WO2012014971A1 - Lactic bacterium having an effect of ameliorating metabolic syndrome - Google Patents
Lactic bacterium having an effect of ameliorating metabolic syndrome Download PDFInfo
- Publication number
- WO2012014971A1 WO2012014971A1 PCT/JP2011/067239 JP2011067239W WO2012014971A1 WO 2012014971 A1 WO2012014971 A1 WO 2012014971A1 JP 2011067239 W JP2011067239 W JP 2011067239W WO 2012014971 A1 WO2012014971 A1 WO 2012014971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- lactobacillus
- strain
- adiponectin
- culture
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/135—Bacteria or derivatives thereof, e.g. probiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2400/00—Lactic or propionic acid bacteria
- A23V2400/11—Lactobacillus
- A23V2400/169—Plantarum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K2035/11—Medicinal preparations comprising living procariotic cells
- A61K2035/115—Probiotics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/225—Lactobacillus
- C12R2001/25—Lactobacillus plantarum
Definitions
- the present invention relates to a lactic acid bacterium having an improvement effect on metabolic syndrome, and a pharmaceutical composition and a food composition containing the lactic acid bacterium.
- Non-Patent Documents 1 to 3 Adiponectin secreted from adipocytes acts on muscle cells to enhance sugar transport through activation of IRS-1 and PI3-kinase, and expression of fatty acid transport protein type 1 (FATP-1) and AMP-kinase It is known that insulin sensitivity is increased by increasing fatty acid oxidation and excretion (Non-patent Document 4).
- Adiponectin is also known to have an anti-inflammatory effect on the chronic inflammatory state of adipose tissue, and is known to improve insulin resistance by suppressing the production of TNF ⁇ (Non-patent Document 5). Therefore, increasing the secretion of adiponectin from adipocytes is thought to be important for improving metabolic syndrome including obesity and diabetes. In recent years, research targeting the functional control of adipocytes has attracted attention. It has become a target for the function of food factors (Non-Patent Document 6).
- Non-Patent Documents 7 to 11 Further, regarding the relationship between adiponectin and IL-10, it has been shown that when adiponectin is added to human primary cultured macrophage cells, the amount of IFN ⁇ secretion decreases and the amount of IL-10 secretion increases (non-patent document). 12).
- Patent Document 1 naringenin chalcone derived from tomato extract
- Patent Document 2 proanthocyanidins derived from grape extract
- Patent Document 3 product-derived polyphenols
- the present inventors When searching for lactic acid bacteria that improve metabolic syndrome, the present inventors have a stronger improvement effect by adding not only adiponectin as an index but also an index indicating suppression of inflammation induced by metabolic syndrome. I thought it could be expected. Then, it discovered that it was necessary to establish the new test system for searching the target lactic acid bacteria. The present inventors then evaluated the ability of adipocytes to produce anti-inflammatory cytokines such as IL-10 secreted from immune system cells in addition to the ability to produce adiponectin in an in vitro test system. As a result of finding that probiotics capable of improving metabolic syndrome including insulin resistance can be searched by controlling the function of, and further earnestly researching it, the present invention has been completed.
- the present invention relates to a genus Lactobacillus that increases adiponectin production for adipocytes and increases production of inflammatory immunity-related cytokines for bone marrow-derived dendritic cells and / or macrophages.
- the present invention also relates to the aforementioned Lactobacillus genus, wherein the inflammatory immunity-related cytokine is IL-10.
- this invention relates to the said Lactobacillus genus microbe which is Lactobacillus plantarum.
- the present invention also relates to a Lactobacillus plantarum OLL2712 strain (Accession Number: FERM BP-11262). Furthermore, this invention relates to the culture of the said microbe, or its processed material.
- the present invention also relates to a pharmaceutical composition
- a pharmaceutical composition comprising one or more selected from the group consisting of the above-mentioned fungus, the above-mentioned culture and its processed product. Furthermore, this invention relates to the said pharmaceutical composition for suppressing accumulation
- the Lactobacillus genus of the present invention can increase adiponectin production with respect to adipocytes, and can increase anti-inflammatory cytokine production with respect to bone marrow-derived dendritic cells and / or macrophages.
- adiponectin in addition to increasing the production of adiponectin, it is also possible to increase the production of anti-inflammatory cytokines independent of adiponectin, and to improve the metabolic syndrome with a highly reliable complex approach Play.
- FIG. 1a is a graph showing the results of the expression level of adiponectin mRNA when pioglitazone (Pio) and / or TNF ⁇ (TNF) is added to 3T3-L1 cells.
- FIG. 1b is a graph showing the results of mRNA expression level of Cu, Zn-SOD when pioglitazone (Pio) and / or TNF ⁇ (TNF) is added to 3T3-L1 cells.
- FIG. 2a is a graph showing the result of the expression level of adiponectin mRNA in 3T3-L1 cells when insulin resistance was induced by addition of TNF ⁇ .
- FIG. 1a is a graph showing the results of the expression level of adiponectin mRNA when pioglitazone (Pio) and / or TNF ⁇ (TNF) is added to 3T3-L1 cells.
- FIG. 2a is a graph showing the result of the expression level of adiponectin
- FIG. 2b is a graph showing the results of mRNA expression levels of Cu, Zn-SOD in 3T3-L1 cells when insulin resistance was induced by addition of TNF ⁇ .
- FIG. 2c is a graph showing the results of the expression level of IL-6 mRNA in 3T3-L1 cells when insulin resistance was induced by addition of TNF ⁇ .
- FIG. 2d is a graph showing the results of mRNA expression level of MCP-1 in 3T3-L1 cells when insulin resistance was induced by addition of TNF ⁇ .
- FIG. 3a is a graph showing the results of adiponectin mRNA expression level in 3T3-L1 cells when insulin resistance was not induced by addition of TNF ⁇ .
- FIG. 3b is a graph showing the results of mRNA expression levels of Cu, Zn-SOD in 3T3-L1 cells when insulin resistance was not induced by addition of TNF ⁇ .
- FIG. 3c is a graph showing the results of the expression level of IL-6 mRNA in 3T3-L1 cells when insulin resistance was not induced by addition of TNF ⁇ .
- FIG. 4a is a graph showing the results of the effect of dead lactic acid bacteria on IL-10 production of mouse bone marrow-derived dendritic cells (BMDC).
- FIG. 4b is a graph showing the results of the effect of dead lactic acid bacteria on IL-12 (p70) production of mouse bone marrow-derived dendritic cells (BMDC).
- FIG. 5a is a graph showing the results of the effect of dead lactic acid bacteria on IL-6 production of mouse macrophages J774.1.
- FIG. 5b is a graph showing the results of the effect of dead lactic acid bacteria on IL-10 production of mouse macrophages J774.1.
- FIG. 5c is a graph showing the results of the effect of dead lactic acid bacteria on IL-12 (p40) production of mouse macrophages J774.1.
- FIG. 6 is a graph showing the effect of lactic acid bacteria skim milk culture on blood adiponectin concentration in diabetic / obese model mice (KKAy mice). Mean values ⁇ SE are shown.
- FIG. 5a is a graph showing the results of the effect of dead lactic acid bacteria on IL-6 production of mouse macrophages J774.1.
- FIG. 5b is a graph showing the results of the effect of dead lactic acid bacteria on IL-10 production of mouse macrophages J774.1.
- FIG. 5c is a graph showing the results of the
- FIG. 7 is a graph showing the effect of lactic acid bacteria skim milk culture on the amount of adiponectin mRNA in visceral adipose tissue-derived adipocytes of diabetic / obese model mice (KKAy mice). Mean values ⁇ SE are shown.
- FIG. 8 is a graph showing the results of the effect of lactic acid bacteria skim milk culture on visceral fat weight of diabetic / obese model mice (KKAy mice). Mean values ⁇ SE are shown.
- FIG. 9 is a graph showing the results of the effects of lactic acid bacteria skim milk culture on blood triglyceride levels in diabetic / obese model mice (KKAy mice). Mean values ⁇ SE are shown.
- FIG. 10 is a graph showing the results of the influence of a lactic acid bacteria skim milk culture on blood HbA1c values in diabetic / obese model mice (KKAy mice). Mean values ⁇ SE are shown.
- the Lactobacillus genus of the present invention increases adiponectin production relative to adipocytes.
- the adipocytes are not particularly limited as long as they are established in vitro (in vitro).
- mouse fibroblast-derived 3T3-L1 cells known as adipocyte models are known. Can be mentioned.
- the Lactobacillus genus of the present invention usually increases the production of inflammatory immunity-related cytokines to cells that do not produce adiponectin, such as bone marrow-derived dendritic cells and macrophages.
- adiponectin such as bone marrow-derived dendritic cells and macrophages.
- the production of inflammatory immune related cytokines is increased against bone marrow derived dendritic cells and / or macrophages. It is confirmed in vitro that the Lactobacillus genus of the present invention increases adiponectin production to adipocytes and / or increases production of inflammatory immune-related cytokines to cells that do not produce adiponectin, respectively. be able to.
- the inflammatory immunity related cytokine includes all cytokines related to inflammatory reaction.
- Inflammatory immunity-related cytokines can be broadly classified into cytokines that have the property of promoting inflammatory responses and cytokines that have the property of suppressing inflammatory responses.
- Cytokines having the property of promoting an inflammatory response include, but are not limited to, for example, IL-1 ⁇ , IL-1 ⁇ , IL-6, IL-7, IL-8, IL-12, IL-13
- Inflammatory cytokines such as IL-17, IL-18, IFN ⁇ , MCP-1, TNF ⁇ , and LIF.
- Cytokines having the property of suppressing inflammatory reactions include, but are not limited to, for example, anti-inflammatory cytokines such as IL-4, IL-10, and TGF- ⁇ , and antiviral cytokines such as IFN ⁇ and IFN ⁇ Etc.
- Preferred inflammatory immunity-related cytokines are those that are associated with metabolic syndrome, such as IL-10 and IL-6, and particularly preferably IL-10.
- production increased means adiponectin (protein, mRNA) expressed by a target cell upon stimulation of a test cell (live or dead) or a sample such as a culture or culture supernatant thereof. This means that the value serving as an index such as the expression level of inflammatory immune-related cytokines increases beyond the range of statistical errors.
- any statistical analysis method known to those skilled in the art may be used, and it is not limited thereto, and examples thereof include Student's t test and Mann-Whitney U test.
- Lactobacillus included in the present invention examples include, but are not limited to, for example, Lactobacillus delbrueckii subsp. Burgaricus, Lactobacillus delbrueckii subsp. lactis, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri, Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus johnsonii, Lactobacillus fermentum, Lactobacillus brevis, Lactobacillus plantarum and the like, preferably Lactobacillus amylovorus, Lactobacillus plantarum and the like, particularly preferably Lactobacillus plantarum.
- the Lactobacillus genus of the present invention is preferably resistant to gastric acid or bile acids. Due to such resistance, for example, as a food composition containing lactic acid bacteria, it can reach the intestine with live bacteria without using an enteric coating material, etc., improving the intestinal environment and continuously improving metabolic syndrome And / or a preventive effect.
- Lactobacillus plantarum OLL2712 (also referred to as strain 23 in the present specification) of the present invention is deposited at the National Institute of Advanced Industrial Science and Technology under the accession number: FERM BP-11262, and has the following characteristics: It is a plantarum fungus.
- the subject for improving and / or preventing metabolic syndrome is an animal suffering from or possibly having a disease associated with metabolic syndrome including obesity and diabetes (for example, human, domestic animal) Species, wild animals, pets, etc.).
- the metabolic syndrome to be improved and / or prevented in the present invention includes, for example, metabolic syndrome such as diabetes, obesity (particularly visceral fat obesity), high blood pressure, high blood sugar, dyslipidemia, arteriosclerosis and the like. It may include diseases that are implicated.
- the Lactobacillus genus of the present invention When the Lactobacillus genus of the present invention is used for pharmaceuticals or foods for the improvement and / or prevention of metabolic syndrome, live bacteria, killed bacteria, cultures and processed products thereof can be used.
- the culture is a culture supernatant or a medium component after completion of cultivation of the Lactobacillus genus of the present invention, and the processed product is not particularly limited as long as it is derived from the culture. And the like obtained by processing such as concentration, pasting, spray drying, freeze drying, vacuum drying, drum drying, liquefaction, dilution and crushing. For these processes, known methods can be used as appropriate.
- the genus Lactobacillus of the present invention may be live or dead.
- the Lactobacillus genus of the present invention for example, a medium component, an additive suitable for oral tube feeding, and a solvent such as water, carbohydrates, proteins, lipids, vitamins Biopharmaceutical trace metals, fragrances, pharmaceutically acceptable carriers, food additives, and other optional components can be added to form pharmaceutical compositions and food compositions.
- a medium component such as water, carbohydrates, proteins, lipids, vitamins Biopharmaceutical trace metals, fragrances, pharmaceutically acceptable carriers, food additives, and other optional components can be added to form pharmaceutical compositions and food compositions.
- the pharmaceutical composition of the present invention typically increases the production of adiponectin on adipocytes and increases the production of inflammatory immune-related cytokines on bone marrow-derived dendritic cells and / or macrophages 1 type or 2 types or more selected from the culture and the processed product.
- a pharmaceutical composition improves the intestinal environment of an ingested individual and has an improving effect on metabolic syndrome.
- the pharmaceutical composition of the present invention can be used for effectively suppressing the accumulation of visceral fat.
- the route of administration of the pharmaceutical composition is not particularly limited, and includes oral or parenteral administration, and examples thereof include oral administration, tube administration, and enteral administration. Oral administration is preferred from the viewpoint of convenience and safety.
- the dosage form is not particularly limited, and can be appropriately selected depending on the administration route.
- Oral preparations can be made into various known dosage forms, such as granules, powders, tablets, pills, capsules, solutions, syrups, emulsions, suspensions, lozenges, and the like. can do.
- enteric preparation it can be more efficiently transported to the intestine without receiving the effect of gastric acid.
- parenteral administration include administration in the form of injections.
- the Lactobacillus genus bacteria of this invention, its culture, or its processed material can also be locally administered to the area
- Carriers that can be used in the pharmaceutical composition of the present invention include surfactants, excipients, coloring agents, flavoring agents, preservatives, stabilizers, buffers, suspending agents, isotonic agents, binders, and disintegrants.
- Lubricants, fluidity promoters, flavoring agents and the like are listed as pharmaceutically acceptable carriers, and other commonly used carriers can be used as appropriate.
- the cell concentration is not particularly limited, but when used as a concentrate, 2 ⁇ 10 10 cells / g or more, when used as a dry product, 3 ⁇ 10 It is preferable to set it to 11 pieces / g or more.
- the amount of Lactobacillus spp., Its culture or processed product thereof is not particularly limited, but can be appropriately adjusted according to the dosage form, symptoms, body weight, use and the like.
- the daily intake of the pharmaceutical composition of the present invention is not particularly limited, but can be appropriately adjusted according to age, symptoms, body weight, use and the like. Typically, 0.1 to 10000 mg / kg body weight can be taken, preferably 0.1 to 1000 mg / kg body weight, more preferably 0.1 to 300 mg / kg body weight.
- the food composition of the present invention typically increases the production of adiponectin on adipocytes and increases the production of inflammatory immune related cytokines on bone marrow-derived dendritic cells and / or macrophages 1 type or 2 types or more selected from the culture and the processed product.
- a food composition improves the intestinal environment of the ingested individual and has an improvement effect on the metabolic syndrome.
- the food composition of the present invention can be used to effectively suppress visceral fat accumulation.
- the food composition of the present invention further includes carbohydrates, proteins, lipids, vitamins, biologically essential trace metals (manganese sulfate, zinc sulfate, magnesium chloride, potassium carbonate, etc.), fragrances, and other ingredients as long as they do not interfere with the growth of lactic acid bacteria. Things can be included.
- saccharide examples include saccharides, processed starch (in addition to dextrin, soluble starch, British starch, oxidized starch, starch ester, starch ether, etc.), dietary fiber, and the like.
- protein examples include whole milk powder, skim milk powder, partially skimmed milk powder, casein, whey powder, whey protein, whey protein concentrate, whey protein isolate, ⁇ -casein, ⁇ -casein, ⁇ -casein, ⁇ -lactoglobulin , ⁇ -lactalbumin, lactoferrin, soy protein, egg protein, meat protein and other animal and vegetable proteins, hydrolysates thereof; butter, milk minerals, cream, whey, non-protein nitrogen, sialic acid, phospholipid, lactose, etc. And various milk-derived components.
- Examples of lipids include animal oils such as lard and fish oil, fractionated oils thereof, hydrogenated oils and transesterified oils; palm oil, safflower oil, corn oil, rapeseed oil, coconut oil, fractionated oils thereof, Examples include vegetable oils such as hydrogenated oils and transesterified oils.
- vitamins include vitamin A, carotene, vitamin B group, vitamin C, vitamin D group, vitamin E, vitamin K group, vitamin P, vitamin Q, niacin, nicotinic acid, pantothenic acid, biotin, inositol, choline.
- Examples of minerals include calcium, potassium, magnesium, sodium, copper, iron, manganese, zinc, and selenium.
- the food composition of the present invention may be a functional food, a food for specified health use, a food for specific use, a functional nutrition food, a health food, a food for nursing care, and a confectionery, lactic acid bacteria beverage, cheese, It may be a dairy product such as yogurt or a seasoning.
- the shape of the food and drink there is no limitation on the shape of the food and drink, and it can take any form of food or drink that can be distributed normally, such as solid, liquid, liquid food, jelly, tablet, granule, capsule, and various foods (milk, Soft drinks, fermented milk, yogurt, cheese, bread, biscuits, crackers, pizza crusts, formula milk, liquid foods, food for the sick, nutritional foods, frozen foods, processed foods and other commercial foods) .
- Manufacture of the said food / beverage products can be performed by those skilled in the art.
- the Lactobacillus genus of the present invention can be processed into general foods and drinks including dairy products and fermented milk, as well as starters for producing dairy products and fermented milk such as yogurt and cheese. It is also possible to use as.
- a starter other microorganisms may be mixed as long as there is no hindrance to the survival and growth of the Lactobacillus genus of the present invention and as long as there is no hindrance to dairy production.
- Lactobacillus delbrueckii subsp for example, Lactobacillus delbrueckii subsp.
- Bulgaricus, Streptococcus which are the main bacterial species as lactic acid bacteria for yogurt It may be mixed with thermophilus, Lactobacillus acidophilus, etc. In addition, it can be mixed with bacterial species generally used for yogurt or cheese to form a starter.
- Production of dairy products and fermented milk using the starter can be performed according to a conventional method.
- plain yogurt can be produced by mixing the above starter with milk or a dairy product cooled after heating, mixing, homogenizing, and sterilizing, and then fermenting and cooling.
- the starter is appropriately selected according to the dairy product and fermented milk to be produced. Specifically, for example, a lactic acid bacterium or bifidobacteria belonging to the genus Streptococcus, Lactobacillus, Lactococcus, Leuconostoc and Pediococcus is used. Can be used.
- Streptococcus lactis Streptococcus cremoris, Streptococcus diacetylactis, Streptococcus thermophilus, Enterococcus faecium, Enterococcus faecalis, Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus delbrueckii subsp.bulgaricus, Lactobacillus delbrueckii subsp.
- lactis Lactobacillus gasseri, Lactobacillus mucosae, Lactobacillus murinus, Lactobacillus plantarum, Lactobacillus oris, Lactobacillus reuteri and Lactobacillus Lactic acid bacteria such as rhamnosus, Bifidobacterium longum, Bifidobacterium bifidum and Bifidobacterium
- a microorganism such as Bifidobacterium such as breve can be used as a starter. More preferably, Lactobacillus delbrueckii subsp.bulgaricus, Streptococcus thermophilus and Lactobacillus delbrueckii subsp. lactis can be used as starters. When these microorganisms are used as starters, they can be used alone or in combination of two or more as required.
- a method for isolating these microorganisms from nature and fermented milk is known.
- already isolated microorganisms can be obtained by distribution from a cell bank or the like.
- lactic acid bacteria starters are commercially available.
- Several products are sold depending on the pH and physical properties of the produced fermented milk.
- the physical properties of fermented milk refer to hardness, smoothness, and the like.
- the microorganism added to the raw milk as a mixed starter can be selected from microorganisms deposited in the cell bank.
- desirable strains that can be utilized in mixed starters include Lactobacillus bulgaricus JCM 1002T and Streptococcus Streptococcus, a lactic acid bacteria starter consisting of a mixed culture of thermophilus ATCC 19258 thermophilus OLS 3059 (FERM BP-10740), Streptococcus thermophilus OLS3294 (NITE P-77), Streptococcus thermophilus OLS3059 (FERMP-15487), Lactobacillus delbrueckii subspecies bulgaricus OLL 1073R-1 (FERM BP-10741), Lactobacillus delbrueckii and a lactic acid bacteria starter comprising a mixed culture of subspecies bulgaricus OLL 1255 (NITE BP-76) and Lactobacillus delbrueckii subspecies bulgaricus OLL
- raw milk may be added with one or more selected from lactic acid bacteria and yeasts other than these lactic acid bacteria.
- Lactobacillus bulgaricus L. bulgaricus
- Streptococcus thermophilus S. thermophilus
- additional microorganisms can also be mixed in this mixing starter in consideration of the fermentation temperature and fermentation conditions of the target fermented milk.
- Other microorganisms such as Lactobacillus gasseri (L. gasseri), Lactobacillus plantarum, and Bifidobacterium can be shown as microorganisms to be additionally mixed in the mixed starter.
- the cell concentration is not particularly limited, but when used as a concentrate, 2 ⁇ 10 10 cells / g or more, when used as a dry product, 3 ⁇ 10 It is preferable to set it to 11 pieces / g or more.
- the content of the Lactobacillus genus of the present invention in the food composition (as the amount of dry substance) is 0.01 to 100 w / w%, more preferably 1 to 10% in the solid content of the food composition. 80 w / w%, more preferably 10 to 40 w / w%.
- the amount of Lactobacillus sp., Its culture or processed product thereof is not particularly limited, but can be appropriately adjusted according to the dosage form, symptoms, body weight, use and the like.
- the daily intake of the food composition of the present invention is not particularly limited, but can be appropriately adjusted according to age, symptoms, body weight, use and the like.
- 0.1 to 10000 mg / kg body weight can be taken, preferably 0.1 to 1000 mg / kg body weight, more preferably 0.1 to 300 mg / kg body weight.
- the dry substance amount of the Lactobacillus genus of the present invention is 0.1 to 100 mg / kg body weight and 0.5 to 10 mg / kg body weight, and the number of the Lactobacillus genus of the present invention is 10 6 to 10 12. Examples are 10 7 to 10 11 , and 10 8 to 10 10 .
- Example 1 Construction of screening system using mouse fibroblast-derived 3T3-L1 cells Screening system for lactic acid bacteria having anti-obesity / anti-diabetic activity using mouse fibroblast-derived 3T3-L1 cell line which is a model of adipocytes was established.
- Test strains From about 270 strains isolated from healthy human feces, 20 strains (strain numbers 1 to 19, 23) having excellent resistance to gastric acid or bile acids were selected and used. In addition to these, a total of 23 strains shown in Table 1 below were used, in which 3 strains (strain numbers 20 to 22) having high immunomodulating activity were added from many strains isolated from various fermented milks.
- Lactic acid bacteria are prepared from skim milk powder medium (Table 2) and MRS medium (Lactobacilli MRS Broth (Difco, No. 288130)) and cultured at 37 ° C.
- the culture supernatant was prepared by first cultivating lactic acid bacteria in skim milk powder medium and MRS medium at 37 ° C. for 18 hours, collecting the supernatant, and then passing the collected supernatant through a 0.22 ⁇ m filter. It was.
- the culture supernatant was stored at ⁇ 20 ° C.
- 3T3-L1 cell line purchased from DS Pharma Biomedical
- DMEM fetal calf serum
- FCS fetal calf serum
- differentiation medium 10% FCS-containing DMEM, 10 ⁇ g / ml insulin, 2.5 ⁇ M dexamethasone, 3 -Isobutyl-1-methylxanthine (0.5 mM).
- the cells were further cultured in the maintenance medium (10 ⁇ g / ml insulin in 10% FCS-containing DMEM) for 48 hours, and thereafter cultured in DMEM containing 10% FCS. Cells 7 days after replacement with maintenance medium were used for the assay.
- the adipocyte differentiation / maintenance reagent (AdipoInducer Reagent (for animal cell)) was purchased from Takara Bio Inc.
- the composition of the added reagent for differentiation medium was an insulin solution (10 ⁇ g / ml), a dexamethasone solution (2.5 ⁇ M), and a 3-isobutyl-1-methylxanthine solution (0.5 mM).
- the composition of the addition reagent for the maintenance medium was an insulin solution (10 ⁇ g / ml).
- the medium was replaced with a medium supplemented with 1% of lactic acid bacteria culture supernatant 22 hours before collecting the cells, and 2 hours later, 10 ng / ml of TNF ⁇ (purchased from Sigma-Aldrich) was added.
- pioglitazone pioglitazone, sold by Wako Pure Chemical Industries, Ltd., manufacturer: Alexis
- used as a therapeutic agent for diabetes was added to a concentration of 10 ⁇ M to serve as a positive control.
- the cell lysate was collected with TRIzol reagent (Invitrogen, purchased from Life Technologies) and real-time PCR system (Applied Biosystems, Life The gene expression level was measured by Technologies).
- control is 3T3-L1 cells to which nothing is added
- TNF10 ng / ml is “Pio 10 ⁇ M for 3T3-L1 cells to which TNF ⁇ is added at 10 ng / ml.
- Is for 3T3-L1 cells supplemented with 10 ⁇ M pioglitazone, and“ Pio + TNF ” is for 3T3-L1 cells co-added with 10 ⁇ M pioglitazone and 10 ng / ml TNF ⁇ .
- catalase which is another representative antioxidant factor (data not shown).
- Example 2 Anti-obesity and anti-diabetic activity of various lactic acid bacteria skim milk culture supernatants Adiponectin in which the skim milk milk culture supernatants and MRS culture supernatants of 22 strains of lactic acid bacteria of Nos. 1-21 and 23 in Table 1 are 3T3-L1 cells The effect on the expression level was evaluated.
- strain 12 a skim milk powder culture supernatant of Lactobacillus amylovorus MEP222812 (hereinafter referred to as strain 12), Lactobacillus plantarum MEP222817 (hereinafter referred to as strain 17), and Lactobacillus plantarum OLL2712 (hereinafter referred to as strain 23) of number 23 was obtained. It showed the effect of significantly increasing the expression level of adiponectin in 3T3-L1 cells. Furthermore, as a result of confirming reproducibility for these three strains, it was found that two strains, strain 17 and strain 23, showed stable effects.
- strain 22 Lactobacillus delbrueckii subsp. Bulgaricus MEP222822 (hereinafter referred to as strain 22), which has been confirmed to have anti-inflammatory effects such as markedly inducing IL-10 production in mouse bone marrow-derived BMDC cells, is cultured on skim milk powder. Qing was also evaluated at the same time. The results of evaluation in a system in which insulin resistance was induced by TNF ⁇ (10 ng / ml) are shown in FIGS. In FIGS.
- control is 3T3-L1 cells to which nothing has been added
- salted milk powder + TNF is a skim milk powder medium and 3T3-L1 cells to which TNF ⁇ is added at 10 ng / ml.
- strain 22 + TNF is a non-fat dry milk culture supernatant obtained by culturing strain 22 and 3T3-L1 cells supplemented with 10 ng / ml TNF ⁇
- strain 17 + TNF is a non-fat dry milk culture supernatant obtained by culturing strain 17
- strain 23 + TNF is “pio + TNF” in the case of the skim milk culture supernatant obtained by culturing strain 23 and 3T3-L1 cells to which 10 ng / ml of TNF ⁇ is added.
- strains 17 and 23 significantly increased the expression level of adiponectin in 3T3-L1 cells. Furthermore, strain 23 significantly suppressed IL-6 expression and significantly increased Cu, Zn-SOD expression. On the other hand, strain 22 significantly increased the expression level of IL-6, but did not affect the expression levels of other genes. Pioglitazone did not suppress IL-6 but significantly suppressed MCP-1. On the other hand, the skim milk culture supernatant of strain 23 suppressed IL-6 and did not affect MCP-1. The culture supernatant of strain 22 significantly increased IL-6.
- the skim milk culture supernatant of strain 23 increases the adiponectin expression level by a mechanism different from that of pioglitazone.
- the mechanism of action of pioglitazone is a ligand for the nuclear receptor type transcription factor PPAR ⁇ , and changes the expression of genes that are transcriptionally regulated by PPAR ⁇ such as adiponectin. Since PPAR ⁇ is highly expressed especially in adipocytes, it is considered that adipocytes are the main target cells of pioglitazone.
- FIGS. 3a to 3c The results of a similar study in a system that does not induce insulin resistance by the addition of TNF ⁇ are shown in FIGS. 3a to 3c.
- control is 3T3-L1 cells to which nothing is added
- skim milk powder is 3T3-L1 cells to which skim milk medium is added
- strain 17 is In the case of 3T3-L1 cells added with the skim milk powder culture supernatant obtained by culturing the strain 17, “strain 23” is the case of 3T3-L1 cells added with the skim milk powder culture supernatant obtained by culturing the strain 23.
- strain 23 significantly increased the expression levels of adiponectin and Cu, Zn-SOD in 3T3-L1 cells even in the system without addition of TNF ⁇ . Further, although the expression level of IL-6 was not significant, the average value was suppressed by about 20%. On the other hand, strain 17 had no significant effect on any gene expression level.
- the non-fat dry milk culture supernatant of strain 23 increased the adiponectin expression level and suppressed the IL-6 expression level, suggesting the possibility of having anti-obesity / anti-diabetic effects.
- the non-fat dry milk culture supernatant of strain 22 has no such activity, and it was shown that strain 23 has excellent characteristics in terms of utilization of non-fat dry milk culture as an anti-obesity / anti-diabetic material.
- GM-CSF Granulocyte Macrophage RPMI (Roswell Park Memorial) with colony-stimulating factor Institute) -medium 1640 was cultured in 10 ml, and after 3 days, 5 ml of RPMI-medium 1640 containing GM-CSF was added. Five days later, floating cells considered to be BMDC were collected, seeded in a 96-well plate at 1 ⁇ 10 5 cells / well, and lactic acid bacteria killed at each concentration were added simultaneously. After 24 hours, the culture supernatant was collected, and the concentrations of IL-10 and IL-12 (p70) were quantified using a mouse ELISA kit. Antibodies and ELISA kits were purchased from Becton, Dickinson and Company.
- strain 4 The effect of the three freeze-dried dead cells on the cytokine production ability of BMDC cells was examined.
- a strain 22 having known activity and a dead cell of Lactobacillus gasseri MEP222804 (hereinafter referred to as strain 4) were used. Fig.
- strain 12 is a BMDC cell to which a dead cell of strain 12 is added
- strain 17 is a BMDC cell to which a dead cell of strain 17 is added
- 23 is a BMDC cell to which a dead cell of strain 23 is added
- Strain 22 is a BMDC cell to which a dead cell of strain 22 is added
- Strain 4 is a dead cell of strain 4
- the dead cells of strain 23 showed IL-10 and IL-12 production-inducing activity comparable to that of strain 22.
- the dead cells of strain 17 had very low IL-10 and IL-12 (p70) production-inducing activity compared to these, and the dead cells of strain 12 showed little activity.
- Example 4 Assay using mouse macrophage J774.1 cell line
- Mouse macrophage J774.1 cells purchased from Riken Cell Bank (RCB) were cultured in RPMI medium containing 10% FCS and passaged every 3 days.
- Cell suspension prepared to 1 ⁇ 10 6 cells / ml was seeded on a 48-well plate at 250 ⁇ l / well, and freeze-dried cells of various lactic acid bacteria and LPS (Wako) were added at the same time. Qing was recovered. Lyophilized dead cells were adjusted to 10 mg / ml with PBS, diluted with RPMI medium to each concentration, and added to cells at 125 ⁇ l / well.
- LPS was adjusted to 1 mg / ml with distilled water, adjusted to 4 ⁇ g / ml with RPMI medium, and added to cells at 125 ⁇ l / well to a final concentration of 1 ⁇ g / ml.
- IL-6, IL-10, and IL-12 (p40) concentrations in the collected supernatant were quantified using a mouse ELISA kit (Becton, Dickinson, and Company). Since the active form of IL-12 (p70) is not expressed in J774.1 cells, IL-12 (p40) was measured instead.
- strain 17 and strain 23 the effect of three freeze-dried cells of strain 12 on the cytokine production ability of J774.1 cells was examined.
- dead cells of strain 4 significantly enhance the ability of J774.1 cells to produce IL-12p40.
- Strain 22 was predicted to have anti-inflammatory effects such as enhanced IL-10 production from the results of BMDC. Therefore, dead cells (1, 10 ⁇ g / ml) of the above 5 strains were added to J774.1 cells, and the production of IL-6, IL-10, IL-12 (p40) after 48 hours was measured by ELISA. The results are shown in FIGS. In FIGS.
- control is J774.1 cells to which nothing is added
- strain 12 is J774.1 cells to which dead cells of strain 12 are added
- strains “17” is a J774.1 cell to which a dead cell of strain 17 is added
- strain 23 is a J774.1 cell to which a dead cell of strain 23 is added
- strain 22 is strain 22 In the case of J774.1 cells to which the dead cells were added
- strain 4 is the case of J774.1 cells to which the dead cells of strain 4 were added.
- Strain 4 had the highest production induction ability for any cytokine.
- Strain 23 was found to have the same ability to induce IL-10 and IL-12 (p40) production as strain 22.
- strain 23 exhibited a similar IL-10 production-inducing activity to BMDC as strain 22 which is an anti-inflammatory lactic acid bacterium with high immune activity.
- dead cells of strain 23 showed IL-10 production-inducing activity comparable to that of strain 22 against J774.1 cells. That is, the strain 23 is considered to be an anti-inflammatory lactic acid bacterium having a high immune activity that is comparable to the strain 22.
- strain 23 significantly increased adiponectin production relative to 3T3-L1 cells compared to other strains, and both in mouse bone marrow-derived dendritic cells and mouse macrophage J774.1 cells. It was revealed that the production of anti-inflammatory cytokines such as IL-10 was significantly increased compared to other strains. From this result, strain 23 not only improves the metabolic syndrome through enhancing the ability of adipocytes to produce adiponectin, but also enhances the ability to produce anti-inflammatory cytokines such as IL-10 secreted from immune system cells. This suggests an improvement effect on metabolic syndrome. This suggests that the fermentation product using strain 23 has an anti-metabolic syndrome effect.
- Example 5 Efficacy Test Using Diabetes / Obesity Model Mice
- KKAy mice in which the obesity-onset gene AY was introduced into KK mice were used.
- KKAy mice are known to develop obesity, insulin resistance, and hyperlipidemia from a young age.
- the number of strains 23 contained in the lactic acid bacteria culture was 2 ⁇ 10 8 cfu / ml.
- the dosage of strain 23 culture in this study is 1 ⁇ 10 8 cfu / body / day (3.7 ⁇ 10 9 cfu / kg / day).
- -Positive control drug Pioglitazone hydrochloride (Pioglitazone Hydrochloride, Funakoshi Co., Ltd.) was dissolved in carboxymethylcellulose sodium (Wako) solution, diluted with distilled water to 1 mg / ml, and used for administration.
- Pioglitazone hydrochloride is a therapeutic agent for type 2 diabetes, which has been confirmed to suppress TNF ⁇ expression in adipose tissue, improve insulin resistance, and promote sugar uptake and utilization.
- pioglitazone hydrochloride is 112529-15-4 and the chemical name is (5RS) -5- ⁇ 4- [2- (5-Ethylpyridin-2-yl) ethoxy] benzyl ⁇ thiazolidine-2, 4-dione monohydrochloride.
- the dose of pioglitazone hydrochloride in this study is 0.5 mg / body / day. This dose was set with reference to the article by Mohapatra et al. (Mohapatra J, et al., Pharmacology. 84-4: 203, 2009).
- the skim milk powder medium shown in Table 2 is given to the control group, the lactic acid bacteria culture is given to the lactic acid bacteria administration group, and the positive control drug is given to the positive control group once a day at 0.5 ml / body. did.
- water was ad libitum and food was ad libitum CRF-1.
- blood was collected from the tail vein once a week (day 0, day 7, day 14 and day 21) and fasted for 3.5 hours, and blood glucose level and hemoglobin A1c level were measured. After blood collection, CRF-1 was ingested freely.
- body weight and food intake were measured twice a week (day 0, day 4, day 7, day 11, day 14, day 18, day 21) during the administration period of 3 weeks.
- the patient was dissected after euthanasia by cervical dislocation, and the perirenal adipose tissue and epididymal adipose tissue were collected, each wet weight (g) was measured, and the total was taken as the visceral fat weight (g).
- the adipose tissue was separated into a mature adipocyte fraction (MAF fraction) and a stromal blood vessel fraction (SVF fraction) by centrifugation, and the MAF fraction was analyzed for the expression level of adiponectin mRNA.
- MAF fraction mature adipocyte fraction
- SVF fraction stromal blood vessel fraction
- -Blood glucose level Measured with a blood glucose measurement device (Breeze 2, Bayer Yakuhin).
- Blood hemoglobin A1c (HbA1c) The concentration of hemoglobin A1c in blood was measured using a Hemoglobin A1c Testing Analyzer (DCA2000 system, Bayer Medical).
- Blood adiponectin The concentration of adiponectin in blood was measured using a mouse adiponectin ELISA kit (Otsuka Pharmaceutical).
- Blood triglyceride The blood triglyceride concentration was measured using Fuji Dry Chem System and Fuji Dry Chem Slide TG-PIII (Fuji Film).
- Example 6 Production of yogurt A yogurt base mix was prepared according to a conventional method and mixed starter (Lactobacillus bulgaricus and Streptococcus thermophilus) and the mixed starter strain 23 (Lactobacillus plantarum OLL2712, (Accession number: FERM BP-11262)) was added and the inoculated one was fermented to produce yogurt. As a result, it was shown that the yogurt obtained by adding and inoculating the strain 23 had equivalent flavors and physical properties comparable to or higher than the yogurt obtained without addition.
- Lactobacillus of the present invention in addition to increasing the production of adiponectin, it is also possible to increase the production of inflammatory immunity-related cytokines independent of adiponectin, a highly reliable complex Since the metabolic syndrome can be improved by a simple approach, it can be ingested easily and effectively by containing it in a pharmaceutical composition or food composition, and the metabolic syndrome can be improved.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Diabetes (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Child & Adolescent Psychology (AREA)
- Microbiology (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Virology (AREA)
- General Engineering & Computer Science (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
Provided is a novel lactic bacterium capable of ameliorating metabolic syndrome by means of a novel screening method. Specifically disclosed are: a Lactobacillus which increases the production of adiponectin in 3T3-L1 cells and increases the production of an anti-inflammatory cytokine in bone-marrow-derived dendritic cells and/or macrophage; a culture of Lactobacillus; and a processed product of said culture. Also disclosed are a composition for foods and a pharmaceutical composition which contain the aforementioned Lactobacillus, culture, or processed product.
Description
本発明は、メタボリックシンドロームに対する改善効果を有する乳酸菌ならびに該乳酸菌を含む医薬組成物および食品組成物に関する。
The present invention relates to a lactic acid bacterium having an improvement effect on metabolic syndrome, and a pharmaceutical composition and a food composition containing the lactic acid bacterium.
近年、肥満や糖尿病を含めたメタボリックシンドロームの改善に向けて、種々のアプローチが模索されているが、その1つとしてアディポネクチン(adiponectin)が注目されている。アディポネクチンは、脂肪細胞特異的に発現しており、脂肪細胞からのアディポネクチンの分泌は、肥満者や糖尿病者において顕著に抑制されている(非特許文献1~3)。脂肪細胞から分泌されたアディポネクチンは、筋肉細胞に働いてIRS-1、PI3-kinaseの活性化を介して糖輸送を亢進させ、脂肪酸輸送蛋白1型(FATP-1)の発現およびAMP-kinaseを介して脂肪酸の酸化および排出を高めることにより、インシュリン感受性を上昇させることがわかっている(非特許文献4)。また、アディポネクチンには脂肪組織の慢性炎症状態に対する抗炎症作用も認められており、TNFαの産生を抑制することによってもインシュリン抵抗性を改善することが知られている(非特許文献5)。したがって、肥満・糖尿病を含めたメタボリックシンドロームの改善には脂肪細胞からのアディポネクチンの分泌を増加させることが重要であると考えられており、近年、脂肪細胞の機能制御を標的とする研究が注目されており、食品因子の機能のターゲットともなってきている(非特許文献6)。
In recent years, various approaches have been sought for improving metabolic syndrome including obesity and diabetes, and adiponectin is attracting attention as one of them. Adiponectin is expressed specifically in adipocytes, and secretion of adiponectin from adipocytes is significantly suppressed in obese and diabetics (Non-Patent Documents 1 to 3). Adiponectin secreted from adipocytes acts on muscle cells to enhance sugar transport through activation of IRS-1 and PI3-kinase, and expression of fatty acid transport protein type 1 (FATP-1) and AMP-kinase It is known that insulin sensitivity is increased by increasing fatty acid oxidation and excretion (Non-patent Document 4). Adiponectin is also known to have an anti-inflammatory effect on the chronic inflammatory state of adipose tissue, and is known to improve insulin resistance by suppressing the production of TNFα (Non-patent Document 5). Therefore, increasing the secretion of adiponectin from adipocytes is thought to be important for improving metabolic syndrome including obesity and diabetes. In recent years, research targeting the functional control of adipocytes has attracted attention. It has become a target for the function of food factors (Non-Patent Document 6).
一方、サイトカインとメタボリックシンドロームとの関係についても研究されており、例えば、メタボリックシンドロームの動物モデルにおいて、脂肪組織でのIFNγの増加はメタボリックシンドロームを悪化させるが、IL-10の増加はメタボリックシンドロームを改善することが示唆されている(非特許文献7~11)。また、アディポネクチンとIL-10との関係について、ヒト初代培養マクロファージ細胞にアディポネクチンを添加すると、IFNγ分泌量が減少し、IL-10分泌量が増加したとする知見が示されている(非特許文献12)。
On the other hand, the relationship between cytokines and metabolic syndrome has also been studied. For example, in an animal model of metabolic syndrome, an increase in IFNγ in adipose tissue worsens metabolic syndrome, but an increase in IL-10 improves metabolic syndrome. (Non-Patent Documents 7 to 11). Further, regarding the relationship between adiponectin and IL-10, it has been shown that when adiponectin is added to human primary cultured macrophage cells, the amount of IFNγ secretion decreases and the amount of IL-10 secretion increases (non-patent document). 12).
アディポネクチンの産生に影響を与える食品由来成分や食品素材などについても研究されており、例えば、トマト抽出物由来のナリンゲニンカルコン(特許文献1)、ブドウ抽出物由来のプロアントシアニジン(特許文献2)、リンゴ抽出物由来ポリフェノール(特許文献3)などがアディポネクチン産生を増大させる傾向に影響を与えることが示唆されている。
Food-derived ingredients and food materials that affect the production of adiponectin have also been studied. For example, naringenin chalcone derived from tomato extract (Patent Document 1), proanthocyanidins derived from grape extract (Patent Document 2), apple extraction It has been suggested that product-derived polyphenols (Patent Document 3) and the like affect the tendency to increase adiponectin production.
さらに、乳酸菌のアディポネクチン産生への影響についても研究されており、例えば、Lactobacillus
gasseriやLactobacillus helveticusのある菌株が血中アディポネクチン濃度を増加促進または減少抑制することが報告されている(特許文献4および特許文献5)。しかしながら、これらの報告は、ある菌株がインビボ(in vivo)でのアディポネクチン産生に影響を与えたことを示しているに過ぎず、メタボリックシンドロームに対する効果について一面的な評価をしたに止まるものであった。 In addition, the effects of lactic acid bacteria on adiponectin production have been studied, for example, Lactobacillus
It has been reported that some strains of gasseri and Lactobacillus helveticus promote or decrease the blood adiponectin concentration (Patent Document 4 and Patent Document 5). However, these reports only indicate that a strain affected adiponectin production in vivo, and only a one-sided evaluation of the effect on metabolic syndrome. .
gasseriやLactobacillus helveticusのある菌株が血中アディポネクチン濃度を増加促進または減少抑制することが報告されている(特許文献4および特許文献5)。しかしながら、これらの報告は、ある菌株がインビボ(in vivo)でのアディポネクチン産生に影響を与えたことを示しているに過ぎず、メタボリックシンドロームに対する効果について一面的な評価をしたに止まるものであった。 In addition, the effects of lactic acid bacteria on adiponectin production have been studied, for example, Lactobacillus
It has been reported that some strains of gasseri and Lactobacillus helveticus promote or decrease the blood adiponectin concentration (Patent Document 4 and Patent Document 5). However, these reports only indicate that a strain affected adiponectin production in vivo, and only a one-sided evaluation of the effect on metabolic syndrome. .
本発明者らは、メタボリックシンドロームを改善する乳酸菌を探索する際に、アディポネクチンのみを指標とするのではなく、メタボリックシンドロームにより誘導される炎症の抑制を示す指標も加えた方がより強い改善効果が期待できると考えた。そこで、目的の乳酸菌を探索するための新たな試験系を確立する必要があることを見出した。そして本発明者らは、脂肪細胞のアディポネクチン産生能に加え、免疫系細胞から分泌されるIL-10などの抗炎症性サイトカイン産生能をインビトロ(in vitro)試験系において評価することによって、脂肪細胞の機能制御によりインシュリン抵抗性を始めとしたメタボリックシンドロームを改善し得るプロバイオティクスを探索することができることを見出し、さらに鋭意研究を重ねた結果、本発明を完成するに至った。
When searching for lactic acid bacteria that improve metabolic syndrome, the present inventors have a stronger improvement effect by adding not only adiponectin as an index but also an index indicating suppression of inflammation induced by metabolic syndrome. I thought it could be expected. Then, it discovered that it was necessary to establish the new test system for searching the target lactic acid bacteria. The present inventors then evaluated the ability of adipocytes to produce anti-inflammatory cytokines such as IL-10 secreted from immune system cells in addition to the ability to produce adiponectin in an in vitro test system. As a result of finding that probiotics capable of improving metabolic syndrome including insulin resistance can be searched by controlling the function of, and further earnestly researching it, the present invention has been completed.
すなわち本発明は、脂肪細胞に対しアディポネクチン産生を増大させ、かつ、骨髄由来樹状細胞および/またはマクロファージに対し炎症性免疫関連サイトカインの産生を増大させる、Lactobacillus属菌に関する。
また本発明は、炎症性免疫関連サイトカインがIL-10である、前記のLactobacillus属菌に関する。
さらに本発明は、Lactobacillus plantarumである、前記のLactobacillus属菌に関する。
また本発明は、Lactobacillus plantarum OLL2712菌株(受託番号:FERM BP-11262)に関する。
さらに本発明は、前記の菌の培養物またはその加工物に関する。
また本発明は、前記の菌、前記の培養物およびその加工物からなる群から選択される1種または2種以上を含む、医薬組成物に関する。
さらに本発明は、内臓脂肪の蓄積を抑制するための、前記の医薬組成物に関する。
また本発明は、前記の菌、前記の培養物およびその加工物からなる群から選択される1種または2種以上を含む、食品組成物に関する。
さらに本発明は、内臓脂肪の蓄積を抑制するための、前記の食品組成物に関する。 That is, the present invention relates to a genus Lactobacillus that increases adiponectin production for adipocytes and increases production of inflammatory immunity-related cytokines for bone marrow-derived dendritic cells and / or macrophages.
The present invention also relates to the aforementioned Lactobacillus genus, wherein the inflammatory immunity-related cytokine is IL-10.
Furthermore, this invention relates to the said Lactobacillus genus microbe which is Lactobacillus plantarum.
The present invention also relates to a Lactobacillus plantarum OLL2712 strain (Accession Number: FERM BP-11262).
Furthermore, this invention relates to the culture of the said microbe, or its processed material.
The present invention also relates to a pharmaceutical composition comprising one or more selected from the group consisting of the above-mentioned fungus, the above-mentioned culture and its processed product.
Furthermore, this invention relates to the said pharmaceutical composition for suppressing accumulation | storage of a visceral fat.
Moreover, this invention relates to the foodstuff composition containing the 1 type (s) or 2 or more types selected from the group which consists of said microbe, said culture, and its processed material.
Furthermore, this invention relates to the said food composition for suppressing accumulation | storage of a visceral fat.
また本発明は、炎症性免疫関連サイトカインがIL-10である、前記のLactobacillus属菌に関する。
さらに本発明は、Lactobacillus plantarumである、前記のLactobacillus属菌に関する。
また本発明は、Lactobacillus plantarum OLL2712菌株(受託番号:FERM BP-11262)に関する。
さらに本発明は、前記の菌の培養物またはその加工物に関する。
また本発明は、前記の菌、前記の培養物およびその加工物からなる群から選択される1種または2種以上を含む、医薬組成物に関する。
さらに本発明は、内臓脂肪の蓄積を抑制するための、前記の医薬組成物に関する。
また本発明は、前記の菌、前記の培養物およびその加工物からなる群から選択される1種または2種以上を含む、食品組成物に関する。
さらに本発明は、内臓脂肪の蓄積を抑制するための、前記の食品組成物に関する。 That is, the present invention relates to a genus Lactobacillus that increases adiponectin production for adipocytes and increases production of inflammatory immunity-related cytokines for bone marrow-derived dendritic cells and / or macrophages.
The present invention also relates to the aforementioned Lactobacillus genus, wherein the inflammatory immunity-related cytokine is IL-10.
Furthermore, this invention relates to the said Lactobacillus genus microbe which is Lactobacillus plantarum.
The present invention also relates to a Lactobacillus plantarum OLL2712 strain (Accession Number: FERM BP-11262).
Furthermore, this invention relates to the culture of the said microbe, or its processed material.
The present invention also relates to a pharmaceutical composition comprising one or more selected from the group consisting of the above-mentioned fungus, the above-mentioned culture and its processed product.
Furthermore, this invention relates to the said pharmaceutical composition for suppressing accumulation | storage of a visceral fat.
Moreover, this invention relates to the foodstuff composition containing the 1 type (s) or 2 or more types selected from the group which consists of said microbe, said culture, and its processed material.
Furthermore, this invention relates to the said food composition for suppressing accumulation | storage of a visceral fat.
本発明のLactobacillus属菌は、脂肪細胞に対しアディポネクチン産生を増大させ、かつ、骨髄由来樹状細胞および/またはマクロファージに対し抗炎症性サイトカイン産生を増大させることができる。すなわち、アディポネクチンの産生を増大させることに加え、アディポネクチンに依存しない抗炎症性サイトカインの産生増大をも可能とするものであって、極めて信頼性の高い複合的なアプローチでのメタボリックシンドロームの改善効果を奏する。
The Lactobacillus genus of the present invention can increase adiponectin production with respect to adipocytes, and can increase anti-inflammatory cytokine production with respect to bone marrow-derived dendritic cells and / or macrophages. In other words, in addition to increasing the production of adiponectin, it is also possible to increase the production of anti-inflammatory cytokines independent of adiponectin, and to improve the metabolic syndrome with a highly reliable complex approach Play.
本発明のLactobacillus属菌は、脂肪細胞に対してアディポネクチン産生を増大させる。ここで脂肪細胞は、インビトロ(in vitro)での培養が確立されている脂肪細胞であれば、とくに限定されないが、例えば、脂肪細胞のモデルとして知られるマウス繊維芽細胞由来3T3-L1細胞などが挙げられる。
The Lactobacillus genus of the present invention increases adiponectin production relative to adipocytes. Here, the adipocytes are not particularly limited as long as they are established in vitro (in vitro). For example, mouse fibroblast-derived 3T3-L1 cells known as adipocyte models are known. Can be mentioned.
また本発明のLactobacillus属菌は、通常、アディポネクチンを産生しない細胞、例えば、骨髄由来樹状細胞、マクロファージに対し炎症性免疫関連サイトカインの産生を増大させる。好ましくは、骨髄由来樹状細胞および/またはマクロファージに対して炎症性免疫関連サイトカインの産生を増大させる。
本発明のLactobacillus属菌が、脂肪細胞に対してアディポネクチン産生を増大させること、および/または、アディポネクチンを産生しない細胞に対し炎症性免疫関連サイトカインの産生を増大させることは、夫々、インビトロにおいて確認することができる。 The Lactobacillus genus of the present invention usually increases the production of inflammatory immunity-related cytokines to cells that do not produce adiponectin, such as bone marrow-derived dendritic cells and macrophages. Preferably, the production of inflammatory immune related cytokines is increased against bone marrow derived dendritic cells and / or macrophages.
It is confirmed in vitro that the Lactobacillus genus of the present invention increases adiponectin production to adipocytes and / or increases production of inflammatory immune-related cytokines to cells that do not produce adiponectin, respectively. be able to.
本発明のLactobacillus属菌が、脂肪細胞に対してアディポネクチン産生を増大させること、および/または、アディポネクチンを産生しない細胞に対し炎症性免疫関連サイトカインの産生を増大させることは、夫々、インビトロにおいて確認することができる。 The Lactobacillus genus of the present invention usually increases the production of inflammatory immunity-related cytokines to cells that do not produce adiponectin, such as bone marrow-derived dendritic cells and macrophages. Preferably, the production of inflammatory immune related cytokines is increased against bone marrow derived dendritic cells and / or macrophages.
It is confirmed in vitro that the Lactobacillus genus of the present invention increases adiponectin production to adipocytes and / or increases production of inflammatory immune-related cytokines to cells that do not produce adiponectin, respectively. be able to.
ここで、炎症性免疫関連サイトカインとは、炎症反応に関連する全てのサイトカインを包含する。炎症性免疫関連サイトカインは、炎症反応を促進する性質を有するサイトカインと炎症反応を抑制する性質を有するサイトカインとに大別することができる。炎症反応を促進する性質を有するサイトカインとしては、これに限定するものではないが、例えば、IL-1α、IL-1β、IL-6、IL-7、IL-8、IL-12、IL-13、IL-17、IL-18、IFNγ、MCP-1、TNFα、LIFなどの炎症性サイトカインなどが挙げられる。炎症反応を抑制する性質を有するサイトカインとしては、これに限定するものではないが、例えば、IL-4、IL-10、TGF-βなどの抗炎症性サイトカイン、IFNα、IFNβなどの抗ウィルス性サイトカインなどが挙げられる。
Here, the inflammatory immunity related cytokine includes all cytokines related to inflammatory reaction. Inflammatory immunity-related cytokines can be broadly classified into cytokines that have the property of promoting inflammatory responses and cytokines that have the property of suppressing inflammatory responses. Cytokines having the property of promoting an inflammatory response include, but are not limited to, for example, IL-1α, IL-1β, IL-6, IL-7, IL-8, IL-12, IL-13 Inflammatory cytokines such as IL-17, IL-18, IFNγ, MCP-1, TNFα, and LIF. Cytokines having the property of suppressing inflammatory reactions include, but are not limited to, for example, anti-inflammatory cytokines such as IL-4, IL-10, and TGF-β, and antiviral cytokines such as IFNα and IFNβ Etc.
好ましい炎症性免疫関連サイトカインとしては、メタボリックシンドロームとの関連性が認められるものであり、例えば、IL-10やIL-6が挙げられ、とくに好ましくは、IL-10である。
本発明において「産生が増大した」とは、供試菌体(生菌または死菌)またはその培養物や培養上清などの試料の刺激によって、対象の細胞が発現するアディポネクチン(タンパク質、mRNA)の発現量や炎症性免疫関連サイトカインの発現量などの指標となる値が、統計的誤差の範囲を超えて増大することを意味する。統計的な解析は、当業者に知られたあらゆる統計解析手法を用いてよく、これに限定するものではないが、例えばStudent’s t検定や、マンホイットニーのU検定などが挙げられる。 Preferred inflammatory immunity-related cytokines are those that are associated with metabolic syndrome, such as IL-10 and IL-6, and particularly preferably IL-10.
In the present invention, “production increased” means adiponectin (protein, mRNA) expressed by a target cell upon stimulation of a test cell (live or dead) or a sample such as a culture or culture supernatant thereof. This means that the value serving as an index such as the expression level of inflammatory immune-related cytokines increases beyond the range of statistical errors. For the statistical analysis, any statistical analysis method known to those skilled in the art may be used, and it is not limited thereto, and examples thereof include Student's t test and Mann-Whitney U test.
本発明において「産生が増大した」とは、供試菌体(生菌または死菌)またはその培養物や培養上清などの試料の刺激によって、対象の細胞が発現するアディポネクチン(タンパク質、mRNA)の発現量や炎症性免疫関連サイトカインの発現量などの指標となる値が、統計的誤差の範囲を超えて増大することを意味する。統計的な解析は、当業者に知られたあらゆる統計解析手法を用いてよく、これに限定するものではないが、例えばStudent’s t検定や、マンホイットニーのU検定などが挙げられる。 Preferred inflammatory immunity-related cytokines are those that are associated with metabolic syndrome, such as IL-10 and IL-6, and particularly preferably IL-10.
In the present invention, “production increased” means adiponectin (protein, mRNA) expressed by a target cell upon stimulation of a test cell (live or dead) or a sample such as a culture or culture supernatant thereof. This means that the value serving as an index such as the expression level of inflammatory immune-related cytokines increases beyond the range of statistical errors. For the statistical analysis, any statistical analysis method known to those skilled in the art may be used, and it is not limited thereto, and examples thereof include Student's t test and Mann-Whitney U test.
本発明に包含されるLactobacillus属菌としては、これに限定されるものではないが、例えば、Lactobacillus delbrueckii subsp. burgaricus、Lactobacillus
delbrueckii subsp. lactis、Lactobacillus casei、Lactobacillus helveticus、Lactobacillus
acidophilus、Lactobacillus crispatus、Lactobacillus amylovorus、Lactobacillus
gallinarum、Lactobacillus gasseri、Lactobacillus oris、Lactobacillus rhamnosus、Lactobacillus johnsonii、Lactobacillus
fermentum、Lactobacillus brevis、Lactobacillus
plantarumなどが挙げられ、好ましくは、Lactobacillus amylovorus、Lactobacillus plantarumなどが挙げられ、とくに好ましくは、Lactobacillus
plantarumが挙げられる。 Examples of the genus Lactobacillus included in the present invention include, but are not limited to, for example, Lactobacillus delbrueckii subsp. Burgaricus, Lactobacillus
delbrueckii subsp. lactis, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus
acidophilus, Lactobacillus crispatus, Lactobacillus amylovorus, Lactobacillus
gallinarum, Lactobacillus gasseri, Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus johnsonii, Lactobacillus
fermentum, Lactobacillus brevis, Lactobacillus
plantarum and the like, preferably Lactobacillus amylovorus, Lactobacillus plantarum and the like, particularly preferably Lactobacillus
plantarum.
delbrueckii subsp. lactis、Lactobacillus casei、Lactobacillus helveticus、Lactobacillus
acidophilus、Lactobacillus crispatus、Lactobacillus amylovorus、Lactobacillus
gallinarum、Lactobacillus gasseri、Lactobacillus oris、Lactobacillus rhamnosus、Lactobacillus johnsonii、Lactobacillus
fermentum、Lactobacillus brevis、Lactobacillus
plantarumなどが挙げられ、好ましくは、Lactobacillus amylovorus、Lactobacillus plantarumなどが挙げられ、とくに好ましくは、Lactobacillus
plantarumが挙げられる。 Examples of the genus Lactobacillus included in the present invention include, but are not limited to, for example, Lactobacillus delbrueckii subsp. Burgaricus, Lactobacillus
delbrueckii subsp. lactis, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus
acidophilus, Lactobacillus crispatus, Lactobacillus amylovorus, Lactobacillus
gallinarum, Lactobacillus gasseri, Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus johnsonii, Lactobacillus
fermentum, Lactobacillus brevis, Lactobacillus
plantarum and the like, preferably Lactobacillus amylovorus, Lactobacillus plantarum and the like, particularly preferably Lactobacillus
plantarum.
本発明のLactobacillus属菌は、好ましくは、胃酸または胆汁酸耐性を有するものである。かかる耐性により、腸溶性被覆材などを用いることなく、例えば、乳酸菌含有食品組成物として、生菌のまま腸に到達することができ、腸内環境を改善するとともに、持続的なメタボリックシンドロームの改善および/または予防効果を奏することができる。
The Lactobacillus genus of the present invention is preferably resistant to gastric acid or bile acids. Due to such resistance, for example, as a food composition containing lactic acid bacteria, it can reach the intestine with live bacteria without using an enteric coating material, etc., improving the intestinal environment and continuously improving metabolic syndrome And / or a preventive effect.
本発明のLactobacillus plantarum OLL2712(本明細書において、菌株23ともいう)は、独立行政法人産業技術総合研究所に、受託番号:FERM BP-11262として寄託されており、以下の特徴を有するLactobacillus
plantarum菌である。
(a)形態的性質
桿菌
(b)培養的性質
培地名: Lactobacilli MRS Broth (Difco, Ref. No. 288130)
pH: 無調整
培養温度: 37℃
培養時間: 18時間
(1)形状: 円形
(2)直径: 1-2mm
(3)色調: 白色
(4)隆起状態: 半球状
(5)周縁: 全縁
(6)表面形状: スムーズ
(7)透明度: 不透明
(8)粘稠度: バター様
(c)生理学的性質
(1)グラム染色性: 陽性
(2)乳酸発酵形式: ホモ乳酸発酵
(3)酸素要求性: 通性嫌気性
(4)発育温度: 15℃+、45℃- Lactobacillus plantarum OLL2712 (also referred to asstrain 23 in the present specification) of the present invention is deposited at the National Institute of Advanced Industrial Science and Technology under the accession number: FERM BP-11262, and has the following characteristics:
It is a plantarum fungus.
(A) Morphological properties Neisseria gonorrhoeae (b) Culture properties Medium name: Lactobacilli MRS Broth (Difco, Ref. No. 288130)
pH: Unadjusted culture temperature: 37 ° C
Culture time: 18 hours (1) Shape: Circular (2) Diameter: 1-2mm
(3) Color tone: White (4) Raised state: Hemispherical (5) Periphery: Full edge (6) Surface shape: Smooth (7) Transparency: Opaque (8) Viscosity: Butter-like (c) Physiological properties ( 1) Gram staining: Positive (2) Lactic acid fermentation format: Homolactic fermentation (3) Oxygen requirement: facultative anaerobic (4) Growth temperature: 15 ° C +, 45 ° C-
plantarum菌である。
(a)形態的性質
桿菌
(b)培養的性質
培地名: Lactobacilli MRS Broth (Difco, Ref. No. 288130)
pH: 無調整
培養温度: 37℃
培養時間: 18時間
(1)形状: 円形
(2)直径: 1-2mm
(3)色調: 白色
(4)隆起状態: 半球状
(5)周縁: 全縁
(6)表面形状: スムーズ
(7)透明度: 不透明
(8)粘稠度: バター様
(c)生理学的性質
(1)グラム染色性: 陽性
(2)乳酸発酵形式: ホモ乳酸発酵
(3)酸素要求性: 通性嫌気性
(4)発育温度: 15℃+、45℃- Lactobacillus plantarum OLL2712 (also referred to as
It is a plantarum fungus.
(A) Morphological properties Neisseria gonorrhoeae (b) Culture properties Medium name: Lactobacilli MRS Broth (Difco, Ref. No. 288130)
pH: Unadjusted culture temperature: 37 ° C
Culture time: 18 hours (1) Shape: Circular (2) Diameter: 1-2mm
(3) Color tone: White (4) Raised state: Hemispherical (5) Periphery: Full edge (6) Surface shape: Smooth (7) Transparency: Opaque (8) Viscosity: Butter-like (c) Physiological properties ( 1) Gram staining: Positive (2) Lactic acid fermentation format: Homolactic fermentation (3) Oxygen requirement: facultative anaerobic (4) Growth temperature: 15 ° C +, 45 ° C-
本発明において、メタボリックシンドロームの改善および/または予防を行う対象としては、肥満や糖尿病を含めたメタボリックシンドロームが関与する疾病に罹患している、または、その虞のある動物(例えば、ヒト、家畜動物種、野生動物、ペットなど)を含む。
また、本発明において改善および/または予防の対象となるメタボリックシンドロームには、例えば、糖尿病、肥満(とくに内臓脂肪型肥満)、血圧高値、血糖高値、脂質異常症、動脈硬化症などのメタボリックシンドロームと関連するとされる疾患を含み得る。 In the present invention, the subject for improving and / or preventing metabolic syndrome is an animal suffering from or possibly having a disease associated with metabolic syndrome including obesity and diabetes (for example, human, domestic animal) Species, wild animals, pets, etc.).
Further, the metabolic syndrome to be improved and / or prevented in the present invention includes, for example, metabolic syndrome such as diabetes, obesity (particularly visceral fat obesity), high blood pressure, high blood sugar, dyslipidemia, arteriosclerosis and the like. It may include diseases that are implicated.
また、本発明において改善および/または予防の対象となるメタボリックシンドロームには、例えば、糖尿病、肥満(とくに内臓脂肪型肥満)、血圧高値、血糖高値、脂質異常症、動脈硬化症などのメタボリックシンドロームと関連するとされる疾患を含み得る。 In the present invention, the subject for improving and / or preventing metabolic syndrome is an animal suffering from or possibly having a disease associated with metabolic syndrome including obesity and diabetes (for example, human, domestic animal) Species, wild animals, pets, etc.).
Further, the metabolic syndrome to be improved and / or prevented in the present invention includes, for example, metabolic syndrome such as diabetes, obesity (particularly visceral fat obesity), high blood pressure, high blood sugar, dyslipidemia, arteriosclerosis and the like. It may include diseases that are implicated.
本発明のLactobacillus属菌をメタボリックシンドロームの改善および/または予防に対して、医薬用または食品用として用いる場合、生菌、死菌、培養物やその加工物を用いることが可能である。前記培養物とは、本発明のLactobacillus属菌の培養終了後の培養上清や培地成分をそのまま用いるものであり、前記加工物は、培養物に由来すればとくに限定されないが、例えば、培養物の濃縮、ペースト化、噴霧乾燥、凍結乾燥、真空乾燥、ドラム乾燥、液状化、希釈、破砕などの加工により得られる物が挙げられる。これらの加工には、公知の方法を適宜用いることができる。前記培養物中または前記加工物中において、本発明のLactobacillus属菌は、生菌であっても死菌であってもよい。
また本発明のLactobacillus属菌、その培養物、またはその加工物には、適宜、例えば、培地成分、経口経管摂取に適した添加物および水などの溶媒、糖質、タンパク質、脂質、ビタミン類、生体必須微量金属、香料、薬学的に許容し得る担体、食品添加物などの任意成分を添加し、医薬組成物や食品組成物などとすることができる。 When the Lactobacillus genus of the present invention is used for pharmaceuticals or foods for the improvement and / or prevention of metabolic syndrome, live bacteria, killed bacteria, cultures and processed products thereof can be used. The culture is a culture supernatant or a medium component after completion of cultivation of the Lactobacillus genus of the present invention, and the processed product is not particularly limited as long as it is derived from the culture. And the like obtained by processing such as concentration, pasting, spray drying, freeze drying, vacuum drying, drum drying, liquefaction, dilution and crushing. For these processes, known methods can be used as appropriate. In the culture or the processed product, the genus Lactobacillus of the present invention may be live or dead.
The Lactobacillus genus of the present invention, its culture, or its processed product, for example, a medium component, an additive suitable for oral tube feeding, and a solvent such as water, carbohydrates, proteins, lipids, vitamins Biopharmaceutical trace metals, fragrances, pharmaceutically acceptable carriers, food additives, and other optional components can be added to form pharmaceutical compositions and food compositions.
また本発明のLactobacillus属菌、その培養物、またはその加工物には、適宜、例えば、培地成分、経口経管摂取に適した添加物および水などの溶媒、糖質、タンパク質、脂質、ビタミン類、生体必須微量金属、香料、薬学的に許容し得る担体、食品添加物などの任意成分を添加し、医薬組成物や食品組成物などとすることができる。 When the Lactobacillus genus of the present invention is used for pharmaceuticals or foods for the improvement and / or prevention of metabolic syndrome, live bacteria, killed bacteria, cultures and processed products thereof can be used. The culture is a culture supernatant or a medium component after completion of cultivation of the Lactobacillus genus of the present invention, and the processed product is not particularly limited as long as it is derived from the culture. And the like obtained by processing such as concentration, pasting, spray drying, freeze drying, vacuum drying, drum drying, liquefaction, dilution and crushing. For these processes, known methods can be used as appropriate. In the culture or the processed product, the genus Lactobacillus of the present invention may be live or dead.
The Lactobacillus genus of the present invention, its culture, or its processed product, for example, a medium component, an additive suitable for oral tube feeding, and a solvent such as water, carbohydrates, proteins, lipids, vitamins Biopharmaceutical trace metals, fragrances, pharmaceutically acceptable carriers, food additives, and other optional components can be added to form pharmaceutical compositions and food compositions.
本発明の医薬組成物は、典型的には、脂肪細胞に対しアディポネクチン産生を増大させ、かつ、骨髄由来樹状細胞および/またはマクロファージに対し炎症性免疫関連サイトカインの産生を増大させる、Lactobacillus属菌、その培養物およびその加工物から選択される1種または2種以上を含む。かかる医薬組成物は、摂取個体の腸内環境を改善し、メタボリックシンドロームに対して改善効果を奏する。さらに本発明の医薬組成物は、内臓脂肪の蓄積を効果的に抑制するために用いることができる。
また、かかる医薬組成物は、投与経路はとくに限定されないが、経口的または非経口的に投与することが含まれ、例えば、経口投与、経管投与、経腸投与を例示できる。簡便かつ安全性の観点から、経口投与が好ましい。また剤型は、とくに限定されないが、投与経路に応じて適宜選択することができ、例えば、エアゾール剤、液剤、エキス剤、エリキシル剤、カプセル剤、顆粒剤、丸剤、眼軟膏剤、経皮吸収型製剤、懸濁剤、乳剤、坐剤、散剤、酒精剤、錠剤、シロップ剤、浸剤、煎剤、注射剤、貼付剤、チンキ剤、点眼剤、トローチ剤、軟膏剤、パップ剤、芳香水剤、リニメント剤、リモナーデ剤、流エキス剤、ローション剤が挙げられる。 The pharmaceutical composition of the present invention typically increases the production of adiponectin on adipocytes and increases the production of inflammatory immune-related cytokines on bone marrow-derived dendritic cells and / ormacrophages 1 type or 2 types or more selected from the culture and the processed product. Such a pharmaceutical composition improves the intestinal environment of an ingested individual and has an improving effect on metabolic syndrome. Furthermore, the pharmaceutical composition of the present invention can be used for effectively suppressing the accumulation of visceral fat.
In addition, the route of administration of the pharmaceutical composition is not particularly limited, and includes oral or parenteral administration, and examples thereof include oral administration, tube administration, and enteral administration. Oral administration is preferred from the viewpoint of convenience and safety. The dosage form is not particularly limited, and can be appropriately selected depending on the administration route. For example, aerosol, liquid, extract, elixir, capsule, granule, pill, eye ointment, transdermal Absorption-type preparations, suspensions, emulsions, suppositories, powders, spirits, tablets, syrups, soaking agents, injections, patches, tinctures, eye drops, troches, ointments, poultices, aromatic water Agents, liniments, limonade agents, fluid extracts, and lotions.
また、かかる医薬組成物は、投与経路はとくに限定されないが、経口的または非経口的に投与することが含まれ、例えば、経口投与、経管投与、経腸投与を例示できる。簡便かつ安全性の観点から、経口投与が好ましい。また剤型は、とくに限定されないが、投与経路に応じて適宜選択することができ、例えば、エアゾール剤、液剤、エキス剤、エリキシル剤、カプセル剤、顆粒剤、丸剤、眼軟膏剤、経皮吸収型製剤、懸濁剤、乳剤、坐剤、散剤、酒精剤、錠剤、シロップ剤、浸剤、煎剤、注射剤、貼付剤、チンキ剤、点眼剤、トローチ剤、軟膏剤、パップ剤、芳香水剤、リニメント剤、リモナーデ剤、流エキス剤、ローション剤が挙げられる。 The pharmaceutical composition of the present invention typically increases the production of adiponectin on adipocytes and increases the production of inflammatory immune-related cytokines on bone marrow-derived dendritic cells and / or
In addition, the route of administration of the pharmaceutical composition is not particularly limited, and includes oral or parenteral administration, and examples thereof include oral administration, tube administration, and enteral administration. Oral administration is preferred from the viewpoint of convenience and safety. The dosage form is not particularly limited, and can be appropriately selected depending on the administration route. For example, aerosol, liquid, extract, elixir, capsule, granule, pill, eye ointment, transdermal Absorption-type preparations, suspensions, emulsions, suppositories, powders, spirits, tablets, syrups, soaking agents, injections, patches, tinctures, eye drops, troches, ointments, poultices, aromatic water Agents, liniments, limonade agents, fluid extracts, and lotions.
経口投与製剤としては、周知の各種剤型とすることができ、例えば、顆粒剤、散剤、錠剤、丸剤、カプセル剤、液剤、シロップ剤、乳剤、懸濁剤、トローチ剤などの剤型とすることができる。また、腸溶性製剤とすることにより、胃酸の効果を受けることなく、より効率的に腸まで運ぶことも可能である。
非経口的な投与としては、注射剤などの形での投与を挙げることができる。また、本発明のLactobacillus属菌、その培養物またはその加工物を、処置を施したい領域に局所的に投与することもできる。例えば、手術中の局所注入、カテーテルの使用により投与することも可能である。 Oral preparations can be made into various known dosage forms, such as granules, powders, tablets, pills, capsules, solutions, syrups, emulsions, suspensions, lozenges, and the like. can do. In addition, by making an enteric preparation, it can be more efficiently transported to the intestine without receiving the effect of gastric acid.
Examples of parenteral administration include administration in the form of injections. Moreover, the Lactobacillus genus bacteria of this invention, its culture, or its processed material can also be locally administered to the area | region which wants to treat. For example, it can be administered by local injection during surgery or by use of a catheter.
非経口的な投与としては、注射剤などの形での投与を挙げることができる。また、本発明のLactobacillus属菌、その培養物またはその加工物を、処置を施したい領域に局所的に投与することもできる。例えば、手術中の局所注入、カテーテルの使用により投与することも可能である。 Oral preparations can be made into various known dosage forms, such as granules, powders, tablets, pills, capsules, solutions, syrups, emulsions, suspensions, lozenges, and the like. can do. In addition, by making an enteric preparation, it can be more efficiently transported to the intestine without receiving the effect of gastric acid.
Examples of parenteral administration include administration in the form of injections. Moreover, the Lactobacillus genus bacteria of this invention, its culture, or its processed material can also be locally administered to the area | region which wants to treat. For example, it can be administered by local injection during surgery or by use of a catheter.
本発明の医薬組成物に用い得る担体としては、界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤などが医薬上許容される担体として挙げられるが、その他常用の担体を適宜使用することができる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類などを挙げることができる。
Carriers that can be used in the pharmaceutical composition of the present invention include surfactants, excipients, coloring agents, flavoring agents, preservatives, stabilizers, buffers, suspending agents, isotonic agents, binders, and disintegrants. , Lubricants, fluidity promoters, flavoring agents and the like are listed as pharmaceutically acceptable carriers, and other commonly used carriers can be used as appropriate. Specifically, light anhydrous silicic acid, lactose, crystalline cellulose, mannitol, starch, carmellose calcium, carmellose sodium, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylacetal diethylaminoacetate, polyvinylpyrrolidone, gelatin, medium chain fatty acid triglyceride, Examples thereof include polyoxyethylene hydrogenated castor oil 60, sucrose, carboxymethyl cellulose, corn starch, and inorganic salts.
本発明のLactobacillus属菌を医薬組成物に用いる場合、その菌体濃度はとくに限定されないが、濃縮液として利用する場合、2×1010個/g以上、乾燥物として利用する場合、3×1011個/g以上とするのが好ましい。
本発明の医薬組成物において、Lactobacillus属菌、その培養物またはその加工物の配合量は、とくに限定されないが、剤型、症状、体重、用途などに応じて適宜調整することができる。
本発明の医薬組成物の一日当たりの摂取量は、とくに限定されないが、年齢、症状、体重、用途などに応じて適宜調整することができる。典型的には、0.1~10000mg/kg体重を摂取することができ、好ましくは0.1~1000mg/kg体重、さらに好ましくは0.1~300mg/kg体重を摂取することができる。 When the Lactobacillus genus of the present invention is used in a pharmaceutical composition, the cell concentration is not particularly limited, but when used as a concentrate, 2 × 10 10 cells / g or more, when used as a dry product, 3 × 10 It is preferable to set it to 11 pieces / g or more.
In the pharmaceutical composition of the present invention, the amount of Lactobacillus spp., Its culture or processed product thereof is not particularly limited, but can be appropriately adjusted according to the dosage form, symptoms, body weight, use and the like.
The daily intake of the pharmaceutical composition of the present invention is not particularly limited, but can be appropriately adjusted according to age, symptoms, body weight, use and the like. Typically, 0.1 to 10000 mg / kg body weight can be taken, preferably 0.1 to 1000 mg / kg body weight, more preferably 0.1 to 300 mg / kg body weight.
本発明の医薬組成物において、Lactobacillus属菌、その培養物またはその加工物の配合量は、とくに限定されないが、剤型、症状、体重、用途などに応じて適宜調整することができる。
本発明の医薬組成物の一日当たりの摂取量は、とくに限定されないが、年齢、症状、体重、用途などに応じて適宜調整することができる。典型的には、0.1~10000mg/kg体重を摂取することができ、好ましくは0.1~1000mg/kg体重、さらに好ましくは0.1~300mg/kg体重を摂取することができる。 When the Lactobacillus genus of the present invention is used in a pharmaceutical composition, the cell concentration is not particularly limited, but when used as a concentrate, 2 × 10 10 cells / g or more, when used as a dry product, 3 × 10 It is preferable to set it to 11 pieces / g or more.
In the pharmaceutical composition of the present invention, the amount of Lactobacillus spp., Its culture or processed product thereof is not particularly limited, but can be appropriately adjusted according to the dosage form, symptoms, body weight, use and the like.
The daily intake of the pharmaceutical composition of the present invention is not particularly limited, but can be appropriately adjusted according to age, symptoms, body weight, use and the like. Typically, 0.1 to 10000 mg / kg body weight can be taken, preferably 0.1 to 1000 mg / kg body weight, more preferably 0.1 to 300 mg / kg body weight.
本発明の食品組成物は、典型的には、脂肪細胞に対しアディポネクチン産生を増大させ、かつ、骨髄由来樹状細胞および/またはマクロファージに対し炎症性免疫関連サイトカインの産生を増大させる、Lactobacillus属菌、その培養物およびその加工物から選択される1種または2種以上を含む。かかる食品組成物は、摂取個体の腸内環境を改善し、メタボリックシンドロームに対して改善効果を奏する。さらに本発明の食品組成物は、内臓脂肪の蓄積を効果的に抑制するために用いることができる。
本発明の食品組成物はさらに、乳酸菌生育を妨げない限り、糖質、タンパク質、脂質、ビタミン類、生体必須微量金属(硫酸マンガン、硫酸亜鉛、塩化マグネシウム、炭酸カリウムなど)、香料やその他の配合物を含むことができる。 The food composition of the present invention typically increases the production of adiponectin on adipocytes and increases the production of inflammatory immune related cytokines on bone marrow-derived dendritic cells and / ormacrophages 1 type or 2 types or more selected from the culture and the processed product. Such a food composition improves the intestinal environment of the ingested individual and has an improvement effect on the metabolic syndrome. Furthermore, the food composition of the present invention can be used to effectively suppress visceral fat accumulation.
The food composition of the present invention further includes carbohydrates, proteins, lipids, vitamins, biologically essential trace metals (manganese sulfate, zinc sulfate, magnesium chloride, potassium carbonate, etc.), fragrances, and other ingredients as long as they do not interfere with the growth of lactic acid bacteria. Things can be included.
本発明の食品組成物はさらに、乳酸菌生育を妨げない限り、糖質、タンパク質、脂質、ビタミン類、生体必須微量金属(硫酸マンガン、硫酸亜鉛、塩化マグネシウム、炭酸カリウムなど)、香料やその他の配合物を含むことができる。 The food composition of the present invention typically increases the production of adiponectin on adipocytes and increases the production of inflammatory immune related cytokines on bone marrow-derived dendritic cells and / or
The food composition of the present invention further includes carbohydrates, proteins, lipids, vitamins, biologically essential trace metals (manganese sulfate, zinc sulfate, magnesium chloride, potassium carbonate, etc.), fragrances, and other ingredients as long as they do not interfere with the growth of lactic acid bacteria. Things can be included.
糖質としては、糖類、加工澱粉(デキストリンのほか、可溶性澱粉、ブリティッシュスターチ、酸化澱粉、澱粉エステル、澱粉エーテルなど)、食物繊維などが挙げられる。
タンパク質としては、例えば全脂粉乳、脱脂粉乳、部分脱脂粉乳、カゼイン、ホエイ粉、ホエイタンパク質、ホエイタンパク質濃縮物、ホエイタンパク質分離物、α-カゼイン、β-カゼイン、κ-カゼイン、β-ラクトグロブリン、α-ラクトアルブミン、ラクトフェリン、大豆タンパク質、鶏卵タンパク質、肉タンパク質などの動植物性タンパク質、これら加水分解物;バター、乳性ミネラル、クリーム、ホエイ、非タンパク態窒素、シアル酸、リン脂質、乳糖などの各種乳由来成分などが挙げられる。 Examples of the saccharide include saccharides, processed starch (in addition to dextrin, soluble starch, British starch, oxidized starch, starch ester, starch ether, etc.), dietary fiber, and the like.
Examples of the protein include whole milk powder, skim milk powder, partially skimmed milk powder, casein, whey powder, whey protein, whey protein concentrate, whey protein isolate, α-casein, β-casein, κ-casein, β-lactoglobulin , Α-lactalbumin, lactoferrin, soy protein, egg protein, meat protein and other animal and vegetable proteins, hydrolysates thereof; butter, milk minerals, cream, whey, non-protein nitrogen, sialic acid, phospholipid, lactose, etc. And various milk-derived components.
タンパク質としては、例えば全脂粉乳、脱脂粉乳、部分脱脂粉乳、カゼイン、ホエイ粉、ホエイタンパク質、ホエイタンパク質濃縮物、ホエイタンパク質分離物、α-カゼイン、β-カゼイン、κ-カゼイン、β-ラクトグロブリン、α-ラクトアルブミン、ラクトフェリン、大豆タンパク質、鶏卵タンパク質、肉タンパク質などの動植物性タンパク質、これら加水分解物;バター、乳性ミネラル、クリーム、ホエイ、非タンパク態窒素、シアル酸、リン脂質、乳糖などの各種乳由来成分などが挙げられる。 Examples of the saccharide include saccharides, processed starch (in addition to dextrin, soluble starch, British starch, oxidized starch, starch ester, starch ether, etc.), dietary fiber, and the like.
Examples of the protein include whole milk powder, skim milk powder, partially skimmed milk powder, casein, whey powder, whey protein, whey protein concentrate, whey protein isolate, α-casein, β-casein, κ-casein, β-lactoglobulin , Α-lactalbumin, lactoferrin, soy protein, egg protein, meat protein and other animal and vegetable proteins, hydrolysates thereof; butter, milk minerals, cream, whey, non-protein nitrogen, sialic acid, phospholipid, lactose, etc. And various milk-derived components.
脂質としては、例えば、ラード、魚油など、これらの分別油、水素添加油、エステル交換油などの動物性油脂;パーム油、サフラワー油、コーン油、ナタネ油、ヤシ油、これらの分別油、水素添加油、エステル交換油などの植物性油脂などが挙げられる。
ビタミン類としては、例えば、ビタミンA、カロチン類、ビタミンB群、ビタミンC、ビタミンD群、ビタミンE、ビタミンK群、ビタミンP、ビタミンQ、ナイアシン、ニコチン酸、パントテン酸、ビオチン、イノシトール、コリン、葉酸などが挙げられ、ミネラル類としては、例えば、カルシウム、カリウム、マグネシウム、ナトリウム、銅、鉄、マンガン、亜鉛、セレンなどが挙げられる。 Examples of lipids include animal oils such as lard and fish oil, fractionated oils thereof, hydrogenated oils and transesterified oils; palm oil, safflower oil, corn oil, rapeseed oil, coconut oil, fractionated oils thereof, Examples include vegetable oils such as hydrogenated oils and transesterified oils.
Examples of vitamins include vitamin A, carotene, vitamin B group, vitamin C, vitamin D group, vitamin E, vitamin K group, vitamin P, vitamin Q, niacin, nicotinic acid, pantothenic acid, biotin, inositol, choline. Examples of minerals include calcium, potassium, magnesium, sodium, copper, iron, manganese, zinc, and selenium.
ビタミン類としては、例えば、ビタミンA、カロチン類、ビタミンB群、ビタミンC、ビタミンD群、ビタミンE、ビタミンK群、ビタミンP、ビタミンQ、ナイアシン、ニコチン酸、パントテン酸、ビオチン、イノシトール、コリン、葉酸などが挙げられ、ミネラル類としては、例えば、カルシウム、カリウム、マグネシウム、ナトリウム、銅、鉄、マンガン、亜鉛、セレンなどが挙げられる。 Examples of lipids include animal oils such as lard and fish oil, fractionated oils thereof, hydrogenated oils and transesterified oils; palm oil, safflower oil, corn oil, rapeseed oil, coconut oil, fractionated oils thereof, Examples include vegetable oils such as hydrogenated oils and transesterified oils.
Examples of vitamins include vitamin A, carotene, vitamin B group, vitamin C, vitamin D group, vitamin E, vitamin K group, vitamin P, vitamin Q, niacin, nicotinic acid, pantothenic acid, biotin, inositol, choline. Examples of minerals include calcium, potassium, magnesium, sodium, copper, iron, manganese, zinc, and selenium.
本発明の食品組成物のカテゴリーや種類に制限はなく、機能性食品、特定保健用食品、特定用途食品、栄養機能食品、健康食品、介護用食品でもよく、また、菓子、乳酸菌飲料、チーズやヨーグルトなどの乳製品、調味料などであってもよい。飲食品の形状についても制限はなく、固形、液状、流動食状、ゼリー状、タブレット状、顆粒状、カプセル状など、通常流通し得るあらゆる飲食品形状をとることができ、各種食品(牛乳、清涼飲料、発酵乳、ヨーグルト、チーズ、パン、ビスケット、クラッカー、ピッツァクラスト、調製粉乳、流動食、病者用食品、栄養食品、冷凍食品、加工食品その他の市販食品など)に添加してもよい。上記飲食品の製造は、当業者の常法によって行うことができる。
There are no restrictions on the category or type of the food composition of the present invention, and it may be a functional food, a food for specified health use, a food for specific use, a functional nutrition food, a health food, a food for nursing care, and a confectionery, lactic acid bacteria beverage, cheese, It may be a dairy product such as yogurt or a seasoning. There is no limitation on the shape of the food and drink, and it can take any form of food or drink that can be distributed normally, such as solid, liquid, liquid food, jelly, tablet, granule, capsule, and various foods (milk, Soft drinks, fermented milk, yogurt, cheese, bread, biscuits, crackers, pizza crusts, formula milk, liquid foods, food for the sick, nutritional foods, frozen foods, processed foods and other commercial foods) . Manufacture of the said food / beverage products can be performed by those skilled in the art.
本発明のLactobacillus属菌、その培養物、またはその加工物は、上記のとおり、乳製品・発酵乳を含む一般飲食品に加工できる他、ヨーグルトやチーズなどの乳製品・発酵乳の製造用スターターとして利用することも可能である。スターターとする場合は、本発明のLactobacillus属菌の生存および増殖に支障がない限り、また、乳製品製造に支障がない限り、他の微生物が混合されていてもよい。例えば、ヨーグルト用乳酸菌として主要な菌種であるLactobacillus delbrueckii subsp. bulgaricus、Streptococcus
thermophilus、Lactobacillus acidophilusなどと混合してもよく、その他、一般にヨーグルト用やチーズ用として用いられる菌種と混合してスターターとすることができる。上記スターターによる乳製品、発酵乳の製造は、常法に従って行うことができる。例えば、加温・混合・均質化・殺菌処理後に冷却した乳または乳製品に、上記スターターを混合し、発酵・冷却することにより、プレーンヨーグルトを製造することができる。 As described above, the Lactobacillus genus of the present invention, its culture, or its processed product can be processed into general foods and drinks including dairy products and fermented milk, as well as starters for producing dairy products and fermented milk such as yogurt and cheese. It is also possible to use as. In the case of a starter, other microorganisms may be mixed as long as there is no hindrance to the survival and growth of the Lactobacillus genus of the present invention and as long as there is no hindrance to dairy production. For example, Lactobacillus delbrueckii subsp. Bulgaricus, Streptococcus, which are the main bacterial species as lactic acid bacteria for yogurt
It may be mixed with thermophilus, Lactobacillus acidophilus, etc. In addition, it can be mixed with bacterial species generally used for yogurt or cheese to form a starter. Production of dairy products and fermented milk using the starter can be performed according to a conventional method. For example, plain yogurt can be produced by mixing the above starter with milk or a dairy product cooled after heating, mixing, homogenizing, and sterilizing, and then fermenting and cooling.
thermophilus、Lactobacillus acidophilusなどと混合してもよく、その他、一般にヨーグルト用やチーズ用として用いられる菌種と混合してスターターとすることができる。上記スターターによる乳製品、発酵乳の製造は、常法に従って行うことができる。例えば、加温・混合・均質化・殺菌処理後に冷却した乳または乳製品に、上記スターターを混合し、発酵・冷却することにより、プレーンヨーグルトを製造することができる。 As described above, the Lactobacillus genus of the present invention, its culture, or its processed product can be processed into general foods and drinks including dairy products and fermented milk, as well as starters for producing dairy products and fermented milk such as yogurt and cheese. It is also possible to use as. In the case of a starter, other microorganisms may be mixed as long as there is no hindrance to the survival and growth of the Lactobacillus genus of the present invention and as long as there is no hindrance to dairy production. For example, Lactobacillus delbrueckii subsp. Bulgaricus, Streptococcus, which are the main bacterial species as lactic acid bacteria for yogurt
It may be mixed with thermophilus, Lactobacillus acidophilus, etc. In addition, it can be mixed with bacterial species generally used for yogurt or cheese to form a starter. Production of dairy products and fermented milk using the starter can be performed according to a conventional method. For example, plain yogurt can be produced by mixing the above starter with milk or a dairy product cooled after heating, mixing, homogenizing, and sterilizing, and then fermenting and cooling.
上記スターターとしては、製造する乳製品、発酵乳に応じて適宜選択されるが、具体的には、たとえば、Streptococcus属、Lactobacillus属、Lactococcus属、Leuconostoc属およびPediococcus属などに属する乳酸菌あるいはビフィズス菌を用いることができる。
より具体的には、Streptococcus lactis、Streptococcus
cremoris、Streptococcus diacetylactis、Streptococcus thermophilus、Enterococcus
faecium、Enterococcus faecalis、Lactobacillus
acidophilus、Lactobacillus brevis、Lactobacillus casei、Lactobacillus helveticus、Lactobacillus delbrueckii subsp. bulgaricus、Lactobacillus
delbrueckii subsp. lactis、Lactobacillus gasseri、Lactobacillus mucosae、Lactobacillus murinus、Lactobacillus plantarum、Lactobacillus oris、Lactobacillus reuteriおよびLactobacillus
rhamnosusなどの乳酸菌や、Bifidobacterium longum、Bifidobacterium bifidumおよびBifidobacterium
breveなどのビフィズス菌のような微生物ををスターターとすることができる。より好適には、Lactobacillus
delbrueckii subsp. bulgaricus、Streptococcus
thermophilusおよびLactobacillus delbrueckii subsp. lactisがスターターとして用いることができる。これらの微生物をスターターとして用いる場合、必要に応じて、1種または2種以上を組み合わせて用いることができる。 The starter is appropriately selected according to the dairy product and fermented milk to be produced. Specifically, for example, a lactic acid bacterium or bifidobacteria belonging to the genus Streptococcus, Lactobacillus, Lactococcus, Leuconostoc and Pediococcus is used. Can be used.
More specifically, Streptococcus lactis, Streptococcus
cremoris, Streptococcus diacetylactis, Streptococcus thermophilus, Enterococcus
faecium, Enterococcus faecalis, Lactobacillus
acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus delbrueckii subsp.bulgaricus, Lactobacillus
delbrueckii subsp. lactis, Lactobacillus gasseri, Lactobacillus mucosae, Lactobacillus murinus, Lactobacillus plantarum, Lactobacillus oris, Lactobacillus reuteri and Lactobacillus
Lactic acid bacteria such as rhamnosus, Bifidobacterium longum, Bifidobacterium bifidum and Bifidobacterium
A microorganism such as Bifidobacterium such as breve can be used as a starter. More preferably, Lactobacillus
delbrueckii subsp.bulgaricus, Streptococcus
thermophilus and Lactobacillus delbrueckii subsp. lactis can be used as starters. When these microorganisms are used as starters, they can be used alone or in combination of two or more as required.
より具体的には、Streptococcus lactis、Streptococcus
cremoris、Streptococcus diacetylactis、Streptococcus thermophilus、Enterococcus
faecium、Enterococcus faecalis、Lactobacillus
acidophilus、Lactobacillus brevis、Lactobacillus casei、Lactobacillus helveticus、Lactobacillus delbrueckii subsp. bulgaricus、Lactobacillus
delbrueckii subsp. lactis、Lactobacillus gasseri、Lactobacillus mucosae、Lactobacillus murinus、Lactobacillus plantarum、Lactobacillus oris、Lactobacillus reuteriおよびLactobacillus
rhamnosusなどの乳酸菌や、Bifidobacterium longum、Bifidobacterium bifidumおよびBifidobacterium
breveなどのビフィズス菌のような微生物ををスターターとすることができる。より好適には、Lactobacillus
delbrueckii subsp. bulgaricus、Streptococcus
thermophilusおよびLactobacillus delbrueckii subsp. lactisがスターターとして用いることができる。これらの微生物をスターターとして用いる場合、必要に応じて、1種または2種以上を組み合わせて用いることができる。 The starter is appropriately selected according to the dairy product and fermented milk to be produced. Specifically, for example, a lactic acid bacterium or bifidobacteria belonging to the genus Streptococcus, Lactobacillus, Lactococcus, Leuconostoc and Pediococcus is used. Can be used.
More specifically, Streptococcus lactis, Streptococcus
cremoris, Streptococcus diacetylactis, Streptococcus thermophilus, Enterococcus
faecium, Enterococcus faecalis, Lactobacillus
acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus delbrueckii subsp.bulgaricus, Lactobacillus
delbrueckii subsp. lactis, Lactobacillus gasseri, Lactobacillus mucosae, Lactobacillus murinus, Lactobacillus plantarum, Lactobacillus oris, Lactobacillus reuteri and Lactobacillus
Lactic acid bacteria such as rhamnosus, Bifidobacterium longum, Bifidobacterium bifidum and Bifidobacterium
A microorganism such as Bifidobacterium such as breve can be used as a starter. More preferably, Lactobacillus
delbrueckii subsp.bulgaricus, Streptococcus
thermophilus and Lactobacillus delbrueckii subsp. lactis can be used as starters. When these microorganisms are used as starters, they can be used alone or in combination of two or more as required.
これらの微生物を、自然界や発酵乳から単離する方法は公知である。あるいは既に単離された微生物を細胞バンクなどからの分譲によって入手することもできる。さらに、乳酸菌スターターは、市販されている。生成する発酵乳のpHや物理的な性状の違いによって複数の製品が販売されている。なお、発酵乳の物理的な性状とは、固さや口当たり(smoothness)などをいう。
A method for isolating these microorganisms from nature and fermented milk is known. Alternatively, already isolated microorganisms can be obtained by distribution from a cell bank or the like. Furthermore, lactic acid bacteria starters are commercially available. Several products are sold depending on the pH and physical properties of the produced fermented milk. The physical properties of fermented milk refer to hardness, smoothness, and the like.
本発明において、混合スターターとして原料乳に加える微生物をセルバンクに寄託された微生物から選択することもできる。混合スターターに利用することができる望ましい菌株の例としては、Lactobacillus bulgaricus JCM 1002TおよびStreptococcus
thermophilus ATCC 19258の混合培養物からなる乳酸菌スターター、Streptococcus
thermophilus OLS 3059(FERM BP-10740)、Streptococcus thermophilus OLS3294(NITE P-77)、Streptococcus thermophilus OLS3059(FERMP-15487)、Lactobacillus delbrueckii subspecies bulgaricus OLL 1073R-1(FERM BP-10741)、Lactobacillus delbrueckii
subspecies bulgaricus OLL 1255(NITE BP-76)およびLactobacillus delbrueckii subspecies bulgaricus OLL1073R-1(FERM P-17227)の混合培養物からなる乳酸菌スターターが挙げられる。 In the present invention, the microorganism added to the raw milk as a mixed starter can be selected from microorganisms deposited in the cell bank. Examples of desirable strains that can be utilized in mixed starters include Lactobacillus bulgaricus JCM 1002T and Streptococcus
Streptococcus, a lactic acid bacteria starter consisting of a mixed culture of thermophilus ATCC 19258
thermophilus OLS 3059 (FERM BP-10740), Streptococcus thermophilus OLS3294 (NITE P-77), Streptococcus thermophilus OLS3059 (FERMP-15487), Lactobacillus delbrueckii subspecies bulgaricus OLL 1073R-1 (FERM BP-10741), Lactobacillus delbrueckii
and a lactic acid bacteria starter comprising a mixed culture of subspecies bulgaricus OLL 1255 (NITE BP-76) and Lactobacillus delbrueckii subspecies bulgaricus OLL1073R-1 (FERM P-17227).
thermophilus ATCC 19258の混合培養物からなる乳酸菌スターター、Streptococcus
thermophilus OLS 3059(FERM BP-10740)、Streptococcus thermophilus OLS3294(NITE P-77)、Streptococcus thermophilus OLS3059(FERMP-15487)、Lactobacillus delbrueckii subspecies bulgaricus OLL 1073R-1(FERM BP-10741)、Lactobacillus delbrueckii
subspecies bulgaricus OLL 1255(NITE BP-76)およびLactobacillus delbrueckii subspecies bulgaricus OLL1073R-1(FERM P-17227)の混合培養物からなる乳酸菌スターターが挙げられる。 In the present invention, the microorganism added to the raw milk as a mixed starter can be selected from microorganisms deposited in the cell bank. Examples of desirable strains that can be utilized in mixed starters include Lactobacillus bulgaricus JCM 1002T and Streptococcus
Streptococcus, a lactic acid bacteria starter consisting of a mixed culture of thermophilus ATCC 19258
thermophilus OLS 3059 (FERM BP-10740), Streptococcus thermophilus OLS3294 (NITE P-77), Streptococcus thermophilus OLS3059 (FERMP-15487), Lactobacillus delbrueckii subspecies bulgaricus OLL 1073R-1 (FERM BP-10741), Lactobacillus delbrueckii
and a lactic acid bacteria starter comprising a mixed culture of subspecies bulgaricus OLL 1255 (NITE BP-76) and Lactobacillus delbrueckii subspecies bulgaricus OLL1073R-1 (FERM P-17227).
一般的な発酵乳の製造においては、原料乳(ヨーグルトベースミックス)には、これらの乳酸菌以外の乳酸菌や酵母の中から1種または2種以上を選んだものを添加することもある。本発明においては、コーデックス規格でヨーグルトスターターとして規格化されているラクトバチルス・ブルガリカス(L. bulgaricus)とストレプトコッカス・サーモフィルス(S.
thermophilus)の混合スターターを利用するのが好ましい。さらに付加的な微生物を加えるときには、この混合スターターに、目的とする発酵乳の発酵温度や発酵条件を勘案して追加の微生物を混入することもできる。混合スターターに付加的に混合する微生物としては、ラクトバチルス・ガッセリ(L. gasseri)、Lactobacillus plantarumやビフィドバクテリウム(Bifidobacterium)等の他の乳酸菌を示すことができる。 In general production of fermented milk, raw milk (yogurt base mix) may be added with one or more selected from lactic acid bacteria and yeasts other than these lactic acid bacteria. In the present invention, Lactobacillus bulgaricus (L. bulgaricus) and Streptococcus thermophilus (S.
thermophilus) is preferably used. Furthermore, when adding additional microorganisms, additional microorganisms can also be mixed in this mixing starter in consideration of the fermentation temperature and fermentation conditions of the target fermented milk. Other microorganisms such as Lactobacillus gasseri (L. gasseri), Lactobacillus plantarum, and Bifidobacterium can be shown as microorganisms to be additionally mixed in the mixed starter.
thermophilus)の混合スターターを利用するのが好ましい。さらに付加的な微生物を加えるときには、この混合スターターに、目的とする発酵乳の発酵温度や発酵条件を勘案して追加の微生物を混入することもできる。混合スターターに付加的に混合する微生物としては、ラクトバチルス・ガッセリ(L. gasseri)、Lactobacillus plantarumやビフィドバクテリウム(Bifidobacterium)等の他の乳酸菌を示すことができる。 In general production of fermented milk, raw milk (yogurt base mix) may be added with one or more selected from lactic acid bacteria and yeasts other than these lactic acid bacteria. In the present invention, Lactobacillus bulgaricus (L. bulgaricus) and Streptococcus thermophilus (S.
thermophilus) is preferably used. Furthermore, when adding additional microorganisms, additional microorganisms can also be mixed in this mixing starter in consideration of the fermentation temperature and fermentation conditions of the target fermented milk. Other microorganisms such as Lactobacillus gasseri (L. gasseri), Lactobacillus plantarum, and Bifidobacterium can be shown as microorganisms to be additionally mixed in the mixed starter.
本発明のLactobacillus属菌を食品組成物に用いる場合、その菌体濃度はとくに限定されないが、濃縮液として利用する場合、2×1010個/g以上、乾燥物として利用する場合、3×1011個/g以上とするのが好ましい。また、食品組成物における本発明のLactobacillus属菌の菌体の含有量(菌体乾燥物質量として)は、食品組成物の固形分中0.01~100 w/w%、より好ましくは1~80w/w%さらに好ましくは10~40w/w%とすることができる。
本発明の食品組成物において、Lactobacillus属菌、その培養物またはその加工物の配合量は、とくに限定されないが、剤型、症状、体重、用途などに応じて適宜調整することができる。
本発明の食品組成物の一日当たりの摂取量は、とくに限定されないが、年齢、症状、体重、用途などに応じて適宜調整することができる。典型的には、0.1~10000mg/kg体重を摂取することができ、好ましくは0.1~1000mg/kg体重、さらに好ましくは0.1~300mg/kg体重を摂取することができる。また、本発明のLactobacillus属菌の菌体の乾燥物質量として0.1~100mg/kg体重および0.5~10mg/kg体重、本発明のLactobacillus属菌の菌体数として106~1012個、107~1011個、および108~1010個、を例示することができる。 When the Lactobacillus genus of the present invention is used in a food composition, the cell concentration is not particularly limited, but when used as a concentrate, 2 × 10 10 cells / g or more, when used as a dry product, 3 × 10 It is preferable to set it to 11 pieces / g or more. In addition, the content of the Lactobacillus genus of the present invention in the food composition (as the amount of dry substance) is 0.01 to 100 w / w%, more preferably 1 to 10% in the solid content of the food composition. 80 w / w%, more preferably 10 to 40 w / w%.
In the food composition of the present invention, the amount of Lactobacillus sp., Its culture or processed product thereof is not particularly limited, but can be appropriately adjusted according to the dosage form, symptoms, body weight, use and the like.
The daily intake of the food composition of the present invention is not particularly limited, but can be appropriately adjusted according to age, symptoms, body weight, use and the like. Typically, 0.1 to 10000 mg / kg body weight can be taken, preferably 0.1 to 1000 mg / kg body weight, more preferably 0.1 to 300 mg / kg body weight. Further, the dry substance amount of the Lactobacillus genus of the present invention is 0.1 to 100 mg / kg body weight and 0.5 to 10 mg / kg body weight, and the number of the Lactobacillus genus of the present invention is 10 6 to 10 12. Examples are 10 7 to 10 11 , and 10 8 to 10 10 .
本発明の食品組成物において、Lactobacillus属菌、その培養物またはその加工物の配合量は、とくに限定されないが、剤型、症状、体重、用途などに応じて適宜調整することができる。
本発明の食品組成物の一日当たりの摂取量は、とくに限定されないが、年齢、症状、体重、用途などに応じて適宜調整することができる。典型的には、0.1~10000mg/kg体重を摂取することができ、好ましくは0.1~1000mg/kg体重、さらに好ましくは0.1~300mg/kg体重を摂取することができる。また、本発明のLactobacillus属菌の菌体の乾燥物質量として0.1~100mg/kg体重および0.5~10mg/kg体重、本発明のLactobacillus属菌の菌体数として106~1012個、107~1011個、および108~1010個、を例示することができる。 When the Lactobacillus genus of the present invention is used in a food composition, the cell concentration is not particularly limited, but when used as a concentrate, 2 × 10 10 cells / g or more, when used as a dry product, 3 × 10 It is preferable to set it to 11 pieces / g or more. In addition, the content of the Lactobacillus genus of the present invention in the food composition (as the amount of dry substance) is 0.01 to 100 w / w%, more preferably 1 to 10% in the solid content of the food composition. 80 w / w%, more preferably 10 to 40 w / w%.
In the food composition of the present invention, the amount of Lactobacillus sp., Its culture or processed product thereof is not particularly limited, but can be appropriately adjusted according to the dosage form, symptoms, body weight, use and the like.
The daily intake of the food composition of the present invention is not particularly limited, but can be appropriately adjusted according to age, symptoms, body weight, use and the like. Typically, 0.1 to 10000 mg / kg body weight can be taken, preferably 0.1 to 1000 mg / kg body weight, more preferably 0.1 to 300 mg / kg body weight. Further, the dry substance amount of the Lactobacillus genus of the present invention is 0.1 to 100 mg / kg body weight and 0.5 to 10 mg / kg body weight, and the number of the Lactobacillus genus of the present invention is 10 6 to 10 12. Examples are 10 7 to 10 11 , and 10 8 to 10 10 .
以下に、本発明を実施例に基づいてさらに説明するが、かかる実施例は、本発明の例示であり、本発明を限定するものではない。
Hereinafter, the present invention will be further described based on examples, but these examples are exemplifications of the present invention and do not limit the present invention.
例1:マウス繊維芽細胞由来3T3-L1細胞を用いたスクリーニング系の構築
脂肪細胞のモデルであるマウス繊維芽細胞由来3T3-L1細胞株を用いた抗肥満・抗糖尿病活性を有する乳酸菌のスクリーニング系を樹立した。
(1)供試菌株
健康なヒト糞便より単離された約270菌株より、胃酸または胆汁酸耐性に優れた20菌株(菌株番号1~19、23)を選抜して用いた。それらの他に、各種発酵乳から単離された多数の菌株より、免疫調節活性の高い3菌株(菌株番号20~22)を加えた、下記表1に示す計23菌株を用いた。
Example 1: Construction of screening system using mouse fibroblast-derived 3T3-L1 cells Screening system for lactic acid bacteria having anti-obesity / anti-diabetic activity using mouse fibroblast-derived 3T3-L1 cell line which is a model of adipocytes Was established.
(1) Test strains From about 270 strains isolated from healthy human feces, 20 strains (strain numbers 1 to 19, 23) having excellent resistance to gastric acid or bile acids were selected and used. In addition to these, a total of 23 strains shown in Table 1 below were used, in which 3 strains (strain numbers 20 to 22) having high immunomodulating activity were added from many strains isolated from various fermented milks.
脂肪細胞のモデルであるマウス繊維芽細胞由来3T3-L1細胞株を用いた抗肥満・抗糖尿病活性を有する乳酸菌のスクリーニング系を樹立した。
(1)供試菌株
健康なヒト糞便より単離された約270菌株より、胃酸または胆汁酸耐性に優れた20菌株(菌株番号1~19、23)を選抜して用いた。それらの他に、各種発酵乳から単離された多数の菌株より、免疫調節活性の高い3菌株(菌株番号20~22)を加えた、下記表1に示す計23菌株を用いた。
(1) Test strains From about 270 strains isolated from healthy human feces, 20 strains (
(2)乳酸菌の培養および培養上清の調製
乳酸菌は、脱脂粉乳培地(表2)およびMRS培地(Lactobacilli MRS Broth (Difco,
Ref. No. 288130))を用い、37℃で培養した。
培養上清の調製は、まず、乳酸菌を脱脂粉乳培地およびMRS培地で、37℃、18時間培養した後、上清を回収し、次に、回収した上清を0.22μmフィルターに通して行った。培養上清は、-20℃で保存した。
(2) Culture of lactic acid bacteria and preparation of culture supernatant Lactic acid bacteria are prepared from skim milk powder medium (Table 2) and MRS medium (Lactobacilli MRS Broth (Difco,
No. 288130)) and cultured at 37 ° C.
The culture supernatant was prepared by first cultivating lactic acid bacteria in skim milk powder medium and MRS medium at 37 ° C. for 18 hours, collecting the supernatant, and then passing the collected supernatant through a 0.22 μm filter. It was. The culture supernatant was stored at −20 ° C.
乳酸菌は、脱脂粉乳培地(表2)およびMRS培地(Lactobacilli MRS Broth (Difco,
Ref. No. 288130))を用い、37℃で培養した。
培養上清の調製は、まず、乳酸菌を脱脂粉乳培地およびMRS培地で、37℃、18時間培養した後、上清を回収し、次に、回収した上清を0.22μmフィルターに通して行った。培養上清は、-20℃で保存した。
No. 288130)) and cultured at 37 ° C.
The culture supernatant was prepared by first cultivating lactic acid bacteria in skim milk powder medium and MRS medium at 37 ° C. for 18 hours, collecting the supernatant, and then passing the collected supernatant through a 0.22 μm filter. It was. The culture supernatant was stored at −20 ° C.
(3)3T3-L1細胞を用いたアッセイ
3T3-L1細胞株(DSファーマバイオメディカル社より購入)を24ウェルプレートに2×105cells/dishで播種し、10%CS(calf serum)入りDMEM(ダルベッコ変法イーグル培地(Dulbecco's
modified Eagle medium))で2日間培養し、10%FCS(fetal calf serum)入りDMEMに交換し、さらに2日後に分化培地(10%FCS含有DMEM中、インシュリン10μg/ml、デキサメタゾン2.5μM、3-イソブチル-1-メチルキサンチン0.5mM)に交換した。分化培地で48時間培養後、維持培地(10%FCS含有DMEM中、インシュリン10μg/ml)でさらに48時間培養し、以後は10%FCS入りDMEMで培養した。維持培地に交換後7日目の細胞をアッセイに使用した。なお、脂肪細胞分化/維持試薬(AdipoInducer Reagent(for animal cell))はタカラバイオ(株)より購入した。分化培地用添加試薬の組成は、インシュリン溶液(10μg/ml)、デキサメタゾン溶液(2.5μM)、3-イソブチル-1-メチルキサンチン溶液(0.5mM)であった。維持培地用添加試薬の組成は、インシュリン溶液(10μg/ml)であった。
細胞を回収する22時間前に乳酸菌培養上清1%を添加した培地に交換し、その2時間後にさらにTNFα(Sigma-Aldrich社より購入)10ng/mlを添加した。また、乳酸菌培養上清の代わりに、糖尿病治療薬として用いられているピオグリタゾン(pioglitazone、販売元:和光純薬工業、製造元:Alexis)を10μMの濃度になるように添加し、ポジティブコントロールとした。その後、TRIzol試薬(Invitrogen、Life Technologies社より購入)により細胞溶解物を回収し、real-time
PCR system(Applied Biosystems、Life
Technologies社)で遺伝子発現量を測定した。 (3) Assay using 3T3-L1 cells The 3T3-L1 cell line (purchased from DS Pharma Biomedical) was seeded in a 24-well plate at 2 × 10 5 cells / dish and DMEM containing 10% CS (calf serum). Dulbecco's Modified Eagle Medium (Dulbecco's
modified Eagle medium)) for 2 days, replaced with 10% FCS (fetal calf serum) -containing DMEM, and further 2 days later, differentiation medium (10% FCS-containing DMEM, 10 μg / ml insulin, 2.5 μM dexamethasone, 3 -Isobutyl-1-methylxanthine (0.5 mM). After culturing in the differentiation medium for 48 hours, the cells were further cultured in the maintenance medium (10 μg / ml insulin in 10% FCS-containing DMEM) for 48 hours, and thereafter cultured in DMEM containing 10% FCS. Cells 7 days after replacement with maintenance medium were used for the assay. In addition, the adipocyte differentiation / maintenance reagent (AdipoInducer Reagent (for animal cell)) was purchased from Takara Bio Inc. The composition of the added reagent for differentiation medium was an insulin solution (10 μg / ml), a dexamethasone solution (2.5 μM), and a 3-isobutyl-1-methylxanthine solution (0.5 mM). The composition of the addition reagent for the maintenance medium was an insulin solution (10 μg / ml).
The medium was replaced with a medium supplemented with 1% of lactic acid bacteria culture supernatant 22 hours before collecting the cells, and 2 hours later, 10 ng / ml of TNFα (purchased from Sigma-Aldrich) was added. Also, instead of the culture supernatant of lactic acid bacteria, pioglitazone (pioglitazone, sold by Wako Pure Chemical Industries, Ltd., manufacturer: Alexis) used as a therapeutic agent for diabetes was added to a concentration of 10 μM to serve as a positive control. Thereafter, the cell lysate was collected with TRIzol reagent (Invitrogen, purchased from Life Technologies) and real-time
PCR system (Applied Biosystems, Life
The gene expression level was measured by Technologies).
3T3-L1細胞株(DSファーマバイオメディカル社より購入)を24ウェルプレートに2×105cells/dishで播種し、10%CS(calf serum)入りDMEM(ダルベッコ変法イーグル培地(Dulbecco's
modified Eagle medium))で2日間培養し、10%FCS(fetal calf serum)入りDMEMに交換し、さらに2日後に分化培地(10%FCS含有DMEM中、インシュリン10μg/ml、デキサメタゾン2.5μM、3-イソブチル-1-メチルキサンチン0.5mM)に交換した。分化培地で48時間培養後、維持培地(10%FCS含有DMEM中、インシュリン10μg/ml)でさらに48時間培養し、以後は10%FCS入りDMEMで培養した。維持培地に交換後7日目の細胞をアッセイに使用した。なお、脂肪細胞分化/維持試薬(AdipoInducer Reagent(for animal cell))はタカラバイオ(株)より購入した。分化培地用添加試薬の組成は、インシュリン溶液(10μg/ml)、デキサメタゾン溶液(2.5μM)、3-イソブチル-1-メチルキサンチン溶液(0.5mM)であった。維持培地用添加試薬の組成は、インシュリン溶液(10μg/ml)であった。
細胞を回収する22時間前に乳酸菌培養上清1%を添加した培地に交換し、その2時間後にさらにTNFα(Sigma-Aldrich社より購入)10ng/mlを添加した。また、乳酸菌培養上清の代わりに、糖尿病治療薬として用いられているピオグリタゾン(pioglitazone、販売元:和光純薬工業、製造元:Alexis)を10μMの濃度になるように添加し、ポジティブコントロールとした。その後、TRIzol試薬(Invitrogen、Life Technologies社より購入)により細胞溶解物を回収し、real-time
PCR system(Applied Biosystems、Life
Technologies社)で遺伝子発現量を測定した。 (3) Assay using 3T3-L1 cells The 3T3-L1 cell line (purchased from DS Pharma Biomedical) was seeded in a 24-well plate at 2 × 10 5 cells / dish and DMEM containing 10% CS (calf serum). Dulbecco's Modified Eagle Medium (Dulbecco's
modified Eagle medium)) for 2 days, replaced with 10% FCS (fetal calf serum) -containing DMEM, and further 2 days later, differentiation medium (10% FCS-containing DMEM, 10 μg / ml insulin, 2.5 μM dexamethasone, 3 -Isobutyl-1-methylxanthine (0.5 mM). After culturing in the differentiation medium for 48 hours, the cells were further cultured in the maintenance medium (10 μg / ml insulin in 10% FCS-containing DMEM) for 48 hours, and thereafter cultured in DMEM containing 10% FCS. Cells 7 days after replacement with maintenance medium were used for the assay. In addition, the adipocyte differentiation / maintenance reagent (AdipoInducer Reagent (for animal cell)) was purchased from Takara Bio Inc. The composition of the added reagent for differentiation medium was an insulin solution (10 μg / ml), a dexamethasone solution (2.5 μM), and a 3-isobutyl-1-methylxanthine solution (0.5 mM). The composition of the addition reagent for the maintenance medium was an insulin solution (10 μg / ml).
The medium was replaced with a medium supplemented with 1% of lactic acid bacteria culture supernatant 22 hours before collecting the cells, and 2 hours later, 10 ng / ml of TNFα (purchased from Sigma-Aldrich) was added. Also, instead of the culture supernatant of lactic acid bacteria, pioglitazone (pioglitazone, sold by Wako Pure Chemical Industries, Ltd., manufacturer: Alexis) used as a therapeutic agent for diabetes was added to a concentration of 10 μM to serve as a positive control. Thereafter, the cell lysate was collected with TRIzol reagent (Invitrogen, purchased from Life Technologies) and real-time
PCR system (Applied Biosystems, Life
The gene expression level was measured by Technologies).
(4)結果
3T3-L1細胞において、アディポネクチンおよびCu,Zn-SOD(Cu,Zn-Superoxide
Dismutase)の各mRNA量は、ピオグリタゾンで有意に増加した。なお、Cu,Zn-SODのmRNA量は、メタボリックシンドロームの動物では、この測定値が低下することが示され、アディポネクチンの発現上昇と有意に相関することが示されている。
また、TNFα10ng/mlの添加では有意に抑制され、ピオグリタゾン10μMとTNFα10ng/mlとの共添加によって有意に回復した(図1a~b)。なお、図1a~bにおいて、「control」は、何も添加していない3T3-L1細胞の場合、「TNF10ng/ml」は、TNFαを10ng/mlで添加した3T3-L1細胞の場合、「Pio10μM」は、ピオグリタゾンを10μMで添加した3T3-L1細胞の場合、「Pio+TNF」は、ピオグリタゾンを10μM、TNFαを10ng/mlで共添加した3T3-L1細胞の場合である。
その他の代表的な抗酸化因子であるカタラーゼ(catalase)についても同様に有意な効果を確認した(データ省略)。 (4) Results In 3T3-L1 cells, adiponectin and Cu, Zn-SOD (Cu, Zn-Superoxide
The amount of each mRNA of Dismutase) was significantly increased by pioglitazone. In addition, the amount of Cu, Zn-SOD mRNA was shown to decrease in the metabolic syndrome animals, and it was shown to correlate significantly with the increased expression of adiponectin.
Moreover, it was significantly suppressed by the addition of 10 ng / ml of TNFα, and was significantly recovered by co-addition of 10 μM pioglitazone and 10 ng / ml of TNFα (FIGS. 1a and b). In FIG. 1a-b, “control” is 3T3-L1 cells to which nothing is added, “TNF10 ng / ml” is “Pio 10 μM for 3T3-L1 cells to which TNFα is added at 10 ng / ml. “Is for 3T3-L1 cells supplemented with 10 μM pioglitazone, and“ Pio + TNF ”is for 3T3-L1 cells co-added with 10 μM pioglitazone and 10 ng / ml TNFα.
Similarly, significant effects were confirmed for catalase, which is another representative antioxidant factor (data not shown).
3T3-L1細胞において、アディポネクチンおよびCu,Zn-SOD(Cu,Zn-Superoxide
Dismutase)の各mRNA量は、ピオグリタゾンで有意に増加した。なお、Cu,Zn-SODのmRNA量は、メタボリックシンドロームの動物では、この測定値が低下することが示され、アディポネクチンの発現上昇と有意に相関することが示されている。
また、TNFα10ng/mlの添加では有意に抑制され、ピオグリタゾン10μMとTNFα10ng/mlとの共添加によって有意に回復した(図1a~b)。なお、図1a~bにおいて、「control」は、何も添加していない3T3-L1細胞の場合、「TNF10ng/ml」は、TNFαを10ng/mlで添加した3T3-L1細胞の場合、「Pio10μM」は、ピオグリタゾンを10μMで添加した3T3-L1細胞の場合、「Pio+TNF」は、ピオグリタゾンを10μM、TNFαを10ng/mlで共添加した3T3-L1細胞の場合である。
その他の代表的な抗酸化因子であるカタラーゼ(catalase)についても同様に有意な効果を確認した(データ省略)。 (4) Results In 3T3-L1 cells, adiponectin and Cu, Zn-SOD (Cu, Zn-Superoxide
The amount of each mRNA of Dismutase) was significantly increased by pioglitazone. In addition, the amount of Cu, Zn-SOD mRNA was shown to decrease in the metabolic syndrome animals, and it was shown to correlate significantly with the increased expression of adiponectin.
Moreover, it was significantly suppressed by the addition of 10 ng / ml of TNFα, and was significantly recovered by co-addition of 10 μM pioglitazone and 10 ng / ml of TNFα (FIGS. 1a and b). In FIG. 1a-b, “control” is 3T3-L1 cells to which nothing is added, “TNF10 ng / ml” is “
Similarly, significant effects were confirmed for catalase, which is another representative antioxidant factor (data not shown).
例2:各種乳酸菌脱脂粉乳培養上清の抗肥満・抗糖尿病活性
表1の番号1~21および23の計22菌株の乳酸菌の脱脂粉乳培養上清およびMRS培養上清が3T3-L1細胞のアディポネクチン発現量に及ぼす影響を評価した。
一次スクリーニングの結果、番号12のLactobacillus amylovorus MEP222812(以下、菌株12)、番号17のLactobacillus plantarum MEP222817(以下、菌株17)、番号23のLactobacillus plantarum OLL2712(以下、菌株23)の脱脂粉乳培養上清が、3T3-L1細胞のアディポネクチン発現量を有意に亢進する作用を示した。さらに、これら3つの菌株について再現性を確認した結果、菌株17と菌株23の2株が安定的な効果を示すことがわかった。 Example 2: Anti-obesity and anti-diabetic activity of various lactic acid bacteria skim milk culture supernatants Adiponectin in which the skim milk milk culture supernatants and MRS culture supernatants of 22 strains of lactic acid bacteria of Nos. 1-21 and 23 in Table 1 are 3T3-L1 cells The effect on the expression level was evaluated.
As a result of the primary screening, a skim milk powder culture supernatant of Lactobacillus amylovorus MEP222812 (hereinafter referred to as strain 12), Lactobacillus plantarum MEP222817 (hereinafter referred to as strain 17), and Lactobacillus plantarum OLL2712 (hereinafter referred to as strain 23) ofnumber 23 was obtained. It showed the effect of significantly increasing the expression level of adiponectin in 3T3-L1 cells. Furthermore, as a result of confirming reproducibility for these three strains, it was found that two strains, strain 17 and strain 23, showed stable effects.
表1の番号1~21および23の計22菌株の乳酸菌の脱脂粉乳培養上清およびMRS培養上清が3T3-L1細胞のアディポネクチン発現量に及ぼす影響を評価した。
一次スクリーニングの結果、番号12のLactobacillus amylovorus MEP222812(以下、菌株12)、番号17のLactobacillus plantarum MEP222817(以下、菌株17)、番号23のLactobacillus plantarum OLL2712(以下、菌株23)の脱脂粉乳培養上清が、3T3-L1細胞のアディポネクチン発現量を有意に亢進する作用を示した。さらに、これら3つの菌株について再現性を確認した結果、菌株17と菌株23の2株が安定的な効果を示すことがわかった。 Example 2: Anti-obesity and anti-diabetic activity of various lactic acid bacteria skim milk culture supernatants Adiponectin in which the skim milk milk culture supernatants and MRS culture supernatants of 22 strains of lactic acid bacteria of Nos. 1-21 and 23 in Table 1 are 3T3-L1 cells The effect on the expression level was evaluated.
As a result of the primary screening, a skim milk powder culture supernatant of Lactobacillus amylovorus MEP222812 (hereinafter referred to as strain 12), Lactobacillus plantarum MEP222817 (hereinafter referred to as strain 17), and Lactobacillus plantarum OLL2712 (hereinafter referred to as strain 23) of
また、マウス骨髄由来BMDC細胞のIL-10産生を顕著に誘導するなどの抗炎症性作用がその死菌体に確認されているLactobacillus delbrueckii subsp. bulgaricus MEP222822(以下、菌株22)の脱脂粉乳培養上清についても同時に評価した。
TNFα(10ng/ml)によってインシュリン抵抗性を誘導した系で評価した結果を図2a~dに示す。なお、図2a~dにおいて、「control」は、何も添加していない3T3-L1細胞の場合、「脱脂粉乳+TNF」は、脱脂粉乳培地およびTNFαを10ng/mlを添加した3T3-L1細胞の場合、「菌株22+TNF」は、菌株22を培養した脱脂粉乳培養上清およびTNFαを10ng/mlを添加した3T3-L1細胞の場合、「菌株17+TNF」は、菌株17を培養した脱脂粉乳培養上清およびTNFαを10ng/mlを添加した3T3-L1細胞の場合、「菌株23+TNF」は、菌株23を培養した脱脂粉乳培養上清およびTNFαを10ng/mlを添加した3T3-L1細胞の場合、「pio+TNF」は、ピオグリタゾンを10μM、TNFαを10ng/mlで共添加した3T3-L1細胞の場合である。 In addition, Lactobacillus delbrueckii subsp. Bulgaricus MEP222822 (hereinafter referred to as strain 22), which has been confirmed to have anti-inflammatory effects such as markedly inducing IL-10 production in mouse bone marrow-derived BMDC cells, is cultured on skim milk powder. Qing was also evaluated at the same time.
The results of evaluation in a system in which insulin resistance was induced by TNFα (10 ng / ml) are shown in FIGS. In FIGS. 2a to d, “control” is 3T3-L1 cells to which nothing has been added, and “skimmed milk powder + TNF” is a skim milk powder medium and 3T3-L1 cells to which TNFα is added at 10 ng / ml. In this case, “strain 22 + TNF” is a non-fat dry milk culture supernatant obtained by culturing strain 22 and 3T3-L1 cells supplemented with 10 ng / ml TNFα, and “strain 17 + TNF” is a non-fat dry milk culture supernatant obtained by culturingstrain 17 In the case of 3T3-L1 cells to which 10 ng / ml of TNFα is added, “strain 23 + TNF” is “pio + TNF” in the case of the skim milk culture supernatant obtained by culturing strain 23 and 3T3-L1 cells to which 10 ng / ml of TNFα is added. "Is the case of 3T3-L1 cells co-added with 10 μM pioglitazone and 10 ng / ml TNFα.
TNFα(10ng/ml)によってインシュリン抵抗性を誘導した系で評価した結果を図2a~dに示す。なお、図2a~dにおいて、「control」は、何も添加していない3T3-L1細胞の場合、「脱脂粉乳+TNF」は、脱脂粉乳培地およびTNFαを10ng/mlを添加した3T3-L1細胞の場合、「菌株22+TNF」は、菌株22を培養した脱脂粉乳培養上清およびTNFαを10ng/mlを添加した3T3-L1細胞の場合、「菌株17+TNF」は、菌株17を培養した脱脂粉乳培養上清およびTNFαを10ng/mlを添加した3T3-L1細胞の場合、「菌株23+TNF」は、菌株23を培養した脱脂粉乳培養上清およびTNFαを10ng/mlを添加した3T3-L1細胞の場合、「pio+TNF」は、ピオグリタゾンを10μM、TNFαを10ng/mlで共添加した3T3-L1細胞の場合である。 In addition, Lactobacillus delbrueckii subsp. Bulgaricus MEP222822 (hereinafter referred to as strain 22), which has been confirmed to have anti-inflammatory effects such as markedly inducing IL-10 production in mouse bone marrow-derived BMDC cells, is cultured on skim milk powder. Qing was also evaluated at the same time.
The results of evaluation in a system in which insulin resistance was induced by TNFα (10 ng / ml) are shown in FIGS. In FIGS. 2a to d, “control” is 3T3-L1 cells to which nothing has been added, and “skimmed milk powder + TNF” is a skim milk powder medium and 3T3-L1 cells to which TNFα is added at 10 ng / ml. In this case, “strain 22 + TNF” is a non-fat dry milk culture supernatant obtained by culturing strain 22 and 3T3-L1 cells supplemented with 10 ng / ml TNFα, and “strain 17 + TNF” is a non-fat dry milk culture supernatant obtained by culturing
菌株17と菌株23の脱脂粉乳培養上清はともに3T3-L1細胞のアディポネクチン発現量を有意に増加させた。さらに、菌株23はIL-6発現量を有意に抑制し、Cu,Zn-SOD発現量を有意に増加させた。一方、菌株22はIL-6発現量を有意に増加させたが、その他の遺伝子発現量には影響がなかった。
ピオグリタゾンはIL-6の抑制はしなかったが、MCP-1を有意に抑制した。一方、菌株23の脱脂粉乳培養上清はIL-6を抑制し、MCP-1には影響しなかった。また、菌株22の培養上清はIL-6を有意に亢進した。 Both the skim milk culture supernatants of strains 17 and 23 significantly increased the expression level of adiponectin in 3T3-L1 cells. Furthermore, strain 23 significantly suppressed IL-6 expression and significantly increased Cu, Zn-SOD expression. On the other hand, strain 22 significantly increased the expression level of IL-6, but did not affect the expression levels of other genes.
Pioglitazone did not suppress IL-6 but significantly suppressed MCP-1. On the other hand, the skim milk culture supernatant ofstrain 23 suppressed IL-6 and did not affect MCP-1. The culture supernatant of strain 22 significantly increased IL-6.
ピオグリタゾンはIL-6の抑制はしなかったが、MCP-1を有意に抑制した。一方、菌株23の脱脂粉乳培養上清はIL-6を抑制し、MCP-1には影響しなかった。また、菌株22の培養上清はIL-6を有意に亢進した。 Both the skim milk culture supernatants of
Pioglitazone did not suppress IL-6 but significantly suppressed MCP-1. On the other hand, the skim milk culture supernatant of
以上の結果より、菌株23の脱脂粉乳培養上清はピオグリタゾンとは異なる機序によってアディポネクチン発現量を増加させることが示唆された。ピオグリタゾンの作用機序は核内受容体型転写因子PPARγのリガンドであり、アディポネクチンなどのPPARγにより転写調節を受ける遺伝子の発現を変化させる。PPARγは特に脂肪細胞に多く発現していることから、脂肪細胞がピオグリタゾンの主要な標的細胞であると考えられる。ピオグリタゾンが脂肪細胞に作用する結果、TNFαや遊離脂肪酸(free fatty acid: FFA)などの産生を抑制する一方、アディポネクチンの分泌を増加させ、その結果として脂肪細胞や骨格筋などのインシュリン抵抗性を改善する。
From the above results, it was suggested that the skim milk culture supernatant of strain 23 increases the adiponectin expression level by a mechanism different from that of pioglitazone. The mechanism of action of pioglitazone is a ligand for the nuclear receptor type transcription factor PPARγ, and changes the expression of genes that are transcriptionally regulated by PPARγ such as adiponectin. Since PPARγ is highly expressed especially in adipocytes, it is considered that adipocytes are the main target cells of pioglitazone. As a result of pioglitazone acting on fat cells, it suppresses the production of TNFα and free fatty acid (free fatty acid: FFA), while increasing the secretion of adiponectin, resulting in improved insulin resistance of fat cells and skeletal muscles. To do.
TNFα添加によるインシュリン抵抗性の誘導をおこなわない系で同様の検討を実施した結果を図3a~cに示す。なお、図3a~cにおいて、「control」は、何も添加していない3T3-L1細胞の場合、「脱脂粉乳」は、脱脂粉乳培地を添加した3T3-L1細胞の場合、「菌株17」は、菌株17を培養した脱脂粉乳培養上清を添加した3T3-L1細胞の場合、「菌株23」は、菌株23を培養した脱脂粉乳培養上清を添加した3T3-L1細胞の場合である。
菌株23培養上清はTNFαを添加しない系でも3T3-L1細胞のアディポネクチンおよびCu,Zn-SOD発現量を有意に増加させた。また、IL-6発現量は有意ではないものの平均値で20%程度抑制した。一方、菌株17はいずれの遺伝子発現量にも有意な影響を及ぼさなかった。 The results of a similar study in a system that does not induce insulin resistance by the addition of TNFα are shown in FIGS. 3a to 3c. In FIGS. 3a to 3c, “control” is 3T3-L1 cells to which nothing is added, “skim milk powder” is 3T3-L1 cells to which skim milk medium is added, and “strain 17” is In the case of 3T3-L1 cells added with the skim milk powder culture supernatant obtained by culturing thestrain 17, “strain 23” is the case of 3T3-L1 cells added with the skim milk powder culture supernatant obtained by culturing the strain 23.
The culture supernatant ofstrain 23 significantly increased the expression levels of adiponectin and Cu, Zn-SOD in 3T3-L1 cells even in the system without addition of TNFα. Further, although the expression level of IL-6 was not significant, the average value was suppressed by about 20%. On the other hand, strain 17 had no significant effect on any gene expression level.
菌株23培養上清はTNFαを添加しない系でも3T3-L1細胞のアディポネクチンおよびCu,Zn-SOD発現量を有意に増加させた。また、IL-6発現量は有意ではないものの平均値で20%程度抑制した。一方、菌株17はいずれの遺伝子発現量にも有意な影響を及ぼさなかった。 The results of a similar study in a system that does not induce insulin resistance by the addition of TNFα are shown in FIGS. 3a to 3c. In FIGS. 3a to 3c, “control” is 3T3-L1 cells to which nothing is added, “skim milk powder” is 3T3-L1 cells to which skim milk medium is added, and “strain 17” is In the case of 3T3-L1 cells added with the skim milk powder culture supernatant obtained by culturing the
The culture supernatant of
結果、菌株23の脱脂粉乳培養上清は、アディポネクチン発現量を亢進してIL-6発現量を抑制したことから、抗肥満・抗糖尿病効果を示す可能性が示唆された。菌株22の脱脂粉乳培養上清にはこのような活性はなく、抗肥満・抗糖尿病素材としての脱脂粉乳培養物の利用という点では菌株23は優れた特性を有することが示された。
As a result, the non-fat dry milk culture supernatant of strain 23 increased the adiponectin expression level and suppressed the IL-6 expression level, suggesting the possibility of having anti-obesity / anti-diabetic effects. The non-fat dry milk culture supernatant of strain 22 has no such activity, and it was shown that strain 23 has excellent characteristics in terms of utilization of non-fat dry milk culture as an anti-obesity / anti-diabetic material.
例3:マウス骨髄由来樹状細胞BMDCを用いたアッセイ
BMDCは、7週齢オスICRの大腿骨より抽出した。骨髄液を70μmセルストレイナーに通した後、溶血し、非特異的吸着を防ぐためにウサギIgGを添加した。さらに、ビオチン標識抗CD4抗体、抗CD8抗体、I-Ad(MHCIIマーカー)抗体を添加して、氷上に30分静置した。さらにstreptoavidin磁気ビーズと抗B220抗体磁気ビーズを添加した。再度40μmのセルストレイナーを通した後、auto MACS DEPLETEでネガティブ画分を回収した。この操作により骨髄液中細胞からT細胞、B細胞や抗原提示細胞を除去し、未熟樹状細胞のみを分離できたものとした。 Example 3 Assay Using Mouse Bone Marrow-Derived Dendritic Cells BMDC BMDC was extracted from femurs of 7-week-old male ICR. Bone marrow fluid was passed through a 70 μm cell strainer and then hemolyzed, and rabbit IgG was added to prevent nonspecific adsorption. Furthermore, biotin-labeled anti-CD4 antibody, anti-CD8 antibody, and IA d (MHCII marker) antibody were added, and the mixture was allowed to stand on ice for 30 minutes. Furthermore, streptoavidin magnetic beads and anti-B220 antibody magnetic beads were added. After passing through a 40 μm cell strainer again, the negative fraction was collected by auto MACS DEPLETE. By this operation, T cells, B cells and antigen-presenting cells were removed from cells in the bone marrow fluid, and only immature dendritic cells were separated.
BMDCは、7週齢オスICRの大腿骨より抽出した。骨髄液を70μmセルストレイナーに通した後、溶血し、非特異的吸着を防ぐためにウサギIgGを添加した。さらに、ビオチン標識抗CD4抗体、抗CD8抗体、I-Ad(MHCIIマーカー)抗体を添加して、氷上に30分静置した。さらにstreptoavidin磁気ビーズと抗B220抗体磁気ビーズを添加した。再度40μmのセルストレイナーを通した後、auto MACS DEPLETEでネガティブ画分を回収した。この操作により骨髄液中細胞からT細胞、B細胞や抗原提示細胞を除去し、未熟樹状細胞のみを分離できたものとした。 Example 3 Assay Using Mouse Bone Marrow-Derived Dendritic Cells BMDC BMDC was extracted from femurs of 7-week-old male ICR. Bone marrow fluid was passed through a 70 μm cell strainer and then hemolyzed, and rabbit IgG was added to prevent nonspecific adsorption. Furthermore, biotin-labeled anti-CD4 antibody, anti-CD8 antibody, and IA d (MHCII marker) antibody were added, and the mixture was allowed to stand on ice for 30 minutes. Furthermore, streptoavidin magnetic beads and anti-B220 antibody magnetic beads were added. After passing through a 40 μm cell strainer again, the negative fraction was collected by auto MACS DEPLETE. By this operation, T cells, B cells and antigen-presenting cells were removed from cells in the bone marrow fluid, and only immature dendritic cells were separated.
これらを10%GM-CSF(Granulocyte Macrophage
colony-stimulating Factor)入りRPMI(Roswell Park Memorial
Institute)-medium 1640 10mlで培養し、3日後にGM-CSF入りRPMI-medium 1640を5ml追加した。そのさらに5日後にBMDCと考えられる浮遊細胞を回収し、1×105cells/ウェルで96穴プレートにまき、同時に各濃度の乳酸菌死菌体を添加した。24時間後に培養上清を回収し、mouse ELISA kitを用いてIL-10およびIL-12(p70)濃度を定量した。なお、抗体類およびELISA kitはBecton, Dickinson and Companyより購入した。 10% GM-CSF (Granulocyte Macrophage
RPMI (Roswell Park Memorial) with colony-stimulating factor
Institute) -medium 1640 was cultured in 10 ml, and after 3 days, 5 ml of RPMI-medium 1640 containing GM-CSF was added. Five days later, floating cells considered to be BMDC were collected, seeded in a 96-well plate at 1 × 10 5 cells / well, and lactic acid bacteria killed at each concentration were added simultaneously. After 24 hours, the culture supernatant was collected, and the concentrations of IL-10 and IL-12 (p70) were quantified using a mouse ELISA kit. Antibodies and ELISA kits were purchased from Becton, Dickinson and Company.
colony-stimulating Factor)入りRPMI(Roswell Park Memorial
Institute)-medium 1640 10mlで培養し、3日後にGM-CSF入りRPMI-medium 1640を5ml追加した。そのさらに5日後にBMDCと考えられる浮遊細胞を回収し、1×105cells/ウェルで96穴プレートにまき、同時に各濃度の乳酸菌死菌体を添加した。24時間後に培養上清を回収し、mouse ELISA kitを用いてIL-10およびIL-12(p70)濃度を定量した。なお、抗体類およびELISA kitはBecton, Dickinson and Companyより購入した。 10% GM-CSF (Granulocyte Macrophage
RPMI (Roswell Park Memorial) with colony-stimulating factor
Institute) -medium 1640 was cultured in 10 ml, and after 3 days, 5 ml of RPMI-medium 1640 containing GM-CSF was added. Five days later, floating cells considered to be BMDC were collected, seeded in a 96-well plate at 1 × 10 5 cells / well, and lactic acid bacteria killed at each concentration were added simultaneously. After 24 hours, the culture supernatant was collected, and the concentrations of IL-10 and IL-12 (p70) were quantified using a mouse ELISA kit. Antibodies and ELISA kits were purchased from Becton, Dickinson and Company.
乳酸菌体が樹状細胞やマクロファージのサイトカイン産生能に及ぼす影響について検討をおこなった。
3T3-L1細胞に対してその脱脂粉乳培養上清が安定的に有意な活性を示した菌株17と菌株23に加え、3T3-L1細胞での検討で何度か有意な活性を示した菌株12の3菌株の凍結乾燥死菌体について、BMDC細胞のサイトカイン産生能に及ぼす影響を調べた。比較対象として、活性が既知の菌株22と、Lactobacillus gasseri MEP222804(以下、菌株4)の死菌体を用いた。各乳酸菌の死菌体(0.5、1、5、10μg/ml)をBMDCに添加し、48時間後のIL-10とIL-12(p70)産生量をELISA法で測定した結果を図4a~bに示す。なお、図4a~bにおいて、「菌株12」は、菌株12の死菌体を添加したBMDC細胞の場合、「菌株17」は、菌株17の死菌体を添加したBMDC細胞の場合、「菌株23」は、菌株23の死菌体を添加したBMDC細胞の場合、「菌株22」は、菌株22の死菌体を添加したBMDC細胞の場合、「菌株4」は、菌株4の死菌体を添加したBMDC細胞の場合、である。 We investigated the effect of lactic acid bacteria on the cytokine production ability of dendritic cells and macrophages.
In addition tostrain 17 and strain 23, the skim milk culture supernatant showed stable and significant activity against 3T3-L1 cells. In addition, strain 12 showed significant activity several times in 3T3-L1 cells. The effect of the three freeze-dried dead cells on the cytokine production ability of BMDC cells was examined. As comparative objects, a strain 22 having known activity and a dead cell of Lactobacillus gasseri MEP222804 (hereinafter referred to as strain 4) were used. Fig. 4 shows the results of measuring the production of IL-10 and IL-12 (p70) after 48 hours by ELISA using lactic acid bacteria dead cells (0.5, 1, 5, 10 µg / ml) added to BMDC. Shown in 4a-b. 4A and 4B, “strain 12” is a BMDC cell to which a dead cell of strain 12 is added, and “strain 17” is a BMDC cell to which a dead cell of strain 17 is added. 23 ”is a BMDC cell to which a dead cell of strain 23 is added,“ Strain 22 ”is a BMDC cell to which a dead cell of strain 22 is added,“ Strain 4 ”is a dead cell of strain 4 For BMDC cells supplemented with
3T3-L1細胞に対してその脱脂粉乳培養上清が安定的に有意な活性を示した菌株17と菌株23に加え、3T3-L1細胞での検討で何度か有意な活性を示した菌株12の3菌株の凍結乾燥死菌体について、BMDC細胞のサイトカイン産生能に及ぼす影響を調べた。比較対象として、活性が既知の菌株22と、Lactobacillus gasseri MEP222804(以下、菌株4)の死菌体を用いた。各乳酸菌の死菌体(0.5、1、5、10μg/ml)をBMDCに添加し、48時間後のIL-10とIL-12(p70)産生量をELISA法で測定した結果を図4a~bに示す。なお、図4a~bにおいて、「菌株12」は、菌株12の死菌体を添加したBMDC細胞の場合、「菌株17」は、菌株17の死菌体を添加したBMDC細胞の場合、「菌株23」は、菌株23の死菌体を添加したBMDC細胞の場合、「菌株22」は、菌株22の死菌体を添加したBMDC細胞の場合、「菌株4」は、菌株4の死菌体を添加したBMDC細胞の場合、である。 We investigated the effect of lactic acid bacteria on the cytokine production ability of dendritic cells and macrophages.
In addition to
菌株23の死菌体は菌株22と同程度のIL-10およびIL-12の産生誘導活性を示した。菌株17の死菌体はこれらに比べてIL-10、IL-12(p70)産生誘導活性が非常に低く、菌株12の死菌体はほとんど活性を示さなかった。
The dead cells of strain 23 showed IL-10 and IL-12 production-inducing activity comparable to that of strain 22. The dead cells of strain 17 had very low IL-10 and IL-12 (p70) production-inducing activity compared to these, and the dead cells of strain 12 showed little activity.
例4:マウスマクロファージJ774.1細胞株を用いたアッセイ
マウスマクロファージJ774.1細胞(理研セルバンク(RCB)より購入)を、10%FCS入りRPMI培地で培養して3日おきに継代した。1×106cells/mlに調製した細胞懸濁液を250μl/ウェルずつ48ウェルプレートに播種し、同時に各種乳酸菌の凍結乾燥死菌体およびLPS(Wako)を添加し、その48時間後に培養上清を回収した。凍結乾燥死菌体はPBSで10mg/mlに調製し、各濃度となるようにRPMI培地で希釈後125μl/ウェルずつ細胞に添加した。LPSは蒸留水で1mg/mlとした後RPMI培地で4μg/mlに調製し、125μl/ウェルずつ細胞に添加して最終濃度が1μg/mlとなるようにした。 Example 4: Assay using mouse macrophage J774.1 cell line Mouse macrophage J774.1 cells (purchased from Riken Cell Bank (RCB)) were cultured in RPMI medium containing 10% FCS and passaged every 3 days. Cell suspension prepared to 1 × 10 6 cells / ml was seeded on a 48-well plate at 250 μl / well, and freeze-dried cells of various lactic acid bacteria and LPS (Wako) were added at the same time. Qing was recovered. Lyophilized dead cells were adjusted to 10 mg / ml with PBS, diluted with RPMI medium to each concentration, and added to cells at 125 μl / well. LPS was adjusted to 1 mg / ml with distilled water, adjusted to 4 μg / ml with RPMI medium, and added to cells at 125 μl / well to a final concentration of 1 μg / ml.
マウスマクロファージJ774.1細胞(理研セルバンク(RCB)より購入)を、10%FCS入りRPMI培地で培養して3日おきに継代した。1×106cells/mlに調製した細胞懸濁液を250μl/ウェルずつ48ウェルプレートに播種し、同時に各種乳酸菌の凍結乾燥死菌体およびLPS(Wako)を添加し、その48時間後に培養上清を回収した。凍結乾燥死菌体はPBSで10mg/mlに調製し、各濃度となるようにRPMI培地で希釈後125μl/ウェルずつ細胞に添加した。LPSは蒸留水で1mg/mlとした後RPMI培地で4μg/mlに調製し、125μl/ウェルずつ細胞に添加して最終濃度が1μg/mlとなるようにした。 Example 4: Assay using mouse macrophage J774.1 cell line Mouse macrophage J774.1 cells (purchased from Riken Cell Bank (RCB)) were cultured in RPMI medium containing 10% FCS and passaged every 3 days. Cell suspension prepared to 1 × 10 6 cells / ml was seeded on a 48-well plate at 250 μl / well, and freeze-dried cells of various lactic acid bacteria and LPS (Wako) were added at the same time. Qing was recovered. Lyophilized dead cells were adjusted to 10 mg / ml with PBS, diluted with RPMI medium to each concentration, and added to cells at 125 μl / well. LPS was adjusted to 1 mg / ml with distilled water, adjusted to 4 μg / ml with RPMI medium, and added to cells at 125 μl / well to a final concentration of 1 μg / ml.
回収した上清中のIL-6、IL-10およびIL-12(p40)濃度をmouse ELISA kit(Becton, Dickinson and Company)を用いて定量した。なお、活性型であるIL-12(p70)はJ774.1細胞では発現していないため、代わりにIL-12(p40)を測定した。
The IL-6, IL-10, and IL-12 (p40) concentrations in the collected supernatant were quantified using a mouse ELISA kit (Becton, Dickinson, and Company). Since the active form of IL-12 (p70) is not expressed in J774.1 cells, IL-12 (p40) was measured instead.
菌株17と菌株23に加え、菌株12の3菌株の凍結乾燥死菌体について、J774.1細胞のサイトカイン産生能に及ぼす影響を調べた。また、菌株4の死菌体はJ774.1細胞のIL-12p40産生能を顕著に亢進する。菌株22は、BMDCでの結果からIL-10産生亢進などの抗炎症性作用が予測された。したがって、上記5菌株の死菌体(1、10μg/ml)をJ774.1細胞に添加し、48時間後のIL-6、IL-10、IL-12(p40)産生量をELISA法で測定した結果を図5a~cに示す。なお、図5a~cにおいて、「control」は、何も添加していないJ774.1細胞の場合、「菌株12」は、菌株12の死菌体を添加したJ774.1細胞の場合、「菌株17」は、菌株17の死菌体を添加したJ774.1細胞の場合、「菌株23」は、菌株23の死菌体を添加したJ774.1細胞の場合、「菌株22」は、菌株22の死菌体を添加したJ774.1細胞の場合、「菌株4」は、菌株4の死菌体を添加したJ774.1細胞の場合である。
In addition to strain 17 and strain 23, the effect of three freeze-dried cells of strain 12 on the cytokine production ability of J774.1 cells was examined. In addition, dead cells of strain 4 significantly enhance the ability of J774.1 cells to produce IL-12p40. Strain 22 was predicted to have anti-inflammatory effects such as enhanced IL-10 production from the results of BMDC. Therefore, dead cells (1, 10 μg / ml) of the above 5 strains were added to J774.1 cells, and the production of IL-6, IL-10, IL-12 (p40) after 48 hours was measured by ELISA. The results are shown in FIGS. In FIGS. 5a to 5c, “control” is J774.1 cells to which nothing is added, “strain 12” is J774.1 cells to which dead cells of strain 12 are added, “strains” “17” is a J774.1 cell to which a dead cell of strain 17 is added, “strain 23” is a J774.1 cell to which a dead cell of strain 23 is added, “strain 22” is strain 22 In the case of J774.1 cells to which the dead cells were added, “strain 4” is the case of J774.1 cells to which the dead cells of strain 4 were added.
菌株4は、いずれのサイトカインについても産生誘導能が最も高かった。菌株23は菌株22と同程度のIL-10およびIL-12(p40)産生誘導能を有することが明らかとなった。
Strain 4 had the highest production induction ability for any cytokine. Strain 23 was found to have the same ability to induce IL-10 and IL-12 (p40) production as strain 22.
BMDCに対して、菌株23の死菌体は、免疫活性の高い抗炎症性乳酸菌である菌株22と同程度のIL-10産生誘導活性を示すことが明らかとなった。また菌株23の死菌体は、J774.1細胞に対しても菌株22と同程度のIL-10産生誘導活性を示すことが明らかとなった。つまり菌株23は菌株22と比較しても遜色ない免疫活性の高い抗炎症性乳酸菌と考えられる。
It was revealed that the dead cells of strain 23 exhibited a similar IL-10 production-inducing activity to BMDC as strain 22 which is an anti-inflammatory lactic acid bacterium with high immune activity. In addition, it was revealed that dead cells of strain 23 showed IL-10 production-inducing activity comparable to that of strain 22 against J774.1 cells. That is, the strain 23 is considered to be an anti-inflammatory lactic acid bacterium having a high immune activity that is comparable to the strain 22.
以上の結果から、菌株23は、3T3-L1細胞に対して、他の菌株に比べて有意にアディポネクチン産生を増大させ、かつ、マウス骨髄由来樹状細胞においても、マウスマクロファージJ774.1細胞においても、IL-10などの抗炎症性サイトカインの産生を、他の菌株に比べて有意に増大させたことが明らかとなった。この結果から、菌株23は、脂肪細胞のアディポネクチン産生能を高めることを介したメタボリックシンドロームに対する改善効果ばかりでなく、免疫系細胞から分泌されるIL-10などの抗炎症性サイトカイン産生能を高めることを介したメタボリックシンドロームに対する改善効果が示唆された。このことは、菌株23を用いた発酵生成物に抗メタボリックシンドローム効果が有することを示唆するものである。
From the above results, strain 23 significantly increased adiponectin production relative to 3T3-L1 cells compared to other strains, and both in mouse bone marrow-derived dendritic cells and mouse macrophage J774.1 cells. It was revealed that the production of anti-inflammatory cytokines such as IL-10 was significantly increased compared to other strains. From this result, strain 23 not only improves the metabolic syndrome through enhancing the ability of adipocytes to produce adiponectin, but also enhances the ability to produce anti-inflammatory cytokines such as IL-10 secreted from immune system cells. This suggests an improvement effect on metabolic syndrome. This suggests that the fermentation product using strain 23 has an anti-metabolic syndrome effect.
例5.糖尿病・肥満モデルマウスを用いた有効性試験
糖尿病・肥満モデルマウスとして、KKマウスに肥満発症遺伝子AYを導入した、KKAyマウスを使用した。KKAyマウスは、若齢期から肥満、インスリン抵抗性、高脂血症を起こすことが知られている。
(被検物)
・乳酸菌培養物:菌株23(Lactobacillus plantarum OLL2712、(受託番号:FERM BP-11262))を表2に記載の脱脂粉乳培地で培養したものを生菌のまま投与に用いた。乳酸菌培養物に含まれる、菌株23の菌数は2×108cfu/mlであった。本試験における菌株23培養物の投与用量は、1×108cfu/body/day(3.7×109cfu/kg/day)である。
・陽性対照薬剤:ピオグリタゾン塩酸塩(Pioglitazone Hydrochloride、フナコシ株式会社)を、カルボシキメチルセルロースナトリウム(Wako)溶液に溶解後、蒸留水で希釈し1mg/mlに調製して投与に用いた。ピオグリタゾン塩酸塩は、脂肪組織でのTNFα発現を抑制してインスリン抵抗性を改善し、糖の取り込みと利用を促進することが確認されている、2型糖尿病の治療薬である。ピオグリタゾン塩酸塩のCasNo.は112529-15-4、化学名は(5RS)-5-{4-[2-(5-Ethylpyridin-2-yl)ethoxy]benzyl}thiazolidine-2,
4-dione monohydrochlorideである。本試験におけるピオグリタゾン塩酸塩の投与用量は、0.5mg/body/dayである。この用量は、Mohapatraらの論文を参考に設定した(Mohapatra J,et
al.,Pharmacology.84-4:203,2009)。 Example 5. Efficacy Test Using Diabetes / Obesity Model Mice As the diabetes / obesity model mice, KKAy mice in which the obesity-onset gene AY was introduced into KK mice were used. KKAy mice are known to develop obesity, insulin resistance, and hyperlipidemia from a young age.
(Subject)
-Lactic acid bacteria culture: Strain 23 (Lactobacillus plantarum OLL2712, (Accession number: FERM BP-11262)) cultured in the skim milk medium described in Table 2 was used for administration as it was. The number ofstrains 23 contained in the lactic acid bacteria culture was 2 × 10 8 cfu / ml. The dosage of strain 23 culture in this study is 1 × 10 8 cfu / body / day (3.7 × 10 9 cfu / kg / day).
-Positive control drug: Pioglitazone hydrochloride (Pioglitazone Hydrochloride, Funakoshi Co., Ltd.) was dissolved in carboxymethylcellulose sodium (Wako) solution, diluted with distilled water to 1 mg / ml, and used for administration. Pioglitazone hydrochloride is a therapeutic agent for type 2 diabetes, which has been confirmed to suppress TNFα expression in adipose tissue, improve insulin resistance, and promote sugar uptake and utilization. The CasNo. Of pioglitazone hydrochloride is 112529-15-4 and the chemical name is (5RS) -5- {4- [2- (5-Ethylpyridin-2-yl) ethoxy] benzyl} thiazolidine-2,
4-dione monohydrochloride. The dose of pioglitazone hydrochloride in this study is 0.5 mg / body / day. This dose was set with reference to the article by Mohapatra et al. (Mohapatra J, et
al., Pharmacology. 84-4: 203, 2009).
糖尿病・肥満モデルマウスとして、KKマウスに肥満発症遺伝子AYを導入した、KKAyマウスを使用した。KKAyマウスは、若齢期から肥満、インスリン抵抗性、高脂血症を起こすことが知られている。
(被検物)
・乳酸菌培養物:菌株23(Lactobacillus plantarum OLL2712、(受託番号:FERM BP-11262))を表2に記載の脱脂粉乳培地で培養したものを生菌のまま投与に用いた。乳酸菌培養物に含まれる、菌株23の菌数は2×108cfu/mlであった。本試験における菌株23培養物の投与用量は、1×108cfu/body/day(3.7×109cfu/kg/day)である。
・陽性対照薬剤:ピオグリタゾン塩酸塩(Pioglitazone Hydrochloride、フナコシ株式会社)を、カルボシキメチルセルロースナトリウム(Wako)溶液に溶解後、蒸留水で希釈し1mg/mlに調製して投与に用いた。ピオグリタゾン塩酸塩は、脂肪組織でのTNFα発現を抑制してインスリン抵抗性を改善し、糖の取り込みと利用を促進することが確認されている、2型糖尿病の治療薬である。ピオグリタゾン塩酸塩のCasNo.は112529-15-4、化学名は(5RS)-5-{4-[2-(5-Ethylpyridin-2-yl)ethoxy]benzyl}thiazolidine-2,
4-dione monohydrochlorideである。本試験におけるピオグリタゾン塩酸塩の投与用量は、0.5mg/body/dayである。この用量は、Mohapatraらの論文を参考に設定した(Mohapatra J,et
al.,Pharmacology.84-4:203,2009)。 Example 5. Efficacy Test Using Diabetes / Obesity Model Mice As the diabetes / obesity model mice, KKAy mice in which the obesity-onset gene AY was introduced into KK mice were used. KKAy mice are known to develop obesity, insulin resistance, and hyperlipidemia from a young age.
(Subject)
-Lactic acid bacteria culture: Strain 23 (Lactobacillus plantarum OLL2712, (Accession number: FERM BP-11262)) cultured in the skim milk medium described in Table 2 was used for administration as it was. The number of
-Positive control drug: Pioglitazone hydrochloride (Pioglitazone Hydrochloride, Funakoshi Co., Ltd.) was dissolved in carboxymethylcellulose sodium (Wako) solution, diluted with distilled water to 1 mg / ml, and used for administration. Pioglitazone hydrochloride is a therapeutic agent for type 2 diabetes, which has been confirmed to suppress TNFα expression in adipose tissue, improve insulin resistance, and promote sugar uptake and utilization. The CasNo. Of pioglitazone hydrochloride is 112529-15-4 and the chemical name is (5RS) -5- {4- [2- (5-Ethylpyridin-2-yl) ethoxy] benzyl} thiazolidine-2,
4-dione monohydrochloride. The dose of pioglitazone hydrochloride in this study is 0.5 mg / body / day. This dose was set with reference to the article by Mohapatra et al. (Mohapatra J, et
al., Pharmacology. 84-4: 203, 2009).
(動物試験)
5週齢の雄KKAyマウス(日本クレア社)を、マイクロベント飼育装置(アレンタウン社製)で個飼いし、1週間の馴化飼育を行った。馴化飼育後、マウスを血糖値、HbA1c値、体重を基に3群(コントロール群、乳酸菌投与群、陽性対照群、各n=4)に分けた(day0)。この時、各群の体重の平均値は約27gであった。さらに、day1からday21までの3週間、コントロール群に表2に記載の脱脂粉乳培地、乳酸菌投与群に乳酸菌培養物、陽性対照群に陽性対照薬剤を1日1回、0.5ml/body経口投与した。被検物の投与期間中、水は自由摂取、餌はCRF-1の自由摂取とした。
被検物の投与期間中、週一回(day0、day7、day14およびday21)、3時間半の絶食後に尾静脈より血液を採取し、血糖値、ヘモグロビンA1c値を測定した。採血後は、CRF-1を自由摂取させた。また、3週間の投与期間中、週2回(day0、day4、day7、day11、day14、day18およびday21)、体重と摂餌量を測定した。
投与終了後に頚椎脱臼による安楽死後に解剖し、腎周囲脂肪組織、精巣上体周囲脂肪組織を採取し、各湿重量(g)を測定し、その合計を内臓脂肪重量(g)とした。さらに、脂肪組織を遠心分離により成熟脂肪細胞画分(MAF画分)と間質血管画分(SVF画分)に分離し、MAF画分はアディポネクチンmRNA発現量の解析を行った。 (Animal test)
Five-week-old male KKAy mice (Claire Japan) were individually housed in a microvent breeding device (Allentown) and acclimated for 1 week. After acclimatization, the mice were divided into 3 groups (control group, lactic acid bacteria administration group, positive control group, each n = 4) based on blood glucose level, HbA1c level, and body weight (day 0). At this time, the average value of the weight of each group was about 27 g. Furthermore, for 3 weeks fromday 1 to day 21, the skim milk powder medium shown in Table 2 is given to the control group, the lactic acid bacteria culture is given to the lactic acid bacteria administration group, and the positive control drug is given to the positive control group once a day at 0.5 ml / body. did. During the administration period of the test substance, water was ad libitum and food was ad libitum CRF-1.
During the test administration period, blood was collected from the tail vein once a week (day 0, day 7, day 14 and day 21) and fasted for 3.5 hours, and blood glucose level and hemoglobin A1c level were measured. After blood collection, CRF-1 was ingested freely. In addition, body weight and food intake were measured twice a week (day 0, day 4, day 7, day 11, day 14, day 18, day 21) during the administration period of 3 weeks.
After the administration, the patient was dissected after euthanasia by cervical dislocation, and the perirenal adipose tissue and epididymal adipose tissue were collected, each wet weight (g) was measured, and the total was taken as the visceral fat weight (g). Furthermore, the adipose tissue was separated into a mature adipocyte fraction (MAF fraction) and a stromal blood vessel fraction (SVF fraction) by centrifugation, and the MAF fraction was analyzed for the expression level of adiponectin mRNA.
5週齢の雄KKAyマウス(日本クレア社)を、マイクロベント飼育装置(アレンタウン社製)で個飼いし、1週間の馴化飼育を行った。馴化飼育後、マウスを血糖値、HbA1c値、体重を基に3群(コントロール群、乳酸菌投与群、陽性対照群、各n=4)に分けた(day0)。この時、各群の体重の平均値は約27gであった。さらに、day1からday21までの3週間、コントロール群に表2に記載の脱脂粉乳培地、乳酸菌投与群に乳酸菌培養物、陽性対照群に陽性対照薬剤を1日1回、0.5ml/body経口投与した。被検物の投与期間中、水は自由摂取、餌はCRF-1の自由摂取とした。
被検物の投与期間中、週一回(day0、day7、day14およびday21)、3時間半の絶食後に尾静脈より血液を採取し、血糖値、ヘモグロビンA1c値を測定した。採血後は、CRF-1を自由摂取させた。また、3週間の投与期間中、週2回(day0、day4、day7、day11、day14、day18およびday21)、体重と摂餌量を測定した。
投与終了後に頚椎脱臼による安楽死後に解剖し、腎周囲脂肪組織、精巣上体周囲脂肪組織を採取し、各湿重量(g)を測定し、その合計を内臓脂肪重量(g)とした。さらに、脂肪組織を遠心分離により成熟脂肪細胞画分(MAF画分)と間質血管画分(SVF画分)に分離し、MAF画分はアディポネクチンmRNA発現量の解析を行った。 (Animal test)
Five-week-old male KKAy mice (Claire Japan) were individually housed in a microvent breeding device (Allentown) and acclimated for 1 week. After acclimatization, the mice were divided into 3 groups (control group, lactic acid bacteria administration group, positive control group, each n = 4) based on blood glucose level, HbA1c level, and body weight (day 0). At this time, the average value of the weight of each group was about 27 g. Furthermore, for 3 weeks from
During the test administration period, blood was collected from the tail vein once a week (
After the administration, the patient was dissected after euthanasia by cervical dislocation, and the perirenal adipose tissue and epididymal adipose tissue were collected, each wet weight (g) was measured, and the total was taken as the visceral fat weight (g). Furthermore, the adipose tissue was separated into a mature adipocyte fraction (MAF fraction) and a stromal blood vessel fraction (SVF fraction) by centrifugation, and the MAF fraction was analyzed for the expression level of adiponectin mRNA.
(測定方法)
・血糖値:血糖測定機器(Breeze2、バイエル薬品社)にて測定した。
・血中ヘモグロビンA1c(HbA1c):Hemoglobin A1c Testing Analyzer(DCA2000 system、バイエルメディカル社)を用いて血中のヘモグロビンA1cの濃度を測定した。
・血中アディポネクチン:mouse adiponectin ELISA kit(大塚製薬)を用いて血中のアディポネクチンの濃度を測定した。
・血中トリグリセリド:富士ドライケムシステム及び富士ドライケムスライドTG-PIII(富士フィルム)を用いて血中のトリグリセリドの濃度を測定した。
・MAF画分のアディポネクチンmRNA発現:TRizol試薬(invitrogen)を用いてMAF画分からtotal RNAを抽出し、PrimeScript RT reagent kit(Takara)を用いてcDNAを合成し、ABI 7300 real time PCR system(ABI)を用いてMAF画分のアディポネクチンmRNA発現量を測定した。 (Measuring method)
-Blood glucose level: Measured with a blood glucose measurement device (Breeze 2, Bayer Yakuhin).
Blood hemoglobin A1c (HbA1c): The concentration of hemoglobin A1c in blood was measured using a Hemoglobin A1c Testing Analyzer (DCA2000 system, Bayer Medical).
Blood adiponectin: The concentration of adiponectin in blood was measured using a mouse adiponectin ELISA kit (Otsuka Pharmaceutical).
Blood triglyceride: The blood triglyceride concentration was measured using Fuji Dry Chem System and Fuji Dry Chem Slide TG-PIII (Fuji Film).
-Adiponectin mRNA expression of MAF fraction: Total RNA was extracted from MAF fraction using TRizol reagent (invitrogen), cDNA was synthesized using PrimeScript RT reagent kit (Takara), and ABI 7300 real time PCR system (ABI) Was used to measure the expression level of adiponectin mRNA in the MAF fraction.
・血糖値:血糖測定機器(Breeze2、バイエル薬品社)にて測定した。
・血中ヘモグロビンA1c(HbA1c):Hemoglobin A1c Testing Analyzer(DCA2000 system、バイエルメディカル社)を用いて血中のヘモグロビンA1cの濃度を測定した。
・血中アディポネクチン:mouse adiponectin ELISA kit(大塚製薬)を用いて血中のアディポネクチンの濃度を測定した。
・血中トリグリセリド:富士ドライケムシステム及び富士ドライケムスライドTG-PIII(富士フィルム)を用いて血中のトリグリセリドの濃度を測定した。
・MAF画分のアディポネクチンmRNA発現:TRizol試薬(invitrogen)を用いてMAF画分からtotal RNAを抽出し、PrimeScript RT reagent kit(Takara)を用いてcDNAを合成し、ABI 7300 real time PCR system(ABI)を用いてMAF画分のアディポネクチンmRNA発現量を測定した。 (Measuring method)
-Blood glucose level: Measured with a blood glucose measurement device (Breeze 2, Bayer Yakuhin).
Blood hemoglobin A1c (HbA1c): The concentration of hemoglobin A1c in blood was measured using a Hemoglobin A1c Testing Analyzer (DCA2000 system, Bayer Medical).
Blood adiponectin: The concentration of adiponectin in blood was measured using a mouse adiponectin ELISA kit (Otsuka Pharmaceutical).
Blood triglyceride: The blood triglyceride concentration was measured using Fuji Dry Chem System and Fuji Dry Chem Slide TG-PIII (Fuji Film).
-Adiponectin mRNA expression of MAF fraction: Total RNA was extracted from MAF fraction using TRizol reagent (invitrogen), cDNA was synthesized using PrimeScript RT reagent kit (Takara), and ABI 7300 real time PCR system (ABI) Was used to measure the expression level of adiponectin mRNA in the MAF fraction.
(結果)
・試験期間中の摂餌量及び体重変化に群間の差はなかった。
・乳酸菌投与群(菌株23)及び陽性対照群(pio)では全ての個体で試験期間中に血中アディポネクチン濃度が増加したが、コントロール群(脱脂粉乳)では半数が減少した(図6、day21の血中アディポネクチン濃度からday0の血中アディポネクチン濃度を差し引いた値を血中アディポネクチン濃度の変化量として算出した。)。
・内臓脂肪組織由来脂肪細胞のアディポネクチン遺伝子発現量は、乳酸菌投与群で増加傾向であった(図7)。(P=0.08 vs. コントロール群、マンホイットニーのU検定)。脂肪組織中の脂肪細胞においてアディポネクチンmRNA量が増加すると、アディポネクチン産生量が増加し、全身の組織における糖の取り込みが促進されると考えられる。また、アディポネクチンは脂肪の燃焼を促進することから、脂肪の蓄積を抑制するとも考えられる。
・内臓脂肪重量は乳酸菌投与群で有意に低値であった(図8)。(P=0.02 vs. コントロール群、マンホイットニーのU検定)
・血中トリグリセリド値は乳酸菌投与群で増加が抑制される傾向があった(図9)。(P=0.08(day21) vs. コントロール群、マンホイットニーのU検定、Student’s t-test)
・血中HbA1c値は乳酸菌投与群及び陽性対照群において増加が抑制された個体が多かった(図10、day21の血中HbA1c値からday0の血中HbA1c値を差し引いた値を血中HbA1cの変化量として算出した)。 (result)
• There was no difference between groups in food intake and body weight changes during the study period.
In the lactic acid bacteria administration group (strain 23) and the positive control group (pio), the blood adiponectin concentration increased during the test period in all individuals, but half of the control group (skim milk powder) decreased (FIG. 6, day 21) The value obtained by subtracting the blood adiponectin concentration onday 0 from the blood adiponectin concentration was calculated as the amount of change in blood adiponectin concentration.)
-The adiponectin gene expression level of visceral adipose tissue-derived adipocytes tended to increase in the lactic acid bacteria administration group (Fig. 7). (P = 0.08 vs. control group, Mann-Whitney U test). When the amount of adiponectin mRNA increases in adipocytes in adipose tissue, it is considered that adiponectin production increases and sugar uptake in whole body tissues is promoted. Adiponectin is also considered to suppress fat accumulation because it promotes fat burning.
-Visceral fat weight was significantly low in the lactic acid bacteria administration group (FIG. 8). (P = 0.02 vs. control group, Mann-Whitney U test)
-Blood triglyceride levels tended to be suppressed in the lactic acid bacteria administration group (Fig. 9). (P = 0.08 (day 21) vs. control group, Mann-Whitney U test, Student's t-test)
・ In many cases, the increase in blood HbA1c level was suppressed in the lactic acid bacteria-administered group and the positive control group (Figure 10, change in blood HbA1c by subtractingday 0 blood HbA1c value from day H2 blood HbA1c value) Calculated as a quantity).
・試験期間中の摂餌量及び体重変化に群間の差はなかった。
・乳酸菌投与群(菌株23)及び陽性対照群(pio)では全ての個体で試験期間中に血中アディポネクチン濃度が増加したが、コントロール群(脱脂粉乳)では半数が減少した(図6、day21の血中アディポネクチン濃度からday0の血中アディポネクチン濃度を差し引いた値を血中アディポネクチン濃度の変化量として算出した。)。
・内臓脂肪組織由来脂肪細胞のアディポネクチン遺伝子発現量は、乳酸菌投与群で増加傾向であった(図7)。(P=0.08 vs. コントロール群、マンホイットニーのU検定)。脂肪組織中の脂肪細胞においてアディポネクチンmRNA量が増加すると、アディポネクチン産生量が増加し、全身の組織における糖の取り込みが促進されると考えられる。また、アディポネクチンは脂肪の燃焼を促進することから、脂肪の蓄積を抑制するとも考えられる。
・内臓脂肪重量は乳酸菌投与群で有意に低値であった(図8)。(P=0.02 vs. コントロール群、マンホイットニーのU検定)
・血中トリグリセリド値は乳酸菌投与群で増加が抑制される傾向があった(図9)。(P=0.08(day21) vs. コントロール群、マンホイットニーのU検定、Student’s t-test)
・血中HbA1c値は乳酸菌投与群及び陽性対照群において増加が抑制された個体が多かった(図10、day21の血中HbA1c値からday0の血中HbA1c値を差し引いた値を血中HbA1cの変化量として算出した)。 (result)
• There was no difference between groups in food intake and body weight changes during the study period.
In the lactic acid bacteria administration group (strain 23) and the positive control group (pio), the blood adiponectin concentration increased during the test period in all individuals, but half of the control group (skim milk powder) decreased (FIG. 6, day 21) The value obtained by subtracting the blood adiponectin concentration on
-The adiponectin gene expression level of visceral adipose tissue-derived adipocytes tended to increase in the lactic acid bacteria administration group (Fig. 7). (P = 0.08 vs. control group, Mann-Whitney U test). When the amount of adiponectin mRNA increases in adipocytes in adipose tissue, it is considered that adiponectin production increases and sugar uptake in whole body tissues is promoted. Adiponectin is also considered to suppress fat accumulation because it promotes fat burning.
-Visceral fat weight was significantly low in the lactic acid bacteria administration group (FIG. 8). (P = 0.02 vs. control group, Mann-Whitney U test)
-Blood triglyceride levels tended to be suppressed in the lactic acid bacteria administration group (Fig. 9). (P = 0.08 (day 21) vs. control group, Mann-Whitney U test, Student's t-test)
・ In many cases, the increase in blood HbA1c level was suppressed in the lactic acid bacteria-administered group and the positive control group (Figure 10, change in blood HbA1c by subtracting
例6:ヨーグルトの製造
ヨーグルトベースミックスを常法に従って調製し、混合スターター(Lactobacillus
bulgaricus およびStreptococcus thermophilus)のみを接種したものと、混合スターターに菌株23(Lactobacillus plantarum OLL2712、(受託番号:FERM
BP-11262))を加えて接種したものとを、夫々発酵させ、ヨーグルトを製造した。
結果、菌株23を加えて接種して得られたヨーグルトは、加えないで得られたヨーグルトに比べて、同等以上の好ましい風味と物性を持っていることが示された。 Example 6: Production of yogurt A yogurt base mix was prepared according to a conventional method and mixed starter (Lactobacillus
bulgaricus and Streptococcus thermophilus) and the mixed starter strain 23 (Lactobacillus plantarum OLL2712, (Accession number: FERM
BP-11262)) was added and the inoculated one was fermented to produce yogurt.
As a result, it was shown that the yogurt obtained by adding and inoculating thestrain 23 had equivalent flavors and physical properties comparable to or higher than the yogurt obtained without addition.
ヨーグルトベースミックスを常法に従って調製し、混合スターター(Lactobacillus
bulgaricus およびStreptococcus thermophilus)のみを接種したものと、混合スターターに菌株23(Lactobacillus plantarum OLL2712、(受託番号:FERM
BP-11262))を加えて接種したものとを、夫々発酵させ、ヨーグルトを製造した。
結果、菌株23を加えて接種して得られたヨーグルトは、加えないで得られたヨーグルトに比べて、同等以上の好ましい風味と物性を持っていることが示された。 Example 6: Production of yogurt A yogurt base mix was prepared according to a conventional method and mixed starter (Lactobacillus
bulgaricus and Streptococcus thermophilus) and the mixed starter strain 23 (Lactobacillus plantarum OLL2712, (Accession number: FERM
BP-11262)) was added and the inoculated one was fermented to produce yogurt.
As a result, it was shown that the yogurt obtained by adding and inoculating the
本発明のLactobacillus属菌によれば、アディポネクチンの産生を増大させることに加え、アディポネクチンに依存しない炎症性免疫関連サイトカインの産生の増大をも可能とするものであって、極めて信頼性の高い複合的なアプローチでのメタボリックシンドロームの改善効果を奏するので、医薬組成物や食品組成物に含有させることによって、簡便にかつ効果的に摂取することができ、メタボリックシンドロームの改善が可能である。
According to the genus Lactobacillus of the present invention, in addition to increasing the production of adiponectin, it is also possible to increase the production of inflammatory immunity-related cytokines independent of adiponectin, a highly reliable complex Since the metabolic syndrome can be improved by a simple approach, it can be ingested easily and effectively by containing it in a pharmaceutical composition or food composition, and the metabolic syndrome can be improved.
Claims (9)
- 脂肪細胞に対しアディポネクチン産生を増大させ、かつ、骨髄由来樹状細胞および/またはマクロファージに対し炎症性免疫関連サイトカインの産生を増大させる、Lactobacillus属菌。 Lactobacillus spp. That increase adiponectin production for adipocytes and increase production of inflammatory immunity related cytokines for bone marrow-derived dendritic cells and / or macrophages.
- 炎症性免疫関連サイトカインがIL-10である、請求項1に記載のLactobacillus属菌。 The Lactobacillus spp. According to claim 1, wherein the inflammatory immunity related cytokine is IL-10.
- Lactobacillus plantarumである、請求項1または2に記載のLactobacillus属菌。 The Lactobacillus genus according to claim 1 or 2, which is Lactobacillus plantarum.
- Lactobacillus plantarum OLL2712菌株(受託番号:FERM BP-11262)。 Lactobacillus plantarum OLL2712 strain (Accession number: FERM BP-11262).
- 請求項1~4のいずれか一項に記載の菌の培養物またはその加工物。 The culture or processed product of the fungus according to any one of claims 1 to 4.
- 請求項1~4のいずれか一項に記載の菌、請求項5に記載の培養物およびその加工物から選択される1種または2種以上を含む、医薬組成物。 A pharmaceutical composition comprising one or more selected from the fungus according to any one of claims 1 to 4, the culture according to claim 5, and a processed product thereof.
- 内臓脂肪の蓄積を抑制するための、請求項6に記載の医薬組成物。 7. The pharmaceutical composition according to claim 6, for suppressing the accumulation of visceral fat.
- 請求項1~4のいずれか一項に記載の菌、請求項5に記載の培養物およびその加工物から選択される1種または2種以上を含む、食品組成物。 A food composition comprising one or more selected from the fungus according to any one of claims 1 to 4, the culture according to claim 5, and a processed product thereof.
- 内臓脂肪の蓄積を抑制するための、請求項8に記載の食品組成物。 The food composition according to claim 8 for suppressing visceral fat accumulation.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180037354.8A CN103314099B (en) | 2010-07-30 | 2011-07-28 | Lactic bacterium having an effect of ameliorating metabolic syndrome |
JP2011551729A JP5076029B2 (en) | 2010-07-30 | 2011-07-28 | Lactic acid bacteria with metabolic syndrome improvement effect |
HK13111466.7A HK1184187B (en) | 2010-07-30 | 2011-07-28 | Lactic bacterium having an effect of ameliorating metabolic syndrome |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010172256 | 2010-07-30 | ||
JP2010-172256 | 2010-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012014971A1 true WO2012014971A1 (en) | 2012-02-02 |
Family
ID=45530171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067239 WO2012014971A1 (en) | 2010-07-30 | 2011-07-28 | Lactic bacterium having an effect of ameliorating metabolic syndrome |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5076029B2 (en) |
CN (1) | CN103314099B (en) |
WO (1) | WO2012014971A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014031325A (en) * | 2012-08-02 | 2014-02-20 | Maruzen Pharmaceut Co Ltd | Anti-inflammatory agent |
JP2014172902A (en) * | 2013-03-05 | 2014-09-22 | Shonan Institute For Medical & Preventive Science | Diabetic conditions improving agent of sargassum horneri fermentation product using lactobacillus plantarum |
JP2017114814A (en) * | 2015-12-24 | 2017-06-29 | 丸善製薬株式会社 | Cosmetics |
CN111655839A (en) * | 2017-11-20 | 2020-09-11 | 庆熙大学校产学协力团 | Novel lactic acid bacteria and their uses |
JP2020203930A (en) * | 2020-09-09 | 2020-12-24 | 丸善製薬株式会社 | Cosmetics |
CN112190600A (en) * | 2020-09-11 | 2021-01-08 | 杭州娃哈哈科技有限公司 | Application of lactobacillus plantarum in preparation of composition for relieving chronic inflammation of organism |
JP2021023231A (en) * | 2019-08-07 | 2021-02-22 | 日清食品ホールディングス株式会社 | Bifidobacterium with low inflammatory cytokine production-inducing activity but high anti-inflammatory cytokine production-inducing activity |
JP2021031408A (en) * | 2019-08-19 | 2021-03-01 | 株式会社明治 | Glucose metabolism improving composition |
JPWO2021117857A1 (en) * | 2019-12-13 | 2021-06-17 | ||
CN113637609A (en) * | 2021-08-17 | 2021-11-12 | 大连工业大学 | A kind of Lactobacillus plantarum which reduces the antigenicity of milk protein |
WO2021261423A1 (en) | 2020-06-22 | 2021-12-30 | 株式会社明治 | Composition for promoting production of interleukin-10 |
WO2022131192A1 (en) * | 2020-12-16 | 2022-06-23 | 株式会社明治 | Composition for improving inflammation of brain tissue |
CN115287221A (en) * | 2022-06-13 | 2022-11-04 | 廖梅香 | Lactobacillus oralis and application thereof |
WO2023286754A1 (en) | 2021-07-12 | 2023-01-19 | 国立大学法人 東京医科歯科大学 | Autophagy-activating composition |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013085009A1 (en) * | 2011-12-06 | 2013-06-13 | 雪印メグミルク株式会社 | Food and drink with high lactobacillus gasseri survivability, and method for producing same |
CN107028985A (en) * | 2016-02-04 | 2017-08-11 | 深圳华大基因研究院 | Application of the heavy wall mushroom probiotics in preventing and/or treating diabetes and its relevant disease |
JP7057059B2 (en) * | 2016-08-22 | 2022-04-19 | 株式会社明治 | Method for producing a culture of Lactobacillus plantarum |
CN114763519B (en) * | 2021-01-12 | 2025-07-22 | 生合生物科技股份有限公司 | Lactobacillus amylovorus LAM1345 isolate and application thereof |
TWI776433B (en) * | 2021-03-22 | 2022-09-01 | 生合生物科技股份有限公司 | Lactobacillus delbrueckii subsp. lactis ldl557 isolate and uses of the same |
CN114395514B (en) * | 2022-02-28 | 2023-09-01 | 鲁东大学 | A strain of Lactobacillus acidophilus, bacterial agent and its application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008214253A (en) * | 2007-03-02 | 2008-09-18 | Snow Brand Milk Prod Co Ltd | Visceral fat reduction agent |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002526413A (en) * | 1998-10-01 | 2002-08-20 | プロビ エービー | Reduction of oxidative stress factors |
KR100686558B1 (en) * | 2004-09-02 | 2007-02-23 | 씨제이 주식회사 | Body fat-lowering functional Lactobacillus plantarium and foods containing it |
-
2011
- 2011-07-28 CN CN201180037354.8A patent/CN103314099B/en active Active
- 2011-07-28 WO PCT/JP2011/067239 patent/WO2012014971A1/en active Application Filing
- 2011-07-28 JP JP2011551729A patent/JP5076029B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008214253A (en) * | 2007-03-02 | 2008-09-18 | Snow Brand Milk Prod Co Ltd | Visceral fat reduction agent |
Non-Patent Citations (3)
Title |
---|
AIRO TATEGAKI: "Ko-Tonyobyo Koka o Yushita Nyusankin", NIPPON NOGEI KAGAKUKAI TAIKAI KOEN YOSHISHU, vol. 2008, 2008, pages 152 * |
DIAZ-ROPERO, MP ET AL.: "Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response.", J APPL MICROBIOL., vol. 102, no. 2, February 2007 (2007-02-01), pages 337 - 343 * |
WANG, B ET AL.: "Isolation of adhesive strains and evaluation of the colonization and immune response by Lactobacillus plantarum L2 in the rat gastrointestinal tract.", INT J FOOD MICROBIOL., vol. 132, no. 1, 1 June 2009 (2009-06-01), pages 59 - 66, XP026094586, DOI: doi:10.1016/j.ijfoodmicro.2009.03.016 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014031325A (en) * | 2012-08-02 | 2014-02-20 | Maruzen Pharmaceut Co Ltd | Anti-inflammatory agent |
JP2014172902A (en) * | 2013-03-05 | 2014-09-22 | Shonan Institute For Medical & Preventive Science | Diabetic conditions improving agent of sargassum horneri fermentation product using lactobacillus plantarum |
JP2017114814A (en) * | 2015-12-24 | 2017-06-29 | 丸善製薬株式会社 | Cosmetics |
CN111655839B (en) * | 2017-11-20 | 2023-01-20 | 庆熙大学校产学协力团 | Novel lactic acid bacteria and use thereof |
CN111655839A (en) * | 2017-11-20 | 2020-09-11 | 庆熙大学校产学协力团 | Novel lactic acid bacteria and their uses |
JP2021023231A (en) * | 2019-08-07 | 2021-02-22 | 日清食品ホールディングス株式会社 | Bifidobacterium with low inflammatory cytokine production-inducing activity but high anti-inflammatory cytokine production-inducing activity |
JP7013419B2 (en) | 2019-08-07 | 2022-02-15 | 日清食品ホールディングス株式会社 | Bifidobacterium with low inflammatory cytokine production-inducing activity but high anti-inflammatory cytokine production-inducing activity |
JP7364390B2 (en) | 2019-08-19 | 2023-10-18 | 株式会社明治 | Composition for improving sugar metabolism |
JP2021031408A (en) * | 2019-08-19 | 2021-03-01 | 株式会社明治 | Glucose metabolism improving composition |
JPWO2021117857A1 (en) * | 2019-12-13 | 2021-06-17 | ||
WO2021117857A1 (en) | 2019-12-13 | 2021-06-17 | 株式会社明治 | Composition for lowering heart rate |
JPWO2021261423A1 (en) * | 2020-06-22 | 2021-12-30 | ||
WO2021261423A1 (en) | 2020-06-22 | 2021-12-30 | 株式会社明治 | Composition for promoting production of interleukin-10 |
EP4212165A4 (en) * | 2020-06-22 | 2024-07-31 | Meiji Co., Ltd | Composition for promoting production of interleukin-10 |
JP7082827B2 (en) | 2020-09-09 | 2022-06-09 | 丸善製薬株式会社 | Cosmetics |
JP2020203930A (en) * | 2020-09-09 | 2020-12-24 | 丸善製薬株式会社 | Cosmetics |
CN112190600A (en) * | 2020-09-11 | 2021-01-08 | 杭州娃哈哈科技有限公司 | Application of lactobacillus plantarum in preparation of composition for relieving chronic inflammation of organism |
WO2022131192A1 (en) * | 2020-12-16 | 2022-06-23 | 株式会社明治 | Composition for improving inflammation of brain tissue |
WO2023286754A1 (en) | 2021-07-12 | 2023-01-19 | 国立大学法人 東京医科歯科大学 | Autophagy-activating composition |
CN113637609A (en) * | 2021-08-17 | 2021-11-12 | 大连工业大学 | A kind of Lactobacillus plantarum which reduces the antigenicity of milk protein |
CN115287221A (en) * | 2022-06-13 | 2022-11-04 | 廖梅香 | Lactobacillus oralis and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103314099A (en) | 2013-09-18 |
CN103314099B (en) | 2014-12-03 |
HK1184187A1 (en) | 2014-01-17 |
JP5076029B2 (en) | 2012-11-21 |
JPWO2012014971A1 (en) | 2013-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5076029B2 (en) | Lactic acid bacteria with metabolic syndrome improvement effect | |
JP5919193B2 (en) | Composition that suppresses inflammation | |
US9314041B2 (en) | Immune function modulating agents | |
JP5527690B2 (en) | Immunoregulatory function inducer and food composition | |
WO2009071086A2 (en) | Probiotic bacteria and regulation of fat storage | |
TW201705969A (en) | Novel Lactobacillus mali APS1 and use thereof | |
JP2023175938A (en) | Glucose metabolism improving composition | |
WO2012073924A1 (en) | Endometriosis prevention and/or improving agent, and food or drink composition containing same | |
JP7606276B2 (en) | Composition for improving lipid metabolism | |
JP5937015B2 (en) | Delayed type hypersensitivity reducing agent | |
JP7181954B2 (en) | Lactic acid bacteria with high AhR activation ability | |
WO2021117857A1 (en) | Composition for lowering heart rate | |
HK1184187B (en) | Lactic bacterium having an effect of ameliorating metabolic syndrome | |
JP5851242B2 (en) | Lactic acid bacteria having thioredoxin-inducing activity, and foods and beverages and pharmaceuticals for preventing and / or improving biological injury mediated by thioredoxin | |
HK1200282B (en) | Prophylactic agent for squamous carcinoma, squamous carcinoma model animal, and method for producing said model animal | |
HK1200282A1 (en) | Prophylactic agent for squamous carcinoma, squamous carcinoma model animal, and method for producing said model animal | |
HK1184816B (en) | Composition for preventing inflammations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011551729 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11812560 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11812560 Country of ref document: EP Kind code of ref document: A1 |