[go: up one dir, main page]

WO2011132618A1 - 撮像装置並びに撮像画像処理方法と撮像画像処理プログラム - Google Patents

撮像装置並びに撮像画像処理方法と撮像画像処理プログラム Download PDF

Info

Publication number
WO2011132618A1
WO2011132618A1 PCT/JP2011/059431 JP2011059431W WO2011132618A1 WO 2011132618 A1 WO2011132618 A1 WO 2011132618A1 JP 2011059431 W JP2011059431 W JP 2011059431W WO 2011132618 A1 WO2011132618 A1 WO 2011132618A1
Authority
WO
WIPO (PCT)
Prior art keywords
captured image
color
pixel
pixel group
color filter
Prior art date
Application number
PCT/JP2011/059431
Other languages
English (en)
French (fr)
Inventor
田中 誠二
芦田 哲郎
智行 河合
武弘 河口
恒史 遠藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201180020247.4A priority Critical patent/CN103004211B/zh
Priority to JP2012511642A priority patent/JP5663564B2/ja
Publication of WO2011132618A1 publication Critical patent/WO2011132618A1/ja
Priority to US13/656,093 priority patent/US8736724B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/045Picture signal generators using solid-state devices having a single pick-up sensor using mosaic colour filter

Definitions

  • the present invention relates to an imaging device equipped with a solid-state imaging device capable of capturing two different color images of different color tones, a method of processing a captured image, and a captured image processing program.
  • a color filter array called a Bayer array
  • the Bayer arrangement is a mosaic arrangement of color filters of any one of the three primary colors R (red) G (green) B (blue) in each pixel in a mosaic manner based on a predetermined rule. For this reason, for example, since the red pixel on which the red filter is mounted can not detect green and blue signals, the green filter around the red pixel and the pixel signal on which the blue filter is mounted are interpolated to calculate the green of this red pixel position. It is made to ask for a signal and a blue signal.
  • the image sensor described in Patent Document 2 below makes a pair of adjacent two pixels in a diagonal direction a mosaic of a color filter of any one of the three primary colors RGB according to a predetermined rule in units of pair pixels It is arranging. Then, for example, G1 color filter and G2 color filter are mounted on each pixel of the pair on which the green filter is mounted.
  • the relationship between G1 and G2 is selected, for example, to be G when added.
  • the G color filter is manufactured so as to have a bell-shaped spectral characteristic having a width of about 100 nm and a wavelength of 540 nm as a central wavelength.
  • G1 and G2 separate them into two, and a color of wavelength 440 nm to 540 nm is detected by the G1 filter, and wavelength 540 nm to 640 nm is detected by the G2 filter.
  • the pixels to be paired are equipped with R1 and R2 filters and B1 and B2 filters.
  • color separation of the subject image can be improved by dividing the color separated by the color filter into three colors of R, G, and B more finely.
  • the captured image taken out of the pixel equipped with the R1, G1 and B1 color filters and the captured image taken out of the pixels loaded with the R2, G2 and B2 color filters are different in color, and the respective images are Together, they result in unnatural color images. Therefore, it is necessary to obtain an object image with high color reproducibility by image processing by performing appropriate combining processing.
  • each pixel is divided into a small area portion and a large area portion. Furthermore, for example, in a pixel on which a green (G) filter is mounted, the thickness of the filter stacked in the small area portion is thicker than that of the large area portion, or the thickness of the n region constituting the photodiode is reduced.
  • G green
  • the small area portion can hardly detect incident light in a certain wavelength range, while the large area portion can detect light in this wavelength range.
  • this imaging device it is detected whether or not light in the above wavelength range is present, and the type of light source is determined.
  • a conventional monitor device capable of displaying a color image is generally a cathode ray tube monitor (CRT)
  • CRT cathode ray tube monitor
  • a liquid crystal display device has become widespread as a liquid crystal television.
  • a general user gets used to seeing, for example, a vivid color image that is different in color tone from a color image of natural color tone, and an increasing number of instances feel that color images shot with a digital camera are unsatisfactory.
  • the color filters used in the above-described conventional solid-state imaging device are merely devised so as to be able to reproduce the color of an object image with natural color tones. For this reason, the color image of the subject can not be photographed as a vivid color image.
  • An object of the present invention is to provide an imaging device equipped with a solid-state imaging device capable of capturing two types of color images different in color tone, a captured image processing method, and a captured image processing program.
  • An imaging device comprises: a plurality of pixels arrayed and formed in a two-dimensional array on a semiconductor substrate; A plurality of color filters of a first color arranged and stacked according to a predetermined rule on a first pixel group including one of an odd row and an even row of the pixels; A plurality of second colors of different spectral sensitivities that are arranged and stacked in accordance with a predetermined rule on the second pixel group including the other of the odd rows and the even rows; A solid-state imaging device having a color filter; A captured image signal of a pixel of the first pixel group and a pixel of the second pixel group due to a spectral sensitivity difference between a color filter including the plurality of first colors and a color filter including the plurality of second colors Image processing for obtaining a level difference with a captured image signal, correcting the level difference, and combining a first captured image obtained from the first pixel group and a second captured image obtained from the second pixel group It has a department and
  • a plurality of pixels arrayed in a two-dimensional array on a semiconductor substrate A plurality of color filters of a first color arranged and stacked according to a predetermined rule on a first pixel group including one of an odd row and an even row of the pixels; A plurality of second colors of different spectral sensitivities that are arranged and stacked in accordance with a predetermined rule on the second pixel group including the other of the odd rows and the even rows;
  • the captured image processing program of the present invention is provided with a step of performing the above-described captured image processing method.
  • the present invention it is possible to capture two color images of different colors (for example, a color image of natural color and a color image of bright color), and it is also possible to obtain an image combining both of them. It becomes.
  • FIG. 1 is a functional block diagram of an imaging device according to a first embodiment of the present invention.
  • the imaging device 10 includes a solid-state imaging device 11, an imaging control unit 13, a memory 14, and a CPU 15.
  • the imaging control unit 13 performs drive control of the solid-state imaging device 11. Further, the imaging control unit 13 takes in a captured image signal output from the solid-state imaging device 11, performs correlated double sampling processing, gain control processing, A / D (analog digital) conversion processing, and outputs the result to the bus 12.
  • the memory 14 is connected to the bus 12.
  • the CPU 15 centrally controls the entire imaging device 10.
  • the CPU 15 incorporates a DSP function, performs correction processing (offset processing, gamma correction processing, RGB / YC conversion processing, synchronization processing, and the like) on the captured image signal output from the solid-state imaging device 11, and generates an object image.
  • correction processing offset processing, gamma correction processing, RGB / YC conversion processing, synchronization processing, and the like
  • the imaging device 10 further includes a narrow spectral pixel average value calculation circuit 17, a wide spectral pixel average value calculation circuit 18, a color reproduction selection unit 19, a correction ratio calculation unit 20, and a multiplier. And 21.
  • the narrow spectral pixel average value calculation circuit 17 and the wide spectral pixel average value calculation circuit 18 process the digital captured image signal fetched from the bus 12.
  • the color reproduction selection unit 19 selectively controls the outputs of the calculation circuits 17 and 18 and the digital captured image signal fetched from the bus 12 to perform color reproduction.
  • the correction ratio calculation unit 20 calculates a correction ratio from the output signals of the calculation circuits 17 and 18 selected by the color reproduction selection unit 19.
  • the multiplier 21 multiplies the digital captured image signal fetched from the bus 12 by the signal of the level difference correction target pixel selected by the color reproduction selection unit 19 and the output signal of the correction ratio calculation unit 20 and returns the result to the bus 12 .
  • the calculation circuits 17 and 18, the color reproduction selection unit 19, the correction ratio calculation unit 20, and the multiplier 21 constitute a part of the image processing unit, and the detailed operation will be described later.
  • FIG. 2 is a surface schematic view of the solid-state imaging device 11.
  • a plurality of pixels photodiodes having the same light receiving area as each other are arrayed and formed in a two-dimensional array on a semiconductor substrate.
  • Pixel rows of even rows are arranged at intervals of 1/2 pixel pitch with respect to pixel rows of odd rows.
  • the pixels constitute a square lattice array, as seen in the pixel array of the odd-numbered row. Also, if only the pixel arrangement in the even rows is seen, the pixels constitute a square lattice arrangement.
  • the color filters R, G, B of the three primary colors are Bayer arranged in the pixels of the odd rows (A group pixels), and the color filters r, g, b of the three primary colors are also arranged in the pixels of the even rows (B group pixels). It is arranged.
  • a signal readout unit for reading out a captured image signal detected by each pixel is formed on the surface portion of the semiconductor substrate.
  • the signal reading unit If the solid-state imaging device is a CCD type, as described in, for example, Japanese Patent Application Laid-Open No. 2005-72966, the signal reading unit generates voltage value signals corresponding to the vertical charge transfer path, horizontal charge transfer path, and signal charge amount. You may be comprised by the amplifier which outputs as a captured image signal.
  • the solid-state imaging device is a CMOS type, as described in, for example, Japanese Patent Application Laid-Open Nos. 2007-124137 and 2007-81140, the signal readout unit includes a MOS transistor, a vertical scanning circuit, and a horizontal scanning circuit. And so on.
  • FIG. 3 is a graph showing the spectral sensitivities of the color filters RGB and rgb.
  • the wavelength of light is ⁇ .
  • the spectral sensitivities of the red color filter R ( ⁇ ), the green color filter G ( ⁇ ), and the blue color filter B ( ⁇ ) stacked on the A group pixel are respectively bell-shaped chevrons and wide ( Say wide.).
  • the spectral sensitivities of the red color filter r ( ⁇ ), the green color filter g ( ⁇ ), and the blue color filter b ( ⁇ ) stacked in the B group pixel have a width, even if it has a bell shape or a mountain shape. Is narrow (hereinafter referred to as narrow).
  • the graph of FIG. 3 shows the spectral sensitivity of light of each wavelength. As described in FIG. 2, since the light receiving areas of the respective pixels in the groups A and B are the same, the graph in FIG. 3 shows the wavelength dependency of the amount of light received through the color filter of each pixel.
  • the graph shown in FIG. 3 shows the characteristics of only the red color filters R and r in which the infrared cut filter is not inserted.
  • the upper side of FIG. 3 shows the relationship between the value of wavelength ⁇ (nm) and the color.
  • the wide red filter R stacked on the A group pixel is actually manufactured as a filter which transmits orange light and transmits a part of yellow light.
  • the green filter G is manufactured as a filter that transmits part of yellow and orange light on its long wavelength side. The same applies to the short wavelength side, and the wide green filter G is manufactured as a filter that transmits a part of blue light, and the wide blue filter B is a filter that transmits a part of green light.
  • the G filter mounting pixel and the R filter mounting pixel receive both orange light and yellow light
  • the G filter mounting pixel and the B filter mounting pixel respectively receive light at the border between blue and green. It will receive light together.
  • the color signals R, G and B obtained through the wide filters R, G and B become color signals in which not only the primary colors red, green and blue but also other colors are mixed, and the mixing ratio of the primary colors (mixing ratio ) Is a low color signal.
  • the degree of mixing with other colors becomes a good mixing ratio, a color image of natural color tone is obtained.
  • the above-mentioned overlapping part becomes small, it becomes a signal whose mixing ratio (mixing ratio) of primary colors is higher. That is, the color signals r, g, b obtained through the narrow filters r, g, b are signals having a high mixing ratio (mixing ratio) of the primary colors.
  • the color image reproduced based on the color signals r, g, b is a color image of bright hue.
  • the colors are not necessarily the same in a certain wavelength range, but gradually change.
  • the wavelength range of 500 nm to 570 nm in FIG. 3 is all illustrated as “green”.
  • the color gradually mixes with blue as it goes to the left side of FIG. 3 and the color gradually mixes with yellow as it goes to the right side of FIG. 3.
  • the above-mentioned "primary color” means, in the case of green color, not a full range of 500 nm to 570 nm, but a partial range thereof, for example, a color of a required wavelength range (for example ⁇ 25 nm) centered on the wavelength 535 nm.
  • the solid-state imaging device 11 mounted in the imaging device according to the present embodiment has wide color filters R, G, and B stacked on the A group pixels so that a subject color image of natural color can be photographed.
  • the color filters r, g, and b are stacked so that a subject color image of a bright color can be photographed.
  • the wide color filters R, G, and B use color filter materials capable of capturing a color image of natural color that has conventionally existed.
  • filters r, g, b having spectral characteristics as illustrated in FIG. 3 are made with pigments or dyes different from the wide color filter material.
  • the wide filters R, G, B are different from the thickness of the narrow filters r, g, b, the surface of the solid-state imaging device 11 has irregularities, and a step of laminating the microlenses thereon Becomes complicated. Therefore, in order to facilitate the manufacture and reduce the manufacturing cost, it is preferable that the wide filters R, G, B and the narrow filters r, g, b have the same thickness.
  • the peak sensitivities of the filters R, G, and B are set so that the captured image of natural color obtained by the A group pixel and the captured image of bright color obtained by the B group pixel have the same degree of brightness. It is preferable that the value and the peak sensitivity values of the filters r, g, b be approximately the same.
  • the peak sensitivity value of the red filter R and the peak sensitivity value of the red filter r are identical. I consider it as.
  • the wavelength ⁇ Bw of the light giving the peak sensitivity value Bw of blue light and the wavelength ⁇ bn of the light giving the peak sensitivity value b n are preferably the same. However, it is difficult to make the wavelength ⁇ Bw and the wavelength ⁇ bn identical because the materials of the filter B and the filter b are actually different. However, the error between the wavelength ⁇ Bw and the wavelength ⁇ bn may be in the range of about ⁇ 20 nm. The same is true for other colors.
  • the wavelength range of the spectral sensitivity of the narrow red filter r is completely inside the wavelength range of the spectral sensitivity of the wide red filter R.
  • the spectral sensitivity of the narrow green filter g is the peak shape of the spectral sensitivity of the wide green filter G. It is preferable to be equidistant from the left and right ridge lines. However, since the materials of the filter g and the filter G are different, this is not necessarily essential, and the spectral sensitivity of the narrow green filter g may be slightly shifted to one side.
  • the mixing ratio (content ratio) of the primary colors contained in the transmitted light of the wide color filters R, G, B the mixture of the primary colors contained in the transmitted light of the narrow color filters r, g, b
  • the ratio (content ratio) is high. Next, this will be explained quantitatively.
  • the mixing ratio ⁇ is determined as follows. Define. In FIG. 3, for the peak sensitivity value Bw of the blue color filter B, its half width Bd is determined, and for the peak sensitivity value bn of the blue color filter b, its half width bd is determined.
  • the mixing ratio (content ratio) of the primary colors contained in the transmitted light of the wide color filter B is Bd / Bw, and the mixing ratio (content ratio) of the primary colors contained in the transmitted light of the narrow color filter b is bd / bn. Define.
  • the spectral sensitivity of the narrow color filter b is determined.
  • bd / bn + ⁇ Bd / Bw
  • the long wavelength side is cut with an infrared cut filter. Therefore, the determination is made using only the short wavelength side from the peak sensitivity position.
  • rd / rn ⁇ Rd / Rw
  • one solid-state imaging is performed by setting the primary color content ratio of the light transmitted through the narrow color filters r, g, b higher than the primary color content ratio of the light transmitted through the wide color filters R, G, B.
  • the element 11 can simultaneously capture two subject images (a color image of natural color from the A group pixel and a color image of bright color from the B group pixel).
  • a color within the wavelength range of the half bandwidth of each spectral sensitivity of the narrow color filters r, g, b is set as “primary color” and the primary color content ratio is higher than that of the wide color filters R, G, B There is.
  • the solid-state imaging device 11 having the configuration of FIG. 2 can simultaneously capture two color images.
  • each captured image is a captured image using 1/2 of the number of pixels mounted on the solid-state imaging device 11, and there is also a demand for capturing a high-definition subject image using all the pixels.
  • the A group pixel and the B group pixel have color filters having different spectral sensitivities, a level difference (sensitivity ratio) occurs between the two captured images. Even if a high definition image is obtained by simply combining both captured images, the high definition image will be an image with a sense of discomfort.
  • a captured image processing method which generates a high-definition image without a sense of incongruity from a subject color image signal of a natural color tone and a subject color image signal of a vivid color tone.
  • the level difference between the A group pixel and the B group pixel differs depending on each color (wavelength) in the visible light region. For this reason, in the case of uniform processing such as gain processing, uniform correction can not be performed with high accuracy, and local optimization is required.
  • the level difference is corrected as follows.
  • the average value calculation circuits 17 and 18 of FIG. 1 calculate the average value of the same color pixels (R and r, G and g, B and b) for each spectral sensitivity (for example, the average value of peripheral 5 ⁇ 5 pixels of the same color as the correction target pixel)
  • a ratio of the average value of the light spectrum (temporarily set to the wide side) selected by the color reproduction selection unit 19 to the average value of the other side (the narrow side) is calculated by the correction ratio calculation unit 20.
  • the detection signal of the level difference correction target pixel for which the multiplier 21 is not selected is multiplied by the ratio calculated by the correction ratio calculation unit 20.
  • the color reproduction selection unit 19 selects whether the color reproduction is to be a bright color on the narrow side or a natural color on the wide side. For example, in the case of landscape photography, the narrow side is selected and person shooting is performed. In the case of, select the wide side.
  • two types of color reproduction can be selected by using two types of color filters having different spectral sensitivities, narrow and wide. Also, by correcting the other to the selected level of color reproduction spectral sensitivity, it is possible to interpolate RGB (rgb) using both the A group pixel and the B group pixel, and a high resolution object image It is possible to generate
  • FIG. 4 is a flowchart showing the procedure of the processing program of the captured image processing method according to the first embodiment of the present invention.
  • the captured image signal of the B group pixel in which narrow filters r, g, b are stacked can be used as it is.
  • a correction target pixel is an A-group pixel (a pixel in which wide filters R, G, and B are stacked).
  • an average value of captured image signals of a predetermined number of pixels around the correction target pixel for example, 5 ⁇ 5 narrow side same color pixels around the correction target pixel is calculated (step S1).
  • an average value of captured image signals of 5 ⁇ 5 wide-side same-color pixels around the correction target pixel is calculated (step S2).
  • step S3 it is determined whether the color reproduction is narrow or wide.
  • step S5 the picked-up image signal value of the correction target pixel (in this example, the pixel on the wide side) is multiplied by the correction ratio calculated in step S4, and the level difference (sensitivity is equal to that of the narrow pixel. Ratio is corrected.
  • step S6 it is determined whether the correction is completed for all the correction target pixels. If the correction is not completed, the process proceeds to step S7, the correction target pixel is changed to the next correction target pixel, and the process returns to step S1.
  • the captured image signal of the A group pixel in which wide filters R, G, and B are stacked can be used as it is.
  • the pixel is a B group pixel (a pixel in which narrow filters r, g, b are stacked).
  • step S8 the correction ratio is calculated as [average value determined in step S2] / [average value determined in step S1]. Then, in step S9, the image pickup image signal value of the correction target pixel (in this example, the pixel on the narrow side) is multiplied by the correction ratio obtained in step S8, and the level difference is corrected to be equivalent to the wide pixel. Ru.
  • step S9 the process proceeds to step S6, and it is determined whether the correction process has been completed for all the correction target pixels. When the correction for all the correction target pixels is completed, the process is ended.
  • the process of combining the captured image by the A group pixel and the captured image by the B group pixel (of course, the captured image of one pixel group is a corrected captured image) is To be executed.
  • FIG. 5 is a functional block diagram of an imaging device 30 according to a second embodiment of the present invention.
  • the second embodiment is different from the first embodiment shown in FIG. 1 in that a correction ratio suppressing unit 23 is provided at a stage subsequent to the multiplier 21 at a stage subsequent to the correction ratio calculating unit 20, and the other points are the first. It is the same as the embodiment.
  • the correction ratio suppressing unit 23 sets an upper limit (for example, the spectral sensitivity ratio of the same color) to the correction ratio in advance, and the correction ratio calculated by the correction ratio calculating unit 20 exceeds the upper limit (upper limit correction ratio). At the time, the correction ratio is replaced with the upper limit correction ratio, and the suppression processing of outputting to the multiplier 21 is performed.
  • an upper limit for example, the spectral sensitivity ratio of the same color
  • FIG. 6 is a flowchart showing the processing procedure of a captured image processing program implemented by the imaging device 30 of the second embodiment.
  • the same steps as those in the flowchart of FIG. 4 are denoted by the same step numbers, and detailed description thereof will be omitted.
  • steps S11 and S12 are provided between step S4 and step S5, and steps S11 and S12 are also provided between step S8 and step S9, as compared with the flowchart of FIG.
  • step S11 it is determined whether the correction ratio calculated in step S4 or step S8 is smaller than the upper limit correction ratio. If the calculated correction ratio is smaller than the upper limit correction ratio (the determination result is Yes), the process proceeds to step S5 or step S9 with the calculated correction ratio to perform correction. If the result of the determination in step S11 is negative (No), that is, if the correction ratio calculated in step S4 or step S8 exceeds the upper limit correction ratio, the process proceeds to step S12, and the correction ratio is the upper limit correction ratio. And the process proceeds to step S5 or step S9.
  • the correction ratio is suppressed, it is possible to suppress the reduction in resolution due to overcorrection when a scene including a high frequency component is photographed.
  • FIG. 7 is a functional block diagram of an imaging device 40 according to the third embodiment of the present invention.
  • the imaging device 40 of the present embodiment includes the imaging device 10 of the first embodiment shown in FIG. 1 and the provision of the edge determination unit 25 at the front stage of the average value calculation circuit 17 and the edge at the front stage of the average value calculation circuit 18. The difference is that the determination unit 26 is provided, and the other configuration is the same as that of the first embodiment.
  • the edge determination unit 25 determines whether there is an edge in the captured image by the narrow pixels (B group pixels).
  • the edge determination unit 26 determines whether there is an edge in the captured image of the wide pixel (A group pixel).
  • the edge determination unit 25 determines the presence or absence of an edge based on the level difference between the captured image signals of the B group pixels in which narrow filters r, g, b are stacked. In addition, the edge determination unit 26 determines the presence or absence of an edge based on the level difference between the captured image signals of the A group pixels in which wide filters R, G, and b are stacked.
  • the average value calculation circuits 17 and 18 use the average value of the pixels of the same color in the periphery of the correction target pixel. However, if an edge portion is included in pixels of the same color in the periphery of the correction target pixel, pixel values having a large level difference with respect to other pixel values will be included in the average value, resulting in erroneous correction. There is a risk of Therefore, the edge determination units 25 and 26 determine the presence or absence of an edge, and as shown in FIG. 8, the average value calculation circuits 17 and 18 calculate the average value of pixels excluding the edge portion determined to include an edge. . More specifically, FIG. 8 illustrates an example in which it is determined that an edge is included in the lower right portion not surrounded by a thick line. The average value calculation circuits 17 and 18 calculate an average value using captured image signals of the remaining pixels (pixels in the area surrounded by the thick line) excluding the lower right part not surrounded by the thick line. .
  • FIG. 9 is a flowchart showing the processing procedure of the captured image processing program of the third embodiment.
  • the flow chart of FIG. 9 is different from the flow chart of FIG. 4 in that steps S21, S22 and S23 are provided in front of step S1 and steps S25, S26 and S27 are provided between step S1 and step S2, Point is the same as the flowchart of FIG. Therefore, only different points will be described below.
  • step S21 it is determined whether the level difference between the captured image signal of the correction target pixel and the captured image signal of the peripheral pixel (narrow pixel) of the determination target is less than the threshold. If the level difference is less than the threshold (Yes in step S21), a flag is set as the pixel to be used for the calculation of the average value (step S22), and the process proceeds to step S23.
  • step S21 if the level difference is equal to or larger than the threshold (No in step S21), the process also proceeds to step S23. Then, it is determined whether or not the determination in step S21 has been performed on all the peripheral pixels (step S23). When the determination in step S21 is not completed for all the peripheral pixels (No in step 23), the peripheral pixels to be determined are changed, and the process returns to step S21. On the other hand, when the determination in step S21 is completed for all the peripheral pixels (Yes in step S23), the process proceeds to step S1. In the average value calculation process of step S1, an average value of peripheral pixels flagged in step S22 is calculated.
  • steps S25, S26, and S27 are the same as steps S21, S22, and S23, respectively, except that the peripheral pixels are wide pixels.
  • the edge portion in the image is determined and the edge portion is excluded to calculate the average value, it is possible to reduce erroneous correction caused by the edge portion of the image.
  • FIG. 10 is a functional block diagram of an imaging device 50 according to a fourth embodiment of the present invention.
  • the imaging device 50 according to the present embodiment captures an image of a natural color of the A group pixel equipped with wide filters R, G, B and a vivid color of the B group pixel equipped with narrow filters r, g, b. It is an imaging device that can combine an image with one another to generate a single image with a wide dynamic range.
  • the imaging device 50 of the present embodiment includes an imaging element 11, a bus 12, an imaging control unit 13, a memory 14, a CPU 15, a correction ratio calculation unit 20, and a multiplier 21.
  • the imaging device 50 further includes a D (dynamic) range setting device 31 that controls the imaging control unit 13 and an exposure difference correction amount calculation device 32 that is controlled by the D range setting device 31.
  • the imaging device 50 includes a first color reproduction selection unit (I) 33, a multiplier 34, a proper exposure pixel average value calculation circuit 35, an under exposure pixel average value calculation circuit 36, and a second color reproduction selection unit And (II) 37.
  • the first color reproduction selection unit (I) 33 takes in the picked-up image signal of the narrow pixel and the picked-up image signal of the wide pixel, and selects one.
  • the multiplier 34 multiplies one of the picked-up image signal of the narrow pixel or the picked-up image signal of the wide pixel selected by the color reproduction selecting unit 33 by the output signal of the exposure difference correction amount calculation unit 32.
  • the appropriate exposure pixel average value calculation circuit 35 calculates the average value of the output signal of the multiplier 34 as the average value of the appropriate exposure pixels.
  • the underexposure pixel average value calculation circuit 36 calculates the other average value of the captured image signal of the narrow pixel and the captured image signal of the wide pixel as an average value of the underexposure pixels.
  • the second color reproduction selector (II) 37 selects one of the narrow pixel and wide pixel captured image signals fetched from the bus 12 and outputs the selected one to the multiplier 21.
  • the outputs of the average value calculation circuits 35 and 36 are taken into the correction ratio calculation unit 20, the correction ratio is calculated, and the correction ratio is output to the multiplier 21.
  • FIG. 11 is a flowchart showing the processing procedure of the captured image processing program executed by the imaging device 50. First, it is determined whether the D range set by the user or automatically set by the imaging device 50 is 100%, 200% or 400% (step S31).
  • the exposure difference correction amount is a difference of the exposure time, and the D range is 100% if the exposure time of the B group pixel is the same as the exposure time of the A group pixel. If the exposure time of the other pixel group is set to 1/2 of the exposure time of one pixel group, the D range is 200%. If the exposure time of the other pixel group is set to 1 ⁇ 4 of the exposure time of one pixel group, the D range is 400%.
  • Whether the exposure time of which pixel group is to be shortened depends on whether the color reproduction is set to the wide side (natural color) or the narrow side (bright color).
  • a pixel belonging to a pixel group in which the exposure time is shorter than the other among the A group pixel and the B group pixel is referred to as an under-exposure pixel, and photographing with a short exposure time is referred to as under-exposure shooting.
  • a pixel belonging to a pixel group whose exposure time is not shortened is referred to as a proper exposure pixel, and the photographing thereof is referred to as a proper photographing.
  • step S35 in which it is determined whether the color reproduction is narrow side (side to be brightly colored) or wide side (side to be naturally colored). If the color reproduction is to be made to the narrow side (side to be made vivid), the process proceeds to step S36, and the narrow pixels on the color reproduction side (group B pixels) are underexposed and the wide pixels (group A pixels) are photographed properly. Do. This shooting is simultaneously performed, and underexposure shooting is performed during the exposure time for proper shooting.
  • step S38 the picked-up image signal of the correction target pixel (in this case, the wide pixel) is multiplied by the correction ratio, and the picked-up image signal of the wide pixel is adjusted to the spectral sensitivity of the narrow pixel and the exposure difference (exposure time difference) ) And complete this process.
  • the above processing is performed on all the correction target pixels, but in the flowchart of FIG. 11, the illustration of steps S6 and S7 of FIG. 4 is omitted. Step S6 and step S7 may be sequentially provided after step S38, and the return destination of step S7 may be step S37.
  • step S35 If it is determined in step S35 that the color reproduction is to be adjusted to the wide side (side where natural color tone is to be made), the process proceeds from step S35 to step S39, and underexposure photography of wide pixels (group A pixels) on the color reproduction side Shoot the narrow pixels (B group pixels) properly.
  • step S41 the captured image signal of the correction target pixel (in this case, the narrow pixel) is multiplied by the correction ratio, and the captured image signal of the narrow pixel is adjusted to the spectral sensitivity of the wide pixel and the exposure difference (difference in exposure time) is also Then, this process ends.
  • the above processing is performed on all the correction target pixels.
  • step S36 and step S39 in FIG. 11 are described as under shooting and proper shooting. However, when the D range is 100%, since the exposure time of the narrow pixel and the exposure time of the wide pixel are the same time, shooting is performed without distinction between "under” and "proper".
  • the captured image processing program described above can be executed not only in the case where it is incorporated in the imaging device but also in an external personal computer, and it is possible to use one color image from two color images captured by the imaging device of the embodiment. It can be used when combining high-definition color images or when combining wide dynamic range color images.
  • the captured image processing program may be stored in a storage medium such as a hard disk or a ROM, and may be read out to the RAM or the like when being executed by the CPU or the processor. Further, the captured image processing program may be stored in a storage medium such as a CD-ROM.
  • the solid-state imaging device of the embodiment has been described as a solid-state imaging device in which the pixels are arranged in a checkered shape as shown in FIG. 2, the pixel arrangement is not limited to this embodiment.
  • all the pixels may be arranged in a square lattice (shown as a color filter arrangement).
  • the color filters of three primary colors are arranged in the pixels of the odd rows (group A pixels), and the color filters of the three primary colors are arranged in the pixels of the even rows (group B pixels). ing.
  • wide color filters R, G, B are stacked on the A group pixels
  • narrow color filters r, g, b are stacked on the B group pixels, and one shooting operation is performed. At the same time, it is possible to capture a subject color image of natural color and a subject color image of bright color.
  • the solid-state imaging device mounted with the color filter capable of capturing a color image of natural color tone and the color filter capable of capturing a color image of bright color tone has been described as an example.
  • the image processing method of the embodiment described above is not limited to such a filter, and is applicable to a captured image of a solid-state imaging device capable of capturing two different color images of different hues.
  • the color filters of three primary colors have been described as an example.
  • the present invention can be applied to complementary color filters (color filters in which one primary color of each of the three primary colors is missing).
  • the above image processing method is applicable.
  • the above narrow / wide relationship for complementary color filters is as follows.
  • the complementary color of red (R) is cyan (B + G)
  • the complementary color of blue (B) is yellow (G + R)
  • the complementary color of green (G) is magenta (B + R).
  • the relationship between cyan narrow and cyan wide is as follows. That is, B constituting wide cyan and B constituting narrow cyan have a narrow / wide relation, and G constituting wide cyan and G constituting narrow cyan also have a narrow / wide relation. Have.
  • the wavelength range in the half value width of each of the G and R spectral sensitivities that constitute the narrow yellow falls within the wavelength range of the half value width of each of the G and R spectral sensitivities that constitute the wide yellow. Further, the wavelength range of the half bandwidth of each of the spectral sensitivities of B and R constituting the narrow magenta falls within the wavelength range of the half bandwidth of each of the spectral sensitivities of B and R constituting the wide magenta.
  • the imaging device of the embodiment described above includes a plurality of pixels arrayed and formed in a two-dimensional array on a semiconductor substrate; A plurality of color filters of a first color arranged and stacked according to a predetermined rule on a first pixel group including one of an odd row and an even row of the pixels; A plurality of second colors of different spectral sensitivities that are arranged and stacked in accordance with a predetermined rule on the second pixel group including the other of the odd rows and the even rows; A solid-state imaging device having a color filter; A captured image signal of a pixel of the first pixel group and a pixel of the second pixel group due to a spectral sensitivity difference between a color filter including the plurality of first colors and a color filter including the plurality of second colors Image processing for obtaining a level difference with a captured image signal, correcting the level difference, and combining a first captured image obtained from the first pixel group and a second captured image obtained from the second pixel group It has a department and
  • a captured image processing method is a captured image processing method for processing an image captured by the solid-state imaging device described above, which includes a color filter including the plurality of first colors and the plurality of second plurality Determining a level difference between a captured image signal of a pixel of the first pixel group and a captured image signal of a pixel of the second pixel group due to a spectral sensitivity difference between color filters including the color of Correct the level difference, The first captured image obtained from the first pixel group and the second captured image obtained from the second pixel group are combined.
  • the level difference may be an average value of the captured image signals of a predetermined number of pixels belonging to the first pixel group around the pixel to be corrected.
  • the level difference is corrected by obtaining from 1 average value and a second average value that is an average value of the captured image signals of a predetermined number of pixels belonging to the second pixel group around the pixel to be corrected.
  • a ratio of the first average value to the second average value is a correction ratio
  • the correction ratio is set to the captured image signal of the pixel to be corrected.
  • the level difference is corrected by multiplication.
  • the upper limit value is used as the correction ratio.
  • the imaging device and the captured image processing method it is determined whether or not the first and second captured images include an image of an edge portion indicating an outline portion of the subject, and the edge portion is excluded.
  • the first average value and the second average value are determined.
  • the imaging device and the captured image processing method in processing the captured image obtained by performing imaging with the first pixel group and imaging with the second pixel group with an exposure difference, A difference is determined, and based on the level difference and the exposure difference, the captured image signal of each pixel of the first pixel group and the one pixel group of the second pixel group is corrected, and the corrected captured image signal and the other And a captured image signal of each pixel of the group of pixels are combined to generate a composite image with a wide dynamic range.
  • the light receiving area of each pixel of the first pixel group and the light receiving area of each pixel of the second pixel group are the same within an error range.
  • the color filters including the plurality of second ones correspond to the full width at half maximum of the spectral sensitivity of each color of the color filter including the plurality of first few colors. Contains the full width at half maximum of the spectral sensitivity of the color.
  • a peak value of spectral sensitivity of each color of the color filter including the plurality of first colors, and a spectral sensitivity of the corresponding color of the color filter including the plurality of second plurality is in the range of 0.9 to 1.1.
  • the color filter including the plurality of first colors is a color filter of three primary colors
  • the color filter including the plurality of second colors is a color filter of three primary colors It is.
  • the color filters of the plurality of first colors are complementary color filters
  • the color filters of the plurality of second colors are complementary colors. It is a filter.
  • the first captured image by the first pixel group is processed to generate a subject image having a natural color
  • the second imaging by the second pixel group is performed. Process the image to produce a brightly tinted object image.
  • the captured image processing program of the embodiment includes the step of performing any of the above-described captured image processing method.
  • the image pickup apparatus is equipped with a novel solid-state image pickup element, and can simultaneously capture two types of subject color images having different color tones, and combine them to form a high-definition subject image or an image with a wide dynamic range. It is useful to apply to general imaging devices such as digital still cameras, digital video cameras, camera-equipped mobile phones, camera-equipped electronic devices such as PDAs and notebook computers, and endoscopes.
  • general imaging devices such as digital still cameras, digital video cameras, camera-equipped mobile phones, camera-equipped electronic devices such as PDAs and notebook computers, and endoscopes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

 2種類の色合いの異なるカラー画像を撮影できる固体撮像素子で得た2種類のカラー画像を合成する。 固体撮像素子の第1画素群(カラーフィルタの分光感度がワイドな画素)による第1のカラー撮像画像を処理すると共に、第2画素群(カラーフィルタの分光感度がナローな画素)による第2のカラー撮像画像を処理し、分光感度が前記ワイドとナローのカラーフィルタの分光感度差による第1画素群の画素の撮像画像信号と第2画素群の画素の撮像画像信号とのレベル差を求め(ステップS1,S2)、該レベル差を補正して第1のカラー撮像画像と第2のカラー撮像画像とを合成する。

Description

撮像装置並びに撮像画像処理方法と撮像画像処理プログラム
 本発明は、2種類の異なる色合いのカラー画像を撮像できる固体撮像素子を搭載した撮像装置並びに撮像画像処理方法、撮像画像処理プログラムに関する。
 固体撮像素子に搭載されるカラーフィルタの配列として様々な配列が提案され使用されている。例えば下記の特許文献1記載の撮像装置では、ベイヤ配列と呼ばれるカラーフィルタ配列が用いられている。ベイヤ配列は、各画素に3原色R(赤)G(緑)B(青)の内のいずれか1色のカラーフィルタを所定規則に基づいてモザイク的に配列するものである。このため、例えば赤色フィルタが搭載された赤色画素は緑色及び青色の信号を検出できないため、当該赤色画素の周りの緑色フィルタ,青色フィルタを搭載した画素信号を補間演算してこの赤色画素位置の緑色信号,青色信号を求める様にしている。
 下記の特許文献2に記載の撮像素子は、斜め方向に隣接する2画素づつをペアとし、3原色RGBのうちのいずれか1色のカラーフィルタを、ペア画素を単位に所定規則に従ってモザイク的に配列している。そして、例えば緑色フィルタを搭載するペアの画素の夫々には、G1カラーフィルタ,G2カラーフィルタを搭載する様にしている。
 G1とG2の関係は、例えば加算するとG色となるように選択される。G色カラーフィルタは、波長540nmを中心波長とし、前後夫々100nm程度の幅の釣り鐘状の分光特性を持つように製造される。これに対し、例えばG1,G2はこれを2つに分離し、波長440nm~540nmの色をG1フィルタで検出し、波長540nm~640nmをG2フィルタで検出する様にする。同様に、R色,B色も、ペアとなる画素がR1,R2フィルタを搭載し、B1,B2フィルタを搭載する様にする。
 この様に、カラーフィルタで分離する色をR,G,Bの3色とするより更に細かく分離することで、被写体画像の色再現性を向上させることができる。しかし、R1,G1,B1のカラーフィルタを搭載した画素から取り出した撮像画像と、R2,G2,B2のカラーフィルタを搭載した画素から取り出した撮像画像とは色合いが異なる画像となり、夫々の画像は共に単独では不自然な色合いのカラー画像となる。このため、適切な合成処理を行って色再現性の高い被写体画像を画像処理で求める必要がある。
 下記の特許文献3記載の撮像装置では、各画素が小面積部分と大面積部分とに分割されている。そして更に、例えば緑色(G)フィルタを搭載する画素においては、小面積部分に積層するフィルタ厚を大面積部分より厚く、あるいはフォトダイオードを構成するn領域の厚さを薄くしている。
 この結果、小面積部分は、ある波長域の入射光を殆ど検出できなくなっているのに対し、大面積部分ではこの波長域の光を検出できる様になる。このことを利用して、この撮像装置では、上記の波長域の光が存在するか否かを検出し、光源種別を判定している。
日本国特開2006―135468号公報 日本国特開2009―268078号公報 日本国特開2004―289728号公報
 カラー画像を表示できる従来のモニタ装置は、ブラウン管型モニタ装置(CRT)が一般的であったが、近年では、液晶ディスプレイ装置が液晶テレビとして一般に普及している。この結果、一般ユーザは、自然な色合いのカラー画像とは色合いが異なる、例えば鮮やかなカラー画像を見慣れてしまい、デジタルカメラで撮影したカラー画像では物足りなく感じる例が増えている。
 上述した従来の固体撮像素子に用いられているカラーフィルタは、自然な色合いで被写体画像の色再現ができるように考案されたものに過ぎない。このため、被写体のカラー画像を鮮やかなカラー画像として撮影することができない。
 その一方で、被写体のカラー画像を自然な色合いで撮影しなければならない撮影シーンも存在し、鮮やかな色合いのカラー画像と自然な色合いのカラー画像の両方を撮影できる撮像装置に対する要望が高い。
 本発明の目的は、色合いの異なる2種類のカラー画像を撮影することができる固体撮像素子を搭載した撮像装置並びに撮像画像処理方法、撮像画像処理プログラムを提供することにある。
 本発明の撮像装置は、半導体基板に二次元アレイ状に配列形成される複数の画素と、
該画素の奇数行と偶数行の一方を含む第1画素群の上に所定規則に従って配列して積層される複数の第1の色のカラーフィルタと、
前記奇数行と前記偶数行の他方を含む第2画素群の上に所定規則に従って配列して積層され、前記複数の第1の色のカラーフィルタとは分光感度が異なる複数の第2の色のカラーフィルタと
を有する固体撮像素子と、
 前記複数の第1の色を含むカラーフィルタと前記複数の第2の色を含むカラーフィルタの間の分光感度差による前記第1画素群の画素の撮像画像信号と前記第2画素群の画素の撮像画像信号とのレベル差を求め、該レベル差を補正して前記第1画素群から得られる第1の撮像画像と前記第2画素群から得られる第2の撮像画像とを合成する画像処理部と
 を備える。
 本発明の撮像画像処理方法は、半導体基板に二次元アレイ状に配列形成される複数の画素と、
 該画素の奇数行と偶数行の一方を含む第1画素群の上に所定規則に従って配列して積層される複数の第1の色のカラーフィルタと、
 前記奇数行と前記偶数行の他方を含む第2画素群の上に所定規則に従って配列して積層され、前記複数の第1の色のカラーフィルタとは分光感度が異なる複数の第2の色のカラーフィルタとを備える固体撮像素子で撮像された画像を処理する撮像画像処理方法であって、前記複数の第1の色を含むカラーフィルタと前記複数の第2の色を含むカラーフィルタの間の分光感度差による前記第1画素群の画素の撮像画像信号と前記第2画素群の画素の撮像画像信号とのレベル差を求め、
 該レベル差を補正し、
 前記第1画素群から得られる第1の撮像画像と前記第2画素群から得られる第2の撮像画像とを合成する。
 本発明の撮像画像処理プログラムは、上記の撮像画像処理方法を実施するステップが設けられる。
 本発明によれば、異なる色合いの2種類のカラー画像(例えば、自然な色合いのカラー画像と鮮やかな色合いのカラー画像)を撮影することができ、しかも、両者を合成した画像も得ることが可能となる。
本発明の第1実施形態に係る撮像装置の機能ブロック図である。 図1に示す固体撮像素子のカラーフィルタ配列図である。 図2に示すカラーフィルタ配列で用いるカラーフィルタの分光感度を表す図である。 本発明の第1実施形態に係る撮像画像処理手順を示すフローチャートである。 本発明の第2実施形態に係る撮像装置の機能ブロック図である。 本発明の第2実施形態に係る撮像画像処理手順を示すフローチャートである。 本発明の第3実施形態に係る撮像装置の機能ブロック図である。 画像のエッジ判定の説明図である。 本発明の第3実施形態に係る撮像画像処理手順を示すフローチャートである。 本発明の第4実施形態に係る撮像装置の機能ブロック図である。 本発明の第4実施形態に係る撮像画像処理手順を示すフローチャートである。 図2とは別実施形態に係る固体撮像素子のカラーフィルタ配列図である。
 以下、本発明の一実施形態について、図面を参照して説明する。
 図1は、本発明の第1実施形態に係る撮像装置の機能ブロック図である。この撮像装置10は、固体撮像素子11と、撮像制御部13と、メモリ14と、CPU15とを備える。撮像制御部13は該固体撮像素子11の駆動制御を行う。また、撮像制御部13は固体撮像素子11から出力される撮像画像信号を取り込んで相関二重サンプリング処理や利得制御処理,A/D(アナログデジタル)変換処理を行い、バス12に出力する。メモリ14はバス12に接続されている。CPU15はこの撮像装置10の全体を統括制御する。CPU15は、DSP機能を内蔵し、固体撮像素子11から出力される撮像画像信号に対して補正処理(オフセット処理,ガンマ補正処理,RGB/YC変換処理,同時化処理等)を施し、被写体画像を生成する。
 この撮像装置10は、更に、ナロー(Narrow)分光画素平均値算出回路17と、ワイド(Wide)分光画素平均値算出回路18と、色再現選択部19と、補正比算出部20と、乗算器21とを備える。ナロー分光画素平均値算出回路17とワイド分光画素平均値算出回路18はバス12から取り込まれたデジタルの撮像画像信号を処理する。色再現選択部19は算出回路17,18の出力及びバス12から取り込まれたデジタルの撮像画像信号を選択制御して色再現を行う。補正比算出部20は色再現選択部19によって選択された算出回路17,18の出力信号から補正比を算出する。乗算器21は、バス12から取り込まれたデジタルの撮像画像信号を色再現選択部19によって選択されたレベル差補正対象画素の信号と補正比算出部20の出力信号と乗算してバス12に戻す。
 算出回路17,18、色再現選択部19、補正比算出部20、乗算器21は、画像処理部の一部を構成するものであり、その詳細動作については後述する。
 図2は、固体撮像素子11の表面模式図である。本実施形態の固体撮像素子11は、半導体基板に各々の受光面積が同一の複数の画素(フォトダイオード)が二次元アレイ状に配列形成されている。奇数行の画素行に対して偶数行の画素行が1/2画素ピッチずつずらして配列されている。奇数行の画素配列だけ見れば、画素は正方格子配列を構成している。また、偶数行の画素配列だけ見れば、画素は正方格子配列を構成している。そして、奇数行の画素(A群画素)に3原色のカラーフィルタR、G、Bがベイヤ配列され、偶数行の画素(B群画素)にも3原色のカラーフィルタr、g、bがベイヤ配列されている。
 半導体基板の表面部には、図示は省略しているが、各画素の検出した撮像画像信号を外部に読み出す信号読出部が形成されている。固体撮像素子がCCD型であれば、例えば特開2005―72966号公報に記載されている様に、信号読出部は垂直電荷転送路,水平電荷転送路及び信号電荷量に応じた電圧値信号を撮像画像信号として出力するアンプで構成されてもよい。固体撮像素子がCMOS型であれば、例えば特開2007―124137号公報や特開2007―81140号公報に記載されている様に、信号読出部は、MOS型トランジスタと垂直走査回路,水平走査回路等で構成されてもよい。
 図3は、カラーフィルタRGB及びrgbの分光感度を示すグラフである。光の波長をλとしている。A群画素に積層される赤色カラーフィルタR(λ),緑色カラーフィルタG(λ),青色カラーフィルタB(λ)の各分光感度は、夫々、釣り鐘状の山形で、かつ幅が広く(以下、ワイドと言う。)なっている。
 これに対し、B群画素に積層される赤色カラーフィルタr(λ),緑色カラーフィルタg(λ),青色カラーフィルタb(λ)の分光感度は、釣り鐘状,山形状であっても、幅が狭く(以下、ナローと言う。)なっている。
 図3のグラフは、各波長の光の分光感度を示している。図2で説明したように、A群,B群の各画素の受光面積は同一であるため、図3のグラフは、各画素のカラーフィルタを透過した受光量の波長依存性を示している。
 なお、赤色フィルタの長波長側(赤外領域)はカラーフィルタだけではカットすることが難しい。このため、デジタルカメラの撮影レンズ系には赤外線カットフィルタを挿入することが一般的である。図3に示すグラフは、赤外線カットフィルタが挿入されていない赤色カラーフィルタR,rだけの特性を示している。
 図3の上辺部に、波長λ(nm)の値と色との関係を示している。A群画素に積層されるワイドな赤色フィルタRは、実際には橙色の光も透過し、黄色の光の一部も透過してしまうフィルタとして製造される。緑色フィルタGは、その長波長側において、黄色や橙色の光の一部を透過してしまうフィルタとして製造される。短波長側においても同様であり、ワイドな緑色フィルタGは青色の光の一部を透過し、ワイドな青色フィルタBは緑色の光の一部を透過するフィルタとして製造される。
 つまり、Gフィルタ搭載画素とRフィルタ搭載画素は、橙色の光と黄色の光を共に受光することになり、Gフィルタ搭載画素とBフィルタ搭載画素は、夫々青色,緑色の境界部分の光の一部を共に受光することになる。
 Gフィルタ搭載画素の検出信号と、Rフィルタ搭載画素の検出信号と、Bフィルタ搭載画素の検出信号とに基づいて被写体カラー画像を再生する場合、各検出信号間の重なり部分(上記の橙色及び黄色の部分、青色及び緑色の境界部分)が大きくなるほど、再生カラー画像上で緑色と赤色、緑色と青色が混合される割合が多くなる。
 即ち、ワイドなフィルタR,G,Bを通して得られる色信号R,G,Bは、夫々原色の赤色,緑色,青色だけではなく、他色が混合した色信号となり、原色の混合割合(混合比率)が低い色信号となる。しかし、この他色との混合の程度が程良い混合割合になると、自然な色合いのカラー画像となる。
 これに対し、上記の重なり部分が小さくなると、原色の混合割合(混合比率)がより高い信号となる。即ち、ナローなフィルタr,g,bを通して得られる色信号r,g,bは、原色の混合割合(混合比率)が高い信号となる。この色信号r,g,bに基づいて再生するカラー画像は、鮮やかな色合いのカラー画像になる。
 なお、色というものは或る波長範囲で全て同色となる訳ではなく、徐々に変化していくものである。例えば図3の波長域500nm~570nmの範囲は、これを全て「緑」として図示している。しかし、実際には図3の左側に行くほど青色が少しずつ混じった色となり、図3の右側に行くほど黄色が少しずつ混じった色となる。上記の「原色」とは、緑色でいえば、500nm~570nmの全範囲ではなく、その中の一部範囲、例えば波長535nmを中心とする所要波長範囲(例えば±25nm)の色をいう。
 本実施形態の撮像装置に搭載する固体撮像素子11は、A群画素にワイドなカラーフィルタR,G,Bを積層して自然な色合いの被写体カラー画像を撮影できるようにし、B群画素にナローなカラーフィルタr,g,bを積層して鮮やかな色合いの被写体カラー画像を撮影できるようにしている。
 ワイドなカラーフィルタR,G,Bは、従来から存在する自然な色合いのカラー画像を撮影できるカラーフィルタ材を利用する。このワイドなカラーフィルタR,G,Bに対して、ワイドなカラーフィルタ材とは異なる顔料あるいは染料で、図3に例示するような分光特性を持つフィルタr,g,bを作る。
 この場合、ワイドなフィルタR,G,Bの厚さと、ナローなフィルタr,g,bの厚さとが異なると、固体撮像素子11の表面に凹凸ができ、その上にマイクロレンズを積層する工程が複雑となる。そこで、製造を容易とし製造コストを低減するために、ワイドなフィルタR,G,Bと、ナローなフィルタr,g,bは同じ厚さを有することが好ましい。
 また、A群画素で得られる自然な色合いの撮像画像と、B群画素で得られる鮮やか色合いの撮像画像とが同じ程度の明るさになるように、フィルタR,G,Bの夫々のピーク感度値とフィルタr,g,bの夫々のピーク感度値とが同程度となる様にするのが好ましい。
 図3の例では、青色フィルタGのピーク感度値Bwと青色フィルタbのピーク感度値bnとの間の誤差が10%以内である場合に、青色フィルタGのピーク感度値と青色フィルタbの感度値が同一とみなしている。また、緑色フィルタGのピーク感度値Gwと緑色フィルタgのピーク感度値bnとの間の誤差が10%以内である場合に、緑色フィルタGのピーク感度値と緑色フィルタgのピーク感度値が同一とみなしている。更に、赤色フィルタRのピーク感度値Rwと赤色フィルタrのピーク感度値rnとの間の誤差が10%以内である場合に、赤色フィルタRのピーク感度値と赤色フィルタrのピーク感度値が同一とみなしている。
 青色光のピーク感度値Bwを与える光の波長λBwと、ピーク感度値bnを与える光の波長λbnは、同一であることが好ましい。しかし、実際にフィルタBとフィルタbの形成材料が異なるため、波長λBwと波長λbnを同一にすることは困難である。しかし、波長λBwと波長λbnの間の誤差が±20nm程度の範囲内であれば良い。他の色でも同様である。
 ナローな赤色フィルタrの分光感度の波長範囲は、ワイドな赤色フィルタRの分光感度の波長範囲の完全に内側である。他色(緑,青)でも同様である。即ち、可視光の波長域(約380nm~650m)において、R(λ)>r(λ)、G(λ)>g(λ)、B(λ)>b(λ)とする。
 これは、ワイドなフィルタR,G,Bで撮影したカラー画像は自然な色合いのカラー画像となるが、フィルタR,G,Bの各分光感度の波長範囲から外れる分光感度で撮影したカラー画像は、不自然な色のカラー画像になってしまうからである。ナローなフィルタr(g,b)の分光感度の波長範囲がワイドなフィルタR(G,B)の分光感度の波長範囲の完全な内側にあれば、ナローなフィルタr,g,bで撮影したカラー画像は、鮮やかな画像となるが、不自然な色合いにはならない。
 ナローな緑色フィルタgの分光感度の波長範囲を、ワイドな緑色フィルタGの分光感度の波長範囲の内側にする場合、ナローな緑色フィルタgの分光感度がワイドな緑色フィルタGの分光感度の山形の左右の稜線から等距離に離れていることが好適である。しかし、フィルタgとフィルタGの材料が異なるため、これが必須という訳ではなく、ナローな緑色フィルタgの分光感度が片側に少し寄っても構わない。
 上述した様に、ワイドなカラーフィルタR,G,Bの透過光に含まれる原色の混合比率(含有比率)に対して、ナローなカラーフィルタr,g,bの透過光に含まれる原色の混合比率(含有比率)は高い。次にこのことを定量的に説明する。
 ワイドなカラーフィルタR,G,Bにおける原色の混合比率をα、ナローなカラーフィルタr,g,bにおける原色の混合比率をα+Δαとしたとき、Δα>0とすることが好ましい。これにより、ナローなカラーフィルタr,g,bで撮った画像が見た目で鮮やかになったことを視認できることになる。
 画像が鮮やかであるか否かは、主観的な判断が入るため、どの程度の差Δαを設ければ良いかの定量化は簡単ではないが、本実施形態では次の様に混合比率αを定義する。図3において、青色カラーフィルタBのピーク感度値Bwに対し、その半値幅Bdを求め、青色カラーフィルタbのピーク感度値bnに対してその半値幅bdを求める。そして、ワイドなカラーフィルタBの透過光に含まれる原色の混合比率(含有比率)をBd/Bw、ナローなカラーフィルタbの透過光に含まれる原色の混合比率(含有比率)をbd/bnと定義する。このとき、
 bd/bn<Bd/Bw
となるように、ナローなカラーフィルタbの分光感度を定める。上記のΔαを用いて表せば、
 bd/bn+Δα=Bd/Bw
となるようにナローなカラーフィルタbの分光感度を定める。図3の例の実測値では、bd/bn=53.75(%)、Bd/Bw=64.7(%)であるから、Δα=10(%)程度である。
 緑色についても同様であり、
 gd/gn<Gd/Gw
となるように、ナローなカラーフィルタgの分光感度を定める。上記のΔαを用いて表せば、
 gd/gn+Δα=Gd/Gw
となるようにナローなカラーフィルタgの分光感度を定める。図3の例の実測値では、gd/gn=63.75(%)、Gd/Gw=95.12(%)であるから、Δα=31(%)程度である。
 赤色については、上述した様に、長波長側は赤外線カットフィルタでカットする。このため、ピーク感度位置から短波波長側だけを用いて判断する。
 rd/rn<Rd/Rw
となるように、ナローなカラーフィルタrの分光感度を定める。上記のΔαを用いて表せば、
 rd/rn+Δα=Rd/Rw
となるようにナローなカラーフィルタrの分光感度を定める。。図3の例の実測値では、rd/rn=7.5(%)、Rd/Rw=34(%)であるから、Δα=26(%)程度である。
 この様に、ナローなカラーフィルタr,g,bを透過した光の原色含有比率をワイドなカラーフィルタR,G,Bを透過した光の原色含有比率より高めておくことで、1つの固体撮像素子11で同時に2枚の被写体画像(A群画素から自然な色合いのカラー画像、B群画素から鮮やかな色合いのカラー画像)を撮像することが可能となる。なお、この実施形態では、ナローなカラーフィルタr,g,bの各分光感度の半値幅の波長範囲内の色を「原色」として原色含有比率をワイドなカラーフィルタR,G,Bより高めている。
 上述した様に、図2の構成の固体撮像素子11は、同時に2枚のカラー画像を撮像することができる。しかし、各撮像画像は、固体撮像素子11に搭載されている画素の数の1/2の画素を利用した撮像画像であり、全画素を利用した高精細な被写体画像を撮像したいという要望もある。しかし、A群画素とB群画素は分光感度が異なるカラーフィルタを持っているため、両撮像画像間にはレベル差(感度比)が発生している。単純に両撮像画像を合成して高精細な画像を得たとしても、該高精細な画像は違和感のある画像になってしまう。
 そこで、以下の実施形態では、自然な色合いの被写体カラー画像信号と、鮮やかな色合いの被写体カラー画像信号とから、違和感の無い高精細な画像を生成する撮像画像処理方法について説明する。
 A群画素とB群画素の分光感度が異なると、撮影対象(被写体)が含む同じ色に対して異なる画素値が得られ、レベル差が発生する。また、図3からわかるように、可視光領域におけるそれぞれの色(波長)によってA群画素とB群画素の間のレベル差が異なる。このため、ゲイン処理等の全画面一律な処理では精度の高い補正はできず、局所的な最適化が必要となる。
 そこで、以下の実施形態では、次のようにレベル差を補正する。図1の平均値算出回路17,18が分光感度毎の同色画素(Rとr、Gとg、Bとb)の平均値(例えば補正対象画素と同色の周辺5×5画素の平均値)を算出する。色再現選択部19により選択された分光(仮にワイド(Wide)側とする。)の平均値と、もう一方の平均値(ナロー(Narrow)側となる。)との比を補正比算出部20で算出する。そして、乗算器21が選択されていないレベル差補正対象画素の検出信号に、補正比算出部20が算出した比乗じる。
 色再現選択部19は、色再現をナロー側の鮮やかな色にするのか、ワイド側の自然な色にするのかを選択するもので、例えば風景撮影の場合にはナロー側を選択し、人物撮影の場合にはワイド側を選択する。
 この様に、ナローとワイドの2種類の分光感度の異なるカラーフィルタを用いることで、2種類の色再現を選択できるようになる。また、選択した色再現の分光感度のレベルに他方を補正して合わせることで、A群画素とB群画素の両方を利用してRGB(rgb)を補間することができ、高解像度の被写体画像を生成することが可能となる。
 図4は、本発明の第1実施形態に係る撮像画像処理方法の処理プログラムの手順を示すフローチャートである。ユーザが鮮やかなカラー画像を選択しているときや、撮影シーンの設定が上記の風景撮影のとき、ナローなフィルタr,g,bを積層したB群画素の撮像画像信号はそのまま使用できるため、補正対象画素をA群画素(ワイドなフィルタR,G,Bを積層した画素)とする。
 最初に、補正対象画素の周囲にある所定数の画素、例えば補正対象画素の周囲にある5×5のナロー側同色画素の撮像画像信号の平均値が算出される(ステップS1)。次に、補正対象画素の周囲にある5×5のワイド側同色画素の撮像画像信号の平均値が算出される(ステップS2)。
 そして、ステップS3で、色再現がナロー側であるかワイド側であるかが判定される。この例では、上記したようにナロー側で色再現を行うため、ステップS3からステップS4に進み、〔ステップS1で求めた平均値〕/〔ステップS2で求めた平均値〕=補正比とする。
 次のステップS5では、補正対象画素(この例では、ワイド側の画素)の撮像画像信号値にステップS4で算出した補正比が乗算され、ナロー画素と同等のレベルとなるようにレベル差(感度比)が補正される。
 そして、ステップS6で全ての補正対象画素に対して補正が終了したか否かが判定される。補正が終了していない場合にはステップS7に進んで補正対象画素を次の補正対象画素に変更し、ステップS1に戻る。
 ユーザが自然な色合いのカラー画像を選択しているときや、撮影シーンが人物撮影のとき、ワイドなフィルタR,G,Bを積層したA群画素の撮像画像信号はそのまま使用できるため、補正対象画素はB群画素(ナローなフィルタr,g,bを積層した画素)となる。
 この場合には、ステップS1,ステップS2,ステップS3と進み、ステップS3の判定でワイド側が選択され、ステップS8に進む。ステップS8では、補正比=〔ステップS2で求めた平均値〕/〔ステップS1で求めた平均値〕と算出される。そしてステップS9で、補正対象画素(この例では、ナロー側の画素)の撮像画像信号値にステップS8で求めた補正比が乗算され、ワイド画素と同等のレベルとなるようにレベル差が補正される。
 ステップS9の後は、ステップS6に進み、全ての補正対象画素に対して補正処理が終了したか否かが判定される。全ての補正対象画素に対する補正が終了した場合には、処理を終了する。
 図4の補正処理が終了した後は、A群画素による撮像画像とB群画素による撮像画像(勿論、一方の画素群の撮像画像は補正後の撮像画像である。)とを合成する処理が実行される。以下の実施形態でも同様である。
 図5は、本発明の第2実施形態に係る撮像装置30の機能ブロック図である。第2実施形態は、図1に示される第1実施形態と、補正比算出部20の後段で乗算器21の前段に補正比抑制部23を設けている点が異なり、他の点は第1実施形態と同じである。補正比抑制部23は、補正比に対して予め上限値(例えば同色の分光感度比)を設定しておき、補正比算出部20で算出された補正比が上限値(上限補正比)を超えたときは補正比を上限補正比で置き換えて乗算器21に出力する抑制処理を行う。
 図6は、第2実施形態の撮像装置30が実施する撮像画像処理プログラムの処理手順を示すフローチャートである。図4のフローチャートと同一ステップには同じステップ番号を付してその詳細な説明は省略し、異なる点を説明する。
 本実施形態では、図4のフローチャートに比べて、ステップS4とステップS5との間にステップS11,S12を設け、ステップS8とステップS9との間にもステップS11,S12を設けている。
 ステップS11では、ステップS4又はステップS8で算出された補正比が上限補正比より小さいか否かが判定される。算出された補正比が上限補正比よりも小さい場合(判定結果がYes)には算出された補正比でステップS5又はステップS9に進んで補正を行う。ステップS11の判定の結果が否定(No)の場合、即ち、ステップS4又はステップS8で算出された補正比が上限補正比を超えていた場合には、ステップS12に進み、補正比を上限補正比に置き換えてステップS5又はステップS9に進む。
 本実施形態によれば、補正比を抑制するため、高周波成分を含むシーンを撮影した際の過補正による解像度低下を抑えることができる。
 図7は、本発明の第3実施形態に係る撮像装置40の機能ブロック図である。本実施形態の撮像装置40は、図1に示す第1実施形態の撮像装置10と、平均値算出回路17の前段にエッジ判定部25を設けたこと及び、平均値算出回路18の前段にエッジ判定部26を設けたことが異なり、他の構成は第1実施形態と同じである。エッジ判定部25はナロー画素(B群画素)による撮像画像中にエッジがあるか否かを判定する。エッジ判定部26はワイド画素(A群画素)による撮像画像中にエッジがあるか否かを判定する。
 エッジ判定部25は、ナローなフィルタr,g,bを積層したB群画素の撮像画像信号間のレベル差に基づいてエッジ有無の判定を行う。また、エッジ判定部26は、ワイドなフィルタR,G,bを積層したA群画素の撮像画像信号間のレベル差に基づいてエッジの有無を判定する。
 上述のように平均値算出回路17,18は、補正対象画素の周辺にある同色の画素の平均値を用いる。しかし、補正対象画素の周辺にある同色の画素の中にエッジ部を含んでしまうと、他の画素値に対してレベル差の大きい画素値が平均値の中に入ってきて誤補正となってしまう虞がある。そこで、エッジ判定部25、26がエッジの有無を判定し、図8に示す様に、エッジを含むと判定されたエッジ部分を除いた画素の平均値を平均値算出回路17、18が算出する。より具体的には、図8は太線で囲まれていない右下の部分にエッジが含まれていると判定された例を示している。平均値算出回路17、18はこの太線で囲まれていない右下の部分を除外して、残りの画素(太線で囲まれた領域内の画素)の撮像画像信号を用いて平均値を算出する。
 図9は、この第3実施形態の撮像画像処理プログラムの処理手順を示すフローチャートである。図9のフローチャートは図4のフローチャートに、ステップS1の前段にステップS21,S22,S23を設け点及び、ステップS1とステップS2との間にステップS25,S26,S27を設けた点が異なり、その他の点は図4のフローチャートと同じである。このため、以下では異なる点のみ説明する。
 ステップS21では、補正対象画素の撮像画像信号と判定対象の周辺画素(ナロー画素)の撮像画像信号とのレベル差が閾値未満であるか否かが判定される。レベル差が閾値未満の場合(ステップS21でYes)には判定対象の周辺画素を平均値算出に用いる画素としてフラグを立て(ステップS22)、ステップS23に進む。
 ステップS21の判定の結果、レベル差が閾値以上の場合(ステップS21でNo)にもステップS23に進む。そして、周辺画素の全てに対してステップS21の判定を行ったか否かが判断される(ステップS23)。周辺画素の全てに対してステップS21の判定が終了していない場合(ステップ23でNo)には判定対象の周辺画素を変更してステップS21に戻る。一方、周辺画素の全てに対してステップS21の判定が終了している場合(ステップS23でYes)には、ステップS1に進む。このステップS1の平均値算出処理では、ステップS22でフラグを立てられた周辺画素の平均値が算出される。
 ステップS25,S26,S27の基本的処理はそれぞれステップS21,S22,S23と同じであるが、周辺画素がワイド画素である点が異なる。
 本実施形態によれば、画像中のエッジ部分を判別し、エッジ部分を除外して平均値算出を行うため、画像のエッジ部分によって生じる誤補正を軽減させることができる。
 図10は、本発明の第4実施形態に係る撮像装置50の機能ブロック図である。本実施形態の撮像装置50は、ワイドフィルタR,G,Bを搭載したA群画素の自然な色合いの撮像画像と、ナローフィルタr,g,bを搭載したB群画素の鮮やかな色合いの撮像画像とを合成して、ダイナミックレンジの広い1枚の画像を生成することができる撮像装置である。
 ダイナミックレンジの広い画像を生成する場合には、ナローとワイドの同色で隣接する2画素加算を行うことになる。しかし、分光感度比に起因するナロー画素とワイド画素の間のレベル差を適切に補正しないと、不自然な画像が合成されてしまう。
 図1の撮像装置10と同様に、本実施形態の撮像装置50は、撮像素子11,バス12,撮像制御部13,メモリ14,CPU15,補正比算出部20,乗算器21を備える。撮像装置50は、更に、撮像制御部13を制御するD(ダイナミック)レンジ設定装置31と、Dレンジ設定装置31によって制御される露出差補正量算出装置32とを備える。
 更に、撮像装置50は、第1色再現選択部(I)33と、乗算器34と、適正露光画素平均値算出回路35と、アンダー露光画素平均値算出回路36と、第2色再現選択部(II)37とを備える。第1色再現選択部(I)33はナロー画素の撮像画像信号とワイド画素の撮像画像信号を取り込んで、一方を選択する。乗算器34は色再現選択部33によって選択されたナロー画素の撮像画像信号又はワイド画素の撮像画像信号の一方と露出差補正量算出装置32の出力信号とを乗算する。適正露光画素平均値算出回路35は乗算器34の出力信号の平均値を適正露光画素の平均値として算出する。アンダー露光画素平均値算出回路36はナロー画素の撮像画像信号とワイド画素の撮像画像信号の他方の平均値をアンダー露光画素の平均値として算出する。第2色再現選択部(II)37はバス12から取り込んだナロー画素,ワイド画素の撮像画像信号の一方を選択して乗算器21に出力する。平均値算出回路35,36の出力が補正比算出部20に取り込まれ、補正比が算出され、乗算器21に出力される。
 図11は、この撮像装置50で実行される撮像画像処理プログラムの処理手順を示すフローチャートである。先ず、ユーザが設定した、或いは撮像装置50が自動で設定したDレンジが100%であるか200%であるか400%であるかが判定される(ステップS31)。
 Dレンジが100%の場合にはステップS32に進み、露光差補正量=1倍と設定される。Dレンジが200%の場合にはステップS33に進み、露光差補正量=1/2倍と設定される。Dレンジが400%の場合にはステップS34に進み、露光差補正量=1/4倍に設定される。
 露光差補正量とは露光時間の差であり、A群画素の露光時間に対してB群画素の露光時間を同じにすればDレンジが100%となる。一方の画素群の露光時間に対して他方の画素群の露光時間を1/2に設定すれば、Dレンジが200%となりる。一方の画素群の露光時間に対して他方の画素群の露光時間を1/4に設定すれば、Dレンジが400%となる。
 どちらの画素群の露光時間を短くするかは、色再現をワイド側(自然な色合い)にするかナロー側(鮮やかな色合い)にするかによる。A群画素,B群画素のうち露光時間を他方より短くする画素群に属する画素を、以下、アンダー露光画素といい、露光時間を短くして撮影することをアンダー露光撮影という。露光時間を短くしない画素群に属する画素を、以下、適正露光画素といい、その撮影を適正撮影という。
 ステップS32,S33,S34の次にステップS35に進み、色再現がナロー側(鮮やかな色合いにする側)とワイド側(自然な色合いにする側)のどちらであるかを判定する。色再現をナロー側(鮮やかにする側)に合わせる場合には、ステップS36に進み、色再現する側のナロー画素(B群画素)をアンダー露光撮影し、ワイド画素(A群画素)を適正撮影する。この撮影は同時に行い、適正撮影を行う露光時間中にアンダー露光撮影を行う。
 次に、ステップS37では、図4のステップS1,S2と同様に、補正対象画素の周辺にある所定数個の同色のナロー画素の撮像画像信号の平均値が求められると共に、補正対象画素の周辺の所定数個の同色のワイド画素の撮像画像信号の平均値が求められる。そして、補正比が
 補正比=〔ナロー画素平均値〕/〔ワイド画素平均値〕×露光差補正量
として求められる。
 そして、ステップS38で、補正対象画素(この場合にはワイド画素)の撮像画像信号に補正比が乗算され、ワイド画素の撮像画像信号をナロー画素の分光感度に合わせると共に露出差(露光時間の差)も合わせ、この処理を終了する。なお勿論、以上の処理は、補正対象画素の全てに対して行うが、この図11のフローチャートでは、図4のステップS6,S7の図示を省略している。ステップS6,ステップS7を順にステップS38の次に設け、ステップS7の戻る先をステップS37とすれば良い。
 ステップS35で色再現をワイド側(自然な色合いとする側)に合わせる場合には、ステップS35からステップS39に進み、今度は色再現する側のワイド画素(A群画素)をアンダー露光撮影すると共にナロー画素(B群画素)を適正撮影する。
 そして、ステップS40で、補正対象画素の周辺の所定数個の同色のナロー画素の撮像画像信号の平均値が求められると共に、補正対象画素の周辺の所定数個の同色のワイド画素の撮像画像信号の平均値が求められる。そして、補正比が
 補正比=〔ワイド画素平均値〕/〔ナロー画素平均値〕×露光差補正量
として求められる。
 ステップS41では、補正対象画素(この場合にはナロー画素)の撮像画像信号に補正比が乗算され、ナロー画素の撮像画像信号をワイド画素の分光感度に合わせると共に露出差(露光時間の差)も合わせ、この処理を終了する。なお、以上の処理を補正対象画素の全てに対して行うことは勿論である。
 図11のステップS36内、ステップS39内には、アンダー撮影,適正撮影と記載している。しかし、Dレンジを100%としたときは、ナロー画素の露光時間とワイド画素の露光時間は同一時間となるため、「アンダー」「適正」の区別はしないで撮影することになる。
 以上説明した撮像画像処理プログラムは、撮像装置内に組み込まれた場合に限らず、外部のパーソナルコンピュータでも実行することができ、実施形態の撮像装置で撮像された2枚のカラー画像から1枚の高精細なカラー画像を合成する場合や、広ダイナミックレンジのカラー画像を合成する場合に使用できる。撮像画像処理プログラムはハードディスクやROM等の記憶媒体に記憶されていて、CPUやプロセッサによって実行される際にRAM等に読み出されてもよい。また、撮像画像処理プログラムはCD-ROM等の記憶媒体に記憶されていてもよい。
 なお、実施形態の固体撮像素子は、図2に示す様に、市松状に画素を配列した固体撮像素子として説明したが、画素配列はこの実施形態に限るものではない。例えば、図12に示す様に、全画素が正方格子状に配列(カラーフィルタ配列として図示)されていても良い。この図12の固体撮像素子22では、奇数行の画素(A群画素)に3原色のカラーフィルタがベイヤ配列され、偶数行の画素(B群画素)にも3原色のカラーフィルタがベイヤ配列されている。
 この実施形態の固体撮像素子22でも、A群画素にワイドなカラーフィルタR,G,Bが積層され、B群画素にナローなカラーフィルタr,g,bが積層され、1回の撮影動作で同時に、自然な色合いの被写体カラー画像と、鮮やかな色合いの被写体カラー画像を撮像することができるようになっている。
 上述した各実施形態では、自然な色合いのカラー画像を撮影できるカラーフィルタと、鮮やかな色合いのカラー画像を撮影できるカラーフィルタとを搭載した固体撮像素子を例に説明した。しかし、上述した実施形態の画像処理方法は、この様なフィルタに限るものではなく、2種類の色合いの異なるカラー画像を撮影できる固体撮像素子の撮像画像に適用可能である。
 また、上述した画像処理における実施形態では、3原色のカラーフィルタを例に説明した。しかし、補色系のカラーフィルタ(3原色の1色づつが抜けたカラーフィルタ)でも同様に適用可能である。また、ナローな分光感度がワイドな分光感度の完全な内側に来なくても、上記の画像処理方法は適用可能である。
 補色系カラーフィルタについての上記のナローとワイドの関係は次の通りである。赤色(R)の補色がシアン(B+G),青色(B)の補色がイエロー(G+R),緑(G)の補色がマゼンタ(B+R)である。ここで、シアンのナローとシアンのワイドの関係は次の通りである。すなわち、ワイドのシアンを構成するBとナローのシアンを構成するBはナローとワイドの関係を有し、かつワイドのシアンを構成するGとナローのシアンを構成するGもナローとワイドの関係を有する。
 他色のイエロー,マゼンタも同様である。ナローなイエローを構成するGとRの各分光感度の半値幅における波長範囲が、ワイドなイエローを構成するGとRの各分光感度の半値幅の波長範囲の内側に入る。また、ナローなマゼンタを構成するBとRの各分光感度の半値幅の波長範囲が、ワイドなマゼンタを構成するBとRの各分光感度の半値幅の波長範囲の内側に入る。
 更に、各画素の面積は同一であることを前提として説明した。しかし、各群内の各画素の面積が誤差範囲内で同一であれば、A群画素とB群画素の面積が誤差範囲内で同一である必要はない。A群画素とB群画素の面積が誤差範囲内で同一ではないとしても、上記の画像処理方法は適用可能である。
 以上述べた実施形態の撮像装置は、半導体基板に二次元アレイ状に配列形成される複数の画素と、
 該画素の奇数行と偶数行の一方を含む第1画素群の上に所定規則に従って配列して積層される複数の第1の色のカラーフィルタと、
 前記奇数行と前記偶数行の他方を含む第2画素群の上に所定規則に従って配列して積層され、前記複数の第1の色のカラーフィルタとは分光感度が異なる複数の第2の色のカラーフィルタとを有する固体撮像素子と、
 前記複数の第1の色を含むカラーフィルタと前記複数の第2の色を含むカラーフィルタの間の分光感度差による前記第1画素群の画素の撮像画像信号と前記第2画素群の画素の撮像画像信号とのレベル差を求め、該レベル差を補正して前記第1画素群から得られる第1の撮像画像と前記第2画素群から得られる第2の撮像画像とを合成する画像処理部と
 を備える。
 また、実施形態の撮像画像処理方法は、上記記載の固体撮像素子で撮像された画像を処理する撮像画像処理方法であって、前記複数の第1の色を含むカラーフィルタと前記複数の第2の色を含むカラーフィルタの間の分光感度差による前記第1画素群の画素の撮像画像信号と前記第2画素群の画素の撮像画像信号とのレベル差を求め、
該レベル差を補正し、
前記第1画素群から得られる第1の撮像画像と前記第2画素群から得られる第2の撮像画像とを合成する。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記レベル差を、前記補正の対象とする画素の周囲の前記第1画素群に属する所定数画素の前記撮像画像信号の平均値である第1平均値と、前記補正の対象とする画素の周囲の前記第2画素群に属する所定数画素の前記撮像画像信号の平均値である第2平均値とから求め、前記レベル差を補正する。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記第1平均値と前記第2平均値との比を補正比とし、前記補正の対象とする画素の前記撮像画像信号に該補正比を乗算することで前記レベル差を補正する。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記補正比が予め設定された上限値を超えたとき該上限値を前記補正比として用いる。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記第1,第2の撮像画像の中に被写体の輪郭部を示すエッジ部の画像が含まれるか否かを判定し該エッジ部を除いて前記第1平均値,第2平均値を求める。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記第1画素群による撮像と前記第2画素群による撮像とを露出差を持って行われ得られた撮像画像を処理するに当たり、前記レベル差を求め、該レベル差及び前記露出差に基づいて、前記第1画素群と前記第2画素群の一方の画素群の各画素の撮像画像信号を補正し、補正された撮像画像信号と他方の画素群の各画素の撮像画像信号とを合成しダイナミックレンジの広い合成画像を生成する。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記第1画素群の各画素の受光面積と前記第2画素群の各画素の受光面積とが誤差範囲内で同一である。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記複数の第1の数色を含むカラーフィルタの各色の分光感度の半値全幅内に、前記複数の第2のを含むカラーフィルタの対応する色の分光感度の半値全幅が入る。
 また、撮像装置及び撮像画像処理方法は、前記複数の第1の色を含むカラーフィルタの各色の分光感度のピーク値と、前記複数の第2の複数を含むカラーフィルタの対応する色の分光感度のピーク値との比が0.9~1.1の範囲内にある。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記複数の第1の色を含むカラーフィルタが3原色のカラーフィルタであり、前記複数の第2のを含むカラーフィルタが3原色のカラーフィルタである。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記複数の第1の色でなるカラーフィルタが補色系のカラーフィルタであり、前記複数の第2の色でなるカラーフィルタが補色系のカラーフィルタである。
 また、実施形態の撮像装置及び撮像画像処理方法は、前記第1画素群による第1の撮像画像を処理して自然な色合いの被写体画像を生成すると共に、前記第2画素群による第2の撮像画像を処理して鮮やかな色合いの被写体画像を生成する。
 また、実施形態の撮像画像処理プログラムは、上記のいずれかの撮像画像処理方法を実施するステップを備える。
 以上述べた実施形態によれば、色合いの異なる2種類のカラー画像(例えば、自然な色合いのカラー画像と鮮やかな色合いのカラー画像)を同時に撮影することができ、この2種類のカラー画像を違和感無く合成して高精細な画像としたり広ダイナミックレンジの画像とすることが可能となる。
 本発明に係る撮像装置等は新規な固体撮像素子を搭載して、色合いの異なる2種類の被写体カラー画像を同時に撮影できると共に両者を合成して高精細な被写体画像にしたり広ダイナミックレンジの画像にすることができるため、デジタルスチルカメラやデジタルビデオカメラ、カメラ付携帯電話機、PDAやノートパソコン等のカメラ付電子装置、内視鏡等の撮像装置一般に適用すると有用である。
 本発明を詳細に又は特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年4月20日出願の日本特許出願(特願2010-097367)に基づくものであり、その内容はここに参照として取り込まれる。
10,20,30,40 撮像装置
11,22 固体撮像素子
15 CPU
17 ナロー分光画素平均値算出回路
18 ワイド分光画素平均値算出回路
19,33,37 色再現選択部
20 補正比算出部
21 乗算部
23 補正比抑制部
25 ナロー画素エッジ判別部
26 ワイド画素エッジ判別部
31 Dレンジ設定装置
32 露出差補正量算出装置
35 適正露光画素平均値算出回路
36 アンダー露光画素平均値算出回路

Claims (25)

  1.  半導体基板に二次元アレイ状に配列形成される複数の画素と、
     該画素の奇数行と偶数行の一方を含む第1画素群の上に所定規則に従って配列して積層される複数の第1の色のカラーフィルタと、
     前記奇数行と前記偶数行の他方を含む第2画素群の上に所定規則に従って配列して積層され、前記複数の第1の色のカラーフィルタとは分光感度が異なる複数の第2の色のカラーフィルタとを有する固体撮像素子と、
     前記複数の第1の色を含むカラーフィルタと前記複数の第2の色を含むカラーフィルタの間の分光感度差による前記第1画素群の画素の撮像画像信号と前記第2画素群の画素の撮像画像信号とのレベル差を求め、該レベル差を補正して前記第1画素群から得られる第1の撮像画像と前記第2画素群から得られる第2の撮像画像とを合成する画像処理部とを備える撮像装置。
  2.  請求項1に記載の撮像装置であって、前記画像処理部は、前記レベル差を、前記補正の対象とする画素の周囲の前記第1画素群に属する所定数画素の前記撮像画像信号の平均値である第1平均値と、前記補正の対象とする画素の周囲の前記第2画素群に属する所定数画素の前記撮像画像信号の平均値である第2平均値とから求め、前記レベル差を補正する撮像装置。
  3.  請求項2に記載の撮像装置であって、前記画像処理部は、前記第1平均値と前記第2平均値との比を補正比とし、前記補正の対象とする画素の前記撮像画像信号に該補正比を乗算することで前記レベル差を補正する撮像装置。
  4.  請求項3に記載の撮像装置であって、前記画像処理部は、前記補正比が予め設定された上限値を超えたとき該上限値を前記補正比として用いる撮像装置。
  5.  請求項2乃至請求項4のいずれか1項に記載の撮像装置であって、前記画像処理部は、前記第1,第2の撮像画像の中に被写体の輪郭部を示すエッジ部の画像が含まれるか否かを判定し該エッジ部を除いて前記第1平均値,第2平均値を求める撮像装置。
  6.  請求項1に記載の撮像装置であって、
     前記第1画素群による撮像と前記第2画素群による撮像とを露出差を持って行う撮像制御部を更に備え、
     前記画像処理部が、前記レベル差を求め、該レベル差及び前記露出差に基づいて、前記第1画素群と前記第2画素群の一方の画素群の各画素の撮像画像信号を補正し、補正された撮像画像信号と他方の画素群の各画素の撮像画像信号とを合成しダイナミックレンジの広い合成画像を生成する撮像装置。
  7.  請求項1乃至請求項6のいずれか1項に記載の撮像装置であって、前記第1画素群の各画素の受光面積と前記第2画素群の各画素の受光面積とが誤差範囲内で同一である撮像装置。
  8.  請求項1乃至請求項7のいずれか1項に記載の撮像装置であって、前記複数の第1の色を含むカラーフィルタの各色の分光感度の半値全幅内に、前記複数の第2の色を含むカラーフィルタの対応する色の分光感度の半値全幅が入る撮像装置。
  9.  請求項1乃至請求項8のいずれか1項に記載の撮像装置であって、前記複数の第1の色を含むカラーフィルタの各色の分光感度のピーク値と、前記複数の第2の色を含むカラーフィルタの対応する色の分光感度のピーク値との比が0.9~1.1の範囲内にある撮像装置。
  10.  請求項1乃至請求項9のいずれか1項に記載の撮像装置であって、前記複数の第1の色を含むカラーフィルタが3原色のカラーフィルタであり、前記複数の第2の色を含むカラーフィルタが3原色のカラーフィルタである撮像装置。
  11.  請求項1乃至請求項9のいずれか1項に記載の撮像装置であって、前記複数の第1の色でなるカラーフィルタが補色系のカラーフィルタであり、前記複数の第2の色でなるカラーフィルタが補色系のカラーフィルタである撮像装置。
  12.  半導体基板に二次元アレイ状に配列形成される複数の画素と、
     該画素の奇数行と偶数行の一方を含む第1画素群の上に所定規則に従って配列して積層される複数の第1の色のカラーフィルタと、
     前記奇数行と前記偶数行の他方を含む第2画素群の上に所定規則に従って配列して積層され、前記複数の第1の色のカラーフィルタとは分光感度が異なる複数の第2の色のカラーフィルタとを備える固体撮像素子で撮像された画像を処理する撮像画像処理方法であって、
     前記複数の第1の色を含むカラーフィルタと前記複数の第2の色を含むカラーフィルタの間の分光感度差による前記第1画素群の画素の撮像画像信号と前記第2画素群の画素の撮像画像信号とのレベル差を求め、
     該レベル差を補正し、
     前記第1画素群から得られる第1の撮像画像と前記第2画素群から得られる第2の撮像画像とを合成する撮像画像処理方法。
  13.  請求項12に記載の撮像画像処理方法であって、前記レベル差が、前記補正の対象とする画素の周囲の前記第1画素群に属する所定数画素の前記撮像画像信号の平均値である第1平均値と、前記補正の対象とする画素の周囲の前記第2画素群に属する所定数画素の前記撮像画像信号の平均値である第2平均値とから求められ、前記レベル差が補正される撮像画像処理方法。
  14.  請求項13に記載の撮像画像処理方法であって、前記第1平均値と前記第2平均値との比が補正比され、前記補正の対象とする画素の前記撮像画像信号に該補正比を乗算することで前記レベル差が補正される撮像画像処理方法。
  15.  請求項14に記載の撮像画像処理方法であって、
     前記補正比が予め設定された上限値を超えたとき該上限値を前記補正比として用いることを更に有する撮像画像処理方法。
  16.  請求項13乃至請求項15のいずれか1項に記載の撮像画像処理方法であって、
     前記第1,第2の撮像画像の中に被写体の輪郭部を示すエッジ部の画像が含まれるか否かを判定することを更に備え、
     該エッジ部を除いて前記第1平均値,第2平均値が求められる撮像画像処理方法。
  17.  請求項12に記載の撮像画像処理方法であって、前記第1画素群による撮像と前記第2画素群による撮像とを露出差を持って行われ得られた撮像画像を処理するに当たり、前記レベル差を求められ、該レベル差及び前記露出差に基づいて、前記第1画素群と前記第2画素群の一方の画素群の各画素の撮像画像信号が補正され、補正された撮像画像信号と他方の画素群の各画素の撮像画像信号とが合成されてダイナミックレンジの広い合成画像が生成される撮像画像処理方法。
  18.  請求項12乃至請求項17のいずれか1項に記載の撮像画像処理方法であって、前記第1画素群の各画素の受光面積と前記第2画素群の各画素の受光面積とが誤差範囲内で同一である撮像画像処理方法。
  19.  請求項12乃至請求項18のいずれか1項に記載の撮像画像処理方法であって、前記複数の第1の色を含むカラーフィルタの各色の分光感度の半値全幅内に、前記複数の第2の色を含むカラーフィルタの対応する色の分光感度の半値全幅が入る撮像画像処理方法。
  20.  請求項12乃至請求項19のいずれか1項に記載の撮像画像処理方法であって、前記複数の第1の色を含むカラーフィルタの各色の分光感度のピーク値と、前記複数の第2の色を含むカラーフィルタの対応する色の分光感度のピーク値との比が0.9~1.1の範囲内にある撮像画像処理方法。
  21.  請求項12乃至請求項20のいずれか1項に記載の撮像画像処理方法であって、前記複数の第1の色を含むカラーフィルタが3原色のカラーフィルタであり、前記複数の第2の複数色を含むカラーフィルタが3原色のカラーフィルタである撮像画像処理方法。
  22.  請求項12乃至請求項20のいずれか1項に記載の撮像画像処理方法であって、前記複数の第1の色を含むカラーフィルタが補色系のカラーフィルタであり、前記複数の第2の色を含むカラーフィルタが補色系のカラーフィルタである撮像画像処理方法。
  23.  請求項19に記載の撮像画像処理方法であって、前記第1画素群による第1の撮像画像を処理して自然な色合いの被写体画像を生成すると共に、前記第2画素群による第2の撮像画像を処理して鮮やかな色合いの被写体画像を生成する撮像画像処理方法。
  24.  請求項1に記載の固体撮像素子で撮像された画像を処理する撮像画像処理プログラムであって、請求項12乃至請求項23のいずれか1項に記載の撮像画像処理方法を実施するステップが設けられた撮像画像処理プログラム。
  25.  半導体基板に二次元アレイ状に配列形成される複数の画素と、
     該画素の奇数行と偶数行の一方を含む第1画素群の上に所定規則に従って配列して積層される複数の第1の色のカラーフィルタと、
     前記奇数行と前記偶数行の他方を含む第2画素群の上に所定規則に従って配列して積層され、前記複数の第1の色のカラーフィルタとは分光感度が異なる複数の第2の色のカラーフィルタとを備える固体撮像素子で撮像された画像を処理する撮像画像処理をコンピュータに実行させるプログラムを記憶した一時的ではないコンピュータ可読記録媒体であって、
     前記画像処理が
     前記複数の第1の色を含むカラーフィルタと前記複数の第2の色を含むカラーフィルタの間の分光感度差による前記第1画素群の画素の撮像画像信号と前記第2画素群の画素の撮像画像信号とのレベル差を求め、
     該レベル差を補正し、
     前記第1画素群から得られる第1の撮像画像と前記第2画素群から得られる第2の撮像画像とを合成する一時的ではないコンピュータ可読記録媒体。
PCT/JP2011/059431 2010-04-20 2011-04-15 撮像装置並びに撮像画像処理方法と撮像画像処理プログラム WO2011132618A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180020247.4A CN103004211B (zh) 2010-04-20 2011-04-15 成像设备和处理拍摄图像的方法
JP2012511642A JP5663564B2 (ja) 2010-04-20 2011-04-15 撮像装置並びに撮像画像処理方法と撮像画像処理プログラム
US13/656,093 US8736724B2 (en) 2010-04-20 2012-10-19 Imaging apparatus, method of processing captured image, and program for processing captured image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-097367 2010-04-20
JP2010097367 2010-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/656,093 Continuation US8736724B2 (en) 2010-04-20 2012-10-19 Imaging apparatus, method of processing captured image, and program for processing captured image

Publications (1)

Publication Number Publication Date
WO2011132618A1 true WO2011132618A1 (ja) 2011-10-27

Family

ID=44834138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059431 WO2011132618A1 (ja) 2010-04-20 2011-04-15 撮像装置並びに撮像画像処理方法と撮像画像処理プログラム

Country Status (4)

Country Link
US (1) US8736724B2 (ja)
JP (1) JP5663564B2 (ja)
CN (1) CN103004211B (ja)
WO (1) WO2011132618A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253727A (ja) * 2011-06-07 2012-12-20 Toshiba Corp 固体撮像装置及びカメラモジュール
JP2020065185A (ja) * 2018-10-18 2020-04-23 日本放送協会 撮像装置、ストリーキング補正装置および撮像素子

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9413992B2 (en) * 2013-05-20 2016-08-09 Omnivision Technologies, Inc. High dynamic range image sensor with full resolution recovery
US9019405B2 (en) * 2013-05-21 2015-04-28 Stmicroelectronics, Inc. Method and apparatus for wavelength specific correction of distortion in digital images
JP6351271B2 (ja) * 2014-01-17 2018-07-04 オリンパス株式会社 画像合成装置、画像合成方法、およびプログラム
CA2889870A1 (en) * 2015-05-04 2016-11-04 Ignis Innovation Inc. Optical feedback system
US9979907B2 (en) * 2015-09-18 2018-05-22 Sony Corporation Multi-layered high-dynamic range sensor
EP3402187A4 (en) * 2016-01-08 2019-06-12 Olympus Corporation IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM
CN106507080B (zh) * 2016-11-29 2018-07-17 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
JP7050432B2 (ja) 2017-07-05 2022-04-08 ソニーセミコンダクタソリューションズ株式会社 撮像装置
CN110876014B (zh) * 2018-08-31 2022-04-08 北京小米移动软件有限公司 图像处理方法及装置、电子设备及存储介质
KR20220020587A (ko) 2020-08-12 2022-02-21 에스케이하이닉스 주식회사 이미지 센싱 장치
CN115606172A (zh) * 2020-12-16 2023-01-13 华为技术有限公司(Cn) 图像生成方法、装置及电子设备
CN115776617A (zh) * 2021-09-06 2023-03-10 思特威(上海)电子科技股份有限公司 像素结构、图像传感器、设备及图像处理方法、控制方法
CN120152664A (zh) * 2022-11-01 2025-06-13 Oppo广东移动通信有限公司 成像设备及成像系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289728A (ja) * 2003-03-25 2004-10-14 Fuji Photo Film Co Ltd 撮像装置
JP2007209012A (ja) * 2007-03-12 2007-08-16 Sony Corp 画像処理装置および方法、プログラム、並びに記録媒体
JP2009268078A (ja) * 2008-04-01 2009-11-12 Fujifilm Corp 撮像素子及び撮像装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768223B8 (en) * 2001-01-09 2016-11-09 Sony Semiconductor Solutions Corporation Image pick up device
DE60236404D1 (de) * 2001-01-09 2010-07-01 Sony Corp Bildaufnahmegerät
GB0211486D0 (en) * 2002-05-18 2002-06-26 Eastman Kodak Co Processing of digital images
JP4019417B2 (ja) * 2003-01-14 2007-12-12 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
US7542082B2 (en) * 2004-03-30 2009-06-02 Canon Kabushiki Kaisha Method and apparatus for correcting a defective pixel
JP3926363B2 (ja) * 2004-11-04 2007-06-06 三菱電機株式会社 画素信号処理装置及び画素信号処理方法
JP3729842B1 (ja) * 2004-12-02 2005-12-21 三菱電機株式会社 画素信号処理装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289728A (ja) * 2003-03-25 2004-10-14 Fuji Photo Film Co Ltd 撮像装置
JP2007209012A (ja) * 2007-03-12 2007-08-16 Sony Corp 画像処理装置および方法、プログラム、並びに記録媒体
JP2009268078A (ja) * 2008-04-01 2009-11-12 Fujifilm Corp 撮像素子及び撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253727A (ja) * 2011-06-07 2012-12-20 Toshiba Corp 固体撮像装置及びカメラモジュール
JP2020065185A (ja) * 2018-10-18 2020-04-23 日本放送協会 撮像装置、ストリーキング補正装置および撮像素子

Also Published As

Publication number Publication date
CN103004211B (zh) 2015-09-02
US8736724B2 (en) 2014-05-27
JP5663564B2 (ja) 2015-02-04
CN103004211A (zh) 2013-03-27
US20130038761A1 (en) 2013-02-14
JPWO2011132618A1 (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2011132618A1 (ja) 撮像装置並びに撮像画像処理方法と撮像画像処理プログラム
WO2021208593A1 (zh) 高动态范围图像处理系统及方法、电子设备和存储介质
JP4051674B2 (ja) 撮像装置
US20150009370A1 (en) Method and apparatus for eliminating crosstalk amount included in an output signal
US7643072B2 (en) Signal processing method for image capturing apparatus, and image capturing apparatus including calculating image transfer efficiency
CN102883108B (zh) 摄像设备及其控制方法、图像处理设备和方法
US9060159B2 (en) Image processing device and method, and imaging device
WO2016047240A1 (ja) 画像処理装置、撮像素子、撮像装置および画像処理方法
JP2016012746A (ja) 信号処理装置、信号処理方法及び信号処理プログラム
US9160999B2 (en) Image processing device and imaging device
US8218021B2 (en) Image capture apparatus, method of controlling the same, and program
CN101473659A (zh) 摄像装置以及信号处理方法
US8970747B2 (en) Imaging device
JP2007318630A (ja) 画像入力装置、撮像モジュール、及び固体撮像装置
JP2005080190A (ja) ホワイトバランス調整方法及び電子カメラ
JP4028395B2 (ja) デジタルカメラ
JP2013219452A (ja) 色信号処理回路、色信号処理方法、色再現評価方法、撮像装置、電子機器、及び、試験装置
JP2006333113A (ja) 撮像装置
JP4735820B2 (ja) 撮像装置の信号処理方法及び撮像装置
JP4276847B2 (ja) 撮像装置
JP4852490B2 (ja) 撮像装置及びそのポストビュー画像生成方法
JP4769851B2 (ja) 撮像装置
JP2006279389A (ja) 固体撮像装置およびその信号処理方法
JP2012253727A (ja) 固体撮像装置及びカメラモジュール
JP2004222161A (ja) デジタルカメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511642

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771953

Country of ref document: EP

Kind code of ref document: A1