotor (2), and a plurality of teeth (8) which are each configured from a tooth base portion (8a) protruding between both ends in the axial direction of the yoke (7) and tooth brim portions (8b, 8c) protruding from the front end of the tooth base portion (8a) to both sides and are arranged at intervals therebetween in the circumferential direction of the yoke (7), and an opening of a slot (10) formed between the adjacent teeth (8) being skewed with respect to the axial direction of the yoke (7), wherein the widths of the tooth brim portions (8b, 8c) each become narrower from a connection with the tooth base portion (8a) toward the front end.

Description

回転電機及びそのステータコアを製造するためのステータコアの製造装置Rotating electric machine and stator core manufacturing apparatus for manufacturing the stator core
 この発明は、例えば、電動機などの回転電機及びそのステータコアを製造するためのステータコアの製造装置に関する。 The present invention relates to, for example, a rotating electrical machine such as an electric motor and a stator core manufacturing apparatus for manufacturing the stator core.
 電動機として、ロータ、及びロータを囲繞して配置されるステータを有するものが広く知られている。
 この種の電動機に用いられる従来のステータとして、縁部同士が回転自在な連結手段を介して環状に連結される複数のヨーク部、及び各ヨーク部の連結方向の中央部からそれぞれ突出し、先端の両側に積層方向に順次互いに突出長さが同じ長さだけ増減するように磁極部が突出して形成される磁極ティースを有する複数の環状磁性部材を、順次積層することにより相隣る磁極部間の隙間が積層方向に対してスキューされるように形成したコア部材と、コア部材の各磁極ティース部に巻回される複数のコイル部材とを備えるものが提案されている(例えば、特許文献1参照)。
As an electric motor, one having a rotor and a stator arranged so as to surround the rotor is widely known.
As a conventional stator used in this type of electric motor, a plurality of yoke parts that are connected in an annular manner via connecting means whose edges are rotatable, and a central part in the connecting direction of each yoke part, respectively, By sequentially laminating a plurality of annular magnetic members having magnetic teeth formed so that the magnetic pole portions protrude so that the protruding lengths increase or decrease by the same length sequentially in the stacking direction on both sides, A device including a core member formed so that the gap is skewed with respect to the stacking direction and a plurality of coil members wound around each magnetic pole tooth portion of the core member has been proposed (for example, see Patent Document 1). ).
 従来のステータを用いた回転電機の作製は、ロータの外周面と磁極ティースとの間に所定の隙間が形成されるように、ロータと従来のステータとを同軸に配置することで行われる。
 以上のような構成の電動機では、隣接する磁極部間の隙間が環状磁性部材の積層方向(コア部材の軸方向)に対してスキューされているので、始動時のトルクリップルや運転中のコギングトルクの低減効果が得られる。
A rotating electrical machine using a conventional stator is manufactured by arranging the rotor and the conventional stator coaxially so that a predetermined gap is formed between the outer peripheral surface of the rotor and the magnetic pole teeth.
In the electric motor configured as described above, the gap between the adjacent magnetic pole portions is skewed with respect to the stacking direction of the annular magnetic member (the axial direction of the core member), so torque ripple at start-up and cogging torque during operation Can be reduced.
特許第4121008号明細書Japanese Patent No. 4121008
 しかしながら、従来のステータのコア部材において、磁極部は、基端部から先端部に至るまで同じ幅を保って延在されている。
 ここで、磁極部の幅が広いコア部材を用いた回転電機では、漏れ磁束の増加によりトルクが低減し、磁極部の幅が狭いコア部材を用いた回転電機では、磁極部に磁気飽和が発生してコギングトルクとトルクリップルが増加する。
 このため、従来のステータを用いた電動機では、コギングトルクとトルクリップルの低減、及びトルクの増加の両方を実現することができない。
However, in the core member of the conventional stator, the magnetic pole portion extends with the same width from the base end portion to the tip end portion.
Here, in a rotating electrical machine using a core member with a wide magnetic pole part, torque decreases due to an increase in leakage magnetic flux, and in a rotating electrical machine using a core member with a narrow magnetic pole part, magnetic saturation occurs in the magnetic pole part. As a result, cogging torque and torque ripple increase.
For this reason, in a motor using a conventional stator, it is impossible to realize both reduction of cogging torque and torque ripple, and increase of torque.
 この発明は上記の課題を解決するためになされたものであり、コギングトルクとトルクリップルの低減及びトルクの増加を同時に実現させることのできる回転電機及びステータコアの製造装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotating electrical machine and a stator core manufacturing apparatus capable of simultaneously reducing cogging torque and torque ripple and increasing torque.
 この発明は、ロータと、ロータを囲繞するようにロータに同軸に配設されるステータコアを有するステータとを備え、ステータコアは、ロータに同軸に配設されるヨークと、それぞれ、ヨークの軸方向の両端間に突設されるティース基部、及びティース基部の先端から両側に突出されるティース鍔部により構成され、ヨークの周方向に互いに間隔をあけて配列される複数のティースとを備え、隣接するティース間に形成されるスロットの開口がヨークの軸方向に対してスキューされた回転電機であって、ティース鍔部は、ティース基部とティース鍔部の連結部から先端に向かって幅が狭くなっている。 The present invention includes a rotor and a stator having a stator core coaxially disposed on the rotor so as to surround the rotor. The stator core includes a yoke coaxially disposed on the rotor, and an axial direction of the yoke. Consists of a teeth base projecting between both ends and a teeth collar projecting to both sides from the tip of the teeth base, and a plurality of teeth arranged adjacent to each other in the circumferential direction of the yoke. The opening of the slot formed between the teeth is a rotating electrical machine that is skewed with respect to the axial direction of the yoke, and the width of the teeth flange portion decreases from the connecting portion between the teeth base portion and the teeth flange portion toward the tip. Yes.
  この発明の回転電機によれば、ティース鍔部の幅が、ティース基部とティース鍔部の連結部からティース鍔部の先端に向かって狭くなっているので、コギングトルクとトルクリップルの低減、及びトルクの増加の両方を実現することができる。 According to the rotating electrical machine of the present invention, since the width of the teeth ridge is narrowed from the connecting portion of the teeth base and the teeth ridge toward the tip of the teeth ridge, the cogging torque and torque ripple are reduced, and the torque Both increases can be realized.
この発明の実施の形態1に係る電動機の上面図である。1 is a top view of an electric motor according to Embodiment 1 of the present invention. この発明の実施の形態1に係る電動機を構成するステータコアの斜視図である。It is a perspective view of the stator core which comprises the electric motor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電動機を構成するステータの要部断面図である。It is principal part sectional drawing of the stator which comprises the electric motor which concerns on Embodiment 1 of this invention. 図3のA部拡大図である。It is the A section enlarged view of FIG. この発明の実施の形態2に係る電動機を構成するステータの要部拡大図である。It is a principal part enlarged view of the stator which comprises the electric motor which concerns on Embodiment 2 of this invention. この発明の実施の形態1及び2に係る電動機のコギングトルクとロータの回転角度との間の関係を測定した結果を示す図である。It is a figure which shows the result of having measured the relationship between the cogging torque of the electric motor which concerns on Embodiment 1 and 2 of this invention, and the rotation angle of a rotor. この発明の実施の形態1及び2に係る電動機で測定されたコギングトルクの分析結果を示す図であり、ロータの工作誤差によるコギングトルクの成分、極数・スロット数に起因するコギングトルクの成分、及びコギングトルクの最大振幅を示している。It is a figure which shows the analysis result of the cogging torque measured with the electric motor which concerns on Embodiment 1 and 2 of this invention, The component of the cogging torque by the working error of a rotor, The component of the cogging torque resulting from the number of poles / slot, And the maximum amplitude of the cogging torque. この発明の実施の形態3に係る電動機を構成するステータの要部拡大断面図であり、ヨークの軸方向の一端側近傍に位置するステータの部位の断面を示している。It is a principal part expanded sectional view of the stator which comprises the electric motor which concerns on Embodiment 3 of this invention, and has shown the cross section of the site | part of the stator located in the one end side vicinity of the axial direction of a yoke. この発明の実施の形態4に係る電動機のスロット開口のヨークの軸方向に対するスキュー角度とスキュー係数の関係を示す図である。It is a figure which shows the relationship between the skew angle with respect to the axial direction of the yoke of the slot opening of the electric motor which concerns on Embodiment 4 of this invention, and a skew coefficient. この発明の実施の形態5に係るステータのコア部材の製造装置を用いて製造されるステータのコア部材の斜視図である。It is a perspective view of the core member of the stator manufactured using the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係るステータのコア部材の製造装置を用いて製造されるステータのコア部材の平面図である。It is a top view of the core member of the stator manufactured using the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係るステータのコア部材の製造装置を用いて製造されるステータのコア部材を内周側から見た要部正面図である。It is the principal part front view which looked at the core member of the stator manufactured using the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of this invention from the inner peripheral side. 図11のB部拡大図である。It is the B section enlarged view of FIG. この発明の実施の形態5に係るステータのコア部材の製造装置の側面図である。It is a side view of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係るステータのコア部材の製造装置の平面図である。It is a top view of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係るステータのコア部材の製造装置の第2プレス機構の要部側断面図である。It is principal part side sectional drawing of the 2nd press mechanism of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係るステータのコア部材の製造装置の動作、及び環状磁性部材を構成する分割コア部材を形成する工程を説明する平面図である。It is a top view explaining the operation | movement of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of this invention, and the process of forming the division | segmentation core member which comprises an annular magnetic member. の発明の実施の形態5に係るステータのコア部材の製造装置において、分割コア部材のティース鍔部を、所定の突出長さの輪郭に打ち抜くための回転移動金型の形状を説明する図である。In the stator core member manufacturing apparatus according to Embodiment 5 of the present invention, the shape of the rotationally moving mold for punching out the teeth flange portion of the split core member into a contour having a predetermined protruding length is described. . この発明の実施の形態6に係るステータのコア部材の製造装置を用いて製造されるステータのコア部材の平面図である。It is a top view of the core member of the stator manufactured using the manufacturing apparatus of the core member of the stator which concerns on Embodiment 6 of this invention. この発明の実施の形態6に係るステータのコア部材の製造装置の第1金型の形状を説明する平面図であり、鋼板の所定部位を打ち抜いている様子を示している。It is a top view explaining the shape of the 1st metal mold | die of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 6 of this invention, and has shown a mode that the predetermined site | part of the steel plate is punched out. この発明の実施の形態7に係る発明のステータのコア部材の製造装置を用いて製造されるステータのコア部材の斜視図である。It is a perspective view of the core member of the stator manufactured using the manufacturing apparatus of the stator core member of the invention which concerns on Embodiment 7 of this invention. この発明の実施の形態7に係るステータのコア部材の製造装置の側面図である。It is a side view of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of this invention. この発明の実施の形態7に係るステータのコア部材の製造装置の平面図である。It is a top view of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of this invention. この発明の実施の形態7に係るステータのコア部材の製造装置の第2プレス機構の要部側断面図である。It is principal part side sectional drawing of the 2nd press mechanism of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of this invention. この発明の実施の形態7に係るステータのコア部材の製造装置の動作、及び環状磁性部材を構成する分割コア部材を形成する工程を説明する平面図である。It is a top view explaining the operation | movement of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of this invention, and the process of forming the division | segmentation core member which comprises an annular magnetic member. この発明の実施の形態7に係るステータのコア部材の製造装置の直線移動金型の形状を説明する平面図である。It is a top view explaining the shape of the linear movement metal mold | die of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of this invention. この発明の実施の形態8にかかる発明のステータのコア部材の製造装置の第1金型及び回転移動金型の形状を説明する平面図であり、第1金型及び回転移動金型が鋼板の所定部位を打ち抜いている様子を示している。It is a top view explaining the shape of the 1st metal mold | die and rotational movement metal mold | die of the manufacturing apparatus of the stator core member of the invention concerning Embodiment 8 of this invention, and a 1st metal mold | die and a rotational movement metal mold | die are steel plates. A state in which a predetermined part is punched is shown. この発明の実施の形態9に係る発明のステータのコア部材の製造装置により製造されるステータのコア部材の平面図である。It is a top view of the core member of the stator manufactured by the manufacturing apparatus of the stator core member of the invention concerning Embodiment 9 of this invention. この発明の実施の形態9に係るステータのコア部材の製造装置の回転移動金型の形状を説明する図である。It is a figure explaining the shape of the rotational movement metal mold | die of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 9 of this invention.
 以下、この発明を実施するための最良の形態について、図面を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 実施の形態1.
 図1はこの発明の実施の形態1に係る電動機の上面図、図2はこの発明の実施の形態1に係る電動機を構成するステータコアの斜視図、図3はこの発明の実施の形態1に係る電動機を構成するステータの要部断面図、図4は図3のA部拡大図である。
Embodiment 1 FIG.
1 is a top view of an electric motor according to Embodiment 1 of the present invention, FIG. 2 is a perspective view of a stator core that constitutes the electric motor according to Embodiment 1 of the present invention, and FIG. 3 is according to Embodiment 1 of the present invention. FIG. 4 is an enlarged view of a portion A in FIG. 3.
 図1において、回転電機としての電動機1Aは、図示しない回転軸に一体に取り付けられるロータ2と、ロータ2を囲繞して配設されるステータ5とを備えている。 1, an electric motor 1 </ b> A as a rotating electric machine includes a rotor 2 that is integrally attached to a rotating shaft (not shown), and a stator 5 that is disposed so as to surround the rotor 2.
 ロータ2は、円柱または円筒状のロータコア3と、ロータコア3の外周面に周方向に所定のピッチで取り付けられた複数の永久磁石4とを備えている。ここでは、永久磁石4の数、即ちロータ2の界磁極の数(極数)は10である。永久磁石4には、フェライト系磁石、ネオジ磁石、及びサマリウムコバルト系磁石等が用いられる。 The rotor 2 includes a columnar or cylindrical rotor core 3 and a plurality of permanent magnets 4 attached to the outer peripheral surface of the rotor core 3 at a predetermined pitch in the circumferential direction. Here, the number of permanent magnets 4, that is, the number of field poles (number of poles) of the rotor 2 is ten. As the permanent magnet 4, a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, or the like is used.
 ステータ5は、ロータ2を囲繞するようにロータ2に同軸に配設されるステータコア6Aと、ステータコア6Aに巻回されるステータ巻線12とを備えている。 The stator 5 includes a stator core 6A disposed coaxially with the rotor 2 so as to surround the rotor 2, and a stator winding 12 wound around the stator core 6A.
 ステータコア6Aは、図2~図4にも示されるように、環状のヨーク7と、ヨーク7の内周面から周方向に互いに間隔をあけて突設される複数のティース8とを備えている。ここでは、ティース8の数は12である。また、複数のティース8は、両端間を接続するように、ヨーク7の軸方向の一端から他端に至るまで連続している。 As shown in FIGS. 2 to 4, the stator core 6A includes an annular yoke 7 and a plurality of teeth 8 protruding from the inner peripheral surface of the yoke 7 in the circumferential direction at intervals. . Here, the number of teeth 8 is twelve. The plurality of teeth 8 are continuous from one end to the other end in the axial direction of the yoke 7 so as to connect both ends.
 各ティース8は、ヨーク7の内周面から、ヨーク7の周方向に所定の幅で突出するティース基部8a、及びティース基部8aの先端部の幅方向の両側から概略ヨーク7の周方向に突出してヨーク7と相対するティース鍔部8b,8cを有している。 Each tooth 8 protrudes in the circumferential direction of the yoke 7 from the inner peripheral surface of the yoke 7 from the both sides in the width direction of the tooth base portion 8a protruding in the circumferential direction of the yoke 7 and the distal end portion of the teeth base portion 8a. Teeth collars 8b and 8c facing the yoke 7 are provided.
 そして、スロット10が、隣接するティース8とヨーク7とで区画される空間により形成される。さらに詳しくは、スロット10が、隣接するティース基部8a、当該ティース基部8aから互いに相対する方向に延出されるティース鍔部8b,8c、及び隣接するティース基部8aの間に位置するヨーク7の部位で区画される空間により形成される。このとき、スロット開口10aは、ヨーク7の軸方向に対して所定角度でスキューされるように、ティース鍔部8b,8cのティース基部8aからの突出量が、ヨーク7の軸方向の一端から他端に向かうにつれて漸次変化している。また、スロット開口10aは、ヨーク7の軸方向(ステータコア6Aの軸方向)の一端から他端に至るまで、ヨーク7の軸方向に対する角度が同じ角度となるように延在されている。 The slot 10 is formed by a space defined by the adjacent teeth 8 and the yoke 7. More specifically, the slot 10 is located at a portion of the adjacent tooth base 8a, the teeth flanges 8b and 8c extending from the teeth base 8a in a direction opposite to each other, and the yoke 7 located between the adjacent tooth bases 8a. It is formed by a partitioned space. At this time, the protruding amount of the tooth flange portions 8b and 8c from the tooth base portion 8a is different from one end in the axial direction of the yoke 7 so that the slot opening 10a is skewed at a predetermined angle with respect to the axial direction of the yoke 7. It gradually changes toward the end. Further, the slot opening 10a extends from one end to the other end in the axial direction of the yoke 7 (axial direction of the stator core 6A) so that the angle with respect to the axial direction of the yoke 7 becomes the same angle.
 そして、ヨーク7の軸方向に直交する断面において、ティース鍔部8b,8cは、図3及び図4に示されるように、ティース基部8aとの連結部から先端に向かって幅が狭くなるように形成されている。
 なお、ここでは、ティース鍔部8b,8cは、ティース基部8aとの連結部から先端近傍に至る部位まで同じ幅を有し、ティース鍔部8b,8cの先端は、ヨーク7の径方向に関し、ヨーク7側(外周側)の部位から内周側の部位に向かうにつれて、ティース基部8aからの突出量が大きくなるように形成されている。これにより、隣接するティース鍔部8b,8cの外周側の間隔Laは、内周側の間隔Lbより大きくなる。
And in the cross section orthogonal to the axial direction of the yoke 7, as shown in FIG.3 and FIG.4, the teeth collar parts 8b and 8c become narrow toward the front-end | tip from the connection part with the teeth base part 8a. Is formed.
Here, the teeth flanges 8b and 8c have the same width from the connecting portion with the teeth base 8a to the vicinity of the tip, and the tips of the teeth flanges 8b and 8c are related to the radial direction of the yoke 7, The protrusions from the teeth base 8a are formed so as to increase from the yoke 7 side (outer peripheral side) to the inner peripheral side. Thereby, the space | interval La of the outer peripheral side of adjacent teeth ridge part 8b, 8c becomes larger than the space | interval Lb of an inner peripheral side.
 以上の形状を有するステータコア6Aは、図2に示されるように、珪素鋼からなる板状の複数の環状磁性部材15を、それぞれの厚み方向に積層した積層体として構成されている。 As shown in FIG. 2, the stator core 6 </ b> A having the above shape is configured as a laminated body in which a plurality of plate-like annular magnetic members 15 made of silicon steel are laminated in respective thickness directions.
 環状磁性部材15のそれぞれは、リング平板状のヨーク構成体16、及びヨーク構成体16の内周面に周方向に互いに間隔をあけて突出される12個の分割ティース17により構成される。 Each of the annular magnetic members 15 includes a ring plate-shaped yoke structure 16 and twelve divided teeth 17 that protrude from the inner peripheral surface of the yoke structure 16 at intervals in the circumferential direction.
 分割ティース17のそれぞれは、ヨーク構成体16の内周面から突出される分割ティース基部17a、及び分割ティース基部17aの先端の両側に概略ヨーク構成体16の周方向に突出される分割ティース鍔部17b,17cを有する。なお、厚み方向に直交する環状磁性部材15の断面形状は、当然ながらステータコア6Aの断面形状と一致する。 Each of the divided teeth 17 includes a divided tooth base portion 17a protruding from the inner peripheral surface of the yoke component 16, and a divided tooth flange portion protruding substantially in the circumferential direction of the yoke component 16 on both sides of the tip of the divided tooth base portion 17a. 17b, 17c. The cross-sectional shape of the annular magnetic member 15 perpendicular to the thickness direction naturally matches the cross-sectional shape of the stator core 6A.
 また、分割ティース基部17aの先端面、及び分割ティース鍔部17b,17cの内周面(ヨーク構成体16と逆側の面)は、ロータコア3の半径より若干大きな曲率半径を有する同一曲面上に位置している。そして、ヨーク構成体16の軸心から分割ティース基部17aの先端面と分割ティース鍔部17b,17cの内周面までの距離は、ロータコア3の軸心から永久磁石4の外周面までの距離より僅かに長く設定されている。 Further, the distal end surface of the divided tooth base portion 17a and the inner peripheral surfaces (surfaces opposite to the yoke component 16) of the divided tooth flange portions 17b and 17c are on the same curved surface having a slightly larger radius of curvature than the radius of the rotor core 3. positioned. The distance from the axial center of the yoke structure 16 to the distal end surface of the divided tooth base portion 17a and the inner peripheral surface of the divided tooth flanges 17b and 17c is greater than the distance from the axial center of the rotor core 3 to the outer peripheral surface of the permanent magnet 4. It is set slightly longer.
 また、分割ティース鍔部17b,17cの分割ティース基部17aからの突出長さは、環状磁性部材15ごとに異なっている。このとき、分割ティース鍔部17b,17cの分割ティース基部17aからの突出長さは、積層される環状磁性部材15の順に、漸次同じ長さだけ増減させた長さに設定されている。
 そして、以上のような複数の環状磁性部材15を同軸に積層することで、積層された複数の環状磁性部材15を構成するヨーク構成体16及び分割ティース17により、ヨーク7及びティース8が形成され、スロット開口10aが環状磁性部材15の積層方向、言い換えればヨーク7の軸方向に対してスキューされたステータコア6Aが得られる。
Further, the protruding lengths of the divided teeth flange portions 17 b and 17 c from the divided tooth base portion 17 a are different for each annular magnetic member 15. At this time, the protruding length of the divided teeth flanges 17b and 17c from the divided tooth base 17a is set to a length that is gradually increased or decreased by the same length in the order of the laminated annular magnetic members 15.
Then, by laminating the plurality of annular magnetic members 15 as described above coaxially, the yoke 7 and the teeth 8 are formed by the yoke structure 16 and the divided teeth 17 constituting the plurality of laminated annular magnetic members 15. Thus, the stator core 6A is obtained in which the slot opening 10a is skewed with respect to the stacking direction of the annular magnetic member 15, in other words, the axial direction of the yoke 7.
 また、ステータ巻線12は、ティース8と同じ数だけ用意され、それぞれ各ティース8のティース基部8aに巻回されている。即ち、ステータ巻線12は、磁極集中巻方式でティース8に設けられている。 Further, the same number of stator windings 12 as the teeth 8 are prepared and wound around the tooth bases 8 a of the respective teeth 8. That is, the stator winding 12 is provided on the teeth 8 by a magnetic pole concentrated winding method.
 そして、以上のようなステータ5を、ロータ2を囲繞するようにロータ2に同軸に回転自在に配設することで、永久磁石4とティース基部8a及びティース鍔部8b,8cとの間に所定のエアギャップが形成された電動機1Aが得られる。また、ステータ巻線12に電流を流すことにより、周方向に隣り合う永久磁石4が、互いに逆極性に着磁されるようになっており、ステータ巻線12の電流制御により、ロータ2のトルクを所望の大きさに制御可能となる。 The stator 5 as described above is disposed coaxially with the rotor 2 so as to surround the rotor 2 so as to be predetermined between the permanent magnet 4 and the teeth base 8a and the teeth flanges 8b and 8c. An electric motor 1A having an air gap is obtained. Further, by passing a current through the stator winding 12, the permanent magnets 4 adjacent in the circumferential direction are magnetized in opposite polarities, and the torque of the rotor 2 is controlled by controlling the current of the stator winding 12. Can be controlled to a desired size.
 この実施の形態1の電動機1Aによれば、ステータコア6Aのティース鍔部8b,8cの幅は、ティース基部8aとティース鍔部8b,8cの連結部からティース鍔部8b,8cの先端に向かって狭くなっている。このため、ティース鍔部8b,8cの基端部を太くして磁気飽和を緩和させつつ、ティース鍔部8b,8cの先端部を狭くして漏れ磁束を減少させることができる。つまり、電動機1Aでは、コギングトルクとトルクリップルの低減、及びトルクの増加の両方を実現することができる。 According to the electric motor 1A of the first embodiment, the width of the teeth flange portions 8b and 8c of the stator core 6A is from the connecting portion of the teeth base portion 8a and the teeth flange portions 8b and 8c toward the tips of the teeth flange portions 8b and 8c. It is narrower. For this reason, it is possible to reduce the leakage magnetic flux by narrowing the tip end portions of the teeth flange portions 8b and 8c while increasing the base end portions of the teeth flange portions 8b and 8c to alleviate magnetic saturation. That is, in the electric motor 1A, both reduction of cogging torque and torque ripple and increase of torque can be realized.
 なお、この実施の形態1では、スロット開口10aは、ヨーク7の軸方向の一端から他端に至るまで、ヨーク7の軸方向に対する角度が同じ角度をとるようにスキューされるものと説明した。しかしながら、スロット開口10aのヨーク7の軸方向に対するスキューのさせ方はこのものに限定されない。例えば、スロット開口10aが、ヨーク7の軸方向の一端から他端に向かうにつれて、三角波状や正弦波状にジグザグになるように形成して、スロット開口10aをヨーク7の軸方向に対してスキューさせてもよい。つまり、スロット開口10aは、ヨーク7に軸方向の一端から他端に向かってヨーク7の軸方向に対しする角度が変化するようにスキューさせてもよい。スロット開口10aをジグザグに形成することで、例えば、ロータ2の製造誤差などにより、ヨーク7の軸方向に関して、軸方向のいずれかに偏ったスラスト力が発生しても、スラスト力を低減させることができる。 In the first embodiment, it has been described that the slot opening 10a is skewed so that the angle with respect to the axial direction of the yoke 7 takes the same angle from one end to the other end of the yoke 7 in the axial direction. However, the method of skewing the slot opening 10a with respect to the axial direction of the yoke 7 is not limited to this. For example, the slot opening 10 a is formed to be zigzag in a triangular wave shape or a sine wave shape from one end of the yoke 7 in the axial direction to the other end, and the slot opening 10 a is skewed with respect to the axial direction of the yoke 7. May be. That is, the slot opening 10a may be skewed with respect to the yoke 7 so that an angle with respect to the axial direction of the yoke 7 changes from one axial end to the other end. By forming the slot opening 10a in a zigzag manner, for example, even if a thrust force that is biased in any of the axial directions with respect to the axial direction of the yoke 7 occurs due to a manufacturing error of the rotor 2, the thrust force can be reduced. Can do.
 実施の形態2.
 図5はこの発明の実施の形態2に係る電動機を構成するステータの要部拡大図である。
 なお、図5において、上記実施の形態1と同一または相当部分には同一符号を付し、その説明は省略する。
Embodiment 2. FIG.
FIG. 5 is an enlarged view of a main part of the stator constituting the electric motor according to Embodiment 2 of the present invention.
In FIG. 5, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図5において、電動機1Bを構成するステータコア6Bのティース8は、ティース鍔部8b,8cに代え、ティース鍔部8d,8eを有している。
 ティース鍔部8d,8eは、その基端側の部位をティース基部8aとの連結部に向かって漸次幅が広くなるように作製されている他は、ティース鍔部8b,8cと同様に形成されている。つまり、電動機1Aでは、ティース鍔部8b,8cは、ティース基部8aとの連結部(基端部)から先端近傍に至る部位まで、同じ幅に形成されていたが、電動機1Bでは、ティース鍔部8d,8eの基端部側が、ティース鍔部8d,8eの中間部に比べて幅広になっている。
 他の電動機1Bの構成は上記実施の形態1と同様に構成されている。
In FIG. 5, the teeth 8 of the stator core 6 </ b> B constituting the electric motor 1 </ b> B have teeth flange portions 8 d and 8 e instead of the teeth flange portions 8 b and 8 c.
The teeth flanges 8d and 8e are formed in the same manner as the teeth flanges 8b and 8c, except that the base end side portion is made to gradually increase in width toward the connecting portion with the teeth base 8a. ing. That is, in the electric motor 1A, the teeth ridges 8b and 8c are formed to have the same width from the connecting portion (base end) to the teeth base 8a to the vicinity of the tip, but in the electric motor 1B, the teeth ridges The base end side of 8d and 8e is wider than the middle part of the teeth flanges 8d and 8e.
The configuration of the other electric motor 1B is the same as that of the first embodiment.
 この実施の形態2の電動機1Bによれば、電動機1Aと同様、ティース鍔部8d,8eの幅が、ティース基部8aとティース鍔部8b,8cの連結部からティース鍔部8b,8cの先端に向かって狭くなっている。
 従って、ステータコア6Bを用いて作製した電動機1Bにおいても、電動機1Aと同様、コギングトルクとトルクリップルの低減、及びトルクの増加の両方を実現することができる。
According to the electric motor 1B of the second embodiment, similarly to the electric motor 1A, the width of the teeth flanges 8d, 8e is from the connecting portion of the teeth base 8a and the teeth flanges 8b, 8c to the tips of the teeth flanges 8b, 8c. It becomes narrower.
Therefore, in the electric motor 1B manufactured using the stator core 6B, both the reduction of the cogging torque and the torque ripple and the increase of the torque can be realized as in the electric motor 1A.
 さらに、電動機1Bでは、ティース鍔部8d,8eの基端側が、ティース基部8aとの連結部に向かって、漸次幅が広くなるように形成されている。これにより、コギングトルクを一層低減させることができる。 Furthermore, in the electric motor 1B, the base end sides of the tooth flanges 8d and 8e are formed so that the width gradually increases toward the connecting portion with the teeth base 8a. Thereby, the cogging torque can be further reduced.
 次いで、電動機1A,1Bのコギングトルクを測定した結果と、その分析結果について説明する。
 図6はこの発明の実施の形態1及び2に係る電動機のコギングトルクとロータの回転角度との間の関係を測定した結果を示す図、図7はこの発明の実施の形態1及び2に係る電動機で測定されたコギングトルクの分析結果を示す図であり、ロータの工作誤差によるコギングトルクの成分、極数・スロット数に起因するコギングトルクの成分、及びコギングトルクの最大振幅を示している。
Next, a result of measuring the cogging torque of the electric motors 1A and 1B and an analysis result thereof will be described.
FIG. 6 is a diagram showing a result of measuring the relationship between the cogging torque of the electric motor according to the first and second embodiments of the present invention and the rotation angle of the rotor, and FIG. 7 is a diagram according to the first and second embodiments of the present invention. It is a figure which shows the analysis result of the cogging torque measured with the electric motor, and has shown the component of the cogging torque by the working error of the rotor, the component of the cogging torque resulting from the number of poles / slots, and the maximum amplitude of the cogging torque.
 図6において横軸はロータ2の回転角度であり、縦軸はコギングトルクの大きさである。
 なお、コギングトルクの大きさは、ロータ2を一回転させたときのコギングトルクの最大値を1として規格化した規格値として示している。
In FIG. 6, the horizontal axis represents the rotation angle of the rotor 2, and the vertical axis represents the magnitude of the cogging torque.
Note that the magnitude of the cogging torque is shown as a standard value that is normalized with the maximum value of the cogging torque when the rotor 2 is rotated once as one.
 ここで、電動機1A,1Bのステータコア6A,6Bのスロット10の数は12である。このような場合、ロータ2の一部が所望する形状に対して歪んでいたりすると、ロータ2を一方向に回転させた場合、ロータ2の回転角度に関し、スロット10の配列間隔である30°を周期として振幅するコギングトルクの成分が発生する。 Here, the number of slots 10 of the stator cores 6A and 6B of the electric motors 1A and 1B is twelve. In such a case, if a part of the rotor 2 is distorted with respect to a desired shape, when the rotor 2 is rotated in one direction, the rotation angle of the rotor 2 is set to 30 °, which is the arrangement interval of the slots 10. A cogging torque component is generated that oscillates as a cycle.
 また、電動機1A,1Bのロータ2の極数は10である。この場合、ロータ2が一回転する間に、スロット10の数12とロータ2の極数10の最小公倍数である60回だけ振幅を繰り返すコギングトルクの成分が発生することが知られている。つまり、ロータ2を一方向に回転させた場合、ロータ2の回転角度で6°を周期として振幅するコギングトルクの成分が発生する。 Further, the number of poles of the rotor 2 of the electric motors 1A and 1B is ten. In this case, it is known that a component of cogging torque that repeats the amplitude only 60 times, which is the least common multiple of the number 12 of the slot 10 and the number 10 of the poles of the rotor 2, is generated during one rotation of the rotor 2. That is, when the rotor 2 is rotated in one direction, a cogging torque component is generated that has an amplitude with a period of 6 ° as the rotation angle of the rotor 2.
 図6に示される波形を解析し、ロータ2の回転角度に関し、30°の周期のコギングトルク成分と、6°の周期のコギングトルク成分の大きさを導きだすことは可能である。このとき、ロータ2の回転角度で30°の周期で振幅するコギングトルク成分の大きさは、ロータ2の工作誤差(所望の寸法に対する歪みやばらつき)に起因するものに相当し、6°の周期で振幅するコギングトルク成分の大きさは、極数・スロット数に起因して変動するものに相当する。 It is possible to analyze the waveform shown in FIG. 6 and derive the magnitude of the cogging torque component having a period of 30 ° and the cogging torque component having a period of 6 ° with respect to the rotation angle of the rotor 2. At this time, the magnitude of the cogging torque component that swings with a rotation angle of the rotor 2 at a cycle of 30 ° corresponds to that caused by a work error of the rotor 2 (distortion or variation with respect to a desired dimension), and a cycle of 6 °. The magnitude of the cogging torque component that swings at is equivalent to the fluctuation due to the number of poles and the number of slots.
 そして、電動機1Aと電動機1Bについて、ロータ2の工作誤差に起因するコギングトルクの成分の大きさ、極数・スロット数に起因して変動するコギングトルクの成分の大きさ、及びロータ2を一回転させたときの振幅の大きさ(Peak-Peak値)を図7に示している。 And about the motor 1A and the motor 1B, the magnitude | size of the component of the cogging torque resulting from the working error of the rotor 2, the magnitude | size of the component of the cogging torque which fluctuates due to the number of poles / slots, and one rotation of the rotor 2 FIG. 7 shows the magnitude of the amplitude (Peak-Peak value) when it is set.
 図7において、用意した電動機1A,1Bでは、ロータ2の工作誤差に起因するコギングトルクの成分が、測定されたコギングトルクの振幅の主な成分となっていることがわかる。
 そして、電動機1Bでは、電動機1Aと比較して、ロータ2の工作誤差に起因するコギングトルクの成分が大きく減少し、このため、ロータ2を一回転させたときに観測されるコギングトルクの振幅の大きさが大きく減少した。
In FIG. 7, it can be seen that in the prepared electric motors 1A and 1B, the cogging torque component caused by the machining error of the rotor 2 is the main component of the measured cogging torque amplitude.
In the electric motor 1B, compared with the electric motor 1A, the cogging torque component due to the working error of the rotor 2 is greatly reduced. For this reason, the amplitude of the cogging torque observed when the rotor 2 is rotated once. The size has greatly decreased.
 上記結果について考察する。
 電動機1Bでは、ティース鍔部8d,8eの基端側が、ティース基部8aとの連結部に向かって幅が広くなるように形成されている。
 ここで、ティース基部8aとティース鍔部8d,8eとの連結部は、ティース8内で最も磁気飽和が発生しやすい場所である。つまり、このような場所では、ロータ2の工作誤差や磁石残留密度のばらつきにより磁気飽和の程度が敏感に変化し、コギングトルクやトルクリップルが発生しやすい。
Consider the above results.
In the electric motor 1B, the base end sides of the tooth flange portions 8d and 8e are formed so that the width becomes wider toward the connecting portion with the teeth base portion 8a.
Here, the connecting portion between the tooth base portion 8 a and the tooth flange portions 8 d and 8 e is a place where magnetic saturation is most likely to occur in the tooth 8. That is, in such a place, the degree of magnetic saturation changes sensitively due to variations in the working error of the rotor 2 and the magnet residual density, and cogging torque and torque ripple are likely to occur.
 電動機1Bのステータコア6Bのように、ティース鍔部8d,8eの基端側が、ティース基部8aとの連結部に向かって幅広に形成されているので、磁気飽和が発生しづらくなり、ロータ2の工作誤差に起因するコギングトルクの成分が著しく低減されたものと判断される。
 以上のように、実施の形態2の電動機1Bでは、電動機1Aよりも一層のコギングトルクの低減効果を得ることができる。
Like the stator core 6B of the electric motor 1B, the base end sides of the teeth flanges 8d and 8e are formed wide toward the connecting portion with the teeth base 8a, so that magnetic saturation is unlikely to occur and the work of the rotor 2 is performed. It is determined that the component of cogging torque resulting from the error is significantly reduced.
As described above, the electric motor 1B according to the second embodiment can obtain a further effect of reducing the cogging torque than the electric motor 1A.
 実施の形態3.
 図8はこの発明の実施の形態3に係る電動機を構成するステータの要部拡大断面図であり、ヨークの軸方向の一端側近傍に位置するステータの部位の断面を示している。
 なお、図8において上記実施の形態1と同一または相当部分には同一符号を付し、その説明は省略し、説明の便宜上、ステータ巻線の図示は省略している。
Embodiment 3 FIG.
FIG. 8 is an enlarged cross-sectional view of the main part of the stator constituting the electric motor according to Embodiment 3 of the present invention, and shows a cross section of a portion of the stator located in the vicinity of one end side in the axial direction of the yoke.
In FIG. 8, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and illustration of the stator winding is omitted for convenience of description.
 図8において、電動機1Cは、ステータコア6Aに代えステータコア6Cを備えている他は、電動機1Aと同様に構成されている。
 ヨーク7の軸方向に関し、一端側に位置するティース基部8a内にスロット開口10aが入り込むように形成されている。
In FIG. 8, the electric motor 1C is configured in the same manner as the electric motor 1A, except that the stator core 6C is provided instead of the stator core 6A.
With respect to the axial direction of the yoke 7, the slot opening 10 a is formed so as to enter the teeth base portion 8 a located on one end side.
 ティース基部8a内にスロット開口10aが入り込むとは以下のものをいう。ティース基部8aの先端側の幅が、ティース基部8aの基端側の幅に比べて狭まるようにスロットの開口が形成されているものをいう。
 なお、図示しないが、ヨーク7の軸方向の他端側では、一端側でスロット開口10aが入り込むように形成されたティース基部8aと周方向に相対するティース基部8a内に、スロット開口10aが入り込むように形成されている。つまり、長さ方向の全域で、ヨーク7の軸方向に対して同じ角度でスキューされているスロット開口10aの一端及び他端がティース基部8aに入り込んでいる。
 他の電動機1Cの構成は、電動機1Aと同様に構成されている。
The entry of the slot opening 10a into the teeth base 8a refers to the following. This means that the opening of the slot is formed so that the width on the distal end side of the teeth base portion 8a is narrower than the width on the proximal end side of the teeth base portion 8a.
Although not shown, on the other end side of the yoke 7 in the axial direction, the slot opening 10a enters the teeth base 8a formed so that the slot opening 10a enters on one end side and the teeth base 8a facing in the circumferential direction. It is formed as follows. That is, one end and the other end of the slot opening 10a skewed at the same angle with respect to the axial direction of the yoke 7 enter the teeth base 8a throughout the entire length direction.
The configuration of the other electric motor 1C is the same as that of the electric motor 1A.
 ここで、ヨーク7の周方向に関し、ヨーク7の軸方向の一端での、言い換えれば、最もティース基部8aに入り込んでいるスロット開口10aが位置するヨーク7の軸方向の位置でのスロット開口10aの幅方向の中心と、当該スロット開口10aを有するスロット10を構成する一対のティース基部8aの間の中心との角度をa°とする。 Here, with respect to the circumferential direction of the yoke 7, the slot opening 10 a at one end in the axial direction of the yoke 7, in other words, at the position in the axial direction of the yoke 7 where the slot opening 10 a most entering the teeth base 8 a is located. An angle between the center in the width direction and the center between the pair of teeth bases 8a constituting the slot 10 having the slot opening 10a is defined as a °.
 つまり、スロット開口10aは、ヨーク7の周方向の角度で、2a°分に相当する角度幅を占有するように形成される。
 仮に、スロット開口10aをティース基部8a内に入り込ませない場合、aの値が小さくなる。
 即ち、スロット開口10aをティース基部8a内に入り込ませた場合のスロット開口10aのスキュー角度は、スロット開口10aをティース基部8a内に入り込ませないものよりも大きくとれる。
That is, the slot opening 10a is formed so as to occupy an angular width corresponding to 2a ° in the circumferential angle of the yoke 7.
If the slot opening 10a is not allowed to enter the teeth base portion 8a, the value of a becomes small.
That is, the skew angle of the slot opening 10a when the slot opening 10a enters the teeth base portion 8a can be larger than that at which the slot opening 10a does not enter the teeth base portion 8a.
 従って、この実施の形態3の電動機1Cによれば、スロット開口10aのスキュー角度を大きくとれるので、スロット開口10aをティース基部8a内に入り込ませないものに比べ、より低い周波数成分のコギングトルクやトルクリップルを低減させることが可能となる。 Therefore, according to the electric motor 1C of the third embodiment, since the skew angle of the slot opening 10a can be increased, the cogging torque and torque having a lower frequency component than those in which the slot opening 10a does not enter the teeth base 8a. Ripple can be reduced.
 なお、この実施の形態3によれば、スロット開口10aは、長さ方向の全域で、ヨーク7の軸方向に対するスキュー角度を同じにして延在されるものとして説明したが、スロット開口10aをヨーク7の軸方向の一端から他端に向かってジグザグに延在させる場合には、スロット開口10aの山部に相当する部位を、ティース基部8aに入り込むようにすれば、スロット開口10aのスキュー角度を大きくとれる。即ち、スロット10の開口が、ヨーク7の軸方向の所定部位で、ティース基部8aに入り込むようにティース8が形成することで、スロット開口10aのヨーク7の軸方向に対するスキュー角度を大きくとれるので、低い周波数成分のトルクリップルを低減させることが可能となる。 According to the third embodiment, the slot opening 10a has been described as extending over the entire length direction with the same skew angle with respect to the axial direction of the yoke 7. 7 is extended in a zigzag from one end to the other end in the axial direction, the portion corresponding to the peak portion of the slot opening 10a enters the teeth base portion 8a, and the skew angle of the slot opening 10a is increased. I can take it big. That is, since the teeth 8 are formed so that the opening of the slot 10 enters the teeth base portion 8a at a predetermined portion in the axial direction of the yoke 7, the skew angle of the slot opening 10a with respect to the axial direction of the yoke 7 can be increased. It becomes possible to reduce the torque ripple of the low frequency component.
 実施の形態4.
 図9はこの発明の実施の形態4に係る電動機のスロット開口のヨークの軸方向に対するスキュー角度とスキュー係数の関係を示す図である。
Embodiment 4 FIG.
FIG. 9 is a diagram showing the relationship between the skew angle and the skew coefficient with respect to the axial direction of the yoke of the slot opening of the electric motor according to Embodiment 4 of the present invention.
 この実施の形態4に係る発明の電動機は、電動機1Aと同様のものを想定している。また、極数、及びスロット数は、10、及び12に限らず、Zを自然数として、極数が10Z、スロット数が12Zに設定されたもののいずれかが用いられる。
 そして、スロット開口10aのスキュー角度は、kを1,2,3のいずれかとして、±(3k/Z)°のいずれかに設定されている。
The electric motor according to the fourth embodiment is assumed to be the same as that of the electric motor 1A. In addition, the number of poles and the number of slots are not limited to 10 and 12, but any of those in which Z is a natural number, the number of poles is set to 10Z, and the number of slots is set to 12Z is used.
The skew angle of the slot opening 10a is set to ± (3k / Z) ° where k is 1, 2, or 3.
 図9において、横軸はスロット開口10aのスキュー角度であり、縦軸はスロット開口10aのスキュー角度に対するスキュー係数の理論値を示している。
 スキュー係数は、スロット開口10aのスキュー角度が0である場合のコギングトルクの振幅の大きさを1としたときのスロット開口10aのスキュー角度に対するコギングトルクの理論値として表される。
In FIG. 9, the horizontal axis represents the skew angle of the slot opening 10a, and the vertical axis represents the theoretical value of the skew coefficient with respect to the skew angle of the slot opening 10a.
The skew coefficient is expressed as a theoretical value of the cogging torque with respect to the skew angle of the slot opening 10a when the magnitude of the amplitude of the cogging torque when the skew angle of the slot opening 10a is zero.
 また、例えば、ステータコア6Aが、所望の形状に対して工作誤差を有している場合に、ステータコア6Aの工作誤差に起因して、コギングトルクが発生する。このコギングトルクは、ロータ2の回転角度に関し、永久磁石4の配列間隔である(36/Z)°を周期として振幅する第1成分と、第1成分の1/2の間隔である(18/Z)°を周期として振幅する第2成分を有する。
 図9では、ステータコア6Aの工作誤差に起因するコギングトルクの第1成分を太線で示し、第2成分を破線で示している。
 また、極数:スロット数=10:12である場合の極数・スロット数に起因するコギングトルクの成分を細線にて示す。
For example, when the stator core 6A has a machining error with respect to a desired shape, a cogging torque is generated due to the machining error of the stator core 6A. This cogging torque is the interval between the first component and the half of the first component with respect to the rotation angle of the rotor 2, with an interval of (36 / Z) ° that is the arrangement interval of the permanent magnets 4 (18 / Z) has a second component that has an amplitude with a period of °.
In FIG. 9, the first component of the cogging torque resulting from the machining error of the stator core 6A is indicated by a bold line, and the second component is indicated by a broken line.
In addition, the cogging torque components resulting from the number of poles and the number of slots when the number of poles: number of slots = 10: 12 are indicated by thin lines.
 図9に示されるとおり、スキュー係数の値は、スキュー角度を±(3k/Z)°とした場合に、極数・スロット数に起因するコギングトルクの成分が理論的に著しく減少する。
 従って、この実施の形態4によれば、スロット開口10aのスキュー角度が、±(3k/Z)°に設定されているので、コギングトルクを効果的に低減できる。
As shown in FIG. 9, the value of the skew coefficient theoretically significantly reduces the cogging torque component due to the number of poles and the number of slots when the skew angle is ± (3 k / Z) °.
Therefore, according to the fourth embodiment, since the skew angle of the slot opening 10a is set to ± (3 k / Z) °, the cogging torque can be effectively reduced.
 ここで、スロット数が12Zの電動機1Aでは、スロット10を区画するティース基部8aを含む1スロットあたりのヨーク7の周方向に関する機械角度(以下、1スロット当たりの機械角度とする)は、(30/Z)°となる。
 なお、隣接するスロット10を区画するティース基部8aは、幅方向の中心の一側及び他側のそれぞれが、一方及び他方のスロット10のそれぞれを区画するものとみなす。つまり、1スロットあたりの機械角度には、ティース基部8aが、1つ分含まれる。
Here, in the motor 1A having a slot number of 12Z, a mechanical angle (hereinafter, referred to as a mechanical angle per slot) of the yoke 7 per slot including the tooth base portion 8a that defines the slot 10 is (30). / Z) °.
In addition, regarding the teeth base 8a that partitions adjacent slots 10, one side and the other side of the center in the width direction are regarded as partitioning one and the other slots 10, respectively. That is, one tooth base 8a is included in the mechanical angle per slot.
 一般的な電動機では、1スロットあたりの機械角度のうち、ティース基部8aが占める角度は(15/Z)°~(20/Z)°である。
 そのため、スロット開口10aを、ティース基部8aに入り込ませずにスキューさせた電動機では、スロット開口10aのスキュー角度を±(6/Z)°、±(9/Z)°に設定することが困難となる。一方、実施の形態3の電動機1Cのように、軸方向の一端及び他端側のスロット開口10aをティース基部8aに入り込むようにすることで、スロット開口10aのスキュー角度を±(6/Z)°、±(9/Z)°に容易に設定できる。
In a general electric motor, of the mechanical angles per slot, the angle occupied by the tooth base 8a is (15 / Z) ° to (20 / Z) °.
Therefore, in the electric motor in which the slot opening 10a is skewed without entering the teeth base 8a, it is difficult to set the skew angle of the slot opening 10a to ± (6 / Z) °, ± (9 / Z) °. Become. On the other hand, as in the electric motor 1C of the third embodiment, the slot opening 10a on one end and the other end side in the axial direction is inserted into the tooth base 8a, so that the skew angle of the slot opening 10a is ± (6 / Z). It can be easily set to °, ± (9 / Z) °.
 なお、この実施の形態4の電動機は、電動機1Aにおいて、極数を10Z、スロット数を12Zとし、スキュー角度を±(3k/Z)°に設定したものと説明したが、実施の形態2,3の電動機において、極数を10Z、スロット数を12Zとし、スキュー角度を±(3k/Z)°に設定したものでもよい。 The electric motor according to the fourth embodiment has been described in the electric motor 1A, in which the number of poles is 10Z, the number of slots is 12Z, and the skew angle is set to ± (3k / Z) °. In the electric motor of 3, the number of poles may be 10Z, the number of slots may be 12Z, and the skew angle may be set to ± (3k / Z) °.
 また、上記各実施の形態では、回転電機は電動機1A~1Cであるものとして説明したが、回転電機は、各実施の形態と同等の構成のステータ及びロータを備える発電機であってもよい。 In each of the above embodiments, the rotating electric machine is described as being the electric motors 1A to 1C. However, the rotating electric machine may be a generator including a stator and a rotor having the same configuration as each of the embodiments.
 実施の形態5.
 上記では、板状の複数の環状磁性部材15を積層してステータコア6Aを構成するものとして説明した。
 ステータコア(ステータのコア部材)は、例えば、以下のように、2種の環状磁性部材を用意し、この2種の環状磁性部材を交互に積み重ねて構成したものとしてもよい。以下では、ステータコアを、ステータのコア部材として説明する。
Embodiment 5 FIG.
In the above description, the stator core 6 </ b> A is configured by laminating a plurality of plate-like annular magnetic members 15.
As the stator core (core member of the stator), for example, two kinds of annular magnetic members may be prepared as follows, and the two kinds of annular magnetic members may be alternately stacked. Below, a stator core is demonstrated as a core member of a stator.
 まず、ステータのコア部材の製造装置の説明に先立って、ステータのコア部材の製造装置を用いて製造されるステータのコア部材の構成について説明する。
 図10はこの発明の実施の形態5に係るステータのコア部材の製造装置を用いて製造されるステータのコア部材の斜視図、図11はこの発明の実施の形態5に係るステータのコア部材の製造装置を用いて製造されるステータのコア部材の平面図、図12はこの発明の実施の形態5に係るステータのコア部材の製造装置を用いて製造されるステータのコア部材を内周側から見た要部正面図、図13は図11のB部拡大図である。
First, prior to the description of the stator core member manufacturing apparatus, the configuration of the stator core member manufactured using the stator core member manufacturing apparatus will be described.
10 is a perspective view of a stator core member manufactured using a stator core member manufacturing apparatus according to Embodiment 5 of the present invention, and FIG. 11 is a view of a stator core member according to Embodiment 5 of the present invention. FIG. 12 is a plan view of a stator core member manufactured using the manufacturing apparatus, and FIG. 12 shows the stator core member manufactured using the stator core member manufacturing apparatus according to Embodiment 5 of the present invention from the inner peripheral side. FIG. 13 is an enlarged view of part B of FIG. 11.
 図10~図13において、ステータのコア部材101Aは、例えば、珪素鋼からなる板状の複数の第1環状磁性部材102A及び第2環状磁性部材102Bを、それぞれの厚み方向に積層して連結した積層体として構成されている。 10 to 13, the core member 101A of the stator is formed by connecting, for example, a plurality of plate-like first annular magnetic members 102A and second annular magnetic members 102B made of silicon steel in the respective thickness directions. It is comprised as a laminated body.
 第1環状磁性部材102Aのそれぞれは、環状に配列される複数の分割コア部材103により構成される。ここでは、第1環状磁性部材102Aを構成する分割コア部材103の数は12であるが、分割コア部材103の数は特に限定されない。
 分割コア部材103は、長尺の平板状に作製された分割ヨーク104と、分割ヨーク104の長手方向の一端と他端の間の中間部から分割ヨーク104の厚み方向に直交する方向に突出する分割ティース基部105a、及び分割ティース基部105aの先端の両側に概略分割ヨーク104に平行な方向(分割ヨーク104の周方向)に突出される分割ティース鍔部105b,105cを有する分割ティース105とで構成される。
Each of the first annular magnetic members 102A includes a plurality of divided core members 103 arranged in an annular shape. Here, the number of the split core members 103 constituting the first annular magnetic member 102A is 12, but the number of the split core members 103 is not particularly limited.
The split core member 103 protrudes in a direction perpendicular to the thickness direction of the split yoke 104 from the split yoke 104 made in the shape of a long flat plate and an intermediate portion between one end and the other end of the split yoke 104 in the longitudinal direction. The divided teeth base 105a and the divided teeth 105 having divided teeth flanges 105b and 105c projecting in a direction substantially parallel to the divided yoke 104 (circumferential direction of the divided yoke 104) on both sides of the tip of the divided teeth base 105a. Is done.
 なお、分割ティース基部105aが突出された分割ヨーク104の一辺と相対する他辺の主要部は、所定の曲率半径を有する円弧状に形成されている。また、分割ヨーク104の一端近傍には、一面側が凸部となり他面側が凹部となる連結部104aが形成されている。 In addition, the main part of the other side facing the one side of the divided yoke 104 from which the divided tooth base portion 105a protrudes is formed in an arc shape having a predetermined radius of curvature. Further, in the vicinity of one end of the divided yoke 104, a connecting portion 104a is formed in which one surface side is a convex portion and the other surface side is a concave portion.
 分割ティース鍔部105b,105cは、図13に示されるように、先端の幅Wbが、分割ティース基部105aと連結される基端部側の幅Waより狭くなるように形成され、分割ティース鍔部105b,105cは基端部から先端部に向かって幅が狭くなっている。なお、ここでは、分割ティース鍔部105b,105cの基端部から先端近傍の部位までは、分割ティース鍔部105b,105cの幅は同じ幅に形成されている。
 そして、第1環状磁性部材102Aは、分割ヨーク104が環状に並べられ、分割ティース基部105aが分割ヨーク104の内側に配置されるように複数の分割コア部材103を配列して構成される。つまり、第1環状磁性部材102Aでは、分割ヨーク104が、分割コア部材103の連結方向に沿って連結され、分割ヨーク104の連結方向に関して、各分割ヨーク104の中間部から分割ティース基部105aが分割ヨーク104の内側に突出される。
As shown in FIG. 13, the divided teeth flanges 105 b and 105 c are formed such that the width Wb of the distal end is narrower than the width Wa on the base end side connected to the divided teeth base 105 a, and the divided teeth flange The widths 105b and 105c are narrowed from the base end portion toward the tip end portion. Here, from the base end portions of the divided teeth flange portions 105b and 105c to the portions in the vicinity of the distal end, the divided teeth flange portions 105b and 105c are formed to have the same width.
The first annular magnetic member 102 </ b> A is configured by arranging a plurality of divided core members 103 such that the divided yokes 104 are arranged in a ring shape and the divided tooth base portion 105 a is disposed inside the divided yoke 104. That is, in the first annular magnetic member 102A, the divided yoke 104 is connected along the connecting direction of the divided core member 103, and the divided tooth base 105a is divided from the intermediate portion of each divided yoke 104 with respect to the connecting direction of the divided yoke 104. It protrudes inside the yoke 104.
 また、第2環状磁性部材102Bのそれぞれは、第1環状磁性部材102Aと同様、環状に配列される複数の分割コア部材103により構成される。第2環状磁性部材102Bの分割コア部材103は、連結部104aが分割ヨーク104の長手方向の一端と逆側の他端近傍に形成されている点を除いて、第1環状磁性部材102Aの分割コア部材103と同様に構成される。 Further, each of the second annular magnetic members 102B is composed of a plurality of divided core members 103 arranged in an annular shape, like the first annular magnetic member 102A. The split core member 103 of the second annular magnetic member 102B is divided from the first annular magnetic member 102A except that the connecting portion 104a is formed near the other end opposite to one end of the split yoke 104 in the longitudinal direction. The configuration is the same as that of the core member 103.
 第1及び第2環状磁性部材102A,2Bのそれぞれは、隣接する分割コア部材103の分割ヨーク104の一端及び他端が隣合わせに配置されるように複数の分割コア部材103を環状に配列して構成されている。このとき、第1及び第2環状磁性部材102A,102Bの外形は、円弧状に形成された分割ヨーク104の他辺の曲率半径と等しい曲率半径の円となる。また、平板かつ環状(平板リング状)のヨーク構成体108が、環状に配列された分割ヨーク104により構成される。 Each of the first and second annular magnetic members 102A and 2B includes a plurality of divided core members 103 arranged in an annular shape so that one end and the other end of the divided yoke 104 of the adjacent divided core member 103 are arranged next to each other. It is configured. At this time, the outer shapes of the first and second annular magnetic members 102A and 102B are circles having a radius of curvature equal to the radius of curvature of the other side of the divided yoke 104 formed in an arc shape. Further, a flat and annular (flat plate-shaped) yoke structure 108 is constituted by divided yokes 104 arranged in an annular shape.
 そして、ステータのコア部材101Aは、上述したように、第1及び第2環状磁性部材102A,102Bを、分割ティース基部105aが重なるように、それぞれの連結部104aを互いに嵌め合わせて交互に積層した積層体として構成される。なお、各分割コア部材103は連結部104aまわりに回動可能なように、分割ヨーク104の端部が形成されている。 Then, as described above, the stator core member 101A is formed by alternately stacking the first and second annular magnetic members 102A and 102B by fitting the connecting portions 104a to each other so that the divided tooth base portions 105a overlap each other. Configured as a laminate. Each split core member 103 is formed with an end portion of the split yoke 104 so as to be rotatable around the connecting portion 104a.
 このとき、分割ティース基部105aの先端から分割ティース基部105aの幅方向の一側及び他側への分割ティース鍔部105b,105cの突出長さは、各層ごとに異なるものを用いており、各層の第1及び第2環状磁性部材102A,102Bの分割ティース鍔部105b,105cの分割ティース基部105aからの突出長さは、以下の条件を満たすように設定されている。 At this time, the protruding lengths of the divided teeth flange portions 105b and 105c from the tip of the divided tooth base portion 105a to the one side and the other side in the width direction of the divided tooth base portion 105a are different for each layer. The protruding lengths of the first and second annular magnetic members 102A and 102B from the divided tooth base portions 105a of the divided teeth flange portions 105b and 105c are set so as to satisfy the following conditions.
 即ち、分割ティース105の分割ティース基部105aからの分割ティース鍔部105b,105cの突出長さは、第1及び第2環状磁性部材102A,102Bの積層方向の一側から他側に向かって、第1及び第2環状磁性部材の層が変わるごとに順次増減され、隣接する分割ティース鍔部105b,105cの先端間で構成される隙間が、ステータのコア部材101Aの一端から他端に至るまで連続するように設定されている。 That is, the protruding lengths of the divided teeth flange portions 105b and 105c from the divided tooth base portion 105a of the divided teeth 105 are first to the other side in the stacking direction of the first and second annular magnetic members 102A and 102B. Each time the layers of the first and second annular magnetic members are changed, the gap is sequentially increased and a gap formed between the tips of the adjacent divided teeth flange portions 105b and 105c continues from one end to the other end of the stator core member 101A. It is set to be.
 また、以上のように構成されるステータのコア部材101Aにおいては、円筒状のヨークが、積層された第1及び第2環状磁性部材102A,102Bのヨーク構成体108により構成される。また、ヨークの周方向に互いに間隔をあけてヨークの軸方向に亘って突出するティースが、積層された第1及び第2環状磁性部材102A,102Bの分割ティース105により構成される。 Also, in the stator core member 101A configured as described above, the cylindrical yoke is configured by the yoke structure 108 of the first and second annular magnetic members 102A and 102B stacked. Further, teeth that protrude in the axial direction of the yoke at intervals from each other in the circumferential direction of the yoke are constituted by the divided teeth 105 of the first and second annular magnetic members 102A and 102B that are stacked.
 スロット107が、隣接する分割ティース105の分割ティース基部105a、当該分割ティース基部105aから互いに相対する方向に延出される分割ティース鍔部105b,105c、及び隣接する分割ティース基部105aの間に位置する分割ヨーク104の部位に囲まれる空間により形成されている。そして、隣接する分割ティース鍔部105b,105c間の隙間が連なって構成されるスロット開口107aは、第1及び第2環状磁性部材102A,102Bの積層方向の一側から他側に向かって積層方向に対してスキューされる。 The slot 107 is located between the divided tooth base 105a of the adjacent divided teeth 105, the divided teeth flanges 105b and 105c extending from the divided teeth base 105a in the direction opposite to each other, and the adjacent divided teeth base 105a. A space surrounded by a portion of the yoke 104 is formed. And the slot opening 107a comprised by the clearance gap between adjacent division | segmentation teeth rib parts 105b and 105c is a lamination direction toward the other side from the one side of the lamination direction of 1st and 2nd annular magnetic member 102A, 102B. Is skewed against.
 次いで、ステータのコア部材の製造装置について説明する。
 図14はこの発明の実施の形態5に係るステータのコア部材の製造装置の側面図、図15はこの発明の実施の形態5に係るステータのコア部材の製造装置の平面図、図16はこの発明の実施の形態5に係るステータのコア部材の製造装置の第2プレス機構の要部側断面図である。
Next, an apparatus for manufacturing the core member of the stator will be described.
14 is a side view of a stator core member manufacturing apparatus according to Embodiment 5 of the present invention, FIG. 15 is a plan view of a stator core member manufacturing apparatus according to Embodiment 5 of the present invention, and FIG. It is principal part sectional drawing of the 2nd press mechanism of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 5 of invention.
 図14及び図15において、ステータのコア部材の製造装置110Aは、第1プレス機構111A及び移動金型機構としての第2プレス機構111Bを有する。
 第1プレス機構111Aは、上下に相対して配置される上台板117及び下台板118と、珪素鋼からなる長尺の鋼板119を上台板117及び下台板118の間で、所定方向(図14中の矢印の方向)に搬送させる搬送機構(図示せず)と、鋼板119の搬送方向の上流側に配置され、上台板117及び下台板118に設置される上型113A及び下型113Bからなり、鋼板119の所定部位を、打ち抜き加工、またはカシメ加工する第1金型112Aと、鋼板119の搬送方向の下流側に第1金型112Aと所定の間隔をあけて配置され、上台板117及び下台板118に設置される上型115A及び下型115Bからなり、鋼板119の所定部位を打ち抜き加工する第2金型114Aと、を備える。
14 and 15, the stator core member manufacturing apparatus 110A includes a first press mechanism 111A and a second press mechanism 111B as a moving mold mechanism.
The first press mechanism 111A includes an upper base plate 117 and a lower base plate 118 that are disposed so as to be opposed to each other vertically, and a long steel plate 119 made of silicon steel between the upper base plate 117 and the lower base plate 118 in a predetermined direction (FIG. 14). A conveyance mechanism (not shown) that conveys in the direction of the arrow in the middle, and an upper mold 113A and a lower mold 113B that are disposed on the upstream side in the conveyance direction of the steel plate 119 and are installed on the upper base plate 117 and the lower base plate 118. The first die 112A for punching or crimping a predetermined portion of the steel plate 119, and the first die 112A at a predetermined interval on the downstream side in the conveying direction of the steel plate 119, and the upper base plate 117 and A second mold 114A that is formed of an upper mold 115A and a lower mold 115B installed on the lower base plate 118 and punches a predetermined portion of the steel plate 119;
 また、第2プレス機構111Bは、図16に示されるように、下台板118上を搬送される鋼板119の表裏両面に軸方向を直交させ、鋼板119の幅方向の中央部に対応する位置に配設されたスラスト軸受121と、下台板118上でスラスト軸受121に支承され、スラスト軸受121の軸心まわりに回転移動可能に配設された回転移動台122と、回転移動台122をスラスト軸受121の軸心周りに回転させるトルクを発生させるリニアモータ124と、回転移動台122上に設けられ、下型128B、及びクランクシャフト125を介してサーボモータ126に駆動されて下型128Bを加圧可能な位置に配置され、下型128Bとの間に加圧した鋼板119を所望の形状に打ち抜き可能に構成された上型128Aからなる移動金型としての回転移動金型128と、を備えている。 In addition, as shown in FIG. 16, the second press mechanism 111 </ b> B has the axial direction orthogonal to both the front and back surfaces of the steel plate 119 conveyed on the lower base plate 118, at a position corresponding to the central portion in the width direction of the steel plate 119. The thrust bearing 121 disposed on the lower base plate 118 is supported by the thrust bearing 121 and is disposed so as to be rotatable around the axial center of the thrust bearing 121. A linear motor 124 that generates torque to rotate around the axis of 121 and a rotary moving table 122 are driven by the servo motor 126 via the lower die 128B and the crankshaft 125 to pressurize the lower die 128B. The movement which consists of the upper mold | type 128A arrange | positioned in the possible position and comprised so that the steel plate 119 pressurized between the lower mold | types 128B can be stamped in a desired shape. It includes a rotary moving mold 128 as the mold, a.
 次いで、上記のように構成されたステータのコア部材の製造装置110Aの動作について説明する。
 図17はこの発明の実施の形態5に係るステータのコア部材の製造装置の動作、及び環状磁性部材を構成する分割コア部材を形成する工程を説明する平面図である。
Next, the operation of the stator core member manufacturing apparatus 110A configured as described above will be described.
FIG. 17 is a plan view for explaining the operation of the stator core member manufacturing apparatus according to Embodiment 5 of the present invention and the process of forming the split core member constituting the annular magnetic member.
 この実施の形態5では、第1及び第2環状磁性部材102A,102Bのそれぞれを構成するための複数の分割コア部材103の形成領域が、周方向に所定のピッチで配列されるように設定された鋼板119に対し、ステータのコア部材の製造装置110Aは、鋼板119に設定された複数の分割コア部材103の形成領域を残すように鋼板119を打ち抜き加工して分割コア部材103を得るものとして構成される。なお、図17では、説明の便宜上、第1及び第2環状磁性部材102A,102Bのそれぞれを構成するための分割コア部材103の数を8個として図示しているが、実際には、図10と同様、12個である。 In the fifth embodiment, the formation regions of the plurality of divided core members 103 for configuring the first and second annular magnetic members 102A and 102B are set so as to be arranged at a predetermined pitch in the circumferential direction. The stator core member manufacturing apparatus 110 </ b> A is obtained by punching the steel plate 119 so as to leave the formation regions of the plurality of divided core members 103 set on the steel plate 119 to obtain the divided core member 103. Composed. In FIG. 17, for convenience of explanation, the number of the divided core members 103 for constituting each of the first and second annular magnetic members 102 </ b> A and 102 </ b> B is illustrated as eight. As in the case of twelve.
 まず、図示しない駆動源により上台板117が下降すると、図17に示されるように、第1金型112Aにより図17の矢印Aで示す位置において鋼板119上にパイロット穴131の形成が、また、矢印Bで示す位置においてロータ(図示せず)を配置するための円形の打ち抜き132の形成が、また、矢印Cで示す位置において分割ヨーク104および分割ティース105の各輪郭を形成するための打ち抜き133,134の形成が行われる。 First, when the upper base plate 117 is lowered by a drive source (not shown), as shown in FIG. 17, the pilot hole 131 is formed on the steel plate 119 at the position indicated by the arrow A in FIG. The formation of the circular punching 132 for arranging the rotor (not shown) at the position indicated by the arrow B, and the punching 133 for forming the respective contours of the divided yoke 104 and the divided teeth 105 at the position indicated by the arrow C are performed. , 134 are formed.
 また、矢印D及びEで示す位置において、それぞれ第1および第2の環状磁性部材102A,102Bの各分割ヨーク104の端面の輪郭を形成するための切り曲げ135,136が、また、矢印FおよびGで示す位置において、それぞれ第1及び第2の環状磁性部材102A,102Bに形成される凹凸形状の連結部104aの形成、および抜きかしめ138,139がそれぞれ行われ、矢印Iで示す位置において、第1及び第2環状磁性部材102A,102Bを構成する分割コア部材の輪郭を形成するための打ち抜き140が第2金型114Aにより行われる。
 以上のように、第1及び第2金型112A,114Aにより、第1及び第2環状磁性部材102A,102Bを構成する分割コア部材103の分割ティース鍔部105b,105cの所定の突出長さの輪郭以外の輪郭を形成するための打ち抜き以外の打ち抜き加工が行われる。
Further, at the positions indicated by arrows D and E, cuts 135 and 136 for forming the contours of the end faces of the divided yokes 104 of the first and second annular magnetic members 102A and 102B, respectively, At the position indicated by G, the concave and convex connecting portions 104a formed on the first and second annular magnetic members 102A and 102B, respectively, and the caulking 138 and 139 are respectively performed, and at the position indicated by the arrow I, The second mold 114A performs punching 140 for forming the contours of the divided core members constituting the first and second annular magnetic members 102A and 102B.
As described above, the first and second molds 112A and 114A have the predetermined protruding lengths of the divided teeth flange portions 105b and 105c of the divided core member 103 that constitutes the first and second annular magnetic members 102A and 102B. Punching processing other than punching for forming a contour other than the contour is performed.
 なお、矢印D及びEの位置での打ち抜き加工は、いずれか一方の打ち抜き加工を選択的に行うことが可能になっている。また、矢印FおよびGで示す位置でのプレスによるかしめ加工も同様、いずれか一方のかしめ加工を選択的に行うことが可能になっている。つまり、矢印Dの位置で打ち抜き加工した鋼板119の部位は、矢印Eで打ち抜き加工せずに、矢印Fの位置でかしめ加工し、かつ矢印Gの位置でかしめ加工せずに、矢印Hに移動させることができる。また、鋼板119を、矢印Dの位置で打ち抜き加工せずに、矢印Eで打ち抜き加工させた後、矢印Fの位置でかしめ加工せずに、矢印Gの位置でかしめ加工して、矢印Hまで鋼板119を移動させることができる。 It should be noted that any one of the punching processes at the positions of arrows D and E can be selectively performed. Similarly, any one of the caulking processes by pressing at the positions indicated by the arrows F and G can be selectively performed. That is, the part of the steel plate 119 punched at the position of arrow D is moved to arrow H without being stamped at arrow E, at the position of arrow F, and without being crimped at the position of arrow G. Can be made. Further, the steel sheet 119 is punched at the position of the arrow D without being punched at the position of the arrow D, and then is crimped at the position of the arrow G without being crimped at the position of the arrow F, until the arrow H. The steel plate 119 can be moved.
 また、抜きかしめ138,139は、連結部104aと同様、鋼板119の所定部位に凹凸部を形成するものであり、第1及び第2環状磁性部材102A,102Bを積層するときに、上下に配置される第1及び第2環状磁性部材102A,102Bの分割コア部材103に形成された抜きかしめ138,139が嵌め合わされる。 In addition, the caulking 138 and 139 form an uneven portion at a predetermined portion of the steel plate 119, similarly to the connecting portion 104a, and are arranged vertically when the first and second annular magnetic members 102A and 102B are stacked. The caulking 138 and 139 formed on the split core member 103 of the first and second annular magnetic members 102A and 102B to be fitted are fitted together.
 そして、第1及び第2金型112A,114Aの動作に同期して、第2プレス機構111Bのサーボモータ126が駆動されクランクシャフト125を介して上型128Aが下降することによって、図17に矢印Hで示す位置において、第1及び第2環状磁性部材102A,102Bを構成する分割コア部材103の分割ティース鍔部105b,105cの所定の突出長さの輪郭を形成するための切り抜き141が行われる。 Then, in synchronization with the operation of the first and second molds 112A and 114A, the servo motor 126 of the second press mechanism 111B is driven and the upper mold 128A is lowered via the crankshaft 125, whereby the arrow in FIG. At a position indicated by H, a cutout 141 is formed for forming a contour of a predetermined protruding length of the divided teeth flange portions 105b and 105c of the divided core member 103 constituting the first and second annular magnetic members 102A and 102B. .
 このとき、鋼板119に所定の形状の打ち抜き41を施す回転移動金型128の形状について説明する。
 図18はこの発明の実施の形態5に係るステータのコア部材の製造装置において、分割コア部材の分割ティース鍔部を、所定の突出長さの輪郭に打ち抜くための回転移動金型の形状を説明する図である。
 なお、回転移動金型128による鋼板のプレス加工は、第2金型114Aによる鋼板119のプレス加工に先立って行われるが、図18では、説明の便宜上、第2金型によるプレス加工を行った後の第1環状磁性部材102Aの形状を図示している。
At this time, the shape of the rotationally moving mold 128 for punching the steel plate 119 with a predetermined shape 41 will be described.
FIG. 18 illustrates the shape of a rotationally movable mold for punching out the divided teeth flange portion of the divided core member into the contour of a predetermined protruding length in the stator core member manufacturing apparatus according to Embodiment 5 of the present invention. It is a figure to do.
In addition, although the press work of the steel plate by the rotational moving die 128 is performed prior to the press work of the steel plate 119 by the second die 114A, in FIG. 18, the press work by the second die is performed for convenience of explanation. The shape of the subsequent first annular magnetic member 102A is illustrated.
 回転移動金型128において、上型128Aが分割コア部材103の分割ティース鍔部105b,105cを、所定の突出長さで、先端側を所定の輪郭に打ち抜くように構成されている。上型128Aの鋼板119のプレス方向に直交する断面において、上型128Aは、図18に示されるように、それぞれが台形部129a、及び台形部129aの上底と同じ幅で上底から下底と逆側に延在する矩形部129bからなる複数の打ち抜き部129を備えている。複数の打ち抜き部129は、形成予定の各環状磁性部材102A,102Bを構成する分割コア部材103の数と同じ数だけ、スラスト軸受121の軸心(回転軸)まわりに周方向に所定の間隔で配列される。また、スラスト軸受121の軸心と打ち抜き部129との間の距離は、製造されるステータのコア部材101Aの軸心と分割ティース鍔部105b,105cとの間の距離に対応している。 In the rotary moving mold 128, the upper mold 128A is configured to punch out the divided teeth flanges 105b and 105c of the divided core member 103 with a predetermined protruding length and a tip end side with a predetermined outline. In the cross section orthogonal to the pressing direction of the steel plate 119 of the upper die 128A, the upper die 128A has a trapezoidal part 129a and a trapezoidal part 129a, each having the same width as the upper base of the trapezoidal part 129a, as shown in FIG. And a plurality of punched portions 129 each having a rectangular portion 129b extending on the opposite side. The plurality of punched portions 129 are the same number as the number of divided core members 103 constituting each of the annular magnetic members 102A and 102B to be formed at a predetermined interval in the circumferential direction around the axial center (rotating shaft) of the thrust bearing 121. Arranged. Further, the distance between the axial center of the thrust bearing 121 and the punched portion 129 corresponds to the distance between the axial center of the core member 101A of the stator to be manufactured and the divided tooth flange portions 105b and 105c.
 回転移動金型128は、リニアモータ124の駆動により回転移動台122が回転されるのに連動して回転移動するように構成されている。即ち、打ち抜き部129は、リニアモータ124の駆動に連動して、スラスト軸受121の軸心まわりに回転移動される。また、回転移動金型128は、鋼板119にスラスト軸受121の軸心を直交させて設置され、鋼板119の搬送経路は、複数の分割コア部材103の形成領域が、回転移動金型128により打ち抜かれる位置(矢印Hで示す位置)まで移動したとき、分割コア部材103の形成領域の中心が、鋼板119に直交するスラスト軸受121の軸心と交わるように設定されている。 The rotary moving mold 128 is configured to rotate in conjunction with the rotation of the rotary moving table 122 driven by the linear motor 124. That is, the punching portion 129 is rotated around the axial center of the thrust bearing 121 in conjunction with the driving of the linear motor 124. The rotational movement mold 128 is installed on the steel plate 119 so that the axial center of the thrust bearing 121 is orthogonal to each other, and the conveyance path of the steel plate 119 is formed by punching the formation area of the plurality of divided core members 103 by the rotational movement mold 128. The center of the region where the split core member 103 is formed intersects with the axial center of the thrust bearing 121 orthogonal to the steel plate 119 when moved to the position (indicated by the arrow H).
 また、複数の分割コア部材103の形成領域が、矢印Hで示す位置に移動されたとき、上型128Aによる打ち抜き方向から見て、各打ち抜き部129の台形部129aの下底側が、打ち抜き137側に位置し、矩形部129b側が、打ち抜き132の内側に位置するように配置される。このとき、矩形部129bの台形部129a側の一部が、打ち抜き137と打ち抜き132とを分離する鋼板119の部位に差し掛かかる位置に配置される。また、打ち抜き後に形成される隣接する分割ティース鍔部105b,105cの外周側の間隔Laが内周側の間隔Lbより大きくなるように台形部129a及び矩形部129bの形状が設定されている。 In addition, when the formation region of the plurality of divided core members 103 is moved to the position indicated by the arrow H, the lower bottom side of the trapezoidal portion 129a of each punched portion 129 is the punched 137 side when viewed from the punching direction by the upper die 128A. And the rectangular portion 129 b is disposed so as to be located inside the punching 132. At this time, a part of the rectangular portion 129 b on the trapezoidal portion 129 a side is arranged at a position that approaches a portion of the steel plate 119 that separates the punching 137 and the punching 132. Further, the shapes of the trapezoidal portion 129a and the rectangular portion 129b are set so that the interval La on the outer peripheral side of the adjacent divided teeth flange portions 105b and 105c formed after punching is larger than the interval Lb on the inner peripheral side.
 そして、回転移動金型128による鋼板119の打ち抜き加工により、隣接して成形される分割ティース鍔部105b,105cの形成領域の先端間が分離され、分割ティース鍔部105b,105cの先端側の形状が先端に向かって幅狭となる環状磁性部材102Aの一つが形成される。 Then, by punching the steel plate 119 with the rotary moving mold 128, the tips of the formation regions of the adjacent teeth ridges 105b and 105c formed adjacent to each other are separated, and the shapes of the distal sides of the divided teeth ridges 105b and 105c are formed. One of the annular magnetic members 102A whose width becomes narrower toward the tip is formed.
 回転移動台122を、各層の環状磁性部材102A,102Bの分割ティース鍔部105b,105cの突出長さの増減に応じて、リニアモータ124の駆動により鋼板119に直交して配置されるスラスト軸受121の軸心まわりに、順次所定量回転移動させることにより、各環状磁性部材102A,102Bのそれぞれを形成するごとに、分割コア部材103の分割ティース基部105aの先端から分割ティース基部105aの一側及び他側への分割ティース鍔部105b,105cの突出長さが同じ長さだけ増減される。これにより他の第1環状磁性部材102Aや第2環状磁性部材102Bが製造される。 A thrust bearing 121 in which the rotary moving table 122 is arranged orthogonally to the steel plate 119 by driving the linear motor 124 in accordance with the increase or decrease in the protruding length of the divided tooth flanges 105b and 105c of the annular magnetic members 102A and 102B of the respective layers. Each time the respective annular magnetic members 102A and 102B are formed, by rotating each of the annular magnetic members 102A and 102B, the one side of the divided teeth base 105a from the tip of the divided teeth base 105a and The protruding lengths of the divided teeth flanges 105b and 105c to the other side are increased or decreased by the same length. Thereby, the other first annular magnetic member 102A and the second annular magnetic member 102B are manufactured.
 そして、第1及び第2環状磁性部材102A,102Bは積層された抜きかしめ138,139により固着一体化され、図10及び図12に示すように、隣接する分割ティース鍔部105b,105c間の隙間で構成されるスロット開口107aが、第1及び第2環状磁性部材102A,102Bの積層方向に対してスキューされ、かつ、分割ティース鍔部105b,105cの先端が、分割ティース基部105aとの連結部側の部位より幅の狭いステータのコア部材101Aが完成する。 Then, the first and second annular magnetic members 102A and 102B are fixed and integrated by the stacked caulking 138 and 139, and as shown in FIGS. 10 and 12, the gap between the adjacent divided tooth flanges 105b and 105c is obtained. The slot opening 107a is skewed with respect to the stacking direction of the first and second annular magnetic members 102A and 102B, and the tips of the divided teeth flange portions 105b and 105c are connected to the divided tooth base portion 105a. The stator core member 101A, which is narrower than the side portion, is completed.
 この実施の形態5のステータのコア部材の製造装置110Aによれば、回転移動金型128が、分割ティース基部105aと分割ティース鍔部105b,105cの連結部から分割ティース鍔部105b,105cの先端に向かって幅が狭くなるように鋼板119を打ち抜き加工する形状を有する。 According to the stator core member manufacturing apparatus 110A of the fifth embodiment, the rotational movement mold 128 is connected to the distal ends of the divided teeth flange portions 105b and 105c from the connecting portion of the divided teeth base portion 105a and the divided teeth flange portions 105b and 105c. The steel plate 119 has a shape that is punched so that the width becomes narrower toward the front.
 より詳しくは、第1及び第2環状磁性部材102A,102Bを構成する複数の分割コア部材103の鋼板119内の形成位置が、周方向に所定のピッチで配列されるように設定されている。そして、回転移動金型128は、鋼板119に対する打ち抜き部129を、鋼板119に直交する軸心(回転軸心)まわりに回転移動させ、複数の分割コア部材103の形成領域の中心が、回転軸心と交わる位置で鋼板119を打ち抜き可能に設置されている。そして、回転移動金型128における鋼板119の打ち抜き部129は、分割ティース基部105aと分割ティース鍔部105b,105cの連結部から分割ティース鍔部105b,105cの先端に向かって幅が狭くなるように鋼板119を打ち抜き加工する形状を有する。 More specifically, the formation positions in the steel plate 119 of the plurality of divided core members 103 constituting the first and second annular magnetic members 102A and 102B are set to be arranged at a predetermined pitch in the circumferential direction. The rotational movement mold 128 rotates the punched portion 129 for the steel plate 119 around an axis (rotation axis) orthogonal to the steel plate 119, and the center of the formation region of the plurality of divided core members 103 is the rotation axis. The steel plate 119 is installed so as to be punched out at a position where it intersects the heart. And the punching part 129 of the steel plate 119 in the rotationally moving mold 128 is such that the width becomes narrower from the connecting part of the divided tooth base part 105a and the divided tooth flange parts 105b and 105c toward the tip of the divided tooth flange parts 105b and 105c. The steel plate 119 has a shape for punching.
 このようなステータのコア部材の製造装置110Aにより製造される複数の分割コア部材103は、製造されるたびに、分割ティース基部105aからの分割ティース鍔部105b,105cの突出長さを可変可能である。
 そして、スロット開口107aがスキューされるように、それぞれ分割コア部材103を環状に連結して構成される第1及び第2環状磁性部材102A,102Bを積層して構成されるステータのコア部材101Aにおいて、分割ティース基部105aと分割ティース鍔部105b,105cの連結部から分割ティース鍔部105b,105cの先端に向かって分割ティース鍔部105b,105cの幅が狭くなる。従って、ステータのコア部材の製造装置110Aを用いて作製したステータのコア部材101Aを有する回転電機では、コギングトルクとトルクリップルの低減、及びトルクの増加の両方を実現することができる。
Each of the plurality of divided core members 103 manufactured by the stator core member manufacturing apparatus 110A can change the protruding length of the divided teeth flanges 105b and 105c from the divided teeth base portion 105a. is there.
Then, in the core member 101A of the stator configured by laminating the first and second annular magnetic members 102A and 102B each configured by annularly connecting the divided core members 103 so that the slot opening 107a is skewed. The widths of the divided teeth flange portions 105b and 105c become narrower from the connecting portion between the divided teeth base portion 105a and the divided teeth flange portions 105b and 105c toward the tips of the divided teeth flange portions 105b and 105c. Therefore, in the rotating electric machine having the stator core member 101A manufactured using the stator core member manufacturing apparatus 110A, both reduction of cogging torque and torque ripple and increase of torque can be realized.
 実施の形態6.
 まず、この実施の形態6に係る発明のステータのコア部材の製造装置の説明に先立って、ステータのコア部材の製造装置において、分割ヨークおよび磁極ティースの各輪郭を形成するための第1金型の形状を説明する。
Embodiment 6 FIG.
First, prior to the description of the stator core member manufacturing apparatus according to the sixth embodiment, in the stator core member manufacturing apparatus, a first die for forming the contours of the split yoke and the magnetic teeth. The shape of will be described.
 図19はこの発明の実施の形態6に係るステータのコア部材の製造装置を用いて製造されるステータのコア部材の平面図、図20はこの発明の実施の形態6に係るステータのコア部材の製造装置の第1金型の形状を説明する平面図であり、鋼板の所定部位を打ち抜いている様子を示している。 FIG. 19 is a plan view of a stator core member manufactured using the stator core member manufacturing apparatus according to Embodiment 6 of the present invention, and FIG. 20 is a view of the stator core member according to Embodiment 6 of the present invention. It is a top view explaining the shape of the 1st metal mold | die of a manufacturing apparatus, and has shown a mode that the predetermined site | part of the steel plate is punched out.
 図19において、ステータのコア部材101Bの分割ティース105は、分割ティース基部105aと分割ティース鍔部105b,105cの連結部が、分割ティース鍔部105b,105cの中間部に比べて幅広になっている。
 他のステータのコア部材101Bの構成は、ステータのコア部材101Aと同様である。
In FIG. 19, in the divided teeth 105 of the stator core member 101 </ b> B, the connecting portion between the divided teeth base portion 105 a and the divided teeth flange portions 105 b and 105 c is wider than the intermediate portion between the divided teeth flange portions 105 b and 105 c. .
The other stator core member 101B has the same configuration as the stator core member 101A.
 この実施の形態6のステータのコア部材の製造装置は、ステータのコア部材の製造装置110Aと同様に構成されている。
 また、ステータのコア部材101Bは、ステータのコア部材101Aの製造と略同様に製造される。
The stator core member manufacturing apparatus according to the sixth embodiment is configured in the same manner as the stator core member manufacturing apparatus 110A.
The stator core member 101B is manufactured in substantially the same manner as the stator core member 101A.
 ただし、図17の矢印Cで示す位置において、分割ヨーク104および分割ティース105の各輪郭を形成するための打ち抜き134を施す工程で、第1金型112Aの鋼板119を打ち抜く上型113Aの部位の断面形状が、分割ティース基部105aと分割ティース鍔部105b,105cとの連結部が、分割ティース鍔部105b,105cの中間部から先端に至る部位に比べて幅広となるように設定されている。
 即ち、図20に示されるように、鋼板119を打ち抜く第1金型112Aの上型113Aの部位の断面形状が、分割ティース基部105aに連結される分割ティース鍔部105b,105cに近い側を打ち抜く部位ほど、漸次幅狭となるように形成されている。
However, at the position indicated by the arrow C in FIG. 17, in the step of punching 134 for forming the contours of the divided yoke 104 and the divided teeth 105, the portion of the upper mold 113A that punches the steel plate 119 of the first mold 112A. The cross-sectional shape is set so that the connecting portion between the divided tooth base portion 105a and the divided tooth flange portions 105b and 105c is wider than the portion from the intermediate portion of the divided tooth flange portions 105b and 105c to the tip.
That is, as shown in FIG. 20, the cross-sectional shape of the portion of the upper mold 113A of the first mold 112A for punching the steel plate 119 is punched on the side close to the split tooth flanges 105b and 105c connected to the split tooth base 105a. The part is formed so as to become gradually narrower.
 この実施の形態6のステータのコア部材の製造装置によれば、分割ヨーク104および分割ティース105の各輪郭を形成するための打ち抜き133,134施す工程において、鋼板119を打ち抜く第1金型112Aの上型113Aの部位の断面形状は、鋼板119を打ち抜き加工した後に得られる分割ティース基部105aと分割ティース鍔部105b,105cの連結部が、分割ティース鍔部105b,105cの中間部から先端に至る部位に比べて幅広となるように形成されている。
 これにより、分割ティース基部105aの先端側から分割ティース鍔部105b,105cの先端に向かう分割ティース105の部位の幅が狭くなる。
According to the stator core member manufacturing apparatus of the sixth embodiment, the first mold 112A for punching the steel plate 119 in the step of punching 133, 134 for forming the contours of the split yoke 104 and the split tooth 105 is provided. The cross-sectional shape of the portion of the upper mold 113A is such that the connecting portion of the divided teeth base portion 105a and the divided teeth flange portions 105b and 105c obtained after punching the steel plate 119 reaches the tip from the intermediate portion of the divided teeth flange portions 105b and 105c. It is formed to be wider than the part.
Thereby, the width | variety of the site | part of the division | segmentation tooth | gear 105 which goes to the front-end | tip of the division | segmentation teeth collar part 105b, 105c from the front end side of the division | segmentation teeth base part 105a becomes narrow.
 つまり、実施の形態5と同様、分割ティース基部105aと分割ティース鍔部105b,105cの連結部から分割ティース鍔部105b,105cの先端に至る分割ティース105の部位が、分割ティース鍔部105b,105cの先端に向かって幅狭となるように、第1金型112Aを用いても実現できる。
 従って、この実施の形態6のコア部材の製造装置を用いて作製したステータのコア部材101Bを有する回転電機では、コギングトルクとトルクリップルの低減、及びトルクの増加の両方を実現することができる。
That is, as in the fifth embodiment, the portion of the divided tooth 105 from the connecting portion of the divided tooth base portion 105a and the divided teeth flange portions 105b and 105c to the tip of the divided teeth flange portions 105b and 105c is divided into the divided teeth flange portions 105b and 105c. It can also be realized by using the first mold 112A so that the width becomes narrower toward the tip of the first mold 112A.
Therefore, in the rotating electric machine having the stator core member 101B manufactured by using the core member manufacturing apparatus of the sixth embodiment, both reduction of cogging torque and torque ripple and increase of torque can be realized.
 なお、この実施の形態6では、回転移動金型128により分割ティース鍔部105b,105cの先端側も先端に向かって幅狭とするように形成するものとして説明したが、分割ティース鍔部105b,105cの先端側の幅は、同一幅であってもよい。 In the sixth embodiment, it has been described that the rotary teeth 128 are formed so that the distal end sides of the divided teeth flange portions 105b and 105c are also narrowed toward the distal end, but the divided teeth flange portions 105b, The width of the front end side of 105c may be the same width.
 実施の形態7.
 まず、この実施の形態7に係る発明のステータのコア部材の製造装置の説明に先立って、ステータのコア部材の製造装置を用いて製造されるステータのコア部材の構成について説明する。
Embodiment 7 FIG.
First, prior to the description of the stator core member manufacturing apparatus according to the seventh embodiment, the configuration of the stator core member manufactured using the stator core member manufacturing apparatus will be described.
 図21はこの発明の実施の形態7に係る発明のステータのコア部材の製造装置を用いて製造されるステータのコア部材の斜視図である。 FIG. 21 is a perspective view of a stator core member manufactured using the stator core member manufacturing apparatus according to the seventh embodiment of the present invention.
 図21において、ステータのコア部材の製造装置を用いて製造されるステータのコア部材101Cは、特許3933890号明細書に記載のものと同様の構成であり、連結部が省略され、隣接する分割コア部材103の分割ヨーク104の端部間が互いに屈折可能に連結して一体に形成した第1及び第2環状磁性部材のそれぞれを用いて作製されている他はステータのコア部材101Aと同様に構成されている。 In FIG. 21, a stator core member 101 </ b> C manufactured using a stator core member manufacturing apparatus has the same configuration as that described in Japanese Patent No. 3933890, the connecting portion is omitted, and adjacent divided cores are included. The structure is the same as that of the core member 101A of the stator except that the end portions of the divided yoke 104 of the member 103 are integrally formed by connecting the end portions of the divided yoke 104 so that they can be refracted. Has been.
 図22はこの発明の実施の形態7に係るステータのコア部材の製造装置の側面図、図23はこの発明の実施の形態7に係るステータのコア部材の製造装置の平面図、図24はこの発明の実施の形態7に係るステータのコア部材の製造装置の第2プレス機構の要部側断面図である。 FIG. 22 is a side view of a stator core member manufacturing apparatus according to Embodiment 7 of the present invention, FIG. 23 is a plan view of a stator core member manufacturing apparatus according to Embodiment 7 of the present invention, and FIG. It is principal part sectional drawing of the 2nd press mechanism of the manufacturing apparatus of the core member of the stator which concerns on Embodiment 7 of invention.
 図22及び図23において、ステータのコア部材の製造装置110Bは、第3プレス機構111C、及び移動金型機構としての第4プレス機構111Dを有する。 22 and 23, the stator core member manufacturing apparatus 110B includes a third press mechanism 111C and a fourth press mechanism 111D as a moving mold mechanism.
 第3プレス機構111Cは、上台板117及び下台板118と、鋼板119を上台板117及び下台板118の間で、所定方向に搬送させる搬送機構(図示せず)と、鋼板119の搬送方向の上流側に配置され、上台板117及び下台板118に設置される上型113C及び下型113Dからなる第3金型112Bと、鋼板119の搬送方向の下流側に第3金型112Bと所定の間隔をあけて配置され、上台板117及び下台板118に設置される上型115C及び下型115Dからなる第4金型114Bとを備えている。 The third press mechanism 111C includes an upper base plate 117 and a lower base plate 118, a transport mechanism (not shown) for transporting the steel plate 119 in a predetermined direction between the upper base plate 117 and the lower base plate 118, and a transport direction of the steel plate 119. A third mold 112B, which is arranged on the upstream side and is installed on the upper base plate 117 and the lower base plate 118 and made up of an upper mold 113C and a lower mold 113D, and a third mold 112B on the downstream side in the conveying direction of the steel plate 119 and a predetermined mold A fourth mold 114 </ b> B composed of an upper mold 115 </ b> C and a lower mold 115 </ b> D, which is disposed on the upper base plate 117 and the lower base plate 118, is disposed at intervals.
 第4プレス機構111Dは、図24に示されるように、鋼板119の搬送方向を横切るように下台板118上に移動可能に配設される移動台140と、移動台140と下台板118の間に配置され、下台板118側及び移動台140側に対向して固定される固定子141a及び可動子141bを有するリニアモータ142と、移動台140上に配置され下型144B、及びクランクシャフト125を介してサーボモータ126により駆動される上型144Aでなる移動金型としての直線移動金型143と、を備えている。 As shown in FIG. 24, the fourth press mechanism 111D includes a moving table 140 that is movably disposed on the lower base plate 118 so as to cross the conveying direction of the steel plate 119, and between the moving table 140 and the lower base plate 118. A linear motor 142 having a stator 141a and a movable element 141b fixed to be opposed to the lower base plate 118 side and the movable base 140 side, and a lower mold 144B and a crankshaft 125 arranged on the movable base 140. And a linear moving mold 143 as a moving mold composed of an upper mold 144A driven by a servo motor 126.
 次いで、上記のように構成されたステータのコア部材の製造装置110Bの動作について説明する。
 図25はこの発明の実施の形態7に係るステータのコア部材の製造装置の動作、及び環状磁性部材を構成する分割コア部材を形成する工程を説明する平面図である。
Next, the operation of the stator core member manufacturing apparatus 110B configured as described above will be described.
FIG. 25 is a plan view for explaining the operation of the stator core member manufacturing apparatus according to Embodiment 7 of the present invention and the process of forming the split core member constituting the annular magnetic member.
 この実施の形態7では、ステータのコア部材の製造装置110Bは、各第1及び第2環状磁性部材102A,102Bのそれぞれを構成するための複数の分割コア部材103の形成領域が、幅方向に所定の間隔で配列されるように設定された鋼板119に対して、打ち抜き加工を施して複数の分割コア部材103を得るものとして構成される。なお、鋼板119は長手方向に平行な方向に搬送される。また、図25では、説明の便宜上、第1及び第2環状磁性部材102A,102Bのそれぞれを構成するための分割コア部材103の数を6個として図示しているが、実際には、図10と同様、12個である。 In the seventh embodiment, in the stator core member manufacturing apparatus 110B, the formation regions of the plurality of divided core members 103 for configuring the first and second annular magnetic members 102A and 102B are arranged in the width direction. A plurality of divided core members 103 are obtained by punching the steel plates 119 set to be arranged at predetermined intervals. The steel plate 119 is conveyed in a direction parallel to the longitudinal direction. In FIG. 25, for convenience of explanation, the number of the divided core members 103 for constituting each of the first and second annular magnetic members 102A and 102B is shown as six. As in the case of twelve.
 また、鋼板119内の複数の分割コア部材103の形成領域において、隣接する分割コア部材103は、分割ヨーク104の一端または他端が、互いに連結される連結部となり、後述するようにステータのコア部材の製造装置110Bにより、鋼板119を打ち抜いて分割コア部材103を得たときに、隣接する分割コア部材103が屈曲可能に連なるようになっている。 Further, in the formation region of the plurality of divided core members 103 in the steel plate 119, the adjacent divided core members 103 serve as connecting portions where one ends or the other ends of the divided yokes 104 are connected to each other. When the divided core member 103 is obtained by punching the steel plate 119 with the member manufacturing apparatus 110B, the adjacent divided core members 103 are connected to bendable.
 まず、図示しない駆動源により上台板117が下降すると、第3金型112Bにより図25に矢印Aで示す位置において鋼板119上にパイロット穴152が、また、矢印Bで示す位置において抜きかしめ155が、また、矢印Cで示す位置において隣接する分割コア部材103の連結部の輪郭を形成するためのV字状抜き穴156がそれぞれ形成され、第4金型114Bにより矢印Eで示す位置において、鋼板119の幅方向に連なる分割コア部材103の各輪郭を形成するための打ち抜き158が行われる。 First, when the upper base plate 117 is lowered by a drive source (not shown), the pilot hole 152 is formed on the steel plate 119 at the position indicated by the arrow A in FIG. 25 by the third mold 112B, and the caulking 155 is provided at the position indicated by the arrow B. Further, V-shaped holes 156 for forming the outlines of the connecting portions of the adjacent divided core members 103 at the positions indicated by the arrows C are respectively formed, and the steel plates are formed at the positions indicated by the arrows E by the fourth mold 114B. Punching 158 for forming each contour of the split core member 103 continuous in the width direction of 119 is performed.
 以上のように、第3及び第4金型112B,114Bにより、第1及び第2環状磁性部材102A,102Bを構成する分割コア部材103の分割ティース鍔部105b,105cの所定の突出長さの輪郭以外の輪郭を形成するための打ち抜き加工がおこなわれる。 As described above, with the third and fourth molds 112B and 114B, the predetermined protruding lengths of the divided teeth flange portions 105b and 105c of the divided core member 103 constituting the first and second annular magnetic members 102A and 102B are obtained. A punching process for forming a contour other than the contour is performed.
 また、第3及び第4金型112B,114Bの動作に同期して、第4プレス機構111Dのサーボモータ126が駆動されクランクシャフト125を介して上型144Aが下降することによって、図25に矢印Dで示す位置において、分割コア部材103の分割ティース105の分割ティース鍔部105b,105cの所定の突出長さの輪郭を形成するための抜き穴159が形成される。 Further, in synchronization with the operation of the third and fourth molds 112B and 114B, the servo motor 126 of the fourth press mechanism 111D is driven and the upper mold 144A is lowered via the crankshaft 125, whereby the arrow in FIG. In the position indicated by D, a through hole 159 is formed for forming a contour of a predetermined protruding length of the divided teeth flange portions 105b and 105c of the divided tooth 105 of the divided core member 103.
 鋼板119に所定の形状の抜き穴159を形成するための直線移動金型143の形状について説明する。
 図26はこの発明の実施の形態7に係るステータのコア部材の製造装置の直線移動金型の形状を説明する平面図である。
 なお、直線移動金型143による鋼板119のプレス加工は、第4金型114Bによる鋼板のプレス加工に先立って行われるが、図26では、説明の便宜上、第4金型114Bによる打ち抜き加工を行った後の鋼板119の形状を図示している。
The shape of the linearly moving mold 143 for forming the punched hole 159 having a predetermined shape in the steel plate 119 will be described.
FIG. 26 is a plan view for explaining the shape of the linearly movable mold of the stator core member manufacturing apparatus according to Embodiment 7 of the present invention.
Note that the steel plate 119 is pressed by the linearly moving die 143 prior to the pressing of the steel plate by the fourth die 114B, but in FIG. 26, the punching by the fourth die 114B is performed for convenience of explanation. The shape of the steel plate 119 is shown.
 図26において、分割コア部材103の分割ティース鍔部105b,105cを、所定の突出長さの輪郭に切り抜くための上型144Aは、それぞれ、第1及び第2台形部145a,145bの上底側を互いに連結した形状の複数の打ち抜き部145を有する。複数の打ち抜き部145は、所定の直線方向に配列されている。 In FIG. 26, the upper molds 144A for cutting out the divided teeth flange portions 105b and 105c of the divided core member 103 into the contours of a predetermined protruding length are the upper bottom sides of the first and second trapezoidal portions 145a and 145b, respectively. Have a plurality of punched portions 145 that are connected to each other. The plurality of punched portions 145 are arranged in a predetermined linear direction.
 上記のように構成される直線移動金型143は、鋼板119が直線移動金型143により打ち抜かれる位置(矢印Xで示す位置)に搬送されたとき、打ち抜き部145の配列方向を、各環状磁性部材102A,102Bを構成するための複数の分割コア部材103の形成領域の配列方向に一致させて設置される。また、リニアモータ142の駆動に連動して直線移動金型143が複数の分割コア部材103の形成領域の配列方向に移動されるように構成されている。即ち、打ち抜き部145は、リニアモータ142の駆動に連動して複数の分割コア部材103の形成領域の配列方向に移動される。 When the steel plate 119 is conveyed to a position (indicated by an arrow X) where the steel plate 119 is punched by the linear moving mold 143, the linearly moving mold 143 configured as described above is arranged so that the arrangement direction of the punched portions 145 changes to each annular magnetism. The plurality of divided core members 103 for constituting the members 102A and 102B are installed so as to coincide with the arrangement direction of the formation regions. Further, the linear moving mold 143 is configured to be moved in the arrangement direction of the formation regions of the plurality of divided core members 103 in conjunction with the driving of the linear motor 142. That is, the punching portion 145 is moved in the arrangement direction of the formation regions of the plurality of divided core members 103 in conjunction with the driving of the linear motor 142.
 そして、各打ち抜き部145の第1及び第2台形部145a,145bの連結部が、隣接する分割ティース鍔部105b,105cの間を含む鋼板119の部位を打ち抜き可能なように上型144Aが配置されている。このとき、一方の台形部145aの下底側が分割ティース鍔部105b,105c形成領域より分割ティース鍔部105b,105cの外周側に配置され、他方の台形部145bの下底側が、分割ティース鍔部105b,105cの形成領域より内周側に配置される。 The upper die 144A is arranged so that the connecting portion of the first and second trapezoidal portions 145a and 145b of each punched portion 145 can punch the portion of the steel plate 119 including the space between the adjacent divided tooth flange portions 105b and 105c. Has been. At this time, the lower bottom side of one trapezoidal portion 145a is disposed on the outer peripheral side of the divided teeth flange portions 105b and 105c from the region where the divided teeth flange portions 105b and 105c are formed, and the lower bottom side of the other trapezoidal portion 145b is the divided teeth flange portion 145b. It arrange | positions from the formation area of 105b, 105c to the inner peripheral side.
 そして、分割ティース鍔部105b,105cの外周側の間隔Lcは、内周側の間隔Ldより大きくなるように第1及び第2台形部145a,145bの形状が設定されている。このように、直線移動金型143により鋼板119を打ち抜いて形成される分割コア部材103においては、分割ティース鍔部105b,105cの先端側は、先端に向かって漸次幅狭となる形状を有する。 The shapes of the first and second trapezoidal portions 145a and 145b are set so that the outer peripheral side interval Lc of the divided teeth flanges 105b and 105c is larger than the inner peripheral side interval Ld. As described above, in the divided core member 103 formed by punching the steel plate 119 with the linear moving mold 143, the distal ends of the divided teeth flange portions 105b and 105c have a shape that gradually becomes narrower toward the distal end.
 そして、直線移動金型143による鋼板119のプレスにより、図25の矢印Fの位置に示されるように、分割ティース鍔部105b,105cの先端形状が、先端に向かって幅狭の形状となる分割ティース鍔部105b,105cを有する分割コア部材103が形成される。 Then, by pressing the steel plate 119 with the linearly moving mold 143, as shown at the position of the arrow F in FIG. 25, the tip shapes of the split teeth flange portions 105b and 105c become a narrow shape toward the tip. A split core member 103 having teeth ridges 105b and 105c is formed.
 そして、移動台140は、各層に配置される第1及び第2環状磁性部材102A,102Bの分割コア部材103を形成するときに、各層の第1及び第2環状磁性部材102A,102Bの分割コア部材103の分割ティース鍔部105b,105cの突出長さの増減に応じて、順次、分割コア部材103の形成領域の配列方向に移動することにより、分割コア部材103の分割ティース基部105aの先端側から分割ティース基部105aの一側及び他側への分割ティース鍔部105b,105cの突出長さが同じ長さだけ増減される。 When the movable base 140 forms the divided core members 103 of the first and second annular magnetic members 102A and 102B arranged in the respective layers, the divided core of the first and second annular magnetic members 102A and 102B of the respective layers is formed. The distal end side of the divided teeth base portion 105a of the divided core member 103 is moved in the arrangement direction of the formation region of the divided core member 103 in accordance with the increase and decrease of the protruding length of the divided teeth flange portions 105b and 105c of the member 103. The protruding lengths of the split tooth flanges 105b and 105c from one side to the other side of the split tooth base 105a are increased or decreased by the same length.
 連結された状態で得られる複数の分割コア部材103は、連結部を屈曲させて環状にすることで、第1の環状磁性部材102Aまたは第2の環状磁性部材102Bとなる。
 第1及び第2の環状磁性部材102A,102Bは、積層されて抜きかしめ33により固着一体化されて、図12に示すように、隣接する分割ティース鍔部105b,105c間の隙間で構成されるスロット開口107aが第1及び第2環状磁性部材102A,102Bの積層方向に対してスキューされ、かつ、分割ティース鍔部105b,105cの先端が、分割ティース基部105aとの連結部側の部位より幅の狭いステータのコア部材101Cが完成する。
The plurality of divided core members 103 obtained in the connected state are formed into the first annular magnetic member 102B or the second annular magnetic member 102B by bending the connecting portion into an annular shape.
The first and second annular magnetic members 102A and 102B are laminated and fixedly integrated by the crimping caulking 33, and as shown in FIG. 12, the gaps are formed between the adjacent divided tooth flange portions 105b and 105c. The slot opening 107a is skewed with respect to the stacking direction of the first and second annular magnetic members 102A and 102B, and the tip ends of the divided teeth flange portions 105b and 105c are wider than the portion on the connection portion side with the divided tooth base portion 105a. A narrow core member 101C of the stator is completed.
 この実施の形態7のステータのコア部材の製造装置110Bによれば、直線移動金型143が、分割ティース基部105aと分割ティース鍔部105b,105cの連結部から分割ティース鍔部105b,105cの先端に向かって幅が狭くなるように鋼板119を打ち抜き加工する形状を有する。
 より詳しくは、各第1及び第2環状磁性部材102A,102Bを構成する複数の分割コア部材103を形成するための鋼板119内の領域が、所定の直線方向に所定の間隔で配置され、直線移動金型143は、鋼板119に対する打ち抜き部145を、所定の直線方向に移動させて鋼板119を打ち抜き可能に設置されている。
According to the stator core member manufacturing apparatus 110B of the seventh embodiment, the linearly moving mold 143 is connected to the distal ends of the divided teeth flange portions 105b and 105c from the connecting portion of the divided tooth base portion 105a and the divided teeth flange portions 105b and 105c. The steel plate 119 has a shape that is punched so that the width becomes narrower toward the front.
More specifically, regions in the steel plate 119 for forming the plurality of divided core members 103 constituting the first and second annular magnetic members 102A and 102B are arranged at predetermined intervals in a predetermined linear direction, The moving mold 143 is installed so that the steel plate 119 can be punched by moving the punching portion 145 for the steel plate 119 in a predetermined linear direction.
 従って、ステータのコア部材の製造装置110Bにより製造される複数の分割コア部材103は、製造されるたびに、分割ティース基部105aからの分割ティース鍔部105b,105cの突出長さを可変可能となる。そして、スロット開口107aがスキューされるように、それぞれ分割コア部材103を環状に連結して構成される第1及び第2環状磁性部材102A,102Bを積層して構成されるステータのコア部材101Aでは、分割ティース基部105aと分割ティース鍔部105b,105cの連結部から分割ティース鍔部105b,105cの先端に向かって幅が狭くなる。従って、コア部材の製造装置110Bを用いて作製したステータのコア部材101Cを有する回転電機は、コギングトルクとトルクリップルの低減、及びトルクの増加の両方を実現することができる。 Accordingly, each of the plurality of divided core members 103 manufactured by the stator core member manufacturing apparatus 110B can change the protruding lengths of the divided teeth flange portions 105b and 105c from the divided teeth base portion 105a. . In the stator core member 101A, which is formed by laminating the first and second annular magnetic members 102A and 102B each formed by annularly connecting the divided core members 103 so that the slot opening 107a is skewed. The width becomes narrower from the connecting portion between the divided tooth base portion 105a and the divided tooth flange portions 105b and 105c toward the tips of the divided tooth flange portions 105b and 105c. Therefore, the rotating electrical machine having the stator core member 101C manufactured using the core member manufacturing apparatus 110B can realize both reduction of cogging torque and torque ripple, and increase of torque.
 実施の形態8.
 この実施の形態8に係る発明のステータのコア部材の製造装置を用いて製造されるステータのコア部材は、実施の形態5と同様である。
Embodiment 8 FIG.
The stator core member manufactured using the stator core member manufacturing apparatus according to the eighth embodiment is the same as that of the fifth embodiment.
 次いで、ステータのコア部材の製造装置の第1金型の構成について説明する。
 図27はこの発明の実施の形態8にかかる発明のステータのコア部材の製造装置の第1金型及び回転移動金型の形状を説明する平面図であり、第1金型及び回転移動金型が鋼板の所定部位を打ち抜いている様子を示している。
Next, the configuration of the first mold of the stator core member manufacturing apparatus will be described.
FIG. 27 is a plan view for explaining the shapes of the first die and the rotationally movable die of the stator core member manufacturing apparatus according to the eighth embodiment of the present invention. Shows a state of punching a predetermined portion of the steel plate.
 図27に示されるように、各第1及び第2環状磁性部材102A,102Bのそれぞれを構成するための複数の分割コア部材103の形成領域において、隣接する分割コア部材103の分割ヨーク104の端部間が分離されている。
 そして、前述の図25の矢印Cでの鋼板119を打ち抜く第3金型112Bの上型113Cの形状が、図27に示されるように、鋼板119の隣接する分割コア部材103の形成予定領域における分割ヨーク104の端部間を分離するように設定されている。
As shown in FIG. 27, the end of the divided yoke 104 of the adjacent divided core member 103 in the formation area of the plurality of divided core members 103 for constituting each of the first and second annular magnetic members 102A and 102B. The parts are separated.
Then, the shape of the upper mold 113C of the third mold 112B for punching the steel plate 119 at the arrow C in FIG. 25 is as shown in FIG. 27 in the formation scheduled region of the adjacent split core member 103 of the steel plate 119. The end portions of the divided yoke 104 are set to be separated.
 また、詳細には図示しないが、鋼板119が所定の位置に配置された場所で、連結部104aを形成するためのかしめ工程も、第3金型112Bによるプレスにより実施される。 Although not shown in detail, a caulking process for forming the connecting portion 104a at a place where the steel plate 119 is disposed at a predetermined position is also performed by pressing with the third mold 112B.
 その後、直線移動金型143により、分割ティース鍔部105b,105cの所定の突出長さの輪郭を形成するための打ち抜きが行われて、第1及び第2環状磁性部材102A,102Bを構成する分割コア部材103が得られる。
 以下、実施の形態5と同様に分割コア部材103を環状に配置して第1及び第2環状磁性部材102A,102Bとし、実施の形態5と同様に第1及び第2環状磁性部材102A,102Bを積層することで、ステータのコア部材101Aを得ることができる。
Thereafter, punching is performed by the linearly moving mold 143 to form the contours of the predetermined protruding lengths of the divided tooth flanges 105b and 105c, and the first and second annular magnetic members 102A and 102B are divided. The core member 103 is obtained.
Hereinafter, similarly to the fifth embodiment, the split core member 103 is annularly arranged to be the first and second annular magnetic members 102A and 102B, and the first and second annular magnetic members 102A and 102B are similar to the fifth embodiment. By stacking, the core member 101A of the stator can be obtained.
 この実施の形態8のステータのコア部材の製造装置によれば、実施の形態7と同様、分割コア部材103を、分割ティース基部105aと分割ティース鍔部105b,105cの連結部から分割ティース鍔部105b,105cの先端に向かって幅狭に作製されるので、ステータのコア部材の製造装置110Bを用いて作製したステータのコア部材101Aを有する回転電機は、コギングトルクとトルクリップルの低減、及びトルクの増加の両方を実現することができる。 According to the stator core member manufacturing apparatus of the eighth embodiment, as in the seventh embodiment, the divided core member 103 is separated from the connecting portion of the divided teeth base portion 105a and the divided teeth flange portions 105b and 105c. The rotating electric machine having the stator core member 101A manufactured using the stator core member manufacturing apparatus 110B can reduce cogging torque, torque ripple, and torque. Both increases can be realized.
 実施の形態9.
 まず、この実施の形態9に係る発明のステータのコア部材の製造装置の説明に先立って、ステータのコア部材の製造装置を用いて製造されるステータのコア部材の構成について説明する。
 図28はこの発明の実施の形態9に係る発明のステータのコア部材の製造装置により製造されるステータのコア部材の平面図である。
Embodiment 9 FIG.
First, prior to the description of the stator core member manufacturing apparatus according to the ninth embodiment, the configuration of the stator core member manufactured using the stator core member manufacturing apparatus will be described.
FIG. 28 is a plan view of a stator core member manufactured by the stator core member manufacturing apparatus according to Embodiment 9 of the present invention.
 図28において、ステータのコア部材101Dは、ステータのコア部材101Aと略同様の構成であるが、例えば、積層方向の端部に配置される第1環状磁性部材を構成する分割コア部材103において、分割ティース基部105aの先端側の幅方向の一側または他側の部位が削除され、分割ティース基部105aが削られた側では、分割ティース鍔部105b,105cの突出が省略されている。 In FIG. 28, the core member 101D of the stator has substantially the same configuration as the core member 101A of the stator. For example, in the split core member 103 constituting the first annular magnetic member arranged at the end in the stacking direction, A portion of one side or the other side in the width direction on the distal end side of the divided tooth base portion 105a is deleted, and the protrusions of the divided tooth flange portions 105b and 105c are omitted on the side where the divided tooth base portion 105a is cut.
 そして、ステータのコア部材101Dにおいて、スロット開口107aの延在方向の一端は、積層方向の一端側を構成する第1環状磁性部材102Aの隣接する分割ティース基部105aのうち、一方の分割ティース基部105aの一部に入りこむように開口し、スロット開口107aの他端は、積層方向の一端側を構成する第1または第2環状磁性部材102A,102Bの隣接する分割ティース基部105aのうち、他方の分割ティース基部105aに入り込むように開口している。 In the core member 101D of the stator, one end of the slot opening 107a in the extending direction is one divided tooth base portion 105a among the adjacent divided tooth base portions 105a of the first annular magnetic member 102A constituting one end side in the stacking direction. The other end of the divided tooth base portion 105a adjacent to the first or second annular magnetic member 102A, 102B constituting one end side in the stacking direction is opened at the other end of the slot opening 107a. An opening is made so as to enter the teeth base 105a.
 次いで、ステータのコア部材の製造装置について説明する。
 図29はこの発明の実施の形態9に係るステータのコア部材の製造装置の回転移動金型の形状を説明する図である。
Next, an apparatus for manufacturing the core member of the stator will be described.
FIG. 29 is a view for explaining the shape of the rotationally moving mold of the stator core member manufacturing apparatus according to Embodiment 9 of the present invention.
 この実施のステータのコア部材の製造装置は、ステータのコア部材の製造装置110Bと同様に構成されている。
 ただし、鋼板119に設定された複数の分割コア部材103の形成領域のうち、分割ティース鍔部105b,105cの所定の突出長さの輪郭を形成するための打ち抜き加工を行う回転移動金型128を構成する上型128Aの打ち抜き部129が、図29に示されるように、分割ティース基部105aの基端部での周方向の位置に対応する周方向の位置まで移動して鋼板119を打ち抜くことが可能に構成されている。
The stator core member manufacturing apparatus of this embodiment is configured in the same manner as the stator core member manufacturing apparatus 110B.
However, among the formation regions of the plurality of divided core members 103 set on the steel plate 119, the rotary moving mold 128 that performs punching processing to form the contour of the predetermined protruding length of the divided teeth flange portions 105b and 105c is provided. As shown in FIG. 29, the punched portion 129 of the upper mold 128A that is configured can move to a circumferential position corresponding to the circumferential position at the proximal end of the divided tooth base 105a to punch the steel plate 119. It is configured to be possible.
 この実施の形態9のステータのコア部材の製造装置によれば、例えばスロット開口107aの一端を隣接する分割ティース基部105aのうちの一方に入り込むようにし、スロット開口107aの他端を隣接する分割ティース基部105aのうちの他方に入り込むようにしてステータのコア部材101Dを作製できる。
 これにより、スロット開口107aは、第1及び第2環状磁性部材102A,102Bの積層方向に対し、大きくスキューすることが可能となり、コギングトルクとトルクリップルの低減効果、及びトルクの増加効果をより大きく得ることができる。
According to the stator core member manufacturing apparatus of the ninth embodiment, for example, one end of the slot opening 107a is inserted into one of the adjacent divided tooth bases 105a, and the other end of the slot opening 107a is connected to the adjacent divided tooth. The stator core member 101D can be manufactured so as to enter the other of the base portions 105a.
Accordingly, the slot opening 107a can be greatly skewed with respect to the stacking direction of the first and second annular magnetic members 102A and 102B, and the cogging torque and torque ripple reducing effect and the torque increasing effect can be further increased. Obtainable.
 なお、上記各実施の形態5~9では、分割ティース鍔部105b,105cの所定の突出長さの輪郭を形成するための打ち抜き加工を行う上型128A,144Aの打ち抜き部129,145の形状は、台形部129aと矩形部129bまたは第1及び第2台形部145a,145bを組み合わせた形状であるものとして説明したが、打ち抜き部129,145の形状はこのものに限定されない。打ち抜き部129,145の形状は、ティース鍔部5bの基端部側より先端側が幅狭となるように鋼板119を打ち抜き加工する形状を有していればよい。 In each of the above fifth to ninth embodiments, the shapes of the punched portions 129 and 145 of the upper molds 128A and 144A for performing the punching process for forming the contours of the predetermined protruding lengths of the divided teeth flange portions 105b and 105c are as follows. The trapezoidal portion 129a and the rectangular portion 129b or the first and second trapezoidal portions 145a and 145b have been described as being combined, but the shape of the punched portions 129 and 145 is not limited to this. The shape of the punched portions 129 and 145 only needs to have a shape in which the steel plate 119 is punched so that the distal end side is narrower than the proximal end portion side of the teeth flange portion 5b.
 また、上記各実施の形態5~9では、回転移動金型128または直線移動金型143を移動させる駆動源として、リニアモータ124またはリニアモータ142を用いるものとして説明したが、回転移動金型128または直線移動金型143を移動させる駆動源として、他の駆動源を用いてもよい。 In each of the fifth to ninth embodiments, the linear motor 124 or the linear motor 142 is used as a drive source for moving the rotational movement mold 128 or the linear movement mold 143. However, the rotational movement mold 128 is used. Alternatively, another drive source may be used as a drive source for moving the linear moving mold 143.
 1A~1C 電動機(回転電機)、2 ロータ、5 ステータ、6A~6C ステータコア、7 ヨーク、8 ティース、8a ティース基部、8b~8e ティース鍔部、10 スロット、101A~101D ステータのコア部材(ステータコア)、102A,102B 環状磁性部材、103 分割コア部材、104 分割ヨーク、105 分割ティース、105a 分割ティース基部、105b,105c 分割ティース鍔部、10A,10B ステータのコア部材の製造装置、112A,112B 金型、114A,114B 金型、119 鋼板、128 回転移動金型(移動金型)、129 打ち抜き部、143 直線移動金型(移動金型)、145 打ち抜き部。 1A to 1C motor (rotary electric machine), 2, rotor, 5 stator, 6A to 6C stator core, 7 yoke, 8 teeth, 8a teeth base, 8b to 8e teeth collar, 10 slots, 101A to 101D stator core members (stator core) , 102A, 102B, annular magnetic member, 103 divided core member, 104 divided yoke, 105 divided tooth, 105a divided tooth base, 105b, 105c divided tooth collar, 10A, 10B stator core member manufacturing apparatus, 112A, 112B mold 114A, 114B mold, 119 steel plate, 128 rotary moving mold (moving mold), 129 punching part, 143 linear moving mold (moving mold), 145 punching part.

Claims (10)

  1.  ロータと、上記ロータを囲繞するように上記ロータに同軸に配設されるステータコアを有するステータとを備え、
     上記ステータコアは、上記ロータに同軸に配設されるヨークと、それぞれ、上記ヨークの軸方向の両端間に突設されるティース基部、及び上記ティース基部の先端から両側に突出されるティース鍔部により構成され、上記ヨークの周方向に互いに間隔をあけて配列される複数のティースとを備え、隣接する上記ティース間に形成されるスロットの開口が上記ヨークの軸方向に対してスキューされた回転電機であって、
     上記ティース鍔部は、上記ティース基部との連結部から先端に向かって幅が狭くなっていることを特徴とする回転電機。
    A rotor and a stator having a stator core disposed coaxially with the rotor so as to surround the rotor;
    The stator core includes a yoke disposed coaxially with the rotor, a teeth base projecting between both ends of the yoke in the axial direction, and a teeth flange projecting on both sides from the tip of the teeth base. A rotating electrical machine comprising a plurality of teeth arranged in the circumferential direction of the yoke and spaced apart from each other, the slot opening formed between the adjacent teeth being skewed with respect to the axial direction of the yoke Because
    A rotating electric machine characterized in that a width of the teeth brim portion is narrowed from a connecting portion with the teeth base toward a tip.
  2.  上記ティース鍔部の基端側の部位が、上記ティース基部との連結部に向かって幅が広くなるように形成されていることを特徴とする請求項1に記載の回転電機。 2. The rotating electrical machine according to claim 1, wherein a portion of the teeth end portion on the base end side is formed so as to increase in width toward a connecting portion with the teeth base portion.
  3.  上記スロットの開口が、上記ヨークの軸方向の所定部位で、上記ティース基部に入り込んでいることを特徴とする請求項1または請求項2に記載の回転電機。 3. The rotating electrical machine according to claim 1, wherein the opening of the slot enters the teeth base at a predetermined portion in the axial direction of the yoke.
  4.  上記ロータの極数が10Z(但し、Zは自然数)であり、上記スロットの数が12Zであり、上記スロットの開口の上記ヨークの軸方向に対する角度が・(3k/Z)(但し、kは1,2,3のいずれか)であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の回転電機。 The number of poles of the rotor is 10Z (where Z is a natural number), the number of slots is 12Z, and the angle of the opening of the slot with respect to the axial direction of the yoke is (3k / Z) (where k is The rotating electrical machine according to any one of claims 1 to 3, wherein the rotating electrical machine is any one of 1, 2, and 3.
  5.  鋼板を加工して形成される板状の複数の分割コア部材を環状に連結した環状磁性部材を複数備え、上記分割コア部材は、連結方向に沿って配置される分割ヨークと、上記分割ヨークの連結方向の中間部から突出される分割ティース基部、及び上記分割ティース基部の先端から突出される分割ティース鍔部を有する分割ティースとを備えており、隣接する上記分割ティース鍔部間の隙間が連なるように複数の上記環状磁性部材を積層して構成されるステータコアを製造するためのステータコアの製造装置であって、
     所定方向に搬送される上記鋼板の搬送経路に対応して配置され、上記鋼板に対し、上記環状磁性部材を構成する上記分割コア部材の上記分割ティース鍔部の所定の突出長さの輪郭以外の輪郭を形成するための打ち抜き加工を行う金型と、上記鋼板に対し、上記分割ティース鍔部の所定の突出長さの輪郭を形成するための打ち抜き加工を行う移動金型とを備え、
     上記金型及び上記移動金型の少なくとも一方が、上記分割ティース基部と上記分割ティース鍔部の連結部から上記分割ティース鍔部の先端に向かって上記分割ティース鍔部の幅が狭くなるように上記鋼板を打ち抜き加工する形状を有することを特徴とするステータコアの製造装置。
    A plurality of annular magnetic members, each of which is formed by processing a steel plate and annularly connecting a plurality of plate-like divided core members, wherein the divided core members are arranged along a connecting direction; A split tooth base that protrudes from an intermediate portion in the connecting direction and a split tooth that has a split tooth flange protruding from the tip of the split tooth base, and a gap between adjacent split teeth flanges is continuous. A stator core manufacturing apparatus for manufacturing a stator core configured by laminating a plurality of the annular magnetic members as described above,
    Other than the contour of the predetermined protruding length of the divided teeth collar portion of the divided core member of the divided core member, which is arranged corresponding to the conveyance path of the steel plate conveyed in a predetermined direction and constitutes the annular magnetic member with respect to the steel plate. A mold that performs punching to form a contour, and a moving mold that performs punching to form a contour of a predetermined protruding length of the divided teeth flange portion for the steel plate,
    The at least one of the mold and the moving mold is arranged so that the width of the divided tooth heel portion becomes narrower from the connecting portion of the divided tooth base portion and the divided tooth heel portion toward the tip of the divided tooth heel portion. A stator core manufacturing apparatus having a shape for punching a steel plate.
  6.  上記移動金型が、上記分割ティース鍔部の先端側の幅を、上記分割ティース基部側より狭くなるように上記鋼板を打ち抜き加工する形状を有することを特徴とする請求項5に記載のステータコアの製造装置。 6. The stator core according to claim 5, wherein the movable mold has a shape in which the steel sheet is punched so that a width of a tip side of the divided teeth flange portion is narrower than a side of the divided teeth base portion. Manufacturing equipment.
  7.  上記金型が、上記分割ティース基部と上記分割ティース鍔部との連結部の幅を、上記分割ティース鍔部の先端側の幅より広くするように上記鋼板を打ち抜き加工する形状を有することを特徴とする請求項5または請求項6に記載のステータコアの製造装置。 The mold has a shape in which the steel sheet is punched so that the width of the connecting portion between the divided tooth base and the divided tooth flange is wider than the width of the distal end side of the divided teeth flange. The stator core manufacturing apparatus according to claim 5 or 6.
  8.  各上記環状磁性部材を構成する複数の上記分割コア部材の上記鋼板における形成領域が、周方向に所定のピッチで配列されるように設定され、
     上記移動金型は、上記鋼板に対する打ち抜き部を、上記鋼板に直交する軸心まわりに回転移動させ、複数の上記分割コア部材の形成領域の中心が、上記軸心と交わる位置で上記鋼板を打ち抜くことが可能に設置されていることを特徴とする請求項5乃至請求項7のいずれか1項に記載のステータコアの製造装置。
    The formation region in the steel plate of the plurality of divided core members constituting each annular magnetic member is set to be arranged at a predetermined pitch in the circumferential direction,
    The moving mold rotates a punched portion with respect to the steel plate around an axis perpendicular to the steel plate, and punches the steel plate at a position where the centers of the plurality of divided core members intersect with the axis. The stator core manufacturing apparatus according to any one of claims 5 to 7, wherein the stator core manufacturing apparatus is installed.
  9.  各上記環状磁性部材を構成する複数の上記分割コア部材の上記鋼板における形成領域が、所定の直線方向に所定の間隔で配置され、
     上記移動金型は、上記鋼板に対する打ち抜き部を、上記所定の直線方向に移動させて上記鋼板を打ち抜くことが可能に設置されていることを特徴とする請求項5乃至請求項7のいずれか1項に記載のステータコアの製造装置。
    The formation regions in the steel plates of the plurality of divided core members constituting each annular magnetic member are arranged at predetermined intervals in a predetermined linear direction,
    8. The moving mold according to claim 5, wherein the moving mold is installed so that a punched portion for the steel plate can be moved in the predetermined linear direction to punch the steel plate. The stator core manufacturing apparatus according to Item.
  10.  上記移動金型は、各上記環状磁性部材を構成する複数の上記分割コア部材の上記鋼板における形成領域のうち、上記分割ティース基部の先端側に入り込む位置まで移動して上記鋼板を打ち抜くことが可能に構成されている請求項8または請求項9に記載のステータコアの製造装置。 The moving mold can move to a position where it enters the distal end side of the divided teeth base in a formation region of the plurality of divided core members constituting each annular magnetic member in the steel plate, and can punch the steel plate The stator core manufacturing apparatus according to claim 8 or 9, wherein the stator core manufacturing apparatus is configured as described above.
PCT/JP2011/059180 2010-08-26 2011-04-13 Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof WO2012026158A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201190000692.XU CN203368163U (en) 2010-08-26 2011-04-13 Rotary motor and stator core manufacturing device for manufacturing stator core of rotary motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-189201 2010-08-26
JP2010189201A JP5818414B2 (en) 2010-08-26 2010-08-26 Manufacturing apparatus for stator core member
JP2010-225976 2010-10-05
JP2010225976A JP5777869B2 (en) 2010-10-05 2010-10-05 Rotating electric machine

Publications (1)

Publication Number Publication Date
WO2012026158A1 true WO2012026158A1 (en) 2012-03-01

Family

ID=45723176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059180 WO2012026158A1 (en) 2010-08-26 2011-04-13 Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof

Country Status (3)

Country Link
CN (1) CN203368163U (en)
TW (1) TWI556548B (en)
WO (1) WO2012026158A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173873A1 (en) * 2015-04-28 2016-11-03 Ebm-Papst Mulfingen Gmbh & Co. Kg Stator having adapted tooth geometry
CN107689716A (en) * 2017-10-12 2018-02-13 苏州工业职业技术学院 Three pin skew formula stator core laminated molds
US20180115202A1 (en) * 2015-04-22 2018-04-26 Mitsubishi Electric Corporation Rotary electric machine and electric power steering apparatus
WO2022112282A1 (en) * 2020-11-26 2022-06-02 Valeo Siemens Eautomotive Germany Gmbh Stator core for a stator of an electric machine, method for producing such a stator for an electric machine, and electric machine for driving a vehicle

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506921B (en) * 2013-03-21 2015-11-01 Cheng Hu Chen Internal stator
TWI505604B (en) * 2013-04-15 2015-10-21 Delta Electronics Inc Power apparatus
CN106415994B (en) * 2014-04-14 2019-09-24 株式会社日立产机系统 Axial air-gap motor
FR3028110B1 (en) * 2014-11-03 2018-04-13 Valeo Equipements Electriques Moteur STATOR FOR AN ALTERNATOR OR ELECTRIC MACHINE
JP6495092B2 (en) * 2015-05-07 2019-04-03 株式会社三井ハイテック Split-type laminated iron core and manufacturing method thereof
CN104953771B (en) * 2015-07-07 2018-01-16 广东威灵电机制造有限公司 Increase method, stator core, stator and the motor of stator core groove area
JP6315036B2 (en) * 2016-07-22 2018-04-25 日本精工株式会社 Electric motor and electric motor manufacturing method
CN110036552B (en) * 2017-04-05 2020-09-22 三菱电机株式会社 Stator core component piece and rotating electrical machine
CN108768005A (en) * 2018-06-19 2018-11-06 安徽美芝精密制造有限公司 Stator core, motor and compressor
EA202192070A1 (en) * 2018-12-17 2021-11-08 Ниппон Стил Корпорейшн GLUED-PLATED CORE FOR STATOR, METHOD OF ITS PRODUCTION AND ELECTRIC MOTOR
CA3131521A1 (en) * 2018-12-17 2020-06-25 Nippon Steel Corporation Adhesively-laminated core for stator and electric motor
KR20240005116A (en) * 2018-12-17 2024-01-11 닛폰세이테츠 가부시키가이샤 Laminated core and rotary electric machine
GB2590677B (en) * 2019-12-23 2023-09-27 Dyson Technology Ltd A motor core

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335642A (en) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp Rotary machine
JP2005045881A (en) * 2003-07-24 2005-02-17 Hitachi Ltd Rotating electric machine
JP2005151798A (en) * 2003-10-21 2005-06-09 Matsushita Electric Ind Co Ltd Spindle motor
JP3933890B2 (en) * 2001-07-03 2007-06-20 三菱電機株式会社 Stator, stator core member manufacturing apparatus, and stator manufacturing method using the manufacturing apparatus
JP4121008B2 (en) * 2001-07-03 2008-07-16 三菱電機株式会社 Stator and manufacturing method thereof, and stator core member manufacturing apparatus
JP2008228390A (en) * 2007-03-09 2008-09-25 Jtekt Corp Brushless motor and electric power steering device equipped with the same
JP2009017669A (en) * 2007-07-04 2009-01-22 Fuji Electric Systems Co Ltd Permanent magnet rotating machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335642A (en) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp Rotary machine
JP3933890B2 (en) * 2001-07-03 2007-06-20 三菱電機株式会社 Stator, stator core member manufacturing apparatus, and stator manufacturing method using the manufacturing apparatus
JP4121008B2 (en) * 2001-07-03 2008-07-16 三菱電機株式会社 Stator and manufacturing method thereof, and stator core member manufacturing apparatus
JP2005045881A (en) * 2003-07-24 2005-02-17 Hitachi Ltd Rotating electric machine
JP2005151798A (en) * 2003-10-21 2005-06-09 Matsushita Electric Ind Co Ltd Spindle motor
JP2008228390A (en) * 2007-03-09 2008-09-25 Jtekt Corp Brushless motor and electric power steering device equipped with the same
JP2009017669A (en) * 2007-07-04 2009-01-22 Fuji Electric Systems Co Ltd Permanent magnet rotating machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180115202A1 (en) * 2015-04-22 2018-04-26 Mitsubishi Electric Corporation Rotary electric machine and electric power steering apparatus
EP3288155A4 (en) * 2015-04-22 2019-01-02 Mitsubishi Electric Corporation Rotating electric machine and electric power steering device
US10910892B2 (en) 2015-04-22 2021-02-02 Mitsubishi Electric Corporation Rotary electric machine and electric power steering apparatus
WO2016173873A1 (en) * 2015-04-28 2016-11-03 Ebm-Papst Mulfingen Gmbh & Co. Kg Stator having adapted tooth geometry
US10483811B2 (en) 2015-04-28 2019-11-19 Ebm-Papst Mulfingen Gmbh & Co. Kg Stator having adapted tooth geometry with teeth having circumferential projections
EP3289668B1 (en) * 2015-04-28 2021-07-07 EBM-Papst Mulfingen GmbH&CO. KG Stator having adapted tooth geometry
CN107689716A (en) * 2017-10-12 2018-02-13 苏州工业职业技术学院 Three pin skew formula stator core laminated molds
CN107689716B (en) * 2017-10-12 2023-08-29 苏州工业职业技术学院 Three-needle twisted stator core lamination die
WO2022112282A1 (en) * 2020-11-26 2022-06-02 Valeo Siemens Eautomotive Germany Gmbh Stator core for a stator of an electric machine, method for producing such a stator for an electric machine, and electric machine for driving a vehicle

Also Published As

Publication number Publication date
TWI556548B (en) 2016-11-01
CN203368163U (en) 2013-12-25
TW201223081A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
WO2012026158A1 (en) Rotary electric machine and stator core manufacturing device for manufacturing stator core thereof
US8102092B2 (en) Split cores for motor stator, motor stator, permanent magnet type synchronous motor and punching method by split core punching die
EP2466732B1 (en) Manufacturing method of a laminated rotor core
JP5278233B2 (en) Punching method before rolling
CN108292866B (en) Motor and method for manufacturing motor
KR101514167B1 (en) Laminated core for linear motor and manufacturing method therefor
JP4121008B2 (en) Stator and manufacturing method thereof, and stator core member manufacturing apparatus
JP3933890B2 (en) Stator, stator core member manufacturing apparatus, and stator manufacturing method using the manufacturing apparatus
WO2018062488A1 (en) Rotor core, rotor, and motor
JP2017169296A (en) Split core of rotating electrical machine and method for manufacturing the split core
WO2018062447A1 (en) Rotor, and motor
JP2007221927A (en) Stator core of rotating electric machine and method of manufacturing same
US10199887B2 (en) Rotary electric machine armature core and rotary electric machine
US11228226B2 (en) Electric machine comprising a knurled rotor shaft and method of manufacturing such a machine
JP2012170295A (en) Stator of rotary electric machine and method of manufacturing the same
JP2003061319A (en) Method for producing stator
JP7316636B2 (en) Electric motor
JP5818414B2 (en) Manufacturing apparatus for stator core member
JP7000750B2 (en) Rotating machine
JP2018023232A (en) Rotary electric machine and manufacturing method therefor
JP5777869B2 (en) Rotating electric machine
JP2007028799A (en) Production method for core
JP7046265B2 (en) How to make an armature core, how to make an electric machine, and an electric machine
JP5574931B2 (en) Stator core manufacturing equipment
JP5726118B2 (en) Laminated stator core, method for producing laminated stator core

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000692.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819633

Country of ref document: EP

Kind code of ref document: A1