[go: up one dir, main page]

WO2011161371A1 - Roue mobile a aubes en materiau composite pour moteur a turbine a gaz a liaison pied d'aube/disque par serrage - Google Patents

Roue mobile a aubes en materiau composite pour moteur a turbine a gaz a liaison pied d'aube/disque par serrage Download PDF

Info

Publication number
WO2011161371A1
WO2011161371A1 PCT/FR2011/051424 FR2011051424W WO2011161371A1 WO 2011161371 A1 WO2011161371 A1 WO 2011161371A1 FR 2011051424 W FR2011051424 W FR 2011051424W WO 2011161371 A1 WO2011161371 A1 WO 2011161371A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
teeth
clamping
blade
wheel according
Prior art date
Application number
PCT/FR2011/051424
Other languages
English (en)
Inventor
Stéphane Pierre Guillaume Blanchard
Laurent Pierre Joseph Ricou
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US13/698,208 priority Critical patent/US9422818B2/en
Priority to GB1222521.5A priority patent/GB2496531B/en
Publication of WO2011161371A1 publication Critical patent/WO2011161371A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3023Fixing blades to rotors; Blade roots ; Blade spacers of radial insertion type, e.g. in individual recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3023Fixing blades to rotors; Blade roots ; Blade spacers of radial insertion type, e.g. in individual recesses
    • F01D5/3046Fixing blades to rotors; Blade roots ; Blade spacers of radial insertion type, e.g. in individual recesses the rotor having ribs around the circumference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3053Fixing blades to rotors; Blade roots ; Blade spacers by means of pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3069Fixing blades to rotors; Blade roots ; Blade spacers between two discs or rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/25Three-dimensional helical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Impeller wheel made of a composite material for a gas turbine engine with a dovetail / clamping disk connection.
  • the invention relates to the assembly of blades of composite material on a disk of a gas turbine engine moving wheel.
  • the targeted field is that of aeronautical engines and industrial turbines.
  • a moving wheel of a gas turbine engine such as for example a low-pressure turbine wheel of an aerospace turbine engine, generally comprises a disc provided at its periphery with a plurality of cells in which the blades are mounted. the wheel by their respective foot.
  • a blade of composite material has certain disadvantages related in particular to the mounting thereof on a metal disk.
  • a method such as that described in document FR 2,939,129 does not make it possible to obtain blades whose dimensional tolerances are as fine and precise as for metal blades. This results in significant functional play between the blade roots and the disk cells in which they are mounted.
  • such games cause tilts of the blades around their foot, which reduces the performance of the engine (the gas leaks between the platforms of the blades are increased).
  • the present invention therefore has the main purpose of providing a wheel does not have the aforementioned drawbacks.
  • a moving impeller for a gas turbine engine comprising;
  • a metal holding disk having at its periphery a plurality of teeth extending radially outwardly of the disk;
  • each blade comprising a foot which is engaged between two adjacent teeth of the holding disk and which is held between these teeth by a pivot connection;
  • a clamping disk having at its periphery a plurality of teeth extending in an axial direction, the clamping disk being fixed coaxially on the holding disk with its teeth each being positioned circumferentially between a blade root and a tooth of the holding disk;
  • the blades are held on the holding disk by clamping their foot on the disk. More precisely, the blade roots are tight between the teeth of the two discs of the wheel.
  • the links between the blades of composite material and the metal disc are thus stiffened, which reduces the clearances between the blades and thus prevent engine performance losses.
  • the clamping disk is fixed on the holding disk by means of a helical connection making it possible to exert a clamping force in a circumferential direction of the teeth of the clamping disk against the blade roots.
  • This helical linkage may comprise a plurality of positioning screws each passing through two eccentric holes made in disk fixing flanges.
  • each pivot connection comprises a pin which extends from a side face of one of the teeth of the holding disk in a circumferential direction and which passes through a hole made in the root of the corresponding blade.
  • Each blade root may comprise a first lateral face which is flatly abutting against a lateral face of a tooth of the holding disk and a second lateral face opposite to the first which is in plane bearing against a lateral face of a tooth. of the clamping disc.
  • the wheel further comprises means for centering the clamping disk on the holding disk.
  • the clamping disc may comprise a plurality of circumferentially circumferentially angular disc segments.
  • Each blade root can abut radially in the bottom of a groove delimited between two adjacent teeth of the holding disk. Alternatively, each blade root can abut axially in the bottom of a groove delimited between two adjacent teeth of the clamping disk.
  • the invention also relates to a gas turbine engine comprising at least one wheel as defined above.
  • FIGS. 1 and 2 are partial views, in perspective and exploded of a mobile wheel according to the invention
  • FIG. 3 is an assembled view and in axial section of the wheel of Figure 1;
  • FIG. 4 is a sectional view along IV-IV of Figure 3;
  • FIGS. 5A and 5B show an exemplary embodiment of the helical connection between the discs of the wheel of FIGS. 1 and 2;
  • FIGS. 6A and 6B are views, respectively in longitudinal section and in perspective, of a mobile wheel according to an alternative embodiment of the invention.
  • Figures 1 and 2 show, partially and exploded, a movable wheel 10 according to the invention.
  • This wheel comes from a stage of the low-pressure turbine of an aviation turbine engine.
  • the invention applies more generally to any mobile wheel of a gas turbine engine (aeronautic or industrial).
  • This wheel comprises a holding disk 100 and a clamping disc 200, these discs being metallic and centered on the longitudinal axis X-X of the low-pressure turbine around which they are rotated.
  • the retaining disk 100 is provided at its periphery with a plurality of teeth 102 which protrude radially outwardly from the disk. These teeth 102 are regularly spaced from each other over the entire circumference of the disc and delimit between them grooves 104.
  • the teeth 102 have side faces 102a which are substantially planar.
  • One of the lateral faces of these teeth comprises a pin 102b which extends from this lateral face in a circumferential direction.
  • Such a pin may have a cross section which is substantially circular as shown in Figure 1 or which may be of another form.
  • the holding disk 100 also comprises an annular clamping flange 106 which extends upstream (with respect to the direction of flow of the gas flow passing through the turbine).
  • the clamping disc 200 it is provided at its periphery with a plurality of teeth 202 which extend in an axial direction. These teeth are as numerous as the teeth 102 of the holding disk and each have side faces 202a which are substantially planar. They are regularly spaced from each other over the entire circumference of the disc and delimit between them grooves 204.
  • the clamping disc 200 also includes an annular clamp 206 that extends upstream from the bottom of the grooves. This fixing flange is intended to be mounted against the corresponding attachment flange 106 of the holding disk 100.
  • the wheel 10 further comprises a plurality of blades 300 which are made of composite material, for example ceramic matrix composite material (CMC), from processes known to those skilled in the art.
  • CMC ceramic matrix composite material
  • each blade 300 comprises a blade 302, a foot 304, an inner platform 306 located between the foot and the blade and optionally an outer platform or heel 308 near its free end.
  • Document FR 2,939,129 the content of which is incorporated herein by reference, describes an exemplary embodiment of such a blade in one and the same piece.
  • each blade 300 has a first and a second lateral face 304a which are substantially flat and which are traversed through by a hole 304b of complementary shape to the pins 102b of the teeth 102 of the holding disk.
  • Such an orifice may be manufactured during the process of manufacturing the blade, either by using a correspondingly shaped insert during weaving, or by drilling the foot after the first infiltration.
  • Each blade 300 is held on the retaining disk by means in particular of the clamping disc according to the following procedure (FIGS. 3, 4, 5A and 5B).
  • each blade is first mounted between two adjacent teeth 102 of the clamping disc: it is more precisely mounted so that its first lateral face comes in plane bearing against the lateral face of the tooth which is provided with the pin 102b , the latter passing through the hole 304b of the foot so as to make a pivot connection between the root of the blade and the corresponding tooth of the holding disk.
  • the clamping disk 200 is then brought axially from the upstream to the downstream so that its teeth 202 are each positioned circumferentially between a blade root 304 and a tooth 202 of the holding disk. More precisely, one of the lateral faces 202a of the tooth in question of the clamping disc bears in plane bearing against the second lateral face 304a of the blade root.
  • a clamping force in a circumferential direction is exerted by the teeth 202 of the clamping disc 200 against the roots of the blades 304.
  • This clamping force is obtained by means of a helical connection between the holding and clamping discs which is described hereinafter with reference to FIGS. 5A and 5B.
  • the clamping disc 200 of the wheel is fixed on the holding disc 100 by means of the respective fastening flanges 206, 106 of these discs.
  • these attachment flanges 206, 106 each have a plurality of holes, respectively 208, 108, regularly distributed about the axis XX.
  • the holes 208 of the clamping disk are distributed around the axis XX so as to be slightly eccentric with respect to the holes 108 of the holding disk when the centering disk is positioned on the clamping disc (this small centering gap is schematized by the Y mark in Figure 5A).
  • Positioning screws 400 each pass through two holes made opposite one another in the flanges for fixing the disks. These screws each have a threaded rod 402 of smaller diameter than the holes 108, 208 so as to be able to pass without contact.
  • the threaded rod connects to the screw head 404 by means of a larger diameter cylinder 406 (the diameter difference between the cylinder 406 and the threaded rod 402 is at least twice the value of the offset Y).
  • the feet 304 of the blades 300 are clamped between the two discs 100, 200 of the wheel ensuring a perfect maintenance of the blades.
  • This clamping is performed with a clearance which is calculated according to the expansion gaps and geometric dispersions due to manufacturing tolerances and displacements of the disks.
  • the orientation of the blades on the disks can be obtained either by radial abutment of each blade root 304 in the bottom of the corresponding groove 104 of the holding disk, or by axial abutment of each blade root in the bottom of the groove 204 of the clamping disc.
  • centering means of the clamping disk 200 on the holding disk 100 can be advantageously provided centering means of the clamping disk 200 on the holding disk 100. As shown in FIG. 3, such centering can be achieved by means of an annular shoulder 210 formed at the free end of the fastening flange 206 of the clamping disc and housed under the fastening flange 106 of the holding disk. Thus, it is possible to maintain in position the planar supports of the blade roots and to facilitate the assembly of the blades.
  • Figures 6A and 6B show a mobile wheel 10 'according to an alternative embodiment of the invention.
  • clamping disk 200 is formed of a plurality of disk angular segments 200a which are circumferentially end-to-end to form a 360 ° ring. Such sectoring of the clamping disk makes it easier to mount it on the holding disk 100.
  • a double centering of the clamping disc is provided on the holding disc: a first centering is achieved by the annular shoulder 210 formed at the free end of the fastening flange 206 of the disc and a second centering is formed by an annular shoulder 212 of the clamping disk being positioned against a corresponding annular shoulder 110 of the holding disk ( Figure 6A).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne une roue mobile (10) pour moteur à turbine à gaz, comprenant un disque métallique de maintien (100) ayant à sa périphérie une pluralité de dents s'étendant radialement vers l'extérieur du disque, une pluralité d'aubes en matériau composite (300), chaque aube comprenant un pied (304) qui est engagé entre deux dents adjacentes du disque de maintien et qui est maintenu entre ces dents par une liaison pivot, un disque de serrage (200) ayant à sa périphérie une pluralité de dents s'étendant selon une direction axiale, le disque de serrage étant fixé coaxialement sur le disque de maintien avec ses dents venant chacune se positionner circonférentiellement entre un pied d'aube et une dent du disque de maintien, et des moyens (400) pour exercer un effort serrage selon une direction circonférentielle des dents du disque de serrage contre les pieds des aubes.

Description

Roue mobile à aubes en matériau composite pour moteur à turbine à gaz à liaison pied d'aube/disque par serrage Arrière-plan de l'invention
L'invention concerne le montage d'aubes en matériau composite sur un disque d'une roue mobile de moteur à turbine à gaz.
Le domaine visé est celui des moteurs aéronautiques et des turbines industrielles.
Une roue mobile d'un moteur à turbine à gaz, comme par exemple une roue de turbine basse-pression d'une turbomachine aéronautique, comprend généralement un disque muni à sa périphérie d'une pluralité d'alvéoles dans lesquelles sont montées les aubes de la roue par leur pied respectif.
II devient commun de remplacer les aubes métalliques d'une telle roue mobile par des aubes réalisées en matériau composite, le disque de rotor restant métallique. L'utilisation d'un matériau composite pour la fabrication des aubes se justifie en effet par sa très bonne tenue aux températures élevées auxquelles sont soumises les aubes. On pourra se référer par exemple à la demande de brevet FR 2,939,129 déposée conjointement aux noms de Snecma et de Snecma Propulsion Solide qui décrit la fabrication d'une aube de turbomachine par réalisation d'une préforme fibreuse par tissage tridimensionnel et densification de la préforme par une matrice.
Par rapport à une aube métallique obtenue de fonderie, une aube en matériau composite présente certains inconvénients liés notamment au montage de celle-ci sur un disque métallique. En particulier, un procédé tel que celui décrit dans le document FR 2,939,129 ne permet pas d'obtenir des aubes dont les tolérances dimensionnelles soient aussi fines et précises que pour les aubes métalliques. Il en résulte des jeux fonctionnels importants entre les pieds des aubes et les alvéoles du disque dans lesquelles ils sont montés. Or, de tels jeux provoquent des basculements des aubes autour de leur pied, ce qui réduit les performances du moteur (les fuites de gaz entre les plates-formes des aubes sont augmentées). Objet et résumé de l'invention
La présente invention a donc pour but principal de proposer une roue ne présentant pas les inconvénients précités.
Ce but est atteint grâce à une roue mobile pour moteur à turbine à gaz, comprenant ;
un disque métallique de maintien ayant à sa périphérie une pluralité de dents s'étendant radialement vers l'extérieur du disque ;
une pluralité d'aubes en matériau composite, chaque aube comprenant un pied qui est engagé entre deux dents adjacentes du disque de maintien et qui est maintenu entre ces dents par une liaison pivot ;
un disque de serrage ayant à sa périphérie une pluralité de dents s'étendant selon une direction axiale, le disque de serrage étant fixé coaxialement sur le disque de maintien avec ses dents venant chacune se positionner circonférentiellement entre un pied d'aube et une dent du disque de maintien ; et
des moyens pour exercer un effort de serrage selon une direction circonférentielle des dents du disque de serrage contre les pieds des aubes.
Avec une telle roue, les aubes sont maintenues sur le disque de maintien par serrage de leur pied sur le disque. Plus précisément, les pieds des aubes sont serrés entre les dents des deux disques de la roue. Les liaisons entre les aubes en matériau composite et le disque métallique sont ainsi rigidifiées, ce qui permet de réduire les jeux entre les aubes et donc d'éviter les pertes de performance du moteur.
De préférence, le disque de serrage est fixé sur le disque de maintien au moyen d'une liaison hélicoïdale permettant d'exercer un effort de serrage selon une direction circonférentielle des dents du disque de serrage contre les pieds des aubes. Cette liaison hélicoïdale peut comprendre une pluralité de vis de positionnement traversant chacune deux trous excentrés pratiqués dans des brides de fixation des disques.
De préférence également, chaque liaison pivot comprend un pion qui s'étend depuis une face latérale de l'une des dents du disque de maintien selon une direction circonférentielle et qui traverse un perçage réalisé dans le pied de l'aube correspondante. Chaque pied d'aube peut comprendre une première face latérale qui est en appui plan contre une face latérale d'une dent du disque de maintien et une seconde face latérale opposée à la première qui est en appui plan contre une face latérale d'une dent du disque de serrage.
Avantageusement, la roue comprend en outre des moyens de centrage du disque de serrage sur le disque de maintien.
Le disque de serrage peut comprendre une pluralité de segments angulaires de disque mis bout à bout circonférentiellement.
Chaque pied d'aube peut venir en butée radialement dans le fond d'une gorge délimitée entre deux dents adjacentes du disque de maintien. Alternativement, chaque pied d'aube peut venir en butée axialement dans le fond d'une gorge délimitée entre deux dents adjacentes du disque de serrage.
L'invention concerne également un moteur à turbine à gaz comprenant au moins une roue telle que définie précédemment.
Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent des exemples de réalisation dépourvus de tout caractère limitatif. Sur les figures :
- les figures 1 et 2 sont des vues partielles, en perspective et en éclaté d'une roue mobile selon l'invention ;
- la figure 3 est une vue assemblée et en coupe axiale de la roue de la figure 1 ;
- la figure 4 est une vue en coupe selon IV- IV de la figure 3 ;
- les figures 5A et 5B montrent un exemple de réalisation de la liaison hélicoïdale entre les disques de la roue des figures 1 et 2 ; et
- les figures 6A et 6B sont des vues, respectivement en coupe longitudinale et en perspective, d'une roue mobile selon une variante de réalisation de l'invention.
Description détaillée de modes de réalisation
Les figures 1 et 2 représentent, de façon partielle et en éclaté, une roue mobile 10 selon l'invention. Cette roue provient d'un étage de la turbine basse-pression d'une turbomachine aéronautique. Bien entendu, l'invention s'applique plus généralement à toute roue mobile d'un moteur à turbine à gaz (aéronautique ou industrielle).
Cette roue comprend un disque de maintien 100 et un disque de serrage 200, ces disques étant métalliques et centrés sur l'axe longitudinal X-X de la turbine basse-pression autour duquel ils sont mis en rotation.
Le disque de maintien 100 est muni à sa périphérie d'une pluralité de dents 102 qui font saillie radialement vers l'extérieur du disque. Ces dents 102 sont régulièrement espacées les unes des autres sur toute la circonférence du disque et délimitent entre elles des gorges 104.
Les dents 102 présentent des faces latérales 102a qui sont sensiblement planes. L'une des faces latérales de ces dents comprend un pion 102b qui s'étend depuis cette face latérale selon une direction circonférentielle. Un tel pion peut présenter une section droite qui est sensiblement circulaire comme représenté sur la figure 1 ou qui peut être d'une autre forme.
Le disque de maintien 100 comprend également une bride annulaire de fixation 106 qui s'étend vers l'amont (par rapport au sens d'écoulement du flux gazeux traversant la turbine).
Quant au disque de serrage 200, il est muni à sa périphérie d'une pluralité de dents 202 qui s'étendent selon une direction axiale. Ces dents sont aussi nombreuses que les dents 102 du disque de maintien et présentent chacune des faces latérales 202a qui sont sensiblement planes. Elles sont régulièrement espacées les unes des autres sur toute la circonférence du disque et délimitent entre elles des gorges 204.
Le disque de serrage 200 comprend également une bride annulaire de fixation 206 qui s'étend vers l'amont depuis le fond des gorges. Cette bride de fixation est destinée à être montée contre la bride de fixation 106 correspondante du disque de maintien 100.
La roue 10 comprend encore une pluralité d'aubes 300 qui sont réalisées en matériau composite, par exemple en matériau composite à matrice céramique (CMC), à partir de procédés connus de l'homme du métier. On pourra par exemple se référer à la demande de brevet FR 2,939,129 déposée conjointement aux noms de Snecma et de Snecma Propulsion Solide qui décrit la fabrication d'une telle aube comprenant un renfort fibreux obtenu par tissage tridimensionnel de fils et densifié par une matrice.
De façon plus précise, chaque aube 300 comprend une pale 302, un pied 304, une plate-forme intérieure 306 située entre le pied et la pale et éventuellement une plate-forme extérieure ou talon 308 au voisinage de son extrémité libre. Le document FR 2,939,129 dont le contenu est incorporé ici par référence décrit un exemple de réalisation d'une telle aube en une seule et même pièce.
Par ailleurs, le pied 304 de chaque aube 300 présente une première et une seconde face latérale 304a qui sont sensiblement planes et qui sont traversées de part en part par un orifice 304b de forme complémentaire aux pions 102b des dents 102 du disque de maintien. Un tel orifice peut être fabriqué au cours du processus de fabrication de l'aube, soit par l'utilisation d'un insert de forme correspondante lors du tissage, soit par le perçage du pied après la première infiltration.
Chaque aube 300 est maintenue sur le disque de maintien au moyen notamment du disque de serrage selon le mode opératoire suivant (figures 3, 4, 5A et 5B).
Le pied 304 de chaque aube est d'abord monté entre deux dents adjacentes 102 du disque de serrage : il est plus précisément monté de sorte que sa première face latérale vienne en appui plan contre la face latérale de la dent qui est munie du pion 102b, ce dernier traversant l'orifice 304b du pied de sorte à réaliser une liaison pivot entre le pied de l'aube et la dent correspondante du disque de maintien.
Le disque de serrage 200 est ensuite amené axialement depuis l'amont vers l'aval de sorte que ses dents 202 viennent chacune se positionner circonférentiellement entre un pied d'aube 304 et une dent 202 du disque de maintien. Plus précisément, l'une des faces latérales 202a de la dent en question du disque de serrage vient en appui plan contre la seconde face latérale 304a du pied d'aube.
Enfin, un effort de serrage selon une direction circonférentielle est exercé par les dents 202 du disque de serrage 200 contre les pieds des aubes 304. Cet effort de serrage est obtenu au moyen d'une liaison hélicoïdale entre les disques de maintien et de serrage qui est décrite ci- après en liaison avec les figures 5A et 5B. Comme indiqué précédemment, le disque de serrage 200 de la roue est fixé sur le disque de maintien 100 au moyen des brides de fixation 206, 106 respectives de ces disques. A cet effet, ces brides de fixation 206, 106 présentent chacune une pluralité de trous, respectivement 208, 108, régulièrement répartis autour de l'axe X-X. Les trous 208 du disque de serrage sont répartis autour de l'axe X-X de sorte à être légèrement excentrés par rapport aux trous 108 du disque de maintien lorsque le disque de centrage est positionné sur le disque de serrage (ce faible écart de centrage est schématisé par le repère Y sur la figure 5A).
Des vis de positionnement 400 traversent chacune deux trous pratiqués en regard l'un de l'autre dans les brides de fixation des disques. Ces vis présentent chacune une tige filetée 402 de diamètre inférieur aux trous 108, 208 de manière à pouvoir les traverser sans contact. Par ailleurs, la tige filetée se raccorde à la tête de vis 404 au moyen d'un cylindre 406 de plus grand diamètre (la différence de diamètre entre le cylindre 406 et la tige filetée 402 est égale au moins au double de la valeur de l'excentrage Y).
Comme représenté sur la figure 5B, un effort de pression suffisant sur la tête 404 des vis 400 permet de réaligner les trous 108, 208 entre eux (l'excentrage Y devient nul), ce qui a pour effet que le disque de serrage pivote légèrement autour de l'axe X-X en exerçant un effort de serrage de ses dents contre les pieds des aubes. Des écrous 408 sont alors vissés sur la tige filetée 402 des vis.
Ainsi, les pieds 304 des aubes 300 sont serrés entre les deux disques 100, 200 de la roue assurant un parfait maintien des aubes. Ce serrage est réalisé avec un jeu qui est calculé en fonction des jeux de dilatation et des dispersions géométriques dues aux tolérances de fabrication et aux déplacements des disques.
On notera que l'orientation des aubes sur les disques peut être obtenue, soit par une mise en butée radiale de chaque pied d'aube 304 dans le fond de la gorge 104 correspondante du disque de maintien, soit par une mise en butée axiale de chaque pied d'aube dans le fond de la gorge 204 du disque de serrage.
On notera également qu'il peut être avantageusement prévu des moyens de centrage du disque de serrage 200 sur le disque de maintien 100. Comme représenté sur la figure 3, un tel centrage peut être réalisé au moyen d'un épaulement annulaire 210 formé à l'extrémité libre de la bride de fixation 206 du disque de serrage et venant se loger sous la bride de fixation 106 du disque de maintien. Ainsi, il est possible de maintenir en position les appuis plans des pieds d'aube et de faciliter le montage des aubes.
Les figures 6A et 6B représentent une roue mobile 10' selon une variante de réalisation de l'invention.
Cette roue se distingue de celle précédemment décrite en ce que le disque de serrage 200 est formé d'une pluralité de segments angulaires de disque 200a qui sont mis bout à bout circonférentiellement pour former un anneau de 360°. Une telle sectorisation du disque de serrage permet d'en faciliter le montage sur le disque de maintien 100.
Par ailleurs, dans cette variante de réalisation, il est prévu un double centrage du disque de serrage sur le disque de maintien : un premier centrage est réalisé par l'épaulement annulaire 210 formé à l'extrémité libre de la bride de fixation 206 du disque de serrage et venant se loger sous la bride de fixation 106 du disque de maintien, et un second centrage est réalisé par un épaulement annulaire 212 du disque de serrage venant se positionner contre un épaulement annulaire 110 correspondant du disque de maintien (figure 6A).

Claims

REVENDICATIONS
1. Roue mobile (10 ; 10') pour moteur à turbine à gaz, comprenant :
un disque métallique de maintien (100) ayant à sa périphérie une pluralité de dents (102) s'étendant radialement vers l'extérieur du disque ;
une pluralité d'aubes en matériau composite (300), chaque aube comprenant un pied (304) qui est engagé entre deux dents adjacentes du disque de maintien et qui est maintenu entre ces dents par une liaison pivot ;
un disque de serrage (200) ayant à sa périphérie une pluralité de dents (202) s'étendant selon une direction axiale, le disque de serrage étant fixé coaxialement sur le disque de maintien avec ses dents venant chacune se positionner circonférentiellement entre un pied d'aube et une dent du disque de maintien ; et
des moyens (400) pour exercer un effort de serrage selon une direction circonférentielle des dents du disque de serrage contre les pieds des aubes.
2. Roue selon la revendication 1, dans laquelle le disque de serrage (200) est fixé sur le disque de maintien (100) au moyen d'une liaison hélicoïdale permettant d'exercer un effort de serrage selon une direction circonférentielle des dents du disque de serrage contre les pieds des aubes.
3. Roue selon la revendication 2, dans laquelle la liaison hélicoïdale comprend une pluralité de vis de positionnement (400) traversant chacune deux trous (108, 208) excentrés pratiqués dans des brides de fixation (106, 206) des disques.
4. Roue selon l'une quelconque des revendications 1 à 3, dans laquelle chaque liaison pivot comprend un pion (102b) qui s'étend depuis une face latérale (102a) de l'une des dents (102) du disque de maintien selon une direction circonférentielle et qui traverse un perçage (304b) réalisé dans le pied (304) de l'aube correspondante.
5. Roue selon l'une quelconque des revendications 1 à 4, dans laquelle chaque pied d'aube (304) comprend une première face latérale (304a) qui est en appui plan contre une face latérale d'une dent du disque de maintien et une seconde face latérale (304a) opposée à la première qui est en appui plan contre une face latérale d'une dent du disque de serrage.
6. Roue selon l'une quelconque des revendications 1 à 5, comprenant en outre des moyens (210) de centrage du disque de serrage sur le disque de maintien.
7. Roue selon l'une quelconque des revendications 1 à 6, dans laquelle le disque de serrage comprend une pluralité de segments angulaires (200a) de disque mis bout à bout circonférentiellement.
8. Roue selon l'une quelconque des revendications 1 à 7, dans laquelle chaque pied d'aube (304) vient en butée radialement dans le fond d'une gorge (104) délimitée entre deux dents (102) adjacentes du disque de maintien (100).
9. Roue selon l'une quelconque des revendications 1 à 7, dans laquelle chaque pied d'aube (304) vient en butée axialement dans le fond d'une gorge (204) délimitée entre deux dents (202) adjacentes du disque de serrage (200).
10. Roue selon l'une quelconque des revendications 1 à 9, dans laquelle les aubes (300) sont en matériau composite à matrice céramique.
11. Moteur à turbine à gaz comprenant au moins une roue (10 ; 10') selon l'une quelconque des revendications 1 à 10.
PCT/FR2011/051424 2010-06-25 2011-06-21 Roue mobile a aubes en materiau composite pour moteur a turbine a gaz a liaison pied d'aube/disque par serrage WO2011161371A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/698,208 US9422818B2 (en) 2010-06-25 2011-06-21 Gas turbine engine rotor wheel having composite material blades with blade-root to disk connection being obtained by clamping
GB1222521.5A GB2496531B (en) 2010-06-25 2011-06-21 A gas turbine engine rotor wheel having composite material blades with blade-root to disk connection being obtained by clamping

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055113A FR2961847B1 (fr) 2010-06-25 2010-06-25 Roue mobile a aubes en materiau composite pour moteur a turbine a gaz a liaison pied d'aube/disque par serrage
FR1055113 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011161371A1 true WO2011161371A1 (fr) 2011-12-29

Family

ID=43533408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051424 WO2011161371A1 (fr) 2010-06-25 2011-06-21 Roue mobile a aubes en materiau composite pour moteur a turbine a gaz a liaison pied d'aube/disque par serrage

Country Status (4)

Country Link
US (1) US9422818B2 (fr)
FR (1) FR2961847B1 (fr)
GB (1) GB2496531B (fr)
WO (1) WO2011161371A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004748A1 (fr) * 2013-04-19 2014-10-24 Snecma Aube ou pale de moteur d'aeronef et procede et systeme de controle de defauts dans des composites par des particules ayant des proprietes ferromagnetiques
EP2820297B1 (fr) * 2012-02-29 2023-08-16 Raytheon Technologies Corporation Turbine d'entraînement de soufflante légère

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082193B2 (ja) * 2012-06-20 2017-02-15 株式会社Ihi 翼の連結部構造及びこれを用いたジェットエンジン
FR3006364B1 (fr) * 2013-05-30 2018-07-13 Safran Aircraft Engines Roue de turbomachine, notamment pour turbine basse pression
US10280768B2 (en) 2014-11-12 2019-05-07 Rolls-Royce North American Technologies Inc. Turbine blisk including ceramic matrix composite blades and methods of manufacture
US9909430B2 (en) 2014-11-13 2018-03-06 Rolls-Royce North American Technologies Inc. Turbine disk assembly including seperable platforms for blade attachment
RU2603384C1 (ru) * 2015-11-25 2016-11-27 Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо") Рабочее колесо третьей ступени ротора компрессора низкого давления турбореактивного двигателя (варианты)
RU2603377C1 (ru) * 2015-11-25 2016-11-27 Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо") Рабочее колесо ротора компрессора низкого давления газотурбинного двигателя (варианты)
RU2603383C1 (ru) * 2015-11-25 2016-11-27 Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо") Рабочее колесо второй ступени ротора компрессора низкого давления турбореактивного двигателя (варианты)
FR3057908B1 (fr) * 2016-10-21 2019-11-22 Safran Aircraft Engines Ensemble rotatif d'une turbomachine muni d'un systeme de maintien axial d'une aube
US10294954B2 (en) 2016-11-09 2019-05-21 Rolls-Royce North American Technologies Inc. Composite blisk
US10563665B2 (en) 2017-01-30 2020-02-18 Rolls-Royce North American Technologies, Inc. Turbomachine stage and method of making same
CN114055102B (zh) * 2021-10-20 2023-03-07 中国航发四川燃气涡轮研究院 一种单涡轮叶片叶尖加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE165854C (de) * 1904-10-18 1905-12-01 Hohenzollern Ag Für Lokomotivbau Befestigung der schaufeln achsialer dampf- oder gasturbinen
US2988324A (en) * 1957-06-14 1961-06-13 Napier & Son Ltd Rotors for multi-stage axial flow compressors or turbines
US4097276A (en) * 1975-07-17 1978-06-27 The Garrett Corporation Low cost, high temperature turbine wheel and method of making the same
FR2918409A1 (fr) * 2007-07-05 2009-01-09 Snecma Sa Partie tournante de turbomachine comprenant des secteurs inter-aubes formant plateforme rapportes fixement sur un disque
FR2939129A1 (fr) 2008-11-28 2010-06-04 Snecma Propulsion Solide Aube de turbomachine en materiau composite et procede pour sa fabrication.
FR2941487A1 (fr) * 2009-01-28 2010-07-30 Snecma Aube de turbomachine en materiau composite a pied renforce

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2220918A (en) * 1938-08-27 1940-11-12 Gen Electric Elastic fluid turbine bucket wheel
GB699582A (en) * 1950-11-14 1953-11-11 Rolls Royce Improvements in or relating to gas-turbine engines
BE540433A (fr) * 1954-08-12
US2948505A (en) * 1956-12-26 1960-08-09 Gen Electric Gas turbine rotor
US3023998A (en) * 1959-03-13 1962-03-06 Jr Walter H Sanderson Rotor blade retaining device
US3077811A (en) * 1960-08-08 1963-02-19 Ca Nat Research Council Continuous retaining ring adapted for radial expansion
US3266770A (en) * 1961-12-22 1966-08-16 Gen Electric Turbomachine rotor assembly
US3165294A (en) * 1962-12-28 1965-01-12 Gen Electric Rotor assembly
US3356340A (en) * 1965-03-15 1967-12-05 Gen Electric Turbine rotor constructions
US3300179A (en) * 1966-04-22 1967-01-24 Gen Motors Corp Blade stalk cover plate
US3554668A (en) * 1969-05-12 1971-01-12 Gen Motors Corp Turbomachine rotor
US3666376A (en) * 1971-01-05 1972-05-30 United Aircraft Corp Turbine blade damper
US3748060A (en) * 1971-09-14 1973-07-24 Westinghouse Electric Corp Sideplate for turbine blade
BE794573A (fr) * 1972-02-02 1973-05-16 Gen Electric Dispositif de fixation d'aubes
US4033705A (en) * 1976-04-26 1977-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Blade retainer assembly
US4344740A (en) * 1979-09-28 1982-08-17 United Technologies Corporation Rotor assembly
US4389161A (en) * 1980-12-19 1983-06-21 United Technologies Corporation Locking of rotor blades on a rotor disk
US4566857A (en) * 1980-12-19 1986-01-28 United Technologies Corporation Locking of rotor blades on a rotor disk
FR2608674B1 (fr) * 1986-12-17 1991-04-19 Snecma Roue de turbine a aubes ceramique
US4781534A (en) * 1987-02-27 1988-11-01 Westinghouse Electric Corp. Apparatus and method for reducing windage and leakage in steam turbine incorporating axial entry blade
US4859149A (en) * 1989-03-10 1989-08-22 General Motors Corporation Blade locking system
US5030063A (en) * 1990-02-08 1991-07-09 General Motors Corporation Turbomachine rotor
FR2679599A1 (fr) * 1991-07-24 1993-01-29 Snecma Perfectionnement aux roues a aubes de turbomachines.
US5277548A (en) * 1991-12-31 1994-01-11 United Technologies Corporation Non-integral rotor blade platform
US5256035A (en) * 1992-06-01 1993-10-26 United Technologies Corporation Rotor blade retention and sealing construction
US5281098A (en) * 1992-10-28 1994-01-25 General Electric Company Single ring blade retaining assembly
JPH0988506A (ja) * 1995-09-21 1997-03-31 Ngk Insulators Ltd ハイブリッド型ガスタービン動翼用のブレード及びタービンディスク並びにこれらからなるハイブリッド型ガスタービン動翼
FR2803623B1 (fr) * 2000-01-06 2002-03-01 Snecma Moteurs Agencement de retenue axiale d'aubes dans un disque
US6846159B2 (en) * 2002-04-16 2005-01-25 United Technologies Corporation Chamfered attachment for a bladed rotor
FR2860031B1 (fr) * 2003-09-19 2007-09-07 Snecma Moteurs Roue de turbine pour turbomachine et procede de montage d'une telle roue
DE102004051116A1 (de) * 2004-10-20 2006-04-27 Mtu Aero Engines Gmbh Rotor einer Turbomaschine, insbesondere Gasturbinenrotor
FR2913734B1 (fr) * 2007-03-16 2009-05-01 Snecma Sa Soufflante de turbomachine
US7806662B2 (en) * 2007-04-12 2010-10-05 Pratt & Whitney Canada Corp. Blade retention system for use in a gas turbine engine
FR2940353B1 (fr) * 2008-12-23 2011-02-11 Snecma Roue mobile de turbomachine a aubes en materiau composite.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE165854C (de) * 1904-10-18 1905-12-01 Hohenzollern Ag Für Lokomotivbau Befestigung der schaufeln achsialer dampf- oder gasturbinen
US2988324A (en) * 1957-06-14 1961-06-13 Napier & Son Ltd Rotors for multi-stage axial flow compressors or turbines
US4097276A (en) * 1975-07-17 1978-06-27 The Garrett Corporation Low cost, high temperature turbine wheel and method of making the same
FR2918409A1 (fr) * 2007-07-05 2009-01-09 Snecma Sa Partie tournante de turbomachine comprenant des secteurs inter-aubes formant plateforme rapportes fixement sur un disque
FR2939129A1 (fr) 2008-11-28 2010-06-04 Snecma Propulsion Solide Aube de turbomachine en materiau composite et procede pour sa fabrication.
FR2941487A1 (fr) * 2009-01-28 2010-07-30 Snecma Aube de turbomachine en materiau composite a pied renforce

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2820297B1 (fr) * 2012-02-29 2023-08-16 Raytheon Technologies Corporation Turbine d'entraînement de soufflante légère
EP4245965A3 (fr) * 2012-02-29 2023-12-20 RTX Corporation Turbine légère d'entraînement de ventilateur
FR3004748A1 (fr) * 2013-04-19 2014-10-24 Snecma Aube ou pale de moteur d'aeronef et procede et systeme de controle de defauts dans des composites par des particules ayant des proprietes ferromagnetiques

Also Published As

Publication number Publication date
US20130156590A1 (en) 2013-06-20
FR2961847B1 (fr) 2012-08-17
GB2496531B (en) 2018-03-07
FR2961847A1 (fr) 2011-12-30
US9422818B2 (en) 2016-08-23
GB2496531A (en) 2013-05-15
GB201222521D0 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2011161371A1 (fr) Roue mobile a aubes en materiau composite pour moteur a turbine a gaz a liaison pied d'aube/disque par serrage
EP0146449B1 (fr) Dispositif de centrage de l'anneau intérieur d'un stator à ailettes à calage variable
EP2315642B1 (fr) Procede de reparation ou de reprise d'un disque de turbomachine
FR2940353A1 (fr) Roue mobile de turbomachine a aubes en materiau composite.
EP3781792B1 (fr) Distributeur en cmc avec reprise d'effort par une pince étanche
EP1918512B1 (fr) Système d'équilibrage pour rotor de turbomachine
FR2941487A1 (fr) Aube de turbomachine en materiau composite a pied renforce
EP1481756B1 (fr) Procédé de fabrication d'une aube creuse pour turbomachine
EP4051879B1 (fr) Turbine de turbomachine a distributeur en cmc avec reprise d'effort
EP4045398B1 (fr) Ensemble pour une aube de turbomachine comprenant une attache définissant une alvéole et une cale adaptée pour être reçue dans l'alvéole en même temps qu'un pied de l'aube
EP4034776B1 (fr) Ensemble de soufflante de turbomachine comprenant un roulement à rouleaux et un roulement à double rangée de billes à contact oblique
EP2533938B1 (fr) Procédé de réparation d'une bride d'un carter
FR2918726A1 (fr) Accouplement d'arbres par engrenage a denture droite.
EP2564031B1 (fr) Pièce anti-usure pour échasse d'aube de soufflante de turboréacteur
FR2956152A1 (fr) Dispositif d'amortissement de vibrations entre talons d'aubes adjacentes en materiau composite d'une roue mobile de turbomachine.
EP2058477A1 (fr) Raccordement de bras radiaux a une virole circulaire par des axes et des entretoises
EP3983650B1 (fr) Turbine de turbomachine à distributeur en cmc avec reprise d'effort
FR2962156A1 (fr) Roue mobile a aubes en materiau composite pour moteur a turbine a gaz a liaison pied d'aube/disque par visserie
WO2022219282A2 (fr) Turbine de turbomachine a distributeur en cmc avec reprise d'effort et ajustement de position
EP1840328A1 (fr) Secteur de redresseurs, étage de compression, compresseur et turbomachine comportant un tel secteur
FR3108665A1 (fr) Rotor de soufflante comprenant des aubes à centre de gravité en amont
FR3114348A1 (fr) Turbine de turbomachine à distributeur en CMC avec reprise d’effort
FR2606071A1 (fr) Etage de stator et compresseur de turbomachine le comportant
FR2962481A1 (fr) Amortisseur de vibrations a bras de levier pour aube d'un rotor de moteur a turbine a gaz
FR2948737A1 (fr) Secteur de virole exterieure pour couronne aubagee de stator de turbomachine d'aeronef, comprenant des cales amortisseuses de vibrations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1222521

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110621

WWE Wipo information: entry into national phase

Ref document number: 1222521.5

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13698208

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11736422

Country of ref document: EP

Kind code of ref document: A1