WO2012024964A1 - 混凝土泵车及其控制方法、泵送系统及其分配机构 - Google Patents
混凝土泵车及其控制方法、泵送系统及其分配机构 Download PDFInfo
- Publication number
- WO2012024964A1 WO2012024964A1 PCT/CN2011/075715 CN2011075715W WO2012024964A1 WO 2012024964 A1 WO2012024964 A1 WO 2012024964A1 CN 2011075715 W CN2011075715 W CN 2011075715W WO 2012024964 A1 WO2012024964 A1 WO 2012024964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- pumping system
- drive
- delivery
- pumping
- Prior art date
Links
- 238000005086 pumping Methods 0.000 title claims abstract description 179
- 238000009826 distribution Methods 0.000 title claims abstract description 133
- 230000007246 mechanism Effects 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 32
- 230000033001 locomotion Effects 0.000 claims abstract description 28
- 230000005540 biological transmission Effects 0.000 claims description 49
- 238000004891 communication Methods 0.000 claims description 15
- 230000001133 acceleration Effects 0.000 claims description 12
- 230000008602 contraction Effects 0.000 claims description 2
- 230000009471 action Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/02—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G21/00—Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
- E04G21/02—Conveying or working-up concrete or similar masses able to be heaped or cast
- E04G21/04—Devices for both conveying and distributing
- E04G21/0418—Devices for both conveying and distributing with distribution hose
- E04G21/0445—Devices for both conveying and distributing with distribution hose with booms
- E04G21/0454—Devices for both conveying and distributing with distribution hose with booms with boom vibration damper mechanisms
Definitions
- the present invention relates to a technique for pumping concrete or other viscous materials, and more particularly to a dispensing mechanism for a pumping system, including a pumping system of the dispensing mechanism, including a concrete pump truck of the pumping system; A method of controlling a pumping system. Background technique
- Concrete pump trucks are one of the most widely used concrete machines.
- Concrete pump trucks typically include a pumping system and a boom system.
- the pumping system generally further comprises a hopper, a conveying cylinder and a distribution valve;
- the boom system comprises a boom and a conveying pipe, and the boom comprises a plurality of section arms hingedly connected by a transverse hinge shaft, and the conveying pipe comprises a plurality of sections connected in series.
- the pipes are fixed to the pitch arms respectively.
- the hopper is used to store the concrete;
- the distribution valve is capable of state switching under the driving of the oscillating cylinder, and the delivery cylinder is communicated with the hopper for a predetermined first time, and the delivery cylinder is communicated with the delivery tube of the boom system for a predetermined second time.
- the piston of the conveying cylinder can be telescopically driven by the hydraulic cylinder; when the conveying cylinder communicates with the hopper, the piston of the conveying cylinder is retracted, the suction is sucked, and the appropriate amount of concrete is sucked; the conveying cylinder communicates with the conveying pipe of the boom system
- the piston of the conveying cylinder When the piston of the conveying cylinder is extended, the inhaled concrete slurry is pressed into the conveying pipe, the pumping material is applied, and a predetermined pressure is applied to the concrete to flow the concrete along the conveying pipe; the suction and pumping materials can make the concrete Arrives at the end of the duct and flows out from the end of the duct to the intended concrete working position.
- the position of the end of the boom can be changed, so that the concrete reaches a predetermined position, which facilitates the concrete pouring operation.
- the dispensing valve of the pumping system can be a skirt valve, a C-shaped valve, a gate valve or an S-valve.
- the basic function of the distribution valve is that the pumping system can repeatedly perform the suction and pumping in a predetermined manner through the state transition, so that the pumping can be intermittently pumped. Concrete, which causes the concrete to flow intermittently inside the duct. Please refer to FIG. 1 , which is a schematic diagram of the principle of intermittent flow of concrete in a conveying pipe in the prior art.
- the flow velocity V of the concrete periodically changes with the time T as a variable.
- the concrete flows at the velocity V under the pressure generated by the delivery cylinder; during T2, the distribution valve performs state transition and the delivery cylinder performs Reversing, simultaneously sucking, providing the premise for the pumping of the next process; during the sucking process, the pumping system stops pumping outward, the concrete in the duct stops flowing, forming a pumping interval; at the end of the suction After that, enter the pumping process of the next cycle. This is periodically changed to form intermittent pumping, which causes the concrete to flow intermittently within the duct.
- the pumping system is usually provided with two conveying cylinders, and the two conveying cylinders also pump the material through a dispensing valve;
- the other pumping cylinder pumps the two delivery cylinders to take the suction and pumping, which in turn shortens the pumping interruption time.
- the transfer cylinder is in the state transition, the commutation is also performed, and the dispense valve is also subjected to state transition, so that the pumping interval cannot be completely eliminated.
- the boom system in order to transport the concrete to a farther or higher position, the boom system is a long rod-like structure as a whole; the long rod-shaped boom system also amplifies the vibration generated by the boom system, so that the end of the boom Produces a very large vibration.
- the frequency of the pulsed shock generated by the interval pumping of the pumping system is close to or equal to the natural vibration frequency of the boom system, the boom system will generate a strong resonance.
- the vibration amplitude at the end of the boom It may reach more than l; the vibration generated by the boom system with excessive amplitude and intensity not only makes it difficult for concrete to reach the predetermined position, but also affects the quality and smooth operation of the concrete work, and also causes fatigue damage of the pumping system and the boom system, which in turn affects the concrete.
- the service life of the pump truck may reach more than l; the vibration generated by the boom system with excessive amplitude and intensity not only makes it difficult for concrete to reach the predetermined position, but also affects the quality and smooth operation of the concrete work, and also causes fatigue damage of the pumping system and the boom system, which in turn affects the concrete. The service life of the pump truck.
- the currently disclosed technology has a passive damping technology that suppresses the vibration of the boom, reduces the impact of the split valve cylinder, shortens the commutation time of the swing cylinder, and reverses the impact of the buffer cylinder.
- JP3040592B2, CN1486384A, and CN1932215A respectively disclose a technical solution for suppressing vibration of the boom system.
- DE 102006028329 A1 discloses a pumping system for a double distribution valve, which is provided with two delivery cylinders and two S-shaped distribution valves, the two distribution tubes being rotatably mounted in a predetermined volume, respectively, and one for each delivery
- the cylinders are matched; this provides two sets of pumping and suction mechanisms, and the two sets of mechanisms are matched.
- the pumping system essentially combines two sets of mechanisms, not only failing to substantially change the structure of the pumping system, Moreover, the structure of the pumping system is complicated, and the control process is also very complicated.
- a first object of the present invention is to provide a dispensing mechanism of a pumping system, by which materials can be pumped continuously or uniformly to reduce discontinuous and unstable flow of materials. Vibration.
- a second object of the present invention is to provide a pumping system.
- a third object of the present invention is to provide a concrete pump truck.
- a fourth object of the present invention is to provide a method of controlling a pumping system for continuously pumping material to reduce vibrations due to discontinuous flow of material.
- the dispensing mechanism of the pumping system comprises a wear plate and at least two distribution pipes, the distribution pipe having an input end and an output end, respectively, and the output end of the distribution pipe Rotatingly connected to form an axis of rotation; the input ends of the two distribution tubes are respectively offset from the rotation axis, and the end faces of the input end are matched with the wear-resistant surface of the wear plate;
- the wear plate has at least three feed holes distributed around the axis of rotation; and when each of the distribution tubes rotates about the axis of rotation, it can be in communication with at least two feed holes.
- the dispensing mechanism of the pumping system includes two of the dispensing tubes.
- the wear plate has three delivery holes, and the three delivery holes are all distributed around the rotation axis.
- the dispensing mechanism of the pumping system further includes a transmission mechanism including a transmission shaft and a transmission sleeve rotatably sleeved outside the transmission shaft; a front end of the transmission shaft and a transmission sleeve The front end is respectively fixed to the two distribution pipes; the rear end of the transmission shaft and the rear end of the transmission bushing extend rearward through the wear plate.
- a transmission mechanism including a transmission shaft and a transmission sleeve rotatably sleeved outside the transmission shaft; a front end of the transmission shaft and a transmission sleeve The front end is respectively fixed to the two distribution pipes; the rear end of the transmission shaft and the rear end of the transmission bushing extend rearward through the wear plate.
- a rear end of the transmission shaft extends from a rear end surface of the transmission bushing.
- the dispensing mechanism of the pumping system further includes two driving devices, and the rear end of the driving shaft and the rear end of the driving sleeve are respectively connected to two driving devices.
- the driving device includes a swinging arm and a swinging cylinder, and one end of the swinging arm is connected to a rear end of the driving shaft or a rear end of the driving sleeve, and the other end is hingedly connected to one end of the swinging cylinder, The other end of the sump is hinged to a predetermined base that is relatively fixed to the wear plate; one end of the oscillating arm is coupled to the rear end of the drive shaft or the rear end of the drive sleeve by a ratchet mechanism.
- the driving device comprises a driving cylinder, a locking cylinder, a locking rack and a driving rack, wherein the two ends of the locking rack are respectively hinged with a predetermined base and a rotating sleeve; one end of the driving rack Slidably engaging with the rotating sleeve, the other end is connected to one end of the driving cylinder, and the other end of the driving cylinder is connected to a predetermined base; one end of the locking cylinder is hinged to the predetermined base, and the other end is locked with the lock
- the rack is hinged; the predetermined base is relatively fixed to the wear plate; the rear end of the drive shaft or the rear end of the drive sleeve has a transmission tooth; when the lock cylinder is shortened, the lock rack Separating from the transmission teeth, the driving rack meshes with the transmission teeth, and the telescopic direction of the driving cylinder is the same as the extending direction of the driving rack; when the locking cylinder is extended, the locking teeth are A strip engages the drive teeth, the drive rack
- the driving device further includes a sliding sleeve fixed to a predetermined base, one end of the driving cylinder is slidably engaged with the sliding sleeve, and is hingedly connected to the driving rack through the sliding sleeve; or One end of the drive cylinder is fixedly connected to the drive rack, and the other end is fixed with a predetermined basis Articulated.
- the present invention provides a pumping system comprising a hopper, further comprising at least three delivery cylinders and a dispensing mechanism of any of the above-described pumping systems, the dispensing tube being located in the hopper, and the wear plate and The hopper is fixed, and the wear surface of the wear plate faces the hopper, and the transfer cylinders are respectively communicated with one of the feed holes of the wear plate, and the distribution pipe is rotatable relative to the hopper.
- the concrete pump truck provided by the present invention comprises a boom system and a pumping system, wherein the pumping system is any one of the above pumping systems, and the output ends of the distribution tubes are The ducts of the boom system are connected.
- the present invention provides a control method for controlling a pumping system of the above pumping system, in which the two of the distribution pipes are a first distribution pipe and a second distribution pipe, respectively
- the three conveying cylinders are respectively a first conveying cylinder, a second conveying cylinder and a third conveying cylinder;
- the control method includes: first conveying in a first period when the first distribution pipe and the second distribution pipe are respectively in communication with the first delivery cylinder and the second delivery cylinder, and the piston of the second delivery cylinder is decelerated forward
- the piston of the cylinder accelerates forward; when the forward movement speed of the piston of the second delivery cylinder decreases to zero, the piston movement speed of the first delivery cylinder is maximized, and the hook movement is started;
- the second distribution pipe is rotated from a position communicating with the second transfer cylinder to a position communicating with the third transfer cylinder, and the third transfer cylinder is in the second distribution pipe and the third
- the suction is completed at a predetermined time before the delivery cylinder communicates.
- the acceleration of the piston of the first delivery cylinder is equal to the acceleration of the piston of the second delivery cylinder.
- the dispensing mechanism of the pumping system comprises a wear plate and at least two distribution pipes, the output ends of the distribution pipes are rotatably coupled together and form an axis of rotation; and the wear plate used in conjunction with the distribution pipe Including at least three feed holes; when the distribution pipe rotates about the rotation axis, at any different position, any distribution pipe can communicate with at least two feed holes; when the feed hole communicates with the transfer cylinder, the corresponding transfer cylinder Material can be pumped outward through the delivery orifice and the corresponding dispensing tube.
- the pumping action of at least two conveying cylinders can be coordinated by rotating the distribution pipe, so that the pumping system can continuously pump materials outward, eliminating the pumping interval during the pumping process. Time; further, by accurately controlling the motion relationship between the pistons of the delivery cylinder, The pumping system can be pumped uniformly to the material to reduce or avoid the pulsating flow of the material, further reducing the vibration caused by the unstable flow of the material.
- the wear plate has three feed holes, and the three feed holes are evenly distributed around the rotation axis, so that the control of the rotation of the distribution pipe can be facilitated.
- the transmission mechanism includes a transmission shaft and a transmission sleeve sleeved outside the transmission shaft; the structure can reduce the space occupied by the transmission mechanism and improve the reliability of the transmission mechanism.
- the driving device comprises a driving rack, a locking rack, a driving cylinder and a locking cylinder; in one state, the driving device can drive the transmission shaft or the transmission sleeve to rotate, in another state Next, the locking rack can lock the transmission shaft or the transmission sleeve to prevent the distribution tube from deviating from the predetermined position, which can improve the reliability of the operation of the distribution mechanism.
- the pumping system provided including the above-described dispensing mechanism also has a corresponding technical effect. Controlling in an appropriate manner not only eliminates the pumping interval, but also uniformly pumps the material, thereby greatly reducing the vibration caused by the material flow.
- the vibration caused by the unstable flow of the concrete can be reduced, thereby reducing the concrete pump arm. The vibration generated by the frame and its vibration amplitude.
- the second delivery cylinder accelerates the pumping material, which enables continuous pumping of the pumping system, avoiding the pump Material spacing, eliminating vibrations generated by the boom system due to intermittent pumping.
- the acceleration of the first delivery cylinder is equal to the acceleration of the second delivery cylinder, so that the sum of the pumping flow rates of the two delivery cylinders can be kept constant, so that uniform pumping can be achieved. Reduce vibration due to unstable material flow.
- FIG. 1 is a schematic view showing the principle of intermittent flow of concrete in a conveying pipe in the prior art
- FIG. 2 is an exploded view of a pumping system according to a first embodiment of the present invention
- FIG. 3 is a schematic view showing the structure of the pumping system according to the first embodiment of the present invention
- FIG. 4 is a schematic view showing the structure of the pumping system according to the first embodiment of the present invention
- schematic diagram is a cross-sectional view showing the structure of Figure BB;
- Figure 7 is an enlarged view of a portion I-I of Figure 3;
- Figure 8 is a graph showing the relationship between the speed and time of each of the pump cylinders in the pumping system of the first embodiment;
- Figure 9 is a perspective view showing the state of the pumping system in the first embodiment;
- FIG. 11 is a structural view of a first type of driving device in a dispensing mechanism of the pumping system of the present invention;
- Figure 12 is a structural view of a second type of driving device in the dispensing mechanism of the pumping system of the present invention, and is also a structural tube diagram when the driving device is in a driving state;
- Figure 13 is a structural view of the second type of driving device shown in Figure 12 in a locked state
- Figure 14 is a structural view of a third type of driving device provided by the present invention. detailed description
- FIG. 2 is an exploded view of a pumping system according to Embodiment 1 of the present invention
- FIG. 3 is a front view of a pumping system according to Embodiment 1 of the present invention.
- Schematic diagram of the direction structure. 4 is a schematic structural view of a pumping system according to a first embodiment of the present invention
- FIG. 5 is a cross-sectional view of the A-A of FIG. 3
- FIG. 6 is a cross-sectional view of the B-B of FIG.
- the pumping system is a concrete pump comprising a hopper (not shown), a dispensing mechanism and three delivery cylinders.
- the structure of the hopper and the delivery cylinder can be the same as the known technique; for convenience of description, the three delivery cylinders are referred to as a first delivery cylinder 310, a second delivery cylinder 320, and a third delivery cylinder 330, respectively.
- the structure of the distribution mechanism is described in detail below.
- the dispensing mechanism includes a wear plate 200 and two dispensing tubes; for ease of description, two assignments are made
- the tubes are referred to as a first dispensing tube 110 and a second dispensing tube 120, respectively.
- the first distribution tube 110 and the second distribution tube 120 have an input end and an output end.
- the output end of the first distribution pipe 110 and the output end of the second distribution pipe 120 are rotatably connected and form an axis of rotation 0-0, so that the first distribution pipe 110 can be opposite to the second distribution pipe.
- the rotation of 120 about the axis of rotation 0-0, likewise, the second distribution tube 120 can be rotated relative to the first distribution tube 110 about the axis of rotation 0-0.
- the input ends of the two distribution tubes are respectively offset from the rotation axis 0-0, thereby forming S-shaped tubes respectively; in this example, the distances of the input ends of the distribution tubes from the rotation axis 0-0 are equal.
- the output end of the second distribution pipe 120 and the output end of the first distribution pipe 110 meet to form an output port for pumping material outward, and the center line of the output port coincides with the rotation axis.
- the output end of the first distribution pipe 110 is provided with a hollow sleeve, and the rear end of the hollow sleeve is rotatably connected with the output end of the second distribution pipe 120, so that the second distribution pipe 120 and the first distribution pipe 110 are relatively rotatable;
- One skilled in the art can maintain a seal between the hollow sleeve and the first dispensing tube 110 in a manner known per se to avoid leakage of concrete from the joint during pumping.
- the extending direction of the wear plate 200 is perpendicular to the above-described rotation axis 0-0, and the front facing surface forms a wear surface.
- the end faces of the input ends of the distribution pipes are matched with the wear-resistant faces of the wear plates 200.
- the end faces of the input ends can be matched with the wear-resistant faces of the wear plates 200 to maintain The seal of the inner space of the distribution pipe.
- the wear surface of the wear plate 200 is not limited to a flat surface, and the wear surface may be set to other specific structures while maintaining the mating with the end surface of the input end of the distribution tube according to actual needs.
- the wear plate 200 has three feed holes 201.
- the three feed holes 201 are evenly distributed around the rotation axis 0-0; and the center line has an equal distance from the rotation axis 0-0, the distance The distance from the input end of the dispensing tube from the axis of rotation 0-0 is equal; thus, the input end of the dispensing tube can communicate with a delivery aperture 201 as each dispensing tube rotates about the axis of rotation 0-0 and rotates to a predetermined position.
- the input end of the distribution pipe can be provided with a cutting ring with better wear resistance
- the wear surface of the wear plate 200 can be provided with a wear-resistant layer or other wear-resistant structure with better wear resistance. In order to improve the service life of the mating part of the distribution pipe and the wear plate 200.
- the two distribution pipes are located in the hopper, and the wear plate 200 is fixed to the rear wall plate of the hopper, and the wear surface of the wear plate 200 faces the hopper; the front end of the second distribution pipe 120 can be combined with the front wall plate of the hopper Rotatingly connected, it is also possible to communicate with the delivery pipe outside the hopper through a suitable transition tube and to rotate the two distribution tubes relative to the hopper.
- the three delivery cylinders are respectively in communication with the delivery holes of one wear plate 200, that is, the first delivery cylinder 310, the second delivery cylinder 320, and the third delivery cylinder 330 are also uniformly distributed around the rotation axis 0-0.
- Fig. 7 is an enlarged view of a portion I-I of Fig. 3.
- the transmission mechanism 400 includes a drive shaft 410 and a drive bushing 420 that is rotatably sleeved outside the drive shaft 4. Both the drive shaft 410 and the drive sleeve 420 axis coincide with the rotation axis 0-0, and the rear end of the drive shaft 410 and the rear end of the drive sleeve 420 extend rearward from the front side of the wear plate 200, respectively, and pass through the wear plate.
- the drive bushing 420 and the wear plate 200 are rotatably coupled to rotate the drive bushing 420 and the drive shaft 410 relative to the wear plate 200; the front end of the drive shaft 410 is fixed to the second distribution pipe 120
- the transmission bushing 420 is fixed to the first distribution pipe 110 by the intermediate rod 421, and the intermediate rod 421 extends in a direction perpendicular to the rotation axis 0-0. At least a portion of the rear end portion of the drive shaft 410 is exposed outside of the drive bushing 420 to drive the drive shaft 410 and the drive bushing 420 to rotate, respectively, by different drive mechanisms.
- the rear end of the transmission shaft 410 protrudes from the rear end surface of the transmission bushing 420, and the rear ends of the transmission shaft 410 are respectively provided with a structure that cooperates with the driving device, and the rear end of the transmission shaft 410 and the rear end of the transmission shaft sleeve 420 can be respectively provided with a transmission. tooth.
- the drive device may be a conventional device or a drive device to be described later.
- FIG. 8 is a function diagram of the piston speed and time of each delivery cylinder in the pumping system of the first embodiment; in the figure, the horizontal coordinate represents the time t, the ordinate represents the speed V, and the forward movement speed is The positive value, the speed of the backward movement is a negative value; the solid line indicates the speed change of the piston of the first delivery cylinder 310, the one-dot chain line indicates the speed change of the third delivery cylinder 330, and the two-dot chain line indicates the second delivery cylinder 320. Speed changes.
- the figure is a three-dimensional structural diagram of a state of the pumping system in the first embodiment.
- the second distribution pipe 120 communicates with the second delivery cylinder 320 through the delivery hole 201 (refers to the pumping cavity of the delivery cylinder, for the sake of convenience, in this document, the cylinder is said to communicate with the corresponding delivery cylinder),
- a distribution pipe 110 communicates with the first delivery cylinder 310 through the delivery hole 201, and the third delivery cylinder 330 communicates with the space in the hopper.
- the piston of the second delivery cylinder 320 is decelerated forward, and the piston of the first delivery cylinder 310 is accelerated forward from the last end, and the two respectively pass the second sub-point.
- the piping 120 and the first distribution pipe 110 pump concrete outward.
- the acceleration of the piston of the first delivery cylinder 310 is equal to the acceleration of the piston of the second delivery cylinder 320, even if the speed of the piston of the first delivery cylinder 310 and the second delivery cylinder 320
- the rate of change is equal such that the sum of the piston speeds of the first delivery cylinder 310 piston and the second delivery cylinder 320 remains constant so that the rate at which the pumping system pumps concrete outward remains the same.
- the piston of the second delivery cylinder 320 moves to the foremost end, the speed of movement is also reduced to zero, the concrete is no longer pumped, the piston speed of the first delivery cylinder 310 is maximized, and uniform motion begins.
- the third delivery cylinder 330 communicates with the space inside the hopper, and can be sucked through the delivery hole 201.
- the piston of the third delivery cylinder 330 moves in the reverse direction, and the speed is recorded as a negative value;
- the third delivery cylinder 330 can start to suck; as shown in the figure, starting from time 0,
- the suction speed of the three delivery cylinders 330 gradually decreases as the piston movement speed decreases.
- the suction time can be adjusted accordingly, for example, it can be extended to time t1, or extended to the time before the second distribution pipe 120 communicates with the third delivery cylinder 330.
- the piston of the first delivery cylinder 310 moves forward at a uniform speed, and the concrete is uniformly pumped outward through the first distribution pipe 110; at the same time, the second distribution pipe 120 is rotated until the second distribution pipe and the 120
- the third delivery cylinder 330 is in communication.
- the state of the pumping system is as shown in Fig. 10.
- This figure shows a perspective view of another state of the pumping system in the first embodiment.
- the third delivery cylinder 330 is ready to wait for the pump material.
- the second dispensing tube 120 should be rotated no later than t2 to allow the third delivery cylinder 330 to pump.
- the piston of the first delivery cylinder 310 starts to decelerate.
- the second distribution pipe 120 rotates and is not in communication with the second delivery cylinder 320, when the isolation is maintained, the second delivery cylinder 320 can be sucked, and the timing at which the second delivery cylinder 320 starts to suck is til, tl and There should be a certain time difference between the til, even if the second delivery cylinder 320 pauses between tl and til to prevent the second delivery cylinder 320 from pumping out the concrete.
- the piston of the first delivery cylinder 310 is decelerated, and the piston of the third delivery cylinder 330 is accelerated forward from the last end, and the two are pumped outward through the first distribution pipe 110 and the second distribution pipe 120, respectively.
- the acceleration of the piston of the first delivery cylinder 310 is equal to the acceleration of the piston of the third delivery cylinder 330 so that the speed at which the pumping system pumps concrete outward remains unchanged.
- the piston speed of the first delivery cylinder 310 is reduced to zero, the piston speed of the third delivery cylinder 330 is maximized, and the uniform pumping of the material is started.
- the second delivery cylinder 320 completes the suction; in this example, in order to extend the suction time, the maximum speed at which the second delivery cylinder 320 is sucked may be greater than that of the second delivery cylinder 320.
- the maximum speed of the hour can be extended to any time between the first distribution pipe 110 and the second delivery cylinder 320.
- the third delivery cylinder 330 is uniformly pumped concrete outward through the second distribution pipe 120; the first distribution pipe 110 is rotated until the first distribution pipe 110 and the second delivery cylinder 320 are in communication, and the second The delivery cylinder 320 is ready to wait for the pump material; the first distribution tube 110 should complete the rotation no later than t4.
- the piston of the third transfer cylinder 330 starts to decelerate.
- the first delivery cylinder 310 When the first distribution pipe 110 rotates and is not in communication with the first delivery cylinder 310, the first delivery cylinder 310 can be sucked when the isolation is maintained, and the timing at which the first delivery cylinder 310 starts to suck is t31, t3 and t31. There should be a certain time difference between them.
- the piston of the third delivery cylinder 330 is decelerated, and the piston of the second delivery cylinder 320 is accelerated forward from the last end, and the two are pumped outward through the second distribution pipe 120 and the first distribution pipe 110, respectively.
- the piston speed of the third delivery cylinder 330 is reduced to zero, the piston speed of the second delivery cylinder 320 is maximized, and the pumping of the uniform velocity is started.
- the first delivery cylinder 310 completes the suction.
- the second delivery cylinder 320 is uniformly pumped outwardly through the first distribution pipe 110; at the same time, the second distribution pipe 120 is rotated until the second distribution pipe 120 and the first delivery cylinder 310 are in communication with each other.
- the first delivery cylinder 310 is ready to wait for the pump material; the second distribution tube 120 should complete the rotation no later than t6.
- the second distribution pipe 120 rotates and is not in communication with the third delivery cylinder 330, when the isolation is maintained, the third delivery cylinder 330 can be sucked, and the timing at which the first delivery cylinder 310 starts to suck is t51, t5 and t51. There should be a certain time difference between them.
- the piston of the second transfer cylinder 320 starts to decelerate, and the piston of the first transfer cylinder 310 starts to accelerate forward.
- the predetermined dispensing pipe can be rotated according to a predetermined rule, and the pumping process of at least two conveying cylinders can be coordinated.
- the pumping system can continuously and evenly pump concrete outwards, which not only eliminates the pumping interval during pumping, but also allows the pumping system to pump concrete evenly, reducing or avoiding material pulsation. Sexual flow further reduces vibrations due to concrete flow.
- the pumping of the other tank can eliminate the pumping interval during pumping; when the pumping speed of one tank is reduced, the other tank starts to accelerate.
- the pumping system can be used to pump concrete evenly outward.
- the linkage between the movement relationship between the conveying cylinder and the distribution pipe it can be realized by a corresponding controller, for example, based on the predetermined movement speed of the conveying cylinder, controlling the movement speed of the other conveying cylinders according to a predetermined relationship and a predetermined movement law.
- the rotation movement of the relevant distribution pipe according to a predetermined rule, the rotation of the distribution pipe is controlled based on the rotation of the conveying cylinder of the hooking speed pump; of course, the state of the predetermined distribution pipe can also be determined by the opposite method.
- the movement of the predetermined delivery cylinder is controlled so that the pumping system can be operated by the above control method.
- the pumping system is connected to the pumping or the uniform pumping is not limited to the above control method, so that the two dispensing tubes are respectively oscillated within an appropriate angle range, and continuous pumping or uniform pumping can also be realized.
- the first distribution pipe 110 is swung between two extreme positions, and is communicated with the first delivery cylinder 310 and the second delivery cylinder 320 at two extreme positions, respectively, so that the second distribution pipe 120 is The two extreme positions are oscillated, and are respectively communicated with the third delivery cylinder 330 and the second delivery cylinder 320 at two extreme positions. It is also possible to realize the two delivery cylinders to coordinate the pump material or the suction material, so that the pumping system is continuous.
- the swing of the distribution pipe can generate vibration due to the swing.
- the time for positional switching between the conveying cylinder and the distribution pipe can be relatively long; and the existing lowering of the distribution valve pendulum cylinder impact or shortening the commutation time of the oscillating cylinder
- the above pumping system can make the movement speed of the conveying cylinder and the distribution pipe relatively small, which can not only reduce the vibration generated by the movement of the conveying cylinder and the distribution pipe to the pumping system, but also can control and operate the pumping system. Convenience.
- the distribution mechanism is not limited to including two distribution pipes, and more distribution pipes may be provided.
- more delivery holes 201 are to be provided on the wear plate 200, and the number of the delivery holes 201 should be more than
- the number of distribution tubes is such that one of the delivery cylinders can perform suction when at least two of the distribution tubes are in communication with the two delivery cylinders through the delivery holes. Ensuring that at least two of the distribution tubes are in communication with the two delivery cylinders provides a prerequisite for coordinating the operation of the two delivery cylinders to maintain continuous pumping or uniform pumping.
- the pumping system and the pumping system distributing mechanism need appropriate driving devices, and the driving pumping cylinder may be an existing hydraulic cylinder, drive the distribution pipe for rotating motion, or may be an existing S valve swinging mechanism. It may be another driving device; in order to make the dispensing tube perform a circular rotary motion, the present invention also provides two other driving devices. Since the driving device can drive the above-described transmission shaft 410 or/and the transmission sleeve 420 to rotate, the transmission shaft 410 and the transmission sleeve 420 function as a transmission portion of the distribution mechanism; for convenience of description, the following is an example of driving the transmission shaft 410. A description of the drive unit.
- FIG. 11 there is shown a structural view of a first type of drive means in the dispensing mechanism of the pumping system of the present invention.
- the driving device comprises a swinging arm 520 and two swinging cylinders 510.
- the swinging arm 520 is connected to the rear end of the driving shaft 410, and the other end is hingedly connected to one end of the swinging cylinder 510.
- the other end of the swinging cylinder 510 is connected.
- the hinge is hinged on a predetermined base (not shown) that is fixed relative to the wear plate 200; one end of the swing arm 520 and the rear end of the drive shaft 410 are driven by a ratchet mechanism 530.
- the ratchet mechanism 530 includes an inner ratchet 531 fixed to the swing arm 520, a force transmitting rod 532 whose inner end is hinged to an edge portion of the drive shaft 410, and the outer end of the force transmitting rod 532 is held in contact with the inner ratchet 510.
- the contact spring piece 533; the spring piece 533 is supported on the drive shaft 410 at the end, and the other end is supported at a position near the outer end of the force transmission rod 532.
- the inner ratchet 510 causes the force transmitting rod 532 to rotate counterclockwise about the inner end hinge shaft against the force of the spring piece 533, and the swing arm 520 idles, and the drive shaft 410 does not follow.
- the swinging arm 520 rotates; thus, the driving device can convert the rocking motion of the swinging arm 520 into a rotating motion, and the driving shaft 410 is circumferentially rotated by a predetermined motion law to cause the second distributing tube 120 to perform a circular motion.
- Position conversion is performed between the three feed holes 201.
- the ratchet mechanism 530 is not limited to the above structure, and power transmission can be realized by the external ratchet, which will not be described in detail herein.
- FIG. 12 is a structural diagram of a second type of driving device in the dispensing mechanism of the pumping system of the present invention, and also a structural tube diagram when the driving device is in a driving state.
- the drive unit includes a drive rack 620, a lock rack 640, a drive cylinder 650, and a lock cylinder 610.
- the locking rack 630 is hinged to the predetermined base, and the other end is hinged to the rotating sleeve 630.
- the hinge axis of the locking rack 630 is parallel to the axis of the transmission shaft 410, that is, parallel to the rotation axis 0-0, in order to save space.
- the locking rack 630 is provided in an arc shape.
- the lock cylinder 650 is hinged to the predetermined base, and the other end is hinged to the lock rack 640.
- the direction of expansion and contraction of the lock cylinder 650 is perpendicular to the rotation axis 0-0.
- One end of the driving cylinder 650 is mounted on a predetermined basis, and the other end is slidably engaged with the sliding sleeve 611, and is connected to the hinge of the driving rack 620 through the sliding sleeve 611, and the sliding sleeve 611 is fixed to a predetermined base.
- the other end of the drive rack 620 is slidably engaged with the rotating sleeve 630 and extends in a direction perpendicular to the axis of rotation 0-0.
- the predetermined base described above is relatively fixed to the wear plate 200.
- the rear end of the drive shaft 410 has a drive tooth that is engageable with the teeth of the drive rack 620 and the lock rack 640 to engage the drive rack 620 and the lock rack 640.
- the operating principle of the drive is as follows:
- the drive device has two states, one is a drive state and the other is a lock state.
- the driving state shown in FIG. 12 in which the locking cylinder 650 is shortened, and the locking rack 640 is separated from the driving teeth at the rear end of the transmission shaft 410; at this time, the driving rack 620 and the driving teeth at the rear end of the driving shaft 410 are driven.
- the meshing force of the driving cylinder 610 is the same as the extending direction of the driving rack 620. In this state, since the sliding sleeve 611 limits the degree of freedom of the driving cylinder 610, when the driving cylinder 610 expands and contracts, the driving shaft 410 can be driven to rotate by the driving rack 620. Please refer to FIG.
- FIG. 13 which is a structural tube diagram of the second driving device shown in FIG. 12 in a locked state.
- the lock rack 640 rotates counterclockwise, and the lock rack 640 drives the drive rack 620 to rotate, so that the drive rack 620 is separated from the drive teeth at the rear end of the drive shaft 410;
- the locking rack 640 is engaged with the driving teeth at the rear end of the transmission shaft 410 to lock the transmission shaft 410 to prevent the second distribution tube 120 from rotating under other forces.
- the above-mentioned driving device is switched in two states.
- the driving device can be driven, and the driving cylinder 610 is extended or shortened, and the driving shaft 410 is rotated 120.
- the position conversion of the second distribution pipe 120 is achieved.
- the second distribution tube 120 is required to remain stationary, so that the corresponding delivery cylinder is pumped, the driving device can be locked, the locking rack 640 is engaged with the driving teeth of the transmission shaft 410, and the second distribution tube 120 is maintained. Do not move.
- the transition of the two states allows the drive shaft 410 to be rotated as intended.
- FIG. 14 is a structural view of a third type of driving device provided by the present invention.
- one end of the driving cylinder 610 is fixedly connected with the driving rack 620, and the other end is hingedly connected to the predetermined base, so that when the locking cylinder 650 is extended, The drive cylinder 610 and the drive rack 620 can be integrally rotated to change from the drive state to the lock state, thereby achieving the above object.
- the concrete pump truck provided including the above pumping system also has a corresponding technical effect.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Reciprocating Pumps (AREA)
Description
混凝土泵车及其控制方法、 泵送系统及其分配机构
本申请要求于 2010 年 8 月 25 日提交中国专利局、 申请号为 201010266367.X,发明名称为"混凝土泵车及其控制方法、 泵送系统及其分 配机构 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种泵送混凝土或其他粘稠物料的技术, 特别涉及一种泵 送系统的分配机构, 包括该分配机构的泵送系统, 包括该泵送系统的混凝 土泵车; 还提供了一种泵送系统的控制方法。 背景技术
混凝土泵车是当前应用广泛的混凝土机械之一。 混凝土泵车一般包括 泵送系统和臂架系统。 泵送系统一般又包括料斗, 输送缸和分配阀; 臂架 系统包括臂架和输送管, 臂架包括多节通过横向铰接轴顺序铰接相连的节 臂, 输送管包括多节顺序相连的管道, 管道分别固定在节臂上。 料斗用于 存放混凝土; 分配阀能够在摆动油缸驱动下进行状态转换, 在预定第一时 间内使输送缸与料斗相通, 在预定的第二时间内使输送缸与臂架系统的输 送管相通。 输送缸的活塞能够在液压缸驱动下进行伸缩运动; 在输送缸与 料斗相通时, 使输送缸的活塞后缩, 进行吸料, 吸入适量的混凝土; 在输 送缸与臂架系统的输送管相通时, 使输送缸的活塞外伸, 将吸入的混凝土 泥浆压入输送管中, 进行泵料, 并对混凝土施加预定压力, 使混凝土沿输 送管流动; 多次吸料和泵料, 可以使混凝土到达输送管末端, 并从输送管 末端流出,到达预定的混凝土作业位置。 改变臂架中节臂之间的位置关系, 可以改变臂架末端的位置, 从而使混凝土到达预定位置, 方便混凝土浇注 作业的进行。
根据具体结构的不同, 泵送系统的分配阀可以是裙阀、 C形阀、 闸板 阀或 S阀。 虽然分配阀的具体结构形式存在不同,但其工作原理基本相同, 既其基本功能在于通过状态转换, 使泵送系统能够以预定的方式反复地进 行吸料与泵料, 进而能够间断地泵送混凝土, 使混凝土在输送管内间断式 流动。
请参考图 1 , 该图是现有技术中, 混凝土在输送管内的间断式流动的 原理示意图。 混凝土的流动速度 V以时间 T为变量进行周期性变化, 在 T1期间, 在输送缸产生的压力作用下, 混凝土以速度 V在输送管内流动; 在 T2期间, 分配阀进行状态转换、 输送缸进行换向, 同时进行吸料, 为 下一过程的泵料提供前提; 在吸料过程中, 泵送系统停止向外泵料, 输送 管内的混凝土停止流动, 形成泵送间隔时间; 在吸料结束后, 进入下一周 期的泵料过程。 如此地进行周期性变化, 形成间断式泵送, 使混凝土在输 送管内间断式流动。
当前, 为了缩短泵送间隔时间, 提高泵送系统的混凝土输送量, 泵送 系统通常设置有两个输送缸, 两个输送缸也是通过一个分配阀进行泵料; 在一个输送缸吸料时, 另一输送缸泵料, 并使两个输送缸轮流进行吸料和 泵料, 进而缩短泵送间断时间。 但输送缸进行状态转换时, 同样要进行换 向, 分配阀也要进行状态转换, 从而并不能完全消除泵送间隔时间。
间断式泵送及间断式流动必然对泵送系统、臂架系统产生脉沖式沖击, 使臂架系统产生相应的振动。 另外, 为了将混凝土输送到较远或较高的位 置, 臂架系统在整体上为长杆状结构; 长杆状结构的臂架系统还会将臂架 系统产生的振动放大, 使臂架末端产生很大幅度的振动。 当泵送系统的间 隔式泵送产生的脉沖式沖击的频率与臂架系统的固有振动频率接近或相等 时, 臂架系统将产生强烈的共振, 在特定情况下, 臂架末端的振动幅度可 能达到 l 以上; 臂架系统产生幅度、 强度过大的振动不仅使混凝土难以 到达预定位置, 影响混凝土作业的质量和顺利进行, 还会造成泵送系统、 臂架系统的疲劳损伤, 进而影响混凝土泵车的使用寿命。
为了减小泵送系统的振动, 目前公开的技术有平抑臂架振动的被动式 减振技术、 降低分配阀摆缸沖击、 缩短摆动油缸的换向时间、 緩沖输送缸 换向沖击等等技术; 如 JP3040592B2、 CN1486384A及 CN1932215A分别 公开了平抑臂架系统振动的技术方案。 这些专利文献公开的技术方案仅是 从控制臂架姿态的角度入手来遏制臂架末端振动的振幅, 并不能减少臂架 系统振动的振源;由于间断式泵送是 )起臂架系统振动的最重要因素之一, 而上述专利文献公开的技术方案无法减小由于间断式泵送产生的混凝土间
断式流动和振动, 因此, 无法从根本上解决臂架系统振动的问题。
DE102006028329A1 公开一种双分配阀的泵送系统, 该泵送系统设置 两个输送缸和两个 S形的分配阀, 两个分配管分别可旋转地安装在预定容 腔中, 并分别与一个输送缸相配合; 这样就提供了两套泵送和吸料机构, 并使两套机构相配合。 该技术虽然能够通过两套机构的配合减小或消除混 凝土间断式流动,但输送缸在进行泵料时,输送缸的活塞会存在一个加速、 均速和减速的变化过程, 这就会使混凝土进行脉动性的、 不稳定的流动, 不稳定流动仍然会导致臂架振动; 另外, 该泵送系统在实质上是将两套机 构的组合, 不仅未能在实质上改变泵送系统的结构, 且使泵送系统的结构 复杂, 导致控制过程也非常复杂。
因此, 如何消除间断式泵送并使混凝土连续地流动, 减小或消除由于 混凝土不连续、 不稳定流动产生的振动仍然是当前本领域技术人面对的技 术难题 发明内容
针对上述技术难题, 本发明的第一个目的在于, 提供一种泵送系统的 分配机构, 利用该分配机构可以连续或者均勾地泵送物料, 以减小由于物 料不连续、 不稳定流动产生的振动。
在提供上述分配机构的基础上, 本发明的第二个目的在于, 提供了一 种泵送系统。
在提供上述泵送系统的基础上, 本发明的第三个目的在于, 还提供了 一种混凝土泵车。
在提供上述泵送系统的基础上, 本发明的第四个目的在于, 提供一种 泵送系统的控制方法, 以连续地泵送物料, 减小由于物料不连续流动产生 的振动。
为了实现上述第一个目的, 本发明提供的泵送系统的分配机构包括耐 磨板和至少两个分配管, 所述分配管分别具有输入端和输出端, 且所述分 配管的输出端之间可旋转相连, 形成一旋转轴线; 两个分配管的输入端分 别偏离所述旋转轴线, 且所述输入端的端面与耐磨板的耐磨面相配合; 所
述耐磨板具有至少三个输料孔, 所述输料孔分布在所述旋转轴线周围; 在 各所述分配管绕所述旋转轴线旋转时, 能够顺序与至少两个输料孔相通。
可选的, 所述泵送系统的分配机构包括两个所述分配管。
可选的, 所述耐磨板具有 3个输料孔, 所述 3个输料孔均勾分布在所 述旋转轴线的周围。
可选的, 所述泵送系统的分配机构还包括传动机构, 该传动机构包括 一个传动轴和可旋转地套在该传动轴外的传动轴套; 所述传动轴的前端与 传动轴套的前端分别与两个所述分配管固定; 所述传动轴的后端与传动轴 套的后端均穿过所述耐磨板向后伸出。
可选的, 所述传动轴的后端伸出所述传动轴套的后端面。
可选的, 所述泵送系统的分配机构还包括两个驱动装置, 所述传动轴 后端和所述传动轴套后端分别与两个驱动装置相连。
可选的, 所述驱动装置包括摆摇臂和摆摇油缸, 所述摆摇臂一端与传 动轴的后端或传动轴套的后端相连, 另一端与摆摇油缸的一端铰接相连, 摆摇油缸的另一端铰接在预定基础上, 该预定基础与耐磨板相对固定; 所 述摆摇臂的一端与传动轴的后端或传动轴套的后端之间通过棘轮机构传 动。
可选的, 所述驱动装置包括驱动油缸、 锁止油缸、 锁止齿条和驱动齿 条, 所述锁止齿条两端分别与预定基础和转动轴套铰接; 所述驱动齿条的 一端与所述转动轴套可滑动配合, 另一端与驱动油缸一端相连, 所述驱动 油缸的另一端与预定基础相连; 所述锁止油缸一端与所述预定基础铰接, 另一端与所述锁止齿条铰接; 所述预定基础与所述耐磨板相对固定; 所述 传动轴后端或所述传动轴套后端具有传动齿; 在所述锁止油缸缩短时, 所 述锁止齿条与所述传动齿分离, 所述驱动齿条与所述传动齿相啮合, 所述 驱动油缸的伸缩方向与驱动齿条的延伸方向相同; 所述锁止油缸伸长时, 所述锁止齿条与所述传动齿相啮合, 所述驱动齿条与所述传动齿分离。
可选的, 所述驱动装置还包括与预定基础固定的滑动套, 所述驱动油 缸的一端与所述滑动套可滑动配合, 且穿过该滑动套与所述驱动齿条铰接 相连; 或, 所述驱动油缸的一端与驱动齿条固定相连, 另一端与预定基础
铰接相连。
为了实现上述第二个目的, 本发明提供的泵送系统包括料斗, 还包括 至少三个输送缸和上述任一种泵送系统的分配机构, 所述分配管位于料斗 内, 且耐磨板与料斗固定, 且耐磨板的耐磨面朝向料斗内, 所述输送缸分 别与耐磨板的一个输料孔相通, 所述分配管可相对于料斗旋转。
为了实现上述第三个目的, 本发明提供的混凝土泵车包括臂架系统和 泵送系统, 所述泵送系统为上述任一种泵送系统, 各所述分配管的输出端 均与所述臂架系统的输送管相通。
为了实现上述第四个目的, 本发明提供了一种控制上述泵送系统的泵 送系统的控制方法, 上述泵送系统中, 两个所述分配管分别为第一分配管 和第二分配管, 三个所述输送缸分别为第一输送缸、 第二输送缸和第三输 送缸;
该控制方法包括: 在第一分配管和第二分配管分别与第一输送缸和第 二输送缸相通, 且第二输送缸的活塞向前减速移动时的第一期间内, 使第 一输送缸的活塞向前加速移动; 在所述第二输送缸的活塞向前的移动速度 减小为零时, 使所述第一输送缸的活塞移动速度最大, 并开始勾速移动; 在第一输送缸勾速移动的第二期间内, 使第二分配管从与第二输送缸相通 的位置旋转到与第三输送缸相通的位置, 并使第三输送缸在第二分配管与 第三输送缸相通时刻之前的预定时刻完成吸料。
可选的, 在所述第一期间内, 第一输送缸的活塞的加速度与所述第二 输送缸的活塞的加速度相等。
本发明提供的泵送系统的分配机构包括耐磨板和至少两个分配管, 分 配管输出端之间可旋转地连接在一起, 并形成一个旋转轴线; 与分配管相 配合使用的耐磨板包括至少三个输料孔; 在分配管绕旋转轴线旋转时, 在 不同的位置, 任一分配管能够和至少两个输料孔相通; 在输料孔与输送缸 相通时, 相应的输送缸可以通过输料孔与对应的分配管向外泵送物料。 利 用本发明提供泵送系统的分配机构, 通过旋转分配管, 可以协调至少两个 输送缸的泵送动作, 使泵送系统能够连续地向外泵送物料, 消除泵送过程 中的泵送间隔时间; 进一步地,通过准确控制输送缸活塞之间的运动关系,
可以使泵送系统均匀地向外泵送物料, 减小或避免物料的脉动性流动, 进 一步减小由于物料不稳定流动产生的振动。
在进一步的技术方案中, 所述耐磨板具有 3个输料孔, 所述 3个输料 孔均匀分布在所述旋转轴线周围,这样可以方便对分配管旋转动作的控制。
在进一步的技术方案中, 传动机构包括传动轴与套在传动轴外的传动 轴套; 该结构可以减小传动机构占用的空间, 提高传动机构的可靠性。
在进一步的技术方案中, 驱动装置包括驱动齿条、 锁止齿条、 驱动油 缸和锁止油缸; 在一种状态下, 该驱动装置能够驱动传动轴或传动轴套旋 转, 在另一种状态下, 锁止齿条能够将传动轴或传动轴套锁止, 防止分配 管偏离预定位置, 这样可以提高分配机构工作的可靠性。
由于分配机构具有上述技术效果, 提供的包括上述分配机构的泵送系 统也具有相应的技术效果。 以适当的方式进行控制, 不仅能够消除泵送间 隔时间, 还可以均匀地进行泵料, 从而能够大幅度地减小由于物料流动造 成的振动。 对于包括该泵送系统的混凝土泵车来讲, 由于泵送混凝土没有 泵送间隔时间, 或者流动更稳定时, 因此可以减小由于混凝土流动不稳定 而产生的振动, 进而减小混凝土泵车臂架产生的振动及其振动幅度。
提供的泵送系统的控制方法中, 在第一期间内, 第一输送缸泵料流量 减小过程中, 第二输送缸加速泵料, 这就能够实现泵送系统的连续泵送, 避免泵料间隔, 消除臂架系统由于间断式泵送而产生的振动。 在进一步技 术方案中, 在第一期间内, 第一输送缸的加速度与第二输送缸的加速度相 等, 这样可以使两个输送缸泵送流量之和保持不变, 从而能够实现均匀泵 送, 减小由于物料流动不稳定而产生的振动。 附图说明
图 1是现有技术中, 混凝土在输送管内的间断式流动的原理示意图; 图 2是本发明实施例一提供的泵送系统的爆炸图;
图 3是本发明实施例一提供的泵送系统的主视方向结构示意图; 图 4是本发明实施例一提供的泵送系统上视方向的结构示意图; 图 5是图 3中 A-A剖视结构示意图;
图 6是图 3中 B-B剖视结构示意图;
图 7是图 3中 I-I部分放大图;
图 8是实施例一泵送系统中,各输送缸活塞速度与时间之间的函数图; 图 9是实施例一中, 泵送系统的一种状态的立体结构示意图; 图 10是实施例一中, 泵送系统的另一种状态的立体结构示意图; 图 11是本发明提供泵送系统的分配机构中,第一种驱动装置的结构筒 图;
图 12是本发明提供泵送系统的分配机构中,第二种驱动装置的结构筒 图, 同时也是该驱动装置处于驱动状态时的结构筒图;
图 13是图 12所示第二种驱动装置处于锁止状态下的结构筒图; 图 14是本发明提供的第三种驱动装置的结构筒图。 具体实施方式
下面结合附图对本发明进行详细描述, 本部分的描述仅是示范性和解 释性, 不应对本发明的保护范围有任何的限制作用。
应当说明的是: 虽然以下以泵送混凝土为例对本发明进行描述, 但本 发明提供的技术方案也可以应用于泵送与混凝土类似的。 如泥浆、 灰渣其 他粘稠物。 为了更清楚地描述工作过程和技术效果, 以下在对泵送系统描 述的同时, 对泵送系统的分配机构进行描述, 不再对泵送系统的分配机构 进行单独描述。 本文件中以混凝土流出方向为前, 反向方向为后。
请参考图 2、 图 3、 图 4、 图 5和图 6, 图 2是本发明实施例一提供的 泵送系统的爆炸图, 图 3是本发明实施例一提供的泵送系统的主视方向结 构示意图。图 4是本发明实施例一提供的泵送系统上视方向的结构示意图, 图 5是图 3中 A-A剖视结构示意图, 图 6是图 3中 B-B剖视结构示意图。
该泵送系统为一种混凝土泵, 包括料斗(图中未示出)、 分配机构和三 个输送缸。 料斗和输送缸的结构可与公知技术相同; 为了描述方便, 将三 个输送缸分别称为第一输送缸 310、第二输送缸 320和第三输送缸 330。 以 下对分配机构的结构进行详细描述。
分配机构包括耐磨板 200和两个分配管; 为了描述方便, 将两个分配
管分别称为第一分配管 110和第二分配管 120。 第一分配管 110和第二分 配管 120具有输入端和输出端。 如图 3所示, 第一分配管 110的输出端和 第二分配管 120的输出端之间可旋转相连, 并形成旋转轴线 0-0, 使第一 分配管 110可以相对于第二分配管 120绕旋转轴线 0-0旋转, 同样, 第二 分配管 120可以相对于第一分配管 110绕旋转轴线 0-0旋转。 两个分配管 的输入端分别偏离所述旋转轴线 0-0, 进而分别形成 S形管; 本例中, 各 分配管输入端偏离旋转轴线 0-0的距离相等。第二分配管 120的输出端和 第一分配管 110的输出端相交汇, 形成一个向外泵送物料的输出口, 输出 口的中心线与旋转轴线重合。 第一分配管 110输出端设置有空心套管, 该 空心套管后端与第二分配管 120的输出端可旋转相连,使得第二分配管 120 和第一分配管 110可相对旋转; 同时, 本领域技术人员可以采用公知的方 式使空心套管与第一分配管 110的之间保持密封, 以避免泵送过程中, 混 凝土从连接处泄漏。 本例中, 耐磨板 200的延展方向与上述旋转轴线 0-0 垂直,且朝向前方的面形成耐磨面。各分配管的输入端的端面与耐磨板 200 的耐磨面相配合, 在各分配管绕旋转轴线 0-0旋转时, 其输入端的端面能 够与耐磨板 200的耐磨面保持配合, 以保持分配管内部空间的密封。 可以 理解, 耐磨板 200耐磨面不限于为平面, 也可以根据实际需要, 在保持与 分配管输入端的端面相配合的情况下, 将耐磨面设置为其他具体结构。
同时, 耐磨板 200具有三个输料孔 201 , 优选地, 三个输料孔 201均 匀分布在旋转轴线 0-0周围;且其中心线与旋转轴线 0-0具有相等的距离, 该距离与分配管输入端偏离旋转轴线 0-0距离相等; 这样, 在各分配管绕 旋转轴线 0-0旋转, 旋转到预定位置时, 分配管的输入端能够与一个输料 孔 201相通。 与现有混凝土泵的分配阀相对应, 分配管输入端可以设置耐 磨性能更优良的切割环, 耐磨板 200的耐磨面可以设置耐磨性能更优良的 耐磨层或其他耐磨结构,以提高分配管与耐磨板 200配合部分的使用寿命。
上述两个分配管位于料斗内, 且耐磨板 200与料斗的后墙板固定, 且 使耐磨板 200的耐磨面朝向料斗内; 第二分配管 120前端可以与料斗的前 墙板可旋转相连, 也可以通过适当的过渡管与料斗外的输送管相通, 并使 两个分配管可相对于料斗旋转。
三个输送缸分别与一个耐磨板 200的输料孔相通, 即第一输送缸 310、 第二输送缸 320和第三输送缸 330也均匀分布在旋转轴线 0-0周围。
结合图 3, 并参考图 7, 图 7是图 3中 I-I部分放大图。 为便于对第二 分配管 120 和第一分配管 110 分别进行控制, 分配机构还包括传动机构 400。 该传动机构 400包括一个传动轴 410和一个传动轴套 420, 传动轴套 420可旋转地套在传动轴 4外。 传动轴 410和传动轴套 420轴线均与旋转 轴线 0-0重合,传动轴 410的后端和传动轴套 420的后端分别从耐磨板 200 前侧向后延伸, 并穿过耐磨板 200后伸出; 同时, 传动轴套 420与耐磨板 200可旋转配合, 以使传动轴套 420和传动轴 410可相对于耐磨板 200旋 转;传动轴 410前端与第二分配管 120固定,传动轴套 420通过中间杆 421 与第一分配管 110固定, 中间杆 421延伸方向与旋转轴线 0-0垂直。 传动 轴 410后端部分至少有一部分露在传动轴套 420外, 以通过不同的驱动机 构驱动传动轴 410和传动轴套 420分别旋转。 本例中, 优选传动轴 410后 端伸出传动轴套 420后端面, 且二者后端分别设置与驱动装置相配合的结 构, 传动轴 410后端和传动轴套 420后端可以分别设置传动齿。 驱动装置 可以是现有的装置, 也可以利用后述的驱动装置。
以下对泵送系统的工作原理进行描述, 结合泵送系统的控制方法, 详 细说明本发明提供的泵送系统及泵送系统的分配机构的技术效果。 对本发 明提供的泵送系统的控制方法不再单独描述。
请参考图 8, 该图是实施例一泵送系统中, 各输送缸活塞速度与时间 之间的函数图; 图中, 横向坐标表示时间 t, 纵坐标表示速度 V , 向前运动 的速度为正值, 向后运动的速度为负值; 实线表示第一输送缸 310活塞的 速度变化, 单点划线表示第三输送缸 330的速度变化, 双点划线表示第二 输送缸 320的速度变化。
以图 9所示的状态为基础, 该图是实施例一中, 泵送系统的一种状态 的立体结构示意图。 在第二分配管 120通过输料孔 201与第二输送缸 320 相通(指与输送缸的泵送腔相通, 为了筒便起见, 本文件中, 筒称为与相 应的输送缸相通),第一分配管 110通过输料孔 201与第一输送缸 310相通, 第三输送缸 330与料斗内的空间相通。
以图 8中坐标原点为起始, 在 0到 tl期间, 第二输送缸 320的活塞向 前减速移动, 第一输送缸 310的活塞从最后端向前加速移动, 二者分别通 过第二分配管 120和第一分配管 110向外泵送混凝土。优选的技术方案是, 在 0到 tl期间,使第一输送缸 310的活塞的加速度与第二输送缸 320的活 塞的加速度相等, 即使第一输送缸 310活塞与第二输送缸 320活塞的速度 变化率相等, 使第一输送缸 310活塞与第二输送缸 320活塞速度之和保持 不变, 以使泵送系统向外泵送混凝土的速度保持不变。 在 tl时刻, 第二输 送缸 320的活塞运动到最前端,其运动速度也减小到零, 不再泵送混凝土, 第一输送缸 310的活塞速度达到最大, 且开始匀速运动。 在 0到 tl期间, 第三输送缸 330与料斗内空间相通, 可以通过输料孔 201进行吸料, 如图 所示, 第三输送缸 330的活塞反向移动, 速度记为负值; 实际上, 在第一 分配管 110和第二配管 120均与第三输送缸 330不相通时,第三输送缸 330 就可以开始吸料; 如图所示, 本例中, 从 0时刻开始, 第三输送缸 330的 吸料速度随其活塞运动速度减小而逐渐减小, 在到达 tl时刻之前, 第三输 送缸 330的活塞已经移动到最后端, 并停止移动, 吸料完毕。 当然, 根据 实际需要, 可以对吸料时间进行相应的调整, 比如说可以延长到 tl时刻, 也可以延长到下述第二分配管 120与第三输送缸 330相通之前的时刻。
在 tl到 t2之间,第一输送缸 310的活塞匀速向前移动,通过第一分配 管 110向外均匀泵送混凝土; 同时, 使第二分配管 120旋转, 直到第二分 配管与 120与第三输送缸 330相通。在第二分配管与 120与第三输送缸 330 相通时, 泵送系统的状态如图 10所示, 该图示出实施例一中, 泵送系统的 另一种状态的立体结构示意图。在图 10所示的状态,第三输送缸 330准备 完毕, 等待泵料。 第二分配管 120完成旋转的时间应当不迟于 t2时刻, 以 使第三输送缸 330进行泵料。 到达 t2时刻, 使第一输送缸 310的活塞开始 减速移动。
在第二分配管 120旋转, 并与第二输送缸 320不相通, 保持隔离时, 就可以使第二输送缸 320进行吸料, 设第二输送缸 320开始吸料的时刻为 til , tl与 til之间应当具有一定的时间差, 即使第二输送缸 320停顿 tl至 til之间的时间, 以避免第二输送缸 320将泵出混凝土吸入。
在 t2到 t3期间, 第一输送缸 310的活塞减速移动, 第三输送缸 330 的活塞从最后端向前加速移动, 二者分别通过第一分配管 110和第二分配 管 120向外泵送混凝土; 同样, 优选使第一输送缸 310的活塞的加速度与 第三输送缸 330的活塞的加速度相等, 以使泵送系统向外泵送混凝土的速 度保持不变。 在 t3时刻, 第一输送缸 310的活塞速度减小为零, 第三输送 缸 330的活塞速度达到最大,并开始向外匀速泵料。在 t2到 t3之间的预定 时刻, 第二输送缸 320完成吸料; 本例中, 为了延长吸料时间, 可以使第 二输送缸 320吸料时的最大速度大于第二输送缸 320泵料时的最大速度, 并可以使其完成吸料的时刻延长至第一分配管 110与第二输送缸 320相通 之间的任意时刻。
在 t3到 t4期间,使第三输送缸 330通过第二分配管 120向外均匀泵送 混凝土;使第一分配管 110旋转,直到第一分配管与 110与第二输送缸 320 相通, 第二输送缸 320准备完毕, 等待泵料; 第一分配管 110完成旋转的 时间应当不迟于 t4时刻。到达 t4时刻,使第三输送缸 330的活塞开始减速 移动。
在第一分配管 110旋转, 并与第一输送缸 310不相通, 保持隔离时, 可以使第一输送缸 310进行吸料,设第一输送缸 310开始吸料的时刻为 t31 , t3与 t31之间应当具有一定的时间差。
在 t4到 t5期间, 第三输送缸 330的活塞减速移动, 第二输送缸 320 的活塞从最后端向前加速移动, 二者分别通过第二分配管 120和第一分配 管 110向外泵送混凝土。在 t5时刻,第三输送缸 330的活塞速度减小为零, 第二输送缸 320的活塞速度达到最大, 并开始向外匀速泵料。 在 t4到 t5 之间的预定时刻, 第一输送缸 310完成吸料。
在 t5到 t6期间,使第二输送缸 320通过第一分配管 110向外均匀泵送 混凝土; 同时, 使第二分配管 120旋转, 直到第二分配管与 120与第一输 送缸 310相通, 第一输送缸 310准备完毕, 等待泵料; 第二分配管 120完 成旋转的时间应当不迟于 t6时刻。 在第二分配管 120旋转, 并与第三输送 缸 330不相通, 保持隔离时, 可以使第三输送缸 330进行吸料, 设第一输 送缸 310开始吸料的时刻为 t51 , t5与 t51之间应当具有一定的时间差。 到
达 t6时刻时,使第二输送缸 320的活塞开始减速移动,再使第一输送缸 310 的活塞开始向前加速移动, 重复上述过程, 可以使泵送系统连续、 均匀地 泵送混凝土。
根据上述对泵送系统的分配机构工作过程的描述, 可以确定: 利用本 发明提供的泵送系统的分配机构, 根据预定的规律旋转预定的分配管, 可 以协调至少两个输送缸的泵送过程, 使泵送系统能够连续并均匀地向外泵 送混凝土, 不仅能够消除泵送过程中的泵送间隔时间, 还可以使泵送系统 均匀地向外泵送混凝土, 减小或避免物料的脉动性流动, 进一步减小由于 混凝土流动产生的振动。 当然, 在一个输送缸泵送过程结束之前, 使另一 个输送缸进行泵料就可以消除泵送过程中的泵送间隔时间; 在一个输送缸 泵送速度减小时, 使另一个输送缸开始加速泵料, 且使二者泵送速度(活 塞的移动速度) 以相同的速率变化, 并在一个输送缸速度减小到零时, 使 另一个输送缸的泵送速度最大并开始匀速移动, 这样可以使泵送系统均匀 地向外泵送混凝土。
为了实现输送缸与分配管运动关系的联动, 可以通过相应的控制器实 现, 比如, 以预定的输送缸的运动速度为基础, 根据预定的关系和预定的 运动规律, 控制其他输送缸的运动速度及相关分配管的旋转运动; 也可以 根据预定的规律, 轮换以勾速泵料的输送缸为基础, 控制分配管的旋转运 动; 当然, 也可以通过相反的方法, 以预定的分配管的状态为基础, 根据 预定的关系及运动规律控制预定输送缸的运动, 以使泵送系统能够以上述 控制方法进行运转。
根据上述描述, 可以看出, 使泵送系统连接泵送或均匀泵送不限于上 述控制方法实现, 使两个分配管分别在适当的角度范围内摆动, 也可以实 现连续泵送或均匀泵送的目的; 比如, 使第一分配管 110在两个极限位置 之间摆动,并使其在两个极限位置分别与第一输送缸 310与第二输送缸 320 相通, 使第二分配管 120在两个极限位置之间摆动, 并使其在两个极限位 置分别与第三输送缸 330与第二输送缸 320相通, 也可以实现两个输送缸 协调泵料或吸料, 使泵送系统连续或均匀泵料; 只是此时, 分配管的摆动 可以会产生由于摆动而产生的振动。
另外, 由于通过两个分配管、 两个输送缸协调动作, 输送缸和分配管 进行位置转换的时间可以比较长; 与现有的降低分配阀摆缸沖击或缩短摆 动油缸的换向时间的技术方案相比, 上述泵送系统可以使输送缸与分配管 运动速度比较小, 这不仅能够减小输送缸与分配管运动对泵送系统产生的 振动, 而且可以为泵送系统的控制与操作提供便利。
可以理解, 分配机构不限于包括两个分配管, 也可以设置更多个分配 管, 当然, 在耐磨板 200上要设置更多个输料孔 201 , 且输料孔 201的数 量应当多于分配管的数量, 以在至少两个分配管分别通过输料孔与两个输 送缸相通时, 有一个输送缸可以进行吸料。 保证至少两个分配管与两个输 送缸相通, 可以为协调两个输送缸的动作提供前提, 以保持泵送过程的连 续, 或者实现均匀泵送。
根据上述描述, 泵送系统及泵送系统分配机构运行需要适当的驱动装 置, 驱动输送缸可以是现有的液压油缸, 驱动分配管进行旋转运动, 也可 以是现有的 S阀摇摆机构, 还可以是其他驱动装置; 为使分配管进行圓周 式旋转运动, 本发明还提供了另外两种驱动装置。 由于驱动装置可以驱动 上述的传动轴 410或 /和传动轴套 420进行旋转,传动轴 410和传动轴套 420 作为分配机构的传动部分发挥作用; 为了描述的方便, 以下以驱动传动轴 410为例对驱动装置进行的描述。
请参考图 11 , 该图是本发明提供泵送系统的分配机构中, 第一种驱动 装置的结构筒图。
该驱动装置包括摆摇臂 520和两个摆摇油缸 510, 摆摇臂 520—端与 传动轴 410的后端相连, 另一端与摆摇油缸 510的一端铰接相连, 摆摇油 缸 510的另一端铰接在预定基础 (图中未示出)上, 该预定基础与耐磨板 200相对固定; 摆摇臂 520的一端与传动轴 410的后端之间通过棘轮机构 530传动。 如图所示, 棘轮机构 530包括与摆摇臂 520固定的内棘齿 531、 内端与传动轴 410边缘部分铰接的传力杆 532和使传力杆 532外端保持与 内棘齿 510相接触的弹簧片 533; 弹簧片 533—端支撑在传动轴 410上, 另一端支撑在传力杆 532的靠近外端的部位。 以图 11为参考,在摆摇油缸 510驱动摆摇臂 520顺时针旋转时, 内棘齿 531与传力杆 532相抵触, 进
而驱动传动轴 410顺时针旋转。 在摆摇油缸 510驱动摆摇臂 520逆时针旋 转时, 内棘齿 510使传力杆 532克服弹簧片 533作用力绕其内端铰接轴逆 时针旋转, 摆摇臂 520空转, 传动轴 410不随摆摇臂 520旋转; 这样, 该 驱动装置就可以将摆摇臂 520的摇动转化为旋转运动, 使传动轴 410以预 定的运动规律进行圓周式旋转, 使第二分配管 120进行圓周式运动, 并在 三个输料孔 201之间进行位置转换。
根据上述描述, 棘轮机构 530不限于上述结构, 也可以通过外棘齿实 现动力传递, 在此不再详细描述。
请参考图 12, 该图是本发明提供泵送系统的分配机构中, 第二种驱动 装置的结构筒图, 同时也是该驱动装置处于驱动状态时的结构筒图。
该驱动装置包括驱动齿条 620、锁止齿条 640、驱动油缸 650和锁止油 缸 610。 锁止齿条 630—端与预定基础铰接, 另一端与转动轴套 630铰接; 锁止齿条 630两端的铰接轴线与传动轴 410的轴线平行,即与旋转轴线 0-0 平行, 为了节省空间, 本例中, 锁止齿条 630设置为弧形结构。 锁止油缸 650—端与预定基础铰接, 另一端与锁止齿条 640铰接, 锁止油缸 650的 伸缩方向与旋转轴线 0-0垂直。驱动油缸 650的一端与安装在预定基础上, 另一端与滑动套 611可滑动配合, 且穿过滑动套 611与驱动齿条 620的铰 接相连, 滑动套 611与预定基础固定。 驱动齿条 620的另一端与转动轴套 630可滑动配合, 且其延伸方向与旋转轴线 0-0垂直。 上述预定基础与耐 磨板 200相对固定。 传动轴 410后端具有与传动齿, 该传动齿能够与驱动 齿条 620及锁止齿条 640的齿相配合, 进而能够与驱动齿条 620及锁止齿 条 640相啮合。
该驱动装置的工作原理如下:
该驱动装置的具有两种状态, 一种是驱动状态, 一种是锁止状态。 请 参考图 12所示的驱动状态, 该状态下, 锁止油缸 650缩短, 锁止齿条 640 与传动轴 410后端的传动齿分离; 此时, 驱动齿条 620与传动轴 410后端 的传动齿相啮合;驱动油缸 610伸缩方向与驱动齿条 620的延伸方向相同。 在该状态下, 由于滑动套 611限制了驱动油缸 610的自由度, 在驱动油缸 610伸缩时, 可以通过驱动齿条 620驱动传动轴 410旋转。
请参考图 13 , 该图是图 12所示第二种驱动装置处于锁止状态下的结 构筒图。 在该状态下, 锁止油缸 650伸长时, 锁止齿条 640逆时针旋转, 锁止齿条 640带动驱动齿条 620旋转, 使驱动齿条 620与传动轴 410后端 的传动齿分离; 同时, 锁止齿条 640与传动轴 410后端的传动齿相啮合, 将传动轴 410锁止, 防止第二分配管 120在其他作用力下旋转。
通过液压系统, 使上述驱动装置在两种状态下进行转换, 在需要第二 分配管 120旋转时, 可以使驱动装置处于驱动状态, 并使驱动油缸 610伸 长或缩短, 使传动轴 410旋转 120度, 实现第二分配管 120的位置转换。 需要第二分配管 120保持不动, 使相应的输送缸泵料时, 可以使驱动装置 处于锁止状态, 锁止齿条 640与传动轴 410的传动齿相啮合, 使第二分配 管 120保持不动。 两个状态的转换, 可以实现驱动传动轴 410按预定规律 旋转。
在安装空间足够的情况下, 也可以使驱动油缸 610与驱动齿条 620— 体旋转, 请参考图 14, 该图是本发明提供的第三种驱动装置的结构筒图。 与第二种驱动装置相比, 第三种驱动装置中, 驱动油缸 610的一端与驱动 齿条 620之间固定相连, 另一端与预定基础铰接相连, 这样, 在锁止油缸 650伸长时, 驱动油缸 610与驱动齿条 620可以一体旋转, 从驱动状态转 换到锁止状态, 实现上述目的。
由于上述泵送系统具有上述技术效果, 提供的包括上述泵送系统的混 凝土泵车也具有相对应的技术效果。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。
Claims
1、 一种泵送系统的分配机构, 其特征在于, 包括耐磨板(200)和至 少两个分配管, 所述分配管分别具有输入端和输出端, 且所述分配管的输 出端之间可旋转相连, 形成一旋转轴线(0-0); 两个分配管的输入端分别 偏离所述旋转轴线 (0-0), 且所述输入端的端面与耐磨板(200) 的耐磨 面相配合;所述耐磨板( 200 )具有至少三个输料孔( 201 ),所述输料孔( 201 ) 分布在所述旋转轴线( 0-0 )周围;在各所述分配管绕所述旋转轴线( 0-0 ) 旋转时, 能够顺序与至少两个输料孔(201 )相通。
2、根据权利要求 1所述的泵送系统的分配机构, 其特征在于, 包括两 个所述分配管。
3、根据权利要求 2所述的泵送系统的分配机构, 其特征在于, 所述耐 磨板( 200 )具有 3个输料孔( 201 ), 所述 3个输料孔( 201 ) 均匀分布在 所述旋转轴线(0-0) 的周围。
4、根据权利要求 2或 3所述的泵送系统的分配机构, 其特征在于, 还 包括传动机构, 该传动机构包括一个传动轴( 410 )和可旋转地套在该传动 轴( 410 )外的传动轴套( 420 );所述传动轴( 410 )的前端与传动轴套( 420 ) 的前端分别与两个所述分配管固定; 所述传动轴(410)的后端与传动轴套 (420) 的后端均穿过所述耐磨板(200) 向后伸出。
5、根据权利要求 4所述的泵送系统的分配机构, 其特征在于, 所述传 动轴 (410) 的后端伸出所述传动轴套(420) 的后端面。
6、根据权利要求 4所述的泵送系统的分配机构, 其特征在于, 还包括 两个驱动装置, 所述传动轴(410)后端和所述传动轴套(420)后端分别 与两个驱动装置相连。
7、根据权利要求 6所述的泵送系统的分配机构, 其特征在于, 所述驱 动装置包括摆摇臂(520)和摆摇油缸(510), 所述摆摇臂(520)—端与 传动轴(410) 的后端或传动轴套(420) 的后端相连, 另一端与摆摇油缸 (510) 的一端铰接相连, 摆摇油缸(510) 的另一端铰接在预定基础上, 该预定基础与耐磨板(200)相对固定; 所述摆摇臂(520) 的一端与传动 轴( 410 )的后端或传动轴套( 420 )的后端之间通过棘轮机构( 530 )传动。
8、根据权利要求 6所述的泵送系统的分配机构, 其特征在于, 所述驱 动装置包括驱动油缸(610)、 锁止油缸(650)、 锁止齿条(640)和驱动齿 条(620), 所述锁止齿条(640) 两端分别与预定基础和转动轴套(630) 铰接; 所述驱动齿条(620) 的一端与所述转动轴套(630)可滑动配合, 另一端与驱动油缸(610)—端相连, 所述驱动油缸(610) 的另一端与预 定基础相连; 所述锁止油缸(650)—端与所述预定基础铰接, 另一端与所 述锁止齿条(640)铰接; 所述预定基础与所述耐磨板(200)相对固定; 所述传动轴 (410)后端或所述传动轴套(420)后端具有传动齿;
在所述锁止油缸(650)缩短时, 所述锁止齿条(640)与所述传动齿 分离, 所述驱动齿条(620)与所述传动齿相啮合, 所述驱动油缸(610) 的伸缩方向与驱动齿条(620) 的延伸方向相同; 所述锁止油缸(650)伸 长时, 所述锁止齿条(640)与所述传动齿相啮合, 所述驱动齿条(620) 与所述传动齿分离。
9、 根据权利要求 8所述的泵送系统的分配机构, 其特征在于, 所述驱动装置还包括与预定基础固定的滑动套(611), 所述驱动油缸
(610) 的一端与所述滑动套(611)可滑动配合, 且穿过该滑动套(611) 与所述驱动齿条(620)铰接相连;
或,
所述驱动油缸(610) 的一端与驱动齿条(620) 固定相连, 另一端与 预定基础铰接相连。
10、 一种泵送系统, 包括料斗, 其特征在于, 还包括至少三个输送缸 和权利要求 1-9任一项所述的泵送系统的分配机构, 所述分配管位于料斗 内, 且耐磨板(200)与料斗固定, 且耐磨板(200)的耐磨面朝向料斗内, 所述输送缸分别与耐磨板(200) 的一个输料孔(201)相通, 所述分配管 可相对于料斗旋转。
11、 一种混凝土泵车, 包括臂架系统和泵送系统, 其特征在于, 所述 泵送系统为权利要求 10所述的泵送系统,各所述分配管的输出端均与所述 臂架系统的输送管相通。
12、 一种泵送系统的控制方法, 其特征在于, 所述泵送系统为权利要 求 10所述的泵送系统, 两个所述分配管分别为第一分配管 (110)和第二 分配管( 120 ),三个所述输送缸分别为第一输送缸( 310 )、第二输送缸( 320 ) 和第三输送缸( 330 );
该控制方法包括:
在第一分配管 (110)和第二分配管 (120)分别与第一输送缸(310) 和第二输送缸(320)相通, 且第二输送缸( 320) 的活塞向前减速移动时 的第一期间内, 使第一输送缸(310)的活塞向前加速移动; 在所述第二输 送缸( 320)的活塞向前的移动速度减小为零时, 使所述第一输送缸(310) 的活塞移动速度最大, 并开始勾速移动; 在第一输送缸(310)勾速移动的 第二期间内, 使第二分配管 (120)从与第二输送缸(320)相通的位置旋 转到与第三输送缸( 330)相通的位置, 并使第三输送缸( 330 )在第二分 配管 (120) 与第三输送缸( 330 )相通时刻之前的预定时刻完成吸料。
13、根据权利要求 12所述的泵送系统的控制方法, 其特征在于, 在所 述第一期间内,第一输送缸( 310 )的活塞的加速度与所述第二输送缸( 320 ) 的活塞的加速度相等。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010266367.X | 2010-08-25 | ||
CN201010266367XA CN101922429B (zh) | 2010-08-25 | 2010-08-25 | 混凝土泵车及其控制方法、泵送系统及其分配机构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012024964A1 true WO2012024964A1 (zh) | 2012-03-01 |
Family
ID=43337559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/075715 WO2012024964A1 (zh) | 2010-08-25 | 2011-06-14 | 混凝土泵车及其控制方法、泵送系统及其分配机构 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101922429B (zh) |
WO (1) | WO2012024964A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102619717A (zh) * | 2012-04-25 | 2012-08-01 | 中联重科股份有限公司 | 泵送分配机构、泵送装置及其控制方法、混凝土泵车 |
CN106088611A (zh) * | 2016-06-22 | 2016-11-09 | 安庆海纳信息技术有限公司 | 一种建筑用混凝土地泵终端辅助浇筑装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101922429B (zh) * | 2010-08-25 | 2012-07-25 | 三一重工股份有限公司 | 混凝土泵车及其控制方法、泵送系统及其分配机构 |
CN102505851B (zh) * | 2011-09-28 | 2013-05-01 | 中联重科股份有限公司 | 一种混凝土泵车和用于混凝土泵车的泵送控制系统和方法 |
CN103161314B (zh) * | 2011-12-12 | 2015-10-07 | 三一汽车制造有限公司 | 一种摇摆机构及泵送系统、混凝土设备 |
CN102518304B (zh) * | 2012-01-10 | 2014-01-15 | 三一汽车制造有限公司 | 一种摇臂结构、摆摇机构、泵送系统及工程机械 |
CN102588243A (zh) * | 2012-03-15 | 2012-07-18 | 三一重工股份有限公司 | 一种工程机械、物料泵送系统及其泵送方法 |
CN103423136A (zh) * | 2012-05-15 | 2013-12-04 | 北京华德创业环保设备有限公司 | 一种工业固体泵输出切换管的切换结构 |
CN103016332B (zh) * | 2012-12-19 | 2015-11-04 | 三一汽车制造有限公司 | 物料泵送系统、混凝土泵及消防泵车 |
CN106194207A (zh) * | 2015-05-06 | 2016-12-07 | 四川睿铁科技有限责任公司 | 一种衬砌模板台车用混凝土配管方法及配管机 |
CN109139044B (zh) * | 2018-07-17 | 2019-11-26 | 山东科技大学 | 一种矿用输送混凝土双柱塞泵防脉冲系统 |
CN109113763B (zh) * | 2018-07-24 | 2019-09-24 | 山东科技大学 | 无脉冲湿喷机 |
CN115143072B (zh) * | 2022-07-07 | 2023-03-21 | 中联重科股份有限公司 | 用于泵送系统的控制方法、处理器及泵送系统 |
CN115853794B (zh) * | 2023-03-02 | 2023-05-26 | 四川省机械研究设计院(集团)有限公司 | 一种防空转水泵 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1266130B (de) * | 1963-11-08 | 1968-04-11 | Eugene Lee Sherrod | Mehrzylinderkolbenpumpe zum Foerdern von Beton od. dgl. |
US3663129A (en) * | 1970-09-18 | 1972-05-16 | Leon A Antosh | Concrete pump |
FR2247628A1 (en) * | 1973-10-12 | 1975-05-09 | Italiana Forme Acciaio Compagn | Three-way distributor for twin-cylinder concrete pump - has rotatable S-shaped pipe section connecting with one or other cylinder |
DE3219882A1 (de) * | 1982-05-27 | 1983-12-01 | Maschinenfabrik Walter Scheele GmbH & Co KG, 4750 Unna-Massen | Betonpumpe |
DE3343502A1 (de) * | 1982-12-22 | 1984-06-28 | Gerd Wolfgang 6360 Friedberg Schellenberg | Steuerschieber fuer eine kolbenpumpe, insbesondere zum foerdern von beton |
CN201071977Y (zh) * | 2007-07-25 | 2008-06-11 | 长沙中联重工科技发展股份有限公司 | 一种混凝土泵s管阀传动轴的连接结构 |
CN101718265A (zh) * | 2009-12-16 | 2010-06-02 | 三一重工股份有限公司 | 泵送设备的密封组件、分配阀总成、泵送设备及控制方法 |
CN101787973A (zh) * | 2010-02-09 | 2010-07-28 | 三一重工股份有限公司 | 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车 |
CN101922429A (zh) * | 2010-08-25 | 2010-12-22 | 三一重工股份有限公司 | 混凝土泵车及其控制方法、泵送系统及其分配机构 |
-
2010
- 2010-08-25 CN CN201010266367XA patent/CN101922429B/zh active Active
-
2011
- 2011-06-14 WO PCT/CN2011/075715 patent/WO2012024964A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1266130B (de) * | 1963-11-08 | 1968-04-11 | Eugene Lee Sherrod | Mehrzylinderkolbenpumpe zum Foerdern von Beton od. dgl. |
US3663129A (en) * | 1970-09-18 | 1972-05-16 | Leon A Antosh | Concrete pump |
FR2247628A1 (en) * | 1973-10-12 | 1975-05-09 | Italiana Forme Acciaio Compagn | Three-way distributor for twin-cylinder concrete pump - has rotatable S-shaped pipe section connecting with one or other cylinder |
DE3219882A1 (de) * | 1982-05-27 | 1983-12-01 | Maschinenfabrik Walter Scheele GmbH & Co KG, 4750 Unna-Massen | Betonpumpe |
DE3343502A1 (de) * | 1982-12-22 | 1984-06-28 | Gerd Wolfgang 6360 Friedberg Schellenberg | Steuerschieber fuer eine kolbenpumpe, insbesondere zum foerdern von beton |
CN201071977Y (zh) * | 2007-07-25 | 2008-06-11 | 长沙中联重工科技发展股份有限公司 | 一种混凝土泵s管阀传动轴的连接结构 |
CN101718265A (zh) * | 2009-12-16 | 2010-06-02 | 三一重工股份有限公司 | 泵送设备的密封组件、分配阀总成、泵送设备及控制方法 |
CN101787973A (zh) * | 2010-02-09 | 2010-07-28 | 三一重工股份有限公司 | 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车 |
CN101922429A (zh) * | 2010-08-25 | 2010-12-22 | 三一重工股份有限公司 | 混凝土泵车及其控制方法、泵送系统及其分配机构 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102619717A (zh) * | 2012-04-25 | 2012-08-01 | 中联重科股份有限公司 | 泵送分配机构、泵送装置及其控制方法、混凝土泵车 |
CN102619717B (zh) * | 2012-04-25 | 2014-09-17 | 中联重科股份有限公司 | 泵送分配机构、泵送装置及其控制方法、混凝土泵车 |
CN106088611A (zh) * | 2016-06-22 | 2016-11-09 | 安庆海纳信息技术有限公司 | 一种建筑用混凝土地泵终端辅助浇筑装置 |
Also Published As
Publication number | Publication date |
---|---|
CN101922429B (zh) | 2012-07-25 |
CN101922429A (zh) | 2010-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012024964A1 (zh) | 混凝土泵车及其控制方法、泵送系统及其分配机构 | |
WO2013104158A1 (zh) | 一种泵送机构及包括该泵送机构的物料泵送设备 | |
WO2011097853A1 (zh) | 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车 | |
CN1042258C (zh) | 具有输送缸的泥浆泵 | |
CN102146913B (zh) | 泵送系统及其分配阀、混凝土输送机械 | |
JP5934543B2 (ja) | 流体圧駆動ユニット | |
WO2011153873A1 (zh) | 泵送装置的分配机构、泵送装置、混凝土泵车及混凝土泵车的控制方法 | |
CN111216215A (zh) | 混凝土3d打印机器人 | |
CN213897465U (zh) | 一种市政管网快速清淤设备 | |
CN103291060A (zh) | 一种自动抹灰机 | |
JP4129761B2 (ja) | 往復動型粘性流体ポンプの運転制御装置 | |
CN101718265B (zh) | 泵送设备的密封组件、分配阀总成、泵送设备及控制方法 | |
JP2001115951A (ja) | 送出ポンプの送出量調整機構 | |
CN201671345U (zh) | 泵送装置及其分配机构和混凝土泵车 | |
CN106968908B (zh) | 一种平稳输送混凝土泵以及控制方法 | |
WO2012088826A1 (zh) | 控制混凝土泵在停机后再次泵送和反泵的方法 | |
CN101881263B (zh) | 一种泵送系统及具有该泵送系统的混凝土泵车 | |
WO2013082909A1 (zh) | 一种活塞式砂浆泵及其泵送系统 | |
CN218092085U (zh) | 具有防凝结结构便于调节的混凝土泵车转台 | |
CN207609521U (zh) | 一种泵送系统及湿喷机 | |
CN213510647U (zh) | 一种高效的混凝土湿喷装置 | |
WO2013086820A1 (zh) | 一种摇摆机构及泵送系统 | |
WO2013104157A1 (zh) | 一种摇臂结构、摆摇机构、泵送系统及工程机械 | |
JP5985555B2 (ja) | 圧送ポンプ | |
CN116771661A (zh) | 泵送系统、用于泵送系统的控制方法和泵送机械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819339 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11819339 Country of ref document: EP Kind code of ref document: A1 |