[go: up one dir, main page]

WO2011162148A1 - Passive sensor, wireless type sensor system, and measurement method using wireless type sensor system - Google Patents

Passive sensor, wireless type sensor system, and measurement method using wireless type sensor system Download PDF

Info

Publication number
WO2011162148A1
WO2011162148A1 PCT/JP2011/063764 JP2011063764W WO2011162148A1 WO 2011162148 A1 WO2011162148 A1 WO 2011162148A1 JP 2011063764 W JP2011063764 W JP 2011063764W WO 2011162148 A1 WO2011162148 A1 WO 2011162148A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification information
frequency
signal
physical quantity
unit
Prior art date
Application number
PCT/JP2011/063764
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤吉博
伊藤重夫
星野有里
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012521435A priority Critical patent/JP5387771B2/en
Publication of WO2011162148A1 publication Critical patent/WO2011162148A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Definitions

  • the present invention relates to a wireless sensor system that performs remote measurement by wirelessly communicating a master device that receives an operation input and a slave device that performs measurement, and a passive sensor used in the wireless sensor system.
  • the present invention also relates to a measurement method using such a wireless sensor system.
  • the resonance frequency of a sensor element such as a SAW resonator depends on the shape of the sensor element
  • the measurement accuracy depends on the formation accuracy of the sensor element.
  • an object of the present invention is to realize a wireless sensor system capable of obtaining high measurement accuracy even if there are individual differences due to manufacturing variations of sensor elements, and a passive sensor used in the wireless sensor system.
  • This invention relates to a passive sensor.
  • This passive sensor includes a sensor element, an antenna, and identification information recording means.
  • the sensor element outputs a resonance signal having a frequency corresponding to the physical quantity to be sensed by an external excitation signal.
  • the antenna is connected to the sensor element, and transmits and receives an excitation signal and a resonance signal.
  • the identification information recording means records identification information based on the frequency characteristic of the sensor element with respect to the physical quantity.
  • identification information that can identify the frequency characteristic is provided for each passive sensor. Thereby, if the said identification information is acquired and the calculation process according to a frequency characteristic is performed, the measurement error of the physical quantity by the individual difference of a sensor element can be suppressed.
  • the identification information recording means is composed of marks formed in a plane such as numerals, alphabets, symbols, colors, and barcodes.
  • This configuration shows a specific configuration example of the identification information recording means, and the identification information recording means is realized by various two-dimensional marks. Thereby, identification information can be easily acquired by the user visually recognizing and inputting an operation or performing an image reading process.
  • the identification information recording means is an RFID-IC connected to an antenna.
  • This configuration also shows a specific configuration example of the identification information recording means, and the identification information recording means is realized by RFID-IC. Thereby, identification information can be acquired by radio
  • the present invention also relates to a wireless sensor system including a passive sensor and a parent device that performs wireless communication with the passive sensor.
  • the base unit of the wireless sensor system includes a storage unit, a base unit side antenna, an identification information acquisition unit, and a measurement unit.
  • the storage unit of the master unit classifies the frequency characteristics of the sensor elements with respect to the physical quantity according to the difference in the frequency characteristics, and stores them in association with the identification information.
  • the base unit side antenna transmits and receives the excitation signal and the resonance signal by electromagnetic coupling or radio waves with the antenna of the passive sensor.
  • the identification information acquisition unit reads a mark that is an identification information recording unit, and acquires identification information.
  • the measurement unit calculates a physical quantity based on the resonance frequency of the resonance signal, the identification information acquired by the identification information acquisition unit, and the frequency characteristics for each identification information stored in the storage unit.
  • This configuration shows a wireless sensor system using a passive sensor provided with identification information recording means using the above-mentioned marks.
  • the base unit of the wireless sensor system includes a storage unit, a request signal generation unit, a base unit side antenna, an identification information acquisition unit, and a measurement unit.
  • the storage unit classifies the frequency characteristics of the sensor elements with respect to the physical quantity according to the difference in the frequency characteristics, and stores them in association with the identification information.
  • the request signal generation unit generates a request signal to the RFID-IC.
  • the base unit side antenna transmits and receives an excitation signal, a resonance signal, a request signal, and a response signal from the passive sensor to the request signal by electromagnetic coupling or radio wave with the antenna of the passive sensor.
  • the identification information acquisition unit analyzes the response signal and acquires identification information.
  • the measurement unit calculates a physical quantity based on the resonance frequency of the resonance signal, the identification information acquired by the identification information acquisition unit, and the frequency characteristics for each identification information stored in the storage unit.
  • This configuration shows a wireless sensor system using a passive sensor equipped with the above-described RFID-IC identification information recording means.
  • base station can obtain identification information with the resonance signal according to a physical quantity from a passive sensor.
  • the frequency characteristics corresponding to the individual difference of the sensor element (passive sensor) and the identification information are stored in association with each other in advance in the parent device, the associated information and the frequency of the acquired resonance signal are stored.
  • the identification information By using the identification information, the physical quantity can be measured while suppressing the influence of individual differences of the sensor elements.
  • the resonance signal, the request signal, and the response signal are communicated using different channels in the same communication band.
  • the present invention also relates to a wireless sensor system including a passive sensor and a parent device.
  • the passive sensor includes a sensor element that outputs a resonance signal having a frequency corresponding to a physical quantity to be sensed by an excitation signal from the outside, and an antenna that is connected to the sensor element and that transmits and receives the excitation signal and the resonance signal.
  • the parent device includes a parent device that wirelessly communicates with a passive sensor and detects a physical quantity based on a resonance signal.
  • this wireless sensor system includes a packaging material that packages a plurality of passive sensors grouped based on frequency characteristics with respect to a physical quantity to be sensed for each group. This packing material is provided with identification information recording means for identifying a group.
  • the master unit includes an identification information acquisition unit that acquires identification information from the identification information recording unit, a resonance frequency of the resonance signal, identification information acquired by the identification information acquisition unit, and frequency characteristics for each identification information stored in advance. And a measurement unit that calculates a physical quantity based on the above.
  • the identification information recording means is provided for each packing material including a plurality of passive sensors. Thereby, it is not necessary to provide identification information recording means for each passive sensor.
  • the present invention includes a sensor element that resonates at a frequency corresponding to a physical quantity to be sensed, receives a excitation signal from the master unit and transmits a resonance signal, and transmits an excitation signal and receives a resonance signal.
  • the present invention relates to a measurement method using a wireless sensor system including a master unit that calculates a physical quantity based on the frequency of the resonance signal.
  • This measurement method has at least the following three steps.
  • this measurement method includes a step of classifying passive sensors according to differences in frequency characteristics of sensor elements with respect to physical quantities, and recording them in association with identification information.
  • This measurement method includes a step of detecting a physical quantity with a sensor element and outputting a resonance signal.
  • This measurement method includes a step of calculating a physical quantity based on a resonance signal, identification information, and frequency characteristics for each identification information.
  • the present invention it is possible to realize a wireless sensor system that can suppress measurement errors due to individual differences in sensor elements and obtain high measurement accuracy, and a passive sensor used in the wireless sensor system.
  • 1 is a block diagram illustrating a configuration of a wireless sensor system 1 according to a first embodiment. It is a figure for demonstrating the concept of a group classification
  • FIG. 1 is a block diagram showing a configuration of a wireless sensor system 1 according to the present embodiment.
  • the wireless sensor system 1 includes a passive sensor 10 and a parent device 20. Passive sensor 10 and base unit 20 perform communication by electromagnetic field coupling or radio wave transmission / reception.
  • the communication mode is not limited to electromagnetic field coupling, but may be based on electromagnetic induction or radio wave radiation.
  • the passive sensor 10 includes an antenna 11, a SAW resonator 12 corresponding to the “sensor element” of the present application, and an identification mark 13.
  • a SAW resonator is used as the sensor element.
  • the resonance frequency varies depending on the physical quantity (temperature, magnetic strength, etc.) to be detected, such as a piezoelectric resonator, a crystal resonator, or a tuning fork resonator. Others may be used as long as they change.
  • the antenna 11 is realized by a coil electrode formed in a wound shape if it is an electromagnetic coupling method, and is realized by a dipole antenna if it is a radio wave transmission / reception method. In any method, the antenna 11 is formed in a shape (electrode length or the like) corresponding to a frequency band used for communication.
  • the antenna 11 receives the excitation signal SpL from the base unit side antenna 24 of the base unit 20 and applies it to the SAW resonator 12.
  • the antenna 11 radiates the resonance signal Sfp output from the SAW resonator 12 to the outside.
  • the resonance signal Sfp is transmitted from the antenna 11 of the passive sensor 10 to the parent device side antenna 24 of the parent device 20 by receiving the radiated resonance signal Sfp by the parent device side antenna 24.
  • the SAW resonator 12 includes, as a schematic configuration, a piezoelectric substrate and an IDT electrode formed on the surface of the piezoelectric substrate.
  • the resonance frequency is determined by the material of the piezoelectric substrate and the shape of the IDT electrode. For this reason, the SAW resonator 12 has individual differences in resonance frequency and frequency characteristics based on the formation accuracy in the manufacturing process. Such individual differences are completely unavoidable in the manufacturing process and affect measurement accuracy. However, in the present application, although specific contents will be described later, it is possible to suppress deterioration in measurement accuracy due to the individual difference.
  • the SAW resonator 12 has a characteristic of sensing a predetermined physical quantity (in this embodiment, the magnetic intensity is taken as an example) and being excited at a resonance frequency corresponding to the sensed magnetic intensity. Therefore, when the pulsed excitation signal SpL is received from the antenna 11, the SAW resonator 12 is excited at a resonance frequency corresponding to the sensed magnetic intensity and outputs the resonance signal Sfp. The resonance signal Sfp is output to the antenna 11.
  • the identification mark 13 is a mark printed on a base material (for example, a base substrate) of the passive sensor 10 on which the antenna 11 and the SAW resonator 12 are disposed. Specifically, numerals, alphabets, other symbols, colors, barcodes, and the like are used for the marks, and conceptually, any information that can be visually identified may be used. This mark is set in advance based on the individual difference of the frequency characteristic for each SAW resonator described above, and the mark means the identification group information Gr for each identification group.
  • the base unit 20 includes a control unit 21, a transmission signal generation unit 22, a transmission / reception unit 23, a base unit side antenna 24, a measurement unit 25, an identification information reading unit 26 corresponding to the “identification information acquisition unit” of the present application, and a display unit 27. Is provided.
  • the control unit 21 performs overall control of the base unit 20, and performs transmission / reception control such as switching between the transmission mode and the reception mode, and acquisition control of identification information. These controls are executed based on the operation input content from the operation unit 28, for example.
  • the transmission signal generation unit 22 generates a pulsed excitation signal SpL according to transmission mode start control from the control unit 21 and outputs it to the transmission / reception unit 23.
  • the transmission / reception unit 23 outputs the excitation signal SpL from the transmission signal generation unit 22 to the parent device side antenna 24, and outputs the resonance signal Sfp from the parent device side antenna 24 to the measurement unit 25.
  • the parent device side antenna 24 is realized by an antenna using a flat coil electrode or a dipole antenna according to specifications.
  • the measurement unit 25 includes a frequency conversion unit 251, a physical quantity detection unit 252, and a storage unit 252.
  • the frequency conversion unit 251 analyzes the frequency of the resonance signal Sfp and detects the resonance frequency fp.
  • the storage unit 253 stores identification group information Gr and frequency characteristics (magnetic intensity-frequency characteristics) with respect to the magnetic intensity associated with each identification group information Gr.
  • the identification group information Gr is input from the identification information reading unit 26 to the physical quantity detection unit 252. Based on the identification group information Gr, the physical quantity detection unit 252 reads the magnetic intensity-frequency characteristics corresponding to the corresponding identification group information Gr from the storage unit 253. The physical quantity detection unit 252 compares the read magnetic intensity-frequency characteristic with the resonance frequency from the frequency conversion unit 251, and reads the magnetic intensity corresponding to the resonance frequency to calculate the magnetic intensity.
  • the identification information reading unit 26 is composed of an image reader or the like, reads the identification mark 13 of the passive sensor 10 and acquires identification group information Gr. Note that if the identification mark 13 can be easily recognized by a person such as a numeral or alphabet, the operation unit 28 can be used as an identification information reading unit. In this case, the identification group information Gr is acquired by an operation input from the user. Thus, the acquired identification group information Gr is given to the physical quantity detection unit 252 of the measurement unit 25 as described above.
  • the display unit 27 is composed of a liquid crystal display or the like and displays the magnetic intensity calculated by the measurement unit 25.
  • FIG. 2 is a diagram for explaining the concept of group classification.
  • FIG. 3 is a flowchart showing pre-measurement processing including group classification.
  • an identification frequency width ⁇ f is calculated from a required magnetic strength measurement error ⁇ ER and a theoretical magnetic strength-frequency characteristic as a reference characteristic (FIG. 3: S901). Thereby, the identification frequency width ⁇ f according to the specification of the measurement error ⁇ ER can be set.
  • the identification group information Gr is set for each band of the identification frequency width ⁇ f with reference to the resonance frequency (reference frequency) Fo when no magnetic field is applied in the reference characteristics. Then, an upper limit frequency and a lower limit frequency, that is, a threshold frequency Thf is calculated for each identification group information Gr (FIG. 3: S902).
  • the identification group information Gr4 is set between a frequency that is higher by ⁇ f / 2 to the high frequency side and a frequency that is lower by ⁇ f / 2 to the low frequency side, centered on the reference frequency Fo. To do.
  • the frequency section from (Fo ⁇ f / 2) to (Fo + ⁇ f / 2) is registered in the identification group information Gr4.
  • the identification group information Gr4 is associated with a magnetic field strength-frequency characteristic that becomes the reference frequency Fo when no magnetic field is applied.
  • the identification group information Gr3 is set between a frequency that is higher by ⁇ f / 2 toward the high frequency side and a frequency that is lower by ⁇ f / 2 toward the low frequency side, centered on the reference frequency Fo + ⁇ f. To do.
  • the frequency section from (Fo ⁇ f / 2) + ⁇ f to (Fo + ⁇ f / 2) + ⁇ f is registered in the identification group information Gr3.
  • the identification group information Gr3 is associated with a magnetic field strength-frequency characteristic that becomes the reference frequency Fo + ⁇ f when no magnetic field is applied. Then, by performing such a shift process to the high frequency side, as shown in FIG. 2, the related information of the identification group information Gr2, Gr1 is set.
  • the identification group information Gr5 is defined between a frequency that is higher by ⁇ f / 2 toward the high frequency side and a frequency that is lower by ⁇ f / 2 toward the low frequency side, centered on the reference frequency Fo ⁇ f. Set to.
  • the frequency section from (Fo ⁇ f / 2) ⁇ f to (Fo + ⁇ f / 2) ⁇ f is registered in the identification group information Gr5.
  • the identification group information Gr5 is associated with a magnetic field strength-frequency characteristic that becomes the reference frequency Fo- ⁇ f when no magnetic field is applied. Then, by performing such a shift process to the low frequency side, as shown in FIG. 2, the related information of the identification group information Gr6 is set.
  • the number of identification group information Gr to be set is not limited to this, and may be set as appropriate from the highest frequency and the lowest frequency when no magnetic field is applied, which is caused by variations in the actual manufacturing process of the SAW resonator.
  • Each identification group information set in this way and the magnetic intensity-frequency characteristics respectively associated with the identification group information are stored in the storage unit 253 of the measurement unit 25 of the parent device 20 (FIG. 3: S910). ).
  • a pulsed excitation signal SpL is applied to each SAW resonator 12 without applying a magnetic field, and the resonance frequency fp is experimentally measured.
  • the identification group information Gr is determined by detecting which identification group information Gr1-6 belongs to the experimentally measured resonance frequency fp. For example, if the experimentally measured resonance frequency fp is between (Fo ⁇ f / 2) and (Fo + ⁇ f / 2), the SAW resonator 12 is set in the identification group information Gr4 (FIG. 3: S903). ).
  • the classified identification group information Gr is printed in the form of the identification mark 13 on the passive sensor 11 in which the SAW resonator 12 is disposed (FIG. 3: S904).
  • FIG. 4 is a flowchart illustrating a measurement process according to the embodiment.
  • FIG. 5 is a diagram for explaining the concept of measurement processing using group classification.
  • the identification group information is acquired before acquiring the resonance signal, but the identification group information may be acquired after acquiring the resonance signal.
  • base unit 20 starts the identification information acquisition mode (FIG. 4: S101). Thereby, the identification information reading part 26 of the main
  • base unit 20 starts the transmission mode of the measurement mode (FIG. 4: S104).
  • Base unit 20 transmits a pulsed excitation signal SpL (FIG. 4: S105). After transmitting excitation signal SpL, base unit 20 switches to reception mode (FIG. 4: S106).
  • the passive sensor 10 receives the excitation signal SpL (FIG. 4: S201).
  • the SAW resonator 12 of the passive sensor 10 is excited by the excitation signal SpL, resonates at a resonance frequency corresponding to the magnetic strength of the atmosphere, and outputs a resonance signal Sfp (FIG. 4: S202).
  • the passive sensor 10 transmits a resonance signal Sfp (FIG. 4: S203).
  • the master unit 20 receives the resonance signal Sfp (FIG. 4: S107), analyzes the frequency of the resonance signal Sfp, and detects the resonance frequency fp (FIG. 4: S108).
  • Base unit 20 calculates the magnetic intensity based on the detected resonance frequency fp, the acquired identification group information Gr, and the magnetic intensity-frequency characteristics corresponding to the previously stored identification group information (FIG. 4: S109).
  • the magnetic intensity is calculated using the concept as shown in FIG.
  • the identification group information of the SAW resonator 12 is Gr4
  • the magnetic intensity-frequency characteristic SP (G4) of the frequency (reference frequency) Fo when no magnetic field is applied is read.
  • the magnetic strength P4 is calculated by referring to the detected resonance frequency fp in the characteristic.
  • the magnetic strength-frequency characteristic SP (G1) of the frequency (Fo + 3 ⁇ f) when no magnetic field is applied is read.
  • the magnetic intensity P1 is calculated by referring to the detected resonance frequency fp in the characteristic.
  • the magnetic strength-frequency characteristic SP (G5) of the frequency (Fo- ⁇ f) when no magnetic field is applied is read.
  • the magnetic intensity P5 is calculated by referring to the detected resonance frequency fp in the characteristic.
  • the measured value of the magnetic strength is within the range of the measurement error width ⁇ ER of the identification group to which it belongs even if it is large, and the measurement error is a measurement error width ⁇ ER corresponding to a preset specification.
  • the magnetic intensity physical quantity
  • the magnetic intensity can be reliably detected within a measurement error narrower than the measurement error that can be taken due to manufacturing variations of the SAW resonator 12.
  • a 10.6 MHz crystal resonator as a reference frequency at a standard temperature is used as a sensor element. The case will be described.
  • Such a crystal resonator has a temperature characteristic of the resonance frequency, and the resonance frequency and temperature have a linear relationship.
  • the inclination that is, the ratio of frequency change to temperature change is 947 Hz / ° C.
  • a frequency range of about ⁇ 1.06 MHz is set with 10.6 MHz as the center frequency (the above-described reference frequency Fo) based on the assumed variation in the above-described manufacturing process.
  • the temperature-frequency characteristic corresponding to the identification group information is read, and the detected resonance frequency fp is applied to calculate the temperature.
  • FIG. 6 is a block diagram showing the configuration of the wireless sensor system 1A according to the present embodiment.
  • FIG. 7 is a diagram showing a concept of setting a frequency band according to the present embodiment.
  • the wireless sensor system 1A of the present embodiment is obtained by replacing the wireless sensor system 1 shown in the first embodiment with the identification mark 13 of the passive sensor 1 replaced with the RFID-IC 14 of the passive sensor 1A. is there. Along with this, the means for acquiring the identification information of the master unit 20A has been changed. Therefore, in the following, only differences from the first embodiment will be described in detail.
  • the passive sensor 1A includes an RFID-IC14.
  • the RFID-IC 14 is connected to the antenna 11 similarly to the SAW resonator 12.
  • the RFID-IC 14 stores the identification group information Gr described above.
  • the RFID-IC 14 is activated by the request signal Srq from the parent device 20A, and generates a response signal San including the identification group information Gr.
  • Response signal San is radiated from antenna 11 and transmitted to base unit 20A.
  • the master unit 20A includes a request signal generation unit 31 and an identification information analysis unit 32 instead of the identification information reading unit 26.
  • the request signal generation unit 31 When receiving the identification information acquisition control from the control unit 21A, the request signal generation unit 31 generates a request signal Srq having a predetermined frequency and outputs the request signal Srq to the transmission / reception unit 23A.
  • the transmission / reception unit 23A is provided with a switch (SW) 231 and transmits a request signal Srq to the parent-side antenna 24 when acquiring identification information.
  • the frequency frq of the request signal Srq and the frequency fan of the response signal San are set in the same frequency band as the resonance frequency of the SAW resonator 12, thereby obtaining identification information.
  • Communication and communication for measurement can be realized by only a pair of parent device side antenna 24 and antenna 11.
  • the passive sensor 10A and the parent device 20A can be downsized.
  • the transmission / reception unit 23A receives the response signal San and outputs it to the identification information analysis unit 32 when the identification information is acquired.
  • the transmission / reception unit 23A In the transmission mode, the transmission / reception unit 23A outputs the excitation signal SpL from the transmission signal generation unit 22 to the parent device side antenna 24 as described above, and the resonance signal Sfp from the parent device side antenna 24 to the measurement unit 25. Output.
  • the identification information analysis unit 32 analyzes the response signal San and acquires identification group information Gr.
  • the identification information analysis unit 32 outputs the identification group information to the physical quantity detection unit 252 of the measurement unit 25.
  • the measurement unit 25 calculates the magnetic strength using the identification group information Gr, the resonance frequency fp of the resonance signal Sfp, and the magnetic strength-frequency characteristic for each identification group, as in the first embodiment.
  • FIG. 8 is a flowchart showing measurement processing according to the present embodiment.
  • base unit 20A starts a measurement mode (S301) and transmits a pulsed excitation signal SpL (S302). After transmitting excitation signal SpL, base unit 20A switches to reception mode (S303).
  • the passive sensor 10A receives the excitation signal SpL (S201).
  • the SAW resonator 12 of the passive sensor 10A is excited by the excitation signal SpL, oscillates at a resonance frequency corresponding to the magnetic intensity of the atmosphere, and outputs a resonance signal Sfp (S202).
  • the passive sensor 10A transmits a resonance signal Sfp (S203).
  • Main unit 20A receives resonance signal Sfp (S304), performs frequency analysis of resonance signal Sfp, and detects resonance frequency fp (S305).
  • Master unit 20A detects which channel in the used frequency band the resonance frequency fp corresponds to. Furthermore, base unit 20A senses the availability of other channels in the used frequency band (S306).
  • the master unit 20A generates a request signal Srq with the detected frequency of the empty channel and transmits it from the master unit side antenna 24 (S307).
  • the passive sensor 10A receives the request signal Srq (S204).
  • the RFID-IC 14 of the passive sensor 10A is activated by the request signal Srq and generates a response signal San including its own identification group information Gr.
  • the passive sensor 10A transmits a response signal San from the antenna 11 (S205).
  • the master unit 20A receives the response signal San (S308).
  • Main unit 20A analyzes response signal San and acquires identification group information Gr (S309).
  • Main unit 20A calculates the magnetic intensity based on the detected resonance frequency fp, the acquired identification group information Gr, and the magnetic intensity-frequency characteristics corresponding to the previously stored identification group information (S310).
  • the magnetic intensity can be measured with a small measurement error. Furthermore, if the configuration of the present embodiment is used, the external access means for acquiring the identification group information in the master unit and the external access means for measurement are only antennas, and the size can be reduced.
  • the passive sensor 10 is packed for each identification group, packed in the same box, and packed when shipped.
  • An identification mark may be printed on the box.
  • base unit 20 may read the identification mark provided on the packing box.
  • 1,1A-wireless sensor system 10,10A-passive sensor, 11-antenna, 12-SAW resonator, 13-identification mark, 14-RFID-IC, 20, 20A-base unit, 21, 21A-control unit, 22-transmission signal generation unit, 23, 23A-transmission / reception unit, 24-base unit side antenna, 25-measurement unit, 251-frequency conversion unit, 252-physical quantity detection Section, 253-storage section, 26-identification information reading section, 27-display section, 31-request signal generation section, 32-identification information analysis section

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

This invention is directed to achievement of a wireless type sensor system that exhibits high measurement precision even if individual differences exist due to the variations in manufacture between sensor elements or the like. A passive sensor (10) comprises a SAW resonator (12) and an identification mark (13). The identification mark (13) is a mark corresponding to identification group information (Gr). A master device (20) transmits an excitation signal (SpL) to the passive sensor (10) and receives a resonation signal (Sfp) of the SAW resonator (12) to acquire a resonation frequency (fp). Further, the master device (20) reads the identification mark (13) to acquire the identification group information (Gr). The master device (20) then calculates a magnetic intensity on the basis of the resonation signal (fp), the identification group information (Gr) and a magnetic intensity-to-frequency characteristic for each of a plurality of pieces of identification group information (Gr) stored in advance.

Description

パッシブセンサ、無線式センサシステム、および無線式センサシステムによる計測方法Passive sensor, wireless sensor system, and measurement method using wireless sensor system
 本発明は、操作入力を受け付ける親機と、計測を行う子機とを無線で通信することで、遠隔での計測を行う無線式センサシステムおよび当該無線式センサシステムに用いるパッシブセンサに関する。また、このような無線式センサシステムを用いた計測方法に関する。 The present invention relates to a wireless sensor system that performs remote measurement by wirelessly communicating a master device that receives an operation input and a slave device that performs measurement, and a passive sensor used in the wireless sensor system. The present invention also relates to a measurement method using such a wireless sensor system.
 従来、所定の物理量(温度、圧力等)を計測するシステムとして、特許文献1に示すように、SAW共振子等のパッシブセンサを用いたものがある。このようなシステムでは、SAW共振子が温度や圧力により共振周波数が変化することを利用している。 Conventionally, as a system for measuring a predetermined physical quantity (temperature, pressure, etc.), there is a system using a passive sensor such as a SAW resonator as shown in Patent Document 1. In such a system, the SAW resonator utilizes the fact that the resonance frequency changes with temperature and pressure.
特表2003-508739号公報Special table 2003-508739 gazette
 しかしながら、SAW共振子等のセンサ素子の共振周波数は、当該センサ素子の形状に依存するため、このようなセンサ素子を用いた計測システムでは、測定精度がセンサ素子の形成精度に依存する。 However, since the resonance frequency of a sensor element such as a SAW resonator depends on the shape of the sensor element, in a measurement system using such a sensor element, the measurement accuracy depends on the formation accuracy of the sensor element.
 ところが、要求される測定精度が高い場合、当該測定精度を満足するような製造バラツキの範囲内で、センサ素子を製造することは容易ではない。 However, when the required measurement accuracy is high, it is not easy to manufacture the sensor element within the range of manufacturing variation that satisfies the measurement accuracy.
 したがって、本発明の目的は、センサ素子の製造バラツキ等により個体差があっても、高い測定精度が得られる無線式センサシステムおよび当該無線式センサシステムに用いるパッシブセンサを実現することにある。 Therefore, an object of the present invention is to realize a wireless sensor system capable of obtaining high measurement accuracy even if there are individual differences due to manufacturing variations of sensor elements, and a passive sensor used in the wireless sensor system.
 この発明は、パッシブセンサに関する。このパッシブセンサは、センサ素子、アンテナ、識別情報記録手段を備える。センサ素子は、外部からの励起信号により、感知する物理量に応じた周波数の共振信号を出力する。アンテナは、センサ素子に接続されており、励起信号および共振信号を送受波する。識別情報記録手段は、物理量に対するセンサ素子の周波数特性に基づいた識別情報を記録する。 This invention relates to a passive sensor. This passive sensor includes a sensor element, an antenna, and identification information recording means. The sensor element outputs a resonance signal having a frequency corresponding to the physical quantity to be sensed by an external excitation signal. The antenna is connected to the sensor element, and transmits and receives an excitation signal and a resonance signal. The identification information recording means records identification information based on the frequency characteristic of the sensor element with respect to the physical quantity.
 この構成では、計測対象である物理量に対してセンサ素子毎に周波数特性に個体差があっても、当該周波数特性を識別可能な識別情報がパッシブセンサ毎に備えられている。これにより、当該識別情報を取得して、周波数特性に応じた算出処理を行えば、センサ素子の個体差による物理量の計測誤差を抑制することができる。 In this configuration, even if there is an individual difference in the frequency characteristic for each sensor element with respect to the physical quantity to be measured, identification information that can identify the frequency characteristic is provided for each passive sensor. Thereby, if the said identification information is acquired and the calculation process according to a frequency characteristic is performed, the measurement error of the physical quantity by the individual difference of a sensor element can be suppressed.
 また、この発明のパッシブセンサでは、識別情報記録手段は、数字、アルファベット、記号、色、バーコードのような平面的に形作られたマークからなる。 In the passive sensor of the present invention, the identification information recording means is composed of marks formed in a plane such as numerals, alphabets, symbols, colors, and barcodes.
 この構成では、識別情報記録手段の具体的構成例を示しており、識別情報記録手段を二次元の各種マークで実現している。これにより、ユーザが視認して操作入力したり、画像読み取り処理することで、識別情報を容易に取得することができる。 This configuration shows a specific configuration example of the identification information recording means, and the identification information recording means is realized by various two-dimensional marks. Thereby, identification information can be easily acquired by the user visually recognizing and inputting an operation or performing an image reading process.
 また、この発明のパッシブセンサでは、識別情報記録手段は、アンテナに接続するRFID-ICである。 In the passive sensor of the present invention, the identification information recording means is an RFID-IC connected to an antenna.
 この構成でも、識別情報記録手段の具体的構成例を示しており、識別情報記録手段をRFID-ICで実現している。これにより、計測のための励起信号や共振信号と同様に、無線通信によって識別情報を取得することができる。 This configuration also shows a specific configuration example of the identification information recording means, and the identification information recording means is realized by RFID-IC. Thereby, identification information can be acquired by radio | wireless communication similarly to the excitation signal and resonance signal for a measurement.
 また、この発明は、パッシブセンサと、該パッシブセンサに対して無線通信する親機とを備えた無線式センサシステムに関する。 The present invention also relates to a wireless sensor system including a passive sensor and a parent device that performs wireless communication with the passive sensor.
 その一例として、無線式センサシステムの親機は、記憶部、親機側アンテナ、識別情報取得部、および計測部を備える。親機の記憶部は、物理量に対するセンサ素子の周波数特性を、該周波数特性の違いに応じて分類して識別情報に関連付けして記憶する。親機側アンテナは、パッシブセンサのアンテナと電磁界結合もしくは電波により励起信号および共振信号の送受波を行う。識別情報取得部は、識別情報記録手段であるマークを読み取り、識別情報を取得する。計測部は、共振信号の共振周波数と、識別情報取得部で取得した識別情報と、記憶部に記憶された識別情報毎の周波数特性と、に基づいて、物理量を算出する。 As an example, the base unit of the wireless sensor system includes a storage unit, a base unit side antenna, an identification information acquisition unit, and a measurement unit. The storage unit of the master unit classifies the frequency characteristics of the sensor elements with respect to the physical quantity according to the difference in the frequency characteristics, and stores them in association with the identification information. The base unit side antenna transmits and receives the excitation signal and the resonance signal by electromagnetic coupling or radio waves with the antenna of the passive sensor. The identification information acquisition unit reads a mark that is an identification information recording unit, and acquires identification information. The measurement unit calculates a physical quantity based on the resonance frequency of the resonance signal, the identification information acquired by the identification information acquisition unit, and the frequency characteristics for each identification information stored in the storage unit.
 この構成は、上述のマークによる識別情報記録手段を備えたパッシブセンサを用いた無線式センサシステムについて示している。 This configuration shows a wireless sensor system using a passive sensor provided with identification information recording means using the above-mentioned marks.
 また、別の一例として、無線式センサシステムの親機は、記憶部、リクエスト信号生成部、親機側アンテナ、識別情報取得部、および計測部を備える。記憶部は、上述の構成と同様に、物理量に対するセンサ素子の周波数特性を、該周波数特性の違いに応じて分類して識別情報に関連付けして記憶する。リクエスト信号生成部は、RFID-ICへのリクエスト信号を生成する。親機側アンテナは、パッシブセンサのアンテナと電磁界結合もしくは電波により励起信号、共振信号、リクエスト信号、および該リクエスト信号に対するパッシブセンサからの応答信号の送受波を行う。識別情報取得部は、応答信号を解析して識別情報を取得する。計測部は、共振信号の共振周波数と、識別情報取得部で取得した識別情報と、記憶部に記憶された識別情報毎の周波数特性とに基づいて、物理量を算出する。 As another example, the base unit of the wireless sensor system includes a storage unit, a request signal generation unit, a base unit side antenna, an identification information acquisition unit, and a measurement unit. Similar to the above-described configuration, the storage unit classifies the frequency characteristics of the sensor elements with respect to the physical quantity according to the difference in the frequency characteristics, and stores them in association with the identification information. The request signal generation unit generates a request signal to the RFID-IC. The base unit side antenna transmits and receives an excitation signal, a resonance signal, a request signal, and a response signal from the passive sensor to the request signal by electromagnetic coupling or radio wave with the antenna of the passive sensor. The identification information acquisition unit analyzes the response signal and acquires identification information. The measurement unit calculates a physical quantity based on the resonance frequency of the resonance signal, the identification information acquired by the identification information acquisition unit, and the frequency characteristics for each identification information stored in the storage unit.
 この構成は、上述のRFID-ICによる識別情報記録手段を備えたパッシブセンサを用いた無線式センサシステムについて示している。 This configuration shows a wireless sensor system using a passive sensor equipped with the above-described RFID-IC identification information recording means.
 そして、これらのシステム構成にすることで、親機は、パッシブセンサから、物理量に応じた共振信号とともに識別情報を得ることができる。この際、親機には、予めセンサ素子(パッシブセンサ)の個体差に応じた周波数特性と識別情報とが関連付けして記憶されているので、この関連付けられた情報と、取得した共振信号の周波数と、識別情報とを用いることで、センサ素子の個体差の影響を抑制して、物理量を計測することができる。 And by setting it as these system structures, the main | base station can obtain identification information with the resonance signal according to a physical quantity from a passive sensor. At this time, since the frequency characteristics corresponding to the individual difference of the sensor element (passive sensor) and the identification information are stored in association with each other in advance in the parent device, the associated information and the frequency of the acquired resonance signal are stored. By using the identification information, the physical quantity can be measured while suppressing the influence of individual differences of the sensor elements.
 また、この発明の無線式センサシステムでは、共振信号と、リクエスト信号および応答信号とを、同じ通信帯域における異なるチャンネルを利用して通信する。 In the wireless sensor system of the present invention, the resonance signal, the request signal, and the response signal are communicated using different channels in the same communication band.
 この構成では、上述のRFID-ICを用いる場合に、計測と識別情報取得とを同じ周波数帯域の信号で通信することができる。この際、同じ周波数帯域の異なるチャンネルを用いることで、これらの信号の混信を防止できる。 In this configuration, when the RFID-IC described above is used, measurement and identification information acquisition can be communicated with signals in the same frequency band. At this time, interference between these signals can be prevented by using different channels in the same frequency band.
 また、この発明は、パッシブセンサと親機とを備える無線式センサシステムに関する。パッシブセンサは、外部からの励起信号により、感知する物理量に応じた周波数の共振信号を出力するセンサ素子、およびセンサ素子に接続されており、励起信号および共振信号を送受波するアンテナを備える。親機は、パッシブセンサと無線通信して、共振信号に基づいて、物理量を検出する親機を備える。また、この無線式センサシステムは、感知する物理量に対する周波数特性に基づいてグループ分けされた複数のパッシブセンサを、グループ毎に梱包する梱包材を備える。この梱包材には、グループを識別するための識別情報記録手段が備えられている。親機は、識別情報記録手段から識別情報を取得する識別情報取得部と、共振信号の共振周波数と、識別情報取得部で取得した識別情報と、予め記憶された識別情報毎の周波数特性と、に基づいて、物理量を算出する計測部と、を備える。 The present invention also relates to a wireless sensor system including a passive sensor and a parent device. The passive sensor includes a sensor element that outputs a resonance signal having a frequency corresponding to a physical quantity to be sensed by an excitation signal from the outside, and an antenna that is connected to the sensor element and that transmits and receives the excitation signal and the resonance signal. The parent device includes a parent device that wirelessly communicates with a passive sensor and detects a physical quantity based on a resonance signal. In addition, this wireless sensor system includes a packaging material that packages a plurality of passive sensors grouped based on frequency characteristics with respect to a physical quantity to be sensed for each group. This packing material is provided with identification information recording means for identifying a group. The master unit includes an identification information acquisition unit that acquires identification information from the identification information recording unit, a resonance frequency of the resonance signal, identification information acquired by the identification information acquisition unit, and frequency characteristics for each identification information stored in advance. And a measurement unit that calculates a physical quantity based on the above.
 この構成では、識別情報記録手段を複数のパッシブセンサが内包される梱包材毎に、配設する。これにより、パッシブセンサ毎に識別情報記録手段を設ける必要が無い。 In this configuration, the identification information recording means is provided for each packing material including a plurality of passive sensors. Thereby, it is not necessary to provide identification information recording means for each passive sensor.
 また、この発明は、感知する物理量に応じた周波数で共振するセンサ素子を備え、親機からの励起信号を受信して共振信号を送信するパッシブセンサと、励起信号を送信し、共振信号を受信して、該共振信号の周波数に基づいて物理量を算出する親機と、を備えた無線式センサシステムによる計測方法に関する。この計測方法では、少なくとも次の三つの工程を有する。まず、この計測方法は、物理量に対するセンサ素子の周波数特性の違いに応じて、パッシブセンサを分類し、識別情報に関連付けして記録する工程を有する。この計測方法は、センサ素子で物理量を検知し、共振信号を出力する工程を有する。この計測方法は、共振信号と識別情報と識別情報毎の周波数特性とに基づいて物理量を算出する工程を有する。 In addition, the present invention includes a sensor element that resonates at a frequency corresponding to a physical quantity to be sensed, receives a excitation signal from the master unit and transmits a resonance signal, and transmits an excitation signal and receives a resonance signal. Then, the present invention relates to a measurement method using a wireless sensor system including a master unit that calculates a physical quantity based on the frequency of the resonance signal. This measurement method has at least the following three steps. First, this measurement method includes a step of classifying passive sensors according to differences in frequency characteristics of sensor elements with respect to physical quantities, and recording them in association with identification information. This measurement method includes a step of detecting a physical quantity with a sensor element and outputting a resonance signal. This measurement method includes a step of calculating a physical quantity based on a resonance signal, identification information, and frequency characteristics for each identification information.
 この発明によれば、センサ素子の個体差による計測誤差を抑制し、高い測定精度が得られる無線式センサシステムおよび当該無線式センサシステムに用いるパッシブセンサを実現することができる。 According to the present invention, it is possible to realize a wireless sensor system that can suppress measurement errors due to individual differences in sensor elements and obtain high measurement accuracy, and a passive sensor used in the wireless sensor system.
第1の実施形態に係る無線式センサシステム1の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a wireless sensor system 1 according to a first embodiment. グループ分類および計測処理の概念を説明するための図である。It is a figure for demonstrating the concept of a group classification | category and a measurement process. 第1の実施形態に係る計測の事前処理を示すフローチャートである。It is a flowchart which shows the pre-process of measurement which concerns on 1st Embodiment. 第1の実施形態に係る計測処理を示すフローチャートである。It is a flowchart which shows the measurement process which concerns on 1st Embodiment. グループ分類を用いた計測処理の概念を説明するための図である。It is a figure for demonstrating the concept of the measurement process using group classification. 第2の実施形態に係る無線式センサシステム1Aの構成を示すブロック図である。It is a block diagram which shows the structure of 1 A of wireless type sensor systems which concern on 2nd Embodiment. 第2の実施形態に係る周波数帯域の設定概念を示す図である。It is a figure which shows the setting concept of the frequency band which concerns on 2nd Embodiment. 第2の実施形態に係る計測処理を示すフローチャートである。It is a flowchart which shows the measurement process which concerns on 2nd Embodiment.
 本発明の第1の実施形態に係る無線式センサシステムについて、図を参照して説明する。図1は、本実施形態に係る無線式センサシステム1の構成を示すブロック図である。 The wireless sensor system according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a wireless sensor system 1 according to the present embodiment.
 <構成説明>
 無線式センサシステム1は、パッシブセンサ10と親機20とを備える。パッシブセンサ10と親機20とは、電磁界結合もしくは電波の送受信による通信を行う。なお、通信様式は、電磁界結合に限らず、電磁誘導や電波の放射によるものであってもよい。
<Description of configuration>
The wireless sensor system 1 includes a passive sensor 10 and a parent device 20. Passive sensor 10 and base unit 20 perform communication by electromagnetic field coupling or radio wave transmission / reception. The communication mode is not limited to electromagnetic field coupling, but may be based on electromagnetic induction or radio wave radiation.
 パッシブセンサ10は、アンテナ11、本願の「センサ素子」に対応するSAW共振子12、識別マーク13を備える。なお、本発明では、センサ素子として、SAW共振子を用いているが、圧電共振子、水晶振動子、音叉型共振子等、検知する物理量(温度、磁気強度等)に応じて、共振周波数が変化するものであれば、他のものを用いてもよい。 The passive sensor 10 includes an antenna 11, a SAW resonator 12 corresponding to the “sensor element” of the present application, and an identification mark 13. In the present invention, a SAW resonator is used as the sensor element. However, the resonance frequency varies depending on the physical quantity (temperature, magnetic strength, etc.) to be detected, such as a piezoelectric resonator, a crystal resonator, or a tuning fork resonator. Others may be used as long as they change.
 アンテナ11は、電磁界結合方式であれば、巻回状に形成されたコイル電極によって実現され、電波の送受波方式であれば、例えばダイポールアンテナによって実現される。いずれの方式であっても、アンテナ11は、通信に利用する周波数帯域に応じた形状(電極長等)で形成されている。アンテナ11は、親機20の親機側アンテナ24からの励振信号SpLを受波して、SAW共振子12へ与える。アンテナ11は、SAW共振子12から出力される共振信号Sfpを外部放射する。この放射された共振信号Sfpを親機側アンテナ24で受波することで、共振信号Sfpは、パッシブセンサ10のアンテナ11から親機20の親機側アンテナ24へ伝送される。 The antenna 11 is realized by a coil electrode formed in a wound shape if it is an electromagnetic coupling method, and is realized by a dipole antenna if it is a radio wave transmission / reception method. In any method, the antenna 11 is formed in a shape (electrode length or the like) corresponding to a frequency band used for communication. The antenna 11 receives the excitation signal SpL from the base unit side antenna 24 of the base unit 20 and applies it to the SAW resonator 12. The antenna 11 radiates the resonance signal Sfp output from the SAW resonator 12 to the outside. The resonance signal Sfp is transmitted from the antenna 11 of the passive sensor 10 to the parent device side antenna 24 of the parent device 20 by receiving the radiated resonance signal Sfp by the parent device side antenna 24.
 SAW共振子12は、概略的な構成としては、圧電基板と該圧電基板表面に形成されたIDT電極とを備える。このような圧電基板の材質、およびIDT電極の形状により、共振周波数が決定される。このため、SAW共振子12は、製造プロセスでの形成精度等に基づいて、共振周波数および周波数特性に個体差が生じる。このような個体差は、製造プロセス上、完全には避けられないものであり、計測精度に影響してしまう。しかしながら、本願では、具体的な内容は後述するが、当該個体差による計測精度の劣化を抑制することができる。 The SAW resonator 12 includes, as a schematic configuration, a piezoelectric substrate and an IDT electrode formed on the surface of the piezoelectric substrate. The resonance frequency is determined by the material of the piezoelectric substrate and the shape of the IDT electrode. For this reason, the SAW resonator 12 has individual differences in resonance frequency and frequency characteristics based on the formation accuracy in the manufacturing process. Such individual differences are completely unavoidable in the manufacturing process and affect measurement accuracy. However, in the present application, although specific contents will be described later, it is possible to suppress deterioration in measurement accuracy due to the individual difference.
 SAW共振子12は、所定の物理量(本実施形態では磁気強度を例にする)を感知して、感知した磁気強度に応じた共振周波数で励振される特性を有する。したがって、アンテナ11から、パルス状の励振信号SpLを受けると、SAW共振子12は、感知した磁気強度に応じた共振周波数で励振され、共振信号Sfpを出力する。共振信号Sfpは、アンテナ11へ出力される。 The SAW resonator 12 has a characteristic of sensing a predetermined physical quantity (in this embodiment, the magnetic intensity is taken as an example) and being excited at a resonance frequency corresponding to the sensed magnetic intensity. Therefore, when the pulsed excitation signal SpL is received from the antenna 11, the SAW resonator 12 is excited at a resonance frequency corresponding to the sensed magnetic intensity and outputs the resonance signal Sfp. The resonance signal Sfp is output to the antenna 11.
 識別用マーク13は、アンテナ11およびSAW共振子12が配設されるパッシブセンサ10の基材(例えばベース基板)上に印刷されたマークである。具体的に、当該マークには、数字、アルファベット、その他の記号、色、バーコード等が用いられ、概念的には、視覚的に識別可能な情報であればよい。このマークは、上述のSAW共振子毎の周波数特性の個体差に基づいて予め設定されており、当該マークが識別グループ毎の識別グループ情報Grを意味する。 The identification mark 13 is a mark printed on a base material (for example, a base substrate) of the passive sensor 10 on which the antenna 11 and the SAW resonator 12 are disposed. Specifically, numerals, alphabets, other symbols, colors, barcodes, and the like are used for the marks, and conceptually, any information that can be visually identified may be used. This mark is set in advance based on the individual difference of the frequency characteristic for each SAW resonator described above, and the mark means the identification group information Gr for each identification group.
 親機20は、制御部21、送信信号生成部22、送受信部23、親機側アンテナ24、計測部25、本願の「識別情報取得部」に対応する識別情報読取部26、および表示部27を備える。 The base unit 20 includes a control unit 21, a transmission signal generation unit 22, a transmission / reception unit 23, a base unit side antenna 24, a measurement unit 25, an identification information reading unit 26 corresponding to the “identification information acquisition unit” of the present application, and a display unit 27. Is provided.
 制御部21は、親機20の全体制御を行うとともに、送信モードおよび受信モードの切り替え等の送受信制御、および識別情報の取得制御を行う。これらの制御は、例えば操作部28からの操作入力内容に基づいて実行される。 The control unit 21 performs overall control of the base unit 20, and performs transmission / reception control such as switching between the transmission mode and the reception mode, and acquisition control of identification information. These controls are executed based on the operation input content from the operation unit 28, for example.
 送信信号生成部22は、制御部21からの送信モード開始制御にしたがって、パルス状の励振信号SpLを生成し、送受信部23へ出力する。 The transmission signal generation unit 22 generates a pulsed excitation signal SpL according to transmission mode start control from the control unit 21 and outputs it to the transmission / reception unit 23.
 送受信部23は、送信信号生成部22からの励振信号SpLを親機側アンテナ24へ出力し、親機側アンテナ24からの共振信号Sfpを計測部25へ出力する。親機側アンテナ24は、パッシブセンサ10のアンテナ11と同様に、仕様に応じて平板状のコイル電極によるアンテナや、ダイポールアンテナによって実現される。 The transmission / reception unit 23 outputs the excitation signal SpL from the transmission signal generation unit 22 to the parent device side antenna 24, and outputs the resonance signal Sfp from the parent device side antenna 24 to the measurement unit 25. Similar to the antenna 11 of the passive sensor 10, the parent device side antenna 24 is realized by an antenna using a flat coil electrode or a dipole antenna according to specifications.
 計測部25は、周波数変換部251、物理量検出部252、および記憶部252を備える。周波数変換部251は、共振信号Sfpを周波数解析し、共振周波数fpを検出する。 The measurement unit 25 includes a frequency conversion unit 251, a physical quantity detection unit 252, and a storage unit 252. The frequency conversion unit 251 analyzes the frequency of the resonance signal Sfp and detects the resonance frequency fp.
 記憶部253には、識別グループ情報Grと、該識別グループ情報Gr毎に関連付けられた磁気強度に対する周波数特性(磁気強度-周波数特性)とが、記憶されている。 The storage unit 253 stores identification group information Gr and frequency characteristics (magnetic intensity-frequency characteristics) with respect to the magnetic intensity associated with each identification group information Gr.
 物理量検出部252には、識別情報読取部26から識別グループ情報Grが入力される。物理量検出部252は、当該識別グループ情報Grに基づいて、前記記憶部253から、該当する識別グループ情報Grに対応する磁気強度-周波数特性を読み出す。物理量検出部252は、読み出した磁気強度-周波数特性と、周波数変換部251からの共振周波数とを比較し、当該共振周波数に対応する磁気強度を読み出すことで、磁気強度を算出する。 The identification group information Gr is input from the identification information reading unit 26 to the physical quantity detection unit 252. Based on the identification group information Gr, the physical quantity detection unit 252 reads the magnetic intensity-frequency characteristics corresponding to the corresponding identification group information Gr from the storage unit 253. The physical quantity detection unit 252 compares the read magnetic intensity-frequency characteristic with the resonance frequency from the frequency conversion unit 251, and reads the magnetic intensity corresponding to the resonance frequency to calculate the magnetic intensity.
 識別情報読取部26は、画像読取機等からなり、パッシブセンサ10の識別用マーク13を読み取り、識別グループ情報Grを取得する。なお、識別用マーク13が、数字やアルファベット等の人が容易に認識可能なものであれば、操作部28を識別情報読取部として利用することもできる。この場合、ユーザからの操作入力により、識別グループ情報Grを取得させることになる。このように、取得した識別グループ情報Grは、上述のように計測部25の物理量検出部252へ与えられる。 The identification information reading unit 26 is composed of an image reader or the like, reads the identification mark 13 of the passive sensor 10 and acquires identification group information Gr. Note that if the identification mark 13 can be easily recognized by a person such as a numeral or alphabet, the operation unit 28 can be used as an identification information reading unit. In this case, the identification group information Gr is acquired by an operation input from the user. Thus, the acquired identification group information Gr is given to the physical quantity detection unit 252 of the measurement unit 25 as described above.
 表示部27は、液晶ディスプレイ等からなり、計測部25で算出された磁気強度を表示する。 The display unit 27 is composed of a liquid crystal display or the like and displays the magnetic intensity calculated by the measurement unit 25.
 <識別概念および識別処理の説明>
 次に、グループ分類の識別概念および識別処理について説明する。図2はグループ分類の概念を説明するための図である。図3はグループ分類を含む計測の事前処理を示すフローチャートである。
<Description of identification concept and identification process>
Next, the identification concept and identification process of group classification will be described. FIG. 2 is a diagram for explaining the concept of group classification. FIG. 3 is a flowchart showing pre-measurement processing including group classification.
 まず、図2に示すように、要求される磁気強度の測定誤差ΔERと、基準特性となる理論上の磁気強度-周波数特性と、から識別用周波数幅Δfを算出する(図3:S901)。これにより、測定誤差ΔERの仕様に準じた識別用周波数幅Δfを設定することができる。 First, as shown in FIG. 2, an identification frequency width Δf is calculated from a required magnetic strength measurement error ΔER and a theoretical magnetic strength-frequency characteristic as a reference characteristic (FIG. 3: S901). Thereby, the identification frequency width Δf according to the specification of the measurement error ΔER can be set.
 次に、基準特性での磁界無印加時の共振周波数(基準周波数)Foを基準にして、識別用周波数幅Δfの帯域毎に識別グループ情報Grを設定する。そして、識別グループ情報Gr毎に上限周波数および下限周波数、すなわち閾値周波数Thfを算出する(図3:S902)。 Next, the identification group information Gr is set for each band of the identification frequency width Δf with reference to the resonance frequency (reference frequency) Fo when no magnetic field is applied in the reference characteristics. Then, an upper limit frequency and a lower limit frequency, that is, a threshold frequency Thf is calculated for each identification group information Gr (FIG. 3: S902).
 例えば、図2に示すように、基準周波数Foを中心にして、高域側へΔf/2だけ高い周波数と、低域側へΔf/2だけ低い周波数との間を、識別グループ情報Gr4に設定する。言い換えれば、(Fo-Δf/2)から(Fo+Δf/2)までの周波数区間を識別グループ情報Gr4に登録する。そして、当該識別グループ情報Gr4に対しては、磁界無印加時に基準周波数Foとなる磁界強度-周波数特性を関連付けする。 For example, as shown in FIG. 2, the identification group information Gr4 is set between a frequency that is higher by Δf / 2 to the high frequency side and a frequency that is lower by Δf / 2 to the low frequency side, centered on the reference frequency Fo. To do. In other words, the frequency section from (Fo−Δf / 2) to (Fo + Δf / 2) is registered in the identification group information Gr4. The identification group information Gr4 is associated with a magnetic field strength-frequency characteristic that becomes the reference frequency Fo when no magnetic field is applied.
 また、図2に示すように、基準周波数Fo+Δfを中心にして、高域側へΔf/2だけ高い周波数と、低域側へΔf/2だけ低い周波数との間を、識別グループ情報Gr3に設定する。言い換えれば、(Fo-Δf/2)+Δfから(Fo+Δf/2)+Δfまでの周波数区間を識別グループ情報Gr3に登録する。そして、当該識別グループ情報Gr3に対しては、磁界無印加時に基準周波数Fo+Δfとなる磁界強度-周波数特性を関連付けする。そして、このような高域側へのシフト処理を行うことにより、さらに、図2に示すように、識別グループ情報Gr2,Gr1の関連情報を設定する。 Also, as shown in FIG. 2, the identification group information Gr3 is set between a frequency that is higher by Δf / 2 toward the high frequency side and a frequency that is lower by Δf / 2 toward the low frequency side, centered on the reference frequency Fo + Δf. To do. In other words, the frequency section from (Fo−Δf / 2) + Δf to (Fo + Δf / 2) + Δf is registered in the identification group information Gr3. The identification group information Gr3 is associated with a magnetic field strength-frequency characteristic that becomes the reference frequency Fo + Δf when no magnetic field is applied. Then, by performing such a shift process to the high frequency side, as shown in FIG. 2, the related information of the identification group information Gr2, Gr1 is set.
 また、図2に示すように、基準周波数Fo-Δfを中心にして、高域側へΔf/2だけ高い周波数と、低域側へΔf/2だけ低い周波数との間を、識別グループ情報Gr5に設定する。言い換えれば、(Fo-Δf/2)-Δfから(Fo+Δf/2)-Δfまでの周波数区間を識別グループ情報Gr5に登録する。そして、当該識別グループ情報Gr5に対しては、磁界無印加時に基準周波数Fo-Δfとなる磁界強度-周波数特性を関連付けする。そして、このような低域側へのシフト処理を行うことにより、さらに、図2に示すように、識別グループ情報Gr6の関連情報を設定する。 Also, as shown in FIG. 2, the identification group information Gr5 is defined between a frequency that is higher by Δf / 2 toward the high frequency side and a frequency that is lower by Δf / 2 toward the low frequency side, centered on the reference frequency Fo−Δf. Set to. In other words, the frequency section from (Fo−Δf / 2) −Δf to (Fo + Δf / 2) −Δf is registered in the identification group information Gr5. The identification group information Gr5 is associated with a magnetic field strength-frequency characteristic that becomes the reference frequency Fo-Δf when no magnetic field is applied. Then, by performing such a shift process to the low frequency side, as shown in FIG. 2, the related information of the identification group information Gr6 is set.
 なお、設定する識別グループ情報Grの数は、これに限るものでなく、SAW共振子の実際の製造プロセスにおけるバラツキで生じる、磁界無印加時の最高周波数と最低周波数とから適宜設定すればよい。 Note that the number of identification group information Gr to be set is not limited to this, and may be set as appropriate from the highest frequency and the lowest frequency when no magnetic field is applied, which is caused by variations in the actual manufacturing process of the SAW resonator.
 このように設定された各識別グループ情報と、これらの識別グループ情報にそれぞれ関連付けられた磁気強度-周波数特性とは、親機20の計測部25の記憶部253に記憶される(図3:S910)。 Each identification group information set in this way and the magnetic intensity-frequency characteristics respectively associated with the identification group information are stored in the storage unit 253 of the measurement unit 25 of the parent device 20 (FIG. 3: S910). ).
 次に、このように設定された識別グループ情報に基づいて、製造された各SAW共振子12のグループ分類を行う。 Next, based on the identification group information set in this way, the group classification of each manufactured SAW resonator 12 is performed.
 具体的には、各SAW共振子12に、磁界を印加することなく、パルス状の励振信号SpLを印加して励振させ、共振周波数fpを実験的に測定する。実験的に測定した共振周波数fpが、どの識別グループ情報Gr1-6に属するかを検出し、識別グループ情報Grを決定する。例えば、実験的に測定した共振周波数fpが、(Fo-Δf/2)から(Fo+Δf/2)までの間であれば、当該SAW共振子12を識別グループ情報Gr4に設定する(図3:S903)。 More specifically, a pulsed excitation signal SpL is applied to each SAW resonator 12 without applying a magnetic field, and the resonance frequency fp is experimentally measured. The identification group information Gr is determined by detecting which identification group information Gr1-6 belongs to the experimentally measured resonance frequency fp. For example, if the experimentally measured resonance frequency fp is between (Fo−Δf / 2) and (Fo + Δf / 2), the SAW resonator 12 is set in the identification group information Gr4 (FIG. 3: S903). ).
 このようにグループ分類した後、当該SAW共振子12が配設されるパッシブセンサ11に、分類した識別グループ情報Grを、識別用マーク13の形式で印字する(図3:S904)。 After the group classification as described above, the classified identification group information Gr is printed in the form of the identification mark 13 on the passive sensor 11 in which the SAW resonator 12 is disposed (FIG. 3: S904).
 <計測概念および計測処理の説明>
 図4は実施形態に係る計測処理を示すフローチャートである。図5はグループ分類を用いた計測処理の概念を説明するための図である。
<Explanation of measurement concept and measurement process>
FIG. 4 is a flowchart illustrating a measurement process according to the embodiment. FIG. 5 is a diagram for explaining the concept of measurement processing using group classification.
 なお、以下の説明では、共振信号の取得前に識別グループ情報を取得しているが、共振信号の取得後に識別グループ情報を取得してもよい。 In the following description, the identification group information is acquired before acquiring the resonance signal, but the identification group information may be acquired after acquiring the resonance signal.
 まず、親機20は、識別情報取得モードを開始する(図4:S101)。これにより、親機20の識別情報読取部26は、パッシブセンサ10に印字された識別用マーク13を読み取る(図4:S102)。親機20の識別情報読取部26は、識別用マーク13に基づいて識別グループ情報Grを取得する(図4:S103)。 First, base unit 20 starts the identification information acquisition mode (FIG. 4: S101). Thereby, the identification information reading part 26 of the main | base station 20 reads the identification mark 13 printed on the passive sensor 10 (FIG. 4: S102). The identification information reading unit 26 of the parent device 20 acquires identification group information Gr based on the identification mark 13 (FIG. 4: S103).
 次に、親機20は、計測モードの送信モードを開始する(図4:S104)。親機20は、パルス状の励振信号SpLを送信する(図4:S105)。親機20は、励振信号SpLの送信後、受信モードに切り替わる(図4:S106)。 Next, base unit 20 starts the transmission mode of the measurement mode (FIG. 4: S104). Base unit 20 transmits a pulsed excitation signal SpL (FIG. 4: S105). After transmitting excitation signal SpL, base unit 20 switches to reception mode (FIG. 4: S106).
 パッシブセンサ10は、励振信号SpLを受信する(図4:S201)。パッシブセンサ10のSAW共振子12は、励振信号SpLで励振され、雰囲気の磁気強度に応じた共振周波数で共振し、共振信号Sfpを出力する(図4:S202)。パッシブセンサ10は、共振信号Sfpを送信する(図4:S203)。 The passive sensor 10 receives the excitation signal SpL (FIG. 4: S201). The SAW resonator 12 of the passive sensor 10 is excited by the excitation signal SpL, resonates at a resonance frequency corresponding to the magnetic strength of the atmosphere, and outputs a resonance signal Sfp (FIG. 4: S202). The passive sensor 10 transmits a resonance signal Sfp (FIG. 4: S203).
 親機20は、共振信号Sfpを受信し(図4:S107)、当該共振信号Sfpの周波数解析を行い、共振周波数fpを検出する(図4:S108)。 The master unit 20 receives the resonance signal Sfp (FIG. 4: S107), analyzes the frequency of the resonance signal Sfp, and detects the resonance frequency fp (FIG. 4: S108).
 親機20は、検出した共振周波数fpと、取得した識別グループ情報Grと、予め記憶している識別グループ情報に対応する磁気強度-周波数特性とに基づいて、磁気強度を算出する(図4:S109)。 Base unit 20 calculates the magnetic intensity based on the detected resonance frequency fp, the acquired identification group information Gr, and the magnetic intensity-frequency characteristics corresponding to the previously stored identification group information (FIG. 4: S109).
 具体的には、図5に示すような概念を用いて磁気強度を算出する。
 例えば、SAW共振子12の識別グループ情報がGr4であった場合、磁界無印加時周波数(基準周波数)Foの磁気強度-周波数特性SP(G4)を読み出す。そして、検出した共振周波数fpを当該特性に参照することで、磁気強度P4を算出する。
Specifically, the magnetic intensity is calculated using the concept as shown in FIG.
For example, when the identification group information of the SAW resonator 12 is Gr4, the magnetic intensity-frequency characteristic SP (G4) of the frequency (reference frequency) Fo when no magnetic field is applied is read. Then, the magnetic strength P4 is calculated by referring to the detected resonance frequency fp in the characteristic.
 また、例えば、SAW共振子12の識別グループ情報がGr1であった場合、磁界無印加時周波数(Fo+3Δf)の磁気強度-周波数特性SP(G1)を読み出す。そして、検出した共振周波数fpを当該特性に参照することで、磁気強度P1を算出する。 For example, when the identification group information of the SAW resonator 12 is Gr1, the magnetic strength-frequency characteristic SP (G1) of the frequency (Fo + 3Δf) when no magnetic field is applied is read. Then, the magnetic intensity P1 is calculated by referring to the detected resonance frequency fp in the characteristic.
 また、例えば、SAW共振子12の識別グループ情報がGr5であった場合、磁界無印加時周波数(Fo-Δf)の磁気強度-周波数特性SP(G5)を読み出す。そして、検出した共振周波数fpを当該特性に参照することで、磁気強度P5を算出する。 Further, for example, when the identification group information of the SAW resonator 12 is Gr5, the magnetic strength-frequency characteristic SP (G5) of the frequency (Fo-Δf) when no magnetic field is applied is read. Then, the magnetic intensity P5 is calculated by referring to the detected resonance frequency fp in the characteristic.
 このような処理を行うことで、磁気強度の測定値は、大きくても、属する識別グループの測定誤差幅ΔERの範囲内となり、計測誤差は、予め設定された仕様に応じた測定誤差幅ΔERとなる。すなわち、SAW共振子12の製造バラツキにより取り得る計測誤差よりも狭い計測誤差内で、確実に磁気強度(物理量)を検出することができる。 By performing such processing, the measured value of the magnetic strength is within the range of the measurement error width ΔER of the identification group to which it belongs even if it is large, and the measurement error is a measurement error width ΔER corresponding to a preset specification. Become. That is, the magnetic intensity (physical quantity) can be reliably detected within a measurement error narrower than the measurement error that can be taken due to manufacturing variations of the SAW resonator 12.
 言い換えれば、製造プロセスを調整する必要も無く、理想的な特性に近い特性のSAW共振子のみを選別して使用することもなく、従来の識別を行わないシステムよりも、計測誤差を抑制することができる。 In other words, there is no need to adjust the manufacturing process, and only the SAW resonators having characteristics close to ideal characteristics are not selected and used, and measurement errors are suppressed as compared with a conventional system that does not perform identification. Can do.
 また、このように理想特性に近いSAW共振子の選別処理を行う必要が無いことで、従来であれば、利用できなかったSAW共振子であっても、高精度な計測が可能であり、当該従来利用できなかったSAW共振子を有効に利用することができる。これにより、歩留まりが向上し、ひいてはパッシブセンサを安価にすることができる。 In addition, since it is not necessary to perform a selection process of SAW resonators close to ideal characteristics in this way, even a SAW resonator that could not be used conventionally can be measured with high accuracy. SAW resonators that could not be used conventionally can be used effectively. As a result, the yield can be improved and the passive sensor can be made inexpensive.
 このようなグループ分類および当該グループ分類を利用した計測の具体的な別の素子および別の物理量を用いた実施例として、標準温度での基準周波数として10.6MHzの水晶振動子をセンサ素子として用いた場合について、説明する。 As an example using such a group classification and another specific element for measurement using the group classification and another physical quantity, a 10.6 MHz crystal resonator as a reference frequency at a standard temperature is used as a sensor element. The case will be described.
 このような水晶振動子では、共振周波数の温度特性があり、共振周波数と温度とは線形の関係を有する。そして、その傾き、すなわち温度変化に対する周波数変化の割合は、947Hz/℃である。 Such a crystal resonator has a temperature characteristic of the resonance frequency, and the resonance frequency and temperature have a linear relationship. The inclination, that is, the ratio of frequency change to temperature change is 947 Hz / ° C.
 ここで、このような水晶振動子を用いてセンサ素子を製造する場合、水晶振動子の厚みや電極厚み等により共振周波数が基準周波数からずれてしまう。具体的には、製造プロセスにより、±100ppm=±1060Hzのバラツキを生じる。したがって、温度バラツキとしては、2120Hz/(947Hz/℃)=2.239℃となる。このままでは、温度測定誤差が約±1.1℃となってしまう。 Here, when a sensor element is manufactured using such a crystal resonator, the resonance frequency deviates from the reference frequency due to the thickness of the crystal resonator, the electrode thickness, or the like. Specifically, a variation of ± 100 ppm = ± 1060 Hz occurs due to the manufacturing process. Therefore, the temperature variation is 2120 Hz / (947 Hz / ° C.) = 2.239 ° C. In this state, the temperature measurement error is about ± 1.1 ° C.
 そこで、温度測定誤差(ΔERに相当)を0.2℃=±0.1℃に設定する。これは、識別用周波数幅Δfに換算すると±94.7Hzに相当する。したがって、基準周波数10.6MHzを中心にして、識別用周波数幅Δf=±94.7Hzの単位でグループ分類し、識別グループ情報Grに関連付けする。 Therefore, the temperature measurement error (corresponding to ΔER) is set to 0.2 ° C. = ± 0.1 ° C. This corresponds to ± 94.7 Hz in terms of the identification frequency width Δf. Accordingly, the classification is performed in units of the identification frequency width Δf = ± 94.7 Hz around the reference frequency of 10.6 MHz, and is associated with the identification group information Gr.
 ここで、例えばグループ分類の具体的な設定方法としては、上述の製造プロセスの想定されるバラツキから、10.6MHzを中心周波数(上述の基準周波数Fo)として、約±1.06MHzの周波数範囲を識別用周波数幅Δf=±94.7Hzで分類する。具体的には、例えば(10.6MHz+1231.1Hz)~(10.6MHz-1041.7Hz)を±94.7Hzで分類する。 Here, for example, as a specific method for setting the group classification, a frequency range of about ± 1.06 MHz is set with 10.6 MHz as the center frequency (the above-described reference frequency Fo) based on the assumed variation in the above-described manufacturing process. Classification is performed using the identification frequency width Δf = ± 94.7 Hz. Specifically, for example, (10.6 MHz + 1231.1 Hz) to (10.6 MHz−1041.7 Hz) are classified by ± 94.7 Hz.
 そして、識別グループ情報Gr毎に温度-周波数特性を設定し、記憶しておく。 Then, temperature-frequency characteristics are set and stored for each identification group information Gr.
 計測時には、取得した識別グループ情報Grに基づいて、当該識別グループ情報に対応する温度-周波数特性を読み出し、検出した共振周波数fpを当てはめて、温度を算出する。 At the time of measurement, based on the acquired identification group information Gr, the temperature-frequency characteristic corresponding to the identification group information is read, and the detected resonance frequency fp is applied to calculate the temperature.
 このような方法を用いることで、温度測定誤差±0.1℃の計測が可能になる。 By using such a method, it is possible to measure a temperature measurement error of ± 0.1 ° C.
 次に、第2の実施形態に係る無線式センサシステムについて、図を参照して説明する。図6は本実施形態に係る無線式センサシステム1Aの構成を示すブロック図である。図7は本実施形態に係る周波数帯域の設定概念を示す図である。 Next, a wireless sensor system according to the second embodiment will be described with reference to the drawings. FIG. 6 is a block diagram showing the configuration of the wireless sensor system 1A according to the present embodiment. FIG. 7 is a diagram showing a concept of setting a frequency band according to the present embodiment.
 本実施形態の無線式センサシステム1Aは、第1の実施形態に示した無線式センサシステム1に対して、パッシブセンサ1の識別用マーク13が、パッシブセンサ1AのRFID-IC14に置き換わったものである。そして、これに伴い、親機20Aの識別情報の取得手段が変更されたものである。したがって、以下では、第1の実施形態と異なる点についてのみ詳細に説明する。 The wireless sensor system 1A of the present embodiment is obtained by replacing the wireless sensor system 1 shown in the first embodiment with the identification mark 13 of the passive sensor 1 replaced with the RFID-IC 14 of the passive sensor 1A. is there. Along with this, the means for acquiring the identification information of the master unit 20A has been changed. Therefore, in the following, only differences from the first embodiment will be described in detail.
 パッシブセンサ1Aは、RFID-IC14を備える。RFID-IC14は、SAW共振子12と同様に、アンテナ11に接続している。RFID-IC14には、上述の識別グループ情報Grが記憶されている。RFID-IC14は、親機20Aからのリクエスト信号Srqで起動し、識別グループ情報Grを含む応答信号Sanを生成する。応答信号Sanは、アンテナ11から放射され、親機20Aへ伝送される。 The passive sensor 1A includes an RFID-IC14. The RFID-IC 14 is connected to the antenna 11 similarly to the SAW resonator 12. The RFID-IC 14 stores the identification group information Gr described above. The RFID-IC 14 is activated by the request signal Srq from the parent device 20A, and generates a response signal San including the identification group information Gr. Response signal San is radiated from antenna 11 and transmitted to base unit 20A.
 親機20Aは、識別情報読取部26に替えて、リクエスト信号生成部31と識別情報解析部32とを備える。 The master unit 20A includes a request signal generation unit 31 and an identification information analysis unit 32 instead of the identification information reading unit 26.
 リクエスト信号生成部31は、制御部21Aから識別情報取得制御を受け付けると、所定周波数からなるリクエスト信号Srqを生成し、送受信部23Aへ出力する。 When receiving the identification information acquisition control from the control unit 21A, the request signal generation unit 31 generates a request signal Srq having a predetermined frequency and outputs the request signal Srq to the transmission / reception unit 23A.
 送受信部23Aには、スイッチ(SW)231が備えられており、識別情報取得時には、リクエスト信号Srqを親機側アンテナ24へ送信する。ここで、図8に示すように、リクエスト信号Srqの周波数frqと、応答信号Sanの周波数fanとを、SAW共振子12の共振周波数と同じ周波数帯域に設定することで、識別情報取得のための通信と、計測のための通信とを、ただ一対の親機側アンテナ24とアンテナ11とで実現することができる。これにより、パッシブセンサ10Aおよび親機20Aの小型化が可能になる。さらに、図8に示すように、同じ周波数帯域であっても、異なるチャンネル(局部帯域)を用いることで、共振信号Sfpと、リクエスト信号Srqおよび応答信号Sanとの混信を防止することができる。 The transmission / reception unit 23A is provided with a switch (SW) 231 and transmits a request signal Srq to the parent-side antenna 24 when acquiring identification information. Here, as shown in FIG. 8, the frequency frq of the request signal Srq and the frequency fan of the response signal San are set in the same frequency band as the resonance frequency of the SAW resonator 12, thereby obtaining identification information. Communication and communication for measurement can be realized by only a pair of parent device side antenna 24 and antenna 11. As a result, the passive sensor 10A and the parent device 20A can be downsized. Furthermore, as shown in FIG. 8, even if they are in the same frequency band, by using different channels (local bands), it is possible to prevent interference between the resonance signal Sfp, the request signal Srq, and the response signal San.
 また、送受信部23Aは、識別情報取得時には応答信号Sanを受信して、識別情報解析部32へ出力する。 Further, the transmission / reception unit 23A receives the response signal San and outputs it to the identification information analysis unit 32 when the identification information is acquired.
 なお、送受信部23Aは、送信モード時には、上述のように送信信号生成部22からの励起信号SpLを親機側アンテナ24へ出力し、親機側アンテナ24からの共振信号Sfpを計測部25へ出力する。 In the transmission mode, the transmission / reception unit 23A outputs the excitation signal SpL from the transmission signal generation unit 22 to the parent device side antenna 24 as described above, and the resonance signal Sfp from the parent device side antenna 24 to the measurement unit 25. Output.
 識別情報解析部32は、応答信号Sanを解析して、識別グループ情報Grを取得する。識別情報解析部32は、識別グループ情報を計測部25の物理量検出部252へ出力する。 The identification information analysis unit 32 analyzes the response signal San and acquires identification group information Gr. The identification information analysis unit 32 outputs the identification group information to the physical quantity detection unit 252 of the measurement unit 25.
 計測部25は、第1の実施形態と同様に、識別グループ情報Grと、共振信号Sfpの共振周波数fpと、識別グループ毎の磁気強度-周波数特性とを用いて磁気強度を算出する。 The measurement unit 25 calculates the magnetic strength using the identification group information Gr, the resonance frequency fp of the resonance signal Sfp, and the magnetic strength-frequency characteristic for each identification group, as in the first embodiment.
 次に、本実施形態の構成による計測方法について、図8を用いて説明する。図8は本実施形態に係る計測処理を示すフローチャートである。 Next, a measurement method according to the configuration of the present embodiment will be described with reference to FIG. FIG. 8 is a flowchart showing measurement processing according to the present embodiment.
 まず、親機20Aは、計測モードを開始し(S301)、パルス状の励起信号SpLを送信する(S302)。親機20Aは、励起信号SpLの送信後、受信モードへ切り替わる(S303)。 First, base unit 20A starts a measurement mode (S301) and transmits a pulsed excitation signal SpL (S302). After transmitting excitation signal SpL, base unit 20A switches to reception mode (S303).
 パッシブセンサ10Aは、励振信号SpLを受信する(S201)。パッシブセンサ10AのSAW共振子12は、励振信号SpLで励振し、雰囲気の磁気強度に応じた共振周波数で発振して共振信号Sfpを出力する(S202)。パッシブセンサ10Aは、共振信号Sfpを送信する(S203)。 The passive sensor 10A receives the excitation signal SpL (S201). The SAW resonator 12 of the passive sensor 10A is excited by the excitation signal SpL, oscillates at a resonance frequency corresponding to the magnetic intensity of the atmosphere, and outputs a resonance signal Sfp (S202). The passive sensor 10A transmits a resonance signal Sfp (S203).
 親機20Aは、共振信号Sfpを受信し(S304)、当該共振信号Sfpの周波数解析を行い、共振周波数fpを検出する(S305)。 Main unit 20A receives resonance signal Sfp (S304), performs frequency analysis of resonance signal Sfp, and detects resonance frequency fp (S305).
 親機20Aは、当該共振周波数fpが、使用周波数帯域のどのチャンネルに該当するかを検出する。さらに、親機20Aは、使用周波数帯域の他のチャンネルにおける空き状況をセンシングする(S306)。 Master unit 20A detects which channel in the used frequency band the resonance frequency fp corresponds to. Furthermore, base unit 20A senses the availability of other channels in the used frequency band (S306).
 親機20Aは、検出した空きチャンネルの周波数でリクエスト信号Srqを生成し、親機側アンテナ24から送信する(S307)。 The master unit 20A generates a request signal Srq with the detected frequency of the empty channel and transmits it from the master unit side antenna 24 (S307).
 パッシブセンサ10Aは、リクエスト信号Srqを受信する(S204)。パッシブセンサ10AのRFID-IC14は、リクエスト信号Srqで起動し、自身の識別グループ情報Grを含む応答信号Sanを生成する。パッシブセンサ10Aは、応答信号Sanをアンテナ11から送信する(S205)。 The passive sensor 10A receives the request signal Srq (S204). The RFID-IC 14 of the passive sensor 10A is activated by the request signal Srq and generates a response signal San including its own identification group information Gr. The passive sensor 10A transmits a response signal San from the antenna 11 (S205).
 親機20Aは、応答信号Sanを受信する(S308)。親機20Aは、応答信号Sanを解析し、識別グループ情報Grを取得する(S309)。 The master unit 20A receives the response signal San (S308). Main unit 20A analyzes response signal San and acquires identification group information Gr (S309).
 親機20Aは、検出した共振周波数fpと、取得した識別グループ情報Grと、予め記憶している識別グループ情報に対応する磁気強度-周波数特性とに基づいて、磁気強度を算出する(S310)。 Main unit 20A calculates the magnetic intensity based on the detected resonance frequency fp, the acquired identification group information Gr, and the magnetic intensity-frequency characteristics corresponding to the previously stored identification group information (S310).
 このような構成および方法であっても、小さな計測誤差で磁気強度を計測することができる。さらに、本実施形態の構成を用いれば、親機における識別グループ情報を取得するための外部へのアクセス手段と計測のための外部アクセス手段がアンテナのみとなり、小型化が可能になる。 Even with such a configuration and method, the magnetic intensity can be measured with a small measurement error. Furthermore, if the configuration of the present embodiment is used, the external access means for acquiring the identification group information in the master unit and the external access means for measurement are only antennas, and the size can be reduced.
 なお、上述の第1の実施形態では、パッシブセンサ10毎に識別用マーク13を印刷する例を示したが、パッシブセンサ10を識別グループ毎にまとめて同じ箱に梱包し、出荷する際に梱包した箱に対して識別用マークを印刷してもよい。この場合には、親機20は、梱包用の箱に設けられた識別用マークを読み取ればよい。このように、梱包用の箱に識別用マークを設けることで、パッシブセンサ10毎に識別用マークを設ける必要がなくなる。したがって、パッシブセンサ10をさらに小型化することができる。これは、第2実施形態に示したRFID-ICについても、同様に適用できる。 In the first embodiment described above, an example in which the identification mark 13 is printed for each passive sensor 10 has been shown. However, the passive sensor 10 is packed for each identification group, packed in the same box, and packed when shipped. An identification mark may be printed on the box. In this case, base unit 20 may read the identification mark provided on the packing box. Thus, by providing the identification mark on the packing box, it is not necessary to provide the identification mark for each passive sensor 10. Therefore, the passive sensor 10 can be further downsized. This can be similarly applied to the RFID-IC shown in the second embodiment.
1,1A-無線式センサシステム、10,10A-パッシブセンサ、11-アンテナ、12-SAW共振子、13-識別用マーク、14-RFID-IC、
20,20A-親機、21,21A-制御部、22-送信信号生成部、23,23A-送受信部、24-親機側アンテナ、25-計測部、251-周波数変換部、252-物理量検出部、253-記憶部、26-識別情報読取部、27-表示部、31-リクエスト信号生成部、32-識別情報解析部
1,1A-wireless sensor system, 10,10A-passive sensor, 11-antenna, 12-SAW resonator, 13-identification mark, 14-RFID-IC,
20, 20A-base unit, 21, 21A-control unit, 22-transmission signal generation unit, 23, 23A-transmission / reception unit, 24-base unit side antenna, 25-measurement unit, 251-frequency conversion unit, 252-physical quantity detection Section, 253-storage section, 26-identification information reading section, 27-display section, 31-request signal generation section, 32-identification information analysis section

Claims (8)

  1.  外部からの励起信号により、感知する物理量に応じた周波数の共振信号を出力するセンサ素子と、
     前記センサ素子に接続されており、前記励起信号および前記共振信号を送受波するアンテナと、
     前記物理量に対する前記センサ素子の周波数特性に基づいた識別情報を記録する識別情報記録手段と、を備えたパッシブセンサ。
    A sensor element that outputs a resonance signal having a frequency corresponding to a physical quantity to be detected by an external excitation signal;
    An antenna connected to the sensor element for transmitting and receiving the excitation signal and the resonance signal;
    A passive sensor comprising: identification information recording means for recording identification information based on a frequency characteristic of the sensor element with respect to the physical quantity.
  2.  請求項1に記載のパッシブセンサであって、
     前記識別情報記録手段は、数字、アルファベット、記号、色、バーコードのような平面的に形作られたマークからなる、パッシブセンサ。
    The passive sensor according to claim 1,
    The identification information recording means is a passive sensor composed of planarly formed marks such as numerals, alphabets, symbols, colors, and barcodes.
  3.  請求項1に記載のパッシブセンサであって、
     前記識別情報記録手段は、前記アンテナに接続するRFID-ICである、パッシブセンサ。
    The passive sensor according to claim 1,
    The identification information recording means is a passive sensor that is an RFID-IC connected to the antenna.
  4.  請求項1または請求項2のいずれか一項に記載のパッシブセンサと、該パッシブセンサに対して無線通信する親機とを備えた無線式センサシステムであって、
     前記親機は、
     物理量に対する前記センサ素子の周波数特性を、該周波数特性の違いに応じて分類して識別情報に関連付けして記憶する記憶部と、
     前記パッシブセンサのアンテナと電磁界結合もしくは電波により前記励起信号および前記共振信号の送受波を行う親機側アンテナと、
     前記識別情報記録手段である前記マークを読み取り、前記識別情報を取得する識別情報取得部と、
     前記共振信号の共振周波数と、前記識別情報取得部で取得した前記識別情報と、前記記憶部に記憶された前記識別情報毎の前記周波数特性と、に基づいて、前記物理量を算出する計測部と、を備えた、
     無線式センサシステム。
    A wireless sensor system comprising the passive sensor according to any one of claims 1 and 2, and a master unit that performs wireless communication with the passive sensor,
    The base unit is
    A storage unit that classifies the frequency characteristics of the sensor element with respect to a physical quantity according to the difference in the frequency characteristics, and stores them in association with identification information;
    A parent-side antenna that transmits and receives the excitation signal and the resonance signal by electromagnetic coupling or radio waves with the antenna of the passive sensor;
    An identification information acquisition unit that reads the mark as the identification information recording means and acquires the identification information;
    A measurement unit that calculates the physical quantity based on a resonance frequency of the resonance signal, the identification information acquired by the identification information acquisition unit, and the frequency characteristics for each of the identification information stored in the storage unit; With
    Wireless sensor system.
  5.  請求項3に記載のパッシブセンサと該パッシブセンサに対して無線通信する親機とを備えた無線式センサシステムであって、
     前記親機は、
     物理量に対する前記センサ素子の周波数特性を、該周波数特性の違いに応じて分類して識別情報に関連付けして記憶する記憶部と、
     前記RFID-ICへのリクエスト信号を生成するリクエスト信号生成部と、
     前記パッシブセンサのアンテナと電磁界結合もしくは電波により前記励起信号、前記共振信号、前記リクエスト信号、および該リクエスト信号に対する前記パッシブセンサからの応答信号の送受波を行う親機側アンテナと、
     前記応答信号を解析して前記識別情報を取得する識別情報取得部と、
     前記共振信号の共振周波数と、前記識別情報取得部で取得した前記識別情報と、前記記憶部に記憶された前記識別情報毎の前記周波数特性と、に基づいて、前記物理量を算出する計測部と、を備えた、
     無線式センサシステム。
    A wireless sensor system comprising the passive sensor according to claim 3 and a parent device that performs wireless communication with the passive sensor,
    The base unit is
    A storage unit that classifies the frequency characteristics of the sensor element with respect to a physical quantity according to the difference in the frequency characteristics, and stores them in association with identification information;
    A request signal generator for generating a request signal to the RFID-IC;
    A base-side antenna that transmits and receives the excitation signal, the resonance signal, the request signal, and a response signal from the passive sensor to the request signal by electromagnetic coupling or radio waves with the passive sensor antenna;
    An identification information acquisition unit that analyzes the response signal and acquires the identification information;
    A measurement unit that calculates the physical quantity based on a resonance frequency of the resonance signal, the identification information acquired by the identification information acquisition unit, and the frequency characteristics for each of the identification information stored in the storage unit; With
    Wireless sensor system.
  6.  請求項5に記載の無線式センサシステムであって、
     前記共振信号と、前記リクエスト信号および前記応答信号とを、同じ通信帯域における異なるチャンネルを利用して通信する、無線式センサシステム。
    The wireless sensor system according to claim 5,
    A wireless sensor system that communicates the resonance signal, the request signal, and the response signal using different channels in the same communication band.
  7.  外部からの励起信号により、感知する物理量に応じた周波数の共振信号を出力するセンサ素子、および前記センサ素子に接続されており、前記励起信号および前記共振信号を送受波するアンテナを備えたパッシブセンサと、
     前記パッシブセンサと無線通信して、前記共振信号に基づいて、前記物理量を検出する親機と、を備えた無線式センサシステムであって、
     感知する物理量に対する周波数特性に基づいてグループ分けされた複数のパッシブセンサを、グループ毎に梱包する梱包材を備え、該梱包材には前記グループを識別するための識別情報記録手段が備えられており、
     前記親機は、
     前記識別情報記録手段から識別情報を取得する識別情報取得部と、
     前記共振信号の共振周波数と、前記識別情報取得部で取得した前記識別情報と、予め記憶された前記識別情報毎の前記周波数特性と、に基づいて、前記物理量を算出する計測部と、を備えた、
     無線式センサシステム。
    A sensor element that outputs a resonance signal having a frequency corresponding to a physical quantity to be sensed by an excitation signal from the outside, and a passive sensor that is connected to the sensor element and includes an antenna that transmits and receives the excitation signal and the resonance signal When,
    A wireless sensor system comprising: a base unit that wirelessly communicates with the passive sensor and detects the physical quantity based on the resonance signal;
    A plurality of passive sensors grouped based on frequency characteristics with respect to a physical quantity to be sensed are provided with a packing material for packing each group, and the packing material is provided with identification information recording means for identifying the group. ,
    The base unit is
    An identification information acquisition unit for acquiring identification information from the identification information recording means;
    A measurement unit that calculates the physical quantity based on a resonance frequency of the resonance signal, the identification information acquired by the identification information acquisition unit, and the frequency characteristics for each of the identification information stored in advance. The
    Wireless sensor system.
  8.  感知する物理量に応じた周波数で共振するセンサ素子を備え、親機からの励起信号を受信して共振信号を送信するパッシブセンサと、
     前記励起信号を送信し、前記共振信号を受信して、該共振信号の周波数に基づいて前記物理量を算出する親機と、を備えた無線式センサシステムによる計測方法であって、
     前記パッシブセンサを、物理量に対する前記センサ素子の周波数特性の違いに応じて分類し、識別情報に関連付けして記録する工程と、
     前記センサ素子で前記物理量を検知し、共振信号を出力する工程と、
     前記共振信号と、前記識別情報と、記憶された前記識別情報毎の前記周波数特性と、に基づいて、前記物理量を算出する工程と、を有する無線式センサシステムによる計測方法。
    A passive sensor that includes a sensor element that resonates at a frequency according to a physical quantity to be sensed, receives an excitation signal from the parent device, and transmits a resonance signal;
    A measurement method using a wireless sensor system comprising: a master unit that transmits the excitation signal, receives the resonance signal, and calculates the physical quantity based on a frequency of the resonance signal;
    Classifying the passive sensor according to a difference in frequency characteristics of the sensor element with respect to a physical quantity, and recording it in association with identification information;
    Detecting the physical quantity with the sensor element and outputting a resonance signal;
    A measurement method using a wireless sensor system, comprising: calculating the physical quantity based on the resonance signal, the identification information, and the frequency characteristic for each stored identification information.
PCT/JP2011/063764 2010-06-24 2011-06-16 Passive sensor, wireless type sensor system, and measurement method using wireless type sensor system WO2011162148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521435A JP5387771B2 (en) 2010-06-24 2011-06-16 Passive sensor, wireless sensor system, and measurement method using wireless sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-143273 2010-06-24
JP2010143273 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011162148A1 true WO2011162148A1 (en) 2011-12-29

Family

ID=45371339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063764 WO2011162148A1 (en) 2010-06-24 2011-06-16 Passive sensor, wireless type sensor system, and measurement method using wireless type sensor system

Country Status (2)

Country Link
JP (1) JP5387771B2 (en)
WO (1) WO2011162148A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181667A1 (en) * 2013-05-09 2014-11-13 株式会社村田製作所 Wireless sensor system and reader module
JP2021505910A (en) * 2017-11-30 2021-02-18 ムニョス、マイケル Installed and / or embedded passive electromagnetic sensors enable process control and predictive maintenance of power distribution networks, liquid and gas pipelines, and air pollutants, including nuclear, chemical and biological agents. Internet of Things (IoT) compatible wireless sensor system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508739A (en) * 1999-09-02 2003-03-04 トランセンス テクノロジーズ ピーエルシー Apparatus and method for interrogating a passive sensor
JP2004163134A (en) * 2002-11-11 2004-06-10 Matsushita Electric Ind Co Ltd Pressure sensor, pressure measuring apparatus, and pressure measurement system using them
JP2006135892A (en) * 2004-11-09 2006-05-25 Oki Electric Ind Co Ltd Voltage controlled oscillator and oscillation frequency adjusting method
JP2008175678A (en) * 2007-01-18 2008-07-31 Nec Tokin Corp Dynamic quantity sensor system
JP2008294516A (en) * 2007-05-22 2008-12-04 Kenwood Corp Playback device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508739A (en) * 1999-09-02 2003-03-04 トランセンス テクノロジーズ ピーエルシー Apparatus and method for interrogating a passive sensor
JP2004163134A (en) * 2002-11-11 2004-06-10 Matsushita Electric Ind Co Ltd Pressure sensor, pressure measuring apparatus, and pressure measurement system using them
JP2006135892A (en) * 2004-11-09 2006-05-25 Oki Electric Ind Co Ltd Voltage controlled oscillator and oscillation frequency adjusting method
JP2008175678A (en) * 2007-01-18 2008-07-31 Nec Tokin Corp Dynamic quantity sensor system
JP2008294516A (en) * 2007-05-22 2008-12-04 Kenwood Corp Playback device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181667A1 (en) * 2013-05-09 2014-11-13 株式会社村田製作所 Wireless sensor system and reader module
JP6032355B2 (en) * 2013-05-09 2016-11-24 株式会社村田製作所 Wireless sensor system and reader module
JPWO2014181667A1 (en) * 2013-05-09 2017-02-23 株式会社村田製作所 Wireless sensor system and reader module
JP2021505910A (en) * 2017-11-30 2021-02-18 ムニョス、マイケル Installed and / or embedded passive electromagnetic sensors enable process control and predictive maintenance of power distribution networks, liquid and gas pipelines, and air pollutants, including nuclear, chemical and biological agents. Internet of Things (IoT) compatible wireless sensor system
JP7316292B2 (en) 2017-11-30 2023-07-27 ムニョス、マイケル Using mounted and/or embedded passive electromagnetic sensors to enable process control and predictive maintenance of electrical distribution networks, liquid and gas pipelines, and monitoring of air pollutants, including nuclear, chemical and biological agents Internet of Things (IoT)-enabled wireless sensor system

Also Published As

Publication number Publication date
JP5387771B2 (en) 2014-01-15
JPWO2011162148A1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP6052388B2 (en) Sensor tag and sensor tag manufacturing method
EP2666129B1 (en) Sensing the properties of a material loading a uhf rfid tag by analysis of the complex reflection backscatter at different frequencies and power levels
EP2379988B1 (en) System and method for remote reading of resonant sensors
US8384524B2 (en) Passive surface acoustic wave sensing system
GB2425594A (en) Detecting environmental variables using film bulk acoustic resonators (FBAR)
KR20140113967A (en) A measurement sensor
KR20110123730A (en) Remote sensing system and remote sensing method
CN101986126A (en) Harsh environment sensor system and detection methods
JP5387771B2 (en) Passive sensor, wireless sensor system, and measurement method using wireless sensor system
JP5786533B2 (en) Wireless thermometer and wireless thermometer measurement system
JP2012008748A (en) Wireless sensor system, passive sensor and physical quantity measurement method by wireless sensor system
JP2011028424A (en) Rfid tag with sensor function, and rfid system using the same
JP2006268578A (en) Information providing system and image formation device
CN103698059A (en) Sensing antenna, tension measuring device and load measuring system
Grosinger et al. Sensor add-on for batteryless UHF RFID tags enabling a low cost IoT infrastructure
US20090003411A1 (en) High-temperature sensing system with passive wireless communication
JP2011180799A (en) Device and system for remote sensing
JP2012008749A (en) Manufacturing method of passive sensor, measurement method by wireless sensor system, passive sensor and wireless sensor system
CN104406613B (en) Surface acoustic wave sensor that a kind of frequency resource utilization rate is high and recognition methods thereof
JP6004095B2 (en) Wireless sensor system
JP2017166840A (en) Physical quantity sensor unit
KR101059960B1 (en) Lf antenna measuring instrument and method
JP2012008750A (en) Wireless sensor system
CN114041041B (en) Resonator array sensor arrangement
US20240014542A1 (en) Wireless passive electronic component and associated reading system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521435

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798033

Country of ref document: EP

Kind code of ref document: A1