WO2011159110A2 - 무선 통신 시스템에서 수신 확인 전송 방법 및 장치 - Google Patents
무선 통신 시스템에서 수신 확인 전송 방법 및 장치 Download PDFInfo
- Publication number
- WO2011159110A2 WO2011159110A2 PCT/KR2011/004419 KR2011004419W WO2011159110A2 WO 2011159110 A2 WO2011159110 A2 WO 2011159110A2 KR 2011004419 W KR2011004419 W KR 2011004419W WO 2011159110 A2 WO2011159110 A2 WO 2011159110A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resource
- ack
- acknowledgment
- nack
- terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0016—Time-frequency-code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/02—Selection of wireless resources by user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
Definitions
- the present invention relates to wireless communication, and more particularly, to an acknowledgment transmission method and apparatus in a wireless communication system.
- LTE Long term evolution
- 3GPP 3rd Generation Partnership Project
- TS Technical Specification
- the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
- PDSCH Physical Downlink
- PUSCH physical uplink shared channel
- PUCCH physical uplink control channel
- PUCCH is an uplink control channel used for transmission of uplink control information such as a hybrid automatic repeat request (HARQ) ACK / NACK signal, a channel quality indicator (CQI), and a scheduling request (SR).
- uplink control information such as a hybrid automatic repeat request (HARQ) ACK / NACK signal, a channel quality indicator (CQI), and a scheduling request (SR).
- HARQ hybrid automatic repeat request
- CQI channel quality indicator
- SR scheduling request
- 3GPP LTE-A (advanced) is an evolution of 3GPP LTE.
- the technologies introduced in 3GPP LTE-A include carrier aggregation and multiple input multiple output (MIMO) supporting four or more antenna ports.
- MIMO multiple input multiple output
- Carrier aggregation uses a plurality of component carriers.
- Component carriers are defined by center frequency and bandwidth.
- One uplink component carrier and one downlink component carrier correspond to one cell.
- a terminal receiving a service using a plurality of downlink component carriers may be said to receive a service from a plurality of serving cells.
- the bit size of the ACK / NACK signal for the downlink transport blocks increases. For example, if eight downlink transport blocks are received from the transmitter, the receiver needs to transmit an 8 bit ACK / NACK signal.
- the PUCCH structure is basically designed based on a 2-bit ACK / NACK signal, it is necessary to design a control channel for carrying an ACK / NACK signal having an increased bit size.
- control channel is designed according to the maximum capacity, it may be inefficient for the transmission of the signal of the ACK / NACK signal having a small bit size.
- control channel It is necessary to design the control channel to have high reliability for ACK / NACK signals with varying bit sizes.
- the present invention provides a method and apparatus for determining a resource for acknowledgment when there are a plurality of serving cells and transmitting the acknowledgment using the determined resource.
- a method of transmitting acknowledgment in a wireless communication system includes a terminal receiving at least one downlink transport block from at least one serving cell, the terminal selecting one of an explicit resource and an implicit resource, and the terminal using the selected resource Transmitting an acknowledgment for the at least one downlink transport block, wherein the explicit resource is obtained from a downlink resource allocation used for transmission of the at least one downlink transport block and the implicit resource Is obtained from a resource used for transmission of a control channel for the downlink resource allocation.
- Selecting one of the explicit resource and the implicit resource may include the step of the terminal selecting the implicit resource upon receiving the at least one downlink transport block from one serving cell.
- the one serving cell may be a primary cell.
- Selecting one of the explicit resource and the implicit resource may further include selecting, by the terminal, the explicit resource when the at least one downlink transport block is received from a plurality of serving cells. .
- a terminal for transmitting an acknowledgment in a wireless communication system includes an RF unit for transmitting and receiving a radio signal, and a processor connected to the RF unit, wherein the processor receives at least one downlink transport block from at least one serving cell, an explicit resource and implied Select one of the available resources, and transmit an acknowledgment for the at least one downlink transport block using the selected resource, wherein the processor sends the explicit resource to the transmission of the at least one downlink transport block;
- the implicit resource is obtained from a downlink resource allocation used, and the implicit resource is obtained from a resource used for transmission of a control channel for the downlink resource allocation.
- an appropriate uplink control channel can be set according to the channel capacity required for transmission of an acknowledgment.
- resources for an uplink control channel may be more efficiently set.
- 1 shows a structure of a downlink radio frame in 3GPP LTE.
- FIG. 2 shows a structure of an uplink subframe in 3GPP LTE.
- 3 shows PUCCH format 1b in a normal CP in 3GPP LTE.
- FIG. 5 is an exemplary diagram illustrating a structure of a PUCCH format 3 in a normal CP.
- FIG. 6 is a flowchart illustrating a method of performing HARQ using PUCCH format 3.
- FIG 9 illustrates a method of transmitting a receipt acknowledgment according to an embodiment of the present invention.
- FIG. 10 illustrates a method of transmitting a receipt acknowledgment according to an embodiment of the present invention.
- FIG. 11 illustrates a method of transmitting a receipt acknowledgment according to an embodiment of the present invention.
- FIG. 12 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
- the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
- MS mobile station
- MT mobile terminal
- UT user terminal
- SS subscriber station
- PDA personal digital assistant
- a base station generally refers to a fixed station for communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
- eNB evolved-NodeB
- BTS base transceiver system
- access point an access point
- E-UTRA Evolved Universal Terrestrial Radio Access
- R-UTRA Physical Channels and Modulation
- a radio frame consists of 20 slots indexed from 0 to 19.
- One subframe consists of two slots.
- the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
- TTI transmission time interval
- one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
- One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
- OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
- OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
- SC-FDMA single carrier-frequency division multiple access
- One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot is not limited according to the length of a cyclic prefix (CP).
- CP cyclic prefix
- a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
- the DL (downlink) subframe is divided into a control region and a data region in the time domain.
- the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
- PDCCH and other control channels are allocated to the control region, and PDSCH is allocated to the data region.
- a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
- PDSCH physical downlink shared channel
- PUSCH physical downlink shared channel
- PDCCH physical downlink control channel
- PCFICH physical channel
- the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
- CFI control format indicator
- the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
- the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
- the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (ACK) signal for an uplink hybrid automatic repeat request (HARQ).
- ACK positive-acknowledgement
- ACK negative-acknowledgement
- HARQ uplink hybrid automatic repeat request
- the ACK / NACK signal for UL (uplink) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
- the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
- the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
- MIB master information block
- SIB system information block
- DCI downlink control information
- PDSCH also called DL grant
- PUSCH resource allocation also called UL grant
- VoIP Voice over Internet Protocol
- blind decoding is used to detect the PDCCH.
- Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a candidatetae PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
- the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a Radio Network Temporary Identifier) Mask to the CRC.
- CRC cyclic redundancy check
- FIG. 2 shows a structure of an uplink subframe in 3GPP LTE.
- the UL (uplink) subframe is divided into a region in which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain and a data region in which a physical uplink shared channel (PUSCH) carrying user data is allocated. Can be.
- PUCCH physical uplink control channel
- PUSCH physical uplink shared channel
- PUCCH is allocated to an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot.
- m is a position index indicating a logical frequency domain position of an RB pair allocated to a PUCCH in a subframe. It is shown that an RB having the same m value occupies different subcarriers in two slots.
- PUCCH supports multiple formats.
- a PUCCH having a different number of bits per subframe may be used according to a modulation scheme dependent on the PUCCH format.
- Table 1 shows an example of a modulation scheme and the number of bits per subframe according to the PUCCH format.
- PUCCH format 1 is used for transmission of SR (Scheduling Request)
- PUCCH format 1a / 1b is used for transmission of ACK / NACK signal for HARQ
- PUCCH format 2 is used for transmission of CQI
- PUCCH format 2a / 2b is used for CQI and Used for simultaneous transmission of ACK / NACK signals.
- PUCCH format 1a / 1b is used when transmitting only the ACK / NACK signal in the subframe
- PUCCH format 1 is used when the SR is transmitted alone.
- PUCCH format 1 is used, and an ACK / NACK signal is modulated and transmitted on a resource allocated to the SR.
- All PUCCH formats use a cyclic shift (CS) of the sequence in each OFDM symbol.
- the cyclically shifted sequence is generated by cyclically shifting a base sequence by a specific cyclic shift amount.
- the specific CS amount is indicated by the cyclic shift index (CS index).
- n is the element index
- N is the length of the base sequence.
- b (n) is defined in section 5.5 of 3GPP TS 36.211 V8.7.0.
- the length of the sequence is equal to the number of elements included in the sequence. u may be determined by a cell identifier (ID), a slot number in a radio frame, or the like.
- ID cell identifier
- the length N of the base sequence is 12 since one resource block includes 12 subcarriers. Different base sequences define different base sequences.
- the cyclically shifted sequence r (n, I cs ) may be generated by cyclically shifting the basic sequence r (n) as shown in Equation 2 below.
- I cs is a cyclic shift index indicating the CS amount (0 ⁇ I cs ⁇ N-1).
- the available cyclic shift index of the base sequence refers to a cyclic shift index derived from the base sequence according to the CS interval. For example, if the length of the base sequence is 12 and the CS interval is 1, the total number of available cyclic shift indices of the base sequence is 12. Alternatively, if the length of the base sequence is 12 and the CS interval is 2, the total number of available cyclic shift indices of the base sequence is six.
- 3 shows PUCCH format 1b in a normal CP in 3GPP LTE.
- One slot includes seven OFDM symbols, three OFDM symbols become RS (Reference Signal) OFDM symbols for the reference signal, and four OFDM symbols become data OFDM symbols for the ACK / NACK signal.
- RS Reference Signal
- modulation symbol d (0) is generated by modulating an encoded 2-bit ACK / NACK signal with Quadrature Phase Shift Keying (QPSK).
- QPSK Quadrature Phase Shift Keying
- the cyclic shift index I cs may vary depending on the slot number n s in the radio frame and / or the symbol index l in the slot.
- the modulation symbol d (0) is spread to the cyclically shifted sequence r (n, I cs ).
- r n, I cs .
- the one-dimensional spread sequence may be spread using an orthogonal sequence.
- Different spreading coefficients may be used for each slot.
- the two-dimensional spreading sequence ⁇ s (0), s (1), s (2), s (3) ⁇ can be expressed as follows.
- Two-dimensional spread sequences ⁇ s (0), s (1), s (2), s (3) ⁇ are transmitted in the corresponding OFDM symbol after IFFT is performed.
- the ACK / NACK signal is transmitted on the PUCCH.
- the reference signal of the PUCCH format 1b is also transmitted by cyclically shifting the base sequence r (n) and spreading it in an orthogonal sequence.
- the cyclic shift indexes corresponding to three RS OFDM symbols are I cs4 , I cs5 and I cs6 , three cyclically shifted sequences r (n, I cs4 ), r (n, I cs5 ), r (n, I cs6 ).
- the orthogonal sequence index i, the cyclic shift index I cs, and the resource block index m are parameters necessary for configuring the PUCCH and resources used to distinguish the PUCCH (or terminal). If the number of available cyclic shifts is 12 and the number of available orthogonal sequence indexes is 3, PUCCHs for a total of 36 terminals may be multiplexed into one resource block.
- a resource index n (1) PUUCH is defined so that the UE acquires the three parameters for configuring the PUCCH.
- Resource index n (1) PUUCH n CCE + N (1) PUUCH , where n CCE is the corresponding DCI (i.e., downlink resource allocation used for reception of downlink data corresponding to ACK / NACK signal) N (1) PUUCH is a parameter that the base station informs the user equipment by using a higher layer message.
- the time, frequency, and code resources used for transmitting the ACK / NACK signal are called ACK / NACK resources or PUCCH resources.
- the index of the ACK / NACK resource (referred to as ACK / NACK resource index or PUCCH index) required for transmitting the ACK / NACK signal on the PUCCH is orthogonal sequence index i, cyclic shift index I cs , resource block index m and at least one of the indices for obtaining the three indices.
- the ACK / NACK resource may include at least one of an orthogonal sequence, a cyclic shift, a resource block, and a combination thereof.
- the UE monitors the PDCCH and receives a DL resource allocation (or DL grant) on the PDCCH 501 in the nth DL subframe.
- the terminal receives a DL transport block through the PDSCH 502 indicated by the DL resource allocation.
- the UE transmits an ACK / NACK signal for the DL transport block on the PUCCH 511 in the n + 4th UL subframe.
- the ACK / NACK signal may be referred to as a reception acknowledgment for the DL transport block.
- the ACK / NACK signal becomes an ACK signal when the DL transport block is successfully decoded, and becomes an NACK signal when decoding of the DL transport block fails.
- the base station may perform retransmission of the DL transport block until the ACK signal is received or up to a maximum number of retransmissions.
- an uplink subframe and a downlink subframe coexist in one radio frame.
- the number of uplink subframes is less than the number of downlink subframes. Therefore, there is a lack of an uplink subframe for transmitting the ACK / NACK signal, it is supported to transmit a plurality of ACK / NACK signals for a plurality of downlink transport blocks in one uplink subframe.
- section 10.1 of 3GPP TS 36.213 V8.7.0 2009-05
- two ACK / NACK modes of channel selection and bundling are started.
- bundling is to transmit an ACK when all of the decoding of the PDSCH (ie, downlink transport blocks) received by the UE is successful, and otherwise, transmit an NACK.
- channel selection is also referred to as ACK / NACK multiplexing.
- the terminal selects one PUCCH resource among a plurality of PUCCH resources and transmits ACK / NACK.
- the UE Since three PDCCHs can be received from three downlink subframes, the UE acquires three PUCCH resources (n (1) PUCCH, 0 , n (1) PUCCH, 1 , n (1) PUCCH, 2 ). can do.
- An example of channel selection is shown in the following table.
- HARQ-ACK (i) indicates ACK / NACK for an i-th downlink subframe among M downlink subframes.
- DTX discontinuous Transmission
- a downlink transport block is not received on a PDSCH in a corresponding downlink subframe.
- three PUCCH resources n (1) PUCCH, 0 , n) (1) PUCCH, 1 , n (1) PUCCH, 2 ), b (0) and b (1) are two bits transmitted using the selected PUCCH.
- the NACK and the DTX are coupled. This is because a combination of reserved PUCCH resources and QPSK symbols cannot indicate all ACK / NACK states. However, in the absence of an ACK, the DTX decouples from the NACK.
- the existing PUCCH format 1b may transmit only 2-bit ACK / NACK. However, channel selection links the allocated PUCCH resources with the actual ACK / NACK signal, indicating more ACK / NACK states.
- a PUCCH format 3 is further discussed.
- FIG. 5 is an exemplary diagram illustrating a structure of a PUCCH format 3 in a normal CP.
- One slot includes 7 OFDM symbols, and l is an OFDM symbol number in the slot and has a value of 0-6.
- the symbol sequence d may be referred to as a set of modulation symbols.
- the number of bits or the modulation scheme of the ACK / NACK signal is only an example and is not a limitation.
- One PUCCH uses 1 RB and one subframe includes a first slot and a second slot.
- 5 shows that a first sequence d1 is transmitted in a first slot.
- the symbol sequence is spread to the orthogonal sequence w i .
- the symbol sequence corresponds to each data OFDM symbol, and the orthogonal sequence is used to distinguish the PUCCH (or terminal) by spreading the symbol sequence over the data OFDM symbols.
- the orthogonal sequence may be selected from one of five orthogonal sequences of the following table according to the orthogonal sequence index i.
- Two slots in a subframe may use different orthogonal sequence indices.
- Each spread symbol sequence is cyclically shifted by a cell-specific cyclic shift value n cell cs (n s , l).
- Each cyclically shifted symbol sequence is mapped to a corresponding data OFDM symbol and transmitted.
- n cell cs (n s , l) is a cell-specific parameter determined by a pseudo-random sequence initialized based on a physical cell identity (PCI).
- PCI physical cell identity
- n cell cs (n s , l) depends on slot number n s in the radio frame and OFDM symbol number l in the slot.
- a reference signal sequence used for demodulation of an ACK / NACK signal is mapped and transmitted to two RS OFDM symbols.
- up to five terminals can be distinguished by changing an orthogonal sequence index. This means that up to five PUCCH formats 3 can be multiplexed on the same RB.
- FIG. 6 is a flowchart illustrating a method of performing HARQ using PUCCH format 3.
- the base station sends a resource configuration to the terminal (S610).
- the resource setting may be transmitted through a Radio Resource Control (RRC) message for setting / modifying / resetting a radio bearer.
- RRC Radio Resource Control
- the resource setting includes information about a plurality of resource index candidates.
- the plurality of resource index candidates may be a set of resource indices that may be set in the terminal.
- the resource configuration may include information about four resource index candidates.
- the base station transmits a DL grant to the terminal on the PDCCH (S620).
- the DL grant includes a DL resource allocation and resource index field.
- DL resource allocation includes resource allocation information indicating a PDSCH.
- the resource index field indicates a resource index n PUCCH used for PUCCH setting among the plurality of resource index candidates. If there are four resource index candidates, the resource index field may have 2 bits.
- the terminal receives the DL transport block on the PDSCH based on the DL resource allocation (S630).
- the terminal generates a HARQ ACK / NACK signal for the DL transport block.
- the terminal sets the PUCCH based on the resource index (S640).
- the PUCCH resource includes an orthogonal sequence index used for spreading the ACK / NACK signal and a cyclic shift index for the reference signal.
- the orthogonal sequence index used for spreading the ACK / NACK signal can be obtained as follows.
- i 1 is an orthogonal sequence index used for the first slot
- i 2 is an orthogonal sequence index used for the second slot
- N SF is a spreading factor of the orthogonal sequence
- n PUCCH is a resource index.
- N SF is 5 since there are five data OFDM symbols in one slot.
- the cyclic shift index Ics for the reference signal is selected from the cyclic shift index set ⁇ 0, 3, 6, 8, 10 ⁇ . More specifically, the orthogonal sequence index and the cyclic shift index Ics may be defined as shown in the following table.
- the orthogonal sequence index and the cyclic shift index may correspond to 1: 1.
- the second cyclic shift index Ics (5) ⁇ n cell cs (n s , l) + Ics ⁇ mod N may be determined for the symbol.
- the UE determines a PUCCH resource based on the resource index n PUCCH , and sets a PUCCH having a structure as shown in FIG. 5 based on this.
- the terminal transmits an ACK / NACK signal on the PUCCH (S650).
- the 3GPP LTE system supports a case where the downlink bandwidth and the uplink bandwidth are set differently, but this assumes one component carrier (CC).
- the 3GPP LTE system supports up to 20MHz and may have different uplink and downlink bandwidths, but only one CC is supported for each of the uplink and the downlink.
- Spectrum aggregation supports a plurality of CCs. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
- CC or CC-pair may correspond to one cell.
- a sync signal and a PBCH are transmitted in each CC, one DL CC may correspond to one cell. Accordingly, it can be said that a terminal communicating with a base station through a plurality of CCs receives a service from a plurality of serving cells.
- the number of DL CCs and UL CCs is not limited.
- PDCCH and PDSCH are independently transmitted in each DL CC, and PUCCH and PUSCH are independently transmitted in each UL CC. Since three DL CC-UL CC pairs are defined, the UE may be provided with services from three serving cells.
- the UE may monitor the PDCCH in the plurality of DL CCs and simultaneously receive the downlink transport block through the plurality of DL CCs.
- the terminal may transmit a plurality of uplink transport blocks at the same time through a plurality of UL CC.
- CC scheduling in a multi-carrier system is possible in two ways.
- the first is that a PDCCH-PDSCH pair is transmitted in one CC.
- This CC is called self-scheduling.
- the UL CC on which the PUSCH is transmitted becomes the CC linked to the DL CC on which the corresponding PDCCH is transmitted. That is, the PDCCH allocates PDSCH resources on the same CC or allocates PUSCH resources on a linked UL CC.
- the DL CC on which the PDSCH is transmitted or the UL CC on which the PUSCH is transmitted is determined. That is, the PUSCH is transmitted on a DL CC in which the PDCCH and the PDSCH are different from each other, or on a UL CC not linked with the DL CC in which the PDCCH is transmitted. This is called cross-carrier scheduling.
- the CC on which the PDCCH is transmitted is called a PDCCH carrier, a monitoring carrier or a scheduling carrier, and the CC on which the PDSCH / PUSCH is transmitted is called a PDSCH / PUSCH carrier or a scheduled carrier.
- the first PDCCH 701 of the DL CC # 1 carries the DCI for the PDSCH 702 of the same DL CC # 1.
- the second PDCCH 711 of the DL CC # 1 carries the DCI for the PDSCH 712 of the DL CC # 2.
- the third PDCCH 721 of the DL CC # 1 carries the DCI for the PUSCH 722 of the UL CC # 3 that is not linked.
- the DCI of the PDCCH may include CIF.
- CIF indicates a DL CC or UL CC scheduled through DCI.
- the second PDCCH 711 may include a CIF indicating DL CC # 2.
- the third PDCCH 721 may include a CIF indicating UL CC # 3.
- Cross-carrier scheduling may be activated / deactivated for each terminal.
- the base station can inform the terminal whether the CIF is included in the DCI.
- a terminal on which cross-carrier scheduling is activated may receive a DCI including a carrier indicator field (CIF).
- the UE may know which scheduled CC the PDCCH received from the CIF included in the DCI is control information.
- N (M ⁇ N) DL CCs may be monitored even if N DL CCs are supported.
- the CC monitoring the PDCCH is called a monitoring CC
- the set of monitoring CCs is called a monitoring CC set.
- the UE may perform blind decoding of the PDCCH only on DL CC # 1.
- the assigned CC is a CC assigned by the base station to the terminal according to the capability of the terminal among the available CCs.
- An activated CC is a CC that a terminal uses for receiving and / or transmitting a control signal and / or data with a base station.
- the UE may perform PDCCH monitoring and / or buffering of the PDSCH for some or all of the active CCs.
- the activation CC may be activated or deactivated among the assigned CCs.
- the activation CC becomes an activation cell and becomes a serving cell.
- the reference CC is also called the primary CC or anchor CC.
- the reference CC is a CC (or CC-pair) through which information required for system operation, such as system information and / or multi-carrier operation information, is transmitted.
- the reference CC becomes a primary cell or a reference cell.
- the payload of PUCCH format 1a / 1b used for transmission of the ACK / NACK signal is 1 bit or 2 bits, and the payload of PUCCH format 3 is 48 bits. to be.
- the PUCCH formats 1a and 1b have an advantage in that the number of multiplexed terminals is large, and the PUCCH format 3 has an advantage in that the capacity of the transmittable ACK / NACK signal is large.
- the terminal is not always scheduled through the plurality of CCs. For example, three serving cells are being activated, but may receive a DL grant from only one serving cell.
- the 1a / 1b resource allocation of the PUCCH format is obtained from the resources of the dynamically linked PDCCH.
- An ACK / NACK resource obtained from a resource of a dynamically linked PDCCH is called an 'implicit ACK / NACK resource'.
- Resource allocation of PUCCH format 3 is obtained directly from the DL grant on the PDCCH.
- An ACK / NACK resource pre-allocated to the terminal or explicitly allocated to the terminal is referred to as an 'explicit ACK / NACK resource'.
- the explicit ACK / NACK resource is the base station directly informs the terminal of the ACK / NACK resource
- the implicit ACK / NACK resource is the base station indirectly informing the terminal of the ACK / NACK resource through the PDCCH resource.
- the following considers three DL CCs and one UL CC (ie, three serving cells), but is not limited to the number of DL CCs and the number of UL CCs.
- the DL CC may include an activated DL CC.
- the DL CC may include a DL CC on which a PDCCH for PDSCH scheduling is transmitted.
- the DL CC may include a DL CC for monitoring the PDCCH for PDSCH scheduling.
- the UE may transmit ACK / NACK through a plurality of DL CCs through a specific UL CC (hereinafter, referred to as a UL primary component carrier) for a plurality of DL transport blocks on a plurality of PDSCHs.
- a specific UL CC hereinafter, referred to as a UL primary component carrier
- a plurality of DL CCs are linked to one UL PCC.
- DL CC the PUCCH resources of the UL PCC are allocated. For example, when a base station schedules three DL CCs to a UE, ambiguity arises in which DL CCs the base station pre-allocates ACK / NACK resources.
- a base station among a plurality of DL CCs pre-allocates ACK / NACK resources according to DL CCs having the maximum number of CCEs among the plurality of DL CCs.
- the UE may determine the implicit ACK / NACK resource according to the CCE used for the PDCCH of the DL CC having the maximum number of CCEs.
- the maximum number of CCEs that can be used in each subframe with respect to a plurality of DL CCs may be different due to the bandwidth of each CC and the size of a control region.
- FIG 9 illustrates a method of transmitting a receipt acknowledgment according to an embodiment of the present invention.
- DL CC # 1 among DL CC # 1, DL CC # 2, and DL CC # 3 has the largest bandwidth and has the most CCEs per subframe.
- the base station secures ACK / NACK resources in advance according to 100 CCEs.
- the base station configures the PDCCH according to the number of CCEs of the DL CC # 1.
- the UE may acquire an implicit ACK / NACK resource from the received PDCCH resource.
- FIG. 10 illustrates a method of transmitting a receipt acknowledgment according to an embodiment of the present invention. This shows an example of a TDD system.
- the base station pre-allocates ACK / NACK resources according to the maximum number of CCEs of DL CC # 1.
- PUCCH format 3 can be used utilizing explicit ACK / NACK resources.
- an ACK / NACK signal may be transmitted to one UL PCC for DL transport blocks received through a plurality of DL subframes for a plurality of DL CCs.
- the terminal may be basically configured to utilize explicit ACK / NACK resources.
- FIG. 11 illustrates a method of transmitting a receipt acknowledgment according to an embodiment of the present invention.
- the terminal receives a DL grant on the PDCCH from at least one serving cell of the plurality of serving cells (S1010).
- the terminal receives the DL transport block on the PDSCH indicated by the DL grant (S1020).
- the terminal determines an ACK / NACK resource used for transmitting the ACK / NACK resource for the DL transport block (S1030).
- the terminal may determine an explicit ACK / NACK resource or an implicit ACK / NACK resource.
- the terminal transmits an ACK / NACK signal on the PUCCH using the determined ACK / NACK resource (S1040).
- the ACK / NACK signal may be a multiplexed ACK / NACK signal or a bundled ACK / NACK signal.
- the multiplexed ACK / NACK signal is a signal configured by multiplexing ACK / NACK signals for a plurality of DL transport blocks received through a plurality of subframes, and may be implemented through ACK / NACK multiplexing as shown in Table 4 above. .
- the bundled ACK / NACK signal is a signal composed of ACK / NACK signals for a plurality of DL transport blocks received through a plurality of subframes as one ACK / NACK signal (eg, 1-bit ACK / NACK signal).
- the UE can transmit the ACK / NACK signal using PUCCH format 3.
- the UE may configure PUCCH format 3 by using a resource index included in the DL grant.
- the ACK / NACK signal may be transmitted using ACK / NACK multiplexing or ACK / NACK bundling. For example, if three resource indexes linked in three subframes are obtained, ACK / NACK signals may be transmitted using ACK / NACK multiplexing as shown in Table 4. The bundled ACK / NACK may be transmitted using the aforementioned PUCCH format 1a or 1b.
- the terminal may use an implicit ACK / NACK resource if only one DL CC is activated, and use an explicit ACK / NACK resource if a plurality of DL CCs are activated. If only one serving cell is activated, the terminal may use implicit ACK / NACK resources. If the plurality of serving cells is activated, the terminal may use explicit ACK / NACK resources.
- the UE uses an implicit ACK / NACK resource.
- the one DL CC may be based on TDD in which a plurality of DL subframes corresponds to one ACK / NACK subframe.
- the ACK / NACK subframe is an UL subframe in which ACK / NACK signals for the plurality of DL subframes are transmitted.
- PDCCH and / or PDSCH are received from a plurality of DL CCs, explicit ACK / NACK resources are used.
- the UE may use implicit ACK / NACK resources when scheduled by one serving cell, and may use explicit ACK / NACK resources when scheduled by a plurality of serving cells.
- the base station schedules PDSCHs in a plurality of DL CCs, but if the UE fails to monitor the PDCCH, the base station may incorrectly determine that the PDSCH is scheduled in one DL CC. Therefore, the base station can inform the terminal about the scheduled DL CC (this is called a scheduling indicator). For example, if the 1-bit scheduling indicator, it may indicate whether it is scheduled in one DL CC or a plurality of DL CCs. This scheduling indicator may be included in a DL grant on the PDCCH.
- the UE uses an implicit ACK / NACK resource.
- a PDCCH and / or PDSCH is received from one DL CC or a plurality of DL CCs except for a specific DL CC, explicit ACK / NACK resources are used.
- the specific DL CC may be a reference CC or a primary CC.
- the specific DL CC may be based on TDD in which a plurality of DL subframes corresponds to one ACK / NACK subframe.
- the ACK / NACK subframe is an UL subframe in which ACK / NACK signals for the plurality of DL subframes are transmitted.
- the UE may use implicit ACK / NACK resources if only scheduled by the primary cell, and explicit ACK / NACK resources if scheduled by one serving cell or a plurality of serving cells except the primary cell. .
- the UE uses both pre-allocated PUCCH resources (ie, explicit ACK / NACK resources) and PUCCH resources (ie, implicit ACK / NACK resources) linked to the CCE of the PDCCH received through the primary cell.
- PUCCH resources ie, explicit ACK / NACK resources
- PUCCH resources ie, implicit ACK / NACK resources
- the base station may inform the UE whether to use only explicit ACK / NACK resources, only implicit ACK / NACK resources, and / or selectively use explicit ACK / NACK resources and implicit ACK / NACK resources.
- the acknowledgment refers to a signal that informs the transmitter whether the receiver has received the data transmitted by the transmitter.
- the acknowledgment may include the ACK / NACK signal for the control information on the PDCCH in addition to the ACK / NACK signal for the DL transport block on the PDSCH.
- SPS Semi Persistence Scheduling
- the DL resource allocation is transmitted to the UE through the RRC message in advance.
- the base station instructs activation / deactivation of the SPS on the PDCCH.
- the technical spirit of the present invention can also be applied to the transmission of the ACK / NACK signal for the activation / deactivation of the SPS.
- FIG. 12 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
- the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
- the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
- the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
- the processor 51 implements the proposed functions, processes and / or methods, and in the above-described embodiments, the operation of the base station 50 may be implemented by the processor 51.
- the processor 51 manages multiple cells, schedules PDCCH and PDSCH, and receives an acknowledgment from the terminal 60.
- the terminal 60 includes a processor 61, a memory 62, and an RF unit 63.
- the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
- the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
- the processor 61 implements a proposed function, process and / or method, and in the above-described embodiments, the operation of the terminal 60 may be implemented by the processor 61.
- the processor 61 manages multiple cells, determines an ACK / NACK resource used for transmission of an acknowledgment, and transmits an acknowledgment using the determined ACK / NACK resource.
- the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
- the RF unit may include a baseband circuit for processing a radio signal.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in memory and executed by a processor.
- the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
수신 확인 전송 방법 및 장치가 제공된다. 단말이 적어도 하나의 서빙 셀로부터 적어도 하나의 하향링크 전송 블록을 수신한다. 단말이 명시적 자원 및 암시적 자원 중 하나를 선택하고, 상기 선택된 자원을 이용하여 상기 적어도 하나의 하향링크 전송 블록에 대한 수신 확인을 전송한다.
Description
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 수신 확인 전송 방법 및 장치에 관한 것이다.
3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 LTE(long term evolution)는 유력한 차세대 이동통신 표준이다.
3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
PUCCH는 HARQ(hybrid automatic repeat request) ACK/NACK 신호, CQI(Channel Quality Indicator), SR(scheduling request)와 같은 상향링크 제어 정보의 전송에 사용되는 상향링크 제어 채널이다.
한편, 3GPP LTE의 진화인 3GPP LTE-A(advanced)가 진행되고 있다. 3GPP LTE-A에 도입되는 기술로는 반송파 집성(carrier aggregation)과 4개 이상의 안테나 포트를 지원하는 MIMO(multiple input multiple output)가 있다.
반송파 집성은 다수의 요소 반송파(component carrier)를 사용한다. 요소 반송파는 중심 주파수와 대역폭으로 정의된다. 하나의 상향링크 요소 반송파와 하나의 하향링크 요소 반송파가 하나의 셀에 대응된다. 복수의 하향링크 요소 반송파를 이용하여 서비스를 제공받는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
반송파 집성 및 MIMO 가 도입됨에 따라, 제어채널의 용량(capacity)이 증가되는 것이 요구된다. 하나의 TTI(transmission time interval)에 전송 가능한 하향링크 전송블록의 개수가 증가함에 따라, 상기 하향링크 전송 블록들에 대한 ACK/NACK 신호의 비트 크기가 증가한다. 예를 들어, 전송기로부터 8개의 하향링크 전송 블록들이 수신된다면, 수신기는 8 비트의 ACK/NACK 신호를 전송하는 것이 필요하다.
3GPP LTE에서 PUCCH 구조는 기본적으로 2비트의 ACK/NACK 신호를 기준으로 설계되어 있으므로, 증가된 비트 크기를 갖는 ACK/NACK 신호를 나르기 위한 제어 채널을 설계하는 것이 필요하다.
또한, 항상 많은 수의 전송 블록들이 전송되는 것은 아니다. 따라서, 최대 용량에 맞추어 제어 채널을 설계하면, 오히려 적은 비트 크기를 갖는 ACK/NACK 신호의 신호의 전송에 비효율적일 수 있다.
가변하는 비트 크기를 갖는 ACK/NACK 신호에 대해 높은 신뢰성을 갖도록 제어 채널을 설계하는 것이 필요하다.
본 발명은 복수의 서빙 셀이 존재할 때, 수신 확인을 위한 자원을 결정하고, 결정된 자원을 이용하여 상기 수신 확인을 전송하는 방법 및 장치를 제공한다.
일 양태에서, 무선 통신 시스템에서 수신 확인 전송 방법이 제공된다. 상기 방법은 단말이 적어도 하나의 서빙 셀로부터 적어도 하나의 하향링크 전송 블록을 수신하는 단계, 상기 단말이 명시적 자원 및 암시적 자원 중 하나를 선택하는 단계, 및 상기 단말이 상기 선택된 자원을 이용하여 상기 적어도 하나의 하향링크 전송 블록에 대한 수신 확인을 전송하는 단계를 포함하되, 상기 명시적 자원은 상기 적어도 하나의 하향링크 전송 블록의 전송에 사용되는 하향링크 자원 할당으로부터 획득되고, 상기 암시적 자원은 상기 하향링크 자원 할당을 위한 제어 채널의 전송에 사용되는 자원으로부터 획득된다.
상기 명시적 자원 및 상기 암시적 자원 중 하나를 선택하는 단계는 하나의 서빙 셀로부터 상기 적어도 하나의 하향링크 전송 블록을 수신하면, 상기 단말이 상기 암시적 자원을 선택하는 단계를 포함할 수 있다.
상기 하나의 서빙 셀은 1차 셀일 수 있다.
상기 명시적 자원 및 상기 암시적 자원 중 하나를 선택하는 단계는 복수의 서빙 셀로부터 상기 적어도 하나의 하향링크 전송 블록을 수신하면, 상기 단말이 상기 명시적 자원을 선택하는 단계를 더 포함할 수 있다.
다른 양태에서, 무선 통신 시스템에서 수신 확인을 전송하는 단말이 제공된다. 상기 단말은 무선 신호를 송신 및 수신하는 RF부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 적어도 하나의 서빙 셀로부터 적어도 하나의 하향링크 전송 블록을 수신하고, 명시적 자원 및 암시적 자원 중 하나를 선택하고, 및 상기 선택된 자원을 이용하여 상기 적어도 하나의 하향링크 전송 블록에 대한 수신 확인을 전송하되, 상기 프로세서는 상기 명시적 자원을 상기 적어도 하나의 하향링크 전송 블록의 전송에 사용되는 하향링크 자원 할당으로부터 획득하고, 상기 암시적 자원을 상기 하향링크 자원 할당을 위한 제어 채널의 전송에 사용되는 자원으로부터 획득한다.
복수의 서빙 셀이 존재할 때, 수신 확인의 전송에 요구되는 채널 용량에 따라 적절한 상향링크 제어 채널을 설정할 수 있다.
복수의 하향링크 서브프레임에 대해 링크된 하나의 상향링크 서브프레임에서 수신 확인을 전송하는 TDD(Time Division Duplex) 시스템에서 상향링크 제어 채널을 위한 자원을 보다 효율적으로 설정할 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 3은 3GPP LTE에서 노멀 CP에서 PUCCH 포맷 1b를 나타낸다.
도 4는 HARQ 수행의 일 예를 나타낸다.
도 5는 노멀 CP에서 PUCCH 포맷 3의 구조를 나타낸 예시도이다.
도 6은 PUCCH 포맷 3를 이용한 HARQ 수행 방법을 나타낸 흐름도이다.
도 7은 다중 반송파의 일 예를 나타낸다.
도 8은 크로스-반송파 스케줄링의 일 예를 나타낸다.
도 9는 본 발명의 일 실시예에 따른 수신 확인 전송 방법을 나타낸다.
도 10은 본 발명의 일 실시예에 따른 수신 확인 전송 방법을 나타낸다.
도 11은 본 발명의 일 실시예에 따른 수신 확인 전송 방법을 나타낸다.
도 12은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국(base station, BS)은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 6절을 참조할 수 있다.
무선 프레임(radio frame)은 0~19의 인덱스가 매겨진 20개의 슬롯(slot)으로 구성된다. 하나의 서브프레임(subframe)은 2개의 슬롯으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수에 제한이 있는 것은 아니다. 3GPP TS 36.211 V8.7.0에 의하면, 노멀(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/ NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidtae) PDCCH라 함)의 CRC에 원하는 식별자를 디마스킹하여, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
도 2는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
UL(uplink) 서브 프레임은 주파수 영역에서 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. RB 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. m은 서브프레임 내에서 PUCCH에 할당된 RB 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다. 동일한 m 값을 갖는 RB이 2개의 슬롯에서 서로 다른 부반송파를 차지하고 있음을 보이고 있다.
3GPP TS 36.211 V8.7.0에 의하면, PUCCH는 다중 포맷을 지원한다. PUCCH 포맷에 종속된 변조 방식(modulation scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 PUCCH를 사용할 수 있다.
다음 표 1은 PUCCH 포맷에 따른 변조 방식(Modulation Scheme) 및 서브프레임당 비트 수의 예를 나타낸다.
표 1
PUCCH 포맷 | 변조방식 | 서브프레임당 비트 수 |
1 | N/A | N/A |
1a | BPSK | 1 |
1b | QPSK | 2 |
2 | QPSK | 20 |
2a | QPSK+BPSK | 21 |
2b | QPSK+QPSK | 22 |
PUCCH 포맷 1은 SR(Scheduling Request)의 전송에 사용되고, PUCCH 포맷 1a/1b는 HARQ를 위한 ACK/NACK 신호의 전송에 사용되고, PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a/2b는 CQI 및 ACK/NACK 신호의 동시(simultaneous) 전송에 사용된다. 서브프레임에서 ACK/NACK 신호만을 전송할 때 PUCCH 포맷 1a/1b이 사용되고, SR이 단독으로 전송될 때, PUCCH 포맷 1이 사용된다. SR과 ACK/NACK을 동시에 전송할 때에는 PUCCH 포맷 1이 사용되고, SR에 할당된 자원에 ACK/NACK 신호를 변조하여 전송한다.
모든 PUCCH 포맷은 각 OFDM 심벌에서 시퀀스의 순환 쉬프트(cylic shift, CS)를 사용한다. 순환 쉬프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 쉬프트시켜 생성된다. 특정 CS 양은 순환 쉬프트 인덱스(CS index)에 의해 지시된다.
기본 시퀀스 ru(n)를 정의한 일 예는 다음 식과 같다.
여기서, u는 원시 인덱스(root index), n은 요소 인덱스로 0=n=N-1, N은 기본 시퀀스의 길이이다. b(n)은 3GPP TS 36.211 V8.7.0의 5.5절에서 정의되고 있다.
시퀀스의 길이는 시퀀스에 포함되는 요소(element)의 수와 같다. u는 셀 ID(identifier), 무선 프레임 내 슬롯 번호 등에 의해 정해질 수 있다. 기본시퀀스가 주파수 영역에서 하나의 자원 블록에 맵핑(mapping)된다고 할 때, 하나의 자원 블록이 12 부반송파를 포함하므로 기본 시퀀스의 길이 N은 12가 된다. 다른 원시 인덱스에 따라 다른 기본 시퀀스가 정의된다.
기본 시퀀스 r(n)을 다음 수학식 2와 같이 순환 쉬프트시켜 순환 쉬프트된 시퀀스 r(n, Ics)을 생성할 수 있다.
여기서, Ics는 CS 양을 나타내는 순환 쉬프트 인덱스이다(0≤Ics≤N-1).
기본 시퀀스의 가용(available) 순환 쉬프트 인덱스는 CS 간격(CS interval)에 따라 기본 시퀀스로부터 얻을 수(derive) 있는 순환 쉬프트 인덱스를 말한다. 예를 들어, 기본 시퀀스의 길이가 12이고, CS 간격이 1이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 개수는 12가 된다. 또는, 기본 시퀀스의 길이가 12이고, CS 간격이 2이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 수는 6이 된다.
이제, PUCCH 포맷 1a/1b에서의 HARQ ACK/NACK 신호의 전송에 대해 기술한다.
도 3은 3GPP LTE에서 노멀 CP에서 PUCCH 포맷 1b를 나타낸다.
하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 3개의 OFDM 심벌은 기준신호를 위한 RS(Reference Signal) OFDM 심벌이 되고, 4개의 OFDM 심벌은 ACK/NACK 신호를 위한 데이터 OFDM 심벌이 된다.
PUCCH 포맷 1b에서는 인코딩된 2비트 ACK/NACK 신호를 QPSK(Quadrature Phase Shift Keying) 변조하여 변조 심벌 d(0)가 생성된다.
순환 쉬프트 인덱스 Ics는 무선 프레임 내 슬롯 번호(ns) 및/또는 슬롯 내 심벌 인덱스(l)에 따라 달라질 수 있다.
노멀 CP에서 하나의 슬롯에 ACK/NACK 신호의 전송을 위해 4개의 데이터 OFDM 심벌이 있으므로, 각 데이터 OFDM 심벌에서 대응하는 순환 쉬프트 인덱스를 Ics0, Ics1, Ics2, Ics3라 하자.
변조 심벌 d(0)은 순환 쉬프트된 시퀀스 r(n,Ics)로 확산된다. 슬롯에서 (i+1)번째 OFDM 심벌에 대응하는 일차원 확산된 시퀀스를 m(i)라 할 때,
{m(0), m(1), m(2), m(3)} = {d(0)r(n,Ics0), d(0)r(n,Ics1), d(0)r(n,Ics2), d(0)r(n,Ics3)}
로 나타낼 수 있다.
단말 용량을 증가시키기 위해, 일차원 확산된 시퀀스는 직교 시퀀스를 이용하여 확산될 수 있다. 확산 계수(spreading factor) K=4인 직교 시퀀스 wi(k) (i는 시퀀스 인덱스, 0=k=K-1)로 다음과 같은 시퀀스를 사용한다.
표 2
Index (i) | [ wi(0), wi(1), wi(2), wi(3) ] |
0 | [ +1, +1, +1, +1 ] |
1 | [ +1, -1, +1, -1 ] |
2 | [ +1, -1, -1, +1 ] |
확산 계수 K=3인 직교 시퀀스 wi(k) (i는 시퀀스 인덱스, 0≤k≤K-1)로 다음과 같은 시퀀스를 사용한다.
표 3
Index (i) | [ wi(0), wi(1), wi(2) ] |
0 | [ +1, +1, +1 ] |
1 | [ +1, ej2π/3, ej4π/3 ] |
2 | [ +1, ej4π/3, ej2π/3 ] |
슬롯마다 다른 확산 계수를 사용할 수 있다.
따라서, 임의의 직교 시퀀스 인덱스 i가 주어질 때, 2차원 확산된 시퀀스 {s(0), s(1), s(2), s(3)}는 다음과 같이 나타낼 수 있다.
{s(0), s(1), s(2), s(3)}={wi(0)m(0), wi(1)m(1), wi(2)m(2), wi(3)m(3)}
2차원 확산된 시퀀스들 {s(0), s(1), s(2), s(3)}는 IFFT가 수행된 후, 대응하는 OFDM 심벌에서 전송된다. 이로써, ACK/NACK 신호가 PUCCH 상으로 전송되는 것이다.
PUCCH 포맷 1b의 기준신호도 기본 시퀀스 r(n)을 순환 쉬프트시킨 후 직교 시퀀스로 확산시켜 전송된다. 3개의 RS OFDM 심벌에 대응하는 순환 쉬프트 인덱스를 Ics4, Ics5, Ics6 이라 할 때, 3개의 순환 쉬프트된 시퀀스 r(n,Ics4), r(n,Ics5), r(n,Ics6)를 얻을 수 있다. 이 3개의 순환 쉬프트된 시퀀스는 K=3인 직교 시퀀스 wRS
i(k)로 확산된다.
직교 시퀀스 인덱스 i, 순환 쉬프트 인덱스 Ics 및 자원 블록 인덱스 m은 PUCCH를 구성하기 위해 필요한 파라미터이자, PUCCH(또는 단말)을 구분하는 데 사용되는 자원이다. 가용 순환 쉬프트의 개수가 12이고, 가용한 직교 시퀀스 인덱스의 개수가 3이라면, 총 36개의 단말에 대한 PUCCH가 하나의 자원블록에 다중화될 수 있다.
3GPP LTE에서는 단말이 PUCCH를 구성하기 위한 상기 3개의 파라미터를 획득하기 위해, 자원 인덱스 n(1)
PUUCH가 정의된다. 자원 인덱스 n(1)
PUUCH = nCCE+N(1)
PUUCH로 정의되는 데, nCCE는 대응하는 DCI(즉, ACK/NACK 신호에 대응하는 하향링크 데이터의 수신에 사용된 하향링크 자원 할당)의 전송에 사용되는 첫번째 CCE의 번호이고, N(1)
PUUCH는 기지국이 단말에게 상위계층 메시지로 알려주는 파라미터이다.
ACK/NACK 신호의 전송에 사용되는 시간, 주파수, 코드 자원을 ACK/NACK 자원 또는 PUCCH 자원이라 한다. 전술한 바와 같이, ACK/NACK 신호를 PUCCH 상으로 전송하기 위해 필요한 ACK/NACK 자원의 인덱스(ACK/NACK 자원 인덱스 또는 PUCCH 인덱스라 함)는 직교 시퀀스 인덱스 i, 순환 쉬프트 인덱스 Ics, 자원 블록 인덱스 m 및 상기 3개의 인덱스를 구하기 위한 인덱스 중 적어도 어느 하나로 표현될 수 있다. ACK/NACK 자원은 직교 시퀀스, 순환 쉬프트, 자원 블록 및 이들의 조합 중 적어도 어느 하나를 포함할 수 있다.
도 4는 HARQ 수행의 일 예를 나타낸다.
단말은 PDCCH를 모니터링하여, n 번째 DL 서브프레임에서 PDCCH(501) 상으로 DL 자원 할당(또는 DL 그랜트라 함)을 수신한다. 단말은 DL 자원 할당에 의해 지시되는 PDSCH(502)를 통해 DL 전송 블록(transport block)을 수신한다.
단말은 n+4번째 UL 서브프레임에서 PUCCH(511) 상으로 상기 DL 전송 블록에 대한 ACK/NACK 신호를 전송한다. ACK/NACK 신호는 DL 전송 블록에 대한 수신 확인(reception acknowledgement)이라 할 수 있다.
ACK/NACK 신호는 상기 DL 전송 블록이 성공적으로 디코딩되면 ACK 신호가 되고, 상기 DL 전송 블록의 디코딩에 실패하면 NACK 신호가 된다. 기지국은 NACK 신호가 수신되면, ACK 신호가 수신되거나 최대 재전송 횟수까지 상기 DL 전송 블록의 재전송를 수행할 수 있다.
3GPP LTE에서는 PUCCH(511)를 위한 자원 인덱스를 설정하기 위해, 단말은 PDCCH(501)의 자원 할당을 이용한다. 즉, PDCCH(501)의 전송에 사용되는 가장 낮은 CCE 인덱스(또는 첫번째 CCE의 인덱스)가 nCCE가 되고, n(1)
PUUCH = nCCE+N(1)
PUUCH와 같이 자원 인덱스를 결정하는 것이다.
이제 3GPP LTE TDD(Time Division Duplex)에서의 ACK/NACK 전송에 대해 기술한다.
TDD는 FDD(Frequency Division Duplex)와 달리 하나의 무선 프레임에 상향링크 서브프레임과 하향링크 서브프레임이 공존한다. 일반적으로 상향링크 서브프레임의 개수가 하향링크 서브프레임의 개수보다 적다. 따라서, ACK/NACK 신호를 전송하기 위한 상향링크 서브프레임이 부족하여, 복수의 하향링크 전송 블록에 대한 복수의 ACK/NACK 신호를 하나의 상향링크 서브프레임에서 전송하는 것을 지원하고 있다. 3GPP TS 36.213 V8.7.0 (2009-05)의 10.1절에 의하면, 채널 선택(channel selection)과 번들링(bundling)의 2가지 ACK/NACK 모드가 개시된다.
첫째로, 번들링은 단말이 수신한 PDSCH(즉, 하향링크 전송블록들)의 디코딩에 모두 성공하면 ACK을 전송하고, 이외의 경우는 NACK을 전송하는 것이다.
두번째로, 채널 선택은 ACK/NACK 다중화(multiplexing)이라고도 한다. 단말은 복수의 PUCCH 자원들 중 하나의 PUCCH 자원을 선택하여 ACK/NACK을 전송한다.
상향링크 서브프레임 n에 M개의 하향링크 서브프레임들이 연결되어 있다고 하고, M=3을 고려하자.
3개의 하향링크 서브프레임들로부터 3개의 PDCCH를 수신할 수 있으므로, 단말은 3개의 PUCCH 자원(n(1)
PUCCH,0, n(1)
PUCCH,1, n(1)
PUCCH,2)을 획득할 수 있다. 채널 선택의 예는 다음 표와 같다.
표 4
HARQ-ACK(0),HARQ-ACK(1),HARQ-ACK(2) | n(1) PUCCH | b(0),b(1) |
ACK, ACK, ACK | n(1) PUCCH,2 | 1,1 |
ACK, ACK, NACK/DTX | n(1) PUCCH,1 | 1,1 |
ACK, NACK/DTX, ACK | n(1) PUCCH,0 | 1,1 |
ACK, NACK/DTX, NACK/DTX | n(1) PUCCH,0 | 0,1 |
NACK/DTX, ACK, ACK | n(1) PUCCH,2 | 1,0 |
NACK/DTX, ACK, NACK/DTX | n(1) PUCCH,1 | 0,0 |
NACK/DTX, NACK/DTX, ACK | n(1) PUCCH,2 | 0,0 |
DTX, DTX, NACK | n(1) PUCCH,2 | 0,1 |
DTX, NACK, NACK/DTX | n(1) PUCCH,1 | 1,0 |
NACK, NACK/DTX, NACK/DTX | n(1) PUCCH,0 | 1,0 |
DTX, DTX, DTX | N/A | N/A |
HARQ-ACK(i)는 M개의 하향링크 서브프레임들 중 i번째 하향링크 서브프레임에 대한 ACK/NACK을 나타낸다. DTX(DTX(Discontinuous Transmission)는 해당되는 하향링크 서브프레임에서 PDSCH 상으로 하향링크 전송 블록을 수신하지 못함을 의미한다. 상기 표 3에 의하면, 3개의 PUCCH 자원(n(1)
PUCCH,0, n(1)
PUCCH,1, n(1)
PUCCH,2)이 있고, b(0), b(1)은 선택된 PUCCH을 이용하여 전송되는 2개의 비트이다.
예를 들어, 단말이 3개의 하향링크 서브프레임에서 3개의 하향링크 전송블록들을 모두 성공적으로 수신하면, 단말은 n(1)
PUCCH,2을 이용하여 비트 (1,1)을 PUCCH 상으로 전송한다. 단말이 첫번째(i=0) 하향링크 서브프레임에서 하향링크 전송 블록의 디코딩에 실패하고, 나머지는 디코딩에 성공하면, 단말은 n(1)
PUCCH,2을 이용하여 비트 (1,0)을 PUCCH 상으로 전송한다.
채널 선택에서, 적어도 하나의 ACK이 있으면, NACK과 DTX는 짝지워진다(couple). 이는 예약된(reserved) PUCCH 자원과 QPSK 심벌의 조합으로는 모든 ACK/NACK 상태를 나타낼 수 없기 때문이다. 하지만, ACK이 없으면, DTX는 NACK과 분리된다(decouple).
기존 PUCCH format 1b는 2비트의 ACK/NACK 만을 전송할 수 있다. 하지만, 채널 선택은 할당된 PUCCH 자원들과 실제 ACK/NACK 신호를 링크하여, 보다 많은 ACK/NACK 상태를 나타내는 것이다.
한편, 기존 3GPP LTE의 PUCCH 포맷외에 추가적으로 PUCCH 포맷 3가 논의되고 있다.
도 5는 노멀 CP에서 PUCCH 포맷 3의 구조를 나타낸 예시도이다.
하나의 슬롯은 7 OFDM 심벌을 포함하고, l은 슬롯 내의 OFDM 심벌 번호로 0~6의 값을 갖는다. l=1, 5인 2개의 OFDM 심벌은 기준신호를 위한 RS OFDM 심벌이 되고, 나머지 OFDM 심벌들은 ACK/NACK 신호를 위한 데이터 OFDM 심벌이 된다.
48비트의 인코딩된(encoded) ACK/NACK 신호를 QPSK 변조하여, 심벌 시퀀스 d={d(0), d(1), ..., d(23)}를 생성한다. d(n)(n=0,1,...,23)는 복소(complex-valued) 변조 심벌이다. 심벌 시퀀스 d는 변조 심벌들의 집합이라 할 수 있다. ACK/NACK 신호의 비트 수나 변조 방식은 예시에 불과하고 제한이 아니다.
하나의 PUCCH는 1 RB를 사용하고, 한 서브프레임은 제1 슬롯과 제2 슬롯을 포함한다. 심벌 시퀀스 d={d(0), d(1), ..., d(23)}는 길이 12의 2개의 시퀀스 d1={d(0),…, d(11)}과 d2={d(12),…,d(23)}으로 나누어지고, 제1 시퀀스 d1은 제1 슬롯에서 전송되고, 제2 시퀀스 d2는 제2 슬롯에서 전송된다. 도 5는 제1 시퀀스 d1가 제1 슬롯에서 전송되는 것을 보이고 있다.
심벌 시퀀스는 직교 시퀀스 wi로 확산된다. 심벌 시퀀스는 각 데이터 OFDM 심벌에 대응하고, 직교 시퀀스는 데이터 OFDM 심벌들에 걸쳐서 심벌 시퀀스를 확산시켜 PUCCH(또는 단말)을 구분하는 데 사용된다.
직교 시퀀스는 확산 계수 K=5이고, 5개의 요소를 포함한다. 직교 시퀀스는 직교 시퀀스 인덱스 i에 따라 다음 표의 5개의 직교 시퀀스들 중 하나가 선택될 수 있다.
표 5
Index (i) | [ wi(0), wi(1), wi(2), wi(3), wi(4) ] |
0 | [ +1, +1, +1, +1, +1 ] |
1 | [ +1, ej2π/5, ej4π/5 , ej6π/5, ej8π/5 ] |
2 | [ +1, ej4π/5, ej8π/5 , ej2π/5, ej6π/5 ] |
3 | [ +1, ej6π/5, ej2π/5 , ej8π/5, ej4π/5 ] |
4 | [ +1, ej8π/5, ej6π/5 , ej4π/5, ej2π/5 ] |
서브프레임 내 2개의 슬롯이 서로 다른 직교 시퀀스 인덱스를 사용할 수 있다.
확산된 심벌 시퀀스 각각은 셀-특정적 순환 쉬프트 값 ncell
cs(ns,l) 만큼 순환쉬프트된다. 순환 쉬프트된 심벌 시퀀스 각각은 해당되는 데이터 OFDM 심벌로 맵핑되어, 전송된다.
ncell
cs(ns,l)는 PCI(Physical Cell Identity)를 기반으로 초기화되는 의사 난수 시퀀스(pseudo-random sequence)에 의해 결정되는 셀-특정적 파라미터이다. ncell
cs(ns,l)는 무선 프레임 내 슬롯 번호 ns와 슬롯 내 OFDM 심벌 번호 l에 따라 달라진다.
2개의 RS OFDM 심벌에는 ACK/NACK 신호의 복조에 사용되는 기준신호 시퀀스가 맵핑되어 전송된다.
전술한 바와 같이, ACK/NACK 신호는 확산 계수 K=5인 직교 시퀀스로 확산되므로, 직교 시퀀스 인덱스를 달리함으로써 최대 5 단말을 구분할 수 있다. 이는 동일한 RB에 최대 5개의 PUCCH 포맷 3가 다중화될 수 있음을 의미한다.
도 6은 PUCCH 포맷 3를 이용한 HARQ 수행 방법을 나타낸 흐름도이다.
기지국은 단말에게 자원 설정을 보낸다(S610). 자원 설정은 무선 베어러(radio bearer)를 설정/수정/재설정하는 RRC(Radio Resource Control) 메세지를 통해 전송될 수 있다.
자원 설정은 복수의 자원 인덱스 후보에 관한 정보를 포함한다. 복수의 자원 인덱스 후보는 단말에게 설정될 수 있는 자원 인덱스들의 집합일 수 있다. 자원 설정은 4개의 자원 인덱스 후보에 관한 정보를 포함할 수 있다.
기지국은 단말에게 DL 그랜트(grant)를 PDCCH 상으로 전송한다(S620). DL 그랜트는 DL 자원 할당과 자원 인덱스 필드를 포함한다. DL 자원 할당은 PDSCH를 지시하는 자원 할당 정보를 포함한다. 자원 인덱스 필드는 상기 복수의 자원 인덱스 후보 중 PUCCH 설정에 사용되는 자원 인덱스 nPUCCH를 가리킨다. 4개의 자원 인덱스 후보가 있다면, 자원 인덱스 필드는 2비트를 가질 수 있다.
단말은 DL 자원 할당을 기반으로 PDSCH 상으로 DL 전송 블록을 수신한다(S630). 단말은 DL 전송 블록에 대한 HARQ ACK/NACK 신호를 생성한다.
단말은 자원 인덱스를 기반으로 PUCCH를 설정한다(S640). 도 5의 구조에서, PUCCH 자원은 ACK/NACK 신호의 확산에 사용되는 직교 시퀀스 인덱스 및 기준 신호를 위한 순환 쉬프트 인덱스를 포함한다.
ACK/NACK 신호의 확산에 사용되는 직교 시퀀스 인덱스는 다음과 같이 구할 수 있다.
여기서, i1은 제1 슬롯에 사용되는 직교 시퀀스 인덱스, i2은 제2 슬롯에 사용되는 직교 시퀀스 인덱스, NSF는 직교 시퀀스의 확산 계수, nPUCCH는 자원 인덱스이다.
PUCCH가 하나의 서브프레임 즉, 2 슬롯에서 전송되므로 2개의 직교 시퀀스 인덱스가 결정된다. 한 슬롯에 5개의 데이터 OFDM 심벌이 있으므로 NSF는 5이다.
기준 신호를 위한 순환 쉬프트 인덱스 Ics는 순환 쉬프트 인덱스 집합 {0, 3, 6, 8, 10}으로부터 선택된다. 보다 구체적으로, 직교 시퀀스 인덱스와 순환 쉬프트 인덱스 Ics는 다음 표와 같은 관계가 정의될 수 있다.
표 6
i1 또는 i2 | Ics |
0 | 0 |
1 | 3 |
2 | 6 |
3 | 8 |
4 | 10 |
즉, 직교 시퀀스 인덱스와 순환 쉬프트 인덱스는 1:1로 대응될 수 있다.
순환 쉬프트 인덱스를 기반으로 2개의 RS OFDM 심벌에 대한 순환 쉬프트를 구한다. 예를 들어, 단말은 l=1인 RS OFDM 심벌에 대해 제1 순환 쉬프트 인덱스 Ics(1)={ ncell
cs(ns,l)+ Ics } mod N 를 결정하고, l=5인 RS OFDM 심벌에 대해 제2 순환 쉬프트 인덱스 Ics(5)={ ncell
cs(ns,l)+ Ics } mod N 를 결정할 수 있다.
단말은 자원 인덱스 nPUCCH를 기반으로 PUCCH 자원을 결정하고, 이를 기반으로 도 5에 나타난 바와 같은 구조의 PUCCH를 설정한다.
단말은 PUCCH 상으로 ACK/NACK 신호를 전송한다(S650).
이제 다중 반송파(multiple carrier) 시스템에 대해 기술한다.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크 각각에 하나의 CC만을 지원한다.
스펙트럼 집성(spectrum aggregation)(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함)은 복수의 CC를 지원하는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.
CC 또는 CC-쌍(pair)는 하나의 셀에 대응될 수 있다. 각 CC에서 동기 신호와 PBCH이 전송된다고 할 때, 하나의 DL CC는 하나의 셀에 대응된다고 할 수 있다. 따라서, 복수의 CC를 통해 기지국과 통신하는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
도 7은 다중 반송파의 일 예를 나타낸다.
DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송된다. DL CC-UL CC 쌍이 3개가 정의되므로, 단말은 3개의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
단말은 복수의 DL CC에서 PDCCH를 모니터링하고, 복수의 DL CC를 통해 동시에 하향링크 전송 블록을 수신할 수 있다. 단말은 복수의 UL CC를 통해 동시에 복수의 상향링크 전송 블록을 전송할 수 있다.
다중 반송파 시스템에서 CC 스케줄링은 2가지 방법이 가능하다.
첫번째는 하나의 CC에서 PDCCH-PDSCH 쌍이 전송되는 것이다. 이 CC를 자기-스케줄링(self-scheduling)이라 한다. 또한, 이는 PUSCH가 전송되는 UL CC는 해당되는 PDCCH가 전송되는 DL CC에 링크된 CC가 됨을 의미한다. 즉, PDCCH는 동일한 CC상에서 PDSCH 자원을 할당하거나, 링크된 UL CC상에서 PUSCH 자원을 할당하는 것이다.
두번째는, PDCCH가 전송되는 DL CC에 상관없이 PDSCH가 전송되는 DL CC 또는 PUSCH가 전송되는 UL CC가 정해지는 것이다. 즉, PDCCH와 PDSCH가 서로 다른 DL CC에서 전송되거나 PDCCH가 전송된 DL CC와 링키지되지 않은 UL CC를 통해 PUSCH가 전송되는 것이다. 이를 크로스-반송파(cross-carrier) 스케줄링이라 한다. PDCCH가 전송되는 CC를 PDCCH 반송파, 모니터링 반송파 또는 스케줄링(scheduling) 반송파라 하고, PDSCH/PUSCH가 전송되는 CC를 PDSCH/PUSCH 반송파 또는 스케줄링된(scheduled) 반송파라 한다.
도 8은 크로스-반송파 스케줄링의 일 예를 나타낸다. DL CC #1과 UL CC #1이 링크되어 있고, DL CC #2과 UL CC #2이 링크되어 있고, DL CC #3과 UL CC #3이 링크되어 있다고 하자.
DL CC #1의 제1 PDCCH(701)은 동일한 DL CC #1의 PDSCH(702)에 대한 DCI를 나른다. DL CC #1의 제2 PDCCH(711)은 DL CC #2의 PDSCH(712)에 대한 DCI를 나른다. DL CC #1의 제3 PDCCH(721)은 링크되어 있지 않은 UL CC #3의 PUSCH(722)에 대한 DCI를 나른다.
크로스-반송파 스케줄링을 위해, PDCCH의 DCI는 CIF를 포함할 수 있다. CIF는 DCI를 통해 스케줄링되는 DL CC 또는 UL CC를 지시한다. 예를 들어, 제2 PDCCH(711)는 DL CC #2를 가리키는 CIF를 포함할 수 있다. 제3 PDCCH(721)은 UL CC #3을 가리키는 CIF를 포함할 수 있다.
크로스-반송파 스케줄링은 단말 별로 활성화/비활성화될 수 있다. 예를 들어, 기지국은 단말에게 DCI에 CIF가 포함되는지 여부를 알려줄 수 있다. 크로스-반송파 스케줄링이 활성화된 단말은 CIF(carrier indicator field)가 포함된 DCI를 수신할 수 있다. 단말은 DCI에 포함된 CIF로부터 수신한 PDCCH가 어느 스케줄링된 CC에 대한 제어 정보인지 알 수 있다.
PDCCH 모니터링으로 인한 부담을 줄이기 위해, N개의 DL CC를 지원하더라도 M개(M<N)의 DL CC 만을 모니터링할 수 있다. PDCCH를 모니터링하는 CC를 모니터링 CC라 하고, 모니터링 CC들의 집합을 모니터링 CC 집합이라 한다.
예를 들어, DL CC #1은 모니터링 CC이고, DL CC #2와 #3은 비-모니터링 CC라 할 때, 단말은 DL CC #1에서만 PDCCH의 블라인드 디코딩을 수행할 수 있다.
할당된(assigned) CC는 사용가능 CC들 중 단말의 역량에 따라 기지국이 단말에게 할당하는 CC이다.
활성화(activated) CC는 단말이 기지국과의 제어신호 및/또는 데이터의 수신 및/또는 송신에 사용하는 CC이다. 단말은 활성 CC들 중 일부 또는 전부에 대해서 PDCCH 모니터링 및/또는 PDSCH의 버퍼링(buffering)을 수행할 수 있다. 활성화 CC는 할당된 CC 중에서 활성화 또는 비활성화될 수 있다. 활성화 CC가 활성화 셀이 되고, 서빙 셀이 된다.
활성화 CC 중 하나가 기준(reference) CC이다. 기준 CC는 1차(primary) CC 또는 앵커(anchor) CC라고도 한다. 기준 CC는 시스템 정보 및/또는 다중 반송파 운영 정보와 같이 시스템 운영에 필요한 정보가 전송되는 CC(또는 CC-쌍)이다. 기준 CC가 1차 셀 또는 기준 셀이 된다.
도 3 내지 6을 참조하여 기술한 PUCCH 구조에서, ACK/NACK 신호의 전송에 사용되는 PUCCH 포맷 1a/1b의 페이로드(payload)는 1비트 또는 2비트이고, PUCCH 포맷 3의 페이로드는 48비트이다.
PUCCH 포맷 1a/1b는 다중화되는 단말의 수가 많다는 장점이 있고, PUCCH 포맷 3는 전송 가능한 ACK/NACK 신호의 용량이 큰 장점이 있다.
전술한 바와 같이, 다중 반송파 시스템에서 단말이 복수의 CC를 사용하더라도 항상 복수의 CC를 통해 스케줄링되는 것은 아니다. 예를 들어, 3개의 서빙 셀이 활성화되고 있지만, 단지 하나의 서빙 셀로부터 DL 그랜트를 수신할 수도 있는 것이다.
ACK/NACK 신호의 전송을 위해 다양한 PUCCH 포맷이 소개되고 있지만, 어떤 조건에서 어느 PUCCH 포맷을 사용할지 게시되고 있지 않다.
PUCCH 포맷의 1a/1b 자원 할당은 동적으로 링크된 PDCCH의 자원으로부터 획득된다. 동적으로 링크된 PDCCH의 자원으로부터 획득되는 ACK/NACK 자원을 '암시적(implicit) ACK/NACK 자원'이라 한다. PUCCH 포맷 3의 자원 할당은 PDCCH 상의 DL 그랜트로부터 직접 획득된다. 단말에게 미리 할당되거나, 명시적으로 단말에게 할당되는 ACK/NACK 자원을 '명시적(explicit) ACK/NACK 자원'이라 한다. 즉, 명시적 ACK/NACK 자원은 기지국이 단말에게 ACK/NACK 자원을 직접 알려주는 것이고, 암시적 ACK/NACK 자원은 기지국이 단말에게 ACK/NACK 자원을 PDCCH 자원을 통해 간접적으로 알려주는 것이다.
설명을 명확히 하기 위해, 이하에서 3개의 DL CC와 하나의 UL CC(즉, 3개의 서빙 셀)를 고려하지만, DL CC의 수 및 UL CC의 수에 제한이 있는 것은 아니다.
이하에서 DL CC는 활성화된 DL CC를 포함할 수 있다. DL CC는 PDSCH 스케줄링을 위한 PDCCH가 전송되는 DL CC를 포함할 수 있다. DL CC는 PDSCH 스케줄링을 위한 PDCCH를 모니터링하는 DL CC를 포함할 수 있다.
단말은 복수의 DL CC를 통해 복수의 PDSCH 상의 복수의 DL 전송 블록에 대하여 특정 UL CC(이를, UL PCC(primary component carrier)로 지칭함)를 통해 ACK/NACK을 전송할 수 있다고 하자. 즉, 하나의 UL PCC에 복수의 DL CC가 링크되어 있는 경우이다.
이때, UL PCC의 PUCCH 자원이 어느 DL CC를 기준으로 할당되는지 문제된다. 예를 들어, 기지국이 단말에게 3개의 DL CC를 이용하여 스케줄링한다고 할 때, 기지국이 ACK/NACK 자원을 어느 DL CC를 기준으로 미리 할당할지에 모호성이 발생한다.
본 발명에 따른 실시예에 따르면, 복수의 DL CC들 중 기지국이 복수의 DL CC 중 최대 개수의 CCE를 갖는 DL CC에 따라 ACK/NACK 자원을 미리 할당하는 것을 제안한다. 단말은 최대 개수의 CCE를 갖는 DL CC의 PDCCH에 사용되는 CCE에 따라 암시적 ACK/NACK 자원을 결정할 수 있다.
복수의 DL CC에 대하여 각 서브프레임에서 최대 사용 가능한 CCE의 개수는 각 CC의 대역폭, 제어영역의 크기 등이 달라 다를 수 있다.
도 9는 본 발명의 일 실시예에 따른 수신 확인 전송 방법을 나타낸다.
DL CC #1, DL CC #2, DL CC #3 중 DL CC #1의 대역폭이 가장 크고, 서브프레임 당 가장 많은 CCE를 가진다.
DL CC #1의 CCE 개수는 100, DL CC #2 및 #3의 CCE 개수는 50이라고 하자. 기지국은 100개의 CCE에 맞추어 ACK/NACK 자원을 미리 확보한다. 기지국은 DL CC #1의 CCE 개수에 맞추어, PDCCH를 구성한다. 단말은 수신되는 PDCCH 자원으로부터 암시적 ACK/NACK 자원을 획득할 수 있다.
도 10은 본 발명의 일 실시예에 따른 수신 확인 전송 방법을 나타낸다. 이는 TDD 시스템의 일 예를 나타낸 것이다.
각 DL CC 마다 2개의 DL 서브프레임이 하나의 UL 서브프레임에 대응되는 경우를 고려하자.
DL CC #1, DL CC #2, DL CC #3 중 DL CC #1의 대역폭이 가장 크고, 서브프레임 당 가장 많은 CCE를 가진다. 따라서, 기지국은 DL CC #1의 최대 CCE 개수에 맞추어, ACK/NACK 자원을 미리 할당한다.
ACK/NACK 신호의 높은 비트 크기가 요구되는 경우, 명시적 ACK/NACK 자원을 활용하여 PUCCH 포맷 3가 사용될 수 있다. 예를 들어, TDD에서는 복수의 DL CC에 대하여 복수의 DL 서브프레임을 통해 수신한 DL 전송 블록들에 대해 하나의 UL PCC로 ACK/NACK 신호를 전송할 수 있다. 따라서, 단말은 기본적으로 명시적 ACK/NACK 자원을 활용하도록 설정될 수 있다.
하지만, 복수의 DL CC 하의 TDD 시스템에서 항상 명시적 ACK/NACK 자원을 사용하는 것은 바람직하지 않을 수 있다.
도 11은 본 발명의 일 실시예에 따른 수신 확인 전송 방법을 나타낸다.
단말은 복수의 서빙 셀들 중 적어도 어느 하나의 서빙 셀로부터 PDCCH 상으로 DL 그랜트를 수신한다(S1010). 단말은 상기 DL 그랜트에 의해 지시되는 PDSCH 상으로 DL 전송 블록을 수신한다(S1020).
단말은 상기 DL 전송 블록에 대한 ACK/NACK 자원의 전송에 사용되는 ACK/NACK 자원을 결정한다(S1030). 단말은 명시적 ACK/NACK 자원 또는 암시적 ACK/NACK 자원을 결정할 수 있다.
단말은 상기 결정된 ACK/NACK 자원을 이용하여 PUCCH 상으로 ACK/NACK 신호를 전송한다(S1040).
TDD 시스템이고, 각 서빙 셀에서 복수의 서브프레임을 통해 스케줄링되면, 상기 ACK/NACK 신호는 다중화된 ACK/NACK 신호 또는 번들링된(bundled) ACK/NACK 신호일 수 있다. 다중화된 ACK/NACK 신호는 복수의 서브프레임을 통해 수신한 복수의 DL 전송 블록에 대한 ACK/NACK 신호들이 다중화되어 구성된 신호로, 상기 표 4에 나타난 바와 같이 ACK/NACK 다중화를 통해 구현될 수 있다. 번들링된 ACK/NACK 신호는 복수의 서브프레임을 통해 수신한 복수의 DL 전송 블록에 대한 ACK/NACK 신호들을 하나의 ACK/NACK 신호(예, 1비트의 ACK/NACK 신호)로 구성한 신호이다.
명시적 ACK/NACK 자원이 결정되면, 단말은 PUCCH 포맷 3를 이용하여 ACK/NACK 신호를 전송할 수 있다. 예를 들어, 단말은 DL 그랜트내 포함되는 자원 인덱스를 이용하여 PUCCH 포맷 3를 구성할 수 있다.
암시적 ACK/NACK 자원이 결정되면, ACK/NACK 다중화 또는 ACK/NACK 번들링을 이용하여 ACK/NACK 신호를 전송할 수 있다. 예를 들어, 3개의 서브프레임에서 링크된 3개의 자원 인덱스가 획득되면, 표 4에 나타난 바와 같이 ACK/NACK 다중화를 이용하여 ACK/NACK 신호를 전송할 수 있다. 번들링된 ACK/NACK는 전술한 PUCCH 포맷 1a 또는 1b를 이용하여 전송될 수 있다.
이제 명시적 ACK/NACK 자원 및 암시적 ACK/NACK 자원 중 어느 자원을 결정하는 지에 대해 기술한다.
제1 실시예에서, 단말은 하나의 DL CC 만이 활성화되어 있으면, 암시적 ACK/NACK 자원을 사용하고, 복수의 DL CC가 활성화되어 있으면, 명시적 ACK/NACK 자원을 사용할 수 있다. 단말은 하나의 서빙 셀 만이 활성화되어 있으면, 암시적 ACK/NACK 자원을 사용하고, 복수의 서빙 셀이 활성화되어 있으면, 명시적 ACK/NACK 자원을 사용할 수 있다.
제2 실시예에서, 복수의 DL CC가 활성화되어 있더라도, 하나의 DL CC로부터 PDCCH 및/또는 PDSCH를 수신하면, 단말은 암시적 ACK/NACK 자원을 사용한다. 상기 하나의 DL CC는 복수의 DL 서브프레임이 하나의 ACK/NACK 서브프레임이 대응되는 TDD에 기반할 수 있다. ACK/NACK 서브프레임은 상기 복수의 DL 서브프레임에 대한 ACK/NACK 신호가 전송되는 UL 서브프레임이다. 복수의 DL CC로부터 PDCCH 및/또는 PDSCH를 수신하면, 명시적 ACK/NACK 자원을 사용한다. 단말은 하나의 서빙 셀에 의해 스케줄링되면, 암시적 ACK/NACK 자원을 사용하고, 복수의 서빙 셀에 의해 스케줄링되면, 명시적 ACK/NACK 자원을 사용할 수 있다.
이 방식에 의하면, 기지국은 복수의 DL CC에서 PDSCH를 스케줄했지만, 단말이 PDCCH의 모니터링에 실패하면 하나의 DL CC에서 PDSCH가 스케줄링된 것으로 잘못 판단할 수 있다. 따라서, 기지국은 단말에게 스케줄링된 DL CC에 관한 정보(이를 스케줄링 지시자라 함)를 알려줄 수 있다. 예를 들어, 1비트 스케줄링 지시자라면, 하나의 DL CC에서 스케줄링되는지 또는 복수의 DL CC에서 스케줄링되는지 여부를 지시할 수 있다. 이 스케줄링 지시자는 PDCCH 상의 DL 그랜트에 포함될 수 있다.
제3 실시예에서, 복수의 DL CC가 활성화되어 있더라도, 단지 하나의 특정 DL CC로부터 PDCCH 및/또는 PDSCH를 수신하면, 단말은 암시적 ACK/NACK 자원을 사용한다. 특정 DL CC를 제외한 하나의 DL CC 또는 복수의 DL CC로부터 PDCCH 및/또는 PDSCH를 수신하면, 명시적 ACK/NACK 자원을 사용한다. 상기 특정 DL CC는 기준 CC 또는 1차 CC 일 수 있다. 상기 특정 DL CC는 복수의 DL 서브프레임이 하나의 ACK/NACK 서브프레임이 대응되는 TDD에 기반할 수 있다. ACK/NACK 서브프레임은 상기 복수의 DL 서브프레임에 대한 ACK/NACK 신호가 전송되는 UL 서브프레임이다. 단말은 단지 1차 셀에 의해서 스케줄링되면, 암시적 ACK/NACK 자원을 사용하고, 1차 셀을 제외한 하나의 서빙 셀 또는 복수의 서빙 셀에 의해 스케줄링되면, 명시적 ACK/NACK 자원을 사용할 수 있다.
이 방식에 의하면, 단말이 미리 할당된 PUCCH 자원(즉, 명시적 ACK/NACK 자원)과 1차 셀을 통해 수신한 PDCCH의 CCE에 링크된 PUCCH 자원(즉, 암시적 ACK/NACK 자원)을 모두 검색하여 ACK/NACK 자원을 검출한다면 상기 제2 실시예의 스케줄링 지시자가 필요하지 않을 수 있는 잇점이 있다.
기지국은 단말에게 명시적 ACK/NACK 자원만을 사용할지, 암시적 ACK/NACK 자원만을 사용할지 및/또는 명시적 ACK/NACK 자원과 암시적 ACK/NACK 자원을 선택적으로 사용할지 여부를 알려줄 수 있다.
전술한 실시예에서, DL HARQ를 위한 ACK/NACK 신호의 전송에 대해 기술하고 있으나, 이는 예시에 불과하고, 본 발명의 기술적 사상은 다양한 수신 확인의 전송에 적용될 수 있다. 수신 확인이라 함은 전송기가 전송한 데이터에 대한 수신기의 수신 여부를 전송기에게 알려주는 신호를 가리킨다.
수신 확인은 PDSCH 상의 DL 전송 블록에 대한 ACK/NACK 신호외에도 PDCCH 상의 제어 정보에 대한 ACK/NACK 신호를 포함할 수 있다. 예를 들어, 3GPP LTE의 SPS(Semi Persistence Scheduling)에 있어서, DL 자원 할당은 미리 RRC 메시지를 통해 기지국이 단말에게 전달한다. 그리고, 기지국은 PDCCH 상으로 상기 SPS의 활성화/비활성화를 지시한다. 상기 SPS의 활성화/비활성화에 대한 ACK/NACK 신호의 전송에도 본 발명의 기술적 사상이 적용될 수 있다.
도 12은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현하고, 전술한 실시예들에서 기지국(50)의 동작은 프로세서(51)에 의해 구현될 수 있다. 프로세서(51)는 다중 셀을 관리하고, PDCCH와 PDSCH를 스케줄링하고, 수신 확인을 단말(60)로부터 수신한다.
단말(60)은 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현하고, 전술한 실시예들에서 단말(60)의 동작은 프로세서(61)에 의해 구현될 수 있다. 프로세서(61)는 다중 셀을 관리하고, 수신 확인의 전송에 사용되는 ACK/NACK 자원을 결정하고, 결정된 ACK/NACK 자원을 이용하여 수신 확인을 전송한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
Claims (15)
- 무선 통신 시스템에서 수신 확인 전송 방법에 있어서,단말이 적어도 하나의 서빙 셀로부터 적어도 하나의 하향링크 전송 블록을 수신하는 단계,상기 단말이 명시적 자원 및 암시적 자원 중 하나를 선택하는 단계, 및상기 단말이 상기 선택된 자원을 이용하여 상기 적어도 하나의 하향링크 전송 블록에 대한 수신 확인을 전송하는 단계를 포함하되,상기 명시적 자원은 상기 적어도 하나의 하향링크 전송 블록의 전송에 사용되는 하향링크 자원 할당으로부터 획득되고, 상기 암시적 자원은 상기 하향링크 자원 할당을 위한 제어 채널의 전송에 사용되는 자원으로부터 획득되는 것을 특징으로 하는 수신 확인 전송 방법.
- 제 1 항에 있어서,상기 명시적 자원 및 상기 암시적 자원 중 하나를 선택하는 단계는하나의 서빙 셀로부터 상기 적어도 하나의 하향링크 전송 블록을 수신하면, 상기 단말이 상기 암시적 자원을 선택하는 단계를 포함하는 것을 특징으로 하는 수신 확인 전송 방법.
- 제 2 항에 있어서,상기 하나의 서빙 셀은 1차 셀인 것을 특징으로 하는 수신 확인 전송 방법.
- 제 3 항에 있어서,상기 수신 확인은 상기 1차 셀을 통해 복수의 하향링크 서브프레임에서 수신되는 복수의 하향링크 전송 블록에 대한 HARQ(hybrid automatic repeat request) ACK/NACK 신호를 포함하는 것을 특징으로 하는 수신 확인 전송 방법.
- 제 4 항에 있어서,상기 무선 통신 시스템은 TDD(Time Division Duplex)에 기반하는 것을 특징으로 하는 수신 확인 전송 방법.
- 제 2 항에 있어서,상기 명시적 자원 및 상기 암시적 자원 중 하나를 선택하는 단계는복수의 서빙 셀로부터 상기 적어도 하나의 하향링크 전송 블록을 수신하면, 상기 단말이 상기 명시적 자원을 선택하는 단계를 더 포함하는 것을 특징으로 하는 수신 확인 전송 방법.
- 제 2 항에 있어서,상기 선택된 자원이 명시적 자원이면, 상기 수신 확인을 전송하는 단계는상기 수신 확인을 변조하여 변조 시퀀스를 생성하는 단계;상기 명시적 자원을 기반으로 순환 쉬프트 값을 결정하는 단계;상기 순환 쉬프트값만큼 상기 변조 시퀀스를 순환 쉬프트시키는 단계; 및상기 순환 쉬프트된 시퀀스를 전송하는 단계를 포함하는 것을 특징으로 하는 수신 확인 전송 방법.
- 제 2 항에 있어서,상기 선택된 자원이 암시적 자원이면, 상기 수신 확인을 전송하는 단계는상기 수신 확인을 변조하여 변조 심벌을 생성하는 단계;상기 암시적 자원을 기반으로 순환 쉬프트 값을 결정하는 단계;상기 순환 쉬프트값만큼 기본 시퀀스를 순환 쉬프트시켜, 순환 쉬프트된 시퀀스를 생성하는 단계;상기 변조 심벌을 상기 순환 쉬프트된 시퀀스로 확산하는 단계; 및상기 확산된 시퀀스를 전송하는 단계를 포함하는 것을 특징으로 하는 수신 확인 전송 방법.
- 무선 통신 시스템에서 수신 확인을 전송하는 단말에 있어서,무선 신호를 송신 및 수신하는 RF부; 및상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는적어도 하나의 서빙 셀로부터 적어도 하나의 하향링크 전송 블록을 수신하고,명시적 자원 및 암시적 자원 중 하나를 선택하고, 및상기 선택된 자원을 이용하여 상기 적어도 하나의 하향링크 전송 블록에 대한 수신 확인을 전송하되,상기 프로세서는 상기 명시적 자원을 상기 적어도 하나의 하향링크 전송 블록의 전송에 사용되는 하향링크 자원 할당으로부터 획득하고, 상기 암시적 자원을 상기 하향링크 자원 할당을 위한 제어 채널의 전송에 사용되는 자원으로부터 획득하는 것을 특징으로 하는 단말.
- 제 9 항에 있어서,상기 프로세서는 하나의 서빙 셀로부터 상기 적어도 하나의 하향링크 전송 블록을 수신하면, 상기 암시적 자원을 선택하는 것을 특징으로 하는 단말.
- 제 10 항에 있어서,상기 하나의 서빙 셀은 1차 셀인 것을 특징으로 하는 단말.
- 제 11 항에 있어서,상기 수신 확인은 상기 1차 셀을 통해 복수의 하향링크 서브프레임에서 수신되는 복수의 하향링크 전송 블록에 대한 HARQ(hybrid automatic repeat request) ACK/NACK 신호를 포함하는 것을 특징으로 하는 단말.
- 제 10 항에 있어서,상기 프로세서는복수의 서빙 셀로부터 상기 적어도 하나의 하향링크 전송 블록을 수신하면, 상기 명시적 자원을 선택하는 것을 특징으로 하는 단말.
- 제 10 항에 있어서,상기 선택된 자원이 명시적 자원이면, 상기 프로세서는상기 수신 확인을 변조하여 변조 시퀀스를 생성하고;상기 명시적 자원을 기반으로 순환 쉬프트 값을 결정하고;상기 순환 쉬프트값만큼 상기 변조 시퀀스를 순환 쉬프트시키고; 및상기 순환 쉬프트된 시퀀스를 전송하여,상기 수신 확인을 전송하는 것을 특징으로 하는 단말.
- 제 10 항에 있어서,상기 선택된 자원이 암시적 자원이면, 상기 프로세서는상기 수신 확인을 변조하여 변조 심벌을 생성하고;상기 암시적 자원을 기반으로 순환 쉬프트 값을 결정하고;상기 순환 쉬프트값만큼 기본 시퀀스를 순환 쉬프트시켜, 순환 쉬프트된 시퀀스를 생성하고;상기 변조 심벌을 상기 순환 쉬프트된 시퀀스로 확산하고; 및상기 확산된 시퀀스를 전송하여,상기 수신 확인을 전송하는 것을 특징으로 하는 단말.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/703,710 US8929326B2 (en) | 2010-06-16 | 2011-06-16 | Method and device for transmitting acknowledgement in wireless communication system |
EP11795976.7A EP2584730B1 (en) | 2010-06-16 | 2011-06-16 | Method and device for transmitting acknowledgement in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35554110P | 2010-06-16 | 2010-06-16 | |
US61/355,541 | 2010-06-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011159110A2 true WO2011159110A2 (ko) | 2011-12-22 |
WO2011159110A3 WO2011159110A3 (ko) | 2012-04-19 |
Family
ID=45348754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/004419 WO2011159110A2 (ko) | 2010-06-16 | 2011-06-16 | 무선 통신 시스템에서 수신 확인 전송 방법 및 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8929326B2 (ko) |
EP (1) | EP2584730B1 (ko) |
WO (1) | WO2011159110A2 (ko) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5698126B2 (ja) | 2009-05-26 | 2015-04-08 | シャープ株式会社 | 移動通信システム、基地局装置、移動局装置、および、移動通信方法 |
JP2013017016A (ja) * | 2011-07-04 | 2013-01-24 | Sharp Corp | 基地局装置、移動局装置、通信システムおよび通信方法 |
CN113541883A (zh) | 2012-03-05 | 2021-10-22 | 三星电子株式会社 | 通信系统中的用户设备和基站及其执行的方法 |
WO2013134952A1 (zh) * | 2012-03-16 | 2013-09-19 | 华为技术有限公司 | 调度请求资源配置方法、设备及系统 |
WO2015113280A1 (zh) * | 2014-01-29 | 2015-08-06 | 华为技术有限公司 | 一种数据传输方法、设备和系统 |
US9686742B1 (en) * | 2015-09-10 | 2017-06-20 | Mbit Wireless, Inc. | Method and apparatus to reduce power consumption in standby mode for wireless communication systems |
CN108781438B (zh) * | 2016-04-15 | 2020-11-24 | Oppo广东移动通信有限公司 | 用于无线通信的方法和装置 |
CN110402606B (zh) * | 2017-03-22 | 2023-09-05 | 索尼公司 | 终端设备、基站设备、通信方法和存储介质 |
CN115023997A (zh) * | 2020-02-07 | 2022-09-06 | 株式会社Ntt都科摩 | 终端和基站 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101981854A (zh) * | 2008-03-25 | 2011-02-23 | 诺基亚公司 | 在具有NxPDCCH结构的LTE-A TDD中的PUCCH上的ACK/NACK传输 |
US8559351B2 (en) * | 2008-08-01 | 2013-10-15 | Qualcomm Incorporated | Dedicated reference signal design for network MIMO |
US9485060B2 (en) * | 2009-10-01 | 2016-11-01 | Interdigital Patent Holdings, Inc. | Uplink control data transmission |
US8737299B2 (en) * | 2010-06-18 | 2014-05-27 | Mediatek Inc. | Resource allocation of uplink HARQ feedback channel for carrier aggregation in OFDMA systems |
-
2011
- 2011-06-16 EP EP11795976.7A patent/EP2584730B1/en not_active Not-in-force
- 2011-06-16 WO PCT/KR2011/004419 patent/WO2011159110A2/ko active Application Filing
- 2011-06-16 US US13/703,710 patent/US8929326B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2584730A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2584730A2 (en) | 2013-04-24 |
US20130083709A1 (en) | 2013-04-04 |
EP2584730A4 (en) | 2017-07-05 |
WO2011159110A3 (ko) | 2012-04-19 |
US8929326B2 (en) | 2015-01-06 |
EP2584730B1 (en) | 2019-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011074839A2 (en) | Apparatus and method of transmitting reception acknowledgement in wireless communication system | |
WO2011052949A2 (ko) | 무선 통신 시스템에서 수신 확인 전송 방법 및 장치 | |
WO2012091490A2 (ko) | Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치 | |
WO2011078568A2 (ko) | 무선 통신 시스템에서 상향링크 harq 수행 장치 및 방법 | |
WO2012044045A1 (ko) | 무선 통신 시스템에서 수신 확인 전송 방법 및 장치 | |
WO2010101411A2 (en) | Method and apparatus for transmitting harq ack/nack signal in multi-antenna system | |
WO2011139064A2 (ko) | 무선 통신 시스템에서 기준 신호 전송 방법 및 장치 | |
WO2010050766A2 (ko) | 무선통신 시스템에서 harq 수행 방법 및 장치 | |
WO2011159110A2 (ko) | 무선 통신 시스템에서 수신 확인 전송 방법 및 장치 | |
WO2017003264A1 (ko) | 무선 통신 시스템에서 신호의 전송 방법 및 장치 | |
WO2010123331A2 (ko) | 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치 | |
WO2015065111A1 (en) | Method and apparatus for simultaneous transmission of downlink harq-ack and sr | |
WO2011007985A2 (ko) | 무선 통신 시스템에서 수신 장치가 제어 정보를 전송하는 방법 | |
WO2015065000A1 (en) | Method and apparatus of transmitting control information considering tdd-fdd ca | |
WO2010013961A2 (en) | Method and apparatus of monitoring pdcch in wireless communication system | |
WO2016111599A1 (ko) | 제어 정보를 전송하는 방법 및 이를 위한 장치 | |
WO2016108657A1 (ko) | 무선 통신 시스템에서 ack/nack 전송 방법 및 장치 | |
WO2011111977A2 (ko) | 상향링크 제어정보 전송방법 및 사용자기기 | |
WO2010131897A2 (ko) | 다중 반송파 시스템에서 통신 방법 및 장치 | |
WO2011021830A2 (ko) | 무선 통신 시스템에서 상향링크 제어 정보 전송을 위한 상향링크 반송파 할당 방법 및 장치 | |
WO2011031059A2 (en) | Method and apparatus for controlling transmit power in wireless communication system | |
WO2011008049A2 (en) | Method and apparatus for performing harq in multiple carrier system | |
WO2019031812A1 (ko) | 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2015105291A1 (ko) | 무선통신 시스템에서 수신확인 전송 방법 및 장치 | |
WO2011162568A2 (ko) | 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11795976 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13703710 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011795976 Country of ref document: EP |