WO2011155571A1 - 熱可塑性エラストマー組成物及びその成形品 - Google Patents
熱可塑性エラストマー組成物及びその成形品 Download PDFInfo
- Publication number
- WO2011155571A1 WO2011155571A1 PCT/JP2011/063274 JP2011063274W WO2011155571A1 WO 2011155571 A1 WO2011155571 A1 WO 2011155571A1 JP 2011063274 W JP2011063274 W JP 2011063274W WO 2011155571 A1 WO2011155571 A1 WO 2011155571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- thermoplastic elastomer
- elastomer composition
- copolymer
- component
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/08—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/22—Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R13/00—Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
- B60R13/02—Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
- C08L53/025—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/554—Wear resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R13/00—Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
- B60R13/02—Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
- B60R13/0256—Dashboard liners
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/04—Thermoplastic elastomer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
- Y10T428/249991—Synthetic resin or natural rubbers
- Y10T428/249992—Linear or thermoplastic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
Definitions
- the present invention relates to a thermoplastic elastomer composition and a molded product thereof. More specifically, the present invention relates to a thermoplastic elastomer composition, a sheet using the same, an automobile interior material, a laminate, and an instrument panel.
- a vinyl chloride copolymer system obtained by vacuum forming a sheet by calendering or extruding a composition containing a vinyl chloride copolymer.
- a skin obtained by forming a vacuum molded product see Patent Document 1 or a sheet made of a material containing a polypropylene resin and an olefinic thermoplastic elastomer with a female pulling vacuum forming die having a drawing surface.
- a material manufacturing method has been proposed.
- a synthetic resin skin body manufacturing method for manufacturing a skin body by a slush molding method using a powdered thermoplastic synthetic resin molding material, a polyolefin resin and an ethylene / ⁇ -olefin copolymer weight
- Thermoplastic elastomer powder containing coalesced rubber melts and adheres to the inner surface of the texture pattern transfer mold so that the textured pattern is formed on the surface.
- Patent Document 4 has been proposed.
- a skin material formed by a spray method using a urethane elastomer and a manufacturing method thereof have been proposed.
- Patent Document 5 it is difficult to apply a spray to a narrow part, and there is a problem that the material accumulates, the plate thickness is not stable due to dripping, and the tactile sensation varies.
- the present invention has been made in view of the above circumstances, and has as its main object to provide a thermoplastic elastomer composition excellent in molding fluidity, mechanical properties, appearance, tactile sensation, and wear resistance, and a molded product thereof.
- the present inventors have (B) a block copolymer having at least one block composed mainly of (A) a polypropylene resin and (B) a conjugated diene monomer unit and a block composed mainly of a vinyl aromatic monomer unit.
- a thermoplastic elastomer composition obtained by crosslinking a composition containing a specific amount of a hydrogenated polymer, (C) a softening agent, and (D) a polyorganosiloxane, and satisfying specific conditions solves the above-mentioned problems.
- the present inventors have found that the present invention can be accomplished and have completed the present invention.
- thermoplastic elastomer composition obtained by crosslinking a composition containing the following components (A) to (D): A thermoplastic elastomer composition satisfying the following conditions (1) to (5); (A) 100 parts by mass of a polypropylene resin, (B) hydrogenated product of block copolymer having at least one block mainly composed of conjugated diene monomer units and at least one block mainly composed of vinyl aromatic monomer units, (C) softening agent 100 to 250 parts by mass, (D) 5-20 parts by mass of polyorganosiloxane, (1) The content of the vinyl aromatic monomer unit in the component (B) is 30 to 80% by mass.
- the melt flow rate (ASTM D1238, 230 ° C., 1.2 kg load; MFR) is 35 to 85 g / 10 min.
- JIS A hardness is 60-90, (4) Compression set (JIS K6262, 100 ° C., 22 hours) is 30 to 70%.
- the tensile elongation at ⁇ 30 ° C. is 80% or more.
- the melt viscosity with a capillary rheometer at a shear rate of 1000 / sec is 10 to 40 Pa ⁇ sec.
- the measurement conditions of the melt viscosity by the capillary rheometer in the above (i) and (ii) are a heating temperature of 230 ° C., a cylinder diameter of 9.55 mm, an orifice hole diameter of 1.0 mm ⁇ , and an orifice length of 10 mm.
- the weight average molecular weight in terms of polystyrene as measured by gel permeation chromatography (GPC) using o-dichlorobenzene as the component (A) in the crosslinked thermoplastic elastomer composition is 5.0 ⁇ 10. 4.
- the block mainly comprising the conjugated diene monomer unit of the component (B) is a copolymer block mainly containing a conjugated diene monomer unit and containing a vinyl aromatic monomer unit [1].
- the thermoplastic elastomer composition according to any one of [5].
- Plastic elastomer composition [8] [1]
- An injection-molded article comprising the thermoplastic elastomer composition according to any one of [7].
- a sheet comprising the injection-molded product according to [8].
- An automotive interior material comprising the injection-molded product according to [8].
- the automotive interior material according to [10] having an average thickness of 2 mm or less and a surface area of 1000 cm 2 or more.
- thermoplastic elastomer composition excellent in molding fluidity, mechanical properties, appearance, tactile sensation, and wear resistance, and a molded product thereof.
- FIG. 2 is an enlarged sectional view taken along line II-II ′ around the pad portion of the instrument panel shown in FIG. 1. It is the schematic diagram which showed the procedure of the preparation methods of the skin material 20 in an Example. It is a simplified sectional view of laminated body 10a having a two-layer structure manufactured in an example. It is a simplified sectional view of laminated body 10b having a three-layer structure manufactured in an example.
- thermoplastic elastomer composition of the present embodiment is a thermoplastic elastomer composition obtained by crosslinking a composition containing the following components (A) to (D). It is a thermoplastic elastomer composition that satisfies the following conditions (1) to (5).
- thermoplastic elastomer composition of the present embodiment is excellent in molding fluidity, mechanical properties, appearance, touch and wear resistance.
- thermoplastic elastomer compositions that can efficiently produce thin-walled large-area molded articles by injection molding.
- conventional thermoplastic elastomer compositions have poor molding fluidity, and so on. It is not suitable for the material which manufactures the molded product of such a complicated shape by injection molding.
- attempts have been made to improve molding fluidity by blending a large amount of polypropylene resin into a thermoplastic elastomer composition, but the hardness and compression set of the resulting molded product are not suitable for practical use. It is enough.
- the present inventors first made various studies on the technology for improving the molding fluidity. For example, in the case of a conventionally used thermoplastic elastomer composition, since the content of the rubber component is usually as high as 50% by mass or more, even if the fluidity of the polypropylene resin as the matrix component is increased, Some rubber particles hindered improvement in fluidity, and sufficient fluidity could not be obtained. As a result of various investigations on production conditions and the like, the present inventors have determined that the molecular weight and the like before and after crosslinking of the polypropylene resin are within a predetermined range by blending an organic peroxide in the extruder.
- thermoplasticity of this embodiment satisfying the specific conditions as described in the above (1) to (5) is obtained.
- An elastomer composition was successfully obtained.
- Such a thermoplastic elastomer composition has surprisingly been found to have excellent molding fluidity, mechanical properties, appearance, touch and wear resistance.
- a component is a polypropylene resin.
- the polypropylene resin here refers to a homopolymer of propylene and a copolymer of propylene and other monomers copolymerizable with propylene. From the viewpoint of mechanical properties, homopolypropylene is preferable, but it is also possible to use a copolymer of propylene and ethylene.
- propylene copolymer examples include copolymers of propylene and other ⁇ -olefins such as ethylene, butene-1, pentene-1, and hexene-1.
- the structure of the propylene copolymer is not particularly limited, and may be either a block copolymer or a random copolymer.
- the melt flow rate (MFR) at 230 ° C. and 2.16 kg load of the (A) polypropylene resin contained in the composition before crosslinking is not particularly limited, but is 0.2 to 5 g / 10 min. It is preferable that By setting the MFR to 5 g / 10 min or less, the thermoplastic elastomer composition and its molded product have better heat resistance and mechanical properties, and by setting the MFR to 0.2 g / 10 min or more, the molding fluidity is further improved. It becomes excellent, and excellent molding processability can be imparted to the molded product.
- the MFR of the component (A) is more preferably 0.2 to 3 g / 10 minutes. MFR here can be measured based on ASTM D1238.
- the (A) polypropylene resin contained in the composition before cross-linking has a polystyrene-reduced weight average molecular weight of 5.0 ⁇ 10 5 to 5 in gel permeation chromatography (GPC) measurement using o-dichlorobenzene as a solvent.
- GPC gel permeation chromatography
- 1.0 ⁇ 10 6 is preferable, and 5.0 ⁇ 10 5 to 9.0 ⁇ 10 5 is more preferable.
- the weight average molecular weight of the component (A) before crosslinking to 5.0 ⁇ 10 5 or more, the heat resistance and mechanical properties of the thermoplastic elastomer composition and the molded product thereof are further improved. By setting it as x10 6 or less, the molding fluidity becomes more excellent, and excellent molding processability can be imparted.
- the polypropylene component (A) contained in the thermoplastic elastomer composition of the present embodiment after crosslinking has a polystyrene-equivalent weight average molecular weight of 5.0 ⁇ 10 4 to 2 by GPC measurement using o-dichlorobenzene as a solvent. is preferably .0 ⁇ 10 5, and more preferably 7.0 ⁇ 10 4 ⁇ 1.5 ⁇ 10 5.
- Component (B) is a hydrogenated block copolymer having at least one block composed mainly of conjugated diene monomer units and one block composed mainly of vinyl aromatic monomer units. It is a thing.
- the “vinyl aromatic monomer unit” means a structural unit of a polymer resulting from polymerization of a vinyl aromatic compound as a monomer, and its structure is a substituted ethylene group derived from a substituted vinyl group. It is a molecular structure in which the two carbons of the group are binding sites.
- conjugated diene monomer unit means a structural unit of a polymer resulting from the polymerization of a monomer, conjugated diene, and its structure is composed of two olefins derived from a conjugated diene monomer. It is a molecular structure in which carbon is the binding site.
- “mainly” means that 50% by mass of monomer units derived from the conjugated diene monomer (or vinyl aromatic monomer) in the copolymer block. % Or more, preferably 60% by mass or more, more preferably 80% by mass or more.
- the block mainly composed of the conjugated diene monomer unit means that the monomer unit derived from the conjugated diene monomer is 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass in the block. It means to contain more than%.
- the vinyl aromatic monomer is not particularly limited, and for example, styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N, N-dimethyl-p- Examples thereof include vinyl aromatic compounds such as aminoethylstyrene and N, N-diethyl-p-aminoethylstyrene. These may be used alone or in combination of two or more. Among these, styrene is preferable from the viewpoint of economy.
- the conjugated diene monomer is a diolefin having a pair of conjugated double bonds, such as 1,3-butadiene (butadiene), 2-methyl-1,3-butadiene (isoprene), Examples include 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, and the like.
- butadiene and isoprene are preferable from the viewpoint of economy. These may be used alone or in combination of two or more.
- each block in the hydrogenated block copolymer of the present embodiment is not particularly limited, and a suitable one can be adopted as appropriate.
- the hydrogenated block copolymer includes SB, S (BS) n1 (where n1 represents an integer of 1 to 3), S (BSB) n2 (where n2 represents an integer of 1 to 2). And (SB) n3 X (where n3 represents an integer of 3 to 6.
- X is a cup of silicon tetrachloride, tin tetrachloride, polyepoxy compound, etc.) Represents a ring agent residue).
- SB type 2 diblock
- SBS type 3 triblock
- SBSB type 4 tetrablock linear block copolymers
- the content of the vinyl aromatic monomer unit in the component (B) is 30 to 80% by mass, preferably 40 to 80% by mass from the viewpoint of heat resistance and dispersibility, and 50 to 70% by mass. It is more preferable that When the content of the vinyl aromatic monomer unit is 30% by mass or more, the mechanical properties are further improved, and when the content is 80% by mass or less, the low temperature characteristics can be further improved.
- the content of the vinyl aromatic monomer unit in the component (B) can be measured by nuclear magnetic resonance spectrum analysis (NMR).
- the content of the vinyl aromatic monomer unit block in the component (B) is preferably 10% by mass or more, more preferably 10 to 40% by mass from the viewpoint of mechanical strength.
- the content of the vinyl aromatic compound polymer block in the component (B) is determined by a method of oxidatively decomposing the copolymer before hydrogenation with tert-butyl hydroperoxide using osmium tetroxide as a catalyst (IM Kolthoff, et al., J. Polym. Sci. 1, 429 (1946), hereinafter also referred to as “osmium tetroxide decomposition method”))
- the vinyl aromatic compound polymer having an average degree of polymerization of about 30 or less is excluded) and is defined by the following formula.
- Content (mass%) of vinyl aromatic compound polymer block (mass of vinyl aromatic compound polymer block in copolymer before hydrogenation / mass of copolymer before hydrogenation) ⁇ 100
- the structures such as molecular weight and composition may be the same or different.
- a hydrogenated copolymer block containing a conjugated diene monomer unit and a vinyl aromatic monomer unit in the component (B), and a hydrogenated copolymer block mainly comprising a conjugated diene monomer unit And may be present.
- the boundaries and edges of each block need not be clearly distinguished.
- the distribution mode of the vinyl aromatic monomer units in each polymer block is not particularly limited, and may be uniformly distributed or distributed in a tapered shape, a stepped shape, a convex shape, or a concave shape. Also good.
- a crystal part may be present in the polymer block.
- the distribution mode of the vinyl unit of the conjugated diene monomer unit in each polymer block is not particularly limited, and for example, the distribution may be biased.
- Examples of a method for controlling the distribution of vinyl units include a method of adding a vinylating agent during polymerization and a method of changing the polymerization temperature.
- the distribution of the hydrogenation rate of the conjugated diene monomer unit may be biased.
- the distribution of the hydrogenation rate is determined by the method of changing the distribution of vinyl units, or after copolymerization of isoprene and butadiene and hydrogenation using a hydrogenation catalyst described later, and the hydrogenation rate of isoprene units and butadiene units. It is possible to control by a method using the difference between the two.
- Component (B) is preferably 75 mol% or more, more preferably 85 mol, of unsaturated bonds contained in the conjugated diene monomer unit before hydrogenation from the viewpoint of heat resistance, aging resistance and weather resistance. % Or more, more preferably 97 mol% or more is hydrogenated.
- the hydrogenation catalyst used for hydrogenation is not particularly limited.
- a homogeneous hydrogenation catalyst such as a so-called organometallic complex such as an organometallic compound such as Ru, Rh, or Zr can be used.
- Specific examples of the hydrogenation catalyst include Japanese Patent Publication No. 42-008704, Japanese Patent Publication No.
- a hydrogenation catalyst described in Japanese Utility Model Publication No. 02-009041 can be used.
- preferable hydrogenation catalysts include reducing organometallic compounds such as titanocene compounds.
- the titanocene compound for example, the compounds described in JP-A-08-109219 can be used, and specific examples thereof include (substituted) such as biscyclopentadienyl titanium dichloride and monopentamethylcyclopentadienyl titanium trichloride. And compounds having at least one ligand having a cyclopentadienyl skeleton, an indenyl skeleton, or a fluorenyl skeleton.
- Examples of the reducing organic metal compound include organic alkali metal compounds such as organic lithium, organic magnesium compounds, organic aluminum compounds, organic boron compounds, and organic zinc compounds.
- the polymerization method of the component (B) before hydrogenation is not particularly limited, and a known method can be adopted.
- a known method can be adopted.
- the component (B) may have a polar group.
- polar groups include hydroxyl groups, carboxyl groups, carbonyl groups, thiocarbonyl groups, acid halide groups, acid anhydride groups, thiocarboxylic acid groups, aldehyde groups, thioaldehyde groups, carboxylic acid ester groups, amide groups, and sulfonic acids.
- the vinyl bond content in the conjugated diene monomer unit in the pre-hydrogenated copolymer in the component (B) is preferably 5 mol% or more from the viewpoint of flexibility and scratch resistance, and productivity, elongation at break and scratch resistance are preferred. From the viewpoint of properties, 70 mol% or less is preferable.
- the vinyl bond content in the conjugated diene monomer unit is more preferably 10 to 50 mol%, still more preferably 10 to 30 mol%, still more preferably 10 to 25 mol%.
- the vinyl bond content refers to 1,2-bonds of 1,2-bonds, 3,4-bonds, and 1,4-bonds of conjugated dienes before hydrogenation. It means the proportion of those incorporated by bonds and 3,4-bonds.
- the vinyl bond content can be measured by NMR.
- the weight average molecular weight of the component (B) before crosslinking is not particularly limited, but is preferably 50,000 or more from the viewpoint of scratch resistance, and preferably 400,000 or less, more preferably from the viewpoint of molding fluidity. Is between 50,000 and 300,000.
- the molecular weight distribution (Mw / Mn: weight average molecular weight / number average molecular weight) is not particularly limited, but is preferably a value close to 1 from the viewpoint of scratch resistance.
- tetrahydrofuran 1.0 mL / min
- GPC gel permeation chromatography
- the content of the component (B) is 80 to 200 parts by mass with respect to 100 parts by mass of the component (A), and preferably 90 to 170 parts by mass from the viewpoint of a balance between scratch resistance and flexibility.
- the content of the component (B) is less than 80 parts by mass, the flexibility and scratch resistance are not sufficient, and when it exceeds 200 parts by mass, the mechanical properties are inferior.
- the block mainly comprising the conjugated diene monomer unit of the component (B) is a copolymer block mainly containing a conjugated diene monomer unit and containing a vinyl aromatic monomer unit. It is preferable from the viewpoint of wear.
- the copolymer block containing a conjugated diene monomer unit as a main component and containing a vinyl aromatic monomer unit is not particularly limited, and the above conjugated diene monomer and vinyl aromatic monomer should be used. Can do. Among these, from the viewpoint of the balance between mechanical strength and impact resistance, preferred combinations include a block containing a butadiene unit and a styrene unit, a block containing an isoprene unit and a styrene unit, and the like.
- the amount is not particularly limited.
- the content of the vinyl aromatic monomer unit in the copolymer block is preferably 10% by mass or more and less than 50% by mass, and 20% by mass or more. More preferably, it is less than 50 mass%.
- component (B) (B-1) a hydrogenated product of a block copolymer having a vinyl aromatic monomer unit block content of 20% by mass or more and less than 50% by mass
- component (B-2) Use of hydrogenated block copolymer having a vinyl aromatic monomer unit block content of 50% by mass or more and 80% by mass or less in combination with at least two types of hydrogenated block copolymers.
- Component (B-1) having a low content of vinyl aromatic monomer units contributes to the low temperature characteristics of the thermoplastic elastomer composition
- component (B-2) having a high content of vinyl aromatic monomer units Contributes to the stabilization of the matrix and domain morphology of the thermoplastic elastomer composition.
- the mass ratio (B-1 / B-2) of the component (B-1) to the component (B-2) is preferably 90/10 to 60/40 from the viewpoint of low temperature characteristics and mechanical properties.
- Component (C) is a softener.
- the process oil which consists of hydrocarbons, such as a paraffin type, a naphthene type, and an aromatic type, is preferable.
- paraffinic hydrocarbon-based process oils are preferable from the viewpoint of weather resistance and colorability
- naphthenic hydrocarbon-based process oils are preferable from the viewpoint of compatibility with rubber.
- the aromatic hydrocarbon content in the process oil is preferably 10% or less, preferably 5% or less, in terms of the carbon number ratio specified in ASTM D2140-97. Is more preferable, and it is still more preferable that it is 1% or less.
- the content of the component (C) is 100 to 250 parts by mass, preferably 150 to 200 parts by mass with respect to 100 parts by mass of the component (A). If the amount is less than 100 parts by mass, the flexibility and workability are insufficient, and if it exceeds 250 parts by mass, the oil bleed becomes remarkable, which is not preferable.
- component (D) is polyorganosiloxane.
- the structure of the polyorganosiloxane is not particularly limited, but it is preferably a linear, branched, or crosslinked polymer structure from the viewpoints of wear resistance and feel.
- the polyorganosiloxane used as a component is not specifically limited, A well-known thing can also be used.
- Preferable polyorganosiloxane is a polymer containing a siloxane unit having a substituent such as an alkyl group, a vinyl group or an aryl group. Among these, a polyorganosiloxane having an alkyl group is preferable, and a polyorgano having a methyl group is preferable. Siloxane is more preferred.
- polyorganosiloxane having a methyl group examples include polydimethylsiloxane, polymethylphenylsiloxane, and polymethylhydrogensiloxane. Among these, polydimethylsiloxane is preferable.
- the kinematic viscosity of the component (D) is not particularly limited, but from the viewpoint of wear resistance, the kinematic viscosity (25 ° C.) specified in JIS Z8803 is preferably 5000 centistokes (cSt) or more. Further, from the viewpoint that the dispersibility of the component (D) in the thermoplastic elastomer composition of the present embodiment tends to be improved, the appearance is excellent, and the quality stability at the time of melt extrusion tends to be further improved.
- the kinematic viscosity of the component is preferably less than 100,000 cSt.
- the kinematic viscosity of the component (D) is more preferably 10,000 cSt or more and less than 100,000 cSt, and further preferably 50,000 cSt or more and less than 100,000 cSt.
- the content of the component (D) is 5 to 20 parts by mass, preferably 8 to 15 parts by mass with respect to 100 parts by mass of the component (A). If the content of the component (B) is less than 5 parts by mass, the wear resistance is not sufficient, and if it exceeds 20 parts by mass, bleeding at the time of molding becomes remarkable, which is not preferable.
- thermoplastic lastmer composition of this embodiment further contains (E) an ethylene / ⁇ -olefin copolymer containing ethylene units and ⁇ -olefin units having 3 to 20 carbon atoms.
- the ethylene / ⁇ -olefin copolymer can be obtained, for example, by copolymerizing ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
- ⁇ -olefin examples include, for example, propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, heptene-1, octene-1, nonene-1, decene-1, undecene- 1, dodecene-1, and the like.
- ⁇ -olefins having 3 to 12 carbon atoms are preferable from the viewpoint of economy, and propylene, butene-1, and octene-1 are particularly preferable.
- the ethylene / ⁇ -olefin copolymer may further contain a monomer unit having an unsaturated bond, if necessary.
- monomers are not particularly limited, but from the viewpoint of economy, conjugated diolefins such as butadiene and isoprene, non-conjugated diolefins such as 1,4-hexadiene, cyclic diene compounds such as dicyclopentadiene and norbornene derivatives And acetylenes are preferred, and among these, ethylidene norbornene (ENB) and dicyclopentadiene (DCP) are more preferred.
- ENB ethylidene norbornene
- DCP dicyclopentadiene
- the Mooney viscosity (ML) measured at 100 ° C. of the component (E) is not particularly limited, but is preferably 20 to 150, more preferably 50 to 50 from the viewpoint of dispersibility in the thermoplastic elastomer composition of the present embodiment. 120.
- the Mooney viscosity (ML) of component (E) is measured according to ASTM D1646.
- the ethylene / ⁇ -olefin copolymer is preferably produced using a metallocene catalyst.
- the metallocene catalyst is not particularly limited, and examples thereof include those composed of a cyclopentadienyl derivative of a group IV metal such as titanium and zirconium and a cocatalyst.
- the metallocene catalyst is not only highly active as a polymerization catalyst, but also has a narrow molecular weight distribution of the polymer obtained compared to a Ziegler catalyst or the like, and an ⁇ having 3 to 20 carbon atoms as a comonomer in the copolymer. -The distribution of the olefin monomer can be made more uniform.
- the ⁇ -olefin copolymerization ratio in the ethylene / ⁇ -olefin copolymer is not particularly limited, but is preferably 1 to 60% by mass, more preferably 10 to 50% by mass, and 20 to 45%. More preferred is mass%.
- the density of the ethylene / ⁇ -olefin copolymer is not particularly limited, but is preferably 0.80 to 0.90 g / cm 3 , and preferably 0.85 to 0.89 g / cm 3. Is more preferable. (E) By making the density of a component into the said range, the softness
- the ethylene / ⁇ -olefin copolymer preferably has a long chain branch.
- the long-chain branch means a branch having 3 or more carbon atoms.
- a molded product having high strength and low density can be obtained.
- the ethylene / ⁇ -olefin copolymer having a long chain branch is not particularly limited, and a known one can be used, for example, those described in US Pat. No. 5,278,272, etc. You can also.
- the ethylene / ⁇ -olefin copolymer preferably has a differential scanning calorimetry (DSC) melting point peak in a temperature range of room temperature or higher.
- DSC differential scanning calorimetry
- the MFR of the ethylene / ⁇ -olefin copolymer (190 ° C., 2.16 kg load; conforming to ASTM D1238) is not particularly limited, but is preferably 0.01 to 100 g / 10 min. More preferably, it is 2 to 10 g / 10 min. By setting it as MFR of the said range, it can be set as the molded article which is excellent in the balance characteristic of shaping
- the content of the (E) ethylene / ⁇ -olefin copolymer is preferably 40 to 80 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of a balance between molding fluidity and flexibility. 50 to 70 parts by mass is more preferable.
- thermoplastic elastomer composition of this embodiment contains (F) an organic peroxide as needed.
- This (F) organic peroxide can act as a crosslinking initiator for the (B) component and the (E) component during crosslinking, and can promote the decomposition reaction of the (A) component.
- the fluidity and moldability of the thermoplastic elastomer composition can be further improved, and even in the case of producing a part having a large surface area and a complicated shape, the followability to a mold or the like is good, and the gap And the composition can be more completely filled into the mold.
- organic peroxide (F) examples include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -3, 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) octane, n-butyl-4,4-bis (t-butylperoxy) butane, n-butyl-4,4-bis (t-butylperoxy) valerate, etc.
- Peroxyketals di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy-m-iso Propyl) benzene, ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, 2,5-dimethyl-2,5- Dialkyl peroxides such as bis (t-butylperoxy) hexyne-3; acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, decanoyl peroxide, lauroyl peroxide, 3,5,5-trimethylhexanoyl Diacyl peroxides such as peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, m
- Oxide, 25-dimethyl-2,5-bis (t-butylperoxy) hexane, and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 are preferred.
- the content of the organic peroxide is preferably 2 to 6 parts by mass and more preferably 2 to 4 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of molding fluidity.
- the component (F) preferably further contains a monofunctional monomer or a polyfunctional monomer as necessary. These can function as a crosslinking aid and can control the crosslinking reaction rate.
- a radical polymerizable vinyl monomer is preferable, an aromatic vinyl monomer, an unsaturated nitrile monomer such as acrylonitrile, methacrylonitrile, or an acrylate monomer.
- Methacrylic acid ester monomers acrylic acid monomers, methacrylic acid monomers, maleic anhydride monomers, N-substituted maleimide monomers, and the like.
- monofunctional monomers include, for example, styrene, methylstyrene, chloromethylstyrene, hydroxystyrene, tert-butoxystyrene, acetoxystyrene, chlorostyrene, acrylonitrile, methacrylonitrile, methyl acrylate, ethyl acrylate, acrylic N-butyl acid, isobutyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, maleic anhydride, methyl maleic anhydride, 1,2-dimethyl maleic anhydride , Ethyl maleic anhydride, phenyl maleic anhydride, N-methyl maleimide, N-ethyl maleimide, N-cyclohexyl maleimide, N-lauryl maleimide, N-
- styrene, acrylonitrile, methacrylonitrile, methyl acrylate, maleic anhydride, N-methylmaleimide and the like are preferable from the viewpoint of easy reaction and versatility.
- monofunctional monomers may be used individually by 1 type, or may use 2 or more types together.
- the polyfunctional monomer is a monomer having a plurality of radically polymerizable functional groups as functional groups, and a monomer having a vinyl group is preferable.
- the number of functional groups of the polyfunctional monomer is preferably 2 or 3.
- polyfunctional monomer examples include divinylbenzene, triallyl isocyanurate, triallyl cyanurate, diacetone diacrylamide, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate.
- Ethylene glycol dimethacrylate triethylene glycol dimethacrylate, diethylene glycol dimethacrylate, diisopropenylbenzene, p-quinonedioxime, p, p'-dibenzoylquinonedioxime, phenylmaleimide, allyl methacrylate, N, N'-m -Preferable are phenylene bismaleimide, diallyl phthalate, tetraallyloxyethane, 1,2-polybutadiene, and divinyl. Benzene, triallyl isocyanurate is more preferred. These polyfunctional monomers may be used individually by 1 type, or may use 2 or more types together.
- thermoplastic elastomer composition of the present embodiment can further contain an inorganic filler, a plasticizer, and other additives within the range of the effect.
- inorganic filler examples include calcium carbonate, magnesium carbonate, silica, carbon black, glass fiber, titanium oxide, clay, mica, talc, magnesium hydroxide, and aluminum hydroxide.
- plasticizer examples include phthalic acid esters such as polyethylene glycol and dioctyl phthalate (DOP).
- phthalic acid esters such as polyethylene glycol and dioctyl phthalate (DOP).
- additives examples include organic and inorganic pigments such as carbon black, titanium dioxide, and phthalocyanine black; 2,6-di-t-butyl-4-methylphenol and n-octadecyl-3- (3,5 ′ -Heat stabilizers such as di-t-butyl-4-hydroxyphenyl) propionate; antioxidants such as trisnonylphenyl phosphite and distearyl pentaerythritol diphosphite; 2- (2'-hydroxy-5'methyl UV absorbers such as phenyl) benzotriazole and 2,4-dihydroxybenzophenone; bis- [2,2,6,6-tetramethyl-4-piperidinyl] sebacate, tetrakis (2,2,6,6-tetramethyl- Light stabilizers such as 4-piperidinyl) -1,2,3,4-butanetetracarboxylate; polyphosphoric acid Flame retardants such as ammonium, trioctyl phosphate
- the thermoplastic elastomer composition of the present embodiment is a composition obtained by crosslinking the above-described components and satisfies the following conditions (1) to (5).
- (1) The content of the vinyl aromatic monomer unit in the component (B) is 30 to 80% by mass.
- (2) MFR (ASTM D1238, 230 ° C., 1.2 kg load) is 35 to 85 g / 10 min.
- (3) JIS A hardness is 60-90, (4) Compression set (JIS K6262, 100 ° C., 22 hours) is 30 to 70%.
- the tensile elongation at ⁇ 30 ° C. is 80% or more. Since (1) has already been described, (2) to (5) will be described in detail below.
- the crosslinking method is not particularly limited, and a known method can be employed. Further, at least a part of the composition may be crosslinked (partial crosslinking). In cross-linking, it is particularly preferable to cross-link using the above-described organic peroxide (F).
- the conditions for the cross-linking reaction are not particularly limited, and suitable conditions can be appropriately adopted according to the physical properties desired for the thermoplastic elastomer composition of the present embodiment.
- the thermoplastic elastomer composition of this embodiment has an MFR at 230 ° C. and a 1.2 kg load of 35 to 85 g / 10 minutes, and preferably 40 to 70 g / 10 minutes.
- the MFR at 230 ° C. and a 2.16 kg load is preferably 130 to 300 g / 10 minutes.
- thermoplastic elastomer composition of the present embodiment has a JIS A hardness (surface hardness) of 60 to 90, preferably 65 to 85.
- JIS A hardness can be measured by the method described in Examples described later.
- thermoplastic elastomer composition of the present embodiment has a compression set (JIS K6262, 100 ° C., 22 hours) of 30 to 70%.
- JIS K6262 100 ° C., 22 hours
- the compression set of the thermoplastic elastomer composition is within this range, rubber-like characteristics and appropriate tactile sensation can be imparted.
- thermoplastic elastomer composition of the present embodiment has a tensile elongation at ⁇ 30 ° C. of 80% or more, preferably 100 to 300%, more preferably 150 to 250%.
- the tensile elongation at ⁇ 30 ° C. can be measured by the method described in Examples described later.
- thermoplastic elastomer composition satisfying the above conditions can make the thickness of the molded product more uniform while maintaining the rubber-like characteristics, and further improve the drawing reproducibility and the appearance and feel of the molded product. And low temperature elongation characteristics can also be improved.
- thermoplastic elastomer composition of this embodiment further satisfies the following conditions (i) and (ii) from the viewpoint of molding fluidity and mechanical strength of the molded product.
- the melt viscosity with a capillary rheometer at a shear rate of 100 / sec is 30 to 200 Pa ⁇ sec.
- the melt viscosity with a capillary rheometer at a shear rate of 1000 / sec is 10 to 40 Pa ⁇ sec.
- the melt viscosity with a capillary rheometer at a shear rate of 100 / sec is more preferably 30 to 130 Pa ⁇ sec.
- each lower limit value of the melt viscosity of the thermoplastic elastomer composition in the above (i) and (ii) the above value the molding fluidity can be made more excellent, and each upper limit value of the melt viscosity can be set. By setting it as the above value, the mechanical strength of the molded product can be further improved.
- the melt viscosity in the above (i) and (ii) was measured using a capillary rheometer “Capillograph 1D” manufactured by Toyo Seiki Seisakusho Co., Ltd. at a heating temperature of 230 ° C., a cylinder diameter of 9.55 mm, an orifice hole diameter of 1.0 mm ⁇ , and an orifice length of 10 mm. Can be measured under the following conditions.
- the thermoplastic elastomer composition of the present embodiment preferably has at least one tan ⁇ (loss tangent) peak temperature in the range of ⁇ 25 to 40 ° C. as measured by dynamic viscoelasticity.
- the presence of at least one peak at ⁇ 25 ° C. or higher can further improve the wear resistance.
- the presence of at least one peak at 40 ° C. or lower can further improve the balance between hardness and flexibility.
- This tan ⁇ can be obtained by measuring a viscoelastic spectrum using a viscoelasticity measuring / analyzing apparatus (Rheology, model DVE-V4) under conditions of a strain of 0.1% and a frequency of 1 Hz.
- thermoplastic elastomer composition of the present embodiment a general method such as a Banbury mixer, a kneader, a single-screw extruder, a twin-screw extruder, etc., used for the production of ordinary elastomer compositions can be employed. .
- a twin screw extruder is preferable from the viewpoint of efficiently achieving dynamic crosslinking of the thermoplastic elastomer.
- (A) component, (B) component, (E) component, (F) component, etc. are added as necessary, and dispersed uniformly and finely.
- a crosslinking reaction of the composition can be caused and a thermoplastic elastomer composition can be continuously produced, which is more suitable.
- thermoplastic elastomer composition described above through the following processing steps. That is, the components (A) and (B) and the component (E) to be used as necessary are mixed well and put into a hopper of an extruder.
- the organic peroxide may be added to the extruder from the beginning together with the component (A) and the component (B), and the component (E) used as necessary, or the organic peroxide may be added from the middle of the extruder. A part of the product may be added.
- (C) component may be added from the middle of an extruder, and may be added separately in the beginning and the middle. At this time, the organic peroxide and the component (C) can be mixed in advance and added.
- the component (D) can also be added from the beginning, divided into the initial and intermediate portions, or added only during the intermediate portion.
- the addition method of a component may be the method of adding the masterbatch which contains (D) in high concentration previously using arbitrary thermoplastic resins or elastomers.
- pellets of the thermoplastic elastomer composition can be obtained by adding the component (C) and the like, melt-kneading, sufficiently performing a crosslinking reaction, kneading and dispersing, and then taking out from the extruder.
- a twin-screw extruder having a length L in the die direction from the raw material addition portion and an L / D ratio of 5 to 100 (where D represents a barrel diameter) It is a method using.
- the twin-screw extruder has a plurality of supply parts of a main feed part and a side feed part that have different distances from the tip part, and is provided between the supply parts and between the tip part and the tip part. It is preferable that a kneading portion is provided between the supply portion and the supply portion at a short distance from each other, and the length of the kneading portion is 3 to 10 times the barrel diameter.
- the twin screw extruder may be a twin screw same direction rotary extruder or a two screw different direction rotary extruder.
- the engagement of the screw there are a non-engagement type, a partial engagement type, and a complete engagement type, and any type may be used.
- a different direction rotation / partial meshing screw is preferred.
- a co-rotating and complete meshing screw is preferable.
- the kneading degree M when kneading using a twin screw extruder more preferably satisfies the relationship represented by the following formula.
- the kneading degree M ( ⁇ 2/2) (L / D) D 3 (N / Q), L: Extruder length in the die direction (mm) starting from the raw material addition part, D: Extruder barrel inner diameter (mm), Q: Discharge rate (kg / h), N: Screw rotation speed (rpm).
- thermoplastic elastomer composition By setting the kneading degree M to 10 ⁇ 10 6 or more, enlargement and aggregation of rubber particles can be prevented and a good appearance can be obtained. By setting M to 1000 ⁇ 10 6 or less, due to excessive shearing force Decrease in mechanical strength can be prevented.
- the thermoplastic elastomer composition thus obtained can be produced into various molded products by an arbitrary molding method. Injection molding, extrusion molding, compression molding, blow molding, calendar molding, foam molding and the like are preferably used.
- the molded article of the present embodiment can be obtained by molding the thermoplastic elastomer composition described above by various molding methods.
- an injection molding method, an extrusion molding method, a vacuum molding method, a pressure molding method, a blow molding method, a calendar molding method, a foam molding method, and the like can be given.
- a molded product such as a skin material can be obtained by filling the above-mentioned thermoplastic elastomer composition which has been heated and melted into a mold for molding, cooling and solidifying and then removing the mold.
- the thermoplastic elastomer composition of the present embodiment is preferably an injection molded product. When it is an injection molded product, it is excellent in productivity.
- the shape of the injection molded product is not particularly limited, but is preferably a sheet from the viewpoint of use as a skin material.
- the injection-molded product can be used for various members, but in particular, it is preferably used as an automotive interior material from the viewpoint that a thin molded product having a complicated shape can be injection-molded with good reproducibility. .
- thermoplastic elastomer composition of the present embodiment even a thin-walled member having a large surface area, which has conventionally been difficult to manufacture by injection molding, can be manufactured with high productivity.
- the interior material for automobiles having an average thickness of 2 mm or less and a surface area of 1000 cm 2 or more can be realized.
- automotive interior materials having such an average thickness and surface area have been difficult to manufacture by injection molding.
- thermoplastic elastomer composition of the present embodiment even such an automobile interior material can be manufactured by injection molding with high productivity.
- the instrument panel is not only thin and has a large surface area, but also has a drawn pattern on the surface, an opening in part, a curved surface as well as a flat surface. Usually, it has a complicated shape such as having a part, a three-dimensional structure, or a thick part as well as a thin part. According to this embodiment, since it can be set as the injection molded product which is thin and has a large surface area, it is suitable as an instrument panel or a member thereof. As a molded product used as such an instrument panel or its member, specifically, a molded product having an average thickness of 2 mm or less and a surface area of 1000 cm 2 or more can be mentioned. As described above, conventionally, it has been difficult to manufacture such a molded product by injection molding. However, in the present embodiment, such a molded product can be manufactured by injection molding.
- the shape and configuration of the automobile interior material are not particularly limited, and can be suitably set according to the application.
- a layer containing the automobile interior material of the present embodiment hereinafter sometimes referred to as “skin material layer” and a core material laminated on the layer containing the automobile interior material are included.
- a laminate hereinafter, may be referred to as a “core material layer”.
- the core material is not particularly limited, and known materials can be used, such as polypropylene, acrylonitrile / butadiene / styrene (ABS) resin, polycarbonate / acrylonitrile / butadiene / styrene alloy (PC / ABS alloy), acrylonitrile / Examples thereof include a styrene copolymer, a modified polyphenylene oxide, and a resin whose strength is improved by mixing a filler such as talc and glass fiber as necessary.
- ABS acrylonitrile / butadiene / styrene
- PC / ABS alloy polycarbonate / acrylonitrile / butadiene / styrene alloy
- acrylonitrile / Examples thereof include a styrene copolymer, a modified polyphenylene oxide, and a resin whose strength is improved by mixing a filler such as talc and glass fiber as necessary.
- those containing at least one selected from the group consisting of polypropylene, acrylonitrile butadiene styrene (ABS) resin, polycarbonate / acrylonitrile butadiene styrene alloy (PC / ABS alloy), and polyphenylene ether are preferable.
- polypropylene is more preferable from the viewpoint of lightness.
- the layer structure of the laminate of the present embodiment is not particularly limited as long as it has at least two layers including a skin material layer and a core material layer.
- the skin material layer and the core material layer are not necessarily in contact with each other, and another layer may exist between the skin material layer and the core material layer.
- the thickness of the skin material layer is not particularly limited, but is preferably 0.5 to 2.0 mm, and more preferably 0.8 to 1.5 mm.
- the thickness of the skin material layer 0.5 mm or more, it is possible to further improve the appearance, chemical resistance and wear resistance, and by making the thickness 2.0 mm or less, the economy and tactile feel are further improved.
- the thickness of the core material layer is not particularly limited, but is preferably 2.0 to 4.5 mm, more preferably 2.5 to 3.5 mm. By making the thickness of the core layer 2.0 mm or more, rigidity, heat resistance and moldability can be further improved, and by making the thickness 4.5 mm or less, economic efficiency and lightness can be further improved. it can.
- the laminate of this embodiment preferably further comprises a layer containing a foam material between the skin material layer and the core material layer, and the foam material has a thermosetting density of 100 to 250 kg / m 3 . It is more preferable to contain urethane foam. By setting the density of the foamed material to 100 kg / m 3 or more, it becomes difficult to form indentation during handling at the time of production or removal, and the handling property can be further improved. By setting the density of the foam material to 250 kg / m 3 or less, it is possible to impart appropriate flexibility to the laminate. From this viewpoint, the density of the foamed material is more preferably 120 to 180 kg / m 3 .
- thermosetting urethane foam is not particularly limited, it is preferably a semi-rigid thermosetting urethane foam.
- Semi-rigid thermosetting urethane foam refers to urethane foam having an open cell structure of 90% or more.
- the manufacturing method of a laminated body is not specifically limited, A well-known method is also employable. For example, after individually forming the skin material, the core material, and the foam material, using a chloroprene-based adhesive or the like, a method of forming the layer structure by laminating the above members, or the core material was previously molded Thereafter, there is a method in which the core material is disposed in a mold, formed integrally with the skin material (integrated molding), and the core material and two members are laminated to form a layer structure.
- a laminate can be obtained. Furthermore, a laminated body in which the soft tactile sensation of the skin material is further utilized can be obtained by forming a layer structure of three or more layers including the above-mentioned foaming material.
- the laminated body can be suitably used as an instrument panel, a door panel, a glove box lid, etc., which are conventionally difficult to manufacture by injection molding, among automotive interior members, particularly an instrument panel. Is more preferable.
- FIG. 1 is a perspective view of an embodiment of an instrument panel of the present embodiment.
- FIG. 2 is an enlarged cross-sectional view taken along the line II-II ′ around the pad portion of the instrument panel of FIG.
- the instrument panel 1 includes an upper portion 12, a pad portion 14, and a lower portion 16.
- the pad part 14 is a laminated body, and in order from the surface side in the automobile room (the side visually recognized by the user of the automobile, the side from the right to the left in FIG. 2), the automobile skin layer (skin layer) 142 and
- the foam material layer 144 is laminated on the back surface side of the automobile skin material layer 142 (the side not visible to the user of the vehicle, the side facing the left to the right in FIG. 2), and disposed on the back surface side of the foam material layer 144
- a three-layer laminated structure is formed by the core material layer 146 to be formed.
- the effects described in the embodiments of the automobile skin material and the laminate can be obtained. Furthermore, because the skin material has good elongation characteristics at low temperatures, it becomes easier to secure the passenger seat airbag's deployment performance at low temperatures, for example, design freedom to make the skin material of the airbag installation part seamless. It is also possible to maintain and improve the degree.
- the test method of each component of the raw material used in the examples and comparative examples is as follows.
- Hydrogenation rate (%) The hydrogenation rate was measured by nuclear magnetic resonance spectrum analysis (NMR).
- a nuclear magnetic resonance measuring apparatus (manufactured by JEOL, apparatus name “JNM-LA400”) was used as a measuring instrument, deuterated chloroform was used as a solvent, and tetramethylsilane (TMS) was used as a chemical shift standard. Measurement was performed under the conditions of a sample concentration of 50 mg / mL, an observation frequency of 400 MHz, a pulse delay of 2.904 seconds, a scan count of 64 times, a pulse width of 45 °, and a measurement temperature of 26 ° C.
- Measurement was performed under the conditions of a sample concentration of 50 mg / mL, an observation frequency of 400 MHz, a pulse delay of 2.904 seconds, a scan count of 64 times, a pulse width of 45 °, and a measurement temperature of 26 ° C.
- PP Homopolypropylene
- MFR melt flow rate
- the above hydrogenation catalyst was added to 100 ppm in terms of titanium per 100 parts by mass of the copolymer, and a hydrogenation reaction was performed at a hydrogen pressure of 0.7 MPa and a temperature of 75 ° C. Obtained. 0.3 parts by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate as a stabilizer is added to 100 parts by mass of the hydrogenated copolymer. did.
- the obtained hydrogenated copolymer had a weight average molecular weight of 150,000, and the hydrogenation rate in the double bond of butadiene contained in the hydrogenated copolymer was 99% (hereinafter referred to as “Rubber-1”). ").
- the polymerization is carried out at an initial temperature of 65 ° C., and after completion of the polymerization, a cyclohexane solution containing 350 g of butadiene (monomer concentration of 22% by mass) is continuously fed to the reactor at a constant rate over 60 minutes, After the polymerization assembly, a cyclohexane solution (monomer concentration: 22% by mass) containing 325 g of styrene was added over 10 minutes to obtain a copolymer. The obtained copolymer had a styrene polymer block content of 65% by mass and a vinyl bond content of 40%.
- a cyclohexane solution containing 470 g of butadiene and 380 g of styrene (monomer concentration 22% by mass) was continuously added to the reactor at a constant rate over 60 minutes.
- a cyclohexane solution (monomer concentration: 22% by mass) containing 75 g of styrene was added over 10 minutes to obtain a copolymer.
- the resulting copolymer has a styrene content of 53% by mass, a styrene polymer block content in the copolymer of 15% by mass, and a copolymer block (that is, a conjugated diene monomer unit and a vinyl aromatic unit).
- the copolymer block containing a monomer unit had a styrene content of 45% by mass and a vinyl bond content of 23%.
- the obtained hydrogenation catalyst was added to the obtained copolymer at 100 ppm in terms of titanium per 100 parts by mass of the polymer, and a hydrogenation reaction was performed at a hydrogen pressure of 0.7 MPa and a temperature of 75 ° C. 0.3 parts by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate as a stabilizer was added to 100 parts by mass of the hydrogenated copolymer. .
- the obtained hydrogenated copolymer had a weight average molecular weight of 160,000, and the hydrogenation rate in the double bond of butadiene contained in the hydrogenated copolymer was 99% (hereinafter referred to as “rubber” -3 ”).
- polymerization was carried out at an initial temperature of 55 ° C., and after completion of the polymerization, a cyclohexane solution containing 580 g of butadiene (monomer concentration of 22% by mass) was continuously supplied to the reactor at a constant rate over 60 minutes, and then 210 g of styrene was contained. A cyclohexane solution (monomer concentration 22 mass%) was further added over 10 minutes to obtain a copolymer. The resulting copolymer had a styrene polymer block content of 42% by mass and a vinyl bond content of 75%.
- a cyclohexane solution containing 600 g of butadiene and 280 g of styrene (monomer concentration 22% by mass) was continuously fed to the reactor at a constant rate over 60 minutes.
- a cyclohexane solution containing 60 g of styrene ( A monomer concentration of 22% by mass) was added over 10 minutes to obtain a copolymer.
- the styrene content in the obtained copolymer was 40% by mass
- the styrene polymer block content in the copolymer was 12% by mass
- the copolymer block that is, conjugated diene monomer unit and The copolymer block containing vinyl aromatic monomer units
- the above hydrogenation catalyst is added so as to be 100 ppm in terms of titanium per 100 parts by mass of the copolymer, and a hydrogenation reaction is performed at a hydrogen pressure of 0.7 MPa and a temperature of 75 ° C.
- a solution was obtained.
- 0.3 parts by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate as a stabilizer is added to 100 parts by mass of the hydrogenated copolymer. did.
- the resulting hydrogenated copolymer had a weight average molecular weight of 152,000, and the hydrogenation rate of the double bond of butadiene contained in the hydrogenated copolymer was 99% (hereinafter referred to as “rubber- 5 ”).
- a cyclohexane solution containing 280 g of butadiene and 560 g of styrene (monomer concentration 22% by mass) was continuously supplied to the reactor at a constant rate over 60 minutes.
- a cyclohexane solution containing 80 g of styrene ( A monomer concentration of 22% by mass) was added over 10 minutes to obtain a copolymer.
- the resulting copolymer has a styrene content of 72% by mass, the styrene polymer block content in the copolymer is 16% by mass, and the copolymer block (that is, conjugated diene monomer unit and vinyl).
- the styrene content in the copolymer block containing aromatic monomer units was 67% by mass, and the vinyl bond content was 15%.
- the above hydrogenation catalyst is added to 100 ppm in terms of titanium per 100 parts by mass of the copolymer, and a hydrogenation reaction is performed at a hydrogen pressure of 0.7 MPa and a temperature of 75 ° C.
- a solution was obtained.
- 0.3 parts by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate as a stabilizer is added to 100 parts by mass of the hydrogenated copolymer. did.
- the resulting hydrogenated copolymer had a weight average molecular weight of 149,000, and the hydrogenation rate of double bonds of butadiene contained in the hydrogenated copolymer was 99% (hereinafter referred to as “rubber- 6 ”).
- Polymerization was carried out at 0 ° C. After completion of the polymerization, a cyclohexane solution (monomer concentration of 22% by mass) containing 800 g of butadiene and 90 g of styrene was continuously fed to the reactor at a constant rate over 60 minutes. A monomer concentration of 22% by mass) was added over 10 minutes to obtain a copolymer.
- the styrene content in the obtained copolymer was 31% by mass
- the styrene polymer block content in the copolymer was 23% by mass
- the copolymer block (that is, conjugated diene monomer unit and The copolymer block containing vinyl aromatic monomer units) had a styrene content of 10% by mass and a vinyl bond content of 40%.
- the above-mentioned water-added medium is added so as to be 100 ppm in terms of titanium per 100 parts by mass of the copolymer, and a hydrogenation reaction is performed at a hydrogen pressure of 0.7 MPa and a temperature of 75 ° C.
- a hydrogenation reaction is performed at a hydrogen pressure of 0.7 MPa and a temperature of 75 ° C.
- octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate as a stabilizer is added to 100 parts by mass of the hydrogenated copolymer.
- the obtained hydrogenated copolymer had a weight average molecular weight of 103,000, and the hydrogenation rate of the double bond of butadiene contained in the hydrogenated copolymer was 99% (hereinafter referred to as “rubber- 7 ”).
- Polyorganosiloxane Dimethylsiloxane (manufactured by Toray Dow Corning, trade name “SH200”; 60000 centistokes (cSt)) was used (hereinafter referred to as “polyorganosiloxane-1”). Dimethylsiloxane (trade name “SH200”; 3000 centistokes (cSt), manufactured by Toray Dow Corning) was used (hereinafter referred to as “polyorganosiloxane-2”).
- screw a two-thread screw having kneading parts before and after the injection port was used. After raw materials other than the softeners listed in each table are mixed together at a composition ratio (parts by mass), they are introduced into a twin-screw extruder (cylinder temperature 200 ° C.) with a quantitative feeder, and subsequently in the center of the extruder.
- thermoplastic elastomer composition A predetermined amount of softening agent was injected from the injection port with a pump, and melt extrusion was performed to obtain a thermoplastic elastomer composition.
- the obtained thermoplastic elastomer composition was compression-molded at 200 ° C. using a heating press machine (“T-50” manufactured by Toho Press Mfg. Co., Ltd.) to produce a sheet having a thickness of 2 mm.
- Samples for evaluation in the physical property evaluation of (2), (3), (4), and (7) were used.
- the physical properties of the thermoplastic elastomer composition and the sample were evaluated by the following methods.
- the weight average molecular weight of polystyrene conversion by GPC of the component (A) after crosslinking in the thermoplastic elastomer composition of Example 1 was 11 ⁇ 10 4 .
- Tables 1 to 5 show the weight average molecular weights of the component (A) after crosslinking in the other Examples and Comparative Examples.
- MFR Melt flow rate
- Compression set Performed according to JIS K6262.
- the test piece was mounted on a jig, pressure was applied to the jig with a compression device, the thickness was compressed to 9.52 mm (compression ratio 25%), and the jig bolt was tightened to fix the state.
- the jig equipped with the test piece was placed in an oven at 100 ° C. and allowed to stand for 22 hours. After the heat treatment, the test piece was left to cool in a constant temperature room at 23 ° C. for 30 minutes, and the thickness t (mm) was measured.
- Loss tangent (tan ⁇ peak temperature) The loss tangent (tan ⁇ peak temperature) was determined by measuring a viscoelastic spectrum under the conditions of a strain of 0.1% and a frequency of 1 Hz using a viscoelasticity measurement analyzer (Rheology, model DVE-V4).
- thermoplastic elastomer composition By performing injection molding of the thermoplastic elastomer composition using a flat plate mold having a thickness of 2 mm, a length and width of 32 cm ⁇ 32 cm, a gate width of 8 mm, a gate thickness of 2 mm, and a cavity surface with a textured surface.
- the injection moldability of the thermoplastic elastomer composition was evaluated.
- As the injection molding machine “SG220” manufactured by Sumitomo Heavy Industries, Ltd. was used.
- the molding conditions are a resin temperature of 230 ° C., a mold temperature of 60 ° C., an injection time of 10 seconds, an injection speed of 80%, a back pressure of 10%, a screw rotation speed of 100 rpm, and an injection pressure of 100 MPa.
- thermoplastic elastomer composition used for injection molding flat plate moldability was evaluated based on the following criteria.
- Double-circle The inside of a metal mold
- ⁇ The inside of the mold could be completely filled without gaps, but slight welds and sink marks were observed in the obtained molded product.
- delta Although the inside of a metal mold
- X The inside of the mold could not be completely filled.
- thermoplastic elastomer composition was injected into a mold cavity of a spiral flow mold having a thickness of 1 mm, a width of 10 mm, a gate diameter of 4.5 mm, and a gate thickness of 1 mm, and the flow length (spiral flow length) was measured.
- As the injection molding machine “SH100” manufactured by Sumitomo Heavy Industries, Ltd. was used. The molding conditions are: resin temperature: 230 ° C., mold temperature: 60 ° C., injection time: 10 seconds, injection speed: 40%, back pressure: 10%, screw rotation speed: 100 rpm, injection pressure 100 MPa.
- Tactile sensation evaluation The tactile sensation evaluation was performed about the molded article (flat plate) obtained in said (9). The tactile sensation is evaluated by blinds (a method that evaluates based on the tactile sensation without adding a sensation such as “feels moist” or “looks soft” visually). The goodness of the hand was evaluated by a five-step evaluation.
- the conventional olefinic thermoplastic elastomer (TPO) skin material (Kyowa leather Co., Ltd., vacuum-drawn skin) is used as the reference point (3 points), and the same feel is 3 points.
- the score was evaluated as 4 points for those with good texture, 5 points for those with very good touch, 2 points for those with slightly poor touch, and 1 for those with very poor touch.
- FIG. 3 is a schematic diagram showing the procedure of the method for producing the instrument panel skin material (skin material) 20.
- the skin material surface side forming mold hereinafter referred to as “front side mold” 200A and the skin material back side forming mold (hereinafter referred to as “back side mold”) 200B are as described below. (See (1) in FIG. 3).
- Genuine leather (300 mm ⁇ 400 mm) for reversal was prepared to produce a reversal model, and based on this, an electroformed plate which was a front mold 200A was produced. And the back side metal mold
- the front mold 200A and the back mold 200B were put together and filled with the thermoplastic elastomer composition P (see (2) in FIG. 3).
- the thickness of the space formed when the front mold 200A and the back mold 200B are combined is designed to be 1 mm.
- the combined molds were heated to 60 ° C., and the molten thermoplastic elastomer composition P was poured from the runner 50 into the space and filled.
- the thermoplastic elastomer composition P filled in the front mold 200A and the back mold 200B was demolded to obtain a skin material 20 (see (3) in FIG. 3).
- the sticky feeling and tactile sensation of the obtained skin material 20 were evaluated based on the above evaluation methods. Further, the formability of the obtained skin material 20 was evaluated based on the following criteria.
- Double-circle The inside of a metal mold
- ⁇ The inside of the mold could be completely filled without gaps, but slight welds and sink marks were observed in the obtained molded product.
- X The inside of the mold could not be completely filled.
- a laminate 10a (see FIG. 4) having a two-layer structure and a laminate 10b (see FIG. 5) having a three-layer structure were manufactured using the skin material 20 of Examples 1 to 7.
- 4 is a simplified cross-sectional view of a laminate 10a having a two-layer structure
- FIG. 5 is a simplified cross-sectional view of a laminate 10b having a three-layer structure.
- the laminated body 10a is produced in advance by molding a core material 40 (manufactured by Nippon Polypro Co., Ltd., talc-added block polypropylene (melt flow rate at 230 ° C., 2.16 kg load condition: 33 g / 10 min, thickness 3.5 mm)).
- the core material 40 was disposed in the mold and molded integrally with the skin material 20 to obtain a laminate 10a having a two-layer structure (see FIG. 4).
- a foam material 30 manufactured by BASF INOAC polyurethane, thermosetting semi-rigid urethane foam, trade name “foam light RM”, density 180 kg / m 3 , thickness 8 mm
- Molding was performed integrally to obtain a laminate 10b having a three-layer structure (see FIG. 5).
- the laminate 10b was a laminate in which the soft touch of the skin material 20 was further utilized.
- Tables 1 to 5 below show the compositions and physical properties of the examples and comparative examples.
- thermoplastic elastomer compositions of Examples 1 to 7 have good tactile sensation and appearance and sufficiently satisfy the required performance as an interior material for automobiles. Met. The overall judgment of Examples 1 to 7 was also good. Therefore, it was confirmed that the thermoplastic elastomer compositions of Examples 1 to 7 were excellent in molding fluidity, mechanical properties, appearance, touch and wear resistance required for automobile interior materials and the like. On the other hand, from the thermoplastic elastomer compositions of Comparative Examples 1 to 5, it was confirmed that a practical instrument panel could not be obtained and the overall judgment was poor.
- thermoplastic elastomer compositions of Examples 8 to 17 are all excellent in molding fluidity, mechanical properties, appearance, tactile sensation, and wear resistance, and have the required performance as automotive interior materials such as instrument panels. It was confirmed that it was satisfied. On the other hand, it was confirmed that the thermoplastic elastomer compositions of Comparative Examples 6 to 11 were inferior in any physical properties and poor in overall judgment.
- thermoplastic elastomer composition and molded product thereof according to the present invention can be suitably used as an interior member for automobiles. More specifically, it can be suitably used as a skin material for instrument panels, door panels, glove box lids, etc., and has industrial applicability.
- SYMBOLS 1 Instrument panel, 12 ... Upper part, 14 ... Pad part, 16 ... Lower part, 142 ... Automotive skin material layer (skin material layer), 144 ... Foam material layer, 146 ... Core material layer, 200A ... Skin material Surface side forming die (front side die), 200B ... Skin material back side forming die (back side die), 10a, 10b ... Laminate, 20 ... Instrument panel skin material (skin material), 30 ... Foam material, 40 ... core material, 50 ... runner
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Instrument Panels (AREA)
Abstract
Description
〔1〕
下記(A)~(D)の成分を含有する組成物を架橋してなる熱可塑性エラストマー組成物であり、
下記(1)~(5)の条件を満たす熱可塑性エラストマー組成物;
(A)ポリプロピレン系樹脂 100質量部、
(B)共役ジエン単量体単位を主体とするブロックと、ビニル芳香族単量体単位を主体とするブロックとをそれぞれ少なくとも1つずつ有するブロック共重合体の水添物 80~200質量部、
(C)軟化剤 100~250質量部、
(D)ポリオルガノシロキサン 5~20質量部、
(1)前記(B)成分中の前記ビニル芳香族単量体単位の含有量が、30~80質量%である、
(2)メルトフローレート(ASTM D1238、230℃、1.2kg荷重;MFR)が、35~85g/10分である、
(3)JIS A硬度が、60~90である、
(4)圧縮永久歪(JIS K6262、100℃、22時間)が、30~70%である、
(5)-30℃での引張伸度が、80%以上である。
〔2〕
下記(i)及び(ii)の条件を更に満たす〔1〕に記載の熱可塑性エラストマー組成物;
(i)剪断速度100/secにおけるキャピラリーレオメーターによる溶融粘度が、30~200Pa・secである、
(ii)剪断速度1000/secにおけるキャピラリーレオメーターによる溶融粘度が、10~40Pa・secである。
(但し、上記(i)及び(ii)におけるキャピラリーレオメーターによる溶融粘度の測定条件は、加熱温度230℃、シリンダー径9.55mm、オリフィス孔径1.0mmφ、オリフィス長10mmである。)
〔3〕
動的粘弾性測定による前記熱可塑性エラストマー組成物のtanδピーク温度が、-25~40℃の範囲に少なくとも一つ存在する〔1〕又は〔2〕に記載の熱可塑性エラストマー組成物。
〔4〕
前記架橋してなる前記熱可塑性エラストマー組成物中の(A)成分の、o-ジクロロベンゼンを溶媒としたゲルパーミエーションクロマトグラフィー(GPC)測定によるポリスチレン換算の重量平均分子量が、5.0×104~2.0×105の範囲である〔1〕~〔3〕のいずれか一項に記載の熱可塑性エラストマー組成物。
〔5〕
前記(D)成分のJIS Z8803に規定する25℃における動粘度が5000cSt以上である〔1〕~〔4〕のいずれか一項に記載の熱可塑性エラストマー組成物。
〔6〕
前記(B)成分の前記共役ジエン単量体単位を主体とするブロックは、共役ジエン単量体単位を主体として含み、かつビニル芳香族単量体単位を含む共重合体ブロックである〔1〕~〔5〕のいずれか一項に記載の熱可塑性エラストマー組成物。
〔7〕
エチレン単位と炭素数3~20のα-オレフィン単位とを含むエチレン・α-オレフィン系共重合体40~80質量部を更に含有する〔1〕~〔6〕のいずれか一項に記載の熱可塑性エラストマー組成物。
〔8〕
〔1〕~〔7〕のいずれか一項に記載の熱可塑性エラストマー組成物を含む射出成形品。
〔9〕
〔8〕に記載の射出成形品からなるシート。
〔10〕
〔8〕に記載の射出成形品からなる自動車用内装材。
〔11〕
平均厚み2mm以下であり、表面積1000cm2以上である〔10〕に記載の自動車用内装材。
〔12〕
〔10〕又は〔11〕に記載の自動車用内装材を含む層と、
前記自動車用内装材を含む層に積層される、芯材を含む層とを備え、
前記芯材が、ポリプロピレン、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリカーボネート/アクリロニトリル・ブタジエン・スチレンアロイ(PC/ABSアロイ)、及び変性ポリフェニレンエーテル樹脂からなる群より選ばれる少なくとも一種である積層体。
〔13〕
前記自動車用内装材を含む層と前記芯材を含む層との間に発泡材を含む層を、更に備える〔12〕に記載の積層体。
〔14〕
〔12〕又は〔13〕に記載の積層体を備えるインストルメントパネル。
(A)ポリプロピレン系樹脂 100質量部、
(B)共役ジエン単量体単位を主体とするブロックと、ビニル芳香族単量体単位を主体とするブロックとをそれぞれ少なくとも1つずつ有するブロック共重合体の水添物 80~200質量部、
(C)軟化剤 100~250質量部、
(D)ポリオルガノシロキサン 5~20質量部、
(1)前記(B)成分中の前記ビニル芳香族単量体単位の含有量が、30~80質量%である、
(2)メルトフローレート(230℃、1.2kg荷重;MFR)が35~85g/10分である、
(3)硬度(JIS A硬度)が、60~90である、
(4)圧縮永久歪(JIS K6262、100℃、22時間)が、30~70%である、
(5)-30℃での引張伸度が、80%以上である。
(A)成分は、ポリプロピレン系樹脂である。ここでいうポリプロピレン系樹脂とは、プロピレンの単独重合体、及びプロピレンと、プロピレンと共重合可能な他の単量体との共重合体をいう。機械物性の観点から、ホモポリプロピレンが好ましいが、プロピレンとエチレンの共重合体等を使用することも可能である。
(B)成分は、共役ジエン単量体単位を主体とするブロックと、ビニル芳香族単量体単位を主体とするブロックとをそれぞれ少なくとも1つずつ有するブロック共重合体の水添物である。ここで、「ビニル芳香族単量体単位」とは、単量体であるビニル芳香族化合物を重合した結果生ずる重合体の構成単位を意味し、その構造は、置換ビニル基に由来する置換エチレン基の二つの炭素が結合部位となっている分子構造である。また、「共役ジエン単量体単位」とは、単量体である共役ジエンを重合した結果生ずる重合体の構成単位を意味し、その構造は、共役ジエン単量体に由来するオレフィンの二つの炭素が結合部位となっている分子構造である。ブロック共重合体において「主体とする」とは、共重合体ブロック中、共役ジエン単量体(又はビニル芳香族単量体)に由来する単量体単位を当該共重合体ブロック中に50質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上含むことをいう。例えば、共役ジエン単量体単位を主体とするブロックとは、共役ジエン単量体に由来する単量体単位を当該ブロック中に50質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上含むことを意味する。
ビニル芳香族化合物重合体ブロックの含有量(質量%)=(水添前の共重合体中のビニル芳香族化合物重合体ブロックの質量/水添前の共重合体の質量)×100
(C)成分は軟化剤である。軟化剤としては、特に限定されないが、相溶性の観点から、パラフィン系、ナフテン系、芳香族系等の炭化水素からなるプロセスオイルが好ましい。これらの中でも耐候性や着色性の観点からパラフィン系炭化水素主体のプロセスオイルが好ましく、ゴムとの相溶性の観点からナフテン系炭化水素主体のプロセスオイルが好ましい。熱及び光安定性の観点から、プロセスオイル中の芳香族系炭化水素の含有量は、ASTM D2140-97に規定する炭素数比率で、10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることが更に好ましい。
(D)成分は、ポリオルガノシロキサンである。ポリオルガノシロキサンの構造としては、特に限定されないが、耐摩耗性や手触り感の観点から、直鎖状、分岐状、又は架橋構造のポリマー構造をとることが好ましい。
本実施形態の熱可塑性ラストマー組成物は、(E)エチレン単位と炭素数が3~20のα-オレフィン単位とを含むエチレン・α-オレフィン系共重合体を、更に含有することが好ましい。エチレン・α-オレフィン系共重合体は、例えば、エチレンと、炭素数3~20のα-オレフィンとを共重合させることで得ることができる。
本実施形態の熱可塑性エラストマー組成物は、必要に応じて(F)有機過酸化物を含有することが好ましい。この(F)有機過酸化物は、架橋の際に(B)成分及び(E)成分に対する架橋開始剤等として働くとともに、(A)成分の分解反応を促進させることができる。その結果、熱可塑性エラストマー組成物の流動性や成形性を一層向上させることができ、表面積が大きく複雑な形状の部品を製造する場合であっても、金型等への追従性がよく、間隙なく、より完全に金型内に組成物を充填することができる。
(1)前記(B)成分中の前記ビニル芳香族単量体単位の含有量が、30~80質量%である、
(2)MFR(ASTM D1238、230℃、1.2kg荷重)が、35~85g/10分である、
(3)JIS A硬度が、60~90である、
(4)圧縮永久歪(JIS K6262、100℃、22時間)が、30~70%である、
(5)-30℃での引張伸度が、80%以上である。
上記(1)については既に説明したので、(2)~(5)について以下詳しく説明する。
(i)剪断速度100/secにおけるキャピラリーレオメーターによる溶融粘度が、30~200Pa・secである、
(ii)剪断速度1000/secにおけるキャピラリーレオメーターによる溶融粘度が、10~40Pa・secである。
10×106≦M≦1000×106
ここで、混練度M=(π2/2)(L/D)D3(N/Q)、
L:原料添加部を基点としてダイ方向の押出機長(mm)、
D:押出機バレル内径(mm)、
Q:吐出量(kg/h)、
N:スクリュー回転数(rpm)、である。
(1)水添率(%)
水添率は、核磁気共鳴スペクトル解析(NMR)により測定した。測定機器として核磁気共鳴測定装置(JEOL社製、装置名「JNM-LA400」)を用い、溶媒として重水素化クロロホルムを用い、化学シフト基準としてテトラメチルシラン(TMS)を用いた。サンプル濃度50mg/mL、観測周波数400MHz、パルスディレイ2.904秒、スキャン回数64回、パルス幅45°及び測定温度26℃の条件で測定を行った。
ビニル芳香族単量体単位、エチレン単量体単位、ブチレン単量体単位、ブタジエンの1,4-結合単位、1,2-結合単位及び3,4-結合単位の各含有量は、NMRにより測定した。測定機器として核磁気共鳴測定装置(JEOL社製、装置名「JNM-LA400」)を用い、溶媒として重水素化クロロホルムを用い、化学シフト基準としてテトラメチルシラン(TMS)を用いた。サンプル濃度50mg/mL、観測周波数400MHz、パルスディレイ2.904秒、スキャン回数64回、パルス幅45°及び測定温度26℃の条件で測定を行った。
スチレン重合体ブロック含有量は、水添前の共重合体を用いて、I. M. Kolthoff,et al.,J.Polym.Sci.1,429(1946)に記載の方法(四酸化オスミウム分解法)により測定した。水添前の共重合体の分解にはオスミウム酸の0.1g/125mL第3級ブタノール溶液を用いた。スチレン重合体ブロック含有量は、下記式にて算出した。ここで得られるスチレン重合体ブロック含有量を「Os値」と称する。
スチレン重合体ブロック含有量(Os値;質量%)=(水添前の共重合体中のスチレン重合体ブロックの質量)/水添前の共重合体の質量)×100
(A)ホモポリプロピレン(PP)
サンアロマー社製、ホモポリマータイプのポリプロピレン(230℃、2.16kg荷重条件におけるメルトフローレート(MFR):0.5g/10分;重量平均分子量は、6.6×105)(以下、「PP」と称する。)
(1)水添触媒の調製
(B)ブロック共重合体の水添反応に用いた水添触媒は下記の方法で調製した。
窒素置換した反応容器に、乾燥及び精製したシクロヘキサン1Lを仕込み、ビス(シクロペンタジエニル)チタニウムジクロリド100mmolを添加し、十分に攪拌しながら、トリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させた。
内容積が10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を行った。はじめに、乾燥及び精製したシクロヘキサン6.4L、スチレン175gを加え、予めテトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム開始剤のLiモル数の0.30倍モルになるように添加し、n-ブチルリチウム開始剤のLiのモル数として11mmolとなるように添加した。そして、初期温度65℃で重合し、重合終了後、ブタジエン650gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を60分間かけて一定速度で連続的に反応器に供給した後、スチレン175gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を10分間かけて更に添加して共重合体を得た。得られた共重合体のスチレン重合体ブロック含有量は35質量%、ビニル結合含有量は36%であった。
内容積が10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を行った。はじめに、シクロヘキサン6.4L、スチレン325gを加え、予めTMEDAをn-ブチルリチウムのLiモル数の0.40倍モルになるように添加し、n-ブチルリチウム開始剤のLiのモル数として20ミリモルとなるように添加し、初期温度65℃で重合し、重合終了後、ブタジエン350gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を60分間かけて一定速度で連続的に反応器に供給し、重合集合後、スチレン325gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を10分間かけて添加して共重合体を得た。得られた共重合体のスチレン重合体ブロックの含有量は65質量%、ビニル結合の含有量は40%であった。
内容積が10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を行った。はじめに、シクロヘキサン6.4L、スチレン75gを加え、予めTMEDAをn-ブチルリチウムのLiモル数の0.25倍モルになるように添加し、n-ブチルリチウム開始剤のLiのモル数として10ミリモルとなるように添加し、初期温度65℃で重合し、重合終了後、ブタジエン470gとスチレン380gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を60分間かけて一定速度で連続的に反応器に供給し、重合集合後、スチレン75gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を10分間かけて添加して共重合体を得た。得られた共重合体中のスチレン含有量は53質量%、共重合体中のスチレン重合体ブロック含有量は15質量%、共重合体ブロック(即ち、共役ジエン単量体単位とビニル芳香族単量体単位とを含む共重合体ブロック)中のスチレン含有量は45質量%、ビニル結合含有量は23%であった。
内容積が10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を行った。はじめに、乾燥及び精製したシクロヘキサン6.4L、スチレン210gを加え、予めテトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム開始剤のLiモル数の2.0倍モルになるように添加し、n-ブチルリチウム開始剤のLiのモル数として0.008molとなるように添加した。そして、初期温度55℃で重合し、重合終了後、ブタジエン580gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を60分間かけて一定速度で連続的に反応器に供給した後、スチレン210gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を10分間かけて更に添加して共重合体を得た。得られた共重合体のスチレン重合体ブロック含有量は42質量%、ビニル結合含有量は75%であった。
内容積が10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を行った。予め、テトラメチルエチレンジアミンのモル数が、n-ブチルリチウムのLiモル数の0.3倍モルとなるように添加してn-ブチルリチウム開始剤を調製した。そして、シクロヘキサン6.4L、スチレン60gを反応器に加えた後、n-ブチルリチウム開始剤のLiのモル数が0.008モルとなるようにn-ブチルリチウム開始剤を添加し、初期温度65℃で重合させた。重合終了後、ブタジエン600gとスチレン280gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を60分間かけて一定速度で連続的に反応器に供給し、重合終了後、スチレン60gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を10分間かけて添加して共重合体を得た。得られた共重合体中のスチレン含有量は40質量%であり、共重合体中のスチレン重合体ブロック含有量は12質量%であり、共重合体ブロック(即ち、共役ジエン単量体単位とビニル芳香族単量体単位とを含む共重合体ブロック)中のスチレン含有量は32質量%であり、ビニル結合含有量は20%であった。
内容積が10Lの攪拌装置及びジャケット付き槽型反応器を使用して、バッチ重合を行った。予め、テトラメチルエチレンジアミンのモル数が、n-ブチルリチウムのLiモル数の0.3倍モルとなるように添加してn-ブチルリチウム開始剤を調整した。そして、シクロヘキサン6.4L、スチレン80gを反応器に加えた後、n-ブチルリチウム開始剤のLiのモル数が0.008モルとなるようにn-ブチルリチウム開始剤を添加し、初期温度65℃で重合させた。重合終了後、ブタジエン280gとスチレン560gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を60分間かけて一定速度で連続的に反応器に供給し、重合終了後、スチレン80gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を10分間かけて添加して共重合体を得た。得られた共重合体のスチレン含有量は72質量%であり、共重合体中のスチレン重合体ブロック含有量は16質量%であり、共重合体ブロック(即ち、共役ジエン単量体単位とビニル芳香族単量体単位とを含む共重合体ブロック)中のスチレン含有量は67質量%であり、ビニル結合含有量は15%であった。
内容積が10Lの攪拌装置及びジャケット付き槽型反応器を使用して、バッチ重合を行った。予め、テトラメチルエチレンジアミンのモル数が、n-ブチルリチウムのLiモル数の0.3倍モルとなるように添加してn-ブチルリチウム開始剤を調製した。そして、シクロヘキサン6.4L、スチレン135gを反応器に加えた後、n-ブチルリチウム開始剤のLiのモル数が0.008モルとなるようにn-ブチルリチウム開始剤を添加し、初期温度65℃で重合させた。重合終了後、ブタジエン800gとスチレン90gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を60分間かけて一定速度で連続的に反応器に供給し、重合終了後、スチレン135gを含有するシクロヘキサン溶液(モノマー濃度22質量%)を10分間かけて添加して、共重合体を得た。得られた共重合体中のスチレン含有量は31質量%であり、共重合体中のスチレン重合体ブロック含有量は23質量%であり、共重合体ブロック(即ち、共役ジエン単量体単位とビニル芳香族単量体単位とを含む共重合体ブロック)中のスチレン含有量は10質量%であり、ビニル結合含有量は40%であった。
パラフィン系オイル(出光興産社製、商品名「ダイアナプロセスオイル PW-90」)
ジメチルシロキサン(東レダウコーニング社製、商品名「SH200」;60000センチストークス(cSt))を用いた(以下、「ポリオルガノシロキサン-1」と称する。)。
ジメチルシロキサン(東レダウコーニング社製、商品名「SH200」;3000センチストークス(cSt))を用いた(以下、「ポリオルガノシロキサン-2」と称する。)。
特開平03-163088号公報に記載のメタロセン触媒を用いた方法により、エチレンとオクテン-1の共重合体を製造した。この共重合体のエチレンの含有量は72質量%であり、オクテン-1の含有量は28質量%である(以下、「ゴム-8」と称する。)。
メタロセン触媒を用いたエチレンとオクテン-1の共重合体(ダウ・ケミカル社製、商品名「エンゲージ8842」、を使用した。この共重合体のエチレンの含有量は55質量%であり、オクテンの含有量は45質量%である(以下、「ゴム-9」と称する)。
2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン(日本油脂社製、商品名「パーヘキサ25B」)
2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン100質量部に対して、架橋助剤として下記多官能単量体を併用した。
トリアリルイソシアヌレート(日本化成社製;以下、「TAIC」と称する。)1.4質量部
ジビニルベンゼン(和光純薬社製;以下、「DVB」と称する。)0.4質量部
押出機として、バレル中央部にオイル注入口を有した二軸押出機(40mmφ、L/D=47;東芝機械社製、「TEM58SS」)を用いた。スクリューとしては注入口の前後に混練部を有した2条スクリューを用いた。各表に記載した軟化剤以外の原料を組成比(質量部比)で一括混合したのち、二軸押出機(シリンダー温度200℃)に定量フィーダーで導入し、引き続き、押出機の中央部にある注入口より所定量の軟化剤をポンプにより注入し、溶融押出を行い、熱可塑性エラストマー組成物を得た。得られた熱可塑性エラストマー組成物を、加熱プレス機(東邦プレス製作所社製、「T-50」)を用いて、200℃にて圧縮成形することにより、2mm厚のシートを作製し、以下の(2)、(3)、(4)、(7)の物性評価における評価用サンプルとした。
熱可塑性エラストマー組成物及びサンプルの物性は、以下の方法で評価した。なお、実施例1の熱可塑性エラストマー組成物における架橋後の(A)成分のGPCによるポリスチレン換算の重量平均分子量は、11×104であった。その他の各実施例及び比較例における架橋後の(A)成分の重量平均分子量は表1~5に示す。
ASTM D1238に準じて行った。測定条件は、加熱温度230℃、荷重1.2kgの場合と、加熱温度230℃、加重2.16kgの場合で行った。
サンプルである2mm厚シートを4枚重ねて、JIS K7215に準じ、Aタイプにて23℃雰囲気下にて評価した。
JIS K6262に準じて行った。サンプルである2mm厚シートを打ち抜いて得た、直径2.9mmの円板6~7枚を12.7mmの厚みになるように重ねたものを試験片とした。試験片を治具に装着し、圧縮装置で治具に圧力を加え、厚みが9.52mm(圧縮割合25%)になるように圧縮し、治具のボルトを締めてその状態を固定した。試験片が装着された治具を100℃のオーブンに入れ22時間静置した。熱処理後、試験片を23℃恒温室で30分放置冷却し、厚みt(mm)を測定した。圧縮永久歪(%)は下記の式を用いて算出した。
圧縮永久歪(%)={(12.7-t)/3.18}×100
JIS K6251に準じ、-30℃雰囲気下にて引張伸度(%)を評価した。
熱可塑性エラストマー組成物中の(A)ポリプロピレン系樹脂は、ペレット約1gをo-ジクロロベンゼンを溶媒としたソックスレー抽出を10時間行い、(A)ポリプロピレン系樹脂を溶解させて抽出した。得られたポリプロピレン系樹脂成分を、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)測定を行い、ポリスチレン換算の重量平均分子量を求めた。
測定機種:Waters社製、GPC/V2000
カラム:Shodex AT-G+AT806MS×2本
溶媒:o-ジクロロベンゼン
温度:カラム及びインジェクター 145℃
濃度:約1.0g/L
流速:1.0mL/分
検出器:示差屈折計(RI)
損失正接(tanδピーク温度)は、粘弾性測定解析装置(レオロジー社製、型式DVE-V4)を用いて、ひずみ0.1%、周波数1Hzの条件で粘弾性スペクトルを測定することにより求めた。
JIS K6251に準じ、23℃雰囲気下にて引張強度(MPa)と引張伸度(%)を評価した。
東洋精機製作所製のキャピラリーレオメーター「キャピログラフ1D」を用いて、加熱温度230℃、シリンダー径9.55mm、オリフィス孔径1.0mmφ、オリフィス長10mmで実施した。そして、剪断速度100/secの場合と1000/secの場合のそれぞれについてキャピラリーレオメーターによる溶融粘度を測定した。
厚み2mm、縦横32cm×32cm、ゲート幅8mm、ゲート厚み2mm、キャビティー表面が皮シボ加工された平板金型を用いて、熱可塑性エラストマー組成物の射出成形を行うことで、熱可塑性エラストマー組成物の射出成形性を評価した。射出成形機は、住友重機械工業社製「SG220」を用いた。成形条件は、樹脂温度230℃、金型温度60℃、射出時間10秒、射出速度80%、背圧10%、スクリュー回転数100rpm、射出圧力100MPaである。
射出成形に用いた熱可塑性エラストマー組成物について、以下の判定基準を基づき平板成形性を評価した。
◎:金型内を間隙なく完全に充填することができ、得られた成形品について外観上の不具合がなかった。
○:金型内を間隙なく完全に充填することができたが、得られた成形品に僅かなウェルド、ヒケが見られた。
△:金型内を間隙なく完全に充填することができたが、得られた成形品にウェルド、ヒケ等の明らかな不具合が見られた。
×:金型内を完全充填することができなかった。
厚み1mm、幅10mm、ゲート径4.5mm、ゲート厚み1mmのスパイラルフロー金型の金型キャビティー内に熱可塑性エラストマー組成物を射出し、その流動長(スパイラルフロー長)を測定した。射出成形機は住友重機械工業社製「SH100」を用いた。成形条件は、樹脂温度:230℃、金型温度:60℃、射出時間:10秒、射出速度:40%、背圧:10%、スクリュー回転数:100rpm、射出圧力100MPaである。
前記(9)にて得られた平板について、外観評価を行った。
○:目視でフローマークが全く観察されなかったもの。
△:目視で薄っすらとフローマークが観察されたもの。
×:目視で明らかなフローマークが観察されたもの。
上記(9)にて得られた成形品(平板)について、以下の判定基準に基づきベタツキ性を評価した。
◎:得られた成形品に全くベトツキ感がなかった。
○:得られた成形品にややベトツキ感があるものの、実用に差し支えなかった。
△:得られた成形品にベトツキ感があり、実用に不向きであった。
×:得られた成形品に明らかなベトツキ感があった。
上記(9)にて得られた成形品(平板)について、触感評価を行った。
触感評価は、ブラインド(視覚から感じる“しっとりしているように見える”、“柔らかそうに見える”等の感覚を加えない、触感のみに基づいて評価する方法)で行い、手のひらで触った際に、手触りの良さを5段階評価で評価した。従来のオレフィン系熱可塑性エラストマー(TPO系)製の表皮材(共和レザー社製、真空引き表皮)を基準点(3点)とし、それと同様の手触りだったものを3点、それよりもやや手触りが良かったものを4点、非常に手触りが良かったものを5点、やや手触りが良くなかったものを2点、非常に手触りが良くなかったものを1点として点数評価した。
上記(9)にて得られた成形品(平板)について、耐摩耗性評価を行った。
耐摩耗性評価は、学振型摩耗試験機(テスター産業社製、「AB-301」)を用いて、成形品表面の皮シボが消滅するまでの摩擦往復回数で行った。評価条件は下記の通り。
温度条件:23℃雰囲気下
ストローク:120mm
周波数:1往復/2秒
荷重:1kg
摩擦物:綿布100%、かなきん3号(JIS L0803準拠)を三つ折にして装着
接触面積:1cm2
実施例1~7及び比較例1~5の熱可塑性エラストマー組成物を用いてインストルメントパネル用表皮材(以下、単に「表皮材」と称する場合がある。)を作製し、その特性を評価した。まず、表皮材の作製方法を図3に基づいて説明する。図3は、インストルメントパネル用表皮材(表皮材)20の作製方法の手順を示した模式図である。まず、表皮材表面側形成用金型(以下、「表側金型」と称する。)200A及び表皮材裏面側形成用金型(以下、「裏側金型」と称する。)200Bを下記の要領にて作製した(図3の(1)参照)。反転用の本革(300mm×400mm)を準備してその反転モデルを作製し、これを基に表側金型200Aである電鋳プレートを作製した。そして、その電鋳プレート(表側金型200A)と合わさることで、所定の板厚が確保できるような裏側金型200Bを作製した。
◎:金型内を間隙なく完全に充填することができ、得られた成形品について外観上の不具合がなかった。
○:金型内を間隙なく完全に充填することができたが、得られた成形品に僅かなウェルド、ヒケが見られた。
△:金型内を間隙なく完全に充填することができたが、得られた成形品にウェルド、ヒケ等の明らかな不具合が見られた。
×:金型内を完全充填することができなかった。
総合判定は、上記の各評価を考慮し、総合的に判断した。自動車用部品としての要求性能を満足する可能性のあるものを基準点(3点)とし、それよりも良かったものを4点、非常に良かったものを5点とし、やや悪かったものを2点、非常に悪かったものを1点として点数評価した。
Claims (14)
- 下記(A)~(D)の成分を含有する組成物を架橋してなる熱可塑性エラストマー組成物であり、
下記(1)~(5)の条件を満たす熱可塑性エラストマー組成物;
(A)ポリプロピレン系樹脂 100質量部、
(B)共役ジエン単量体単位を主体とするブロックと、ビニル芳香族単量体単位を主体とするブロックとをそれぞれ少なくとも1つずつ有するブロック共重合体の水添物 80~200質量部、
(C)軟化剤 100~250質量部、
(D)ポリオルガノシロキサン 5~20質量部、
(1)前記(B)成分中の前記ビニル芳香族単量体単位の含有量が、30~80質量%である、
(2)メルトフローレート(ASTM D1238、230℃、1.2kg荷重;MFR)が、35~85g/10分である、
(3)JIS A硬度が、60~90である、
(4)圧縮永久歪(JIS K6262、100℃、22時間)が、30~70%である、
(5)-30℃での引張伸度が、80%以上である。 - 下記(i)及び(ii)の条件を更に満たす請求項1に記載の熱可塑性エラストマー組成物;
(i)剪断速度100/secにおけるキャピラリーレオメーターによる溶融粘度が、30~200Pa・secである、
(ii)剪断速度1000/secにおけるキャピラリーレオメーターによる溶融粘度が、10~40Pa・secである。
(但し、上記(i)及び(ii)におけるキャピラリーレオメーターによる溶融粘度の測定条件は、加熱温度230℃、シリンダー径9.55mm、オリフィス孔径1.0mmφ、オリフィス長10mmである。) - 動的粘弾性測定による前記熱可塑性エラストマー組成物のtanδピーク温度が、-25~40℃の範囲に少なくとも一つ存在する請求項1又は2に記載の熱可塑性エラストマー組成物。
- 前記架橋してなる前記熱可塑性エラストマー組成物中の(A)成分の、o-ジクロロベンゼンを溶媒としたゲルパーミエーションクロマトグラフィー(GPC)測定によるポリスチレン換算の重量平均分子量が、5.0×104~2.0×105の範囲である請求項1~3のいずれか一項に記載の熱可塑性エラストマー組成物。
- 前記(D)成分のJIS Z8803に規定する25℃における動粘度が5000cSt以上である請求項1~4のいずれか一項に記載の熱可塑性エラストマー組成物。
- 前記(B)成分の前記共役ジエン単量体単位を主体とするブロックは、共役ジエン単量体単位を主体として含み、かつビニル芳香族単量体単位を含む共重合体ブロックである請求項1~5のいずれか一項に記載の熱可塑性エラストマー組成物。
- エチレン単位と炭素数3~20のα-オレフィン単位とを含むエチレン・α-オレフィン系共重合体40~80質量部を更に含有する請求項1~6のいずれか一項に記載の熱可塑性エラストマー組成物。
- 請求項1~7のいずれか一項に記載の熱可塑性エラストマー組成物を含む射出成形品。
- 請求項8に記載の射出成形品からなるシート。
- 請求項8に記載の射出成形品からなる自動車用内装材。
- 平均厚み2mm以下であり、表面積1000cm2以上である請求項10に記載の自動車用内装材。
- 請求項10又は11に記載の自動車用内装材を含む層と、
前記自動車用内装材を含む層に積層される、芯材を含む層とを備え、
前記芯材が、ポリプロピレン、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリカーボネート/アクリロニトリル・ブタジエン・スチレンアロイ(PC/ABSアロイ)、及び変性ポリフェニレンエーテル樹脂からなる群より選ばれる少なくとも一種である積層体。 - 前記自動車用内装材を含む層と前記芯材を含む層との間に発泡材を含む層を、更に備える請求項12に記載の積層体。
- 請求項12又は13に記載の積層体を備えるインストルメントパネル。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2012013869A MX2012013869A (es) | 2010-06-09 | 2011-06-09 | Composicion elastomerica termoplastica y articulos moldeados con la misma. |
PH1/2012/502421A PH12012502421A1 (en) | 2010-06-09 | 2011-06-09 | Thermoplastic elastomer composition and molded products using the same |
CN201180027912.2A CN103025822B (zh) | 2010-06-09 | 2011-06-09 | 热塑性弹性体组合物及其成型品 |
EP11792528.9A EP2581412B1 (en) | 2010-06-09 | 2011-06-09 | Laminate |
BR112012030389-9A BR112012030389B1 (pt) | 2010-06-09 | 2011-06-09 | composição de elastômero termoplástico, produto moldado por injeção, folha, material para interior de automóvel, laminado, e, painel de instrumentos |
KR1020127031358A KR101535326B1 (ko) | 2010-06-09 | 2011-06-09 | 열가소성 엘라스토머 조성물 및 그 성형품 |
US13/702,047 US9096748B2 (en) | 2010-06-09 | 2011-06-09 | Thermoplastic elastomer composition and molded products using the same |
RU2012151311/04A RU2559317C2 (ru) | 2010-06-09 | 2011-06-09 | Термопластическая эластомерная композиция и формованные продукты с использованием указанной композиции |
JP2012519430A JP5591330B2 (ja) | 2010-06-09 | 2011-06-09 | 熱可塑性エラストマー組成物及びその成形品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-132285 | 2010-06-09 | ||
JP2010132285 | 2010-06-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011155571A1 true WO2011155571A1 (ja) | 2011-12-15 |
WO2011155571A9 WO2011155571A9 (ja) | 2013-01-31 |
Family
ID=45098175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/063274 WO2011155571A1 (ja) | 2010-06-09 | 2011-06-09 | 熱可塑性エラストマー組成物及びその成形品 |
Country Status (11)
Country | Link |
---|---|
US (1) | US9096748B2 (ja) |
EP (1) | EP2581412B1 (ja) |
JP (1) | JP5591330B2 (ja) |
KR (1) | KR101535326B1 (ja) |
CN (2) | CN103025822B (ja) |
BR (1) | BR112012030389B1 (ja) |
MX (1) | MX2012013869A (ja) |
MY (1) | MY156826A (ja) |
PH (1) | PH12012502421A1 (ja) |
RU (1) | RU2559317C2 (ja) |
WO (1) | WO2011155571A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013252638A (ja) * | 2012-06-06 | 2013-12-19 | Toto Ltd | 樹脂成形品 |
WO2015060201A1 (ja) * | 2013-10-25 | 2015-04-30 | クラレプラスチックス株式会社 | 熱可塑性エラストマー組成物 |
JPWO2021054271A1 (ja) * | 2019-09-20 | 2021-03-25 | ||
WO2021181750A1 (ja) * | 2020-03-11 | 2021-09-16 | 共和レザー株式会社 | 表皮材 |
WO2022209235A1 (ja) | 2021-03-31 | 2022-10-06 | 三井化学株式会社 | 熱可塑性エラストマー組成物およびその用途 |
WO2023013772A1 (ja) | 2021-08-06 | 2023-02-09 | 三井化学株式会社 | 熱可塑性エラストマー組成物およびこれからなる成形体 |
WO2024177030A1 (ja) * | 2023-02-21 | 2024-08-29 | 三井化学株式会社 | シート状表皮材、および当該表皮材を有する積層体 |
JP7605137B2 (ja) | 2020-01-30 | 2024-12-24 | Mcppイノベーション合同会社 | 熱可塑性エラストマー組成物及びそれよりなる成形体 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101701554B1 (ko) * | 2013-04-12 | 2017-02-01 | 롯데첨단소재(주) | 열가소성 고무 조성물 및 이를 이용한 성형품 |
DE102014211775A1 (de) * | 2014-06-18 | 2015-12-24 | Faurecia Innenraum Systeme Gmbh | Fahrzeuginnenverkleidungsteil sowie Verfahren zum Herstellen eines Fahrzeuginnenverkleidungsteils |
TWI612067B (zh) | 2015-08-24 | 2018-01-21 | Asahi Chemical Ind | 氫化嵌段共聚物與使用其之聚丙烯系樹脂組合物及其成型體 |
KR102041739B1 (ko) * | 2015-09-09 | 2019-11-06 | 아사히 가세이 가부시키가이샤 | 필름 |
EP3351434A4 (en) * | 2015-09-16 | 2019-04-17 | Shanghai Yanfeng Jin Qiao Automotive Trim Systems Co., Ltd. | METHOD FOR PRODUCING A DASHBOARD ARRANGEMENT AND ARMATURE BOARD ARRANGEMENT MADE THEREFOR |
CN109312124A (zh) * | 2016-07-01 | 2019-02-05 | 宝洁公司 | 聚丙烯膜 |
RU2706314C1 (ru) * | 2018-12-28 | 2019-11-15 | Общество с ограниченной ответственностью "ХТК" | Термопластичная резина с пониженной остаточной деформацией при сжатии |
WO2021065623A1 (ja) * | 2019-09-30 | 2021-04-08 | 日本ゼオン株式会社 | 水添ブロック共重合体組成物、その製造方法およびフィルム |
CN111087686B (zh) * | 2019-12-17 | 2021-09-17 | 金发科技股份有限公司 | 一种聚丙烯组合物及其制备方法和应用 |
CN112708207B (zh) * | 2020-12-17 | 2022-04-12 | 会通新材料股份有限公司 | 一种无虎皮纹聚丙烯复合材料及其制备方法 |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS428704B1 (ja) | 1963-12-26 | 1967-04-20 | ||
JPS436636B1 (ja) | 1963-04-25 | 1968-03-12 | ||
JPS4936957B1 (ja) | 1962-08-09 | 1974-10-04 | ||
JPS5628925B2 (ja) | 1973-01-24 | 1981-07-04 | ||
JPS59166518A (ja) | 1983-03-10 | 1984-09-19 | Japan Synthetic Rubber Co Ltd | 直鎖状ブロック共重合体 |
JPS6037784A (ja) | 1983-08-10 | 1985-02-27 | Matsushita Electric Ind Co Ltd | 電界効果型トランジスタ |
JPS6019286B2 (ja) | 1975-05-02 | 1985-05-15 | スタンダ−ド・オイル・カンパニ− | フアイバ−グレ−ドのテレフタル酸の製法 |
JPS60186577A (ja) | 1984-03-06 | 1985-09-24 | Japan Synthetic Rubber Co Ltd | ホツトメルト型粘着剤組成物 |
JPS634776A (ja) | 1986-06-24 | 1988-01-09 | エヌ・ベ−・フィリップス・フル−イランペンファブリケン | 画像ピック−アップ装置 |
JPS634841B2 (ja) | 1983-01-20 | 1988-02-01 | Asahi Chemical Ind | |
JPH0137970B2 (ja) | 1984-04-18 | 1989-08-10 | Asahi Chemical Ind | |
JPH0153851B2 (ja) | 1984-07-25 | 1989-11-15 | Asahi Chemical Ind | |
JPH0212733A (ja) | 1988-06-30 | 1990-01-17 | Sony Corp | 含浸形陰極の製造方法 |
JPH029041B2 (ja) | 1986-03-07 | 1990-02-28 | Asahi Chemical Ind | |
JPH03163088A (ja) | 1989-08-31 | 1991-07-15 | Dow Chem Co:The | 第4族金属配位錯体 |
US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
JPH08109219A (ja) | 1994-10-11 | 1996-04-30 | Asahi Chem Ind Co Ltd | 水添重合体 |
JP2517073B2 (ja) | 1988-08-22 | 1996-07-24 | 三井石油化学工業株式会社 | シボ模様付熱可塑性エラストマ―成形物およびその製造方法 |
JPH10500366A (ja) | 1994-06-01 | 1998-01-13 | レクティセル | 少なくとも2つのエラストマー材料のエラストマースキンを製造するための方法とスプレイモールド組立体及びそのエラストマースキン |
JP2003176497A (ja) * | 2001-12-10 | 2003-06-24 | Lion Corp | ガラス用洗浄剤組成物 |
JP2005179455A (ja) * | 2003-12-18 | 2005-07-07 | Mitsuboshi Belting Ltd | 射出成形用熱可塑性エラストマー組成物、およびこれを用いた表皮体 |
JP2006199952A (ja) * | 2004-12-24 | 2006-08-03 | Advanced Plastics Compounds Co | 熱可塑性エラストマー及びその成形体 |
JP2009256467A (ja) * | 2008-04-16 | 2009-11-05 | Asahi Kasei Chemicals Corp | 動的架橋組成物 |
JP2010132285A (ja) | 2010-02-12 | 2010-06-17 | Yamaha Motor Co Ltd | 車両用鞍乗り型シート |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS3619286B1 (ja) | 1959-05-28 | 1961-10-13 | ||
US3281383A (en) | 1962-08-09 | 1966-10-25 | Phillips Petroleum Co | Branched polymers prepared from monolithium-terminated polymers and compounds having at least three reactive sites |
JPS6037784B2 (ja) | 1980-04-04 | 1985-08-28 | チッソ株式会社 | 塩化ビニル共重合体系真空成形物 |
GB2134909B (en) | 1983-01-20 | 1986-08-20 | Asahi Chemical Ind | Catalytic hydrogenation of conjugated diene polymer |
US4603155A (en) | 1983-03-10 | 1986-07-29 | Japan Synthetic Rubber Co., Ltd. | Alkenyl aromatic compound-conjugated diene block copolymer and process for the production thereof |
JPS59192524A (ja) | 1983-04-15 | 1984-10-31 | Mitsuboshi Belting Ltd | 合成樹脂表皮体の製造法 |
JPS59192529A (ja) | 1983-04-18 | 1984-10-31 | Shigeru Kogyo Kk | インストルメントパネルパツドの製造方法 |
US5474841A (en) | 1992-04-23 | 1995-12-12 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Polypropylene resin cellular molded article having a skin and production method therefor |
US6033770A (en) | 1992-04-23 | 2000-03-07 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Polypropylene resin cellular molded article having a skin and production method therefor |
JPH0648221A (ja) * | 1992-06-04 | 1994-02-22 | Kanegafuchi Chem Ind Co Ltd | インストルメントパネル |
JP3199494B2 (ja) * | 1992-11-06 | 2001-08-20 | ジェイエスアール株式会社 | 熱可塑性エラストマー組成物 |
JPH1067893A (ja) | 1996-08-29 | 1998-03-10 | Mitsubishi Chem Corp | 熱可塑性エラストマー組成物 |
JPH11130924A (ja) | 1997-10-27 | 1999-05-18 | Kansei Corp | 強化ポリプロピレン系樹脂組成物、パッド付インストルメントパネル芯材、それを用いたパッド付インストルメントパネルの製法 |
JP2002348433A (ja) | 2001-05-24 | 2002-12-04 | Japan Polyolefins Co Ltd | 熱可塑性エラストマー組成物 |
JP4087662B2 (ja) | 2001-09-12 | 2008-05-21 | リケンテクノス株式会社 | 熱可塑性エラストマー組成物 |
RU2375390C2 (ru) * | 2004-03-29 | 2009-12-10 | Пирелли Энд К. С.П.А. | Термопластичный эластомерный материал, включающий вулканизированную резину в измельченной форме |
US8517329B2 (en) | 2004-07-26 | 2013-08-27 | 3M Innovative Properties Company | Easel stand mountable display board |
EP1674530A1 (en) * | 2004-12-24 | 2006-06-28 | Kraton Polymers Research B.V. | High melt strength thermoplastic elastomer composition |
JP2006199930A (ja) * | 2004-12-24 | 2006-08-03 | Advanced Plastics Compounds Co | 熱可塑性エラストマー及びその成形体 |
JP4901106B2 (ja) * | 2005-01-27 | 2012-03-21 | 東レ・ダウコーニング株式会社 | 車両モールディング用熱可塑性エラストマー組成物および車両用モールディング付きガラス板 |
EP1894974A1 (en) * | 2006-08-28 | 2008-03-05 | Kraton Polymers Research B.V. | Block copolymer compositions for moulded articles |
JP2009256457A (ja) * | 2008-04-16 | 2009-11-05 | Mitsubishi Rayon Co Ltd | ブロック共重合体及び塗料用組成物 |
-
2011
- 2011-06-09 KR KR1020127031358A patent/KR101535326B1/ko active Active
- 2011-06-09 MX MX2012013869A patent/MX2012013869A/es active IP Right Grant
- 2011-06-09 RU RU2012151311/04A patent/RU2559317C2/ru active
- 2011-06-09 BR BR112012030389-9A patent/BR112012030389B1/pt active IP Right Grant
- 2011-06-09 PH PH1/2012/502421A patent/PH12012502421A1/en unknown
- 2011-06-09 CN CN201180027912.2A patent/CN103025822B/zh active Active
- 2011-06-09 JP JP2012519430A patent/JP5591330B2/ja active Active
- 2011-06-09 MY MYPI2012005171A patent/MY156826A/en unknown
- 2011-06-09 US US13/702,047 patent/US9096748B2/en active Active
- 2011-06-09 EP EP11792528.9A patent/EP2581412B1/en active Active
- 2011-06-09 WO PCT/JP2011/063274 patent/WO2011155571A1/ja active Application Filing
- 2011-06-09 CN CN201610887278.4A patent/CN106977808B/zh active Active
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4936957B1 (ja) | 1962-08-09 | 1974-10-04 | ||
JPS436636B1 (ja) | 1963-04-25 | 1968-03-12 | ||
JPS428704B1 (ja) | 1963-12-26 | 1967-04-20 | ||
JPS5628925B2 (ja) | 1973-01-24 | 1981-07-04 | ||
JPS6019286B2 (ja) | 1975-05-02 | 1985-05-15 | スタンダ−ド・オイル・カンパニ− | フアイバ−グレ−ドのテレフタル酸の製法 |
JPS634841B2 (ja) | 1983-01-20 | 1988-02-01 | Asahi Chemical Ind | |
JPS59166518A (ja) | 1983-03-10 | 1984-09-19 | Japan Synthetic Rubber Co Ltd | 直鎖状ブロック共重合体 |
JPS6037784A (ja) | 1983-08-10 | 1985-02-27 | Matsushita Electric Ind Co Ltd | 電界効果型トランジスタ |
JPS60186577A (ja) | 1984-03-06 | 1985-09-24 | Japan Synthetic Rubber Co Ltd | ホツトメルト型粘着剤組成物 |
JPH0137970B2 (ja) | 1984-04-18 | 1989-08-10 | Asahi Chemical Ind | |
JPH0153851B2 (ja) | 1984-07-25 | 1989-11-15 | Asahi Chemical Ind | |
JPH029041B2 (ja) | 1986-03-07 | 1990-02-28 | Asahi Chemical Ind | |
JPS634776A (ja) | 1986-06-24 | 1988-01-09 | エヌ・ベ−・フィリップス・フル−イランペンファブリケン | 画像ピック−アップ装置 |
JPH0212733A (ja) | 1988-06-30 | 1990-01-17 | Sony Corp | 含浸形陰極の製造方法 |
JP2517073B2 (ja) | 1988-08-22 | 1996-07-24 | 三井石油化学工業株式会社 | シボ模様付熱可塑性エラストマ―成形物およびその製造方法 |
JPH03163088A (ja) | 1989-08-31 | 1991-07-15 | Dow Chem Co:The | 第4族金属配位錯体 |
US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
JPH10500366A (ja) | 1994-06-01 | 1998-01-13 | レクティセル | 少なくとも2つのエラストマー材料のエラストマースキンを製造するための方法とスプレイモールド組立体及びそのエラストマースキン |
JPH08109219A (ja) | 1994-10-11 | 1996-04-30 | Asahi Chem Ind Co Ltd | 水添重合体 |
JP2003176497A (ja) * | 2001-12-10 | 2003-06-24 | Lion Corp | ガラス用洗浄剤組成物 |
JP2005179455A (ja) * | 2003-12-18 | 2005-07-07 | Mitsuboshi Belting Ltd | 射出成形用熱可塑性エラストマー組成物、およびこれを用いた表皮体 |
JP2006199952A (ja) * | 2004-12-24 | 2006-08-03 | Advanced Plastics Compounds Co | 熱可塑性エラストマー及びその成形体 |
JP2009256467A (ja) * | 2008-04-16 | 2009-11-05 | Asahi Kasei Chemicals Corp | 動的架橋組成物 |
JP2010132285A (ja) | 2010-02-12 | 2010-06-17 | Yamaha Motor Co Ltd | 車両用鞍乗り型シート |
Non-Patent Citations (2)
Title |
---|
I. M. KOLTHOFF ET AL., J.POLYM. SCI., vol. 1, 1946, pages 429 |
See also references of EP2581412A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013252638A (ja) * | 2012-06-06 | 2013-12-19 | Toto Ltd | 樹脂成形品 |
WO2015060201A1 (ja) * | 2013-10-25 | 2015-04-30 | クラレプラスチックス株式会社 | 熱可塑性エラストマー組成物 |
JPWO2021054271A1 (ja) * | 2019-09-20 | 2021-03-25 | ||
JP7605137B2 (ja) | 2020-01-30 | 2024-12-24 | Mcppイノベーション合同会社 | 熱可塑性エラストマー組成物及びそれよりなる成形体 |
WO2021181750A1 (ja) * | 2020-03-11 | 2021-09-16 | 共和レザー株式会社 | 表皮材 |
WO2022209235A1 (ja) | 2021-03-31 | 2022-10-06 | 三井化学株式会社 | 熱可塑性エラストマー組成物およびその用途 |
EP4317281A4 (en) * | 2021-03-31 | 2025-03-26 | Mitsui Chemicals Inc | THERMOPLASTIC ELASTOMER COMPOSITION AND ITS USE |
WO2023013772A1 (ja) | 2021-08-06 | 2023-02-09 | 三井化学株式会社 | 熱可塑性エラストマー組成物およびこれからなる成形体 |
WO2024177030A1 (ja) * | 2023-02-21 | 2024-08-29 | 三井化学株式会社 | シート状表皮材、および当該表皮材を有する積層体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011155571A1 (ja) | 2013-08-01 |
EP2581412B1 (en) | 2017-09-06 |
JP5591330B2 (ja) | 2014-09-17 |
KR20130020898A (ko) | 2013-03-04 |
KR101535326B1 (ko) | 2015-07-08 |
PH12012502421A1 (en) | 2013-02-18 |
BR112012030389B1 (pt) | 2020-11-17 |
US9096748B2 (en) | 2015-08-04 |
RU2012151311A (ru) | 2014-07-20 |
BR112012030389A2 (pt) | 2017-06-20 |
CN106977808A (zh) | 2017-07-25 |
US20130209787A1 (en) | 2013-08-15 |
RU2559317C2 (ru) | 2015-08-10 |
CN106977808B (zh) | 2020-07-28 |
MY156826A (en) | 2016-03-31 |
MX2012013869A (es) | 2013-05-09 |
EP2581412A4 (en) | 2013-09-04 |
CN103025822A (zh) | 2013-04-03 |
CN103025822B (zh) | 2018-03-09 |
WO2011155571A9 (ja) | 2013-01-31 |
EP2581412A1 (en) | 2013-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5591330B2 (ja) | 熱可塑性エラストマー組成物及びその成形品 | |
JP5681491B2 (ja) | 熱可塑性エラストマー組成物 | |
JP7282903B2 (ja) | 表示装置 | |
JPWO2010104174A1 (ja) | ポリプロピレン系樹脂組成物、その成型品及びそれを用いた自動車用内外装材料 | |
JP7657088B2 (ja) | 熱可塑性エラストマー組成物およびその用途 | |
JP7633072B2 (ja) | 成形体 | |
JP2022157827A (ja) | 熱可塑性エラストマー組成物及びその用途 | |
JP2023137852A (ja) | 熱可塑性エラストマー組成物、射出成形体および自動車内装部品 | |
EP4495183A1 (en) | Thermoplastic elastomer composition and method for producing thermoplastic elastomer composition | |
WO2022209235A1 (ja) | 熱可塑性エラストマー組成物およびその用途 | |
JP2024038766A (ja) | 家具用積層体 | |
WO2024122591A1 (ja) | 熱可塑性エラストマー組成物およびこれからなる成形体 | |
JP2024070694A (ja) | 成形体 | |
WO2023013772A1 (ja) | 熱可塑性エラストマー組成物およびこれからなる成形体 | |
WO2024177030A1 (ja) | シート状表皮材、および当該表皮材を有する積層体 | |
JP2023137853A (ja) | 熱可塑性エラストマー組成物、射出成形体および自動車内装部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180027912.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11792528 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012519430 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127031358 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/013869 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10521/DELNP/2012 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2011792528 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12012502421 Country of ref document: PH Ref document number: 2011792528 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201006190 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2012151311 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13702047 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012030389 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012030389 Country of ref document: BR Kind code of ref document: A2 Effective date: 20121129 |