WO2011137832A2 - 陶赫蒂doherty电路、多路陶赫蒂doherty电路和基站设备 - Google Patents
陶赫蒂doherty电路、多路陶赫蒂doherty电路和基站设备 Download PDFInfo
- Publication number
- WO2011137832A2 WO2011137832A2 PCT/CN2011/074774 CN2011074774W WO2011137832A2 WO 2011137832 A2 WO2011137832 A2 WO 2011137832A2 CN 2011074774 W CN2011074774 W CN 2011074774W WO 2011137832 A2 WO2011137832 A2 WO 2011137832A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input
- load
- doherty circuit
- doherty
- port
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0288—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to a Doherty Doherty circuit, a multi-channel Tohti Doherty circuit, and a base station device.
- the radio frequency power amplifying circuit in the base station device adopts more and more Doherty amplifying circuit, which greatly improves the power amplifier efficiency of the base station device, thereby reducing heat consumption, reducing operator operating cost, and improving the base station.
- the reliability of the device also reduces the cost of the entire base station device.
- the Doherty circuit is generally optimized by optimizing the microstrip power splitter at the input of the Doherty circuit.
- the optimization process of the prior art solution is complicated.
- An aspect of the present invention provides a Taoherty Doherty circuit, the Doherty circuit comprising: a first port of an input bridge as an input, a fourth port being grounded through an isolated end load; and a second port connected to an input of an average power amplification branch
- the third port is connected to the input end of the peak power amplification branch;
- the mean power amplification branch includes a mean power amplifier;
- the peak power amplification branch includes a peak power amplifier;
- the mean power amplification branch and the peak The power amplification branch is connected to the second load through the impedance transformation network;
- the isolated end load of the input bridge is a non-matching load.
- Another aspect of the invention provides a multi-way Tauhti Doherty circuit comprising at least two of said Doherty circuits.
- Another aspect of the present invention also provides a base station apparatus, the base station apparatus including the Doherty circuit.
- the base station apparatus including the Doherty circuit.
- the characteristics of the echo power of the peak power amplifier operating in the class C are different under different input powers, and the power distribution of the input bridge is different under the mismatched load.
- the characteristic is that the isolated termination of the input bridge is set to a non-matching load, so that the input power distribution ratio of the mean power amplifier and the peak power amplifier of the Doherty circuit changes with power, thereby achieving the purpose of optimizing the efficiency and linearity of the Doherty circuit. .
- FIG. 1 is a schematic diagram of a Doherty circuit according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic diagram of a Doherty circuit according to a second embodiment of the present invention.
- the embodiment of the invention provides a Doherty circuit, which can optimize the Doherty circuit and improve the linearity and efficiency of the Doherty circuit.
- the Doherty circuit includes: an input bridge 1 (Doherty bridge in Fig. 1), a mean power amplification branch 2, a peak power amplification branch 3, an impedance transformation network 4, an isolated end load 5, and a second load 6.
- the first port P1 of the input bridge 1 is an input end, the fourth port P4 is grounded through the isolated end load 5; the second port P2 is connected to the input end of the average power amplification branch 2; the third port P3 is connected to a peak power amplification branch The input of way 3.
- the mean power amplification branch 2 may comprise a mean power amplifier.
- the peak power amplification branch 3 may comprise a peak power amplifier.
- the mean power amplifying branch 2 and the peak power amplifying branch 3 are connected to each other and connected to the second load 6 through the impedance transforming network 4.
- the isolated end load 5 of the input bridge 1 is a non-matching load.
- the characteristics of the echo power of the peak power amplifier operating in the class C are different under different input powers, and the power distribution of the input bridge is different under the mismatched load.
- the characteristic is that the isolated termination of the input bridge is set to a non-matching load, so that the input power distribution ratio of the mean power amplifier and the peak power amplifier of the Doherty circuit changes with power, thereby achieving the purpose of optimizing the efficiency and linearity of the Doherty circuit.
- . 2 is a schematic diagram of a Doherty circuit according to a second embodiment of the present invention.
- the Doherty circuit includes: an input bridge 10, a mean power amplification branch, a peak power amplification branch, an impedance transformation network, an isolated end load 70, and a second load 80.
- the mean power amplification branch includes a mean power amplifier 20 (i.e., a main power amplifier) and a second wavelength line 50.
- the peak power amplification branch includes a peak power amplifier 30 (i.e., an auxiliary power amplifier) and a first wavelength line 40.
- the impedance transformation network is a third wavelength line 60.
- the first port P1 of the input bridge 10 is an input end, as an input end of the Doherty circuit; the fourth port P4 of the input bridge 10 is an isolated end, and the load 70 is grounded through the isolated end;
- the second port P2 of the input bridge 10 is a coupling end connected to the input end of the averaging power amplifier 20; the third port P3 of the input bridge 10 is a through end, connected to the first wavelength line 40. One end.
- the other end of the first wavelength line 40 is coupled to the input of the peak power amplifier 30.
- An output of the mean power amplifier 20 is coupled to one end of the second wavelength line 50.
- the output end of the peak power amplifier 30 and the other end of the second wavelength line 50 are short-circuited together with one end of the third wavelength line 60.
- the other end of the third wavelength line 60 is connected to the second load 80.
- the power supply terminal of the averaging power amplifier 20 and the power terminal of the peak power amplifier 30 are both connected to the operating power source Vcc.
- the Doherty circuit is composed of two power amplifiers: a mean power amplifier 20 and a peak power amplifier 30.
- the mean power amplifier 20 operates in class B or class AB, and the peak power amplifier 30 operates in class C.
- the averaging power amplifier 20 operates directly, and the peak power amplifier 30 needs to reach a set peak to operate.
- the second wavelength line 50 connected to the mean power amplifier 20 is an impedance transformation network, the purpose of which is to reduce the apparent impedance of the mean power amplifier 20 when the peak power amplifier 30 is operating to ensure the peak power amplifier When 30 works, the impedance of the active load composed of the circuit behind it becomes lower, so that the current output from the average power amplifier 20 becomes larger.
- the first wavelength line 40 is set before the peak power amplifier 30 to produce 90. Phase shift, as shown in Figure 2. It should be noted that the first wavelength line 40 is used to make the outputs of the mean power amplifier 20 and the peak power amplifier 30 in phase. Therefore, the specification of the first wavelength line 40 can be arbitrarily set according to actual needs.
- Both the second wavelength line 50 and the third wavelength line 60 are used as an impedance transformation network.
- the second wavelength line 50 and the third wavelength line 60 may each adopt a quarter-wavelength line.
- the averaging power amplifier 20 operates in class B. When the input signal is relatively small, only the averaging power amplifier 20 is in operation. When the output voltage of the mean power amplifier 20 tube reaches the peak saturation point, the theoretical efficiency can reach 78.5%. If the excitation is doubled at this time, the tube will saturate when it reaches half of the peak, and its efficiency will reach a maximum of 78.5%.
- the peak power amplifier 30 starts to work with the average power amplifier 20.
- the peak power amplifier 30 operates in class C with a threshold set to half the excitation signal voltage.
- the introduction of the peak power amplifier 30 is such that the load is reduced from the perspective of the averaging power amplifier 20 because the effect of the peak power amplifier 30 on the load is equivalent to a negative impedance in series, so even the average power
- the output voltage of the amplifier 20 is saturated, but the output power continues to increase due to the decrease in load (i.e., the current flowing through the load becomes larger).
- the peak power amplifier 30 also reaches its maximum point of efficiency, so that the efficiency of the two power amplifiers is much higher than the efficiency of a single Class B power amplifier.
- the maximum efficiency of a single power amplifier is 78.5% at the peak, and for the circuit shown in Figure 2, 78.5% efficiency occurs at half the peak. Therefore, in the Doherty circuit of the structure shown in Figure 2, each power amplifier can achieve the maximum output power, and the entire circuit can achieve 4 ⁇ high efficiency.
- the first port and the second port are matched ports, that is, the reflection coefficient ⁇ 1 of the first port and the reflection coefficient ⁇ 2 of the second port are 0; and the load connected to the third port and the fourth port
- the reflection coefficients are respectively ⁇ 3 and ⁇ 4 .
- IS21I and IS31I are the powers input to the mean power amplifier and the peak power amplifier, respectively. Theoretically, when the input bridge is isolated and terminated to match the load, the reflection coefficient of the fourth port ⁇
- the reflection coefficient of the isolated terminal ie, the fourth port
- the power reflected from the third port to the isolated terminal is reflected back to the bridge, making IS21I and IS31I It will change as the reflection coefficients ⁇ 3 and ⁇ 4 change.
- the isolated end of the input bridge 10 is connected to a non-matching load, and it can be said that the reflection coefficient of the isolated end of the input bridge 10 is ⁇ 4 ⁇ 0.
- the isolated end load 70 is a non-50 ⁇ load or a non-50 ⁇ equivalent load, so that the isolated end is a non-matching load, and the reflection coefficient of the isolated end ⁇ 4 ⁇ 0.
- the characteristics of the echo power at different input powers of the peak power amplifier 30 operating in the class C are different from those of the input bridge under the mismatched load.
- the characteristic is that the isolated termination of the input bridge 10 is terminated to a non-matching load, so that the input power distribution ratio of the mean power amplifier 20 and the peak power amplifier 30 of the Doherty circuit changes with power, thereby optimizing the efficiency of the Doherty circuit.
- linear purpose in the following, by analyzing the input power of the two power amplifiers, the influence of the input bridge 10 isolated termination termination load on the performance of the Doherty circuit in the embodiment of the present invention will be described in detail.
- the peak power amplifier 30 When a small power is input, the peak power amplifier 30 is in a completely closed state, and its input impedance echo, that is, which output terminal of the input bridge does not match, causes reflection at the mismatched port, and the reflected signal enters Input the input and isolation of the bridge, where the input of the bridge is connected to the load and absorbs the reflected power.
- the signal reflected by the output end cannot be absorbed at the isolated end, thereby causing reflection again.
- the reflected signal enters the mean power amplifier 20 and the peak power amplifier 30, and the signal that again enters the peak power amplifier 30 branch will repeat the previous reflection, with the end result that the signal entering the peak power amplifier 30 branch will partially enter the mean power amplifier.
- the branch of 20 (the other part is absorbed by the input of the bridge). In this way, in the case of low power, the power entering the branch of the peak power amplifier 30 will be reduced, so that the peak power amplifier 30 has better switching characteristics at a lower power, and the average power amplifier 20 can be improved. Its efficiency.
- the mean power amplifier 20 will get More input power increases the gain of the Doherty circuit, which reduces the output power of the input driver stage of the input bridge 10, improving the efficiency of the entire Doherty circuit.
- the peak power amplifier 30 slowly turns on, the input echo thereof continuously improves, the power distribution ratio of the input bridge 10 will constantly change, and the power entering the peak power amplifier 30 branch increases.
- the peak power amplifier 30 branch has a better load pulling effect on the average power amplifier. As a result, not only can the efficiency of the Doherty circuit be improved, but also the linearity of the circuit can be effectively improved.
- the load connected to the terminal changes, so that the traditional Doherty circuit has its input power distribution ratio unchanged at different input powers.
- the isolated end load of the input bridge in the conventional Doherty circuit is changed from the matched load to the unmatched load, so that the reflection coefficient of the isolated end is ⁇ 4 ⁇ 0. Therefore, the output power distribution ratio of the input bridge according to the embodiment of the present invention will vary depending on the degree of matching of the load connected to the output terminal.
- the Doherty circuit according to the embodiment of the present invention by improving the input bridge, makes the input power distribution ratio of the entire circuit more suitable for the ideal characteristics of the Doherty circuit, not only improves the efficiency of the circuit, but also improves the partial linearity of the circuit.
- the mean power amplification branch may further include a power splitter and at least two average power amplifiers, and the second port of the input bridge is connected to at least two average values by using a power splitter.
- the input of the power amplifier may further include a power splitter and at least two average power amplifiers, and the second port of the input bridge is connected to at least two average values by using a power splitter.
- the peak power amplification branch further includes a power splitter and at least two peak power amplifiers, and the third port of the input bridge is connected to the input ends of the at least two peak power amplifiers through the power splitter.
- the peak power amplifier and the peak power amplifier are the same power of the peak power amplifier and the peak power amplifier of the same conventional input circuit; the asymmetric Doherty The power of the peak power amplifier and the peak power amplifier of the circuit are different.
- the embodiment of the present invention further provides a multi-stage Doherty circuit.
- the multi-stage Doherty circuit is based on the symmetric or asymmetric Doherty circuit, and the average power amplification branch includes a power divider and at least two average power amplifiers.
- the second port of the bridge is connected to two or more equal power amplifiers through a power splitter, and/or the peak power amplification branch includes a power splitter and at least two peak power amplifiers, and the third port of the input bridge passes the power
- the divider is connected to two or more peak power amplifiers.
- connection structure of the impedance conversion network or the phase modulation network and the power amplifier in the specific mean power amplification branch or the peak power amplification branch does not affect the implementation and effect of the embodiment of the present invention. It may not be limited in the embodiment of the invention.
- An embodiment of the present invention further provides an N-Way Doherty circuit, where the
- the embodiment of the present invention further provides a base station device, where the radio frequency power amplifying circuit of the base station device is implemented by using the Doherty circuit according to the foregoing embodiment of the present invention.
- the radio frequency power amplifying circuit (Doherty circuit) provided by the embodiment of the present invention can also be applied to other communication fields, such as radar, satellite communication, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
提供一种陶赫蒂Doherty电路、多路陶赫蒂Doherty电路和基站设备。该陶赫蒂Doherty电路,包括:输入电桥(1)的第一端口(P1)为输入端,第四端口(P4)通过隔离端负载(5)接地;第二端口(P2)接均值功率放大支路(2)的输入端;第三端口(P3)接峰值功率放大支路(3)的输入端;所述均值功率放大支路(2)包括均值功率放大器(20);所述峰值功率放大支路(3)包括峰值功率放大器(30);所述均值功率放大支路(2)和所述峰值功率放大支路(3)相接后通过阻抗变换网络(4)与第二负载(6)相连;所述输入电桥(1)的隔离端负载(5)为非匹配负载。该电路和基站设备能够简单的实现对陶赫蒂Doherty电路的优化,提高陶赫蒂Doherty电路的线性和效率。
Description
陶赫蒂 Doherty电路、 多路陶赫蒂 Doherty电路和基站设备 技术领域
本发明涉及无线通信技术领域, 特别是涉及一种陶赫蒂 Doherty电路、 多 路陶赫蒂 Doherty电路和基站设备。
背景技术
在无线通信系统中, 基站设备中的射频功率放大电路越来越多的采用 Doherty放大电路, 该电路大大提高了基站设备的功放效率, 从而减小热耗、 降低运营商的运营成本,提高基站设备的可靠性, 同时也降低了整个基站设备 的成本。
随着 Doherty技术的逐步完善, Doherty电路的利用越来越广泛,对 Doherty 电路的效率和线性的要求也越来越高。 因而, 需要对优化 Doherty电路进行优 化。
现有技术中, 一般通过优化 Doherty 电路输入端的微带功分器实现对 Doherty电路的优化。 但是, 现有技术方案的优化过程较复杂。
发明内容
本发明的目的在于提供一种陶赫蒂 Doherty电路、 多路陶赫蒂 Doherty电 路和基站设备, 能够筒单的实现对 Doherty电路的优化, 提高 Doherty电路的 线性和效率。
本发明一方面提供一种陶赫蒂 Doherty电路, 所述 Doherty电路包括: 输 入电桥的第一端口为输入端, 第四端口通过隔离端负载接地; 第二端口接均值 功率放大支路的输入端; 第三端口接峰值功率放大支路的输入端; 所述均值功 率放大支路包括均值功率放大器; 所述峰值功率放大支路包括峰值功率放大 器;所述均值功率放大支路和所述峰值功率放大支路相接后通过阻抗变换网络 与第二负载相连; 所述输入电桥的隔离端负载为非匹配负载。
本发明另一方面提供一种多路陶赫蒂 Doherty电路, 所述电路包括至少两 个所述的 Doherty电路。
本发明另一方面还提供一种基站设备, 所述基站设备包括所述的 Doherty 电路。
本发明实施例中, 通过改进 Doherty电路的输入电桥部分, 利用工作在 C 类的峰值功率放大器在不同输入功率下回波不一样的特性和输入电桥在失配 负载下功率分配不一样的特性,设置输入电桥的隔离端接非匹配负载,从而使 得所述 Doherty电路的均值功率放大器和峰值功率放大器的输入功率分配比随 功率不同而发生变化, 达到优化 Doherty电路的效率和线性的目的。
附图说明
图 1为本发明实施例一的 Doherty电路原理图;
图 2为本发明实施例二的 Doherty电路原理图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图和 具体实施方式对本发明作进一步详细的说明。
本发明实施例提供一种 Doherty电路, 能够筒单的实现对 Doherty电路的 优化, 提高 Doherty电路的线性和效率。
参照图 1 , 为本发明实施例一的 Doherty电路原理图。 所述 Doherty电路 包括: 输入电桥 1 (图 1中 Doherty电桥)、 均值功率放大支路 2、 峰值功率放 大支路 3、 阻抗变换网络 4、 隔离端负载 5、 以及第二负载 6。
所述输入电桥 1的第一端口 P1为输入端,第四端口 P4通过隔离端负载 5 接地;第二端口 P2接均值功率放大支路 2的输入端; 第三端口 P3接峰值功率 放大支路 3的输入端。
所述均值功率放大支路 2可以包括均值功率放大器。
所述峰值功率放大支路 3可以包括峰值功率放大器。
所述均值功率放大支路 2和所述峰值功率放大支路 3相接后通过阻抗变换 网络 4与第二负载 6相连。
所述输入电桥 1的隔离端负载 5为非匹配负载。
本发明实施例中, 通过改进 Doherty电路的输入电桥部分, 利用工作在 C 类的峰值功率放大器在不同输入功率下回波不一样的特性和输入电桥在失配 负载下功率分配不一样的特性,设置输入电桥的隔离端接非匹配负载,从而使 得所述 Doherty电路的均值功率放大器和峰值功率放大器的输入功率分配比随 功率不同而发生变化, 达到优化 Doherty电路的效率和线性的目的。
参照图 2, 为本发明实施例二的 Doherty电路原理图。 所述 Doherty电路 包括: 输入电桥 10、 均值功率放大支路、 峰值功率放大支路、 阻抗变换网络、 隔离端负载 70、 以及第二负载 80。
所述均值功率放大支路包括均值功率放大器 20 (即主功放)和第二波长 线 50。 所述峰值功率放大支路包括峰值功率放大器 30 (即辅助功放)和第一 波长线 40。 所述阻抗变换网络为第三波长线 60。
其中, 所述输入电桥 10的第一端口 P1为输入端, 作为所述 Doherty电路 的输入端; 所述输入电桥 10的第四端口 P4为隔离端, 通过所述隔离端负载 70接地; 所述输入电桥 10的第二端口 P2为耦合端, 接所述均值功率放大器 20的输入端; 所述输入电桥 10的第三端口 P3为直通端, 接所述第一波长线 40的一端。
所述第一波长线 40的另一端接所述峰值功率放大器 30的输入端。
所述均值功率放大器 20的输出端接所述第二波长线 50的一端。
所述峰值功率放大器 30的输出端和所述第二波长线 50的另一端短接,一 同接所述第三波长线 60的一端。
所述第三波长线 60的另一端接所述第二负载 80。
所述均值功率放大器 20的电源端和所述峰值功率放大器 30的电源端均接 工作电源 Vcc。
如图 2所示, 所述 Doherty电路由两个功率放大器组成: 均值功率放大器 20和峰值功率放大器 30。所述均值功率放大器 20工作在 B类或 AB类,所述 峰值功率放大器 30工作在 C类。该电路中,两个功率放大器不是轮流工作的, 所述均值功率放大器 20—直工作,而所述峰值功率放大器 30需要到设定的峰 值才工作。 与所述均值功率放大器 20相连的第二波长线 50是阻抗变换网络, 其目的是在所述峰值功率放大器 30工作时,减小均值功率放大器 20的视在阻 抗, 以保证所述峰值功率放大器 30工作时与其后面的电路组成的有源负载的 阻抗变低, 这样均值功率放大器 20输出的电流就变大了。 由于在均值功率放 大器 20之后设置了第二波长线 50, 为了使两个功率放大器的输出同相, 相应 的, 在所述峰值功率放大器 30之前设置第一波长线 40, 使之产生 90。 相移, 如图 2所示。
需要说明的是,所述第一波长线 40用于使所述均值功率放大器 20和峰值 功率放大器 30的输出同相, 因此, 所述第一波长线 40的规格可以根据实际需 要任意设定。
所述第二波长线 50和第三波长线 60均是用作阻抗变换网络。优选的, 所 述第二波长线 50和第三波长线 60可以均采用四分之一波长线。
所述均值功率放大器 20工作在 B类, 当输入信号比较小的时候, 只有均 值功率放大器 20处于工作状态。当均值功率放大器 20管子的输出电压达到峰 值饱和点时, 理论上的效率能够达到 78.5%。 如果此时将激励加大一倍, 则管 子在达到峰值的一半时就将出现饱和, 其效率也达到最大的 78.5% , 所述峰值 功率放大器 30开始与所述均值功率放大器 20—起工作。所述峰值功率放大器 30工作在 C类, 其门限设置为激励信号电压的一半。 所述峰值功率放大器 30 的引入, 使得从均值功率放大器 20的角度看, 负载减小了, 因为所述峰值功 率放大器 30对负载的作用相当于串联了一个负阻抗, 所以, 即使所述均值功 率放大器 20的输出电压饱和恒定, 但输出功率因负载的减小却持续增大(即 为流过负载的电流变大了)。 当达到激励的峰值时, 所述峰值功率放大器 30 也达到自身效率的最大点,这样两个功率放大器合在一起的效率就远远高于单 个 B类功率放大器的效率。 单个功率放大器的最大效率 78.5%出现在峰值处, 而对于图 2所示电路, 78.5%的效率在峰值的一半就出现了。 所以图 2所示结 构的 Doherty电路中, 每个功率放大器都能达到最大的输出功率, 整个电路能 够达到 4艮高的效率。
设定, 所述第一端口和第二端口为匹配端口, 即为第一端口的反射系数 Γ 1和第二端口的反射系数 Γ 2均为 0; 而第三端口和第四端口所接负载分别呈 现反射系数为 Γ 3和 Γ 4。
IS21I和 IS31I分别为输入至所述均值功率放大器和峰值功率放大器的功率。 从理论上而言, 当输入电桥隔离端接匹配负载时, 第四端口的反射系数 Γ
4=0, 当第三端口的反射系数 Γ 3≠0时, 由第三端口失配带来的反射功率全部 被第四端口负载吸收。 即: IS21I和 IS31I不随反射系数 Γ 3的变化而变化。
而当输入电桥隔离端接的是非匹配负载时, 隔离端(即为第四端口)的反 射系数 Γ 4≠0, 从第三端口反射到隔离端的功率又被反射回电桥, 使得 IS21I 和 IS31I会随着反射系数 Γ 3和 Γ 4的变化而变化。
本发明实施例所述 Doherty电路中, 所述输入电桥 10的隔离端接非匹配 负载, 也可以说是, 所述输入电桥 10隔离端的反射系数 Γ 4≠0。
一般而言, 所述输入电桥 10的第二负载 80为 50Ω , 当所述隔离端负载 70也为 50Ω时, 即为匹配负载, 此时 Γ 4=0。
因此, 本发明实施例中, 当第二负载 80为 50Ω时, 所述隔离端负载 70 为非 50Ω负载或者为非 50Ω等效负载, 使得所述隔离端为非匹配负载, 隔离 端的反射系数 Γ 4≠0。
由此使得, 本发明实施例中, 分别输入至所述均值功率放大器 20和峰值 功率放大器 30的功率 IS21I和 IS31I的分配比随输入功率的变化而变化。
本发明实施例中, 通过改进 Doherty电路的输入电桥部分, 利用工作在 C 类的峰值功率放大器 30在不同输入功率下回波不一样的特性和输入电桥在失 配负载下功率分配不一样的特性, 设置输入电桥 10的隔离端接非匹配负载, 从而使得所述 Doherty电路的均值功率放大器 20和峰值功率放大器 30的输入 功率分配比随功率不同而发生变化, 达到优化 Doherty电路的效率和线性的目 的。 下面通过对两个功率放大器的输入功率的分析,对本发明实施例中所述输 入电桥 10隔离端接非匹配负载从而对 Doherty电路性能带来的影响, 进行详 细介绍。
当输入小功率时, 所述峰值功率放大器 30处于完全关闭状态, 其输入阻 抗回波,即所述输入电桥的哪个输出端不匹配,则在该不匹配的端口引起反射, 反射信号进入到输入电桥的输入端和隔离端,其中,电桥的输入端接匹配负载, 吸收反射功率。 本发明实施例所述 Doherty电路中, 所述输入电桥 10的隔离 端接非匹配负载, 则由输出端反射回的信号在隔离端无法被吸收,从而再次引 起反射。 该反射信号进入均值功率放大器 20和峰值功率放大器 30, 而再次进 入到峰值功率放大器 30支路的信号将重复前面的反射, 最终结果是进入峰值 功率放大器 30支路的信号将部分进入均值功率放大器 20的支路(另一部分被 电桥的输入端吸收)。 这样一来, 在小功率情况下, 进入到峰值功率放大器 30 支路的功率将减小, 使得所述峰值功率放大器 30在小功率下开关特性更好, 对均值功率放大器 20而言, 可提高其效率。 另外, 均值功率放大器 20将得到
更多的输入功率, 提高 Doherty电路的增益, 从而降低了输入电桥 10的输入 端驱动级的输出功率, 提高了整个 Doherty电路的效率。
随着输入功率的增加, 所述峰值功率放大器 30慢慢开启, 其输入端回波 不断改善, 输入电桥 10的功率分配比将不断发生变化, 进入到峰值功率放大 器 30支路的功率增加,从而使得峰值功率放大器 30支路对均值功率放大器的 负载牵引效果更好。 由此, 不仅可以提高 Doherty电路的效率, 还能有效改善 电路的线性。
对于传统的 Doherty电路, 在输入端的电桥功分电路中, 其电桥隔离端通 常接 50Ω匹配负载, 使隔离端反射系数 Γ 4=0, 由此可以保证电桥的输出功率 分配比不随输出端所接负载的变化而变化, 这样传统的 Doherty电路, 其输入 端在不同输入功率时其输入功率分配比保持不变。
而本发明实施例中, 将传统 Doherty电路中输入电桥的隔离端负载由匹配 负载变为非匹配负载, 使得隔离端的反射系数 Γ 4≠0。 由此使得, 本发明实施 例所述输入电桥的输出功率分配比将随输出端所接负载的匹配程度的不同而 不同。
本发明实施例所述 Doherty电路, 通过对其输入电桥的改进, 使得整个电 路的输入功率分配比更适合 Doherty电路的理想特性, 不仅可以提高电路的效 率, 而且还可以改善电路的部分线性。
需要说明的是, 本发明实施例中, 所述均值功率放大支路还可以包括功分 器和至少两个均值功率放大器,所述输入电桥的第二端口通过功分器接至少两 个均值功率放大器的输入端。
进一步的,所述峰值功率放大支路还包括功分器和至少两个峰值功率放大 器, 所述输入电桥的第三端口通过功分器接至少两个峰值功率放大器的输入 端。
(传统 Doherty电路)、 或者 A-Doherty (非对称 Doherty ) 电路等。 示), 区别在于所述峰值功 ^率放大器和峰值功率 大器 功率是 相同 传统 输入电路的峰值功率放大器和峰值功率放大器的功率相同; 而非对称 Doherty
电路的峰值功率放大器和峰值功率放大器的功率不同。
本发明实施例还提供一种多级 Doherty电路, 该多级 Doherty电路在上述 的对称或非对称 Doherty电路的基础上, 均值功率放大支路包括功分器和至少 两个均值功率放大器,输入电桥的第二端口通过功分器与两个或两个以上均值 功放相连, 和 /或, 峰值功率放大支路包括功分器和至少两个峰值功率放大器, 输入电桥的第三端口通过功分器与两个或两个以上的峰值功放相连。
可以理解的是, 本发明实施例中, 具体的均值功率放大支路或峰值功率放 大支路中阻抗变换网络或调相网络与功率放大器的连接结构并不影响本发明 实施例的实施及效果, 在本发明实施例中可以不予限定。
本发明实施例还提供一种基站设备,所述基站设备的射频功率放大电路采 用本发明前述实施例所述的 Doherty电路来实现。
本发明实施例提供的射频功率放大电路(Doherty电路)也可以应用于其 他通信领域, 例如雷达、 卫星通信等。
以上对本发明所提供的一种 Doherty电路和基站设备, 进行了详细介绍, 说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于本领域的一般 技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。 综上所述, 本说明书内容不应理解为对本发明的限制。
Claims
1、 一种陶赫蒂 Doherty电路, 其特征在于, 所述 Doherty电路包括: 输入电桥的第一端口为输入端, 第四端口通过隔离端负载接地; 第二端口 接均值功率放大支路的输入端; 第三端口接峰值功率放大支路的输入端; 所述均值功率放大支路包括均值功率放大器;
所述峰值功率放大支路包括峰值功率放大器;
所述均值功率放大支路和所述峰值功率放大支路相接后通过阻抗变换网 络与第二负载相连;
所述输入电桥的隔离端负载为非匹配负载。
2、 根据权利要求 1所述的陶赫蒂 Doherty电路, 其特征在于, 所述均值 功率放大支路包括均值功率放大器和第二波长线,所述输入电桥的第二端口接 所述均值功率放大器的输入端,所述均值功率放大器的输出端接第二波长线的 一端, 所述第二波长线的另一端与所述峰值功率放大支路相接。
3、 根据权利要求 1或 2所述的陶赫蒂 Doherty电路, 其特征在于, 所述 峰值功率放大支路包括第一波长线和峰值功率放大器,所述输入电桥的第三端 口通过第一波长线接所述峰值功率放大器的输入端,所述峰值功率放大器的输 出端与所述均值功率放大支路相接。
4、 根据权利要求 1至 3任意一项所述的陶赫蒂 Doherty电路, 其特征在 于, 所述阻抗变换网絡为第三波长线。
5、 根据权利要求 1至 4任意一项所述的陶赫蒂 Doherty电路, 其特征在 于, 所述第二负载为 50欧姆负载或 50欧姆等效负载, 所述隔离端负载为非
50欧姆负载或非 50欧姆等效负载。
6、 根据权利要求 1至 5任意一项所述的陶赫蒂 Doherty电路, 其特征在 于, 所述 Doherty电路为对称 Doherty电路、 或者非对称 Doherty电路。
7、 根据权利要求 2至 6任意一项所述的陶赫蒂 Doherty电路, 其特征在 于, 所述第二波长线为四分之一波长线。
8、 根据权利要求 4所述的陶赫蒂 Doherty电路, 其特征在于, 所述第三 波长线为四分之一波长线。
9、 根据权利要求 1至 8任意一项所述的陶赫蒂 Doherty电路, 其特征在 于, 所述均值功率放大支路包括功分器和至少两个均值功率放大器, 所述第二 端口通过功分器接至少两个均值功率放大器的输入端; 和 /或,
所述峰值功率放大支路包括功分器和至少两个峰值功率放大器,所述第三 端口通过功分器接至少两个峰值功率放大器的输入端。
10、 一种多路陶赫蒂 Doherty电路, 其特征在于, 所述电路包括至少两个 权利要求 1至 9任一项所述的 Doherty电路。
11、 一种基站设备, 其特征在于, 所述基站设备包括如权利要求 1至 10 任一项所述的 Doherty电路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180000992.2A CN102265506B (zh) | 2011-05-27 | 2011-05-27 | 陶赫蒂Doherty电路、多路陶赫蒂Doherty电路和基站设备 |
PCT/CN2011/074774 WO2011137832A2 (zh) | 2011-05-27 | 2011-05-27 | 陶赫蒂doherty电路、多路陶赫蒂doherty电路和基站设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/074774 WO2011137832A2 (zh) | 2011-05-27 | 2011-05-27 | 陶赫蒂doherty电路、多路陶赫蒂doherty电路和基站设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011137832A2 true WO2011137832A2 (zh) | 2011-11-10 |
WO2011137832A3 WO2011137832A3 (zh) | 2012-04-26 |
Family
ID=44904143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/074774 WO2011137832A2 (zh) | 2011-05-27 | 2011-05-27 | 陶赫蒂doherty电路、多路陶赫蒂doherty电路和基站设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102265506B (zh) |
WO (1) | WO2011137832A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015180064A1 (zh) * | 2014-05-28 | 2015-12-03 | 华为技术有限公司 | 多赫蒂功率放大器和发射机 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106982181A (zh) * | 2016-01-18 | 2017-07-25 | 中兴通讯股份有限公司 | 耦合网络、功放装置及通信终端 |
CN111181500A (zh) * | 2020-02-13 | 2020-05-19 | 深圳飞骧科技有限公司 | 功率分合电路、功率放大电路、芯片及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020135425A1 (en) * | 2001-03-21 | 2002-09-26 | Postech Foundation | Full output matching apparatus of a microwave doherty amplifier |
CN1400742A (zh) * | 2001-06-08 | 2003-03-05 | Trw公司 | 微波功率放大器 |
JP2006166141A (ja) * | 2004-12-08 | 2006-06-22 | Matsushita Electric Ind Co Ltd | ドハティ増幅器 |
CN101582682A (zh) * | 2009-06-12 | 2009-11-18 | 华为技术有限公司 | 一种功率放大器和发射机 |
CN201398179Y (zh) * | 2009-03-31 | 2010-02-03 | 武汉正维电子技术有限公司 | 用于cdma基站系统功率放大器的末级二路放大器 |
CN101783652A (zh) * | 2010-01-18 | 2010-07-21 | 顾晓龙 | 一种易于实现的多级Doherty功放 |
-
2011
- 2011-05-27 CN CN201180000992.2A patent/CN102265506B/zh active Active
- 2011-05-27 WO PCT/CN2011/074774 patent/WO2011137832A2/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020135425A1 (en) * | 2001-03-21 | 2002-09-26 | Postech Foundation | Full output matching apparatus of a microwave doherty amplifier |
CN1400742A (zh) * | 2001-06-08 | 2003-03-05 | Trw公司 | 微波功率放大器 |
JP2006166141A (ja) * | 2004-12-08 | 2006-06-22 | Matsushita Electric Ind Co Ltd | ドハティ増幅器 |
CN201398179Y (zh) * | 2009-03-31 | 2010-02-03 | 武汉正维电子技术有限公司 | 用于cdma基站系统功率放大器的末级二路放大器 |
CN101582682A (zh) * | 2009-06-12 | 2009-11-18 | 华为技术有限公司 | 一种功率放大器和发射机 |
CN101783652A (zh) * | 2010-01-18 | 2010-07-21 | 顾晓龙 | 一种易于实现的多级Doherty功放 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015180064A1 (zh) * | 2014-05-28 | 2015-12-03 | 华为技术有限公司 | 多赫蒂功率放大器和发射机 |
US10084413B2 (en) | 2014-05-28 | 2018-09-25 | Huawei Technologies Co., Ltd. | Doherty power amplifier and transmitter |
Also Published As
Publication number | Publication date |
---|---|
WO2011137832A3 (zh) | 2012-04-26 |
CN102265506B (zh) | 2013-08-28 |
CN102265506A (zh) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109889162B (zh) | 一种自输入控制的负载调制类功率放大器及其实现方法 | |
WO2013097308A1 (zh) | 一种多路非对称Doherty放大器 | |
US20150070094A1 (en) | Doherty power amplifier with coupling mechanism independent of device ratios | |
CN111740703A (zh) | 伪Doherty式自输入控制的负载调制平衡类功率放大器及其实现方法 | |
WO2023040474A1 (zh) | 一种射频功率放大器 | |
CN112543002A (zh) | 宽带差分Doherty功率放大器及其设计方法和应用 | |
WO2024139069A1 (zh) | 射频发射装置及其实现方法 | |
CN107231131A (zh) | 一种可增大功率回退范围的多赫尔蒂功率放大器 | |
CN107332519A (zh) | 一种基于改进型输出合路器的宽带Doherty功率放大器及其实现方法 | |
CN107508560B (zh) | 一种增强带宽性能的Doherty功率放大器及其实现方法 | |
CN111010092A (zh) | 一种新型Doherty功率放大器 | |
WO2017036093A1 (zh) | 一种多路Doherty放大器 | |
CN113381699B (zh) | 一种并发双频高效率Doherty功率放大器及其设计方法 | |
CN206211949U (zh) | 一种双频Doherty功率放大器 | |
CN114337565A (zh) | 一种单输入宽带负载调制平衡放大器及其设计方法 | |
CN108134580B (zh) | 一种载波功放共用的双频三路Doherty功率放大器 | |
CN1476650A (zh) | 射频放大电路 | |
Liu et al. | 32.9 An Ultra-Compact 28GHz Doherty Power Amplifier with an Asymmetrically-Coupled-Transformer Output Combiner | |
CN203151433U (zh) | 一种基于t型网络和耦合线的双频同步式功率放大器 | |
CN108923760A (zh) | 一种中心对称式Doherty功率放大器及其设计方法 | |
WO2011137832A2 (zh) | 陶赫蒂doherty电路、多路陶赫蒂doherty电路和基站设备 | |
WO2015135283A1 (zh) | 一种三路反型Doherty功率放大器及实现方法 | |
US12218635B2 (en) | Power amplifier circuit | |
WO2015180064A1 (zh) | 多赫蒂功率放大器和发射机 | |
JP5390495B2 (ja) | 高周波増幅器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180000992.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11777251 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11777251 Country of ref document: EP Kind code of ref document: A2 |