[go: up one dir, main page]

WO2011151916A1 - Belt-type continuously variable transmission for vehicle - Google Patents

Belt-type continuously variable transmission for vehicle Download PDF

Info

Publication number
WO2011151916A1
WO2011151916A1 PCT/JP2010/059471 JP2010059471W WO2011151916A1 WO 2011151916 A1 WO2011151916 A1 WO 2011151916A1 JP 2010059471 W JP2010059471 W JP 2010059471W WO 2011151916 A1 WO2011151916 A1 WO 2011151916A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil chamber
movable sheave
oil
sheave
cylinder
Prior art date
Application number
PCT/JP2010/059471
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 菊川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/059471 priority Critical patent/WO2011151916A1/en
Publication of WO2011151916A1 publication Critical patent/WO2011151916A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • F16H63/06Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions
    • F16H63/065Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions hydraulic actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/52Pulleys or friction discs of adjustable construction
    • F16H55/56Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable

Definitions

  • the present invention relates to a belt type continuously variable transmission for a vehicle having a double piston type hydraulic cylinder, and more particularly to a technique for increasing the degree of freedom in designing a hydraulic supply oil passage to an oil chamber of the hydraulic cylinder.
  • the gist of the invention according to claim 1 is that: (a) a fixed sheave fixed to a rotary shaft and the rotation so as to form a V-groove between the fixed sheave; A pair of groove width variable pulleys each having a movable sheave provided so as not to rotate relative to the shaft and movable in the direction of the rotation axis of the rotation shaft, and wound around the V grooves of the pair of groove width variable pulleys, respectively.
  • a transmission belt and a first oil chamber and a second oil chamber formed between the movable sheave and a cylinder member fixed to the rotating shaft on a side opposite to the fixed sheave with respect to the movable sheave.
  • a belt-type continuously variable transmission for a vehicle comprising: a hydraulic cylinder that changes a rotational speed ratio of: (b) the hydraulic cylinder forms the first oil chamber with the movable sheave; The first oil chamber is formed between the first member that is immovable in the direction of the rotation axis and the movable sheave, and the second oil chamber is formed so as to be movable in the direction of the rotation axis. And (c) the second member has a communication hole for communicating the first oil chamber with the second oil chamber.
  • the gist of the invention according to claim 2 is that, in the invention according to claim 1, the second member is configured such that the rotation axis is directed from the hydraulic pressure supplied to the second oil chamber toward the movable sheave.
  • a pressure receiving portion that receives a pressure in the direction, and projects in the direction of the rotational axis from the pressure receiving portion toward the movable sheave, and transmits the thrust in the rotational axis direction transmitted from the pressure receiving portion to the movable sheave.
  • a thrust transmission portion that presses the movable sheave in the direction of the rotation axis.
  • the gist of the invention according to claim 3 is that, in the invention according to claim 1 or 2, the first member is made immovable in the direction of the rotation axis by contacting the cylinder member. There is.
  • the second member is provided adjacent to the movable sheave side of the second oil chamber composed of an annular space formed in an oil-tight manner between the outer cylindrical portion and the rotating shaft, An annular plate-shaped second wall portion slidably provided on the inner peripheral surface of the outer cylindrical portion, and the movable sheave side from the inner peripheral portion of the second wall portion on the outer peripheral side of the rotating shaft A cylindrical inner tube portion projecting in the direction of the rotation axis toward and facing the movable sheave (C)
  • the first member is provided adjacent to the outer cylinder portion side of the first oil chamber, which is formed of an annular space oiltightly formed on the outer peripheral side of the inner cylinder portion.
  • the communication hole is formed so that the first oil chamber and the second oil chamber formed on the outer peripheral side and the inner peripheral side of the second member with the inner cylindrical portion of the second member communicated with each other. It exists in penetrating a cylinder part to radial direction.
  • FIG. 1 is a skeleton diagram of a vehicle power transmission device provided with a vehicle belt type continuously variable transmission according to an embodiment of the present invention. It is sectional drawing which shows the structure of the continuously variable transmission shown in FIG. It is sectional drawing which expands and shows the 1st hydraulic cylinder of FIG. It is sectional drawing which expands and shows a primary pulley and a 1st hydraulic cylinder among the continuously variable transmission of the other Example of this invention, and is equivalent to FIG.
  • the fixed sheave 52 is an annular plate-like member that protrudes radially outward from the outer peripheral surface of the input shaft 34 or the output shaft 40 in the circumferential direction.
  • the fixed sheave 52 is formed with a tapered surface 56 on the surface facing the movable sheave 54 so as to move away from the movable sheave 54 toward the outer peripheral side.
  • the movable sheave 54 is formed with a tapered surface 58 on the surface facing the fixed sheave 52 so as to move away from the fixed sheave 52 toward the outer peripheral side.
  • the tapered surface 56 forms a V-shaped V groove 44 together with the tapered surface 56 of the fixed sheave 52.
  • the input shaft 34 and the output shaft 40 which are integrally provided with the movable sheave 54 and the fixed sheave 52 as described above, are cut into a member formed by casting or forging from a metal such as steel, for example. For example, it is made by heat treatment such as carburizing and quenching.
  • the first hydraulic cylinder 48 is a so-called double piston type
  • the second hydraulic cylinder 50 is a so-called single piston type
  • the second hydraulic cylinder 50 Is similar to the above except that the first hydraulic cylinder 48 is not provided with a spring as described above, whereas a coil spring 60 is provided to constantly urge the movable sheave 54 toward the fixed sheave 52.
  • It is a hydraulic cylinder of structure. Below, the 1st hydraulic cylinder 48 is demonstrated in detail on behalf of these hydraulic cylinders.
  • FIG. 3 is an enlarged cross-sectional view of the first hydraulic cylinder 48 of FIG.
  • the first hydraulic cylinder 48 has an inner peripheral portion on the side opposite to the fixed sheave 52 with respect to the movable sheave 54 on the outer peripheral surface of the input shaft 34 and the bearing 30 and the stepped end surface 61 of the input shaft 34.
  • a cylinder member 62 having a cylindrical outer tube portion 62b projecting in the direction of the axis C1 toward the flange portion 54b of the sheave 54 is provided.
  • the inner cylindrical portion 70b is fitted to the cylindrical outer peripheral surface of the base portion formed larger in diameter than the distal end portion of the inner peripheral cylindrical portion 54a of the movable sheave 54, and is input together with the movable sheave 54.
  • the shaft 34 and the cylinder member 62 are provided so as to be relatively movable in the direction of the axis C1.
  • the second wall portion 70a corresponds to the pressure receiving portion in the present invention, and the hydraulic pressure in the axial center C1 direction from the hydraulic pressure supplied to the second oil chamber 68 toward the flange portion 54b of the movable sheave 54 is obtained. It functions as a receiving pressure receiving part.
  • the inner cylinder portion 70b corresponds to a thrust transmission portion in the present invention, and the movable sheave 54 generates the thrust in the direction of the axis C1 generated based on the oil pressure and transmitted from the second wall portion 70a.
  • the movable sheave 54 functions as a thrust transmission unit that presses the movable sheave 54 toward the fixed sheave 52 side.
  • the inner cylinder part 70b is an oil chamber provided so as to penetrate in the radial direction in order to connect the first oil chamber 64 and the second oil chamber formed adjacent to the outer peripheral side and the inner peripheral side thereof.
  • a communication hole (communication hole) 74 is provided.
  • the oil chamber communication hole 74 always allows the first oil chamber 64 and the second oil chamber to communicate with each other regardless of the movement position of the movable sheave 54 in the direction of the axis C1.
  • the second oil chamber 68 is formed by an annular space that is oil-tightly surrounded by the cylinder member 62, the input shaft 34, the inner peripheral cylindrical portion 54a of the movable sheave 54, and the second piston 70.
  • the inner peripheral cylindrical portion 54a of the movable sheave 54 is in contact with the first wall portion 62a of the cylinder member 62 as shown above the axis C1 in FIG.
  • the input shaft 34 penetrates from the second oil passage 78 to the outer peripheral surface of the input shaft 34 in the radial direction.
  • the third oil passage through the formed annular gap 4 and communicated with the fourth oil passage 86 through each of the pressure regulated is generated in the oil pump 28 hydraulic pressure is supplied as indicated by dotted arrows in FIG.
  • the inner peripheral cylindrical portion 54a of the movable sheave 54 is not brought into contact with the first wall portion 62a of the cylinder member 62.
  • the input shaft from the second oil passage 78 to the outer peripheral surface of the input shaft 34 between the first oil passage 76, the second oil passage 78, and the spline outer teeth 80 of the input shaft 34 and the stepped end surface 61.
  • the oil pressure generated and regulated by the oil pump 28 is supplied as shown by the dotted arrows in FIG. .
  • the inner peripheral cylindrical portion 54 a of the movable sheave 54 is spaced from the first wall portion 62 a of the cylinder member 62, but the inner peripheral cylindrical portion 54 a is positioned on the outer peripheral side of the fifth oil passage 88.
  • the second oil chamber 68 is supplied with hydraulic pressure via the third oil passage 84 and the fourth oil passage 86, respectively, while the fifth oil passage 88 and the inner peripheral surface of the inner peripheral cylindrical portion 54a.
  • the hydraulic pressure is supplied through the gaps between the plurality of spline inner teeth 90 formed in the above.
  • the first piston 66 is provided adjacent to the outer cylinder portion 62b side of the first oil chamber 64 and is supported by the outer cylinder portion 62b in the direction of the axis C1, and the outer periphery of the inner cylinder portion 70b of the second piston 70. It is an annular plate-like member that is provided to be slidable via seal members 92 and 94 with respect to the surface and the inner peripheral surface of the outer peripheral cylindrical portion 54 c of the movable sheave 54.
  • the first piston 66 is made immovable to the flange portion 54 b side of the movable sheave 54 by receiving an oil pressure generated in the first oil chamber 64, and abuts on the outer cylinder portion 62 b of the cylinder member 62. As a result, it is impossible to move in the direction of the axis C1 as described above by making it impossible to move to the opposite side of the flange portion 54b.
  • the first oil chamber 64 is formed by an annular space that is oil-tightly surrounded by the flange portion 54 b and the outer peripheral cylindrical portion 54 c of the movable sheave 54, the inner cylindrical portion 70 b of the second piston 70, and the first piston 66. .
  • a part of the hydraulic pressure supplied to the second oil chamber 68 is not shown in FIG. 3 even in any state shown above and below the axis C 1 in FIG.
  • the oil is supplied through the oil chamber communication hole 74 formed in the inner cylindrical portion 70b of the second piston 70.
  • the cylinder member 62, the first piston 66, and the second piston 70 as described above are made by bending a member punched from a metal plate such as steel by press working.
  • the first hydraulic cylinder 48 discharges the hydraulic pressure from each oil chamber and weakens the oil pressure generated in each oil chamber, thereby moving the movable sheave 54 away from the fixed sheave 52 and the V-groove. Actuate to widen 44.
  • the movable sheave 54 shown on the upper side of the axis C1 in FIG. 3 shows a state where the V groove 44 formed between the movable sheave 52 and the fixed sheave 52 has the maximum width. In this state, the engagement diameter of the transmission belt 46 is minimized.
  • the primary hydraulic pressure supplied to the first hydraulic cylinder 48 is adjusted while the secondary hydraulic pressure supplied to the second hydraulic cylinder 50 is adjusted, so that each The groove widths of the V-grooves 44 of the pulleys are respectively changed, and the clamping pressures of the pulleys on the transmission belt 46 are adjusted. Then, by changing the groove width of the V-groove 44 of each pulley, the engagement diameter of the transmission belt 46 is changed, and the rotational speed ratio (transmission ratio) between the input shaft 34 and the output shaft 40 changes steplessly. It is supposed to be made.
  • the transmission belt 46 indicated by a solid line in FIG.
  • the inner peripheral cylindrical portion 54a of the movable sheave 54 is the first wall of the cylinder member 62 as shown on the upper side of the axis C1 in FIG.
  • the third oil passage is provided in the first oil chamber 64 and the second oil chamber 68.
  • the hydraulic pressure can be supplied only by one hydraulic supply oil path consisting of 84 and the fourth oil path 86.
  • the hydraulic pressure supply oil passage composed of the third oil passage 84 and the fourth oil passage 86 is not only in the state where the transmission gear ratio of the continuously variable transmission 10 is set to the maximum transmission gear ratio, but also below the axis C1 in FIG. As shown on the side, the stepped portion of the inner peripheral cylindrical portion 54a abuts on the stepped end surface 82 of the input shaft 34, so that the third oil passage 84 and the fourth oil passage 86 are not blocked. If there is, it functions as an oil passage for supplying hydraulic pressure to the first oil chamber 64 and the second oil chamber 68.
  • the first hydraulic cylinder 48 forms the first oil chamber 64 between the movable sheave 54 and the flange portion 54b, and is provided so as not to move in the direction of the axis C1.
  • the first piston (first member) 66 and the first oil chamber 64 and the first piston 66 are provided on the inner peripheral side of the first piston 66 together with the first piston 66, while the first oil chamber 64 is formed.
  • a second oil chamber 68 is formed between the first wall portion 62a and a second piston (second member) 70 provided so as to be movable in the direction of the axis C1.
  • the oil chamber communication hole (communication hole) 74 that allows the oil chamber 64 and the second oil chamber 68 to communicate with each other is provided, if the hydraulic pressure is supplied to the second oil chamber 68, the first oil chamber is passed through the oil chamber communication hole 74. 64 is also supplied with a part of the hydraulic pressure, so that each hydraulic chamber of the first hydraulic cylinder 48 is supplied. Since the hydraulic pressure supply oil passage for supplying each pressure only needs to be provided with one hydraulic supply oil passage including at least the third oil passage 84 and the fourth oil passage 86 communicated with the second oil chamber 68, For example, the degree of freedom in design of the hydraulic supply oil passage can be increased as compared with a case where a hydraulic supply oil passage is provided individually corresponding to each oil chamber. The degree of freedom in design is increased, for example, when setting a one-way hydraulic supply oil path, it is easier to secure a place to provide an oil path than when setting two-path hydraulic supply oil paths, etc. Means that.
  • the second piston (second member) 70 has an axial center C ⁇ b> 1 directed from the hydraulic pressure supplied to the second oil chamber 68 toward the flange portion 54 b of the movable sheave 54.
  • a second wall portion 70a that functions as a pressure receiving portion that receives the oil pressure in the direction, and a thrust in the direction of the axis C1 that is generated based on the oil pressure and transmitted from the second wall portion 70a is transmitted to the movable sheave 54.
  • the inner cylinder part 70b functioning as a thrust transmission part that presses the movable sheave 54 toward the fixed sheave 52 side, and therefore the thrust transmission part 70b of the second piston 70 that transmits the thrust in the direction of the axis C1.
  • the first piston (first member) 66 receives the oil pressure generated in the first oil chamber 64, so that the movable sheave 54 has the flange 54 b side.
  • the first piston 66 is made of an annular plate-like member that cannot move to the opposite side of the flange portion 54b by contacting the outer cylindrical portion 62b of the cylinder member 62.
  • the first Piston 66 Relatively inexpensive can be mass produced can be molded in one step by pressing, the number of processing steps of the first piston 66 is reduced, it is possible to inexpensively constitute the first hydraulic cylinder 48.
  • the first piston 66 has an annular plate shape whose inner peripheral surface is slidably provided on the outer peripheral surface of the inner cylindrical portion 70 b of the second piston 70. Since it is a member, for example, when the inner peripheral surface of the first piston 66 is slidably provided on the outer peripheral surface of the inner peripheral cylindrical portion 54a of the movable sheave 54, a quenching process such as carburizing and quenching is performed. In order to prevent the first piston 66 from tilting when sliding with the outer peripheral surface of the inner peripheral cylindrical portion 54a that has been distorted, the outer peripheral surface of the inner peripheral cylindrical portion 54a is polished and processed with high accuracy. There is no need for finishing, the number of processing steps of the movable sheave 54 is reduced, and the primary pulley 36 can be configured at low cost.
  • the members that cannot move relative to the input shaft 34 are the stepped end surface 61 of the input shaft 34 and the cylinder.
  • the first piston 66 as a member that cannot be moved relative to the input shaft 34 receives the oil pressure generated in the first oil chamber 64.
  • the movable sheave 54 cannot be moved to the flange portion 54b side, and by contacting the outer cylindrical portion 62b of the cylinder member 62, it cannot be moved to the opposite side of the flange portion 54b.
  • the stepped end surface 61 of the input shaft 34 and the first wall portion 62a of the cylinder member 62 are sandwiched, the movement in the direction of the axis C1 is not disabled. Compared with the machine, the axial length of the hydraulic cylinder is shortened.
  • the gear ratio of the continuously variable transmission is set to the maximum gear ratio and is movable.
  • the fifth oil passage 88 and the second oil passage 68 to communicate with each other in the state where the inner peripheral cylindrical portion 54a of the sheave 54 is in contact with the first wall portion 62a of the cylinder member 62, the inner peripheral cylindrical portion 54a is Since it was necessary to provide a radial groove on the contact end surface of the first wall 62a with a relatively long length, the axial length of the hydraulic cylinder was increased.
  • the continuously variable transmission 10 of the present embodiment when the transmission gear ratio is the maximum transmission gear ratio and the inner peripheral cylindrical portion 54a of the movable sheave 54 is in contact with the first wall portion 62a of the cylinder member 62,
  • the hydraulic pressure can be supplied to the first oil chamber 64 and the second oil chamber 68 only by a single hydraulic supply oil passage composed of the third oil passage 84 and the fourth oil passage 86.
  • the axial length of the hydraulic cylinder is shortened compared with the step transmission.
  • FIG. 4 is an enlarged sectional view showing the primary pulley 102 and the first hydraulic cylinder 104 in the continuously variable transmission 100 according to another embodiment of the present invention, and corresponds to FIG. 2 in the first embodiment. is there.
  • the movable sheave 106 of the primary pulley 102 has an inner peripheral cylindrical portion 106a and a flange portion 106b having the same configuration as the inner peripheral cylindrical portion 54a and the flange portion 54b provided in the movable sheave 54 of the first embodiment.
  • an outer peripheral cylindrical portion that protrudes in the direction of the axial center C1 from the outer peripheral portion of the flange portion 106b toward the opposite side of the fixed sheave 52 and has a distal end portion extending radially outward in the circumferential direction.
  • the distal end portion of the outer peripheral cylindrical portion 106c is provided with a seal member 108 provided in an annular groove formed on the outer peripheral surface thereof.
  • the movable sheave 106 as described above is made by, for example, cutting a member formed by casting or forging from a metal such as steel and subjecting it to a heat treatment such as carburizing and quenching. .
  • the first hydraulic cylinder 102 includes a rear cylinder member 110 and a piston 112 having the same configuration as the cylinder member 62 and the second piston 70 provided in the first hydraulic cylinder 48 of the first embodiment. Further, the first hydraulic cylinder 102 is provided adjacent to the outer cylinder portion 110b side of the rear cylinder member 110 with respect to the first oil chamber 116 in place of the first piston 66 of the first embodiment, and in the axial center C1 direction. And an annular plate-shaped third wall portion 114a supported by the outer cylinder portion 110b and slidably provided on the outer peripheral surface of the inner cylinder portion 112b of the piston 112 via a seal member 92, and a movable sheave.
  • a front cylinder member 114 having a cylindrical outer cylindrical portion 114b slidably provided.
  • the front cylinder member 114 is immovable toward the flange 106b side of the movable sheave 106 by receiving the hydraulic pressure generated in the first oil chamber 116, and is in contact with the outer cylinder 110b of the rear cylinder member 110. By contact, it is impossible to move to the opposite side of the flange portion 106b.
  • the second oil chamber 118 of this embodiment is formed by an annular space that is oil-tightly surrounded by the rear cylinder member 110, the input shaft 34, the inner peripheral cylindrical portion 106a of the movable sheave 106, and the piston 112.
  • the inner peripheral cylindrical portion 106a of the movable sheave 106 is in contact with the first wall portion 110a of the rear cylinder member 110.
  • the first oil passage 76, the second oil passage 78, the third oil passage 84, and the outer periphery of the third oil passage 84 are formed to penetrate the inner peripheral cylindrical portion 106a of the movable sheave 106 in the radial direction.
  • the oil pump 28 generates and adjusts the pressure through a fourth oil passage 120 communicated with the third oil passage 84 through an annular gap formed on the outer peripheral side of the third oil passage 84.
  • the hydraulic pressure is supplied as shown by the dotted arrows in FIG.
  • the inner peripheral cylindrical portion 106a of the movable sheave 106 is brought into contact with the first wall portion 110a of the rear cylinder member 110.
  • the oil pressure generated and regulated by the oil pump 28 through the first oil passage 76, the second oil passage 78, and the fifth oil passage 88 is indicated by the dotted arrows in FIG. Supplied as shown in FIG.
  • the inner peripheral cylindrical portion 106 a of the movable sheave 106 is spaced from the first wall portion 110 a of the rear cylinder member 110, but the inner peripheral cylindrical portion 106 a is positioned on the outer peripheral side of the fifth oil passage 88.
  • hydraulic pressure is supplied to the second oil chamber 118 via the third oil passage 84 and the fourth oil passage 86, respectively, while the fifth oil passage 88 and the inner periphery of the inner peripheral cylindrical portion 106a are supplied. Hydraulic pressure is supplied through gaps between the plurality of spline internal teeth 90 formed on the surface.
  • the first oil chamber 116 is formed by an annular space that is oil-tightly surrounded by the flange portion 106b and the outer peripheral cylindrical portion 106c of the movable sheave 106, the inner cylindrical portion 112b of the piston 112, and the front cylinder member 114.
  • a part of the hydraulic pressure supplied to the second oil chamber 118 is shown in FIG. 4 even in any state shown above and below the axis C 1 in FIG.
  • the oil is supplied through the oil chamber communication hole 122 formed in the inner cylinder portion 112b of the piston 112 in the same manner as the oil chamber communication hole 74 of the second piston 70 of the first embodiment.
  • the rear cylinder member 110, the piston 112, and the front cylinder member 114 as described above are made by, for example, bending a member punched from a metal plate such as steel by pressing.
  • the first hydraulic cylinder 104 configured as described above directly supplies thrust in the axial center C1 direction based on the hydraulic pressure generated in each oil chamber by supplying hydraulic pressure to each oil chamber. And indirectly through the piston 112 to the movable sheave 106, and the movable sheave 106 is moved closer to the fixed sheave 52 to operate to narrow the V-groove 44.
  • the movable sheave 106 shown on the lower side of the axis C1 in FIG. 4 shows a state where the V groove 44 formed between the movable sheave 52 and the fixed sheave 52 has a minimum width. In this state, the engagement diameter of the transmission belt 46 is maximized.
  • the first hydraulic cylinder 104 separates the movable sheave 106 from the fixed sheave 52 by discharging the hydraulic pressure from each oil chamber and weakening the oil pressure generated in each oil chamber, so that the V groove Actuate to widen 44.
  • the movable sheave 106 shown on the upper side of the axis C1 in FIG. 4 shows a state in which the V groove 44 formed between the movable sheave 52 and the fixed sheave 52 has the maximum width. In this state, the engagement diameter of the transmission belt 46 is minimized.
  • the movable sheave 106 when the speed ratio of the continuously variable transmission 10 is set to the maximum speed ratio, the movable sheave 106 is shown as shown above the axis C1 in FIG.
  • the first oil chamber 116 and the second oil chamber 118 can be supplied with hydraulic pressure only by a single hydraulic supply oil path including the third oil path 84 and the fourth oil path 86.
  • the hydraulic pressure supply oil passage composed of the third oil passage 84 and the fourth oil passage 86 is not only in a state where the transmission gear ratio of the continuously variable transmission 100 is set to the maximum transmission gear ratio, but also below the axis C1 in FIG. As shown on the side, the stepped portion of the inner circumferential cylindrical portion 106a abuts on the stepped end surface 82 of the input shaft 34 so that the third oil passage 84 and the fourth oil passage 86 are not blocked. If there is, it functions as an oil passage for supplying hydraulic pressure to the first oil chamber 116 and the second oil chamber 118.
  • the first hydraulic cylinder 104 forms the first oil chamber 116 between the flange portion 106b of the movable sheave 106 and is provided so as not to move in the direction of the axis C1.
  • the front cylinder member (first member) 114 and the first oil chamber 116 and the front cylinder member 114 are provided on the inner peripheral side of the front cylinder member 114 to form the first oil chamber 116 and the rear cylinder member 110.
  • a second oil chamber 118 is formed between the first wall portion 110a and a piston (second member) 112 provided so as to be movable in the direction of the axis C1.
  • the piston 112 is provided with the first oil chamber 116.
  • Oil chamber communication hole (communication hole) 122 that allows the second oil chamber 118 to communicate with the second oil chamber 118, so that if the hydraulic pressure is supplied to the second oil chamber 118, the first oil chamber 116 also passes through the oil chamber communication hole 122. Since a part of the hydraulic pressure is supplied, as in the first embodiment, the hydraulic pressure supply oil passage for supplying the hydraulic pressure to each oil chamber of the first hydraulic cylinder 104 is communicated with at least the second oil chamber 118. Since it is only necessary to provide a single hydraulic supply oil path composed of the third oil path 84 and the fourth oil path 86, for example, a separate hydraulic supply oil path is provided for each oil chamber. In comparison, the degree of freedom in designing the hydraulic supply oil passage can be increased.
  • the movable sheave 106 protrudes in the direction of the axis C1 from the outer peripheral portion of the flange portion 106b toward the opposite side of the fixed sheave 52 and has a tip portion.
  • the front cylinder member 114 of the first hydraulic cylinder 102 is configured to have an outer periphery of the third wall portion 114 a on the outer peripheral side of the movable sheave 106.
  • the second hydraulic cylinder 50 is a single piston type, but may be a double piston type having the same structure as the first hydraulic cylinder 48 (104).
  • the continuously variable transmission 10 is provided in the power transmission device 12 for the FF type vehicle, but may be provided in another power transmission device for a drive type vehicle such as an FR type vehicle.
  • the inner cylinder part 70b (112b) of the second piston 70 does not necessarily need to be fitted to the outer peripheral surface of the inner peripheral cylindrical part 54a (106a) of the movable sheave 54 (106).
  • it may be fitted so as to be relatively movable in the direction of the axis C1.
  • the second oil chamber 68 is always provided regardless of the gear ratio of the continuously variable transmission 10 (100).
  • the hydraulic pressure may be supplied to the first oil chamber 64 through the fourth oil passage 86. In this way, the fifth oil passage 88 is not necessarily provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

Provided is a belt-type continuously variable transmission for vehicles that allows for an increase in design freedom for a hydraulic pressure supply passage for supplying hydraulic pressure to the oil chambers of a hydraulic cylinder. A first hydraulic cylinder (48) is provided with: a first piston (66) that is provided so as to be incapable of movement in the direction of a shaft center (C1) and forms a first oil chamber (64) together with a movable sheave (54); and a second piston (70) that is provided so as to be capable of movement in the direction of the shaft center (C1) is disposed on the inner peripheral side of the first piston (66) so as to form the first oil chamber (64) together with the first piston (66) and to form a second oil chamber (68) together with the first wall (62a) of a cylinder member (62). The second piston (70) has an oil chamber communication hole (74) that links the first oil chamber (64) and the second oil chamber (68). Therefore, the hydraulic pressure supply passage for supplying hydraulic pressure to each oil chamber of the first hydraulic cylinder (48) may be provided as a single-path hydraulic pressure supply passage comprising a third oil path (84) and a fourth oil path (86) that are linked to at least the second oil chamber (68).

Description

車両用ベルト式無段変速機Belt type continuously variable transmission for vehicles
 本発明は、ダブルピストン型の油圧シリンダを有する車両用ベルト式無段変速機に関し、特に、上記油圧シリンダの油室への油圧供給油路の設計自由度を高めるための技術に関するものである。 The present invention relates to a belt type continuously variable transmission for a vehicle having a double piston type hydraulic cylinder, and more particularly to a technique for increasing the degree of freedom in designing a hydraulic supply oil passage to an oil chamber of the hydraulic cylinder.
 回転軸に固設された固定シーブと、その固定シーブとの間にV溝を形成するように前記回転軸に相対回転不能且つ回転軸の回転軸心方向に移動可能に設けられた可動シーブとをそれぞれ有する一対の溝幅可変プーリと、それら一対の溝幅可変プーリのV溝にそれぞれ巻き掛けられた伝動ベルトと、前記可動シーブに対して前記固定シーブとは反対側において前記回転軸に固設されたシリンダ部材と前記可動シーブとの間に形成された第1油室および第2油室を有し、それら第1油室および第2油室にそれぞれ供給される油圧に応じて前記可動シーブを前記回転軸心方向に移動させることにより、前記伝動ベルトの掛かり径を変化させて前記一対の溝幅可変プーリの回転速度比を変化させる油圧シリンダとを、備える車両用ベルト式無段変速機が知られている。例えば、特許文献1に記載されたものがそれである。 A fixed sheave fixed to the rotary shaft, and a movable sheave provided so as not to rotate relative to the rotary shaft and move in the direction of the rotational axis of the rotary shaft so as to form a V-groove between the fixed sheave. A pair of variable groove width pulleys, a transmission belt wound around each of the V grooves of the pair of variable groove width pulleys, and the rotating shaft fixed to the rotating shaft on the opposite side of the fixed sheave. A first oil chamber and a second oil chamber formed between a provided cylinder member and the movable sheave; and the movable according to the oil pressure supplied to the first oil chamber and the second oil chamber, respectively. A belt-type continuously variable transmission for a vehicle, comprising: a hydraulic cylinder that changes a rotation speed ratio of the pair of groove width variable pulleys by moving a sheave in a direction of the rotation axis to change a hook diameter of the transmission belt It is known. For example, it is described in Patent Document 1.
 上記特許文献1に記載された油圧シリンダは、2つの油室を備える所謂ダブルピストン型のものであり、1つの油室を備える所謂シングルピストン型のものと比べて、同等の径方向寸法を有する空間に設けられるものであっても、油室の受圧面積を大きくすることが可能である。そのため、ダブルピストン型の油圧シリンダを備えた車両用ベルト式無段変速機によれば、シングルピストン型の油圧シリンダを備えたものと比較して、油圧シリンダの油室に供給される油圧を低く設定しつつも可動シーブに伝達される推力を同等またはそれ以上とすることができるので、油圧シリンダに供給される油圧の元圧を発生させるオイルポンプの駆動トルクを低減することができて、車両燃費を向上させることができる。 The hydraulic cylinder described in Patent Document 1 is of a so-called double piston type having two oil chambers and has a radial dimension equivalent to that of a so-called single piston type having one oil chamber. Even if it is provided in the space, it is possible to increase the pressure receiving area of the oil chamber. Therefore, according to the belt type continuously variable transmission for a vehicle having a double piston type hydraulic cylinder, the hydraulic pressure supplied to the oil chamber of the hydraulic cylinder is lower than that having a single piston type hydraulic cylinder. The thrust transmitted to the movable sheave can be set equal to or higher while being set, so that the driving torque of the oil pump that generates the original pressure of the hydraulic pressure supplied to the hydraulic cylinder can be reduced. Fuel consumption can be improved.
特開平11-157351号公報JP-A-11-157351
 ところで、上記ダブルピストン型の油圧シリンダを備えた従来の車両用ベルト式無段変速機においては、油圧シリンダの第1油室および第2油室に油圧をそれぞれ供給するために、それら各油室に対応して油路をそれぞれ個別に設ける必要があった。すなわち、第1油室に油圧を供給するための油路と第2油室に油圧を供給するための油路とを含む2経路の油圧供給油路を設ける必要があった。そのため、油圧シリンダの油室へ油圧を供給するための油圧供給油路の設計自由度が低いという問題があった。 By the way, in the conventional vehicular belt type continuously variable transmission provided with the double piston type hydraulic cylinder, in order to supply hydraulic pressure to the first oil chamber and the second oil chamber of the hydraulic cylinder, respectively, It was necessary to provide each oil passage individually corresponding to the above. That is, it is necessary to provide a two-path hydraulic supply oil path including an oil path for supplying hydraulic pressure to the first oil chamber and an oil path for supplying hydraulic pressure to the second oil chamber. Therefore, there has been a problem that the degree of freedom in designing a hydraulic supply oil passage for supplying hydraulic pressure to the oil chamber of the hydraulic cylinder is low.
 本発明は以上の事情を背景としてなされたものであり、その目的とするところは、油圧シリンダの油室へ油圧を供給するための油圧供給油路の設計自由度を高めることができる車両用ベルト式無段変速機を提供することにある。 The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a vehicle belt capable of increasing the degree of design freedom of a hydraulic supply oil passage for supplying hydraulic pressure to an oil chamber of a hydraulic cylinder. An object is to provide a continuously variable transmission.
 かかる目的を達成するための請求項1にかかる発明の要旨とするところは、(a) 回転軸に固設された固定シーブと、その固定シーブとの間にV溝を形成するように前記回転軸に相対回転不能且つ回転軸の回転軸心方向に移動可能に設けられた可動シーブとをそれぞれ有する一対の溝幅可変プーリと、それら一対の溝幅可変プーリのV溝にそれぞれ巻き掛けられた伝動ベルトと、前記可動シーブに対して前記固定シーブとは反対側において前記回転軸に固設されたシリンダ部材と前記可動シーブとの間に形成された第1油室および第2油室を有し、それら第1油室および第2油室にそれぞれ供給される油圧に応じて前記可動シーブを前記回転軸心方向に移動させることにより、前記伝動ベルトの掛かり径を変化させて前記一対の溝幅可変プーリの回転速度比を変化させる油圧シリンダとを、備える車両用ベルト式無段変速機であって、(b) 前記油圧シリンダは、前記可動シーブとの間に前記第1油室を形成し、前記回転軸心方向の移動不能に設けられた第1部材と、前記可動シーブとの間に前記第1油室を形成すると共に、前記第2油室を形成し、前記回転軸心方向の移動可能に設けられた第2部材とを備え、(c) 前記第2部材は、前記第1油室と前記第2油室とを連通させる連通孔を有することにある。 To achieve this object, the gist of the invention according to claim 1 is that: (a) a fixed sheave fixed to a rotary shaft and the rotation so as to form a V-groove between the fixed sheave; A pair of groove width variable pulleys each having a movable sheave provided so as not to rotate relative to the shaft and movable in the direction of the rotation axis of the rotation shaft, and wound around the V grooves of the pair of groove width variable pulleys, respectively. A transmission belt and a first oil chamber and a second oil chamber formed between the movable sheave and a cylinder member fixed to the rotating shaft on a side opposite to the fixed sheave with respect to the movable sheave. Then, by moving the movable sheave in the direction of the rotation axis in accordance with the hydraulic pressure supplied to each of the first oil chamber and the second oil chamber, the engagement diameter of the transmission belt is changed, and the pair of grooves Variable width Pooh A belt-type continuously variable transmission for a vehicle comprising: a hydraulic cylinder that changes a rotational speed ratio of: (b) the hydraulic cylinder forms the first oil chamber with the movable sheave; The first oil chamber is formed between the first member that is immovable in the direction of the rotation axis and the movable sheave, and the second oil chamber is formed so as to be movable in the direction of the rotation axis. And (c) the second member has a communication hole for communicating the first oil chamber with the second oil chamber.
 また、請求項2にかかる発明の要旨とするところは、請求項1にかかる発明において、前記第2部材は、前記第2油室に供給された油圧から前記可動シーブ側に向かう前記回転軸心方向の圧力を受ける受圧部と、その受圧部から前記可動シーブ側に向けて前記回転軸心方向に突設され、受圧部から伝達された前記回転軸心方向の推力を前記可動シーブに伝達してその可動シーブを前記回転軸心方向に押圧する推力伝達部とを、備えることにある。 The gist of the invention according to claim 2 is that, in the invention according to claim 1, the second member is configured such that the rotation axis is directed from the hydraulic pressure supplied to the second oil chamber toward the movable sheave. A pressure receiving portion that receives a pressure in the direction, and projects in the direction of the rotational axis from the pressure receiving portion toward the movable sheave, and transmits the thrust in the rotational axis direction transmitted from the pressure receiving portion to the movable sheave. And a thrust transmission portion that presses the movable sheave in the direction of the rotation axis.
 また、請求項3にかかる発明の要旨とするところは、請求項1または2にかかる発明において、前記第1部材は、前記シリンダ部材と当接することにより前記回転軸心方向の移動不能とされることにある。 The gist of the invention according to claim 3 is that, in the invention according to claim 1 or 2, the first member is made immovable in the direction of the rotation axis by contacting the cylinder member. There is.
 また、請求項4にかかる発明の要旨とするところは、請求項1にかかる発明において、(a) 前記シリンダ部材は、前記回転軸の外周面のうち、前記可動シーブに対して前記固定シーブとは反対側に固定された円環板状の第1壁部と、その第1壁部の外周部から前記可動シーブ側に突設された円筒状の外側筒部とを有するものであり、(b) 前記第2部材は、その外側筒部と前記回転軸との間に油密に形成された円環状の空間から成る前記第2油室の前記可動シーブ側に隣接して設けられると共に、前記外側筒部の内周面に対して摺動可能に設けられた円環板状の第2壁部と、前記回転軸の外周側においてその第2壁部の内周部から前記可動シーブ側に向けて前記回転軸心方向に突設されてその可動シーブに当接させられた円筒状の内側筒部とを有するものであり、(c) 前記第1部材は、その内側筒部の外周側に油密に形成された円環状の空間から成る前記第1油室の前記外側筒部側に隣接して設けられると共に、前記回転軸心方向においてその外側筒部に当接させられ、前記内側筒部の外周面および前記可動シーブに対してそれぞれ摺動可能に設けられた円環板状部材であり、(d) 前記連通孔は、前記第2部材の内側筒部を隔ててそれの外周側および内周側にそれぞれ形成される前記第1油室および第2油室が互いに連通させられるように、内側筒部を径方向に貫通して設けられていることにある。 Further, the gist of the invention according to claim 4 is that, in the invention according to claim 1, (a) the cylinder member is connected to the fixed sheave with respect to the movable sheave on the outer peripheral surface of the rotating shaft. Has an annular plate-shaped first wall portion fixed to the opposite side, and a cylindrical outer tube portion projecting from the outer peripheral portion of the first wall portion toward the movable sheave. b) The second member is provided adjacent to the movable sheave side of the second oil chamber composed of an annular space formed in an oil-tight manner between the outer cylindrical portion and the rotating shaft, An annular plate-shaped second wall portion slidably provided on the inner peripheral surface of the outer cylindrical portion, and the movable sheave side from the inner peripheral portion of the second wall portion on the outer peripheral side of the rotating shaft A cylindrical inner tube portion projecting in the direction of the rotation axis toward and facing the movable sheave (C) The first member is provided adjacent to the outer cylinder portion side of the first oil chamber, which is formed of an annular space oiltightly formed on the outer peripheral side of the inner cylinder portion. And an annular plate-like member that is brought into contact with the outer cylinder portion in the direction of the rotation axis and is slidable with respect to the outer peripheral surface of the inner cylinder portion and the movable sheave. d) The communication hole is formed so that the first oil chamber and the second oil chamber formed on the outer peripheral side and the inner peripheral side of the second member with the inner cylindrical portion of the second member communicated with each other. It exists in penetrating a cylinder part to radial direction.
 請求項1にかかる発明の車両用ベルト式無段変速機によれば、油圧シリンダは、可動シーブとの間に第1油室を形成し、回転軸の回転軸心方向の移動不能に設けられた第1部材と、前記可動シーブとの間に前記第1油室を形成すると共にシリンダ部材との間に第2油室を形成し、前記回転軸心方向の移動可能に設けられた第2部材とを備え、その第2部材は、前記第1油室と前記第2油室とを連通させる連通孔を有することから、第1油室および第2油室のどちらか一方に油圧が供給されれば、上記連通孔を通じて他方にも上記油圧の一部が供給されるので、油圧シリンダの各油室へ油圧をそれぞれ供給するための油圧供給油路は、少なくとも第1油室および第2油室のどちらか一方に連通されたものを設ければよく、たとえば各油室に対応してそれぞれ個別に油圧供給油路が設けられるような場合と比べて、上記油圧供給油路の設計自由度を高めることができる。 According to the belt type continuously variable transmission for a vehicle according to the first aspect of the present invention, the hydraulic cylinder forms a first oil chamber with the movable sheave and is provided so as not to move in the direction of the rotation axis of the rotation shaft. The second oil chamber is formed between the first member and the movable sheave and the second oil chamber is formed between the cylinder member and the second oil chamber so as to be movable in the rotational axis direction. And the second member has a communication hole for communicating the first oil chamber and the second oil chamber, so that hydraulic pressure is supplied to either the first oil chamber or the second oil chamber. Then, since a part of the hydraulic pressure is supplied to the other through the communication hole, the hydraulic pressure supply oil passage for supplying hydraulic pressure to the respective oil chambers of the hydraulic cylinder has at least the first oil chamber and the second oil chamber. What is necessary is just to provide what is connected to either one of the oil chambers. Respectively compared to the case separately as hydraulic oil supply passage is provided, it is possible to increase the degree of freedom in designing the hydraulic oil supply passage to.
 また、請求項2にかかる発明の車両用ベルト式無段変速機によれば、前記第2部材は、前記第2油室に供給された油圧から前記可動シーブ側に向かう前記回転軸心方向の圧力を受ける受圧部と、その受圧部から前記可動シーブ側に向けて前記回転軸心方向に突設され、前記受圧部から伝達された前記回転軸心方向の推力を前記可動シーブに伝達してその可動シーブを前記回転軸心方向に押圧する推力伝達部とを、備えることから、第2油室で発生させられた油圧力に基づく回転軸心方向の推力を可動シーブに伝達するための第2部材の推力伝達部は、回転軸心方向に延設された部材から成り、回転軸心方向の剛性が比較的に高いので、第2部材の可動シーブへの偏当たりが抑制される。 According to the vehicular belt type continuously variable transmission of the invention according to claim 2, the second member is arranged in the direction of the rotation axis from the hydraulic pressure supplied to the second oil chamber toward the movable sheave. A pressure receiving portion that receives pressure, and protrudes from the pressure receiving portion toward the movable sheave in the direction of the rotational axis, and transmits the thrust in the direction of the rotational axis transmitted from the pressure receiving portion to the movable sheave. And a thrust transmission portion that presses the movable sheave in the direction of the rotational axis, so that the thrust in the direction of the rotational axis based on the oil pressure generated in the second oil chamber is transmitted to the movable sheave. The two-member thrust transmission portion is made of a member extending in the direction of the rotation axis, and has relatively high rigidity in the direction of the rotation axis, so that the second member is prevented from being biased against the movable sheave.
 また、請求項3にかかる発明の車両用ベルト式無段変速機によれば、前記第1部材は、前記シリンダ部材と当接することにより前記回転軸心方向の移動不能とされることから、たとえば、第1部材が可動シーブと当接される場合のように、ベルト反力による可動シーブの変形の影響を受けて第1部材が傾くことを抑制するために第1部材の他部材との摺動部分に摺動方向の長さが比較的長く形成されたガイド部を設ける等の対策が不要であるので、第1部材の加工工数が低減され、油圧シリンダを安価に構成することができる。 According to the belt type continuously variable transmission for a vehicle according to the third aspect of the invention, the first member is made immovable in the direction of the rotation axis by contacting the cylinder member. In order to prevent the first member from tilting under the influence of the deformation of the movable sheave due to the belt reaction force, as in the case where the first member is in contact with the movable sheave, the first member is slid with the other members. Since it is not necessary to take measures such as providing a guide part having a relatively long sliding direction in the moving part, the number of processing steps for the first member is reduced, and the hydraulic cylinder can be configured at low cost.
 また、請求項4にかかる発明の車両用ベルト式無段変速機によれば、前記シリンダ部材は、前記回転軸の外周面のうち、前記可動シーブに対して前記固定シーブとは反対側に固定された円環板状の第1壁部と、その第1壁部の外周部から前記可動シーブ側に突設された円筒状の外側筒部とを有するものであり、前記第2部材は、その外側筒部と前記回転軸との間に油密に形成された円環状の空間から成る前記第2油室の前記可動シーブ側に隣接して設けられると共に、前記外側筒部の内周面に対して摺動可能に設けられた円環板状の第2壁部と、前記回転軸の外周側においてその第2壁部の内周部から前記可動シーブ側に向けて前記回転軸心方向に突設されてその可動シーブに当接させられた円筒状の内側筒部とを有するものであり、前記第1部材は、その内側筒部の外周側に油密に形成された円環状の空間から成る前記第1油室の前記外側筒部側に隣接して設けられると共に、前記回転軸心方向においてその外側筒部に当接させられ、前記内側筒部の外周面および前記可動シーブに対してそれぞれ摺動可能に設けられた円環板状部材であり、前記連通孔は、前記第2部材の内側筒部を隔ててそれの外周側および内周側にそれぞれ形成される前記第1油室および第2油室が互いに連通させられるように、内側筒部を径方向に貫通して設けられていることから、例えば、回転軸に形成されて第2油室に連通された油路が設けられれば、その油路から第2油室に供給された油圧の一部が連通孔を通じて第1油室にも供給されるので、油圧供給油路の設計自由度を高めることができる。 According to the vehicle belt type continuously variable transmission of the invention according to claim 4, the cylinder member is fixed on the opposite side of the movable sheave to the movable sheave on the outer peripheral surface of the rotating shaft. The annular plate-shaped first wall portion and a cylindrical outer tube portion projecting from the outer peripheral portion of the first wall portion toward the movable sheave, and the second member is Provided adjacent to the movable sheave side of the second oil chamber consisting of an annular space formed in an oil-tight manner between the outer cylindrical portion and the rotating shaft, and the inner peripheral surface of the outer cylindrical portion An annular plate-like second wall portion slidably provided on the outer peripheral side of the rotary shaft and the direction of the rotational axis from the inner peripheral portion of the second wall portion toward the movable sheave And a cylindrical inner cylindrical portion that is protruded from and is brought into contact with the movable sheave. One member is provided adjacent to the outer cylinder portion side of the first oil chamber, which is formed of an annular space formed in an oil tight manner on the outer peripheral side of the inner cylinder portion, and in the direction of the rotation axis, An annular plate-like member that is brought into contact with the outer cylindrical portion and is slidable with respect to the outer peripheral surface of the inner cylindrical portion and the movable sheave, and the communication hole is formed on the inner side of the second member. The inner cylinder portion is provided in a radial direction so that the first oil chamber and the second oil chamber formed on the outer peripheral side and the inner peripheral side of the cylinder portion, respectively, are communicated with each other. Therefore, for example, if an oil passage formed on the rotating shaft and communicated with the second oil chamber is provided, a part of the hydraulic pressure supplied from the oil passage to the second oil chamber is communicated with the first oil chamber through the communication hole. Therefore, the degree of freedom in designing the hydraulic supply oil passage can be increased.
本発明の一実施例の車両用ベルト式無段変速機が備えられた車両用動力伝達装置の骨子図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a skeleton diagram of a vehicle power transmission device provided with a vehicle belt type continuously variable transmission according to an embodiment of the present invention. 図1に示す無段変速機の構成を示す断面図である。It is sectional drawing which shows the structure of the continuously variable transmission shown in FIG. 図2の第1油圧シリンダを拡大して示す断面図である。It is sectional drawing which expands and shows the 1st hydraulic cylinder of FIG. 本発明の他の実施例の無段変速機のうち、プライマリプーリおよび第1油圧シリンダを拡大して示す断面図であり、実施例1における図2に相当するものである。It is sectional drawing which expands and shows a primary pulley and a 1st hydraulic cylinder among the continuously variable transmission of the other Example of this invention, and is equivalent to FIG.
 以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は説明を容易にするために適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified for ease of explanation, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.
 図1は、本発明の一実施例の車両用ベルト式無段変速機(以下、無段変速機と記載する)10が備えられた車両用動力伝達装置12の骨子図である。図1において、車両用動力伝達装置12は、FF(フロントエンジン・フロントドライブ)車両用のものであり、車両用駆動源として良く知られたエンジン14に連結されている。この車両用動力伝達装置12は、流体を媒体としてエンジン14のトルクを伝達する流体伝動装置として良く知られたトルクコンバータ16と、そのトルクコンバータ16から伝達されたトルクの回転方向を、車両前進用の回転方向とその反対向きである車両後進用の逆回転方向との間で切り換える前後進切換装置18と、その前後進切換装置18を介して伝達されたトルクを負荷に応じたトルクに変換する無段変速機10と、その無段変速機10の出力側に連結された減速歯車装置20と、その減速歯車装置20を介して伝達されたトルクを、左右一対の車輪22に対してそれらの回転差を許容しつつ伝達する良く知られた所謂傘歯車式の差動歯車装置24とを備えている。上記トルクコンバータ16のポンプ翼車26には、例えば無段変速機10の変速制御や前後進切換装置18の前後進切換制御などに用いられる元圧となる油圧を発生させる機械式のオイルポンプ28が設けられている。 FIG. 1 is a skeleton diagram of a vehicle power transmission device 12 provided with a vehicle belt type continuously variable transmission (hereinafter referred to as a continuously variable transmission) 10 according to an embodiment of the present invention. In FIG. 1, a vehicle power transmission device 12 is for an FF (front engine / front drive) vehicle and is connected to an engine 14 well known as a vehicle drive source. This vehicle power transmission device 12 uses a torque converter 16 that is well known as a fluid transmission device that transmits the torque of the engine 14 using a fluid as a medium, and the rotational direction of the torque transmitted from the torque converter 16 for vehicle advancement. The forward / reverse switching device 18 that switches between the reverse rotation direction of the vehicle and the reverse rotation direction for reverse traveling of the vehicle, and the torque transmitted through the forward / reverse switching device 18 is converted into torque according to the load. The continuously variable transmission 10, the reduction gear device 20 connected to the output side of the continuously variable transmission 10, and the torque transmitted via the reduction gear device 20 are transmitted to the pair of left and right wheels 22. A well-known so-called bevel gear type differential gear device 24 that transmits the rotation difference while allowing the difference in rotation is provided. The pump impeller 26 of the torque converter 16 is a mechanical oil pump 28 that generates a hydraulic pressure that is a source pressure used for, for example, shift control of the continuously variable transmission 10 and forward / reverse switching control of the forward / reverse switching device 18. Is provided.
 図2は、図1に示す無段変速機10の構成を示す断面図である。図2において、無段変速機10は、一対の軸受30を介してトランスアクスルケース32により軸心(回転軸心)C1まわりの回転可能に支持された入力軸(回転軸)34と、その入力軸34に設けられたプライマリプーリ(溝幅可変プーリ)36と、入力軸34と平行に設けられ、一対の軸受38を介してトランスアクスルケース32により軸心C2まわりの回転可能に支持された出力軸(回転軸)40と、その出力軸40に設けられたセカンダリプーリ(溝幅可変プーリ)42と、各プーリのV溝44にそれぞれ巻き掛けられた無端環状の伝動ベルト46と、供給される油圧に応じて伝動ベルト46の各プーリに対する掛かり径を変化させて変速比を連続的に変化させる第1油圧シリンダ48と、供給される油圧に応じて各プーリの伝動ベルト46に対する挟圧力を変化させる第2油圧シリンダ50とを、備えている。なお、上記第1油圧シリンダ48は、本発明における油圧シリンダに相当するものである。 FIG. 2 is a cross-sectional view showing the configuration of the continuously variable transmission 10 shown in FIG. In FIG. 2, the continuously variable transmission 10 includes an input shaft (rotary shaft) 34 that is supported by a transaxle case 32 via a pair of bearings 30 so as to be rotatable about an axis (rotational axis) C1, and an input thereof. A primary pulley (variable groove width pulley) 36 provided on the shaft 34 and an output provided parallel to the input shaft 34 and supported by the transaxle case 32 through a pair of bearings 38 so as to be rotatable around the axis C2. A shaft (rotating shaft) 40, a secondary pulley (variable groove width pulley) 42 provided on the output shaft 40, and an endless annular transmission belt 46 wound around a V groove 44 of each pulley are supplied. A first hydraulic cylinder 48 that continuously changes the transmission gear ratio by changing the engagement diameter of each transmission belt 46 with respect to each pulley according to the hydraulic pressure, and the transmission of each pulley according to the supplied hydraulic pressure. And a second hydraulic cylinder 50 for varying the clamping force against the belt 46, and. The first hydraulic cylinder 48 corresponds to the hydraulic cylinder in the present invention.
 上記プライマリプーリ36は、入力軸34に固設された固定シーブ52と、その固定シーブ52との間にV溝44を形成するように入力軸34に相対回転不能且つ軸心C1方向の移動可能に設けられた可動シーブ54とを備えている。また、上記セカンダリプーリ42は、プライマリプーリ36と同様に、出力軸40に固設された固定シーブ52と、その固定シーブ52との間にV溝44を形成するように出力軸40に相対回転不能且つ軸心C2方向の移動可能に設けられた可動シーブ54とを備えている。 The primary pulley 36 is non-rotatable relative to the input shaft 34 and movable in the direction of the axis C1 so as to form a fixed sheave 52 fixed to the input shaft 34 and a V-groove 44 between the fixed sheave 52. And a movable sheave 54 provided on the main body. Similarly to the primary pulley 36, the secondary pulley 42 rotates relative to the output shaft 40 so as to form a fixed sheave 52 fixed to the output shaft 40 and a V-groove 44 between the fixed sheave 52. And a movable sheave 54 provided so as to be movable in the direction of the axis C2.
 上記固定シーブ52は、入力軸34または出力軸40の外周面から周方向に連続して径方向外側に突設された円環板状部材である。この固定シーブ52には、可動シーブ54との対向面に、外周側に向かうほど可動シーブ54から離間するテーパ面56が形成されている。 The fixed sheave 52 is an annular plate-like member that protrudes radially outward from the outer peripheral surface of the input shaft 34 or the output shaft 40 in the circumferential direction. The fixed sheave 52 is formed with a tapered surface 56 on the surface facing the movable sheave 54 so as to move away from the movable sheave 54 toward the outer peripheral side.
 前記可動シーブ54は、入力軸34または出力軸40に相対回転不能且つ回転軸心方向の移動可能に例えばスプライン嵌合された内周円筒部54aと、固定シーブ52との間にV溝44を形成するように、内周円筒部54aの固定シーブ52側の一端部から周方向に連続して径方向外側へ突設された円環板状のフランジ部54bと、そのフランジ部54bの外周部から固定シーブ52とは反対側に向けて回転軸心方向に突設された外周円筒部54cとを有している。この可動シーブ54には、固定シーブ52との対向面に、外周側に向かうほど固定シーブ52から離間するテーパ面58が形成されている。このテーパ面56は、固定シーブ52のテーパ面56とともにV字状のV溝44を形成している。 The movable sheave 54 has a V-groove 44 between the fixed sheave 52 and an inner peripheral cylindrical portion 54a that is, for example, spline-fitted so as not to rotate relative to the input shaft 34 or the output shaft 40 and to move in the rotational axis direction. An annular plate-like flange portion 54b that protrudes radially outward from the one end portion on the fixed sheave 52 side of the inner peripheral cylindrical portion 54a so as to form, and an outer peripheral portion of the flange portion 54b And an outer peripheral cylindrical portion 54c projecting in the direction of the rotation axis toward the opposite side of the fixed sheave 52. The movable sheave 54 is formed with a tapered surface 58 on the surface facing the fixed sheave 52 so as to move away from the fixed sheave 52 toward the outer peripheral side. The tapered surface 56 forms a V-shaped V groove 44 together with the tapered surface 56 of the fixed sheave 52.
 上記のような可動シーブ54、および固定シーブ52を一体に備える入力軸34および出力軸40は、たとえば、鋼等の金属から鋳造または鍛造等により成型された部材に切削加工が施され、それに対して例えば浸炭焼入等の熱処理が施されることによって作られる。 The input shaft 34 and the output shaft 40, which are integrally provided with the movable sheave 54 and the fixed sheave 52 as described above, are cut into a member formed by casting or forging from a metal such as steel, for example. For example, it is made by heat treatment such as carburizing and quenching.
 前記第1油圧シリンダ48および第2油圧シリンダ50は、第1油圧シリンダ48が所謂ダブルピストン型であるのに対して第2油圧シリンダ50が所謂シングルピストン型であること、及び第2油圧シリンダ50には可動シーブ54を固定シーブ52側に常に付勢するコイルスプリング60が設けられているのに対して第1油圧シリンダ48には上記のようなスプリングが設けられていないこと以外は、同様な構造の油圧シリンダである。以下では、それら油圧シリンダを代表して、第1油圧シリンダ48に関して詳しく説明する。 In the first hydraulic cylinder 48 and the second hydraulic cylinder 50, the first hydraulic cylinder 48 is a so-called double piston type, whereas the second hydraulic cylinder 50 is a so-called single piston type, and the second hydraulic cylinder 50 Is similar to the above except that the first hydraulic cylinder 48 is not provided with a spring as described above, whereas a coil spring 60 is provided to constantly urge the movable sheave 54 toward the fixed sheave 52. It is a hydraulic cylinder of structure. Below, the 1st hydraulic cylinder 48 is demonstrated in detail on behalf of these hydraulic cylinders.
 図3は、図2の第1油圧シリンダ48を拡大して示す断面図である。図3において、第1油圧シリンダ48は、入力軸34の外周面のうちの可動シーブ54に対して固定シーブ52とは反対側において、内周部が入力軸34の段付端面61と軸受30との間においてそれらに挟持された状態で固定された円環板状の第1壁部62aと、可動シーブ54の外周円筒部54cの内周側において、第1壁部62aの外周部から可動シーブ54のフランジ部54b側に向けて軸心C1方向に突設された円筒状の外側筒部62bとを、有するシリンダ部材62を備えている。 FIG. 3 is an enlarged cross-sectional view of the first hydraulic cylinder 48 of FIG. In FIG. 3, the first hydraulic cylinder 48 has an inner peripheral portion on the side opposite to the fixed sheave 52 with respect to the movable sheave 54 on the outer peripheral surface of the input shaft 34 and the bearing 30 and the stepped end surface 61 of the input shaft 34. Between the outer peripheral portion of the first wall portion 62a on the inner peripheral side of the outer peripheral cylindrical portion 54c of the movable sheave 54 and the annular plate-shaped first wall portion 62a fixed in a state sandwiched between them. A cylinder member 62 having a cylindrical outer tube portion 62b projecting in the direction of the axis C1 toward the flange portion 54b of the sheave 54 is provided.
 また、第1油圧シリンダ48は、可動シーブ54のフランジ部54bとの間に第1油室64を形成し、軸心C1方向の移動不能に設けられた第1ピストン(第1部材)66と、第1油室64および第1ピストン66の内周側に設けられて第1ピストン66と共に第1油室64を形成しつつ、シリンダ部材62の第1壁部62aとの間に第2油室68を形成し、軸心C1方向の移動可能に設けられた第2ピストン(第2部材)70とを備えている。 The first hydraulic cylinder 48 forms a first oil chamber 64 with the flange 54b of the movable sheave 54, and a first piston (first member) 66 provided so as not to move in the direction of the axis C1. The second oil is provided between the first oil chamber 64 and the first piston 66 and between the first wall portion 62 a of the cylinder member 62 while forming the first oil chamber 64 together with the first piston 66. A chamber 68 is formed, and a second piston (second member) 70 is provided so as to be movable in the direction of the axis C1.
 上記第2ピストン70は、第2油室68のフランジ部54b側に隣接して設けられ、シリンダ部材62の外側筒部62bの内周面に対してシール部材72を介して摺動可能に設けられた円環板状の第2壁部70aと、可動シーブ54の内周円筒部54aの外周側において第2壁部70aの内周部からフランジ部54b側に向けて突設され、軸心C1方向においてフランジ部54bに当接させられた円筒状の内側筒部70bとを、有する円筒状部材である。上記内側筒部70bは、可動シーブ54の内周円筒部54aのうち、先端部と比較して大径に形成された基部の円筒状外周面に嵌着されており、可動シーブ54と共に、入力軸34およびシリンダ部材62等に対して軸心C1方向に相対移動可能に設けられている。そして、第2壁部70aは、本発明における受圧部に相当するものであり、第2油室68に供給された油圧から可動シーブ54のフランジ部54b側に向かう軸心C1方向の油圧力を受ける受圧部として機能するものである。そして、内側筒部70bは、本発明における推力伝達部に相当するものであり、上記油圧力に基づいて発生させられて第2壁部70aから伝達された軸心C1方向の推力を可動シーブ54に伝達して、その可動シーブ54を固定シーブ52側に向けて押圧する推力伝達部として機能するものである。この内側筒部70bは、その外周側および内周側に隣接して形成された第1油室64と第2油室とを互いに連通させるために径方向に貫通して設けれられた油室連通孔(連通孔)74を有している。なお、この油室連通孔74は、可動シーブ54の軸心C1方向の移動位置に拘わらず、常に、第1油室64と第2油室とを互いに連通させるものである。 The second piston 70 is provided adjacent to the flange portion 54 b side of the second oil chamber 68, and is slidable with respect to the inner peripheral surface of the outer cylindrical portion 62 b of the cylinder member 62 via the seal member 72. The annular wall-shaped second wall portion 70a and the outer peripheral side of the inner peripheral cylindrical portion 54a of the movable sheave 54 are projected from the inner peripheral portion of the second wall portion 70a toward the flange portion 54b, and are axially centered. It is a cylindrical member which has the cylindrical inner cylinder part 70b contact | abutted to the flange part 54b in C1 direction. The inner cylindrical portion 70b is fitted to the cylindrical outer peripheral surface of the base portion formed larger in diameter than the distal end portion of the inner peripheral cylindrical portion 54a of the movable sheave 54, and is input together with the movable sheave 54. The shaft 34 and the cylinder member 62 are provided so as to be relatively movable in the direction of the axis C1. The second wall portion 70a corresponds to the pressure receiving portion in the present invention, and the hydraulic pressure in the axial center C1 direction from the hydraulic pressure supplied to the second oil chamber 68 toward the flange portion 54b of the movable sheave 54 is obtained. It functions as a receiving pressure receiving part. The inner cylinder portion 70b corresponds to a thrust transmission portion in the present invention, and the movable sheave 54 generates the thrust in the direction of the axis C1 generated based on the oil pressure and transmitted from the second wall portion 70a. The movable sheave 54 functions as a thrust transmission unit that presses the movable sheave 54 toward the fixed sheave 52 side. The inner cylinder part 70b is an oil chamber provided so as to penetrate in the radial direction in order to connect the first oil chamber 64 and the second oil chamber formed adjacent to the outer peripheral side and the inner peripheral side thereof. A communication hole (communication hole) 74 is provided. The oil chamber communication hole 74 always allows the first oil chamber 64 and the second oil chamber to communicate with each other regardless of the movement position of the movable sheave 54 in the direction of the axis C1.
 第2油室68は、シリンダ部材62、入力軸34、可動シーブ54の内周円筒部54a、および第2ピストン70によって油密に囲まれた円環状の空間によって形成されている。そして、その第2油室68には、図3において軸心C1の上側に示すように、可動シーブ54の内周円筒部54aがシリンダ部材62の第1壁部62aに当接された状態においては、トランスアクスルケース32に形成された第1油路76、入力軸34内部に軸心C1方向に形成されると共に第1油路76に連通された第2油路78、入力軸34の外周面に形成されたスプライン外歯80とそれの固定シーブ52側に形成された段付端面82との間において、第2油路78から入力軸34の外周面まで入力軸34を径方向に貫通して形成された第3油路84、および第3油路84の外周側において可動シーブ54の内周円筒部54aを径方向に貫通して形成されると共に第3油路84の外周側に形成される円環状の隙間を通じてその第3油路84と連通された第4油路86をそれぞれ介して、前記オイルポンプ28で発生させられて調圧された油圧が図3中に点線の矢印で示すように供給される。 The second oil chamber 68 is formed by an annular space that is oil-tightly surrounded by the cylinder member 62, the input shaft 34, the inner peripheral cylindrical portion 54a of the movable sheave 54, and the second piston 70. In the second oil chamber 68, the inner peripheral cylindrical portion 54a of the movable sheave 54 is in contact with the first wall portion 62a of the cylinder member 62 as shown above the axis C1 in FIG. The first oil passage 76 formed in the transaxle case 32, the second oil passage 78 formed in the axial center C1 direction inside the input shaft 34 and communicated with the first oil passage 76, and the outer periphery of the input shaft 34 Between the spline external teeth 80 formed on the surface and the stepped end surface 82 formed on the fixed sheave 52 side, the input shaft 34 penetrates from the second oil passage 78 to the outer peripheral surface of the input shaft 34 in the radial direction. Formed on the outer peripheral side of the third oil passage 84 and the inner peripheral cylindrical portion 54a of the movable sheave 54 on the outer peripheral side of the third oil passage 84. The third oil passage through the formed annular gap 4 and communicated with the fourth oil passage 86 through each of the pressure regulated is generated in the oil pump 28 hydraulic pressure is supplied as indicated by dotted arrows in FIG.
 また、第2油室68には、図3において軸心C1の下側に示すように、可動シーブ54の内周円筒部54aがシリンダ部材62の第1壁部62aに当接させられていない状態においては、第1油路76、第2油路78、および入力軸34のスプライン外歯80と段付端面61との間において、第2油路78から入力軸34の外周面まで入力軸34を径方向に貫通して形成された第5油路88をそれぞれ介して、前記オイルポンプ28で発生させられて調圧された油圧が図3中に点線の矢印で示すように供給される。なお、図示しないが、可動シーブ54の内周円筒部54aがシリンダ部材62の第1壁部62aから離間されつつもその内周円筒部54aが第5油路88の外周側に位置させられている場合には、第2油室68には、第3油路84と第4油路86とをそれぞれ介して油圧が供給されつつ、第5油路88と内周円筒部54aの内周面に形成された複数のスプライン内歯90間の隙間とをそれぞれ介して油圧が供給される。 Further, in the second oil chamber 68, as shown below the axis C1 in FIG. 3, the inner peripheral cylindrical portion 54a of the movable sheave 54 is not brought into contact with the first wall portion 62a of the cylinder member 62. In the state, the input shaft from the second oil passage 78 to the outer peripheral surface of the input shaft 34 between the first oil passage 76, the second oil passage 78, and the spline outer teeth 80 of the input shaft 34 and the stepped end surface 61. The oil pressure generated and regulated by the oil pump 28 is supplied as shown by the dotted arrows in FIG. . Although not shown, the inner peripheral cylindrical portion 54 a of the movable sheave 54 is spaced from the first wall portion 62 a of the cylinder member 62, but the inner peripheral cylindrical portion 54 a is positioned on the outer peripheral side of the fifth oil passage 88. In this case, the second oil chamber 68 is supplied with hydraulic pressure via the third oil passage 84 and the fourth oil passage 86, respectively, while the fifth oil passage 88 and the inner peripheral surface of the inner peripheral cylindrical portion 54a. The hydraulic pressure is supplied through the gaps between the plurality of spline inner teeth 90 formed in the above.
 前記第1ピストン66は、第1油室64の外側筒部62b側に隣接して設けられると共に軸心C1方向においてその外側筒部62bに支持され、第2ピストン70の内側筒部70bの外周面および可動シーブ54の外周円筒部54cの内周面に対してそれぞれシール部材92および94を介して摺動可能に設けられた円環板状部材である。この第1ピストン66は、第1油室64内で発生させられる油圧力を受けることで可動シーブ54のフランジ部54b側へ移動不能とされ、また、シリンダ部材62の外側筒部62bに当接することでフランジ部54bとは反対側へ移動不能とされることによって、前述のように軸心C1方向の移動不能とされている。 The first piston 66 is provided adjacent to the outer cylinder portion 62b side of the first oil chamber 64 and is supported by the outer cylinder portion 62b in the direction of the axis C1, and the outer periphery of the inner cylinder portion 70b of the second piston 70. It is an annular plate-like member that is provided to be slidable via seal members 92 and 94 with respect to the surface and the inner peripheral surface of the outer peripheral cylindrical portion 54 c of the movable sheave 54. The first piston 66 is made immovable to the flange portion 54 b side of the movable sheave 54 by receiving an oil pressure generated in the first oil chamber 64, and abuts on the outer cylinder portion 62 b of the cylinder member 62. As a result, it is impossible to move in the direction of the axis C1 as described above by making it impossible to move to the opposite side of the flange portion 54b.
 第1油室64は、可動シーブ54のフランジ部54bおよび外周円筒部54c、第2ピストン70の内側筒部70b、および第1ピストン66によって油密に囲まれる円環状の空間によって形成されている。そして、その第1油室64には、図3において軸心C1の上側および下側に示すいずれかの状態においても、第2油室68に供給された油圧の一部が、図3中に点線の矢印で示すように、第2ピストン70の内側筒部70bに形成された油室連通孔74を通じて供給される。 The first oil chamber 64 is formed by an annular space that is oil-tightly surrounded by the flange portion 54 b and the outer peripheral cylindrical portion 54 c of the movable sheave 54, the inner cylindrical portion 70 b of the second piston 70, and the first piston 66. . In the first oil chamber 64, a part of the hydraulic pressure supplied to the second oil chamber 68 is not shown in FIG. 3 even in any state shown above and below the axis C 1 in FIG. As indicated by the dotted arrow, the oil is supplied through the oil chamber communication hole 74 formed in the inner cylindrical portion 70b of the second piston 70.
 上記のようなシリンダ部材62、第1ピストン66、および第2ピストン70は、例えば、鋼等の金属板から打ち抜かれた部材がプレス加工により曲成されて作られる。 The cylinder member 62, the first piston 66, and the second piston 70 as described above are made by bending a member punched from a metal plate such as steel by press working.
 以上のように構成される第1油圧シリンダ48は、各油室に油圧がそれぞれ供給されることにより、それら各油室内で発生させられた油圧力に基づく軸心C1方向の推力を、直接的に、および第2ピストン70を介して間接的に可動シーブ54に伝達し、その可動シーブ54を固定シーブ52に対して接近させてV溝44を狭めるように作動する。図3において軸心C1の下側に示す可動シーブ54は、固定シーブ52との間に形成されるV溝44が最小幅とされた状態を示している。この状態においては、伝動ベルト46の掛かり径が最大とされる。 The first hydraulic cylinder 48 configured as described above directly supplies thrust in the direction of the axis C1 based on the hydraulic pressure generated in each oil chamber by supplying hydraulic pressure to each oil chamber. And indirectly to the movable sheave 54 via the second piston 70, and operates so that the movable sheave 54 approaches the fixed sheave 52 and narrows the V-groove 44. The movable sheave 54 shown on the lower side of the axis C1 in FIG. 3 shows a state where the V groove 44 formed between the movable sheave 52 and the fixed sheave 52 has a minimum width. In this state, the engagement diameter of the transmission belt 46 is maximized.
 また、第1油圧シリンダ48は、各油室から油圧がそれぞれ排出されてそれら各油室内で発生させられる油圧力が弱められることにより、可動シーブ54を固定シーブ52に対して離間させてV溝44を広げるように作動する。図3において軸心C1の上側に示す可動シーブ54は、固定シーブ52との間に形成されるV溝44が最大幅とされた状態を示している。この状態においては、伝動ベルト46の掛かり径が最小とされる。 Further, the first hydraulic cylinder 48 discharges the hydraulic pressure from each oil chamber and weakens the oil pressure generated in each oil chamber, thereby moving the movable sheave 54 away from the fixed sheave 52 and the V-groove. Actuate to widen 44. The movable sheave 54 shown on the upper side of the axis C1 in FIG. 3 shows a state where the V groove 44 formed between the movable sheave 52 and the fixed sheave 52 has the maximum width. In this state, the engagement diameter of the transmission belt 46 is minimized.
 以上のように構成される無段変速機10においては、第1油圧シリンダ48へ供給されるプライマリ油圧が調節されつつ、第2油圧シリンダ50へ供給されるセカンダリ油圧が調節されることによって、各プーリのV溝44の溝幅がそれぞれ変化させられると共に各プーリの伝動ベルト46に対する挟圧力がそれぞれ調節されるようになっている。そして、各プーリのV溝44の溝幅が変化させられることにより、伝動ベルト46の掛かり径が変化させられ、入力軸34と出力軸40との回転速度比(変速比)が無段階に変化させられるようになっている。例えば、図2において実線で示す伝動ベルト46は、プライマリプーリ36での掛かり径が最小値とされ且つセカンダリプーリ42での掛かり径が最大値とされて、無段変速機10の変速比が最大変速比とされた状態を示している。また、図2において2点鎖線で示す伝動ベルト46は、プライマリプーリ36での掛かり径が最大値とされ且つセカンダリプーリ42での掛かり径が最小値とされて、無段変速機10の変速比が最小変速比とされた状態を示している。 In the continuously variable transmission 10 configured as described above, the primary hydraulic pressure supplied to the first hydraulic cylinder 48 is adjusted while the secondary hydraulic pressure supplied to the second hydraulic cylinder 50 is adjusted, so that each The groove widths of the V-grooves 44 of the pulleys are respectively changed, and the clamping pressures of the pulleys on the transmission belt 46 are adjusted. Then, by changing the groove width of the V-groove 44 of each pulley, the engagement diameter of the transmission belt 46 is changed, and the rotational speed ratio (transmission ratio) between the input shaft 34 and the output shaft 40 changes steplessly. It is supposed to be made. For example, the transmission belt 46 indicated by a solid line in FIG. 2 has the minimum engagement diameter at the primary pulley 36 and the maximum engagement diameter at the secondary pulley 42, and the transmission ratio of the continuously variable transmission 10 is maximum. A state in which the gear ratio is set is shown. Further, in the transmission belt 46 indicated by a two-dot chain line in FIG. 2, the engagement diameter at the primary pulley 36 is the maximum value and the engagement diameter at the secondary pulley 42 is the minimum value. Indicates a state in which the minimum gear ratio is set.
 ここで、無段変速機10の変速比が最大変速比とされた状態において、図3において軸心C1の上側に示すように可動シーブ54の内周円筒部54aがシリンダ部材62の第1壁部62aに当接されることにより、第5油路88と第2油室68との間が遮断された場合には、第1油室64および第2油室68には、第3油路84および第4油路86から成る1経路の油圧供給油路のみによって油圧が供給され得るようになっている。なお、上記第3油路84および第4油路86から成る油圧供給油路は、無段変速機10の変速比が最大変速比とされた状態のみならず、図3において軸心C1の下側に示すように内周円筒部54aの段付部が入力軸34の段付端面82に当接することで第3油路84と第4油路86との間が遮断される以外の状態であれば、第1油室64および第2油室68に油圧を供給する油路として機能する。 Here, in the state in which the transmission gear ratio of the continuously variable transmission 10 is the maximum transmission gear ratio, the inner peripheral cylindrical portion 54a of the movable sheave 54 is the first wall of the cylinder member 62 as shown on the upper side of the axis C1 in FIG. When the space between the fifth oil passage 88 and the second oil chamber 68 is blocked by contacting the portion 62a, the third oil passage is provided in the first oil chamber 64 and the second oil chamber 68. The hydraulic pressure can be supplied only by one hydraulic supply oil path consisting of 84 and the fourth oil path 86. Note that the hydraulic pressure supply oil passage composed of the third oil passage 84 and the fourth oil passage 86 is not only in the state where the transmission gear ratio of the continuously variable transmission 10 is set to the maximum transmission gear ratio, but also below the axis C1 in FIG. As shown on the side, the stepped portion of the inner peripheral cylindrical portion 54a abuts on the stepped end surface 82 of the input shaft 34, so that the third oil passage 84 and the fourth oil passage 86 are not blocked. If there is, it functions as an oil passage for supplying hydraulic pressure to the first oil chamber 64 and the second oil chamber 68.
 本実施例の無段変速機10によれば、第1油圧シリンダ48は、可動シーブ54のフランジ部54bとの間に第1油室64を形成し、軸心C1方向の移動不能に設けられた第1ピストン(第1部材)66と、第1油室64および第1ピストン66の内周側に設けられて第1ピストン66と共に第1油室64を形成しつつ、シリンダ部材62の第1壁部62aとの間に第2油室68を形成し、軸心C1方向の移動可能に設けられた第2ピストン(第2部材)70とを備え、その第2ピストン70は、第1油室64と第2油室68とを連通させる油室連通孔(連通孔)74を有することから、第2油室68に油圧が供給されれば上記油室連通孔74を通じて第1油室64にも上記油圧の一部が供給されるので、第1油圧シリンダ48の各油室へ油圧をそれぞれ供給するための油圧供給油路は、少なくとも第2油室68に連通された第3油路84および第4油路86から成る1経路の油圧供給油路が設けられればよいため、たとえば各油室に対応してそれぞれ個別に油圧供給油路が設けられるような場合と比べて、上記油圧供給油路の設計自由度を高めることができる。上記設計自由度が高まるとは、たとえば、1経路の油圧供給油路を設定する場合は、2経路の油圧供給油路を設定する場合と比べて、油路を設ける場所が確保され易い等のことを意味する。 According to the continuously variable transmission 10 of the present embodiment, the first hydraulic cylinder 48 forms the first oil chamber 64 between the movable sheave 54 and the flange portion 54b, and is provided so as not to move in the direction of the axis C1. The first piston (first member) 66 and the first oil chamber 64 and the first piston 66 are provided on the inner peripheral side of the first piston 66 together with the first piston 66, while the first oil chamber 64 is formed. A second oil chamber 68 is formed between the first wall portion 62a and a second piston (second member) 70 provided so as to be movable in the direction of the axis C1. Since the oil chamber communication hole (communication hole) 74 that allows the oil chamber 64 and the second oil chamber 68 to communicate with each other is provided, if the hydraulic pressure is supplied to the second oil chamber 68, the first oil chamber is passed through the oil chamber communication hole 74. 64 is also supplied with a part of the hydraulic pressure, so that each hydraulic chamber of the first hydraulic cylinder 48 is supplied. Since the hydraulic pressure supply oil passage for supplying each pressure only needs to be provided with one hydraulic supply oil passage including at least the third oil passage 84 and the fourth oil passage 86 communicated with the second oil chamber 68, For example, the degree of freedom in design of the hydraulic supply oil passage can be increased as compared with a case where a hydraulic supply oil passage is provided individually corresponding to each oil chamber. The degree of freedom in design is increased, for example, when setting a one-way hydraulic supply oil path, it is easier to secure a place to provide an oil path than when setting two-path hydraulic supply oil paths, etc. Means that.
 また、本実施例の無段変速機10によれば、第2ピストン(第2部材)70は、第2油室68に供給された油圧から可動シーブ54のフランジ部54b側に向かう軸心C1方向の油圧力を受ける受圧部として機能する第2壁部70aと、上記油圧力に基づいて発生させられて第2壁部70aから伝達された軸心C1方向の推力を可動シーブ54に伝達して、その可動シーブ54を固定シーブ52側に向けて押圧する推力伝達部として機能する内側筒部70bとを備えることから、軸心C1方向の推力を伝達する第2ピストン70の推力伝達部70bは、軸心C1方向に延設された部材から成り、軸心C1方向の剛性が比較的に高いので、第2ピストン70の可動シーブ54への偏当たりが抑制される。 Further, according to the continuously variable transmission 10 of the present embodiment, the second piston (second member) 70 has an axial center C <b> 1 directed from the hydraulic pressure supplied to the second oil chamber 68 toward the flange portion 54 b of the movable sheave 54. A second wall portion 70a that functions as a pressure receiving portion that receives the oil pressure in the direction, and a thrust in the direction of the axis C1 that is generated based on the oil pressure and transmitted from the second wall portion 70a is transmitted to the movable sheave 54. And the inner cylinder part 70b functioning as a thrust transmission part that presses the movable sheave 54 toward the fixed sheave 52 side, and therefore the thrust transmission part 70b of the second piston 70 that transmits the thrust in the direction of the axis C1. Is composed of a member extending in the direction of the axis C1 and has relatively high rigidity in the direction of the axis C1, so that the second piston 70 is prevented from being biased against the movable sheave 54.
 また、本実施例の無段変速機10によれば、第1ピストン(第1部材)66は、第1油室64内で発生させられる油圧力を受けることで可動シーブ54のフランジ部54b側へ移動不能とされ、また、シリンダ部材62の外側筒部62bに当接することでフランジ部54bとは反対側へ移動不能とされる円環板状部材であることから、たとえば、第1ピストン66が可動シーブ54と当接される場合のように、プライマリプーリ36が伝動ベルト46から受けるベルト反力による可動シーブ54の変形の影響を受けて第1ピストン66が傾くことを抑制するために、第1ピストン66の他部材との摺動部分に摺動方向(軸心C1方向)の長さが比較的長く形成された円筒状のガイド部を設ける等の対策が不要であるので、第1ピストン66を、比較的安価で大量生産できるプレス加工により1工程で成型することができ、第1ピストン66の加工工数が低減され、第1油圧シリンダ48を安価に構成することができる。 Further, according to the continuously variable transmission 10 of the present embodiment, the first piston (first member) 66 receives the oil pressure generated in the first oil chamber 64, so that the movable sheave 54 has the flange 54 b side. For example, the first piston 66 is made of an annular plate-like member that cannot move to the opposite side of the flange portion 54b by contacting the outer cylindrical portion 62b of the cylinder member 62. In order to prevent the first piston 66 from tilting under the influence of deformation of the movable sheave 54 due to the belt reaction force received by the primary pulley 36 from the transmission belt 46, as in the case where the first sheave 54 is in contact with the movable sheave 54, Since there is no need to take measures such as providing a cylindrical guide portion having a relatively long length in the sliding direction (axial center C1 direction) at the sliding portion with the other member of the first piston 66, the first Piston 66 , Relatively inexpensive can be mass produced can be molded in one step by pressing, the number of processing steps of the first piston 66 is reduced, it is possible to inexpensively constitute the first hydraulic cylinder 48.
 また、本実施例の無段変速機10によれば、第1ピストン66は、その内周面が第2ピストン70の内側筒部70bの外周面に摺動可能に設けられた円環板状部材であることから、たとえば、第1ピストン66の内周面が可動シーブ54の内周円筒部54aの外周面に摺動可能に設けられる場合のように、浸炭焼入等の焼入処理が施されることで歪みが生じた内周円筒部54aの外周面との摺動に際して第1ピストン66が傾くことを抑制するためにその内周円筒部54aの外周面を研磨加工して精度良く仕上げる必要がなく、可動シーブ54の加工工数が低減され、プライマリプーリ36を安価に構成することができる。 Further, according to the continuously variable transmission 10 of the present embodiment, the first piston 66 has an annular plate shape whose inner peripheral surface is slidably provided on the outer peripheral surface of the inner cylindrical portion 70 b of the second piston 70. Since it is a member, for example, when the inner peripheral surface of the first piston 66 is slidably provided on the outer peripheral surface of the inner peripheral cylindrical portion 54a of the movable sheave 54, a quenching process such as carburizing and quenching is performed. In order to prevent the first piston 66 from tilting when sliding with the outer peripheral surface of the inner peripheral cylindrical portion 54a that has been distorted, the outer peripheral surface of the inner peripheral cylindrical portion 54a is polished and processed with high accuracy. There is no need for finishing, the number of processing steps of the movable sheave 54 is reduced, and the primary pulley 36 can be configured at low cost.
 因みに、各油室を区画形成する第1ピストン66および第2ピストン70に相当する部材のうち、入力軸34に対して相対移動不能とされる部材が、入力軸34の段付端面61とシリンダ部材62の第1壁部62aとの間に挟持されることで軸心C1方向の移動不能とされる型式の従来の無段変速機においては、油圧シリンダの軸長が長くなるという欠点があった。しかしながら、本実施例の無段変速機10によれば、入力軸34に対して相対移動不能とされる部材としての第1ピストン66は、第1油室64内で発生させられる油圧力を受けることで可動シーブ54のフランジ部54b側へ移動不能とされ、また、シリンダ部材62の外側筒部62bに当接することでフランジ部54bとは反対側へ移動不能とされていることから、上記のように入力軸34の段付端面61とシリンダ部材62の第1壁部62aとの間に挟持されることで軸心C1方向の移動不能とされるわけではないので、上記従来の無段変速機と比較して油圧シリンダの軸長が短くされる。 Incidentally, among the members corresponding to the first piston 66 and the second piston 70 that define each oil chamber, the members that cannot move relative to the input shaft 34 are the stepped end surface 61 of the input shaft 34 and the cylinder. In the conventional continuously variable transmission of the type in which movement in the direction of the axis C1 is impossible by being sandwiched between the first wall portion 62a of the member 62, there is a drawback that the axial length of the hydraulic cylinder becomes long. It was. However, according to the continuously variable transmission 10 of the present embodiment, the first piston 66 as a member that cannot be moved relative to the input shaft 34 receives the oil pressure generated in the first oil chamber 64. As a result, the movable sheave 54 cannot be moved to the flange portion 54b side, and by contacting the outer cylindrical portion 62b of the cylinder member 62, it cannot be moved to the opposite side of the flange portion 54b. As described above, since the stepped end surface 61 of the input shaft 34 and the first wall portion 62a of the cylinder member 62 are sandwiched, the movement in the direction of the axis C1 is not disabled. Compared with the machine, the axial length of the hydraulic cylinder is shortened.
 また、各油室が1部材を隔てて隣接することなく軸心C1方向において離れて設けられる型式の従来の無段変速機においては、無段変速機の変速比が最大変速比とされて可動シーブ54の内周円筒部54aがシリンダ部材62の第1壁部62aと当接された状態において、第5油路88と第2油路68とを連通させるために、内周円筒部54aを比較的長く設定してそれの第1壁部62aとの当接端面に径方向溝を設ける必要があったため、油圧シリンダの軸長が長くなるという欠点があった。しかしながら、本実施例の無段変速機10によれば、変速比が最大変速比とされて可動シーブ54の内周円筒部54aがシリンダ部材62の第1壁部62aと当接された場合においては、第1油室64および第2油室68には、第3油路84および第4油路86から成る1経路の油圧供給油路のみによって油圧が供給され得るようになっていることから、上記従来の無段変速機のように内周円筒部54aを比較的長く設定してそれの第1壁部62aとの当接端面に径方向溝を設ける必要がないので、上記従来の無段変速機と比較して油圧シリンダの軸長が短くされる。 Further, in a conventional continuously variable transmission of the type in which each oil chamber is provided apart in the direction of the axis C1 without being adjacent to each other with a single member, the gear ratio of the continuously variable transmission is set to the maximum gear ratio and is movable. In order for the fifth oil passage 88 and the second oil passage 68 to communicate with each other in the state where the inner peripheral cylindrical portion 54a of the sheave 54 is in contact with the first wall portion 62a of the cylinder member 62, the inner peripheral cylindrical portion 54a is Since it was necessary to provide a radial groove on the contact end surface of the first wall 62a with a relatively long length, the axial length of the hydraulic cylinder was increased. However, according to the continuously variable transmission 10 of the present embodiment, when the transmission gear ratio is the maximum transmission gear ratio and the inner peripheral cylindrical portion 54a of the movable sheave 54 is in contact with the first wall portion 62a of the cylinder member 62, The hydraulic pressure can be supplied to the first oil chamber 64 and the second oil chamber 68 only by a single hydraulic supply oil passage composed of the third oil passage 84 and the fourth oil passage 86. As in the conventional continuously variable transmission, it is not necessary to set the inner peripheral cylindrical portion 54a to be relatively long and provide a radial groove on the contact end surface with the first wall portion 62a. The axial length of the hydraulic cylinder is shortened compared with the step transmission.
 次に、本発明の他の実施例について説明する。なお、以下の実施例の説明において、実施例相互に重複する部分については、同一の符号を付してその説明を省略する。 Next, another embodiment of the present invention will be described. In the following description of the embodiments, portions that overlap each other are denoted by the same reference numerals and description thereof is omitted.
 図4は、本発明の他の実施例の無段変速機100のうち、プライマリプーリ102および第1油圧シリンダ104を拡大して示す断面図であり、実施例1における図2に相当するものである。図4に示すように、プライマリプーリ102の可動シーブ106は、実施例1の可動シーブ54に設けられた内周円筒部54aおよびフランジ部54bと同様な構成の内周円筒部106aおよびフランジ部106bと、そのフランジ部106bの外周部から固定シーブ52とは反対側に向けて軸心C1方向に突設されると共に先端部が周方向において連続的に径方向外側へ延設された外周円筒部106cとを有している。上記外周円筒部106cの先端部は、その外周面に形成された環状溝内に設けられたシール部材108を備えている。 FIG. 4 is an enlarged sectional view showing the primary pulley 102 and the first hydraulic cylinder 104 in the continuously variable transmission 100 according to another embodiment of the present invention, and corresponds to FIG. 2 in the first embodiment. is there. As shown in FIG. 4, the movable sheave 106 of the primary pulley 102 has an inner peripheral cylindrical portion 106a and a flange portion 106b having the same configuration as the inner peripheral cylindrical portion 54a and the flange portion 54b provided in the movable sheave 54 of the first embodiment. And an outer peripheral cylindrical portion that protrudes in the direction of the axial center C1 from the outer peripheral portion of the flange portion 106b toward the opposite side of the fixed sheave 52 and has a distal end portion extending radially outward in the circumferential direction. 106c. The distal end portion of the outer peripheral cylindrical portion 106c is provided with a seal member 108 provided in an annular groove formed on the outer peripheral surface thereof.
 上記のような可動シーブ106は、たとえば、鋼等の金属から鋳造または鍛造等により成形された部材に切削加工が施され、それに対して例えば浸炭焼入等の熱処理が施されることによって作られる。 The movable sheave 106 as described above is made by, for example, cutting a member formed by casting or forging from a metal such as steel and subjecting it to a heat treatment such as carburizing and quenching. .
 第1油圧シリンダ102は、実施例1の第1油圧シリンダ48に設けられたシリンダ部材62および第2ピストン70と同様な構成のリアシリンダ部材110およびピストン112を備えている。また、第1油圧シリンダ102は、実施例1の第1ピストン66に代えて、第1油室116に対してリアシリンダ部材110の外側筒部110b側に隣接して設けられると共に軸心C1方向においてその外側筒部110bに支持され、ピストン112の内側筒部112bの外周面に対してシール部材92を介して摺動可能に設けられた円環板状の第3壁部114aと、可動シーブ106の外周側において第3壁部114aの外周部から固定シーブ52側へ向けて軸心C1方向に突設され、内周面が可動シーブ106の外周円筒部106cに対してシール部材92を介して摺動可能に設けられた円筒状の外側筒部114bとを有するフロントシリンダ部材114を備えている。このフロントシリンダ部材114は、第1油室116内で発生させられる油圧力を受けることで可動シーブ106のフランジ部106b側へ移動不能とされ、また、リアシリンダ部材110の外側筒部110bに当接することでフランジ部106bとは反対側へ移動不能とされている。 The first hydraulic cylinder 102 includes a rear cylinder member 110 and a piston 112 having the same configuration as the cylinder member 62 and the second piston 70 provided in the first hydraulic cylinder 48 of the first embodiment. Further, the first hydraulic cylinder 102 is provided adjacent to the outer cylinder portion 110b side of the rear cylinder member 110 with respect to the first oil chamber 116 in place of the first piston 66 of the first embodiment, and in the axial center C1 direction. And an annular plate-shaped third wall portion 114a supported by the outer cylinder portion 110b and slidably provided on the outer peripheral surface of the inner cylinder portion 112b of the piston 112 via a seal member 92, and a movable sheave. 106 protrudes in the direction of the axial center C1 from the outer peripheral portion of the third wall portion 114a toward the fixed sheave 52 side on the outer peripheral side of the inner wall 106, and the inner peripheral surface of the outer peripheral cylindrical portion 106c of the movable sheave 106 via the seal member 92 And a front cylinder member 114 having a cylindrical outer cylindrical portion 114b slidably provided. The front cylinder member 114 is immovable toward the flange 106b side of the movable sheave 106 by receiving the hydraulic pressure generated in the first oil chamber 116, and is in contact with the outer cylinder 110b of the rear cylinder member 110. By contact, it is impossible to move to the opposite side of the flange portion 106b.
 本実施例の第2油室118は、リアシリンダ部材110、入力軸34、可動シーブ106の内周円筒部106a、およびピストン112によって油密に囲まれた円環状の空間によって形成される。そして、その第2油室118には、図4において軸心C1の上側に示すように、可動シーブ106の内周円筒部106aがリアシリンダ部材110の第1壁部110aに当接された状態においては、第1油路76、第2油路78、第3油路84、および第3油路84の外周側において可動シーブ106の内周円筒部106aを径方向に貫通して形成されると共に第3油路84の外周側に形成される円環状の隙間を通じてその第3油路84と連通された第4油路120をそれぞれ介して、前記オイルポンプ28で発生させられて調圧された油圧が図4中に点線の矢印で示すように供給される。 The second oil chamber 118 of this embodiment is formed by an annular space that is oil-tightly surrounded by the rear cylinder member 110, the input shaft 34, the inner peripheral cylindrical portion 106a of the movable sheave 106, and the piston 112. In the second oil chamber 118, as shown above the axis C1 in FIG. 4, the inner peripheral cylindrical portion 106a of the movable sheave 106 is in contact with the first wall portion 110a of the rear cylinder member 110. , The first oil passage 76, the second oil passage 78, the third oil passage 84, and the outer periphery of the third oil passage 84 are formed to penetrate the inner peripheral cylindrical portion 106a of the movable sheave 106 in the radial direction. In addition, the oil pump 28 generates and adjusts the pressure through a fourth oil passage 120 communicated with the third oil passage 84 through an annular gap formed on the outer peripheral side of the third oil passage 84. The hydraulic pressure is supplied as shown by the dotted arrows in FIG.
 また、第2油室118には、図4において軸心C1の下側に示すように、可動シーブ106の内周円筒部106aがリアシリンダ部材110の第1壁部110aに当接させられていない状態においては、第1油路76、第2油路78、および第5油路88をそれぞれ介して、前記オイルポンプ28で発生させられて調圧された油圧が図4中に点線の矢印で示すように供給される。なお、図示しないが、可動シーブ106の内周円筒部106aがリアシリンダ部材110の第1壁部110aから離間されつつもその内周円筒部106aが第5油路88の外周側に位置させられている場合には、第2油室118には、第3油路84と第4油路86とをそれぞれ介して油圧が供給されつつ、第5油路88と内周円筒部106aの内周面に形成された複数のスプライン内歯90間の隙間とを、それぞれ介して油圧が供給される。 Further, in the second oil chamber 118, as shown below the axis C1 in FIG. 4, the inner peripheral cylindrical portion 106a of the movable sheave 106 is brought into contact with the first wall portion 110a of the rear cylinder member 110. In the absence, the oil pressure generated and regulated by the oil pump 28 through the first oil passage 76, the second oil passage 78, and the fifth oil passage 88 is indicated by the dotted arrows in FIG. Supplied as shown in FIG. Although not shown, the inner peripheral cylindrical portion 106 a of the movable sheave 106 is spaced from the first wall portion 110 a of the rear cylinder member 110, but the inner peripheral cylindrical portion 106 a is positioned on the outer peripheral side of the fifth oil passage 88. In this case, hydraulic pressure is supplied to the second oil chamber 118 via the third oil passage 84 and the fourth oil passage 86, respectively, while the fifth oil passage 88 and the inner periphery of the inner peripheral cylindrical portion 106a are supplied. Hydraulic pressure is supplied through gaps between the plurality of spline internal teeth 90 formed on the surface.
 第1油室116は、可動シーブ106のフランジ部106bおよび外周円筒部106c、ピストン112の内側筒部112b、およびフロントシリンダ部材114によって油密に囲まれる円環状の空間によって形成されている。そして、その第1油室116には、図4において軸心C1の上側および下側に示すいずれかの状態においても、第2油室118に供給された油圧の一部が、図4中に点線の矢印で示すように、実施例1の第2ピストン70の油室連通孔74と同様にピストン112の内側筒部112bに形成された油室連通孔122を通じて供給される。 The first oil chamber 116 is formed by an annular space that is oil-tightly surrounded by the flange portion 106b and the outer peripheral cylindrical portion 106c of the movable sheave 106, the inner cylindrical portion 112b of the piston 112, and the front cylinder member 114. In the first oil chamber 116, a part of the hydraulic pressure supplied to the second oil chamber 118 is shown in FIG. 4 even in any state shown above and below the axis C 1 in FIG. As indicated by the dotted arrow, the oil is supplied through the oil chamber communication hole 122 formed in the inner cylinder portion 112b of the piston 112 in the same manner as the oil chamber communication hole 74 of the second piston 70 of the first embodiment.
 上記のようなリアシリンダ部材110、ピストン112、およびフロントシリンダ部材114は、例えば、鋼等の金属板から打ち抜かれた部材がプレス加工により曲成されることによって作られる。 The rear cylinder member 110, the piston 112, and the front cylinder member 114 as described above are made by, for example, bending a member punched from a metal plate such as steel by pressing.
 以上のように構成される第1油圧シリンダ104は、各油室に油圧がそれぞれ供給されることにより、それら各油室内で発生させられた油圧力に基づく軸心C1方向の推力を、直接的に、およびピストン112を介して間接的に可動シーブ106に伝達し、その可動シーブ106を固定シーブ52に対して接近させてV溝44を狭めるように作動する。図4において軸心C1の下側に示す可動シーブ106は、固定シーブ52との間に形成されるV溝44が最小幅とされた状態を示している。この状態においては、伝動ベルト46の掛かり径が最大とされる。 The first hydraulic cylinder 104 configured as described above directly supplies thrust in the axial center C1 direction based on the hydraulic pressure generated in each oil chamber by supplying hydraulic pressure to each oil chamber. And indirectly through the piston 112 to the movable sheave 106, and the movable sheave 106 is moved closer to the fixed sheave 52 to operate to narrow the V-groove 44. The movable sheave 106 shown on the lower side of the axis C1 in FIG. 4 shows a state where the V groove 44 formed between the movable sheave 52 and the fixed sheave 52 has a minimum width. In this state, the engagement diameter of the transmission belt 46 is maximized.
 また、第1油圧シリンダ104は、各油室から油圧がそれぞれ排出されてそれら各油室内で発生させられる油圧力が弱められることにより、可動シーブ106を固定シーブ52に対して離間させてV溝44を広げるように作動する。図4において軸心C1の上側に示す可動シーブ106は、固定シーブ52との間に形成されるV溝44が最大幅とされた状態を示している。この状態においては、伝動ベルト46の掛かり径が最小とされる。 In addition, the first hydraulic cylinder 104 separates the movable sheave 106 from the fixed sheave 52 by discharging the hydraulic pressure from each oil chamber and weakening the oil pressure generated in each oil chamber, so that the V groove Actuate to widen 44. The movable sheave 106 shown on the upper side of the axis C1 in FIG. 4 shows a state in which the V groove 44 formed between the movable sheave 52 and the fixed sheave 52 has the maximum width. In this state, the engagement diameter of the transmission belt 46 is minimized.
 以上のように構成される無段変速機100においては、その無段変速機10の変速比が最大変速比とされた状態において、図4において軸心C1の上側に示すように可動シーブ106の内周円筒部106aがリアシリンダ部材110の第1壁部110aに当接されることにより、第5油路88と第2油室118との間が遮断された場合には、第1油室116および第2油室118には、第3油路84および第4油路86から成る1経路の油圧供給油路のみによって油圧が供給され得るようになっている。なお、上記第3油路84および第4油路86から成る油圧供給油路は、無段変速機100の変速比が最大変速比とされた状態のみならず、図4において軸心C1の下側に示すように内周円筒部106aの段付部が入力軸34の段付端面82に当接することで第3油路84と第4油路86との間が遮断される以外の状態であれば、第1油室116および第2油室118に油圧を供給する油路として機能する。 In the continuously variable transmission 100 configured as described above, when the speed ratio of the continuously variable transmission 10 is set to the maximum speed ratio, the movable sheave 106 is shown as shown above the axis C1 in FIG. When the inner peripheral cylindrical portion 106a is brought into contact with the first wall portion 110a of the rear cylinder member 110 and the fifth oil passage 88 and the second oil chamber 118 are blocked, the first oil chamber 116 and the second oil chamber 118 can be supplied with hydraulic pressure only by a single hydraulic supply oil path including the third oil path 84 and the fourth oil path 86. Note that the hydraulic pressure supply oil passage composed of the third oil passage 84 and the fourth oil passage 86 is not only in a state where the transmission gear ratio of the continuously variable transmission 100 is set to the maximum transmission gear ratio, but also below the axis C1 in FIG. As shown on the side, the stepped portion of the inner circumferential cylindrical portion 106a abuts on the stepped end surface 82 of the input shaft 34 so that the third oil passage 84 and the fourth oil passage 86 are not blocked. If there is, it functions as an oil passage for supplying hydraulic pressure to the first oil chamber 116 and the second oil chamber 118.
 本実施例の無段変速機100によれば、第1油圧シリンダ104は、可動シーブ106のフランジ部106bとの間に第1油室116を形成し、軸心C1方向の移動不能に設けられたフロントシリンダ部材(第1部材)114と、第1油室116およびフロントシリンダ部材114の内周側に設けられてフロントシリンダ部材114と共に第1油室116を形成しつつ、リアシリンダ部材110の第1壁部110aとの間に第2油室118を形成し、軸心C1方向の移動可能に設けられたピストン(第2部材)112とを備え、そのピストン112は、第1油室116と第2油室118とを連通させる油室連通孔(連通孔)122を有することから、第2油室118に油圧が供給されれば上記油室連通孔122を通じて第1油室116にも上記油圧の一部が供給されるので、実施例1と同様に、第1油圧シリンダ104の各油室へ油圧をそれぞれ供給するための油圧供給油路は、少なくとも第2油室118に連通された第3油路84および第4油路86から成る1経路の油圧供給油路が設けられればよいため、たとえば各油室に対応してそれぞれ個別に油圧供給油路が設けられるような場合と比べて、上記油圧供給油路の設計自由度を高めることができる。 According to the continuously variable transmission 100 of the present embodiment, the first hydraulic cylinder 104 forms the first oil chamber 116 between the flange portion 106b of the movable sheave 106 and is provided so as not to move in the direction of the axis C1. The front cylinder member (first member) 114 and the first oil chamber 116 and the front cylinder member 114 are provided on the inner peripheral side of the front cylinder member 114 to form the first oil chamber 116 and the rear cylinder member 110. A second oil chamber 118 is formed between the first wall portion 110a and a piston (second member) 112 provided so as to be movable in the direction of the axis C1. The piston 112 is provided with the first oil chamber 116. Oil chamber communication hole (communication hole) 122 that allows the second oil chamber 118 to communicate with the second oil chamber 118, so that if the hydraulic pressure is supplied to the second oil chamber 118, the first oil chamber 116 also passes through the oil chamber communication hole 122. Since a part of the hydraulic pressure is supplied, as in the first embodiment, the hydraulic pressure supply oil passage for supplying the hydraulic pressure to each oil chamber of the first hydraulic cylinder 104 is communicated with at least the second oil chamber 118. Since it is only necessary to provide a single hydraulic supply oil path composed of the third oil path 84 and the fourth oil path 86, for example, a separate hydraulic supply oil path is provided for each oil chamber. In comparison, the degree of freedom in designing the hydraulic supply oil passage can be increased.
 また、本実施例の無段変速機100によれば、可動シーブ106は、フランジ部106bの外周部から固定シーブ52とは反対側に向けて軸心C1方向に突設されると共に先端部が周方向において連続的に径方向外側へ延設された外周円筒部106cを備えて構成され、第1油圧シリンダ102のフロントシリンダ部材114は、可動シーブ106の外周側において第3壁部114aの外周部から固定シーブ52側へ向けて軸心C1方向に突設され、内周面が可動シーブ106の外周円筒部106cに対してシール部材92を介して摺動可能に設けられた円筒状の外側筒部114bを備えて構成されることから、フロントシリンダ部材114の外側筒部114bの内周面が可動シーブ106との摺動面とされるので、フロントシリンダ部材114には特に焼入処理等が施されないために外側筒部114bの内周面に研磨加工等を施す必要がなく、フロントシリンダ部材114の加工工数が低減され、第1油圧シリンダ104を安価に構成することができる。 Further, according to the continuously variable transmission 100 of the present embodiment, the movable sheave 106 protrudes in the direction of the axis C1 from the outer peripheral portion of the flange portion 106b toward the opposite side of the fixed sheave 52 and has a tip portion. The front cylinder member 114 of the first hydraulic cylinder 102 is configured to have an outer periphery of the third wall portion 114 a on the outer peripheral side of the movable sheave 106. A cylindrical outer side projecting in the direction of the axis C1 from the portion toward the fixed sheave 52 and having an inner peripheral surface slidable with respect to the outer peripheral cylindrical portion 106c of the movable sheave 106 via a seal member 92 Since the cylindrical portion 114b is provided, the inner peripheral surface of the outer cylindrical portion 114b of the front cylinder member 114 is a sliding surface with the movable sheave 106. 14 is not particularly hardened, so there is no need to perform polishing or the like on the inner peripheral surface of the outer cylindrical portion 114b, the number of processing steps of the front cylinder member 114 is reduced, and the first hydraulic cylinder 104 is made inexpensive. Can be configured.
 以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。 As mentioned above, although one Example of this invention was described in detail with reference to drawings, this invention is not limited to this Example, It can implement in another aspect.
 例えば、第2油圧シリンダ50は、シングルピストン型のものであったが、第1油圧シリンダ48(104)と同様な構造を有するダブルピストン型のものであってもよい。 For example, the second hydraulic cylinder 50 is a single piston type, but may be a double piston type having the same structure as the first hydraulic cylinder 48 (104).
 また、無段変速機10は、FF型車両用の動力伝達装置12に備えられていたが、たとえばFR型車両などの他の駆動型式車両用の動力伝達装置に備えられてもよい。 The continuously variable transmission 10 is provided in the power transmission device 12 for the FF type vehicle, but may be provided in another power transmission device for a drive type vehicle such as an FR type vehicle.
 また、第2ピストン70(ピストン112)の内側筒部70b(112b)は、必ずしも可動シーブ54(106)の内周円筒部54a(106a)の外周面に嵌着されなくてもよい。たとえば、軸心C1方向に相対移動可能に嵌合されてもよい。 Further, the inner cylinder part 70b (112b) of the second piston 70 (piston 112) does not necessarily need to be fitted to the outer peripheral surface of the inner peripheral cylindrical part 54a (106a) of the movable sheave 54 (106). For example, it may be fitted so as to be relatively movable in the direction of the axis C1.
 また、図3において軸心C1の下側に示すように内周円筒部54a(106a)の段付部が入力軸34の段付端面82に当接された状態において、第3油路84と第4油路86とを連通させる油路が入力軸34または可動シーブ54(106)に設けられることで、無段変速機10(100)の変速比に拘わらず、常に、第2油室68および第1油室64に第4油路86を通じて油圧が供給され得るように構成されてもよい。このようにすれば、第5油路88が必ずしも設けられなくてもよくなる。 Further, in the state where the stepped portion of the inner peripheral cylindrical portion 54a (106a) is in contact with the stepped end surface 82 of the input shaft 34 as shown below the axis C1 in FIG. By providing an oil passage communicating with the fourth oil passage 86 in the input shaft 34 or the movable sheave 54 (106), the second oil chamber 68 is always provided regardless of the gear ratio of the continuously variable transmission 10 (100). The hydraulic pressure may be supplied to the first oil chamber 64 through the fourth oil passage 86. In this way, the fifth oil passage 88 is not necessarily provided.
 なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。 It should be noted that the above description is merely an embodiment, and other examples are not illustrated. However, the present invention is implemented in variously modified and improved modes based on the knowledge of those skilled in the art without departing from the gist of the present invention. Can do.
10,100:車両用ベルト式無段変速機
34:入力軸(回転軸)
36:プライマリプーリ(溝幅可変プーリ)
40:出力軸(回転軸)
42:セカンダリプーリ(溝幅可変プーリ)
44:V溝
46:伝動ベルト
48,104:第1油圧シリンダ(油圧シリンダ)
52:固定シーブ
54:可動シーブ
62:シリンダ部材
62a,110a:第1壁部
62b,110b:外側筒部
64,116:第1油室
66:第1ピストン(第1部材)
68,118:第2油室
70:第2ピストン(第2部材)
70a,112a:第2壁部(受圧部)
70b,112b:内側筒部(推力伝達部)
74,122:油室連通孔(連通孔)
110:リアシリンダ部材(シリンダ部材)
112:ピストン(第2部材)
114:フロントシリンダ部材(第1部材)
C1:軸心(回転軸心)
10, 100: Belt type continuously variable transmission for vehicle 34: Input shaft (rotary shaft)
36: Primary pulley (variable groove width pulley)
40: Output shaft (rotating shaft)
42: Secondary pulley (variable groove width pulley)
44: V groove 46: Transmission belt 48, 104: First hydraulic cylinder (hydraulic cylinder)
52: fixed sheave 54: movable sheave 62: cylinder members 62a, 110a: first wall portions 62b, 110b: outer cylinder portions 64, 116: first oil chamber 66: first piston (first member)
68, 118: second oil chamber 70: second piston (second member)
70a, 112a: 2nd wall part (pressure receiving part)
70b, 112b: Inner cylinder part (thrust transmission part)
74, 122: Oil chamber communication hole (communication hole)
110: Rear cylinder member (cylinder member)
112: Piston (second member)
114: Front cylinder member (first member)
C1: Shaft center (Rotating shaft center)

Claims (4)

  1.  回転軸に固設された固定シーブと、該固定シーブとの間にV溝を形成するように該回転軸に相対回転不能且つ該回転軸の回転軸心方向に移動可能に設けられた可動シーブとをそれぞれ有する一対の溝幅可変プーリと、該一対の溝幅可変プーリのV溝にそれぞれ巻き掛けられた伝動ベルトと、前記可動シーブに対して前記固定シーブとは反対側において前記回転軸に固設されたシリンダ部材と該可動シーブとの間に形成された第1油室および第2油室を有し、該第1油室および該第2油室にそれぞれ供給される油圧に応じて該可動シーブを前記回転軸心方向に移動させることにより、前記伝動ベルトの掛かり径を変化させて前記一対の溝幅可変プーリの回転速度比を変化させる油圧シリンダとを、備える車両用ベルト式無段変速機であって、
     前記油圧シリンダは、前記可動シーブとの間に前記第1油室を形成し、前記回転軸心方向の移動不能に設けられた第1部材と、前記可動シーブとの間に前記第1油室を形成すると共に、前記第2油室を形成し、前記回転軸心方向の移動可能に設けられた第2部材とを備え、
     前記第2部材は、前記第1油室と前記第2油室とを連通させる連通孔を有する
     ことを特徴とする車両用ベルト式無段変速機。
    A fixed sheave fixed to the rotary shaft and a movable sheave provided so as not to rotate relative to the rotary shaft and move in the direction of the rotational axis of the rotary shaft so as to form a V-groove between the fixed sheave. A pair of variable groove width pulleys, a transmission belt wound around each of the V grooves of the pair of variable groove width pulleys, and the rotating shaft on the side opposite to the fixed sheave. The first oil chamber and the second oil chamber are formed between the fixed cylinder member and the movable sheave, and the oil pressure is supplied to the first oil chamber and the second oil chamber, respectively. A vehicular belt-type non-rotating machine comprising: a hydraulic cylinder that moves a movable sheave in the direction of the rotation axis to change a rotation speed ratio of the pair of groove width variable pulleys by changing a contact diameter of the transmission belt. A step transmission,
    The hydraulic cylinder forms the first oil chamber between the movable sheave and the first oil chamber between the movable sheave and the first member provided so as not to move in the rotational axis direction. And the second oil chamber is formed, and the second member is provided so as to be movable in the direction of the rotation axis,
    The belt-type continuously variable transmission for a vehicle, wherein the second member has a communication hole that allows the first oil chamber and the second oil chamber to communicate with each other.
  2.  前記第2部材は、前記第2油室に供給された油圧から前記可動シーブ側に向かう前記回転軸心方向の圧力を受ける受圧部と、該受圧部から前記可動シーブ側に向けて前記回転軸心方向に突設され、該受圧部から伝達された前記回転軸心方向の推力を該可動シーブに伝達して該可動シーブを該回転軸心方向に押圧する推力伝達部とを、備えることを特徴とする請求項1の車両用ベルト式無段変速機。 The second member includes a pressure receiving portion that receives pressure in a direction of the rotation axis from the hydraulic pressure supplied to the second oil chamber toward the movable sheave side, and the rotation shaft from the pressure receiving portion toward the movable sheave side. A thrust transmitting portion that protrudes in the center direction and transmits the thrust in the rotational axis direction transmitted from the pressure receiving portion to the movable sheave and presses the movable sheave in the direction of the rotational axis. The belt type continuously variable transmission for a vehicle according to claim 1.
  3.  前記第1部材は、前記シリンダ部材と当接することにより前記回転軸心方向の移動不能とされることを特徴とする請求項1または2の車両用ベルト式無段変速機。 3. The belt type continuously variable transmission for a vehicle according to claim 1 or 2, wherein the first member is made immovable in the direction of the rotation axis by contacting the cylinder member.
  4.  前記シリンダ部材は、前記回転軸の外周面のうち、前記可動シーブに対して前記固定シーブとは反対側に固定された円環板状の第1壁部と、該第1壁部の外周部から前記可動シーブ側に突設された円筒状の外側筒部とを有するものであり、
     前記第2部材は、該外側筒部と前記回転軸との間に油密に形成された円環状の空間から成る前記第2油室の前記可動シーブ側に隣接して設けられると共に、該外側筒部の内周面に対して摺動可能に設けられた円環板状の第2壁部と、前記回転軸の外周側において該第2壁部の内周部から前記可動シーブ側に向けて前記回転軸心方向に突設されて該可動シーブに当接させられた円筒状の内側筒部とを有するものであり、
     前記第1部材は、該内側筒部の外周側に油密に形成された円環状の空間から成る前記第1油室の前記外側筒部側に隣接して設けられると共に、前記回転軸心方向において該外側筒部に当接させられ、該内側筒部の外周面および前記可動シーブに対してそれぞれ摺動可能に設けられた円環板状部材であり、
     前記連通孔は、前記第2部材の内側筒部を隔ててそれの外周側および内周側にそれぞれ形成される前記第1油室および第2油室が互いに連通させられるように、該内側筒部を径方向に貫通して設けられている
     ことを特徴とする請求項1の車両用ベルト式無段変速機。
    The cylinder member includes an annular plate-shaped first wall portion fixed to an opposite side of the movable sheave to the movable sheave on an outer peripheral surface of the rotating shaft, and an outer peripheral portion of the first wall portion A cylindrical outer cylindrical portion projecting from the movable sheave side,
    The second member is provided adjacent to the movable sheave side of the second oil chamber formed of an annular space formed in an oil tight manner between the outer cylindrical portion and the rotating shaft, and the outer side. An annular plate-like second wall portion slidably provided on the inner peripheral surface of the cylindrical portion, and from the inner peripheral portion of the second wall portion toward the movable sheave side on the outer peripheral side of the rotating shaft And a cylindrical inner tube portion projecting in the direction of the rotation axis and brought into contact with the movable sheave,
    The first member is provided adjacent to the outer cylinder part side of the first oil chamber, which is formed of an annular space formed in an oil tight manner on the outer peripheral side of the inner cylinder part, and in the direction of the rotation axis A ring-shaped plate-like member that is brought into contact with the outer cylindrical portion and provided to be slidable with respect to the outer peripheral surface of the inner cylindrical portion and the movable sheave.
    The communication hole is formed so that the first oil chamber and the second oil chamber formed on the outer peripheral side and the inner peripheral side of the second member are spaced apart from each other and communicated with each other. The belt-type continuously variable transmission for a vehicle according to claim 1, wherein the belt-type continuously variable transmission for a vehicle according to claim 1 is provided.
PCT/JP2010/059471 2010-06-03 2010-06-03 Belt-type continuously variable transmission for vehicle WO2011151916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059471 WO2011151916A1 (en) 2010-06-03 2010-06-03 Belt-type continuously variable transmission for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059471 WO2011151916A1 (en) 2010-06-03 2010-06-03 Belt-type continuously variable transmission for vehicle

Publications (1)

Publication Number Publication Date
WO2011151916A1 true WO2011151916A1 (en) 2011-12-08

Family

ID=45066311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059471 WO2011151916A1 (en) 2010-06-03 2010-06-03 Belt-type continuously variable transmission for vehicle

Country Status (1)

Country Link
WO (1) WO2011151916A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084936A1 (en) * 2018-10-22 2020-04-30 ジヤトコ株式会社 Continuously variable transmission
CN112639331A (en) * 2018-10-22 2021-04-09 加特可株式会社 Continuously variable transmission
US11408487B2 (en) 2018-10-22 2022-08-09 Jatco Ltd Forward/reverse switching mechanism
US11408501B2 (en) 2018-10-22 2022-08-09 Jatco Ltd Support structure for gear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179057U (en) * 1984-10-30 1986-05-27
JPH0483947A (en) * 1990-07-26 1992-03-17 Toyota Motor Corp Hydraulic actuator for belt type continuous valiable transmission
JPH0483948A (en) * 1990-07-26 1992-03-17 Toyota Motor Corp Belt type continuous valiable transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179057U (en) * 1984-10-30 1986-05-27
JPH0483947A (en) * 1990-07-26 1992-03-17 Toyota Motor Corp Hydraulic actuator for belt type continuous valiable transmission
JPH0483948A (en) * 1990-07-26 1992-03-17 Toyota Motor Corp Belt type continuous valiable transmission

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084936A1 (en) * 2018-10-22 2020-04-30 ジヤトコ株式会社 Continuously variable transmission
CN112639331A (en) * 2018-10-22 2021-04-09 加特可株式会社 Continuously variable transmission
CN112639329A (en) * 2018-10-22 2021-04-09 加特可株式会社 Continuously variable transmission
JP7001837B2 (en) 2018-10-22 2022-01-20 ジヤトコ株式会社 Continuously variable transmission
US11408487B2 (en) 2018-10-22 2022-08-09 Jatco Ltd Forward/reverse switching mechanism
US11408501B2 (en) 2018-10-22 2022-08-09 Jatco Ltd Support structure for gear
CN112639331B (en) * 2018-10-22 2024-04-12 加特可株式会社 Continuously variable transmission

Similar Documents

Publication Publication Date Title
US4464145A (en) Belt type stepless shifter
US9005058B2 (en) Belt-type stepless transmission
KR101714144B1 (en) Lubrication structure in friction fastening elemet of automatic transmission for vehicle
JP4970344B2 (en) Hydraulic actuator for belt type continuously variable transmission
WO2011151916A1 (en) Belt-type continuously variable transmission for vehicle
WO2020084937A1 (en) Continuously variable transmission for vehicle
US20190293129A1 (en) Frictional coupling device of vehicular power transmitting system
WO2013057833A1 (en) Pulley mechanism for continuously variable belt transmission for vehicle
US20090221389A1 (en) Pulley structure and belt-type continuously variable transmission
EP3029356A1 (en) Toroidal continuously variable transmission
JP2008232389A (en) Belt type continuously variable transmission
JP2917054B2 (en) Pulley cylinder device for belt type continuously variable transmission
JP5206232B2 (en) Belt type continuously variable transmission
JP4999770B2 (en) Belt type continuously variable transmission
JP2006105217A (en) Lubricating device for belt type continuously variable transmission for vehicle
JP2008208861A (en) Belt type continuously variable transmission
JP2015215065A (en) Continuously variable transmission for vehicle
JP2007298139A (en) Belt type continuously variable transmission
US20200173524A1 (en) Continuously variable transmission and method for manufacturing the same
CN104061301B (en) Buncher
JP5372828B2 (en) Oil path structure of belt type continuously variable transmission mechanism
CN107869568B (en) Belt type continuously variable transmission for vehicle
JPH10281246A (en) Belt type transmission for vehicles
JPS6258421B2 (en)
JP2010071453A (en) Pulley for belt-type continuously variable transmission, and the belt-type continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852521

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP