[go: up one dir, main page]

WO2012001979A1 - Atomic absorption analyzer and method of atomic absorption analysis - Google Patents

Atomic absorption analyzer and method of atomic absorption analysis Download PDF

Info

Publication number
WO2012001979A1
WO2012001979A1 PCT/JP2011/003746 JP2011003746W WO2012001979A1 WO 2012001979 A1 WO2012001979 A1 WO 2012001979A1 JP 2011003746 W JP2011003746 W JP 2011003746W WO 2012001979 A1 WO2012001979 A1 WO 2012001979A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomized
sample
plasma
emission intensity
electrode
Prior art date
Application number
PCT/JP2011/003746
Other languages
French (fr)
Japanese (ja)
Inventor
勝 堀
加納 浩之
Original Assignee
国立大学法人名古屋大学
Nuエコ・エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010150402A external-priority patent/JP5467361B2/en
Priority claimed from JP2010150338A external-priority patent/JP5467359B2/en
Application filed by 国立大学法人名古屋大学, Nuエコ・エンジニアリング株式会社 filed Critical 国立大学法人名古屋大学
Publication of WO2012001979A1 publication Critical patent/WO2012001979A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Definitions

  • the present invention relates to an atomic absorption analysis apparatus and an atomic absorption analysis method using self-absorption.
  • Another invention relates to an atomic absorption analysis apparatus including an atomizer using atmospheric pressure plasma and a light source that emits a resonance line spectrum of a target element, and an atomic absorption analysis method.
  • Patent Document 1 An apparatus described in Patent Document 1 has been proposed as an atomic absorption spectrometer that can simultaneously analyze multiple elements.
  • the atomic absorption spectrometer of Patent Document 1 uses a multi-micro hollow cathode light source that is a light source that emits emission spectrums of a plurality of elements to be analyzed.
  • the multi-micro hollow cathode light source has a plurality of micro hollow pipes made of copper or copper alloy, and each micro hollow pipe is wound an appropriate number of times in the axial direction so that a plurality of metal wires penetrates the inside. Yes.
  • the metal wire is a metal element to be analyzed or an alloy containing the metal element.
  • a graphite furnace or the like is widely used as an apparatus (atomizer) for atomizing a sample.
  • an atomizer using atmospheric pressure plasma is also known and is described as being usable for absorption analysis.
  • the voltage of a commercial AC power source is boosted and applied to an electrode. Therefore, atmospheric pressure plasma is generated discretely.
  • a hollow cathode lamp is used as a light source that emits a resonance line spectrum of a target element.
  • the power source of the hollow cathode lamp is a DC power source.
  • the atmospheric pressure plasma is generated discretely, the light source cannot be always turned on, and the light source needs to be turned on discretely within a period in which the atmospheric pressure plasma is generated. If atmospheric pressure plasma is not generated and the light source is lit, there is a state in which the light source does not absorb, and it is considered that the absorption rate is low, that is, the concentration of the target element is low. An error occurs in the measurement result. Therefore, the power source of the hollow cathode lamp needs to be synchronized with the power source of the atomizer by pulsing the DC power source.
  • an AC power source for the atomizer and a DC power source for the light source are prepared and used.
  • the multi-micro hollow cathode light source used in the atomic absorption spectrometer of Patent Document 1 needs to wind a metal wire many times around the micro hollow pipe in order to obtain sufficient emission intensity depending on the type of metal element.
  • the number of times the metal wire can be wound is limited by the structure such as the diameter of the micro hollow pipe, and there is a limit to the improvement of the emission intensity.
  • the measurable metal element is limited.
  • the multi-micro hollow cathode light source disclosed in Patent Document 1 cannot obtain a resonance line spectrum of an element other than a metal due to a configuration in which a metal element is wound around a micro hollow pipe. Therefore, elements other than metals such as B and P cannot be analyzed.
  • the inventors have intensively studied to solve the above problems, and have come up with the idea of using self-absorption.
  • the present invention is based on this idea, and an object thereof is to realize an atomic absorption analysis apparatus and an element absorption analysis method capable of simultaneously analyzing multiple elements regardless of whether they are metallic elements or nonmetallic elements.
  • Another object of the invention is to reduce the size of an atomic absorption spectrometer having an atomizer using atmospheric pressure plasma.
  • an atomizer for generating an atomized plasma including an atomized sample, and an emission intensity of a resonance line spectrum of a target element and an emission intensity of an excitation line spectrum of a discharge gas in the emission spectrum of the atomized plasma.
  • the emission intensity of the resonance line spectrum of the target element, and the discharge in the spectrum of the light in which the emission of the atomized plasma and the light emitted from the atomized plasma to the atomized plasma and transmitted through the atomized plasma are measured.
  • It is an atomic absorption spectrometer characterized by having a measuring device which measures each luminescence intensity of the excitation line spectrum of gas.
  • atomized plasma means plasma containing an atomized sample.
  • Ar, He, nitrogen, oxygen, air, or the like can be used as a discharge gas for generating plasma.
  • Any atomizer may be used as long as it is an apparatus that generates such atomized plasma.
  • it is an apparatus for generating atomized plasma by generating atmospheric pressure plasma, irradiating a sample containing a target element with atmospheric pressure plasma, and atomizing the sample.
  • an ICP device or the like can be used as the atomizer of the present invention.
  • the measuring device measures the following four emission intensities.
  • the emission intensity in (3) is self-absorbed by the target element in the atomized plasma, and the present invention provides (1) to (4)
  • the absorptance due to self-absorption is calculated from the emission intensity, and the concentration of the target element in the sample is measured from the absorptance.
  • the means for irradiating the atomized plasma with light emitted from the atomized plasma is, for example, a means for reflecting using a mirror.
  • the mirror preferably has a high reflectance at the wavelength of the resonance line spectrum of the target element and the wavelength of the excitation line spectrum of the discharge gas.
  • there is a means that uses an optical fiber receives light emitted from atomized plasma from one end of the optical fiber, guides it in a direction different from the light receiving direction, and irradiates it from the other end of the optical fiber.
  • the excitation line spectrum of the discharge gas preferably has a wavelength closest to the wavelength of the resonance line spectrum of the target element. This is to prevent the measurement accuracy from deteriorating due to the wavelength dependence of the measurement system. In particular, it is desirable to measure the excitation line spectrum of the discharge gas in which the difference from the wavelength of the resonance line spectrum of the target element is 150 nm or less.
  • a second invention is the atomic absorption spectrometer according to the first invention, wherein the measuring device has a mirror, and the light emitted from the atomized plasma is reflected by the mirror to irradiate the atomized plasma.
  • the emission intensity of the excitation line spectrum of the discharge gas to be measured has the wavelength closest to the resonance line spectrum of the target element. Absorption spectrometer.
  • the atomizer In a fourth aspect based on the first aspect to the third aspect, the atomizer generates the atmospheric pressure plasma, irradiates the sample containing the target element with the atmospheric pressure plasma, and atomizes the sample, whereby the atomized plasma is generated. Is an atomic absorption spectrometer characterized by the above.
  • the atomizer in the first to fourth aspects of the present invention, has a rod-shaped first electrode and a tubular shape, and the first electrode extends from the inner wall of the tube around the axis of the first electrode in the tube.
  • An insulating tube that holds the distal end portion of the first electrode so as to be spaced apart, and in which a discharge gas flows in the gap between the inner wall of the tube and the first electrode in the axial direction on the distal end side of the first electrode;
  • a second electrode disposed at a certain distance from the tip of the electrode; and a sample holding portion made of an insulating material having a recess for holding the sample and exposing the second electrode on the bottom surface of the recess.
  • an atomic absorption spectrometer an atomic absorption spectrometer.
  • the sixth invention generates an atomized plasma including an atomized sample, and measures the emission intensity of the resonance line spectrum of the target element and the emission intensity of the excitation line spectrum of the discharge gas in the emission spectrum of the atomized plasma.
  • the emission intensity of the resonance line spectrum of the target element and the discharge gas is characterized in that the emission intensity of the excitation line spectrum is measured.
  • the seventh invention is the atomic absorption analysis method according to the sixth invention, wherein the atomized plasma is irradiated with light emitted from the atomized plasma by being reflected by a mirror.
  • An eighth invention is characterized in that, in the sixth invention or the seventh invention, the emission intensity of the excitation line spectrum of the discharge gas to be measured is the one having the wavelength closest to the resonance line spectrum of the target element. Absorption spectrometry.
  • the atomized plasma generates atmospheric pressure plasma, irradiates the sample containing the target element with the atmospheric pressure plasma, atomizes the sample, and in the atmospheric pressure plasma.
  • This is an atomic absorption analysis method characterized in that it is generated by mixing an atomized sample into the sample.
  • the tenth invention generates atmospheric pressure plasma, irradiates the sample with the atmospheric pressure plasma, atomizes the sample, emits the emission line spectrum of the target element in the sample, and irradiates the atomized sample
  • a light source for analyzing the light from the light source transmitted through the atomized sample and a power supply device for driving the atomizer and the light source.
  • the power supply device includes an AC power source and an AC power source.
  • a half-wave rectification circuit that rectifies a part of the output of the half-wave, supplies an output from an AC power source to the atomizer, and supplies an output from the half-wave rectification circuit to the light source And an atomic absorption spectrometer.
  • the analyzer is configured to detect the first emission intensity of the light combining the light of the light source transmitted through the atomized sample and the emission of the atmospheric pressure plasma, and the atmospheric pressure plasma. Measuring the second emission intensity, which is only emission, and subtracting the second emission intensity from the first emission intensity to calculate the emission intensity of the light of the light source that has passed through the atomized sample.
  • This is an atomic absorption spectrometer that is characterized.
  • the atomizer has a rod-shaped first electrode and a tubular shape, and the first electrode extends from the inner wall of the tube around the axis of the first electrode in the tube.
  • An insulating tube that holds the distal end portion of the first electrode so as to be spaced apart, and in which a discharge gas flows in the gap between the inner wall of the tube and the first electrode in the axial direction on the distal end side of the first electrode;
  • a second electrode disposed at a predetermined distance from the tip of the electrode, and a sample holding portion made of an insulating material having a recess for holding the sample and exposing the second electrode on the bottom surface of the recess.
  • Ar, He, nitrogen, oxygen, air, or the like can be used as the discharge gas.
  • materials for the first electrode and the second electrode SUS, copper, tungsten, or the like can be used.
  • the thirteenth invention generates atmospheric pressure plasma by applying an AC voltage, irradiates the sample with atmospheric pressure plasma, atomizes the sample, and applies a voltage obtained by half-wave rectifying the AC voltage.
  • the emission of the emission line spectrum of the target element is generated, and the emitted light is irradiated and transmitted through the atomized sample.
  • the first light of the light combining the emission of atmospheric pressure plasma and the light transmitted through the atomized sample is generated.
  • the second emission intensity that is only the emission of atmospheric pressure plasma, and the second emission intensity is subtracted from the first emission intensity, whereby the light of the light source that has passed through the atomized sample.
  • This is an atomic absorption analysis method characterized in that the luminescence intensity is calculated.
  • a light source that emits light is not required. Therefore, the type and number of target elements are not limited by the light source, multiple elements can be analyzed simultaneously, and not only metallic elements but also nonmetallic elements can be analyzed.
  • the atomic absorption spectrometer can be reduced in size and cost.
  • the atomic absorption spectrometer of the present invention can be easily realized by using a mirror.
  • the third invention it is possible to suppress a decrease in measurement accuracy due to the wavelength dependence of the measurement system.
  • an atomizer using atmospheric pressure plasma can be used, and the atomic absorption analyzer can be reduced in size and cost.
  • the atomizer can be further downsized, and as a result, the atomic absorption spectrometer can be downsized.
  • multiple elements can be analyzed simultaneously irrespective of metallic elements and nonmetallic elements.
  • the atomizer and the light source can be synchronized with a simple power supply configuration, and the power supply apparatus can be reduced in size and weight. Can do.
  • FIG. 1 is a diagram illustrating a configuration of an atomic absorption analyzer of Example 1.
  • FIG. 1 is a diagram showing a configuration of an atomizer 1 in an atomic absorption spectrometer of Example 1.
  • FIG. FIG. 3 is a diagram showing a configuration of an atomic absorption analyzer of Example 2.
  • FIG. 5 is a diagram showing the configuration of an atomizer 1 in the atomic absorption spectrometer of Example 2. The figure which showed the connection structure of the atomizer 1, the light source 7, and the power supply device 4 in the atomic absorption analyzer of Example 2.
  • FIG. 1 is a diagram showing a configuration of an atomic absorption analyzer of Example 1.
  • FIG. 1 is a diagram showing a configuration of an atomizer 1 in an atomic absorption spectrometer of Example 1.
  • FIG. 3 is a diagram showing a configuration of an atomic absorption analyzer of Example 2.
  • FIG. 5 is
  • FIG. 6 is a graph showing the relationship between the absorption rate and the concentration in the atomic absorption spectrometer of Example 2.
  • FIG. 1 is a diagram showing the configuration of the atomic absorption spectrometer of Example 1.
  • the atomic absorption analyzer includes an atomizer 1, a mirror 2, and a spectrometer 3.
  • the atomizer 1 generates atmospheric pressure plasma, irradiates the sample with atomization, atomizes the sample, mixes the atomized sample in the atmospheric pressure plasma, and generates plasma (atomized plasma 5) including the atomized sample. .
  • FIG. 2 it has the rod-shaped electrode 10 (1st electrode of this invention) and the sample electrode 11 (2nd electrode of this invention).
  • the rod-like electrode 10 is a Cu rod having a diameter of 1.2 mm
  • the sample electrode 11 is a stainless steel tube having an outer diameter of 2 m and an inner diameter of 1 mm.
  • the outer peripheral surface of the rod-shaped electrode 10 is covered with an insulator 102.
  • the rod-like electrode 10 can be made of stainless steel, molybdenum, tungsten, or the like in addition to Cu. In addition to stainless steel, Cu, molybdenum, tungsten, or the like can be used for the sample electrode 11. However, considering that the sample electrode 11 itself is atomized and affects analysis, the sample electrode 11 is made of a material that does not contain the target element, or is coated or plated with a material that does not contain the target element. Etc. need to be applied.
  • the tip portion 111 of the rod-shaped electrode 10 is accommodated in the tube 120 of the ceramic tube 12 so that the axial directions thereof coincide with each other.
  • the tip 121 facing the sample electrode 11 is narrowed by one step, and the rod-shaped electrode 10 extends to the position of the narrowed tip 121.
  • a gap 101 is provided between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12. A space around the axis of the rod-shaped electrode 10 becomes a flow path of Ar gas.
  • the ceramic tube 12 is connected to the insulating tube 13 at the root.
  • the insulating tube 13 has a branch 13 a in a direction perpendicular to the axial direction, and the rod-like electrode 10 extending from the inside 120 of the ceramic tube 12 to the inside 130 of the insulating tube 13 is bent to be inside the branch 13 a of the insulating tube 13. Is inserted and exposed to the outside.
  • An insulating material such as a fluororesin can be used for the insulating tube 13.
  • a short ceramic tube 14 having an outer diameter substantially coincident with the inner diameter of the ceramic tube 12 is fitted into the tip 121 of the ceramic tube 12 facing the sample electrode 11.
  • the insulating tube 13 is connected to a gas cylinder (not shown) filled with Ar as a discharge gas via a flow meter, a pressure reducing valve, and the like.
  • Ar gas supplied from the gas cylinder is supplied in the axial direction from the inside 130 of the insulating tube 13 to the inside 120 of the ceramic tube 12, and the gap 101 between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12 is disposed on the tip side of the rod-shaped electrode 10.
  • the Ar gas is discharged from the tip 140 of the ceramic tube 14.
  • the sample electrode 11 is covered with a ceramic tube 15 having an inner diameter of 2 mm and an outer diameter of 3 mm.
  • the outer diameter of the tip 150 of the ceramic tube 15 is expanded, and a mortar-shaped recess 16 is formed on the end surface 151 of the ceramic tube 15.
  • the sample electrode 11 is exposed on the bottom surface 152 of the recess 16.
  • a sample to be atomized is held by the recess 16.
  • the ceramic tube 15 is further covered with a fluororesin material 17.
  • the sample electrode 11 does not need to be tubular, and it is good also as a rod shape.
  • the rod-shaped electrode 10 and the sample electrode 11 are connected to a power source 18 and an AC voltage of 60 Hz is applied.
  • a voltage By applying a voltage to the rod-shaped electrode 10 and the sample electrode 11 while flowing Ar gas in the gap 101 between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12 in the axial direction on the distal end side of the rod-shaped electrode 10, Atmospheric pressure plasma is generated at the tip 111, and the atmospheric pressure plasma extends to the sample electrode 11. Then, the atmospheric pressure plasma is irradiated onto the sample held in the recess 16 and the sample is atomized. A part of the atomized sample is mixed with atmospheric pressure plasma to emit light.
  • the mirror 2 is disposed so as to face the spectrometer 3 with the atomized plasma 5 generated by the atomizer 1 interposed therebetween, and the direction perpendicular to the reflection surface of the mirror 2 coincides with the light receiving direction of the spectrometer 3. ing.
  • the emission of atomized plasma is reflected by the mirror 2 so that the spectroscopic measuring instrument 3 can receive the reflected light.
  • the mirror 2 may be made not to face the spectroscopic instrument 3 by simply moving the mirror 2 or rotating it so that the side that is not on the reflecting surface is directed to the spectrophotometer 3 side.
  • the mirror 2 is, for example, a mirror in which Al is vapor-deposited on a glass substrate, and may have any high reflectivity in a resonance line spectrum of a target element described later and an excitation line spectrum of Ar as a discharge gas.
  • the spectrophotometer 3 receives the direct light emission of the atomized plasma 5 and the light emission of the atomized plasma 5 reflected by the mirror, and spectrally measures the light intensity for each wavelength.
  • the light receiving angle of the spectrometer 3 is such that the angle formed by the surface perpendicular to the opposing direction of the rod electrode 10 and the sample electrode 11 with respect to the sample disposed in the atomizer 1 is 45 to 75 °. Is desirable. This is because the emission intensity of the atomized plasma 5 increases at such an angle. More preferred is 60 °.
  • the emission intensity is measured in a state where the mirror 2 is removed as shown in FIG. 3A and in a state where the mirror 2 is arranged as shown in FIG.
  • the measurement order in each state is not limited, and the measurement with the mirror 2 removed may be performed first, or the measurement with the mirror 2 disposed may be performed first.
  • the spectrophotometer 3 measures only the emission intensity of the atomized plasma 5.
  • the light emitted from the atomized plasma 5 is spectrally separated by the spectrophotometer 3, and the emission intensity Ir1 of the resonance line spectrum (wavelength ⁇ r) of the target element in the sample and the excitation line spectrum (wavelength ⁇ u) of Ar as the discharge gas.
  • the emission intensity Iu1 is measured.
  • the excitation line spectrum of Ar to be measured has a wavelength ⁇ u closest to the wavelength ⁇ r of the resonance line spectrum of the target element. This is to prevent the measurement accuracy from being lowered due to the wavelength dependence of the measurement system.
  • the difference between the wavelength ⁇ r and the wavelength ⁇ u is desirably 150 nm or less.
  • the spectrophotometer 3 measures the intensity of light that combines the light emission of the atomized plasma 5 and the light emission of the ghost plasma 6 that has passed through the atomized plasma 5. Then, the received light is spectrally separated by the spectrophotometer 3, and the emission intensity Ir of the resonance line spectrum (wavelength ⁇ r) of the target element in the sample and the emission intensity Iu of the excitation line spectrum (wavelength ⁇ u) of Ar Measure each.
  • the absorptance A due to the self-absorption of the target element can be calculated by the equation (3). From the calculated absorption rate A, the concentration of the target element in the sample can be obtained.
  • the atomic absorption spectrometer of Example 1 can also simultaneously analyze a plurality of target elements. For example, when the emission intensity is measured with the mirror 2 removed, the emission intensity Is1 of the resonance line spectrum of another target element is measured together with the measurement of Iu1 and Ir1, and the emission intensity with the mirror 2 disposed.
  • a ′ (f * Is1 ⁇ Is) / ((f ⁇ 1) * Is1 )
  • the absorption rate A of one target element and the absorption rate A ′ of the other target element can be measured simultaneously.
  • the atomic absorption spectrometer of Example 1 does not require a light source that emits the resonance line spectrum of the target element unlike the conventional atomic absorption spectrometer, and thus can analyze a plurality of elements simultaneously. It can be analyzed regardless of metallic elements and non-metallic elements. In addition, since no light source is required, the atomic absorption spectrometer can be reduced in size and cost.
  • Example 1 self-absorption is used by reflecting using a mirror, but other methods can also be used.
  • the light emitted from the atomized plasma may be received by an optical fiber or the like, and the light that has been irradiated to the atomized plasma and transmitted through the atomized plasma may be received by a spectrophotometer.
  • the atomizer is not limited to the one shown in the first embodiment, and any one that can generate atomized plasma can be used.
  • any one that can generate atomized plasma can be used.
  • an ICP device or the like can be used.
  • FIG. 4 is a diagram showing the configuration of the atomic absorption spectrometer of Example 2.
  • the atomic absorption analyzer includes an atomizer 1, a light source 7, an analyzer 30, and a power supply device 4.
  • the atomizer 1 generates atmospheric pressure plasma by applying a voltage from the power supply device 4, and irradiates the sample with the atmospheric pressure plasma to atomize the sample.
  • the atomizer 1 has the rod-shaped electrode 10 (1st electrode of this invention), and the sample electrode 11 (2nd electrode of this invention).
  • the rod-like electrode 10 is a Cu rod having a diameter of 1.2 mm
  • the sample electrode 11 is a stainless steel tube having an outer diameter of 2 m and an inner diameter of 1 mm.
  • the rod-like electrode 10 can be made of stainless steel, molybdenum, tungsten, or the like in addition to Cu. In addition to stainless steel, Cu, molybdenum, tungsten, or the like can be used for the sample electrode 11. However, considering that the sample electrode 11 itself is atomized and affects analysis, the sample electrode 11 is made of a material that does not contain the target element, or is coated or plated with a material that does not contain the target element. Etc. need to be applied.
  • the tip of the rod-shaped electrode 10 is accommodated in the tube 120 of the ceramic tube 12 so that the axial directions thereof coincide.
  • the tip 121 facing the sample electrode 11 is narrowed by one step, and the rod-shaped electrode 10 extends to the inside of the narrowed tip 121.
  • a gap 101 is provided between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12.
  • a space around the axis of the rod-shaped electrode 10 becomes a flow path of Ar gas.
  • the ceramic tube 12 is connected to the insulating tube 13 at the root portion.
  • the insulating tube 13 has a branch 13 a in a direction perpendicular to the axial direction, and the rod-like electrode 10 extending from the inside 120 of the ceramic tube 12 to the inside 130 of the insulating tube 13 is bent to be inside the branch 13 a of the insulating tube 13. Is inserted and exposed to the outside.
  • An insulating material such as a fluororesin can be used for the insulating tube 13.
  • a short ceramic tube 14 having an outer diameter substantially coincident with the inner diameter of the ceramic tube 12 is fitted into the tip 121 of the ceramic tube 12 facing the sample electrode 11.
  • the insulating tube 13 is connected to a gas cylinder (not shown) filled with Ar as a discharge gas via a pressure reduction / flow rate controller or the like.
  • Ar gas supplied from the gas cylinder is supplied in the axial direction from the inside 130 of the insulating tube 13 to the inside 120 of the ceramic tube 12, and the gap 101 between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12 is disposed on the tip side of the rod-shaped electrode 10.
  • the Ar gas is discharged from the tip 140 of the ceramic tube 14.
  • the sample electrode 11 is covered with a ceramic tube 15 having an inner diameter of 2 mm and an outer diameter of 3 mm.
  • the outer diameter of the tip 150 of the ceramic tube 15 is expanded, and a mortar-shaped recess 16 is formed on the end surface 151 of the ceramic tube 15.
  • the sample electrode 11 is exposed on the bottom surface 152 of the recess 16.
  • a sample to be atomized is held by the recess 16.
  • the sample electrode 11 is tubular, it is possible to supply a liquid sample to the recess 16 formed on the end face of the tip of the ceramic tube 15 through the tube.
  • the ceramic tube 15 is further covered with a fluororesin material 17.
  • the sample electrode 11 does not need to be tubular shape, and it is good also as a rod shape.
  • the rod-shaped electrode 10 and the sample electrode 11 are connected to the power supply device 4, and an alternating voltage of 60 Hz is applied.
  • an alternating voltage of 60 Hz is applied.
  • Atmospheric pressure plasma is generated at the tip 111, and the atmospheric pressure plasma extends to the sample electrode 11.
  • the atmospheric pressure plasma is irradiated onto the sample held in the recess 16 and the sample is atomized. A part of the atomized sample is mixed with atmospheric pressure plasma to emit light.
  • the light source 7 emits a resonance line spectrum of the target element, and is a hollow cathode lamp, for example.
  • the light from the light source 7 is applied to the sample atomized by the atomizer 1.
  • the analyzer 30 receives the light from the light source 7 that has passed through the atomized sample and separates it to measure the emission intensity.
  • the power supply device 4 includes an AC power supply 8 and a half-wave rectifier circuit 9.
  • the AC power source 8 is a power source obtained by boosting a commercial 60 Hz AC power source, the atomizer 1 and the AC power source 8 are directly connected, and the light source 7 is connected to the AC power source 8 via a half-wave rectifier circuit 9.
  • a 60 Hz AC voltage from the AC power source 8 is applied to the atomizer 1 as it is.
  • the half-wave rectification circuit 9 is a circuit using, for example, a diode, and half-wave rectifies and outputs an alternating voltage of 60 Hz. Then, the half-wave rectified voltage is applied to the light source 7.
  • FIG. 7 is a diagram showing the correspondence between the applied voltage waveform and the light emission waveform.
  • 7A shows the voltage waveform applied to the light source 7 and the light emission waveform of the light source
  • FIG. 7B shows the voltage waveform applied to the atomizer 1 and the light emission waveform of atmospheric pressure plasma
  • FIG. The light emission waveform after the light emission of the light source passes through the atomized sample and is absorbed by the sample is shown.
  • the atomizer 1 is driven by an alternating voltage of 60 Hz. Therefore, the atmospheric pressure plasma is emitted periodically and discretely at 60 Hz, and the sample is atomized.
  • FIG. 7A since the 60 Hz AC voltage is half-wave rectified and applied to the light source 7, the light source 7 is turned on in synchronization with the half of the light emission period of the atmospheric pressure plasma.
  • the light emission intensity when the light emission intensity is measured in a state where both the light source 7 and the atmospheric pressure plasma emit light in synchronization, light emission that combines both the state of FIG. 7B and the state of FIG. 7C. Strength KA is obtained. Therefore, the light emission intensity A is measured in a state where only the atmospheric pressure plasma is emitted (the state shown in FIG. 7B), and the light emission in the state shown in FIG. 7C is obtained by subtracting the light emission intensity A from the light emission intensity KA. The intensity, that is, the emission intensity KA-A of the light source after receiving absorption by the atomized sample can be calculated. Then, by comparing the light emission intensity (the light emission intensity of the light source 7) with the light emission intensity KA-A in the state of FIG. 7A, the absorptance can be found and the concentration of the target element in the sample can be measured. .
  • the synchronization between the light emission of the atmospheric pressure plasma and the light emission of the light source 7 can be realized by the power supply device 4 having a simple configuration, and the power supply device 4 can be downsized. Weight reduction can be achieved. As a result, the atomic absorption analyzer itself can be reduced in size and weight.
  • FIG. 8 is a graph showing the results of measuring the time dependence of the emission intensity of the resonance line spectrum (wavelength 324 nm) of Cu using the atomic absorption analyzer of Example 2 with water containing 10 ppm of Cu as a sample.
  • . 8A shows the emission intensity KA when both the light source 7 and the atmospheric pressure plasma emit light
  • FIG. 8B shows the emission intensity A in the emission of only the atmospheric pressure plasma
  • FIG. 8C Indicates the emission intensity KA-A obtained by subtracting the emission intensity A from the emission intensity KA.
  • the light emission intensity KA and the light emission intensity A are plotted as values obtained by integrating the light emission intensities every 3 seconds.
  • FIG. 8C shows the light intensity of the light source 7 that has absorbed the atomized Cu.
  • FIG. 8 (c) shows that the time when the emission intensity becomes the weakest, that is, the absorption peak due to Cu is seen approximately 3 seconds after the start of emission. Further, when about 15 seconds have passed, the change in the emission intensity is almost constant because all the sample is atomized and scattered and disappears. That is, the section where the light emission intensity is constant indicates the light intensity of the light source 7 itself. Therefore, the absorption rate is obtained by dividing the absorption amount at the peak of absorption by the emission intensity after 15 seconds (light intensity of the light source 7). In the case of FIG. 8C, the absorption rate is 100%.
  • FIG. 9 is a graph showing the results of measuring the time dependence of the emission intensity of the resonance line spectrum of Cu using the atomic absorption analyzer of Example 2 with the sample being water containing 0.1 ppm of Cu.
  • FIG. 9A shows the emission intensity KA when both the light source 7 and the atmospheric pressure plasma are emitted
  • FIG. 9B shows the emission intensity A in the emission of only the atmospheric pressure plasma
  • FIG. 9C Indicates the emission intensity KA-A obtained by subtracting the emission intensity A from the emission intensity KA.
  • the light emission intensity KA and the light emission intensity A are plotted as values obtained by integrating the respective light emission intensities per second.
  • FIG. 9C shows the light intensity of the light source 7 that has absorbed the atomized Cu.
  • FIG. 10 is a graph showing the result of theoretical calculation of the relationship between the absorption rate and the concentration of Cu in the sample.
  • the horizontal axis is the absorptance
  • the vertical axis is the number of atoms per cm 3 .
  • the number of Cu atoms per 1 cm 3 is 7.5 ⁇ 10 12 . It can be seen that the result of FIG. 9 that the Cu concentration is 0.1 ppm and the absorptance is 70% roughly matches the graph of FIG. Further, FIG. 10 suggests that the Cu concentration can be measured in the range of 0.001 to 1 ppm.
  • the atomic absorption analysis apparatus and atomic absorption analysis method of the present invention can simultaneously measure a plurality of elements, and can also measure nonmetallic elements such as P and B, which have been difficult to detect conventionally.
  • the atomic absorption spectrometer of the present invention can be used for monitoring of sewage and the like.
  • Atomizer 2 Mirror 3: Spectrometer 4: Power supply device 5: Atomized plasma 6: ghost plasma 7: Light source 8: AC power supply 9: Half-wave rectifier circuit 10: Rod electrode 11: Sample electrode 12, 14, 15: Ceramic tube 13: Insulating tube 16: Recessed portion 17: Fluorine resin material 18: Power supply 30: Analyzer

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A novel atomic absorption analyzer in which self-absorption is utilized is rendered possible. The atomic absorption analyzer is configured of an atomizer (1), a mirror (2), and a spectroscope (3). The atomizer (1) generates a plasma (atomization plasma (5)) containing an atomized sample. The atomization plasma (5) is examined for emission intensity without the mirror (2) to determine the emission intensity (Ir1) of the resonance spectral line of a target element and the emission intensity (Iu1) of the excitation spectral line of Ar. The mirror (2) is disposed to generate a ghost (ghost plasma (6)) of the atomization plasma (5) by means of light reflection from the mirror (2), and the atomization plasma (5) in this state is examined for emission intensity to determine the emission intensity (Ir) of the resonance spectral line of the target element and the emission intensity (Iu) of the excitation spectral line of Ar. From the intensities (Ir1), (Iu1), (Ir), and (Iu), the absorption coefficient of the target element due to the self-absorption can be calculated.

Description

原子吸光分析装置および原子吸光分析法Atomic absorption spectrometer and atomic absorption spectrometry
 本発明は、自己吸収を利用した原子吸光分析装置および原子吸光分析方法に関する。他の発明は、大気圧プラズマを用いたアトマイザーと目的元素の共鳴線スペクトルを発光する光源とで構成された原子吸光分析装置、および原子吸光分析法に関する。 The present invention relates to an atomic absorption analysis apparatus and an atomic absorption analysis method using self-absorption. Another invention relates to an atomic absorption analysis apparatus including an atomizer using atmospheric pressure plasma and a light source that emits a resonance line spectrum of a target element, and an atomic absorption analysis method.
 多元素を同時に分析することができる原子吸光分析装置として、特許文献1に記載の装置が提案されている。この特許文献1の原子吸光分析装置は、分析対象である複数の元素の輝線スペクトルを発光する光源である、マルチマイクロホローカソード光源を用いることを特徴とするものである。マルチマイクロホローカソード光源は、銅製または銅合金製の複数のマイクロホローパイプを有し、各マイクロホローパイプには、複数の金属ワイヤが内部を貫通するようにして軸方向に適当な回数巻かれている。金属ワイヤは、分析対象である金属元素あるいはその金属元素を含む合金である。 An apparatus described in Patent Document 1 has been proposed as an atomic absorption spectrometer that can simultaneously analyze multiple elements. The atomic absorption spectrometer of Patent Document 1 uses a multi-micro hollow cathode light source that is a light source that emits emission spectrums of a plurality of elements to be analyzed. The multi-micro hollow cathode light source has a plurality of micro hollow pipes made of copper or copper alloy, and each micro hollow pipe is wound an appropriate number of times in the axial direction so that a plurality of metal wires penetrates the inside. Yes. The metal wire is a metal element to be analyzed or an alloy containing the metal element.
 また、原子吸光分析では、試料を原子化する装置(アトマイザー)として、黒鉛炉などが広く用いられている。また、特許文献2のように、大気圧プラズマを用いたアトマイザーも知られており、吸光分析に用いることができると記載されている。特許文献2のアトマイザーにおける大気圧プラズマの発生には、商用のAC電源の電圧を昇圧して電極に印加することが記載されている。そのため、大気圧プラズマは離散的に発生することになる。 In atomic absorption analysis, a graphite furnace or the like is widely used as an apparatus (atomizer) for atomizing a sample. Further, as in Patent Document 2, an atomizer using atmospheric pressure plasma is also known and is described as being usable for absorption analysis. In the generation of atmospheric pressure plasma in the atomizer of Patent Document 2, it is described that the voltage of a commercial AC power source is boosted and applied to an electrode. Therefore, atmospheric pressure plasma is generated discretely.
 また、原子吸光分析では、目的元素の共鳴線スペクトルを発光する光源として、ホローカソードランプを用いる。ホローカソードランプの電源は直流電源である。ここで、大気圧プラズマが離散的に発生しているため光源を常時点灯させておくことはできず、光源は、大気圧プラズマが発生している期間内に離散的に点灯させる必要がある。もし大気圧プラズマが発生せずに光源が点灯している状態があると、光源に吸収が伴わない状態が存在し、あたかも吸収率が悪い、すなわち目的元素の濃度が低い状態とみなされてしまい、測定結果に誤りが生じてしまう。そこで、ホローカソードランプの電源は、直流電源をパルス化してアトマイザーの電源に同期させることが必要となる。 In atomic absorption analysis, a hollow cathode lamp is used as a light source that emits a resonance line spectrum of a target element. The power source of the hollow cathode lamp is a DC power source. Here, since the atmospheric pressure plasma is generated discretely, the light source cannot be always turned on, and the light source needs to be turned on discretely within a period in which the atmospheric pressure plasma is generated. If atmospheric pressure plasma is not generated and the light source is lit, there is a state in which the light source does not absorb, and it is considered that the absorption rate is low, that is, the concentration of the target element is low. An error occurs in the measurement result. Therefore, the power source of the hollow cathode lamp needs to be synchronized with the power source of the atomizer by pulsing the DC power source.
 このように、大気圧プラズマを用いたアトマイザーを有する原子吸光分析装置では、アトマイザー用の交流電源と、光源用の直流電源とをそれぞれ用意して用いていた。 Thus, in an atomic absorption spectrometer having an atomizer using atmospheric pressure plasma, an AC power source for the atomizer and a DC power source for the light source are prepared and used.
特開2007-257900JP2007-257900A 特開2008-241293JP2008-241293
 しかし、特許文献1の原子吸光分析装置に用いるマルチマイクロホローカソード光源は、金属元素の種類によっては、十分な発光強度を得るためにマイクロホローパイプに多数回金属ワイヤを巻く必要がある。金属ワイヤを巻ける回数にはマイクロホローパイプの径などの構造によって制約が生じ、発光強度の向上にも限度がある。その結果、測定可能な金属元素に制限が生じてしまう。また、特許文献1のマルチマイクロホローカソード光源では、マイクロホローパイプに金属元素を巻くという構成上、金属以外の元素の共鳴線スペクトルを得ることはできない。そのため、BやPなどの金属以外の元素については分析することができない。 However, the multi-micro hollow cathode light source used in the atomic absorption spectrometer of Patent Document 1 needs to wind a metal wire many times around the micro hollow pipe in order to obtain sufficient emission intensity depending on the type of metal element. The number of times the metal wire can be wound is limited by the structure such as the diameter of the micro hollow pipe, and there is a limit to the improvement of the emission intensity. As a result, the measurable metal element is limited. Further, the multi-micro hollow cathode light source disclosed in Patent Document 1 cannot obtain a resonance line spectrum of an element other than a metal due to a configuration in which a metal element is wound around a micro hollow pipe. Therefore, elements other than metals such as B and P cannot be analyzed.
 また、従来の大気圧プラズマを用いた原子吸光分析装置では、上記のようにアトマイザー用の交流電源と光源用の直流電源とをそれぞれ用意する必要があり、さらに光源用の直流電源はパルス化してアトマイザー用の交流電源と同期を取る必要があり、同期用の回路装置が必要となる。このような電源装置を実現しようとすると、電源装置の容積、重量が大きくなってしまう。そのため、原子吸光分析装置の小型化ができず、携帯型を実現することができなかった。 In addition, in the conventional atomic absorption spectrometer using atmospheric pressure plasma, it is necessary to prepare an AC power source for the atomizer and a DC power source for the light source as described above, and the DC power source for the light source is pulsed. It is necessary to synchronize with the AC power supply for the atomizer, and a circuit device for synchronization is required. If it is going to implement | achieve such a power supply device, the volume and weight of a power supply device will become large. For this reason, the atomic absorption spectrometer cannot be miniaturized and a portable type cannot be realized.
 発明者らは、上記課題を解決するため鋭意研究を重ねたところ、自己吸収を利用するという着想に至った。本発明はこの着想に基づくものであり、金属元素であるか非金属元素であるかを問わずに多元素を同時に分析可能な原子吸光分析装置および元素吸光分析方法を実現することを目的とする。
 また、発明の他の目的は、大気圧プラズマを用いたアトマイザーを有する原子吸光分析装置の小型化を図ることである。
The inventors have intensively studied to solve the above problems, and have come up with the idea of using self-absorption. The present invention is based on this idea, and an object thereof is to realize an atomic absorption analysis apparatus and an element absorption analysis method capable of simultaneously analyzing multiple elements regardless of whether they are metallic elements or nonmetallic elements. .
Another object of the invention is to reduce the size of an atomic absorption spectrometer having an atomizer using atmospheric pressure plasma.
 第1の発明は、原子化された試料を含むアトマイズプラズマを発生させるアトマイザーと、アトマイズプラズマの発光スペクトルにおいて、目的元素の共鳴線スペクトルの発光強度、および放電ガスの励起線スペクトルの発光強度とをそれぞれ測定し、アトマイズプラズマの発光と、アトマイズプラズマからの発光をアトマイズプラズマに照射してアトマイズプラズマを透過した光と、が加わった光のスペクトルにおいて、目的元素の共鳴線スペクトルの発光強度、および放電ガスの励起線スペクトルの発光強度とをそれぞれ測定する測定装置と、を有することを特徴とする原子吸光分析装置である。 According to a first aspect of the present invention, there is provided an atomizer for generating an atomized plasma including an atomized sample, and an emission intensity of a resonance line spectrum of a target element and an emission intensity of an excitation line spectrum of a discharge gas in the emission spectrum of the atomized plasma. The emission intensity of the resonance line spectrum of the target element, and the discharge in the spectrum of the light in which the emission of the atomized plasma and the light emitted from the atomized plasma to the atomized plasma and transmitted through the atomized plasma are measured. It is an atomic absorption spectrometer characterized by having a measuring device which measures each luminescence intensity of the excitation line spectrum of gas.
 ここで、アトマイズプラズマは、原子化した試料を含んだプラズマを意味する。プラズマを生成する放電ガスには、Ar、He、窒素、酸素、空気などを用いることができる。アトマイザーは、このようなアトマイズプラズマを発生させる装置であれば任意のものを使用することができる。たとえば、大気圧プラズマを生成し、目的元素を含む試料に大気圧プラズマを照射し、試料を原子化することで、アトマイズプラズマを発生させる装置である。他にもICP装置などを本発明のアトマイザーとして用いることもできる。 Here, atomized plasma means plasma containing an atomized sample. Ar, He, nitrogen, oxygen, air, or the like can be used as a discharge gas for generating plasma. Any atomizer may be used as long as it is an apparatus that generates such atomized plasma. For example, it is an apparatus for generating atomized plasma by generating atmospheric pressure plasma, irradiating a sample containing a target element with atmospheric pressure plasma, and atomizing the sample. In addition, an ICP device or the like can be used as the atomizer of the present invention.
 測定装置は、以下の4つの発光強度を測定する。
 (1)アトマイズプラズマの発光スペクトルにおける目的元素の共鳴線スペクトルの発光強度。
 (2)アトマイズプラズマの発光スペクトルにおける放電ガスの励起線スペクトルの発光強度。
 (3)アトマイズプラズマからの発光に、アトマイズプラズマに照射してアトマイズプラズマを透過した光が加わった光のスペクトルにおける目的元素の共鳴線スペクトルの発光強度。
 (4)アトマイズプラズマからの発光に、アトマイズプラズマに照射してアトマイズプラズマを透過した光が加わった光のスペクトルにおける放電ガスの励起線スペクトルの発光強度。
 上記(1)と(2)の発光強度は、同時に計測してもよい。また上記(3)と(4)の発光強度もまた、同時に計測してもよい。
The measuring device measures the following four emission intensities.
(1) The emission intensity of the resonance line spectrum of the target element in the emission spectrum of atomized plasma.
(2) The emission intensity of the excitation line spectrum of the discharge gas in the emission spectrum of atomized plasma.
(3) The emission intensity of the resonance line spectrum of the target element in the light spectrum in which light emitted from the atomized plasma and irradiated with the atomized plasma and transmitted through the atomized plasma is added.
(4) The emission intensity of the excitation line spectrum of the discharge gas in the spectrum of the light emitted from the atomized plasma plus the light irradiated to the atomized plasma and transmitted through the atomized plasma.
You may measure the emitted light intensity of said (1) and (2) simultaneously. Moreover, you may measure the light emission intensity of said (3) and (4) simultaneously.
 測定される上記(1)~(4)の発光強度のうち、(3)の発光強度はアトマイズプラズマ中の目的元素による自己吸収を受けたものであり、本発明は(1)~(4)の発光強度から自己吸収による吸収率を算出し、吸収率から試料中の目的元素の濃度を測定するものである。 Of the emission intensities measured in the above (1) to (4), the emission intensity in (3) is self-absorbed by the target element in the atomized plasma, and the present invention provides (1) to (4) The absorptance due to self-absorption is calculated from the emission intensity, and the concentration of the target element in the sample is measured from the absorptance.
 アトマイズプラズマからの発光をアトマイズプラズマに照射する手段としては、たとえばミラーを用いて反射させる手段である。このとき、ミラーは目的元素の共鳴線スペクトルの波長、および放電ガスの励起線スペクトルの波長において反射率の高いものが望ましい。また、他の手段としては、光ファイバを用い、光ファイバの一端からアトマイズプラズマからの発光を受光し、受光方向とは異なる方向に導いて光ファイバの他端から照射する手段がある。 The means for irradiating the atomized plasma with light emitted from the atomized plasma is, for example, a means for reflecting using a mirror. At this time, the mirror preferably has a high reflectance at the wavelength of the resonance line spectrum of the target element and the wavelength of the excitation line spectrum of the discharge gas. As another means, there is a means that uses an optical fiber, receives light emitted from atomized plasma from one end of the optical fiber, guides it in a direction different from the light receiving direction, and irradiates it from the other end of the optical fiber.
 放電ガスの励起線スペクトルは、目的元素の共鳴線スペクトルの波長に最も近い波長のものが望ましい。測定系の波長依存性が影響して測定精度が低下してしまうのを防止するためである。特に、目的元素の共鳴線スペクトルの波長との差が150nm以下となる放電ガスの励起線スペクトルを測定するのが望ましい。 The excitation line spectrum of the discharge gas preferably has a wavelength closest to the wavelength of the resonance line spectrum of the target element. This is to prevent the measurement accuracy from deteriorating due to the wavelength dependence of the measurement system. In particular, it is desirable to measure the excitation line spectrum of the discharge gas in which the difference from the wavelength of the resonance line spectrum of the target element is 150 nm or less.
 第2の発明は、第1の発明において、測定装置は、ミラーを有し、そのミラーによってアトマイズプラズマからの発光を反射してアトマイズプラズマに照射する、ことを特徴とする原子吸光分析装置である。
 第3の発明は、第1の発明または第2の発明において、測定する放電ガスの励起線スペクトルの発光強度は、目的元素の共鳴線スペクトルに最も近い波長のものであることを特徴とする原子吸光分析装置である。
A second invention is the atomic absorption spectrometer according to the first invention, wherein the measuring device has a mirror, and the light emitted from the atomized plasma is reflected by the mirror to irradiate the atomized plasma. .
According to a third aspect of the present invention, in the first or second aspect, the emission intensity of the excitation line spectrum of the discharge gas to be measured has the wavelength closest to the resonance line spectrum of the target element. Absorption spectrometer.
 第4の発明は、第1の発明から第3の発明において、アトマイザーは、大気圧プラズマを生成し、目的元素を含む試料に大気圧プラズマを照射し、試料を原子化することで、アトマイズプラズマを発生させる、ことを特徴とする原子吸光分析装置である。
 第5の発明は、第1の発明から第4の発明において、アトマイザーは、棒状の第1電極と、管状であって、その管内に、第1電極の軸回りにおいて管内壁から第1電極が離間した状態となるように第1電極の先端部を保持し、管内壁と第1電極との隙間に、第1電極の先端部側の軸方向に放電ガスが流される絶縁管と、第1電極の先端部から一定距離隔てて配置された第2電極と、試料を保持する凹部を有し、その凹部底面に第2電極が露出した絶縁材からなる試料保持部と、を有することを特徴とする原子吸光分析装置である。
In a fourth aspect based on the first aspect to the third aspect, the atomizer generates the atmospheric pressure plasma, irradiates the sample containing the target element with the atmospheric pressure plasma, and atomizes the sample, whereby the atomized plasma is generated. Is an atomic absorption spectrometer characterized by the above.
According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, the atomizer has a rod-shaped first electrode and a tubular shape, and the first electrode extends from the inner wall of the tube around the axis of the first electrode in the tube. An insulating tube that holds the distal end portion of the first electrode so as to be spaced apart, and in which a discharge gas flows in the gap between the inner wall of the tube and the first electrode in the axial direction on the distal end side of the first electrode; A second electrode disposed at a certain distance from the tip of the electrode; and a sample holding portion made of an insulating material having a recess for holding the sample and exposing the second electrode on the bottom surface of the recess. And an atomic absorption spectrometer.
 第6の発明は、原子化された試料を含むアトマイズプラズマを発生させ、アトマイズプラズマの発光スペクトルにおいて、目的元素の共鳴線スペクトルの発光強度、および放電ガスの励起線スペクトルの発光強度とをそれぞれ測定し、アトマイズプラズマの発光と、アトマイズプラズマからの発光をアトマイズプラズマに照射してアトマイズプラズマを透過した光と、が加わった光のスペクトルにおいて、目的元素の共鳴線スペクトルの発光強度、および放電ガスの励起線スペクトルの発光強度とをそれぞれ測定する、ことを特徴とする原子吸光分析法である。 The sixth invention generates an atomized plasma including an atomized sample, and measures the emission intensity of the resonance line spectrum of the target element and the emission intensity of the excitation line spectrum of the discharge gas in the emission spectrum of the atomized plasma. In the spectrum of light in which the atomized plasma emission and the light emitted from the atomized plasma are irradiated to the atomized plasma and transmitted through the atomized plasma, the emission intensity of the resonance line spectrum of the target element and the discharge gas The atomic absorption spectrometry is characterized in that the emission intensity of the excitation line spectrum is measured.
 第7の発明は、第6の発明において、ミラーによって反射させることで、アトマイズプラズマからの発光をアトマイズプラズマに照射する、ことを特徴とする原子吸光分析法である。 The seventh invention is the atomic absorption analysis method according to the sixth invention, wherein the atomized plasma is irradiated with light emitted from the atomized plasma by being reflected by a mirror.
 第8の発明は、第6の発明または第7の発明において、測定する放電ガスの励起線スペクトルの発光強度は、目的元素の共鳴線スペクトルに最も近い波長のものであることを特徴とする原子吸光分析法である。 An eighth invention is characterized in that, in the sixth invention or the seventh invention, the emission intensity of the excitation line spectrum of the discharge gas to be measured is the one having the wavelength closest to the resonance line spectrum of the target element. Absorption spectrometry.
 第9の発明は、第6の発明から第8の発明において、アトマイズプラズマは、大気圧プラズマを生成し、目的元素を含む試料に大気圧プラズマを照射し、試料を原子化し、大気圧プラズマ中に原子化した試料を混入させることで発生させる、ことを特徴とする原子吸光分析法である。 In a ninth aspect based on the sixth aspect to the eighth aspect, the atomized plasma generates atmospheric pressure plasma, irradiates the sample containing the target element with the atmospheric pressure plasma, atomizes the sample, and in the atmospheric pressure plasma. This is an atomic absorption analysis method characterized in that it is generated by mixing an atomized sample into the sample.
 第10の発明は、大気圧プラズマを生成し、試料に前記大気圧プラズマを照射し、試料を原子化するアトマイザーと、試料中の目的元素の輝線スペクトルを発光し、原子化された試料に照射する光源と、原子化された試料を透過した光源の光を受光して分析する分析装置と、アトマイザーおよび光源を駆動する電源装置と、を有し、電源装置は、交流電源と、交流電源からの出力の一部を半波整流する半波整流回路と、を有し、アトマイザーには交流電源からの出力を供給し、光源には、半波整流回路からの出力を供給する、ことを特徴とする原子吸光分析装置である。 The tenth invention generates atmospheric pressure plasma, irradiates the sample with the atmospheric pressure plasma, atomizes the sample, emits the emission line spectrum of the target element in the sample, and irradiates the atomized sample A light source for analyzing the light from the light source transmitted through the atomized sample, and a power supply device for driving the atomizer and the light source. The power supply device includes an AC power source and an AC power source. A half-wave rectification circuit that rectifies a part of the output of the half-wave, supplies an output from an AC power source to the atomizer, and supplies an output from the half-wave rectification circuit to the light source And an atomic absorption spectrometer.
 第11の発明は、第10の発明において、分析装置は、原子化された試料を透過した光源の光と大気圧プラズマの発光とを合わせた光の第1の発光強度と、大気圧プラズマの発光のみである第2の発光強度とを測定し、第1の発光強度から第2の発光強度を差し引くことで、原子化された試料を透過した光源の光の発光強度を算出する、ことを特徴とする原子吸光分析装置である。 In an eleventh aspect based on the tenth aspect, the analyzer is configured to detect the first emission intensity of the light combining the light of the light source transmitted through the atomized sample and the emission of the atmospheric pressure plasma, and the atmospheric pressure plasma. Measuring the second emission intensity, which is only emission, and subtracting the second emission intensity from the first emission intensity to calculate the emission intensity of the light of the light source that has passed through the atomized sample. This is an atomic absorption spectrometer that is characterized.
 第12の発明は、第10の発明または第11の発明において、アトマイザーは、棒状の第1電極と、管状であって、その管内に、第1電極の軸回りにおいて管内壁から第1電極が離間した状態となるように第1電極の先端部を保持し、管内壁と第1電極との隙間に、第1電極の先端部側の軸方向に放電ガスが流される絶縁管と、第1電極の先端部から一定距離隔てて配置された第2電極と、試料を保持する凹部を有し、その凹部底面に第2電極が露出した絶縁材からなる試料保持部と、を有する、ことを特徴とする原子吸光分析装置である。 In a twelfth aspect based on the tenth aspect or the eleventh aspect, the atomizer has a rod-shaped first electrode and a tubular shape, and the first electrode extends from the inner wall of the tube around the axis of the first electrode in the tube. An insulating tube that holds the distal end portion of the first electrode so as to be spaced apart, and in which a discharge gas flows in the gap between the inner wall of the tube and the first electrode in the axial direction on the distal end side of the first electrode; A second electrode disposed at a predetermined distance from the tip of the electrode, and a sample holding portion made of an insulating material having a recess for holding the sample and exposing the second electrode on the bottom surface of the recess. This is an atomic absorption spectrometer that is characterized.
 放電ガスには、Ar、He、窒素、酸素、空気などを用いることができる。
 第1電極および第2電極の材料は、SUS、銅、タングステンなどを用いることができる。ただし、第2電極には、分析の目標となる元素を含む材料を用いないようにするか、もしくは分析の目標となる元素を含まない材料によって被膜、めっき等を施す必要がある。第2電極が原子化されて分析に影響を与えてしまうのを避けるためである。
Ar, He, nitrogen, oxygen, air, or the like can be used as the discharge gas.
As materials for the first electrode and the second electrode, SUS, copper, tungsten, or the like can be used. However, it is necessary not to use a material containing an element to be analyzed, or to coat the second electrode with a material that does not contain an element to be analyzed. This is to prevent the second electrode from being atomized and affecting the analysis.
 第13の発明は、交流電圧の印加によって大気圧プラズマを生成し、試料に大気圧プラズマを照射して、試料を原子化し、交流電圧を半波整流した電圧を印加することによって、試料中の目的元素の輝線スペクトルの発光を生成し、その発光を原子化された試料に照射して透過させ、大気圧プラズマの発光と、原子化された試料を透過した光とを合わせた光の第1の発光強度と、大気圧プラズマの発光のみである第2の発光強度とを測定し、第1の発光強度から第2の発光強度を差し引くことで、原子化された試料を透過した光源の光の発光強度を算出する、ことを特徴とする原子吸光分析法である。 The thirteenth invention generates atmospheric pressure plasma by applying an AC voltage, irradiates the sample with atmospheric pressure plasma, atomizes the sample, and applies a voltage obtained by half-wave rectifying the AC voltage. The emission of the emission line spectrum of the target element is generated, and the emitted light is irradiated and transmitted through the atomized sample. The first light of the light combining the emission of atmospheric pressure plasma and the light transmitted through the atomized sample is generated. And the second emission intensity that is only the emission of atmospheric pressure plasma, and the second emission intensity is subtracted from the first emission intensity, whereby the light of the light source that has passed through the atomized sample. This is an atomic absorption analysis method characterized in that the luminescence intensity is calculated.
 本発明の原子吸光分析装置または原子吸光分析法は、自己吸収を利用して分析を行うものであるため、従来の原子吸光分析装置または原子吸光分析法において必要であった目的元素の共鳴線スペクトルを発光する光源を必要としない。そのため、光源によって目的元素の種類や数が制限されることはなく、多元素を同時に分析することができ、金属元素のみならず非金属元素についても分析することができる。また、光源が必要ないので、原子吸光分析装置の小型化、低コスト化を実現することができる。 Since the atomic absorption spectrometer or atomic absorption spectrometer of the present invention performs analysis using self-absorption, the resonance line spectrum of the target element required in the conventional atomic absorption spectrometer or atomic absorption spectrometer. A light source that emits light is not required. Therefore, the type and number of target elements are not limited by the light source, multiple elements can be analyzed simultaneously, and not only metallic elements but also nonmetallic elements can be analyzed. In addition, since no light source is required, the atomic absorption spectrometer can be reduced in size and cost.
 また、第2の発明のように、ミラーを用いることで容易に本発明の原子吸光分析装置を実現することができる。 Also, as in the second invention, the atomic absorption spectrometer of the present invention can be easily realized by using a mirror.
 また、第3の発明のよれば、測定系の波長依存性による測定精度の低下を抑制することができる。 Further, according to the third invention, it is possible to suppress a decrease in measurement accuracy due to the wavelength dependence of the measurement system.
 また、第4の発明のように、アトマイザーとして大気圧プラズマを用いたものを用いることができ、原子吸光分析装置の小型化、低コスト化を図ることができる。 Also, as in the fourth invention, an atomizer using atmospheric pressure plasma can be used, and the atomic absorption analyzer can be reduced in size and cost.
 また、第5の発明によれば、アトマイザーをより小型化することができ、その結果原子吸光分析装置の小型化を図ることができる。 Further, according to the fifth invention, the atomizer can be further downsized, and as a result, the atomic absorption spectrometer can be downsized.
 また、第6~9の発明の原子吸光分析法によると、金属元素、非金属元素によらず多元素を同時に分析することができる。 Also, according to the atomic absorption analysis methods of the sixth to ninth inventions, multiple elements can be analyzed simultaneously irrespective of metallic elements and nonmetallic elements.
 第10~第12の発明の原子吸光分析装置、第13の原子吸光分析装置では、簡易な電源構成によってアトマイザーと光源との同期をとることができ、電源装置の小型化、軽量化を図ることができる。 In the atomic absorption spectrometer and the thirteenth atomic absorption spectrometer of the tenth to twelfth inventions, the atomizer and the light source can be synchronized with a simple power supply configuration, and the power supply apparatus can be reduced in size and weight. Can do.
実施例1の原子吸光分析装置の構成を示した図。1 is a diagram illustrating a configuration of an atomic absorption analyzer of Example 1. FIG. 実施例1の原子吸光分析装置におけるアトマイザー1の構成を示した図。1 is a diagram showing a configuration of an atomizer 1 in an atomic absorption spectrometer of Example 1. FIG. 実施例1の原子吸光分析装置による測定原理を示した図。The figure which showed the measurement principle by the atomic absorption analyzer of Example 1. FIG. 実施例2の原子吸光分析装置の構成を示した図。FIG. 3 is a diagram showing a configuration of an atomic absorption analyzer of Example 2. 実施例2の原子吸光分析装置におけるアトマイザー1の構成を示した図。FIG. 5 is a diagram showing the configuration of an atomizer 1 in the atomic absorption spectrometer of Example 2. 実施例2の原子吸光分析装置におけるアトマイザー1および光源7と電源装置4との接続構成を示した図。The figure which showed the connection structure of the atomizer 1, the light source 7, and the power supply device 4 in the atomic absorption analyzer of Example 2. FIG. 実施例2の原子吸光分析装置における印加電圧波形と発光波形との対応を示した図。The figure which showed the response | compatibility with the applied voltage waveform in the atomic absorption analyzer of Example 2, and a light emission waveform. 実施例2の原子吸光分析装置における発光強度の時間依存性を示した図。The figure which showed the time dependence of the emitted light intensity in the atomic absorption analyzer of Example 2. FIG. 実施例2の原子吸光分析装置における発光強度の時間依存性を示した図。The figure which showed the time dependence of the emitted light intensity in the atomic absorption analyzer of Example 2. FIG. 実施例2の原子吸光分析装置における吸収率と濃度との関係を示したグラフ。6 is a graph showing the relationship between the absorption rate and the concentration in the atomic absorption spectrometer of Example 2.
 以下、本発明の具体的な実施例について図を参照に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, specific examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the examples.
 図1は、実施例1の原子吸光分析装置の構成を示した図である。原子吸光分析装置は、アトマイザー1と、ミラー2と、分光測定器3と、によって構成されている。 FIG. 1 is a diagram showing the configuration of the atomic absorption spectrometer of Example 1. The atomic absorption analyzer includes an atomizer 1, a mirror 2, and a spectrometer 3.
 アトマイザー1は、大気圧プラズマを発生させ、これを試料に照射して原子化し、大気圧プラズマ中に原子化した試料を混入させて、原子化した試料を含むプラズマ(アトマイズプラズマ5)を発生させる。 The atomizer 1 generates atmospheric pressure plasma, irradiates the sample with atomization, atomizes the sample, mixes the atomized sample in the atmospheric pressure plasma, and generates plasma (atomized plasma 5) including the atomized sample. .
 アトマイザー1のより詳細な構成について図2を参照に説明する。図2に示すように、棒状電極10(本発明の第1電極)と、試料電極11(本発明の第2電極)とを有している。棒状電極10は、直径1.2mmのCu製の棒状であり、試料電極11は、外径2m、内径1mmのステンレス製の管状である。棒状電極10の外周面は絶縁体102により被覆されている。 A more detailed configuration of the atomizer 1 will be described with reference to FIG. As shown in FIG. 2, it has the rod-shaped electrode 10 (1st electrode of this invention) and the sample electrode 11 (2nd electrode of this invention). The rod-like electrode 10 is a Cu rod having a diameter of 1.2 mm, and the sample electrode 11 is a stainless steel tube having an outer diameter of 2 m and an inner diameter of 1 mm. The outer peripheral surface of the rod-shaped electrode 10 is covered with an insulator 102.
 棒状電極10には、Cu以外に、ステンレス、モリブデン、タングステンなどを用いることができる。また、試料電極11には、ステンレス以外に、Cu、モリブデン、タングステンなどを用いることができる。ただし、試料電極11自体が原子化してしまい、分析に影響を与えてしまうことを考慮して、試料電極11には目的元素を含まない材料を用いるか、目的元素を含まない材料で被膜、めっき等を施す必要がある。 The rod-like electrode 10 can be made of stainless steel, molybdenum, tungsten, or the like in addition to Cu. In addition to stainless steel, Cu, molybdenum, tungsten, or the like can be used for the sample electrode 11. However, considering that the sample electrode 11 itself is atomized and affects analysis, the sample electrode 11 is made of a material that does not contain the target element, or is coated or plated with a material that does not contain the target element. Etc. need to be applied.
 棒状電極10の先端部111は、セラミックス管12の管内120に軸方向を一致させて納められている。セラミックス管12は、試料電極11に対向する先端部121が一段階狭くなっていて、棒状電極10は、この狭くなった先端部121の位置まで伸びている。棒状電極10とセラミックス管12の内壁との間には隙間101が設けられている。この棒状電極10の軸回りの空間がArガスの流路となる。 The tip portion 111 of the rod-shaped electrode 10 is accommodated in the tube 120 of the ceramic tube 12 so that the axial directions thereof coincide with each other. In the ceramic tube 12, the tip 121 facing the sample electrode 11 is narrowed by one step, and the rod-shaped electrode 10 extends to the position of the narrowed tip 121. A gap 101 is provided between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12. A space around the axis of the rod-shaped electrode 10 becomes a flow path of Ar gas.
 セラミックス管12は、根元において絶縁管13と連結している。絶縁管13は軸方向に垂直な方向に分岐13aを有しており、セラミックス管12の管内120から絶縁管13の管内130に伸びる棒状電極10は、曲げられて絶縁管13の分岐13aの管内に挿入され、外部に露出している。絶縁管13には、フッ素樹脂などの絶縁材を用いることができる。 The ceramic tube 12 is connected to the insulating tube 13 at the root. The insulating tube 13 has a branch 13 a in a direction perpendicular to the axial direction, and the rod-like electrode 10 extending from the inside 120 of the ceramic tube 12 to the inside 130 of the insulating tube 13 is bent to be inside the branch 13 a of the insulating tube 13. Is inserted and exposed to the outside. An insulating material such as a fluororesin can be used for the insulating tube 13.
 さらに、セラミックス管12の試料電極11に対向する先端部121には、外径がセラミックス管12の内径にほぼ一致した短いセラミックス管14がはめ込まれている。 Furthermore, a short ceramic tube 14 having an outer diameter substantially coincident with the inner diameter of the ceramic tube 12 is fitted into the tip 121 of the ceramic tube 12 facing the sample electrode 11.
 絶縁管13は放電用ガスであるArが封入されたガスボンベ(図示しない)に流量計、減圧弁などを介して接続されている。ガスボンベから供給されたArガスは、絶縁管13の管内130からセラミックス管12の管内120へと軸方向に供給され、棒状電極10とセラミックス管12の内壁との隙間101を棒状電極10先端部側の軸方向に流れてセラミックス管14の先端140からArガスが排出される。 The insulating tube 13 is connected to a gas cylinder (not shown) filled with Ar as a discharge gas via a flow meter, a pressure reducing valve, and the like. Ar gas supplied from the gas cylinder is supplied in the axial direction from the inside 130 of the insulating tube 13 to the inside 120 of the ceramic tube 12, and the gap 101 between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12 is disposed on the tip side of the rod-shaped electrode 10. The Ar gas is discharged from the tip 140 of the ceramic tube 14.
 放電ガスには、Ar以外にもHe、Ne、N、空気、などを用いることができる。
 試料電極11は、内径2mm、外径3mmのセラミックス管15によって覆われている。セラミックス管15の先端150は外径が拡張されており、セラミックス管15の端面151にはすり鉢状の凹部16が形成されている。凹部16の底面152には、試料電極11が露出している。この凹部16によって、原子化する試料を保持する。また、試料電極11を管状とすることで、その管内を通してセラミックス管15の先端150の凹部16に液体の試料を供給することが可能となっている。また、セラミックス管15はフッ素樹脂材17によってさらに覆われている。なお、凹部に一定量の試料を保持する場合には、試料電極11を管状とする必要はなく、棒状などとしてもよい。
As the discharge gas, He, Ne, N, air, etc. can be used in addition to Ar.
The sample electrode 11 is covered with a ceramic tube 15 having an inner diameter of 2 mm and an outer diameter of 3 mm. The outer diameter of the tip 150 of the ceramic tube 15 is expanded, and a mortar-shaped recess 16 is formed on the end surface 151 of the ceramic tube 15. The sample electrode 11 is exposed on the bottom surface 152 of the recess 16. A sample to be atomized is held by the recess 16. In addition, by making the sample electrode 11 tubular, it is possible to supply a liquid sample to the recess 16 of the tip 150 of the ceramic tube 15 through the tube. The ceramic tube 15 is further covered with a fluororesin material 17. In addition, when holding a fixed amount of sample in a recessed part, the sample electrode 11 does not need to be tubular, and it is good also as a rod shape.
 棒状電極10、試料電極11は電源18に接続されており、60Hzの交流電圧が印加される。Arガスを棒状電極10とセラミックス管12の内壁との隙間101に棒状電極10の先端部側の軸方向に流しながら、棒状電極10、試料電極11に電圧を印加することで、棒状電極10の先端部111に大気圧プラズマが生じ、その大気圧プラズマが試料電極11に伸びていく。そして、大気圧プラズマが凹部16に保持された試料に照射され、試料が原子化される。原子化された試料の一部は、大気圧プラズマに混入して発光する。 The rod-shaped electrode 10 and the sample electrode 11 are connected to a power source 18 and an AC voltage of 60 Hz is applied. By applying a voltage to the rod-shaped electrode 10 and the sample electrode 11 while flowing Ar gas in the gap 101 between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12 in the axial direction on the distal end side of the rod-shaped electrode 10, Atmospheric pressure plasma is generated at the tip 111, and the atmospheric pressure plasma extends to the sample electrode 11. Then, the atmospheric pressure plasma is irradiated onto the sample held in the recess 16 and the sample is atomized. A part of the atomized sample is mixed with atmospheric pressure plasma to emit light.
 ミラー2は、アトマイザー1によって発生するアトマイズプラズマ5を挟んで分光測定器3に対向するように配置されていて、ミラー2の反射面に垂直な方向と分光測定器3の受光方向とが一致している。このようなミラー2の配置により、アトマイズプラズマの発光をミラー2によって反射し、その反射光を分光測定器3が受光できるようにしている。また、ミラー2は取り外して分光測定器3と対向しないようにすることも可能となっていて、ミラー2により反射されたアトマイズプラズマ5の発光が、分光測定器3によって受光されていようにすることもできる。ミラー2を単に移動させる、あるいは回転して反射面側でない方を分光測定器3側に向ける、などによって分光測定器3に対向しないようにしてもよい。 The mirror 2 is disposed so as to face the spectrometer 3 with the atomized plasma 5 generated by the atomizer 1 interposed therebetween, and the direction perpendicular to the reflection surface of the mirror 2 coincides with the light receiving direction of the spectrometer 3. ing. With such an arrangement of the mirror 2, the emission of atomized plasma is reflected by the mirror 2 so that the spectroscopic measuring instrument 3 can receive the reflected light. It is also possible to remove the mirror 2 so as not to face the spectrometer 3 so that the light emitted from the atomized plasma 5 reflected by the mirror 2 is received by the spectrometer 3. You can also. The mirror 2 may be made not to face the spectroscopic instrument 3 by simply moving the mirror 2 or rotating it so that the side that is not on the reflecting surface is directed to the spectrophotometer 3 side.
 ミラー2は、たとえばガラス基板にAlを蒸着したミラーであり、後述する目的元素の共鳴線スペクトルおよび放電ガスであるArの励起線スペクトルにおいて高反射率なものであればよい。 The mirror 2 is, for example, a mirror in which Al is vapor-deposited on a glass substrate, and may have any high reflectivity in a resonance line spectrum of a target element described later and an excitation line spectrum of Ar as a discharge gas.
 分光測定器3は、アトマイズプラズマ5の直接の発光、およびミラーによって反射されたアトマイズプラズマ5の発光を受光し、分光して波長ごとの光強度を測定する。分光測定器3の受光角度は、アトマイザー1に配置された試料を中心として、棒状電極10と試料電極11との対向方向に垂直な面と成す角度が、45~75°となるような受光角度が望ましい。このような角度においてアトマイズプラズマ5の発光強度が高くなるためである。より望ましいのは60°である。 The spectrophotometer 3 receives the direct light emission of the atomized plasma 5 and the light emission of the atomized plasma 5 reflected by the mirror, and spectrally measures the light intensity for each wavelength. The light receiving angle of the spectrometer 3 is such that the angle formed by the surface perpendicular to the opposing direction of the rod electrode 10 and the sample electrode 11 with respect to the sample disposed in the atomizer 1 is 45 to 75 °. Is desirable. This is because the emission intensity of the atomized plasma 5 increases at such an angle. More preferred is 60 °.
 次に、実施例1の原子吸光分析装置による原子吸光分析の原理を図3を用いて説明する。 Next, the principle of atomic absorption analysis by the atomic absorption analyzer of Example 1 will be described with reference to FIG.
 原子吸光分析は、図3(a)のようなミラー2を取り外した状態と、図3(b)のようにミラー2を配置した状態とでそれぞれ発光強度の測定を行う。それぞれの状態での測定順序は問わず、ミラー2を取り外した状態での測定を先に行ってもよいし、ミラー2を配置した状態での測定を先に行ってもよい。 In atomic absorption analysis, the emission intensity is measured in a state where the mirror 2 is removed as shown in FIG. 3A and in a state where the mirror 2 is arranged as shown in FIG. The measurement order in each state is not limited, and the measurement with the mirror 2 removed may be performed first, or the measurement with the mirror 2 disposed may be performed first.
 まず、ミラー2を取り外した状態で発光強度の測定を行う場合について説明する。この状態でアトマイザー1により試料を原子化してアトマイズプラズマ5を発生させた場合、分光測定器3は、アトマイズプラズマ5の発光強度のみを測定することになる。このとき、分光測定器3によってアトマイズプラズマ5の発光を分光して、試料中の目的元素の共鳴線スペクトル(波長λr)の発光強度Ir1と、放電ガスであるArの励起線スペクトル(波長λu)の発光強度Iu1とをそれぞれ測定する。測定するArの励起線スペクトルは、目的元素の共鳴線スペクトルの波長λrに最も近い波長λuである。これは、測定系の波長依存性によって測定精度が落ちてしまうのを防止するためである。波長λrと波長λuとの差は150nm以下であることが望ましい。 First, the case where the emission intensity is measured with the mirror 2 removed will be described. In this state, when the sample is atomized by the atomizer 1 and the atomized plasma 5 is generated, the spectrophotometer 3 measures only the emission intensity of the atomized plasma 5. At this time, the light emitted from the atomized plasma 5 is spectrally separated by the spectrophotometer 3, and the emission intensity Ir1 of the resonance line spectrum (wavelength λr) of the target element in the sample and the excitation line spectrum (wavelength λu) of Ar as the discharge gas. The emission intensity Iu1 is measured. The excitation line spectrum of Ar to be measured has a wavelength λu closest to the wavelength λr of the resonance line spectrum of the target element. This is to prevent the measurement accuracy from being lowered due to the wavelength dependence of the measurement system. The difference between the wavelength λr and the wavelength λu is desirably 150 nm or less.
 次に、ミラー2を配置した状態で発光強度の測定を行う場合について説明する。この状態でアトマイザー1により試料を原子化してアトマイズプラズマ5を発生させた場合、ミラー2による光の反射によって、アトマイズプラズマ5のゴースト(ゴーストプラズマ6)が発生する。そのため、分光測定器3は、アトマイズプラズマ5の発光と、アトマイズプラズマ5を透過したゴーストプラズマ6の発光と、を合わせた光の強度を測定することになる。そして、分光測定器3によって、その受光した光を分光して、試料中の目的元素の共鳴線スペクトル(波長λr)の発光強度Irと、Arの励起線スペクトル(波長λu)の発光強度Iuとをそれぞれ測定する。 Next, a case where the emission intensity is measured with the mirror 2 disposed will be described. In this state, when the atomizer 1 atomizes the sample to generate the atomized plasma 5, the ghost (ghost plasma 6) of the atomized plasma 5 is generated by the reflection of light by the mirror 2. Therefore, the spectrophotometer 3 measures the intensity of light that combines the light emission of the atomized plasma 5 and the light emission of the ghost plasma 6 that has passed through the atomized plasma 5. Then, the received light is spectrally separated by the spectrophotometer 3, and the emission intensity Ir of the resonance line spectrum (wavelength λr) of the target element in the sample and the emission intensity Iu of the excitation line spectrum (wavelength λu) of Ar Measure each.
 ここで、放電ガスであるArについては、高励起状態にあるため、自己吸収はないものとみなすことができる。したがって、ゴーストプラズマ6の発光によるArの励起線スペクトルの発光強度をIu2とすれば、ミラー2を配置した状態でのArの励起線スペクトルの発光強度Iuは、Iu=Iu1+Iu2である。 Here, since Ar as the discharge gas is in a highly excited state, it can be considered that there is no self-absorption. Therefore, if the emission intensity of the excitation line spectrum of Ar due to the emission of the ghost plasma 6 is Iu2, the emission intensity Iu of the excitation line spectrum of Ar with the mirror 2 disposed is Iu = Iu1 + Iu2.
 一方、目的元素については自己吸収がある。つまり、ゴーストプラズマ6の発光は、アトマイズプラズマ5を透過する際に目的元素の共鳴線スペクトルの波長λrの光を一部吸収する。したがって、ゴーストプラズマ6の発光による目的元素の共鳴線スペクトルの発光強度をIr2、アトマイズプラズマ5による吸収量をΔとすれば、ミラー2を配置した状態での目的元素の共鳴線スペクトルの発光強度Irは、
 Ir=Ir1+Ir2-Δ・・・ (1)
である。
On the other hand, the target element has self-absorption. That is, the light emission of the ghost plasma 6 partially absorbs light having a wavelength λr of the resonance line spectrum of the target element when passing through the atomized plasma 5. Therefore, if the emission intensity of the resonance line spectrum of the target element due to the emission of the ghost plasma 6 is Ir2, and the amount of absorption by the atomized plasma 5 is Δ, the emission intensity Ir of the resonance line spectrum of the target element with the mirror 2 disposed. Is
Ir = Ir1 + Ir2-Δ (1)
It is.
 また、アトマイズプラズマ5の発光強度に対するゴーストプラズマ6の発光強度は、一定であるものとみなせる。目的元素の共鳴線スペクトルの波長λrとArの励起線スペクトルの波長λuが近いために、ミラー2の波長依存性は無視することができるからである。もちろん、ミラー2の波長依存性を考慮して補正を行ってもよい。よって、Iu1に対するIuの比(=Iu/Iu1)をfとして、
 f=(Ir1+Ir2)/Ir1・・・ (2)
である。
Further, the emission intensity of the ghost plasma 6 relative to the emission intensity of the atomized plasma 5 can be regarded as being constant. This is because the wavelength dependence of the mirror 2 can be ignored because the wavelength λr of the resonance line spectrum of the target element is close to the wavelength λu of the excitation line spectrum of Ar. Of course, the correction may be performed in consideration of the wavelength dependency of the mirror 2. Therefore, if the ratio of Iu to Iu1 (= Iu / Iu1) is f,
f = (Ir1 + Ir2) / Ir1 (2)
It is.
 また、ゴーストプラズマ6の波長λrの光が、アトマイズプラズマ5によって吸収される割合である吸収率Aは、A=Δ/Ir2である。式(1)、(2)を用いれば、吸収率Aは、
 A=(f*Ir1-Ir)/((f-1)*Ir1)・・・ (3)
と表わすことができる。
Further, the absorption rate A, which is the ratio of the light having the wavelength λr of the ghost plasma 6 absorbed by the atomized plasma 5, is A = Δ / Ir2. If the equations (1) and (2) are used, the absorption rate A is
A = (f * Ir1-Ir) / ((f-1) * Ir1) (3)
Can be expressed as
 したがって、ミラー2の配置の有無によって4つの発光強度Iu1、Ir1、Iu、Irを測定することにより、目的元素の自己吸収による吸収率Aを式(3)によって算出することができる。そして、この算出した吸収率Aから、試料中の目的元素の濃度を求めることができる。 Therefore, by measuring the four light emission intensities Iu1, Ir1, Ir, and Ir depending on whether or not the mirror 2 is arranged, the absorptance A due to the self-absorption of the target element can be calculated by the equation (3). From the calculated absorption rate A, the concentration of the target element in the sample can be obtained.
 また、実施例1の原子吸光分析装置は、複数の目的元素の分析を同時に行うことも可能である。たとえば、ミラー2を取り外した状態で発光強度の測定を行う際に、Iu1、Ir1の測定とともに、他の目的元素の共鳴線スペクトルの発光強度Is1を測定し、ミラー2を配置した状態で発光強度の測定を行う際に、Iu、Irの測定とともに、他の目的元素の共鳴線スペクトルの発光強度Isを測定すれば、A’=(f*Is1-Is)/((f-1)*Is1)によって他の目的元素の自己吸収による吸収率A’を算出することができる。よって、一方の目的元素の吸収率Aと、他方の目的元素の吸収率A’とを同時に測定することができる。 Further, the atomic absorption spectrometer of Example 1 can also simultaneously analyze a plurality of target elements. For example, when the emission intensity is measured with the mirror 2 removed, the emission intensity Is1 of the resonance line spectrum of another target element is measured together with the measurement of Iu1 and Ir1, and the emission intensity with the mirror 2 disposed. When measuring the emission intensity Is of the resonance line spectrum of other target elements together with the measurement of Iu and Ir, A ′ = (f * Is1−Is) / ((f−1) * Is1 ) To calculate the absorption rate A ′ due to self-absorption of other target elements. Therefore, the absorption rate A of one target element and the absorption rate A ′ of the other target element can be measured simultaneously.
 以上のように、実施例1の原子吸光分析装置では、従来の原子吸光分析装置のような目的元素の共鳴線スペクトルを発光する光源を必要とないため、複数の元素を同時に分析することができ、金属元素、非金属元素によらず分析することができる。また、光源を必要としないので原子吸光分析装置の小型化、低コスト化を図ることができる。 As described above, the atomic absorption spectrometer of Example 1 does not require a light source that emits the resonance line spectrum of the target element unlike the conventional atomic absorption spectrometer, and thus can analyze a plurality of elements simultaneously. It can be analyzed regardless of metallic elements and non-metallic elements. In addition, since no light source is required, the atomic absorption spectrometer can be reduced in size and cost.
 なお、実施例1では、ミラーを用いて反射させることで、自己吸収を利用しているが、他の方法を用いることも可能である。たとえば、アトマイズプラズマの発光を光ファイバなどによって受光し、この光をアトマイズプラズマに照射してアトマイズプラズマを透過した光を分光測定器によって受光する構成としてもよい。 In Example 1, self-absorption is used by reflecting using a mirror, but other methods can also be used. For example, the light emitted from the atomized plasma may be received by an optical fiber or the like, and the light that has been irradiated to the atomized plasma and transmitted through the atomized plasma may be received by a spectrophotometer.
 また、アトマイザーは実施例1に示したものに限るものではなく、アトマイズプラズマを発生させることができるものであれば任意のものを使用することができる。たとえばICP装置などを用いることもできる。 Further, the atomizer is not limited to the one shown in the first embodiment, and any one that can generate atomized plasma can be used. For example, an ICP device or the like can be used.
 次に、本発明の具体的な実施例2について図を参照に説明するが、本発明は実施例に限定されるものではない。 Next, a specific second embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiment.
 図4は、実施例2の原子吸光分析装置の構成を示した図である。原子吸光分析装置は、アトマイザー1と、光源7と、分析装置30と、電源装置4と、によって構成されている。アトマイザー1は、電源装置4による電圧印加によって大気圧プラズマを発生し、大気圧プラズマを試料に照射して原子化する。 FIG. 4 is a diagram showing the configuration of the atomic absorption spectrometer of Example 2. The atomic absorption analyzer includes an atomizer 1, a light source 7, an analyzer 30, and a power supply device 4. The atomizer 1 generates atmospheric pressure plasma by applying a voltage from the power supply device 4, and irradiates the sample with the atmospheric pressure plasma to atomize the sample.
 アトマイザー1のより詳細な構成について図5を参照に説明する。
図5に示すように、棒状電極10(本発明の第1電極)と、試料電極11(本発明の第2電極)とを有している。棒状電極10は、直径1.2mmのCu製の棒状であり、試料電極11は、外径2m、内径1mmのステンレス製の管状である。
A more detailed configuration of the atomizer 1 will be described with reference to FIG.
As shown in FIG. 5, it has the rod-shaped electrode 10 (1st electrode of this invention), and the sample electrode 11 (2nd electrode of this invention). The rod-like electrode 10 is a Cu rod having a diameter of 1.2 mm, and the sample electrode 11 is a stainless steel tube having an outer diameter of 2 m and an inner diameter of 1 mm.
 棒状電極10には、Cu以外に、ステンレス、モリブデン、タングステンなどを用いることができる。また、試料電極11には、ステンレス以外に、Cu、モリブデン、タングステンなどを用いることができる。ただし、試料電極11自体が原子化してしまい、分析に影響を与えてしまうことを考慮して、試料電極11には目的元素を含まない材料を用いるか、目的元素を含まない材料で被膜、めっき等を施す必要がある。 The rod-like electrode 10 can be made of stainless steel, molybdenum, tungsten, or the like in addition to Cu. In addition to stainless steel, Cu, molybdenum, tungsten, or the like can be used for the sample electrode 11. However, considering that the sample electrode 11 itself is atomized and affects analysis, the sample electrode 11 is made of a material that does not contain the target element, or is coated or plated with a material that does not contain the target element. Etc. need to be applied.
 棒状電極10の先端部は、セラミックス管12の管内120に軸方向を一致させて納められている。セラミックス管12は、試料電極11に対向する先端部121が一段階狭くなっていて、棒状電極10は、この狭くなった先端部121の管内まで伸びている。棒状電極10とセラミックス管12の内壁との間には隙間101が設けられている。この棒状電極10の軸回りの空間がArガスの流路となる。 The tip of the rod-shaped electrode 10 is accommodated in the tube 120 of the ceramic tube 12 so that the axial directions thereof coincide. In the ceramic tube 12, the tip 121 facing the sample electrode 11 is narrowed by one step, and the rod-shaped electrode 10 extends to the inside of the narrowed tip 121. A gap 101 is provided between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12. A space around the axis of the rod-shaped electrode 10 becomes a flow path of Ar gas.
 セラミックス管12は、根元部において、絶縁管13と連結している。絶縁管13は軸方向に垂直な方向に分岐13aを有しており、セラミックス管12の管内120から絶縁管13の管内130に伸びる棒状電極10は、曲げられて絶縁管13の分岐13aの管内に挿入され、外部に露出している。絶縁管13には、フッ素樹脂などの絶縁材を用いることができる。 The ceramic tube 12 is connected to the insulating tube 13 at the root portion. The insulating tube 13 has a branch 13 a in a direction perpendicular to the axial direction, and the rod-like electrode 10 extending from the inside 120 of the ceramic tube 12 to the inside 130 of the insulating tube 13 is bent to be inside the branch 13 a of the insulating tube 13. Is inserted and exposed to the outside. An insulating material such as a fluororesin can be used for the insulating tube 13.
 さらに、セラミックス管12の試料電極11に対向する先端部121には、外径がセラミックス管12の内径にほぼ一致した短いセラミックス管14がはめ込まれている。 Furthermore, a short ceramic tube 14 having an outer diameter substantially coincident with the inner diameter of the ceramic tube 12 is fitted into the tip 121 of the ceramic tube 12 facing the sample electrode 11.
 絶縁管13は放電用ガスであるArが封入されたガスボンベ(図示しない)に、減圧・流量制御器などを介して接続されている。ガスボンベから供給されたArガスは、絶縁管13の管内130からセラミックス管12の管内120へと軸方向に供給され、棒状電極10とセラミックス管12の内壁との間隙101を棒状電極10先端部側の軸方向に流れてセラミックス管14の先端140からArガスが排出される。 The insulating tube 13 is connected to a gas cylinder (not shown) filled with Ar as a discharge gas via a pressure reduction / flow rate controller or the like. Ar gas supplied from the gas cylinder is supplied in the axial direction from the inside 130 of the insulating tube 13 to the inside 120 of the ceramic tube 12, and the gap 101 between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12 is disposed on the tip side of the rod-shaped electrode 10. The Ar gas is discharged from the tip 140 of the ceramic tube 14.
 放電ガスには、Ar以外にもHe、Ne、N、空気、などを用いることができる。
 試料電極11は、内径2mm、外径3mmのセラミックス管15によって覆われている。セラミックス管15の先端150は外径が拡張されており、セラミックス管15の端面151には、すり鉢状の凹部16が形成されている。凹部16の底面152には、試料電極11が露出している。この凹部16によって、原子化する試料を保持する。また、試料電極11を管状とすることで、その管内を通してセラミックス管15の先端の端面に形成された凹部16に液体の試料を供給することが可能となっている。また、セラミックス管15はフッ素樹脂材17によってさらに覆われている。なお、凹部16に一定量の試料を保持する場合には、試料電極11を管状とする必要はなく、棒状などとしてもよい。
As the discharge gas, He, Ne, N, air, etc. can be used in addition to Ar.
The sample electrode 11 is covered with a ceramic tube 15 having an inner diameter of 2 mm and an outer diameter of 3 mm. The outer diameter of the tip 150 of the ceramic tube 15 is expanded, and a mortar-shaped recess 16 is formed on the end surface 151 of the ceramic tube 15. The sample electrode 11 is exposed on the bottom surface 152 of the recess 16. A sample to be atomized is held by the recess 16. In addition, since the sample electrode 11 is tubular, it is possible to supply a liquid sample to the recess 16 formed on the end face of the tip of the ceramic tube 15 through the tube. The ceramic tube 15 is further covered with a fluororesin material 17. In addition, when holding a fixed amount of sample in the recessed part 16, the sample electrode 11 does not need to be tubular shape, and it is good also as a rod shape.
 棒状電極10、試料電極11は電源装置4に接続されており、60Hzの交流電圧が印加される。Arガスを棒状電極10とセラミックス管12の内壁との隙間101に棒状電極10の先端部側の軸方向に流しながら、棒状電極10、試料電極11に電圧を印加することで、棒状電極10の先端部111に大気圧プラズマが生じ、その大気圧プラズマが試料電極11に伸びていく。そして、大気圧プラズマが凹部16に保持された試料に照射され、試料が原子化される。原子化された試料の一部は、大気圧プラズマに混入して発光する。 The rod-shaped electrode 10 and the sample electrode 11 are connected to the power supply device 4, and an alternating voltage of 60 Hz is applied. By applying a voltage to the rod-shaped electrode 10 and the sample electrode 11 while flowing Ar gas in the gap 101 between the rod-shaped electrode 10 and the inner wall of the ceramic tube 12 in the axial direction on the distal end side of the rod-shaped electrode 10, Atmospheric pressure plasma is generated at the tip 111, and the atmospheric pressure plasma extends to the sample electrode 11. Then, the atmospheric pressure plasma is irradiated onto the sample held in the recess 16 and the sample is atomized. A part of the atomized sample is mixed with atmospheric pressure plasma to emit light.
 光源7は、目的元素の共鳴線スペクトルを発光するものであり、たとえばホローカソードランプである。この光源7の光は、アトマイザー1によって原子化された試料に照射される。 The light source 7 emits a resonance line spectrum of the target element, and is a hollow cathode lamp, for example. The light from the light source 7 is applied to the sample atomized by the atomizer 1.
 分析装置30は、原子化された試料を透過した光源7の光を受光して分光し、発光強度を測定する。 The analyzer 30 receives the light from the light source 7 that has passed through the atomized sample and separates it to measure the emission intensity.
 電源装置4は、図6に示すように、交流電源8と、半波整流回路9とによって構成されている。交流電源8は、商用の60HzのAC電源を昇圧した電源であり、アトマイザー1と交流電源8は直接接続され、光源7は半波整流回路9を介して交流電源8に接続されている。アトマイザー1には、交流電源8からの60Hzの交流電圧がそのまま印加される。半波整流回路9は、たとえばダイオードなどを用いた回路であり、60Hzの交流電圧を半波整流して出力する。そして、その半波整流された電圧が光源7に印加される。 As shown in FIG. 6, the power supply device 4 includes an AC power supply 8 and a half-wave rectifier circuit 9. The AC power source 8 is a power source obtained by boosting a commercial 60 Hz AC power source, the atomizer 1 and the AC power source 8 are directly connected, and the light source 7 is connected to the AC power source 8 via a half-wave rectifier circuit 9. A 60 Hz AC voltage from the AC power source 8 is applied to the atomizer 1 as it is. The half-wave rectification circuit 9 is a circuit using, for example, a diode, and half-wave rectifies and outputs an alternating voltage of 60 Hz. Then, the half-wave rectified voltage is applied to the light source 7.
 図7は、印加電圧波形と発光波形との対応を示した図である。図7(a)は、光源7に印加される電圧波形と光源の発光波形、図7(b)は、アトマイザー1に印加される電圧波形と大気圧プラズマの発光波形、図7(c)は、光源の発光が、原子化された試料を通過して、その資料による吸収を受けた後の発光波形を示している。図7(b)のように、アトマイザー1は60Hzの交流電圧によって駆動されるため、60Hzで周期的に離散して大気圧プラズマが発光し、試料が原子化される。また、図7(a)のように、光源7は60Hzの交流電圧が半波整流されて印加されるため、大気圧プラズマの発光周期の半分の周期で同期して光源7が点灯する。 FIG. 7 is a diagram showing the correspondence between the applied voltage waveform and the light emission waveform. 7A shows the voltage waveform applied to the light source 7 and the light emission waveform of the light source, FIG. 7B shows the voltage waveform applied to the atomizer 1 and the light emission waveform of atmospheric pressure plasma, and FIG. The light emission waveform after the light emission of the light source passes through the atomized sample and is absorbed by the sample is shown. As shown in FIG. 7B, the atomizer 1 is driven by an alternating voltage of 60 Hz. Therefore, the atmospheric pressure plasma is emitted periodically and discretely at 60 Hz, and the sample is atomized. Further, as shown in FIG. 7A, since the 60 Hz AC voltage is half-wave rectified and applied to the light source 7, the light source 7 is turned on in synchronization with the half of the light emission period of the atmospheric pressure plasma.
 ここで、光源7と大気圧プラズマの双方が同期して発光している状態で発光強度を測定すると、図7(b)の状態と図7(c)の状態の双方を合わせた光の発光強度KAが得られる。よって、大気圧プラズマのみが発光している状態(図7(b)の状態)で発光強度Aを測定し、発光強度KAから発光強度Aを差し引くことで、図7(c)の状態の発光強度、すなわち、原子化された試料による吸収を受けた後の光源の発光強度KA-Aを算出することができる。そして、図7(a)の状態での発光強度(光源7の発光強度)と発光強度KA-Aを比較することで、吸収率がわかり、試料中の目的元素の濃度を測定することができる。 Here, when the light emission intensity is measured in a state where both the light source 7 and the atmospheric pressure plasma emit light in synchronization, light emission that combines both the state of FIG. 7B and the state of FIG. 7C. Strength KA is obtained. Therefore, the light emission intensity A is measured in a state where only the atmospheric pressure plasma is emitted (the state shown in FIG. 7B), and the light emission in the state shown in FIG. 7C is obtained by subtracting the light emission intensity A from the light emission intensity KA. The intensity, that is, the emission intensity KA-A of the light source after receiving absorption by the atomized sample can be calculated. Then, by comparing the light emission intensity (the light emission intensity of the light source 7) with the light emission intensity KA-A in the state of FIG. 7A, the absorptance can be found and the concentration of the target element in the sample can be measured. .
 以上のように、実施例2の原子吸光分析装置では、大気圧プラズマの発光と光源7の発光との同期を簡易な構成の電源装置4によって実現させることができ、電源装置4の小型化、軽量化を図ることができる。その結果、原子吸光分析装置自体も小型化、軽量化することができる。 As described above, in the atomic absorption spectrometer of Example 2, the synchronization between the light emission of the atmospheric pressure plasma and the light emission of the light source 7 can be realized by the power supply device 4 having a simple configuration, and the power supply device 4 can be downsized. Weight reduction can be achieved. As a result, the atomic absorption analyzer itself can be reduced in size and weight.
 図8は、試料を10ppmのCuを含む水として、実施例2の原子吸光分析装置を用いてCuの共鳴線スペクトル(波長324nm)の発光強度の時間依存性を測定した結果を示すグラフである。図8(a)は、光源7と大気圧プラズマの双方が発光している状態での発光強度KA、図8(b)は、大気圧プラズマのみの発光における発光強度A、図8(c)は、発光強度KAから発光強度Aを差し引いた発光強度KA-Aを示している。なお、発光強度KAおよび発光強度Aは、3秒間毎の各発光強度を積分した値をプロットしている。図8(c)は、原子化されたCuの吸収を受けた光源7の光の強度を示している。 FIG. 8 is a graph showing the results of measuring the time dependence of the emission intensity of the resonance line spectrum (wavelength 324 nm) of Cu using the atomic absorption analyzer of Example 2 with water containing 10 ppm of Cu as a sample. . 8A shows the emission intensity KA when both the light source 7 and the atmospheric pressure plasma emit light, and FIG. 8B shows the emission intensity A in the emission of only the atmospheric pressure plasma, FIG. 8C. Indicates the emission intensity KA-A obtained by subtracting the emission intensity A from the emission intensity KA. The light emission intensity KA and the light emission intensity A are plotted as values obtained by integrating the light emission intensities every 3 seconds. FIG. 8C shows the light intensity of the light source 7 that has absorbed the atomized Cu.
 図8(c)から、発光強度が最も弱くなる時間、すなわちCuによる吸収ピークが発光開始からおおよそ3秒後にみられることがわかる。また、おおよそ15秒が経過すると、発光強度に変化がほぼ一定となっており、これは試料がすべて原子化されて飛散し、なくなってしまったためである。つまり、発光強度が一定となっている区間は、光源7の光強度そのものを示している。したがって、吸収のピーク時の吸収量を15秒経過後の発光強度(光源7の光強度)で割ることによって吸収率が求まり、図8(c)の場合は吸収率100%となる。 FIG. 8 (c) shows that the time when the emission intensity becomes the weakest, that is, the absorption peak due to Cu is seen approximately 3 seconds after the start of emission. Further, when about 15 seconds have passed, the change in the emission intensity is almost constant because all the sample is atomized and scattered and disappears. That is, the section where the light emission intensity is constant indicates the light intensity of the light source 7 itself. Therefore, the absorption rate is obtained by dividing the absorption amount at the peak of absorption by the emission intensity after 15 seconds (light intensity of the light source 7). In the case of FIG. 8C, the absorption rate is 100%.
 図9は、試料を0.1ppmのCuを含む水として、実施例2の原子吸光分析装置を用いてCuの共鳴線スペクトルの発光強度の時間依存性を測定した結果を示すグラフである。図9(a)は、光源7と大気圧プラズマの双方が発光している状態での発光強度KA、図9(b)は、大気圧プラズマのみの発光における発光強度A、図9(c)は、発光強度KAから発光強度Aを差し引いた発光強度KA-Aを示している。なお、発光強度KAおよび発光強度Aは、1秒間毎の各発光強度を積分した値をプロットしている。図9(c)は、原子化されたCuの吸収を受けた光源7の光の強度を示している。 FIG. 9 is a graph showing the results of measuring the time dependence of the emission intensity of the resonance line spectrum of Cu using the atomic absorption analyzer of Example 2 with the sample being water containing 0.1 ppm of Cu. FIG. 9A shows the emission intensity KA when both the light source 7 and the atmospheric pressure plasma are emitted, and FIG. 9B shows the emission intensity A in the emission of only the atmospheric pressure plasma, FIG. 9C. Indicates the emission intensity KA-A obtained by subtracting the emission intensity A from the emission intensity KA. The light emission intensity KA and the light emission intensity A are plotted as values obtained by integrating the respective light emission intensities per second. FIG. 9C shows the light intensity of the light source 7 that has absorbed the atomized Cu.
 図9(c)から、上記図8(c)の場合と同様の手法によって吸収率を求めると、約70%となる。図10は、吸収率と試料中のCuの濃度との関係を理論的に算出した結果を示したグラフである。横軸は吸収率であり、縦軸は1cm当たりの原子個数である。常温、1気圧の水において1ppmのCuを含む場合、1cm当たりのCu原子個数は7.5×1012である。Cu濃度0.1ppmで吸収率70%という図9の結果は、図10のグラフにおおよそ一致していることがわかる。また、図10から、0.001~1ppmの範囲でCu濃度の測定が可能であることが示唆される。 From FIG. 9C, when the absorption rate is obtained by the same method as in the case of FIG. 8C, it is about 70%. FIG. 10 is a graph showing the result of theoretical calculation of the relationship between the absorption rate and the concentration of Cu in the sample. The horizontal axis is the absorptance, and the vertical axis is the number of atoms per cm 3 . When 1 ppm of Cu is contained in water at normal temperature and 1 atmosphere, the number of Cu atoms per 1 cm 3 is 7.5 × 10 12 . It can be seen that the result of FIG. 9 that the Cu concentration is 0.1 ppm and the absorptance is 70% roughly matches the graph of FIG. Further, FIG. 10 suggests that the Cu concentration can be measured in the range of 0.001 to 1 ppm.
 本発明の原子吸光分析装置および原子吸光分析法は、複数種の元素を同時に測定することができ、また、従来は検出の難しかったPやBなどの非金属元素の測定を行うこともできる。また、本発明の原子吸光分析装置は、汚水などのモニタリングに利用することができる。 The atomic absorption analysis apparatus and atomic absorption analysis method of the present invention can simultaneously measure a plurality of elements, and can also measure nonmetallic elements such as P and B, which have been difficult to detect conventionally. The atomic absorption spectrometer of the present invention can be used for monitoring of sewage and the like.
 1:アトマイザー
 2:ミラー
 3:分光測定器
 4:電源装置
 5:アトマイズプラズマ
 6:ゴーストプラズマ
 7:光源
 8:交流電源
 9:半波整流回路
 10:棒状電極
 11:試料電極
 12、14、15:セラミックス管
 13:絶縁管
 16:凹部
 17:フッ素樹脂材
 18:電源
 30:分析装置
 
1: Atomizer 2: Mirror 3: Spectrometer 4: Power supply device 5: Atomized plasma 6: Ghost plasma 7: Light source 8: AC power supply 9: Half-wave rectifier circuit 10: Rod electrode 11: Sample electrode 12, 14, 15: Ceramic tube 13: Insulating tube 16: Recessed portion 17: Fluorine resin material 18: Power supply 30: Analyzer

Claims (13)

  1.  原子化された試料を含むアトマイズプラズマを発生させるアトマイザーと、
     前記アトマイズプラズマの発光スペクトルにおいて、目的元素の共鳴線スペクトルの発光強度、および放電ガスの励起線スペクトルの発光強度とをそれぞれ測定し、前記アトマイズプラズマの発光と、前記アトマイズプラズマからの発光を前記アトマイズプラズマに照射して前記アトマイズプラズマを透過した光と、が加わった光のスペクトルにおいて、目的元素の共鳴線スペクトルの発光強度、および放電ガスの励起線スペクトルの発光強度とをそれぞれ測定する測定装置と、
     を有することを特徴とする原子吸光分析装置。
    An atomizer for generating an atomized plasma containing an atomized sample;
    In the emission spectrum of the atomized plasma, the emission intensity of the resonance line spectrum of the target element and the emission intensity of the excitation line spectrum of the discharge gas are respectively measured, and the emission of the atomized plasma and the emission from the atomized plasma are measured with the atomization. A measuring device that measures the emission intensity of the resonance line spectrum of the target element and the emission intensity of the excitation line spectrum of the discharge gas in the spectrum of the light that is irradiated with the plasma and transmitted through the atomized plasma. ,
    An atomic absorption spectrometer characterized by comprising:
  2.  前記測定装置は、ミラーを有し、そのミラーによって前記アトマイズプラズマからの発光を反射して前記アトマイズプラズマに照射する、ことを特徴とする請求項1に記載の原子吸光分析装置。 The atomic absorption spectrometer according to claim 1, wherein the measuring device includes a mirror, and the mirror plasma reflects light emitted from the atomized plasma to irradiate the atomized plasma.
  3.  測定する前記放電ガスの励起線スペクトルの発光強度は、前記目的元素の共鳴線スペクトルに最も近い波長のものであることを特徴とする請求項1または請求項2に記載の原子吸光分析装置。 3. The atomic absorption spectrometer according to claim 1, wherein the emission intensity of the excitation line spectrum of the discharge gas to be measured has a wavelength closest to the resonance line spectrum of the target element.
  4.  前記アトマイザーは、大気圧プラズマを生成し、目的元素を含む試料に前記大気圧プラズマを照射し、前記試料を原子化することで、アトマイズプラズマを発生させる、ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の原子吸光分析装置。 The atomizer generates the atmospheric pressure plasma, irradiates the sample containing the target element with the atmospheric pressure plasma, and atomizes the sample to generate atomized plasma. Item 4. The atomic absorption spectrometer according to any one of items 3 to 4.
  5.  前記アトマイザーは、
     棒状の第1電極と、
     管状であって、その管内に、前記第1電極の軸回りにおいて管内壁から前記第1電極が離間した状態となるように前記第1電極の先端部を保持し、管内壁と前記第1電極との隙間に、前記第1電極の先端部側の軸方向に放電ガスが流される絶縁管と、
     前記第1電極の先端部から一定距離隔てて配置された第2電極と、
     試料を保持する凹部を有し、その凹部底面に前記第2電極が露出した絶縁材からなる試料保持部と、
     を有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の原子吸光分析装置。
    The atomizer is
    A rod-shaped first electrode;
    A tip of the first electrode is held in the tube so that the first electrode is separated from the tube inner wall around the axis of the first electrode, and the tube inner wall and the first electrode are held in the tube. An insulating tube through which discharge gas flows in the axial direction on the tip end side of the first electrode,
    A second electrode disposed at a certain distance from the tip of the first electrode;
    A sample holding portion made of an insulating material having a concave portion for holding the sample, and the second electrode exposed on the bottom surface of the concave portion;
    The atomic absorption spectrometer according to claim 1, wherein the atomic absorption analyzer is provided.
  6.  原子化された試料を含むアトマイズプラズマを発生させ、
     前記アトマイズプラズマの発光スペクトルにおいて、目的元素の共鳴線スペクトルの発光強度、および放電ガスの励起線スペクトルの発光強度とをそれぞれ測定し、
     前記アトマイズプラズマの発光と、前記アトマイズプラズマからの発光を前記アトマイズプラズマに照射して前記アトマイズプラズマを透過した光と、が加わった光のスペクトルにおいて、目的元素の共鳴線スペクトルの発光強度、および放電ガスの励起線スペクトルの発光強度とをそれぞれ測定する、
     ことを特徴とする原子吸光分析法。
    Generate atomized plasma containing atomized sample,
    In the emission spectrum of the atomized plasma, the emission intensity of the resonance line spectrum of the target element and the emission intensity of the excitation line spectrum of the discharge gas are respectively measured.
    In the spectrum of light in which the light emitted from the atomized plasma and the light that is emitted from the atomized plasma to the atomized plasma and transmitted through the atomized plasma are added, the emission intensity of the resonance line spectrum of the target element, and the discharge Measure the emission intensity of the excitation line spectrum of the gas,
    Atomic absorption spectrometry characterized by that.
  7.  ミラーによって反射させることで、前記アトマイズプラズマからの発光を前記アトマイズプラズマに照射する、ことを特徴とする請求項6に記載の原子吸光分析法。 The atomic absorption analysis method according to claim 6, wherein the atomized plasma is irradiated with light emitted from the atomized plasma by being reflected by a mirror.
  8.  測定する前記放電ガスの励起線スペクトルの発光強度は、前記目的元素の共鳴線スペクトルに最も近い波長のものであることを特徴とする請求項6または請求項7に記載の原子吸光分析法。 The atomic absorption analysis method according to claim 6 or 7, wherein the emission intensity of the excitation line spectrum of the discharge gas to be measured has a wavelength closest to the resonance line spectrum of the target element.
  9.  アトマイズプラズマは、大気圧プラズマを生成し、目的元素を含む試料に前記大気圧プラズマを照射し、前記試料を原子化し、前記大気圧プラズマ中に原子化した試料を混入させることで発生させる、ことを特徴とする請求項6ないし請求項8のいずれか1項に記載の原子吸光分析法。 Atomized plasma is generated by generating atmospheric pressure plasma, irradiating the sample containing the target element with the atmospheric pressure plasma, atomizing the sample, and mixing the atomized sample into the atmospheric pressure plasma. The atomic absorption analysis method according to any one of claims 6 to 8, wherein:
  10.  大気圧プラズマを生成し、試料に前記大気圧プラズマを照射し、試料を原子化するアトマイザーと、
     前記試料中の目的元素の輝線スペクトルを発光し、原子化された試料に照射する光源と、
     原子化された試料を透過した前記光源の光を受光して分析する分析装置と、
     前記アトマイザーおよび前記光源を駆動する電源装置と、
     を有し、
     前記電源装置は、交流電源と、前記交流電源からの出力の一部を半波整流する半波整流回路と、を有し、前記アトマイザーには前記交流電源からの出力を供給し、前記光源には、半波整流回路からの出力を供給する、
     ことを特徴とする原子吸光分析装置。
    An atomizer that generates atmospheric pressure plasma, irradiates the sample with the atmospheric pressure plasma, and atomizes the sample;
    A light source that emits an emission line spectrum of a target element in the sample and irradiates the atomized sample;
    An analyzer for receiving and analyzing light from the light source that has passed through the atomized sample;
    A power supply device for driving the atomizer and the light source;
    Have
    The power supply device includes an AC power supply and a half-wave rectification circuit that rectifies a part of the output from the AC power supply, and supplies the output from the AC power supply to the atomizer. Supplies the output from the half-wave rectifier circuit,
    An atomic absorption spectrometer characterized by that.
  11.  前記分析装置は、
     原子化された試料を透過した前記光源の光と前記大気圧プラズマの発光とを合わせた光の第1の発光強度と、前記大気圧プラズマの発光のみである第2の発光強度とを測定し、
     第1の発光強度から第2の発光強度を差し引くことで、原子化された試料を透過した前記光源の光の発光強度を算出する、
     ことを特徴とする請求項10に記載の原子吸光分析装置。
    The analyzer is
    A first emission intensity of the light combining the light of the light source transmitted through the atomized sample and the emission of the atmospheric pressure plasma, and a second emission intensity that is only emission of the atmospheric pressure plasma; ,
    By subtracting the second emission intensity from the first emission intensity, the emission intensity of the light from the light source that has passed through the atomized sample is calculated.
    The atomic absorption spectrometer according to claim 10.
  12.  前記アトマイザーは、
     棒状の第1電極と、
     管状であって、その管内に、前記第1電極の軸回りにおいて管内壁から前記第1電極が離間した状態となるように前記第1電極の先端部を保持し、管内壁と前記第1電極との隙間に、前記第1電極の先端部側の軸方向に放電ガスが流される絶縁管と、
     前記第1電極の先端部から一定距離隔てて配置された第2電極と、
     試料を保持する凹部を有し、その凹部底面に前記第2電極が露出した絶縁材からなる試料保持部と、
     を有する、ことを特徴とする請求項10または請求項11に記載の原子吸光分析装置。
    The atomizer is
    A rod-shaped first electrode;
    A tip of the first electrode is held in the tube so that the first electrode is separated from the tube inner wall around the axis of the first electrode, and the tube inner wall and the first electrode are held in the tube. An insulating tube through which discharge gas flows in the axial direction on the tip end side of the first electrode,
    A second electrode disposed at a certain distance from the tip of the first electrode;
    A sample holding portion made of an insulating material having a concave portion for holding the sample, and the second electrode exposed on the bottom surface of the concave portion;
    The atomic absorption spectrometer according to claim 10 or 11, characterized by comprising:
  13.  交流電圧の印加によって大気圧プラズマを生成し、試料に前記大気圧プラズマを照射して、試料を原子化し、
     前記交流電圧を半波整流した電圧を印加することによって、前記試料中の目的元素の輝線スペクトルの発光を生成し、その発光を原子化された試料に照射して透過させ、
     前記大気圧プラズマの発光と、原子化された試料を透過した光とを合わせた光の第1の発光強度と、前記大気圧プラズマの発光のみである第2の発光強度とを測定し、
     第1の発光強度から第2の発光強度を差し引くことで、原子化された試料を透過した前記光源の光の発光強度を算出する、
     ことを特徴とする原子吸光分析法。
    An atmospheric pressure plasma is generated by applying an alternating voltage, the sample is irradiated with the atmospheric pressure plasma, the sample is atomized,
    By applying a voltage obtained by half-wave rectification of the AC voltage, emission of the emission line spectrum of the target element in the sample is generated, and the emitted sample is irradiated and transmitted through the atomized sample.
    Measuring the first emission intensity of the light combining the emission of the atmospheric pressure plasma and the light transmitted through the atomized sample, and the second emission intensity that is only emission of the atmospheric pressure plasma;
    By subtracting the second emission intensity from the first emission intensity, the emission intensity of the light from the light source that has passed through the atomized sample is calculated.
    Atomic absorption spectrometry characterized by that.
PCT/JP2011/003746 2010-06-30 2011-06-30 Atomic absorption analyzer and method of atomic absorption analysis WO2012001979A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010150402A JP5467361B2 (en) 2010-06-30 2010-06-30 Atomic absorption spectrometer and atomic absorption spectrometry
JP2010150338A JP5467359B2 (en) 2010-06-30 2010-06-30 Atomic absorption spectrometer and atomic absorption spectrometry
JP2010-150338 2010-06-30
JP2010-150402 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012001979A1 true WO2012001979A1 (en) 2012-01-05

Family

ID=45401718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003746 WO2012001979A1 (en) 2010-06-30 2011-06-30 Atomic absorption analyzer and method of atomic absorption analysis

Country Status (1)

Country Link
WO (1) WO2012001979A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887446A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Atomizing device for atom absorbance analysis
JPH01161651A (en) * 1987-12-18 1989-06-26 Hitachi Ltd Plasma small amount element analyzer
JPH07294440A (en) * 1994-04-28 1995-11-10 Shimadzu Corp Spectroscopic analyzer
JP2007257900A (en) * 2006-03-21 2007-10-04 Univ Nagoya Multi-micro hollow cathode light source and multi-element simultaneous absorption spectrometer
JP2008241293A (en) * 2007-03-26 2008-10-09 Univ Nagoya Atomic analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887446A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Atomizing device for atom absorbance analysis
JPH01161651A (en) * 1987-12-18 1989-06-26 Hitachi Ltd Plasma small amount element analyzer
JPH07294440A (en) * 1994-04-28 1995-11-10 Shimadzu Corp Spectroscopic analyzer
JP2007257900A (en) * 2006-03-21 2007-10-04 Univ Nagoya Multi-micro hollow cathode light source and multi-element simultaneous absorption spectrometer
JP2008241293A (en) * 2007-03-26 2008-10-09 Univ Nagoya Atomic analyzer

Similar Documents

Publication Publication Date Title
Pellerin et al. A spectroscopic diagnostic method using UV OH band spectrum
JP2012508890A (en) Sample or sample component analysis system and methods for making and using the system
JP5000350B2 (en) Atomic analyzer
McLaughlin et al. A new sample introduction system for atomic spectrometry combining vapour generation and nebulization capacities
Iglesias et al. In situ measurement of VUV/UV radiation from low-pressure microwave-produced plasma in Ar/O2 gas mixtures
EP2952882A1 (en) Spectrum measuring device and spectrum measuring method
Verreycken et al. Time-resolved absolute OH density of a nanosecond pulsed discharge in atmospheric pressure He–H2O: absolute calibration, collisional quenching and the importance of charged species in OH production
Gazeli et al. Effect of the gas flow rate on the spatiotemporal distribution of Ar (1s5) absolute densities in a ns pulsed plasma jet impinging on a glass surface
Iwai et al. Fundamental properties of a non-destructive atmospheric-pressure plasma jet in argon or helium and its first application as an ambient desorption/ionization source for high-resolution mass spectrometry
JPH10513566A (en) Method and apparatus for measuring purity and / or pressure of gas for bulbs
WO2012001979A1 (en) Atomic absorption analyzer and method of atomic absorption analysis
JP5467359B2 (en) Atomic absorption spectrometer and atomic absorption spectrometry
CN107589097B (en) A laboratory detection device and evaluation method of material surface catalytic coefficient based on LIF detection
JP5467360B2 (en) Atomizer and emission analyzer
JP5467361B2 (en) Atomic absorption spectrometer and atomic absorption spectrometry
Albert et al. Chemometric optimization of a low-temperature plasma source design for ambient desorption/ionization mass spectrometry
Luc et al. The Sc+ NO→ ScO+ N reaction: Rotational state distribution in ScO X 2 Σ+(v ″= 0)
Isola et al. Measurement of the Ar (1sy) state densities by two OES methods in Ar–N2 discharges
Giersz et al. Spectroscopic diagnostics of axially viewed inductively coupled plasma and microwave induced plasma coupled to photochemical vapor generation with pneumatic nebulization inside a programmable temperature spray chamber
Burns et al. Diode laser atomic fluorescence temperature measurements in low-pressure flames
JP5527693B2 (en) Atomizer
Wizemann et al. Measurement of 7Li/6Li isotope ratios by resonant Doppler-free two-photon diode laser atomic absorption spectroscopy in a low-pressure graphite furnace
CN103026206B (en) Atomizer and emission analyzer
Štádlerová et al. Comparison of bismuth atomic lamps for a non-dispersive atomic fluorescence spectrometry
CN107064280B (en) An internal standard substance and introduction method for plasma spectrometry calibration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800449

Country of ref document: EP

Kind code of ref document: A1