[go: up one dir, main page]

WO2011129282A1 - Laser processing apparatus - Google Patents

Laser processing apparatus Download PDF

Info

Publication number
WO2011129282A1
WO2011129282A1 PCT/JP2011/058929 JP2011058929W WO2011129282A1 WO 2011129282 A1 WO2011129282 A1 WO 2011129282A1 JP 2011058929 W JP2011058929 W JP 2011058929W WO 2011129282 A1 WO2011129282 A1 WO 2011129282A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
laser
laser light
irradiation area
processing chamber
Prior art date
Application number
PCT/JP2011/058929
Other languages
French (fr)
Japanese (ja)
Inventor
達郎 松島
大介 伊藤
祐貴 佐塚
昌吉 時久
洋輔 田子
良 清水
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010091802A external-priority patent/JP5467578B2/en
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN201180018247.0A priority Critical patent/CN102834899B/en
Priority to KR1020127024497A priority patent/KR101896949B1/en
Priority claimed from JP2011086145A external-priority patent/JP5447991B2/en
Priority to TW100112641A priority patent/TWI471914B/en
Publication of WO2011129282A1 publication Critical patent/WO2011129282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to a laser processing apparatus that performs processing such as laser annealing by irradiating an object to be processed with laser light.
  • a semiconductor thin film used for a flat panel display substrate or the like As a semiconductor thin film used for a flat panel display substrate or the like, a semiconductor thin film using an amorphous film or a crystalline thin film is known. With respect to this crystalline thin film, a method of manufacturing an amorphous film by annealing it with laser light and crystallization has been proposed. In addition, a laser annealing process is also known which is performed for the purpose of modifying defects such as removing defects and improving crystallinity by irradiating a crystalline film with laser light.
  • a method of removing the influence of air and controlling to an optimum atmosphere for crystallization and the like is adopted.
  • an inert gas such as nitrogen, a vacuum, etc.
  • a method is also known in which a small amount of oxygen or the like is positively mixed in the atmosphere.
  • the object to be processed is accommodated in the processing chamber, the atmosphere in the accommodation chamber is adjusted, laser light is introduced from the outside of the processing chamber, and the object is irradiated.
  • the atmosphere is mixed into the processing chamber by opening the charging port of the processing chamber.
  • the processing chamber 45 is provided with a stage 46 on which the workpiece 100 is loaded and placed, and the top plate of the processing chamber 45 is provided with an introduction window 47 for introducing laser light from the outside.
  • a transfer robot chamber 43 is connected to the processing chamber 45 via a gate valve 44, and a load lock chamber 41 is connected to the transfer robot chamber 43 via a gate valve 42. Outside the load lock chamber 41, a transfer robot 40 that transfers the workpiece 100 into the load lock chamber 41 is disposed.
  • the load lock chamber 41, the transfer robot chamber 43, and the processing chamber 45 communicate with each other through gate valves 42 and 44 in a vacuum or a predetermined gas atmosphere.
  • the gate valve (not shown) of the load lock chamber 41 is opened while the gate valves 42 and 44 are closed, and the workpiece 100 is placed in the load lock chamber 41 by the transfer robot 40.
  • the gate valve of the load lock chamber 41 is closed.
  • the gate valve 42 is opened to transfer the object 100 to be transferred from the load lock chamber 41 to the transfer robot chamber 43, and the gate valve 44 is further opened to load the object 100 into the processing chamber 45 to load the load lock chamber. 44 is closed and laser annealing or the like is performed. This makes it possible to perform a desired process while maintaining the atmosphere in the processing chamber 45.
  • the processing chamber is maintained in a predetermined atmosphere (for example, a nitrogen atmosphere with a low oxygen concentration), and the atmosphere of the atmosphere can be maintained only in the load lock chamber when the workpiece is unloaded and loaded. Since replacement may be performed, processing can be performed without the need for adjusting the atmosphere in the processing chamber.
  • a predetermined atmosphere for example, a nitrogen atmosphere with a low oxygen concentration
  • the cost for providing the transfer robot chamber and the load lock chamber is high, and it is necessary to secure a large installation space other than the processing chamber.
  • time and running costs are required to replace the atmosphere in the load lock chamber with nitrogen gas or inert gas each time the object is unloaded and loaded, and the time for conveying the object to be treated There is also a problem that increases.
  • the present invention has been made to solve the conventional problems as described above, and is capable of stabilizing the atmosphere in the processing apparatus in a short time without requiring the installation of a load lock chamber.
  • the purpose is to provide.
  • the first aspect of the present invention includes a processing chamber for irradiating the target object with laser light in an atmosphere adjusted to contain the target object, and an outside in the processing chamber.
  • An optical system for guiding laser light from The processing chamber has an openable and closable inlet for charging the object to be processed into the processing chamber from the outside of the processing chamber, a load area connected to the charging port in the processing chamber, and the load area And a laser beam irradiation area connected to The load area has a partition portion that partitions the space on the inlet side continuous with the inlet and a space on the laser light irradiation area side including the laser light irradiation area, and the partition portion is on the inlet side.
  • the object to be processed can be moved between the space and the space on the laser light irradiation area side.
  • the processing chamber has a load area and a laser beam irradiation area
  • the partition portion included in the load area includes the laser beam irradiation area and the laser beam irradiation area including the space on the inlet side connected to the inlet.
  • the load area is preferably provided adjacent to the loading port so as to be continuous with the loading port, and the load area is located between the loading port and the laser light irradiation area.
  • the load area is an area in which the object to be processed inserted from the loading port is moved and held, and is a space including a holding position where the object to be processed is held in preparation for processing.
  • the object to be processed is loaded up to the holding position of the load area, moved from the load area to the laser light irradiation area, and subjected to predetermined processing.
  • the partition portion allows the object to be processed to move from the load area to the laser light irradiation area.
  • An opening can be provided in the partition, and the object to be processed can be moved through the opening.
  • the object to be processed can be smoothly moved from the load area to the laser light irradiation area.
  • released may be sufficient and an opening / closing operation
  • it may be in an open state as the object to be processed moves, such as a gas curtain.
  • the process with respect to a to-be-processed object can mention the laser annealing which crystallizes the to-be-processed object which is an amorphous
  • the content of the process is not limited to these, and any process may be used as long as the target object is irradiated with laser light.
  • a semiconductor for example, a silicon semiconductor
  • the type of the present invention is not particularly limited, and the processing is performed. As long as it is targeted in accordance with the purpose.
  • the said process is performed in a process chamber in the adjusted atmosphere.
  • the atmosphere excludes an air atmosphere, and examples thereof include an inert gas atmosphere and a vacuum atmosphere.
  • the atmosphere which adjusted humidity, temperature, etc. may be sufficient. That is, in the present invention, the type of the adjusted atmosphere is not particularly limited as long as it is other than the atmosphere and adjusted to a predetermined condition.
  • the partition portion includes a partition wall that partitions the space on the inlet side and the space on the laser light irradiation area side.
  • the laser processing apparatus is characterized in that, in the first aspect of the present invention, the partition portion includes an atmosphere gas curtain that partitions the space on the inlet side and the space on the laser light irradiation area side. It is characterized by.
  • a partition wall partitioning the space on the loading inlet side and the space on the laser light irradiation area side, a gas curtain using atmospheric gas, or the like can be used as the partition portion.
  • the partition wall and the gas curtain may extend over the entire partition part, or a part of the partition wall and the gas curtain may be configured by the partition wall and the gas curtain, and the partition wall and the gas curtain are mixed. May be.
  • the partition portion includes the load area as the loading-inside space and the laser as the laser light irradiation area-side space. It is characterized by partitioning the light irradiation area.
  • the laser processing apparatus is the laser processing apparatus according to any one of the first to third aspects of the present invention, wherein the partition portion includes the loading side space in the load area and a part of the load area.
  • the light irradiation area side space is partitioned off.
  • the partition portion is inserted into the loading side space in the load area and the load area. Further, the laser beam irradiation area side space including the holding position side space where the object to be processed is held is partitioned.
  • the partitioning portion can be divided at any position in the load area. At the foremost position, the load area serving as the loading side space and the laser light irradiation area serving as the laser light irradiation area side space are partitioned. As a result, the load area can be adjusted as a load lock area. Further, the partitioning position can be set in the load area, and as one form thereof, a partitioning part can be divided into a space on the loading inlet side and a space on the holding position side as the laser light irradiation area side space. Usually, the position where the workpiece is held on the upper surface of the stage is the holding position. Therefore, a typical example of the partitioning position is a partitioning in a load area that includes a stage and a space that does not include a stage.
  • a laser processing apparatus is the laser processing apparatus according to any one of the first to sixth aspects of the present invention, wherein an inlet side air supply device and an inlet side exhaust device are connected to the inlet side space so as to allow ventilation. It is characterized by.
  • An air supply / exhaust device may be connected to the charging inlet side space. This makes it possible to easily adjust the atmosphere in the inlet side space.
  • nitrogen gas, inert gas, or the like can be introduced into the inlet side space, and in the inlet side exhaust device, exhaust or evacuation of the inlet side space can be performed.
  • the atmosphere in the inlet side space is adjusted by 1) when the object to be processed is carried into and out of the processing chamber, 2) during processing, and 3) when the object to be processed is transported in the processing chamber, in each case This can be done using an exhaust device.
  • Air atmosphere mixed into the inlet side space by air supply / exhaust can be replaced in a short time with nitrogen or other atmosphere that does not easily affect laser processing other than air. As described above, it is possible to stabilize the atmosphere of the irradiation unit in a short time by reducing the influence on the atmosphere of the laser beam irradiation unit due to air mixing.
  • the laser processing apparatus according to any one of the first to seventh aspects of the present invention, wherein an irradiation area supply device and an irradiation area exhaust device are connected to the laser light irradiation area so as to allow ventilation. It is characterized by being.
  • An air supply / exhaust device may be connected to the laser light irradiation area. Thereby, the atmosphere of a laser beam irradiation area can be maintained as constant as possible.
  • An air supply / exhaust device may be provided in each of the laser beam irradiation area and the load entrance side space of the load area.
  • a laser processing apparatus is the processing object transfer apparatus according to any one of the first to eighth aspects of the present invention, which moves the object to be processed between the load area and the laser beam irradiation area. Is provided in the inside of the processing chamber.
  • the object to be processed inserted into the load area can be moved to the laser light irradiation area by the object transfer device provided inside the processing chamber. Moreover, a to-be-processed object can be moved from a laser beam irradiation area to a load area as needed. Accordingly, it is not necessary to provide a transfer robot chamber for moving an object to be processed from the load lock chamber to the processing chamber outside the processing chamber unlike the conventional apparatus.
  • a laser processing apparatus is the method according to the ninth aspect, wherein the object transfer device is movable between the load area and the laser light irradiation area while holding the object to be processed. It has a characteristic stage.
  • the workpiece to be loaded in the load area can be held on the stage and moved to the laser light irradiation area as it is. Note that the stage can be moved between both areas even when the object to be processed is not held.
  • the laser processing apparatus is the laser processing apparatus according to the tenth aspect of the present invention, wherein the workpiece transfer apparatus moves the stage relative to the laser light in the laser light irradiation area. It is characterized by scanning light.
  • the laser processing apparatus is characterized in that, in the tenth or eleventh aspect of the present invention, when the stage is positioned on the load area side, the stage constitutes a part of the partition portion. .
  • a laser processing apparatus is the apparatus according to any one of the tenth to twelfth aspects of the present invention, wherein the stage is loaded on the loading side of the stage waiting from the lower side of the loading port to the load area side in the processing chamber.
  • a lower partition wall that extends to an end position and partitions with the stage below the inlet side space or below the inlet side space and the laser light irradiation area side space is provided as a part of the partition part.
  • the laser processing apparatus according to any one of the first to thirteenth aspects of the present invention, wherein the partition portion includes the space on the inlet side in the front-rear direction of the object to be processed and the laser. It has the front partition wall partitioned off into the space by the side of a light irradiation area, It is characterized by the above-mentioned.
  • the partition portion may have a front partition wall that partitions into a space on the inlet side and a space on the laser light irradiation area side in the front-rear direction of the object to be processed. Thereby, a space can be partitioned back and forth in the loading direction of the object to be processed.
  • the front partition wall When the front partition wall is positioned in the load area, it is desirable to dispose the front partition wall in a position that partitions the space on the holding position side where the workpiece is inserted and held from the space on the inlet side. Thereby, it is possible to avoid as much as possible that the atmosphere is affected by the insertion of the object to be processed in the space on the holding position side, and further on the space on the laser light irradiation area side.
  • the front partition wall is disposed at a position where the front partition wall is partitioned into a load area and a laser beam irradiation area, the load area can be used as a load lock area.
  • the laser processing apparatus is the laser processing apparatus according to any one of the first to fourteenth aspects of the present invention, wherein the laser inlet extends from both sides of the inlet into the laser light irradiation area side in the processing chamber.
  • a side partition wall that partitions the side of the side space or the side of the inlet side space and the side of the laser light irradiation area side space is provided as a part of the partition part.
  • the arrangement of the side partition walls can avoid communication between the loading side space of the load area and the laser light irradiation side space through the side space.
  • the laser processing apparatus according to any one of the first to fifteenth aspects of the present invention, wherein the load area is divided into a space on the loading inlet side connected to the loading inlet and a space on the laser light irradiation area side.
  • the partition part for partitioning is provided as a first partition part, and the partition part for partitioning the load area and the laser light irradiation area is provided as a second partition part.
  • the space on the inlet side and the laser light irradiation area can be more reliably partitioned by the second partition.
  • a laser processing apparatus for irradiating a laser beam on the target object in an atmosphere adjusted to contain the target object, and an optical system for guiding the laser beam from the outside into the process chamber.
  • the processing chamber has an openable / closable inlet for charging the object to be processed into the processing chamber from the outside of the processing chamber, a load lock area connected to the charging port in the processing chamber, and the load A laser beam irradiation area that continues to the lock area, The object can be moved between the load lock area and the laser light irradiation area.
  • the influence on the atmosphere outside the inlet side space can be reduced, the atmosphere in the laser light irradiation area can be controlled in a stable state in a short time, and the processing time of the object to be processed can be reduced.
  • the processing effect is improved, for example, it becomes possible to crystallize a uniform amorphous semiconductor thin film.
  • installation of a load lock room, a transfer robot room, and the like is unnecessary, and space efficiency is improved.
  • FIG. 1 is a longitudinal sectional view of a front side showing an outline of a laser annealing treatment apparatus according to an embodiment of the present invention. Similarly, it is sectional drawing by the side of a plane. Similarly, it is sectional drawing in a left side surface. Similarly, it is sectional drawing in a right side surface. It is a longitudinal cross-sectional view of the front side which shows the outline of the laser annealing treatment apparatus in other embodiment of this invention. Similarly, it is sectional drawing by the side of a plane. It is a longitudinal cross-sectional view of the front side which shows the outline of the laser annealing treatment apparatus in further another embodiment of this invention. Similarly, it is sectional drawing by the side of a plane.
  • a sectional view (a) on the left side and a sectional view (b) on the right side It is a longitudinal cross-sectional view of the front side which shows the outline of the laser annealing treatment apparatus in further another embodiment of this invention. Similarly, it is sectional drawing in a left side surface. It is a longitudinal cross-sectional view of the front side which shows the outline of the laser annealing treatment apparatus in further another embodiment of this invention. It is the schematic which shows the conventional laser annealing processing apparatus.
  • FIG. 1 is a front sectional view of the laser processing apparatus 1
  • FIG. 2 is a plan sectional view
  • FIG. 3 is a left side sectional view
  • FIG. 4 is a right side sectional view.
  • the laser processing apparatus 1 includes a processing chamber 2, a laser oscillator 3 outside the processing chamber 2, and an optical system 4 that shapes the laser light 3 a output from the laser oscillator 3 and guides it to the processing chamber 2. .
  • the processing chamber 2 has an introduction window 5 that guides the laser beam 3a from the outside of the processing chamber 2 into the processing chamber 2 as a part of the optical system 4, and the laser beam 3a guided through the introduction window 5 is:
  • the object to be processed 100 is irradiated through a transmission hole 6 a provided in a shield box 6 provided in the processing chamber 2.
  • the shield box 6 sprays a shielding gas on the irradiated portion of the workpiece 100.
  • An inlet 7 is provided on the side wall 2 a of the processing chamber 2, and a gate valve 8 that opens and closes the inlet 7 is provided.
  • a transfer robot 9 is located outside the processing chamber 2 on the side where the loading port 7 is located.
  • the gate valve 8 is provided on the side wall side of the processing chamber 2, but a configuration such as providing the gate valve 8 on the front side in FIG. 1 is also possible.
  • a stage 10 that can move in the front-rear direction and the left-right direction with respect to the loading direction of the workpiece 100 is installed in the processing chamber 2, and the stage 10 is moved by a moving device 11.
  • the moving device 11 has a role as a workpiece transfer device of the present invention.
  • the stage 10 has a planar rectangular shape, has a standby position closer to the loading port 7 than the shield box 6, and has a gap with the loading port 7. It is not necessary to have a large gap between the shield box 6 and the standby position.
  • the amount of the gap between the stage 10 at the standby position and the loading port is not particularly limited in the present invention, and examples thereof include 100 to 300 mm.
  • a space from the loading opening 7 to the front end of the stage 10 at the standby position is a load area A, and a space ahead of the front end of the stage 10 is a laser light irradiation area B.
  • the upper surface of the stage 10 at the standby position is a holding position of the workpiece 100.
  • side partition walls 12 and 12 along the front-rear direction are arranged at both side end positions of the stage 10 with the plate surfaces being vertical.
  • the side surface partition wall 12 is in close contact with the top plate 2b of the processing chamber 2 and the side wall 2a of the processing chamber without any gap.
  • the loading / unloading port 7 is accommodated between the side partition walls 12 on both sides.
  • the front ends of the side partition walls 12 and 12 are located with a slight gap from the rear end surface of the stage 10.
  • the lower end of the side partition wall 12 extends to a position slightly above the lower end portion of the stage 10.
  • the side partition walls 12 and 12 constitute a part of the partition portion of the present invention.
  • a lower horizontal partition wall 13 having an upper surface located at substantially the same height as the upper surface height of the stage 10 is disposed between the side partition walls 12 and 12 with the plate surface horizontal, and the lower horizontal partition wall 13 is Extending in the left-right direction, both end surfaces in the left-right direction are in close contact with the inner surfaces of the side partition walls 12, 12 without a gap.
  • the lower horizontal partition wall 13 corresponds to the lower partition wall of the present invention.
  • the front end of the lower horizontal partition wall 13 extends to the front end of the side partition wall 12. Therefore, the front end of the lower horizontal partition wall 13 has a slight gap with the rear end surface of the stage 10.
  • the rear end of the lower horizontal partition wall 13 reaches the opening of the loading port 7 in the vicinity of the side wall 2a.
  • a rear vertical partition wall 14 having a vertical plate surface is bent downward and continuous at the rear end of the lower horizontal partition wall 13, and the rear vertical partition wall 14 extends in the left-right direction and extends in the left-right direction. Are in close contact with the inner surfaces of the side partition walls 12, 12 without any gaps.
  • the rear surface of the rear vertical partition wall 14 closes the lower side of the opening of the loading port 7 and extends downward to the same position as the lower end of the side partition wall 12 in close contact with the side wall 2a. .
  • the rear vertical partition wall 14 blocks the lower side of the loading port 7. An opening necessary for loading the workpiece 100 is secured at the loading port 7 that is open without being blocked by the rear vertical partition wall 14.
  • the lower horizontal partition wall 13 and the rear vertical partition wall 14 constitute a part of the partition portion of the present invention.
  • a front vertical partition wall 15 is disposed between the side partition walls 12, 12 with the plate surface being vertical, and the upper end surface of the front vertical partition wall 15 is located in the processing chamber 2.
  • the top plate 2b is in close contact with the gap.
  • the front vertical partition wall 15 extends left and right, and both end surfaces in the left-right direction are in close contact with the inner surfaces of the side partition walls 12 and 12 without a gap.
  • the lower end of the front vertical partition wall 15 does not reach the upper surface of the lower horizontal partition wall 13, and a gap G1 is secured between the upper surface and the upper surface.
  • the front vertical partition wall 15 corresponds to the front partition wall of the present invention and constitutes a part of the partition portion. The workpiece 100 can be moved through the gap G1, and the gap G1 constitutes an opening of the partition.
  • the above-mentioned side partition walls 12, 12, the lower horizontal partition wall 13, the rear vertical partition wall 14, and the front vertical partition wall 15 constitute a partition wall serving as a partition portion of the present invention.
  • the partition wall is preferably made of a material that is not easily contaminated by oxygen or the like. For example, an alumite-treated aluminum plate can be used.
  • the space surrounded by the side partition walls 12, 12, the lower horizontal partition wall 13, the rear vertical partition wall 14, and the front vertical partition wall 15 becomes a loading-side space A 1 of the load area A, and is a space on the stage 10 that has been waiting.
  • the laser light irradiation side space A2 is a holding position side space of the workpiece 100.
  • the stage 10 moves in the left-right direction.
  • the partition part was demonstrated as a fixed thing above, it is also possible to comprise a partition part with the thing of a movable thing or a variable shape.
  • an inlet side air supply line 16 capable of supplying an atmosphere gas such as nitrogen and argon to the inlet side space A1, and a device for exhausting the atmospheric gas in the inlet side space A1.
  • An inlet side exhaust line 17 is connected.
  • Each line is provided with an on-off valve 16a, a flow meter 16b, an on-off valve 17a, and a flow meter 17b.
  • the inlet-side air supply line 16, the on-off valve 16a, and the flow meter 16b constitute a part of the inlet-side air supply device of the present invention.
  • the inlet-side exhaust line 17, the on-off valve 17a, and the flow meter 17b Constitutes a part of the inlet side exhaust device of the present invention.
  • the function as a gas curtain is obtained by blowing out gas from the slight gap between the partition wall and the stage 10 to the outside, Shielding property is improved. Therefore, it is desirable to make the gap between the partition wall and the stage 10 as small as possible so as not to impair the movement of the stage, and to make it small enough to obtain the effect of the gas curtain by supplying the atmospheric gas. desirable.
  • the laser light irradiation area B is irradiated with an irradiation area supply line 18 capable of supplying an atmosphere gas such as nitrogen or argon into the laser light irradiation area B and exhausting the atmospheric gas within the laser light irradiation area B.
  • An area exhaust line 19 is connected.
  • Each line is provided with an on-off valve 18a, a flow meter 18b, an on-off valve 19a, and a flow meter 19b.
  • the irradiation area supply line 18, the on-off valve 18a, and the flow meter 18b constitute a part of the irradiation area supply apparatus of the present invention, and the irradiation area exhaust line 19, the on-off valve 19a, and the flow meter 19b of the present invention.
  • This constitutes a part of the irradiation area exhaust device.
  • it may have only the air supply / exhaust device on the inlet side, and may not have the air supply / exhaust device in the irradiation area.
  • the stage 10 is moved to the standby position, the gate valve 8 is closed, and the flow rate is adjusted by the flow meters 16b, 17b, 18b, 19b, and the on-off valves 16a, 17a, 18a, 19a are opened. Then, the atmosphere in the processing chamber 2 is adjusted by supplying atmospheric gas together with the exhaust. In addition, the irradiation area supply line 18 and the irradiation area exhaust line 19 provided in the laser light irradiation area B continue to supply and exhaust air until the object 100 is carried in, processed, and untreated. It is desirable to make it.
  • the gate valve 8 When the atmosphere adjustment in each area is completed by supplying and exhausting air, the gate valve 8 is opened, and the workpiece 100 is loaded from the loading port 7 into the loading side space A1 in the loading area A by the transfer robot 9, and The workpiece 100 is loaded from the loading space A1 to the laser light irradiation area space A2 through the gap G1, and is placed and held at the holding position on the stage 10.
  • the gate valve 8 When the gate valve 8 is opened, it is desirable to only supply air to the inlet side space A1 by the inlet side air supply line 16 to prevent outside air from being mixed into the inlet side space A1.
  • the gate valve 8 is closed to supply air through the inlet side air supply line 16 and irradiation area air supply line 18, and to the inlet side exhaust. Exhaust by the line 17 and the irradiation area exhaust line 19 is performed to stabilize the atmosphere in the processing chamber 2. At this time, almost no air is mixed into the laser light irradiation area B, and only a time for stabilizing the atmosphere in the inlet side space A1 is required, so the processing time for stabilizing the atmosphere is shortened.
  • the stage 10 is moved to the left in FIG. Since part of the object to be processed 100 reaches the irradiation position in the middle of the movement, the irradiation of the laser light can be started before the object to be processed 100 completely moves to the laser light irradiation area B.
  • the laser beam 3 a is output from the laser oscillator 3, passes through the optical system 4, the introduction window 5 in the optical system 4, and the shield box 6 in the processing chamber 2.
  • the processing body 100 is irradiated.
  • the stage 10 is scanned in the laser beam 3 a by moving in the front-rear direction by the moving device 11. During scanning, the stage 10 can move to the load area A side, and the space on the load area A side can be used. Further, by moving the stage 10 in the left-right direction and changing the scanning position, it is possible to perform processing by laser light irradiation over the entire surface of the object 100 to be processed. In the processing, the partition wall does not hinder the movement of the stage 10 and the workpiece 100.
  • the object 100 can be processed efficiently.
  • the object 100 to be processed is moved to the load area A side by the moving device 11 together with the stage 10, and the gate is supplied to the inlet side space A1 side only by the inlet side space air supply line 16.
  • the valve 8 is opened and carried out of the processing chamber 2 by the transfer robot 9. Thereafter, the same processing can be performed by loading another processing body 100 in the same manner as described above.
  • the side partition wall 12 has a front end located near the rear end of the stage 10 in the standby position, and the load area is placed in the loading space and the laser beam irradiation side space similar to the holding position side space.
  • the front end position of the partition portion may be provided in the holding position side space.
  • FIG. 5 is a vertical cross-sectional view of the processing chamber 2
  • FIG. 6 is a plan view in which the top plate is omitted.
  • symbol is attached
  • side partition walls 20 and 20 along the front-rear direction are disposed at both side end positions of the stage 10 with the plate surface being vertical.
  • the side partition walls 20, 20 have the same shape as the side partition walls 12, 12 on the rear side, and the front side extends into the holding position side space so that the lower end is positioned directly above the upper surface of the stage 10. is doing.
  • the upper end surfaces of the side partition walls 20, 20 are in close contact with the top plate 2 b of the processing chamber 2 without a gap.
  • the lower horizontal partition wall 13 is located near the back of the standby stage 10 in the same manner as in the above embodiment, and the rear vertical partition wall 14 is provided on the loading port 7 side.
  • the front end of the side partition plate 20 is in a position that does not overlap the rear end of the stage 10 when the stage 10 is positioned in the forefront when the stage 10 moves. Accordingly, the stage 10 does not interfere with the side partition wall 20 when the workpiece 10 is moved to the left and right while holding the workpiece 100.
  • a front vertical partition wall 21 having a plate surface that is vertical is provided on the side partition walls 20 on both sides.
  • the front vertical partition wall 21 has an upper end surface that is in close contact with the top plate 2b of the processing chamber 2, and further extends in the left and right directions so that both left and right end surfaces are in close contact with the inner surfaces of the side partition walls 20 on both sides.
  • the front vertical partition wall 21 corresponds to the front partition wall of the present invention.
  • a gap G ⁇ b> 2 is secured between the lower end of the front vertical partition wall 21 and the upper surface of the stage 10.
  • the front vertical partition wall 21 constitutes a part of the partition portion of the present invention.
  • the workpiece 100 can be moved through the gap G2, and the gap G2 constitutes an opening part of the partition part.
  • the side partition plates 20, 20, the lower horizontal partition plate 13, the rear vertical partition wall 14, and the front vertical partition wall 21 constitute a partition wall that serves as a partition portion of the present invention.
  • the load area A is allocated from the loading port 7 to the front end side of the stage 10 at the standby position, and the shield box 6 side is allocated to the laser light irradiation area B.
  • the partition wall composed of the side partition walls 20, 20, the lower horizontal partition wall 13, the rear vertical partition wall 14, and the front vertical partition wall 21 covers the periphery of the inlet 7 side space, and the load area A is connected to the inlet side space.
  • A3 and a laser beam irradiation area side space A4 are partitioned to obtain shielding properties.
  • the inlet side air supply line 16 and the inlet side exhaust line 17 are connected to the inlet side space A3 in the same manner as in the above-described embodiment, and the gas curtain action is performed by the supply of air from the inlet side air supply line 16.
  • the shielding property can be improved, and the air mixed in by the inlet side exhaust line 17 can be eliminated early.
  • the laser light irradiation area B is connected with a laser light irradiation side supply line 18 and a laser light irradiation side exhaust line 19.
  • the object to be processed 100 can be carried into the processing chamber 2, processing by laser light irradiation, and the object to be processed 100 can be carried out of the processing chamber 2 in the same manner as in the above embodiment.
  • the atmosphere of the laser beam irradiation area B can be maintained as much as possible, and the atmosphere can be stabilized in a short time when the object 100 is loaded and unloaded.
  • the laser processing apparatus 1 includes a processing chamber 2, a laser oscillator 3 outside the processing chamber 2, and a laser beam 3 a output from the laser oscillator 3 and optically guided to the processing chamber 2.
  • System 4 is provided.
  • the processing chamber 2 has an introduction window 5 that guides the laser beam 3a from the outside of the processing chamber 2 into the processing chamber 2 as a part of the optical system 4, and the laser beam 3a guided through the introduction window 5 is:
  • the object to be processed 100 is irradiated through a transmission hole 6 a provided in a shield box 6 provided in the processing chamber 2.
  • the shield box 6 sprays a shielding gas on the irradiated portion of the workpiece 100.
  • An inlet 7 is provided on the side wall 2 a of the processing chamber 2, and a gate valve 8 that opens and closes the inlet 7 is provided.
  • a transfer robot 9 is located outside the processing chamber 2 on the side where the loading port 7 is located.
  • a stage 10 is installed in the processing chamber 2, and the stage 10 is moved by a moving device 11.
  • the moving device also has a role as a workpiece transfer device of the present invention.
  • the stage 10 has a planar rectangular shape, and has a standby position closer to the loading port 7 than the shield box 6.
  • side partition walls 30 and 30 are fixed along the top side edge of the stage 10 so that the upper end of the processing chamber 2 is closely attached to the top plate 2b without gaps.
  • the lower end surfaces of the side partition walls 30 and 30 and the upper surface of the stage 10 have only a small gap.
  • the object 100 mounted on the stage 10 passes through the gap between the lower end surface of the side partition walls 30 and 30 and the upper surface of the stage 10. It is formed in a size that can be done.
  • the gap can be made narrower to improve the airtightness.
  • the gap between the upper surface of the stage 10 and the side partition wall 30 may be partially reduced at a portion that does not interfere with the workpiece 100 held on the stage 10.
  • the side partition walls 30, 30 are connected to rear side partition walls 30a, 30a extending downward from the rear end side of the stage 10 along the rear end surface of the stage 10 on the loading port 7 side.
  • the partition walls 30a and 30a are in close contact with the side wall 2a on the loading port 7 side, and the front end surfaces of the rear side partition walls 30a and 30a have a slight clearance from the rear end surface of the stage 10 in the standby position. ing.
  • both lower end portions of the rear side partition walls 30a, 30a extend to the lower side of the loading port 7, and the lower side portions of the rear side partition walls 30a, 30a are positioned below the loading port 7.
  • a lower horizontal partition wall 31 having a flat plate surface is installed.
  • the lower horizontal partition wall 31 has a rear end face that is in close contact with the side wall 2a without any gap, extends left and right, and both left and right end faces are in close contact with the inner surfaces of the rear side face partition walls 30a and 30a.
  • the front end surface of the lower horizontal partition wall 31 extends to the front end surface of the rear side partition wall 30a. That is, the front end surface of the lower horizontal partition wall 31 has a slight gap with the rear end surface of the stage 10 in the standby position.
  • the front side end portions of the side partition walls 30 and 30 extend to the front end of the stage 10 in the standby position, and a vertical plate-like front vertical portion is interposed between the upper front end portions of the side partition walls 30 and 30.
  • a partition wall 32 is installed.
  • the upper end surface of the front vertical partition wall 32 is in close contact with the top plate 2 b without any gap, and the lower end of the front vertical partition wall 32 is aligned with the lower end of the side partition wall 30, and the object to be processed placed on the stage 10.
  • a gap G3 is secured between the upper surface of the stage 10 so that 100 can pass through.
  • the gap G3 corresponds to an open part in the partition part.
  • the side partition walls 30, 30, the rear side partition walls 30 a, 30 a, the lower horizontal partition wall 31, and the front vertical partition wall 32 constitute a partition wall serving as a partition portion of the present invention.
  • the partition wall is preferably made of a material that is not easily contaminated by oxygen or the like. For example, an alumite-treated aluminum plate can be used.
  • An air supply line 16 capable of supplying an atmospheric gas such as nitrogen and argon and an exhaust line 17 for exhausting the atmospheric gas in the load area A are connected to the load area A.
  • Each line is provided with an on-off valve 16a, a flow meter 16b, an on-off valve 17a, and a flow meter 17b.
  • the inlet line side air supply device of the present invention is constituted by the air supply line 16, the on-off valve 16a, the flow meter 16b, a gas supply source (not shown), etc., and the exhaust line 17, the on-off valve 17a, the flow meter 17b,
  • the exhaust-side exhaust device of the present invention is configured by an exhaust pump that does not.
  • the gas By supplying atmospheric gas to the load area A, the gas is blown out from the slight gap between the partition wall and the stage 10 to the outside so that a function as a gas curtain is obtained, and shielding properties are obtained. Will improve. Therefore, it is desirable to make the gap between the partition wall and the stage 10 as small as possible so as not to impair the movement of the stage, and to make it small enough to obtain the effect of the gas curtain by supplying the atmospheric gas. desirable.
  • the load area A is allocated from the loading port 7 to the front end side of the stage 10 at the standby position, and the shield box 6 side is allocated to the laser light irradiation area B.
  • the load area A and the laser beam irradiation area B are partitioned, and the load area A functions as a load lock area.
  • the partition part composed of the side partition walls 30 and 30, the lower horizontal partition wall 31 and the front vertical partition wall 32 covers the periphery of the inlet 7 side space, and the inlet side space which is the load area A, and laser light irradiation.
  • the laser beam irradiation area side space, which is area B, is partitioned to obtain shielding properties.
  • the gas curtain action can be obtained by supplying air from the inlet side supply line 16 to improve the shielding performance, and the atmosphere mixed in by the inlet side exhaust line 17 can be eliminated early. Can do.
  • the side partition wall 12 is positioned on the left and right side edges of the upper surface of the stage 10 at the standby position so that the stage 10 can move in the left-right direction.
  • the shape of the side partition wall is changed.
  • the stage 10 may be movable.
  • This example will be described with reference to FIGS.
  • symbol is attached
  • the side partition walls 35 and 35 of this example are suspended and fixed to the top plate 2b at positions where the left and right side wall surfaces of the stage do not interfere within the range in which the stage 10 moves in the left and right direction. 10 has a length reaching the vicinity of the lower surface side. Further, the rear side of the side partition walls 35, 35 is fixed to the side wall 2a without any gap, and the shield box 6 side has a length reaching the front edge of the stage 10. Further, a horizontal horizontal plate-shaped lower horizontal partition wall 36 is connected between the side partition walls 35 and 35 on the rear side of the stage 10 at the standby position, and the rear end of the lower horizontal partition wall 36 is spaced from the side wall 2a. The front end extends to a position having a slight gap with the rear end surface of the stage 10.
  • the front ends of the side partition walls 35, 35 extend to the front end edge of the upper surface of the stage 10, and a vertical plate-shaped front vertical partition wall 37 is installed at the front end.
  • An upper end surface of the front vertical partition wall 37 is fixed in close contact with the top plate 2b without a gap, and a lower end surface has a gap so that the workpiece 100 placed on the stage 10 can pass therethrough.
  • the gap corresponds to an open part in the partitioning means.
  • the side partition walls 35, 35, the lower horizontal partition wall 36, and the front vertical partition wall 37 constitute a partition wall serving as a partition portion of the present invention.
  • the space from the loading opening 7 to the upper side of the stage 10 at the standby position is allocated to the load area A0, and the shield box 6 side is partitioned so as to be allocated to the laser light irradiation area B. ing. Therefore, the load area A0 functions as a load lock area.
  • the partition wall composed of the side partition walls 35, 35, the lower horizontal partition wall 36, and the front vertical partition wall 37 covers the periphery of the inlet 7 and partitions the load area A0 and the laser light irradiation area B to provide shielding properties. Have gained.
  • the gas curtain action can be obtained by supplying air from the air supply line to improve the shielding performance, and the atmosphere mixed in by the exhaust line can be eliminated early.
  • the object to be processed can be carried into the processing chamber, processed by laser light irradiation, and the processing object can be carried out of the processing chamber in the same manner as in the above embodiment.
  • the atmosphere of the laser light irradiation area can be maintained as much as possible, and the atmosphere can be stabilized in a short time when the object to be processed is carried in and out.
  • the side partition 30 is provided, and the side partition 30 extends to the front end side of the stage 10.
  • the side partition wall 30 and the upper surface of the stage 10 hold the target object 100 on the stage 10 so that the target object 100 and the side surface partition wall 30 do not interfere with each other when the stage 10 moves.
  • a minimum gap is secured between them. Note that, as indicated by an imaginary line in FIG. 12, the gap between the stage 10 and the side partition wall 30 may be partially reduced at a portion that does not interfere with the workpiece 100 held on the stage 10.
  • a rear side partition wall 30a is provided on the rear side of the side partition wall 30, and a lower horizontal partition plate 31 is installed on the lower end side of the rear side partition wall 30a as in the third embodiment.
  • a front vertical partition wall 15 is provided on the upper side of the front end of the rear side wall partition wall 30 a located on the rear end side of the stage 10. An upper end surface of the front vertical partition wall 15 is in close contact with the top plate 2b without a gap.
  • a gap G ⁇ b> 1 is secured between the front vertical partition wall 15 and the upper surface of the stage 10. The workpiece 100 can be moved through the gap G1.
  • the rear side partition wall 30a, the lower horizontal partition wall 31, and the front vertical partition wall 15 constitute a first partition part, and the load area A and the laser beam irradiation area on the load entrance side are defined by the first partition part. It is partitioned into a side space A2.
  • a front vertical partition wall 32 is provided at the front end of the side partition wall 30.
  • the front vertical partition wall 32 is in close contact with the top plate 2b of the processing chamber 2 and the inner surfaces of the side partition walls 30 on both sides without any gap at the upper end surface and the left and right end surfaces.
  • a gap is secured between the lower end of the front vertical partition wall 32 and the upper surface of the stage 10.
  • the object 100 can be moved through the gap.
  • the side partition wall 30, the front vertical partition wall 31, and the upper surface of the stage 10 constitute the second partition portion of the present invention.
  • the load area A and the laser beam irradiation area B are allocated and partitioned by the second partitioning portion. Therefore, the load area A functions as a load lock area.
  • the first partition covers the periphery of the inlet 7 side space and partitions the load area A into the inlet side space A1 and the laser light irradiation area side space A2 to obtain shielding properties. Further, the second partition section partitions the inside of the processing chamber 2 into a load area A and a laser beam irradiation area B, and further obtains a shielding property.
  • the inlet-side space A1 can obtain a gas curtain action by supplying air from the inlet-side air supply line to improve the shielding performance, and can quickly remove the air mixed in by the inlet-side exhaust line. Can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)

Abstract

Disclosed is a laser processing apparatus wherein a subject to be processed can be quickly carried in/out without disposing a load lock chamber or the like in the laser processing apparatus, and, furthermore, the atmosphere in the processing chamber can be stabilized in a short time. The laser processing apparatus is provided with: the processing chamber (2), which contains the subject to be processed (100), and which radiates laser light to the subject (100) under adjusted atmosphere; and an optical system, which guides the laser light into the processing chamber (2) from the outside. The processing chamber (2) has an openable/closable loading entrance (7), through which the subject (100) is loaded in the processing chamber (2) from the outside of the processing chamber (2), and in the processing chamber (2), a load area (A) continuous from the loading entrance (7), and a laser light irradiation area (B) continuous from the load area (A) are provided. The processing chamber also has a partitioning section that partitions the load area (A) into a space (A1) on the loading entrance side, and a space (A2) on the laser light irradiation area side. The partitioning section permits the subject (100) to move between the space (A1) on the loading entrance side, and the space (A2) on the laser light irradiation area side.

Description

レーザ処理装置Laser processing equipment
 この発明は、レーザ光を被処理体に照射してレーザアニールなどの処理を行うレーザ処理装置に関するものである。 The present invention relates to a laser processing apparatus that performs processing such as laser annealing by irradiating an object to be processed with laser light.
 フラットパネルディスプレイの基板などに用いられる半導体薄膜では、アモルファス膜を用いるものの他、結晶薄膜を用いるものが知られている。この結晶薄膜に関し、アモルファス膜をレーザ光によってアニールして結晶化させることにより製造する方法が提案されている。また、レーザアニール処理として、結晶質膜にレーザ光を照射して欠陥の除去や結晶性の改善などの改質を目的として行うものも知られている。 As a semiconductor thin film used for a flat panel display substrate or the like, a semiconductor thin film using an amorphous film or a crystalline thin film is known. With respect to this crystalline thin film, a method of manufacturing an amorphous film by annealing it with laser light and crystallization has been proposed. In addition, a laser annealing process is also known which is performed for the purpose of modifying defects such as removing defects and improving crystallinity by irradiating a crystalline film with laser light.
 上記レーザアニールなどの処理では、大気の影響を除去して結晶化などに最適な雰囲気に制御する方法が採用されている。該雰囲気は窒素等の不活性ガス、真空等の他に、これら雰囲気に積極的に少量の酸素などを混合する方法も知られている。上記雰囲気調整のため、被処理体を処理室内に収容し、該収容室内の雰囲気を調整して処理室外部からレーザ光を導入して被処理体に照射する。しかし、処理室外部から処理室内部に被処理体を装入する際に、処理室の装入口などを開けることによって処理室内に大気が混入する。そのため処理室内の雰囲気調整(低酸素濃度など)を行うことが必要になるが、雰囲気が安定するまでに時間を要し生産性が低くなるという問題がある。このため、半導体用基板を搬入、搬出するためのロードロック室を処理室とは別に設けたレーザ処理装置が提案されている(例えば特許文献1参照)。 In the processing such as laser annealing described above, a method of removing the influence of air and controlling to an optimum atmosphere for crystallization and the like is adopted. In addition to an inert gas such as nitrogen, a vacuum, etc., a method is also known in which a small amount of oxygen or the like is positively mixed in the atmosphere. To adjust the atmosphere, the object to be processed is accommodated in the processing chamber, the atmosphere in the accommodation chamber is adjusted, laser light is introduced from the outside of the processing chamber, and the object is irradiated. However, when the object to be processed is charged into the processing chamber from the outside of the processing chamber, the atmosphere is mixed into the processing chamber by opening the charging port of the processing chamber. Therefore, it is necessary to adjust the atmosphere in the processing chamber (such as a low oxygen concentration), but there is a problem that it takes time to stabilize the atmosphere and productivity is lowered. For this reason, a laser processing apparatus has been proposed in which a load lock chamber for loading and unloading a semiconductor substrate is provided separately from the processing chamber (see, for example, Patent Document 1).
 該装置を図13に基づいて説明する。
 処理室45には、被処理体100を装入して載置するステージ46が配置され、処理室45の天板には外部からレーザ光を導入する導入窓47が設けられる。処理室45には、ゲートバルブ44を介して搬送ロボット室43が接続され、さらに搬送ロボット室43には、ゲートバルブ42を介してロードロック室41が接続されている。ロードロック室41の外部には、ロードロック室41内に被処理体100を搬送する搬送ロボット40が配置される。
 上記ロードロック室41、搬送ロボット室43、処理室45は、真空もしくは所定のガス雰囲気下でゲートバルブ42、44を介して連通する。
The apparatus will be described with reference to FIG.
The processing chamber 45 is provided with a stage 46 on which the workpiece 100 is loaded and placed, and the top plate of the processing chamber 45 is provided with an introduction window 47 for introducing laser light from the outside. A transfer robot chamber 43 is connected to the processing chamber 45 via a gate valve 44, and a load lock chamber 41 is connected to the transfer robot chamber 43 via a gate valve 42. Outside the load lock chamber 41, a transfer robot 40 that transfers the workpiece 100 into the load lock chamber 41 is disposed.
The load lock chamber 41, the transfer robot chamber 43, and the processing chamber 45 communicate with each other through gate valves 42 and 44 in a vacuum or a predetermined gas atmosphere.
 上記装置の稼働においては、基板搬入時に、ゲートバルブ42、44を閉じた状態で、ロードロック室41のゲートバルブ(図示しない)を開けて搬送ロボット40によって被処理体100をロードロック室41内に搬入し、ロードロック室41のゲートバルブを閉じる。ゲートバルブ42、44を閉じた状態で、ロードロック室41を真空引きした後に、真空保持もしくは所定のガスを導入する。次いで、ゲートバルブ42を開いて被処理体100をロードロック室41から搬送ロボット室43に搬送し、さらにゲートバルブ44を開けて処理室45内に被処理体100を装入し、ロードロック室44を閉じてレーザアニールなどの処理を行う。これにより処理室45の雰囲気を維持したままで所望の処理を行うことが可能になる。 In the operation of the apparatus, when the substrate is loaded, the gate valve (not shown) of the load lock chamber 41 is opened while the gate valves 42 and 44 are closed, and the workpiece 100 is placed in the load lock chamber 41 by the transfer robot 40. The gate valve of the load lock chamber 41 is closed. After the load lock chamber 41 is evacuated with the gate valves 42 and 44 closed, vacuum holding or a predetermined gas is introduced. Next, the gate valve 42 is opened to transfer the object 100 to be transferred from the load lock chamber 41 to the transfer robot chamber 43, and the gate valve 44 is further opened to load the object 100 into the processing chamber 45 to load the load lock chamber. 44 is closed and laser annealing or the like is performed. This makes it possible to perform a desired process while maintaining the atmosphere in the processing chamber 45.
特開2002-164407号公報JP 2002-164407 A
 上記のようにロードロック室を設けた処理装置では、処理室は所定の雰囲気(例えば低酸素濃度の窒素雰囲気など)に維持され、被処理体の搬出、搬入に際してはロードロック室のみで雰囲気の置換を行えばよいので、処理室の雰囲気調整を必要とすることなく処理を行うことが可能になる。
 しかし、該処理装置では、搬送ロボット室およびロードロック室を設けるためのコストが嵩み、また、処理室以外の設置スペースも大きく確保する必要がある。さらには、被処理体の搬出、搬入の度にロードロック室内の雰囲気を窒素ガスや不活性ガス等へ置換する為の時間やランニングコストが必要となり、また、被処理体を搬送するための時間も増大するという問題がある。
In the processing apparatus provided with the load lock chamber as described above, the processing chamber is maintained in a predetermined atmosphere (for example, a nitrogen atmosphere with a low oxygen concentration), and the atmosphere of the atmosphere can be maintained only in the load lock chamber when the workpiece is unloaded and loaded. Since replacement may be performed, processing can be performed without the need for adjusting the atmosphere in the processing chamber.
However, in this processing apparatus, the cost for providing the transfer robot chamber and the load lock chamber is high, and it is necessary to secure a large installation space other than the processing chamber. Furthermore, time and running costs are required to replace the atmosphere in the load lock chamber with nitrogen gas or inert gas each time the object is unloaded and loaded, and the time for conveying the object to be treated There is also a problem that increases.
 この発明は、上記のような従来の課題を解決するためになされたもので、ロードロック室の設置を必要とすることなく処理装置内の雰囲気を短時間で安定化させることができるレーザ処理装置を提供することを目的とする。 The present invention has been made to solve the conventional problems as described above, and is capable of stabilizing the atmosphere in the processing apparatus in a short time without requiring the installation of a load lock chamber. The purpose is to provide.
 すなわち、本発明のレーザ処理装置のうち、第1の本発明は、被処理体を収容して調整された雰囲気下で該被処理体にレーザ光を照射する処理室と、該処理室内に外部からレーザ光を導く光学系と、を備え、
 前記処理室は、前記処理室外部から前記処理室内部に前記被処理体を装入する開閉可能な装入口を有するとともに、前記処理室内部に、前記装入口に連なるロードエリアと、該ロードエリアに連なるレーザ光照射エリアと、を備え、
 前記ロードエリアに、前記装入口に連なる前記装入口側の空間と前記レーザ光照射エリアを含むレーザ光照射エリア側の空間とに仕切る仕切部を有し、該仕切部は、前記装入口側の空間と前記レーザ光照射エリア側の空間との間で前記被処理体の移動が可能であることを特徴とする。
That is, among the laser processing apparatuses of the present invention, the first aspect of the present invention includes a processing chamber for irradiating the target object with laser light in an atmosphere adjusted to contain the target object, and an outside in the processing chamber. An optical system for guiding laser light from
The processing chamber has an openable and closable inlet for charging the object to be processed into the processing chamber from the outside of the processing chamber, a load area connected to the charging port in the processing chamber, and the load area And a laser beam irradiation area connected to
The load area has a partition portion that partitions the space on the inlet side continuous with the inlet and a space on the laser light irradiation area side including the laser light irradiation area, and the partition portion is on the inlet side. The object to be processed can be moved between the space and the space on the laser light irradiation area side.
 本発明によれば、処理室内にロードエリアとレーザ光照射エリアとを有し、ロードエリアに有する仕切部によって、前記装入口に連なる前記装入口側の空間と前記レーザ光照射エリアを含むレーザ光照射エリア側の空間とに仕切ることで、被処理体を処理室内に搬入または処理室から搬出する際に装入口から混入する大気がレーザ光照射エリアに影響するのを極力低減する。 According to the present invention, the processing chamber has a load area and a laser beam irradiation area, and the partition portion included in the load area includes the laser beam irradiation area and the laser beam irradiation area including the space on the inlet side connected to the inlet. By partitioning into a space on the irradiation area side, it is possible to reduce as much as possible that the atmosphere mixed from the inlet when the workpiece is carried into or out of the processing chamber affects the laser light irradiation area.
 ロードエリアは、装入口に連なるようにして装入口に隣接して設けるのが望ましく、装入口とレーザ光照射エリアとの間にロードエリアが位置する。ロードエリアは、装入口から装入された被処理体が移動して保持されるエリアであり、処理に備えて被処理体が保持される保持ポジションを含む空間である。被処理体は、ロードエリアの保持ポジションにまで装入され、該ロードエリアからレーザ光照射エリアに移動されて所定の処理がなされる。
 仕切部は、被処理体がロードエリアからレーザ光照射エリアに移動することが可能になっている。仕切部に開放部を設けておき該開放部を通して被処理体の移動を行うことができる。
 仕切部に被処理体が移動可能な開放部を設けておくことで、ロードエリアからレーザ光照射エリアへの被処理体の移動を円滑に行うことができる。開放部としては、常時開放されているものであってもよく、開閉動作を伴うものであってもよい。また、ガスカーテンのように、被処理体の移動に伴って開放状態になるものであってもよい。
The load area is preferably provided adjacent to the loading port so as to be continuous with the loading port, and the load area is located between the loading port and the laser light irradiation area. The load area is an area in which the object to be processed inserted from the loading port is moved and held, and is a space including a holding position where the object to be processed is held in preparation for processing. The object to be processed is loaded up to the holding position of the load area, moved from the load area to the laser light irradiation area, and subjected to predetermined processing.
The partition portion allows the object to be processed to move from the load area to the laser light irradiation area. An opening can be provided in the partition, and the object to be processed can be moved through the opening.
By providing an opening in which the object to be processed can move in the partition part, the object to be processed can be smoothly moved from the load area to the laser light irradiation area. As an opening part, the thing always open | released may be sufficient and an opening / closing operation | movement may be accompanied. Moreover, it may be in an open state as the object to be processed moves, such as a gas curtain.
 なお、被処理体に対する処理は、例えば、非結晶である被処理体を結晶化させたり、結晶体である被処理体の改質を行うレーザアニールを好適例として挙げることができるが、本発明としては処理の内容がこれらに限定されるものではなく、レーザ光を被処理体に照射して所定の処理を行うものであればよい。
 また、被処理体としては、上記レーザアニール処理の対象となる半導体(例えばシリコン半導体)を代表的なものとして示すことができるが、本発明としてはその種別が特に限定されるものではなく、処理の目的に沿って対象とされるものであればよい。
 また、上記処理は、調整された雰囲気下で処理室内において行われる。該雰囲気は、大気雰囲気を除外するものであり、不活性ガス雰囲気、真空雰囲気などが代表的に挙げられる。また、湿度、温度などを調整した雰囲気であってもよい。すなわち、本発明としては調整された雰囲気の種別は特に限定されるものではなく、大気下以外であって所定の条件に調整されるものであればよい。
In addition, the process with respect to a to-be-processed object can mention the laser annealing which crystallizes the to-be-processed object which is an amorphous | non-crystalline substance, or modifies the to-be-processed object which is a crystal body as a suitable example, for example. However, the content of the process is not limited to these, and any process may be used as long as the target object is irradiated with laser light.
Further, as the object to be processed, a semiconductor (for example, a silicon semiconductor) to be subjected to the laser annealing treatment can be shown as a representative one, but the type of the present invention is not particularly limited, and the processing is performed. As long as it is targeted in accordance with the purpose.
Moreover, the said process is performed in a process chamber in the adjusted atmosphere. The atmosphere excludes an air atmosphere, and examples thereof include an inert gas atmosphere and a vacuum atmosphere. Moreover, the atmosphere which adjusted humidity, temperature, etc. may be sufficient. That is, in the present invention, the type of the adjusted atmosphere is not particularly limited as long as it is other than the atmosphere and adjusted to a predetermined condition.
 次に第2の本発明のレーザ処理装置は、前記第1の本発明において、前記仕切部が、前記装入口側の空間と前記レーザ光照射エリア側の空間とに仕切る仕切壁を有することを特徴とする。 Next, in the laser processing apparatus according to the second aspect of the present invention, in the first aspect of the present invention, the partition portion includes a partition wall that partitions the space on the inlet side and the space on the laser light irradiation area side. Features.
 第3の本発明のレーザ処理装置は、前記第1の本発明において、前記仕切部は、前記装入口側の空間と前記レーザ光照射エリア側の空間とに仕切る雰囲気ガスカーテンを有することを特徴とすることを特徴とする。 The laser processing apparatus according to a third aspect of the present invention is characterized in that, in the first aspect of the present invention, the partition portion includes an atmosphere gas curtain that partitions the space on the inlet side and the space on the laser light irradiation area side. It is characterized by.
 仕切部としては、前記装入口側の空間と前記レーザ光照射エリア側の空間とに仕切る仕切壁や雰囲気ガスを用いたガスカーテンなどを用いることができる。仕切壁やガスカーテンは仕切部全体に亘るものであってもよく、また、一部を仕切壁やガスカーテンで構成するものであってもよく、仕切壁とガスカーテンとを混在させるものであってもよい。 As the partition portion, a partition wall partitioning the space on the loading inlet side and the space on the laser light irradiation area side, a gas curtain using atmospheric gas, or the like can be used. The partition wall and the gas curtain may extend over the entire partition part, or a part of the partition wall and the gas curtain may be configured by the partition wall and the gas curtain, and the partition wall and the gas curtain are mixed. May be.
 第4の本発明のレーザ処理装置は、前記第1~第3の本発明において、前記仕切部は、前記装入口側空間としての前記ロードエリアと、前記レーザ光照射エリア側空間としての前記レーザ光照射エリアを仕切るものであることを特徴とする。 In the laser processing apparatus according to a fourth aspect of the present invention, in the first to third aspects of the present invention, the partition portion includes the load area as the loading-inside space and the laser as the laser light irradiation area-side space. It is characterized by partitioning the light irradiation area.
 第5の本発明のレーザ処理装置は、前記第1~第3の本発明において、前記仕切部は、前記ロードエリア内にある前記装入口側空間と、前記ロードエリアの一部を含む前記レーザ光照射エリア側空間とを仕切っていることを特徴とする。 The laser processing apparatus according to a fifth aspect of the present invention is the laser processing apparatus according to any one of the first to third aspects of the present invention, wherein the partition portion includes the loading side space in the load area and a part of the load area. The light irradiation area side space is partitioned off.
 第6の本発明のレーザ処理装置は、前記第1~第3の本発明のいずれかにおいて、前記仕切部は、前記ロードエリア内にある前記装入口側空間と、前記ロードエリアに装入された被処理体が保持される保持ポジション側空間を含む前記レーザ光照射エリア側空間とを仕切るものであることを特徴とする。 In the laser processing apparatus according to a sixth aspect of the present invention, in any one of the first to third aspects of the present invention, the partition portion is inserted into the loading side space in the load area and the load area. Further, the laser beam irradiation area side space including the holding position side space where the object to be processed is held is partitioned.
 仕切部が仕切る位置は、ロードエリアのいずれの位置でも可能であり、最も前方位置では、装入口側空間となるロードエリアとレーザ光照射エリア側空間となるレーザ光照射エリアとを仕切る。これによりロードエリアはロードロックエリアとして雰囲気の調整が可能になる。
 また、仕切部が仕切る位置はロードエリア内とすることができ、その一形態として装入口側の空間とレーザ光照射エリア側空間としての保持ポジション側の空間とに仕切るものが挙げられる。通常は、ステージ上面で被処理体が保持された位置が保持ポジションとなる。したがって、この仕切位置としては、ロードエリア内でステージが含まれる空間と、ステージが含まれない空間とに仕切るものが代表例となる。
The partitioning portion can be divided at any position in the load area. At the foremost position, the load area serving as the loading side space and the laser light irradiation area serving as the laser light irradiation area side space are partitioned. As a result, the load area can be adjusted as a load lock area.
Further, the partitioning position can be set in the load area, and as one form thereof, a partitioning part can be divided into a space on the loading inlet side and a space on the holding position side as the laser light irradiation area side space. Usually, the position where the workpiece is held on the upper surface of the stage is the holding position. Therefore, a typical example of the partitioning position is a partitioning in a load area that includes a stage and a space that does not include a stage.
 第7の本発明のレーザ処理装置は、前記第1~第6の本発明のいずれかにおいて、前記装入口側空間に装入口側給気装置と装入口側排気装置とが通気可能に接続されていることを特徴とする。 A laser processing apparatus according to a seventh aspect of the present invention is the laser processing apparatus according to any one of the first to sixth aspects of the present invention, wherein an inlet side air supply device and an inlet side exhaust device are connected to the inlet side space so as to allow ventilation. It is characterized by.
 装入口側空間には、給排気装置を接続するようにしてもよい。これにより装入口側空間における雰囲気調整を容易に行うことができる。装入口側給気装置では、窒素ガス、不活性ガスなどを装入口側空間に導入することができ、装入口側排気装置では、装入口側空間の排気や真空引きなどを行うことができる。
 装入口側空間の雰囲気調整は、1)被処理体が処理室に搬入、搬出されるとき、2)処理中および3)被処理体が処理室内において搬送されるとき、それぞれの場合において上記給排気装置を用いて行うことができる。
An air supply / exhaust device may be connected to the charging inlet side space. This makes it possible to easily adjust the atmosphere in the inlet side space. In the inlet side air supply device, nitrogen gas, inert gas, or the like can be introduced into the inlet side space, and in the inlet side exhaust device, exhaust or evacuation of the inlet side space can be performed.
The atmosphere in the inlet side space is adjusted by 1) when the object to be processed is carried into and out of the processing chamber, 2) during processing, and 3) when the object to be processed is transported in the processing chamber, in each case This can be done using an exhaust device.
 装入口側空間を処理室内部に確保し給排気システムを設けることで、
1、装入口側空間に給気を行うことで得られるシール構造により装入口外部より混入してくる大気量を抑えるとともに、処理室内部における装入口側空間外への大気混入を低減させる。 
2、給排気により装入口側空間に混入した大気雰囲気を短時間で窒素やその他の大気以外のレーザ処理に影響を与えにくい雰囲気に置換することができる。
 上記により、大気混入によるレーザ光照射部雰囲気への影響を低減させることにより、照射部の雰囲気を短時間で安定化させることが可能となる。
By securing the inlet side space in the processing chamber and providing a supply and exhaust system,
1. The amount of air mixed in from the outside of the inlet is suppressed by the seal structure obtained by supplying air to the inlet side space, and air mixing outside the inlet side space in the processing chamber is reduced.
2. Air atmosphere mixed into the inlet side space by air supply / exhaust can be replaced in a short time with nitrogen or other atmosphere that does not easily affect laser processing other than air.
As described above, it is possible to stabilize the atmosphere of the irradiation unit in a short time by reducing the influence on the atmosphere of the laser beam irradiation unit due to air mixing.
 第8の本発明のレーザ処理装置は、前記第1~第7の本発明のいずれかにおいて、前記レーザ光照射エリアに、照射エリア給気装置と照射エリア排気装置とが通気可能に接続されていることを特徴とする。 According to an eighth aspect of the present invention, there is provided the laser processing apparatus according to any one of the first to seventh aspects of the present invention, wherein an irradiation area supply device and an irradiation area exhaust device are connected to the laser light irradiation area so as to allow ventilation. It is characterized by being.
 レーザ光照射エリアには、給排気装置を接続するようにしてもよい。これによりレーザ光照射エリアの雰囲気を極力一定に維持することができる。レーザ光照射エリアとロードエリアの装入口側空間に、それぞれ給排気装置を設けるようにしてもよい。 An air supply / exhaust device may be connected to the laser light irradiation area. Thereby, the atmosphere of a laser beam irradiation area can be maintained as constant as possible. An air supply / exhaust device may be provided in each of the laser beam irradiation area and the load entrance side space of the load area.
 第9の本発明のレーザ処理装置は、前記第1~第8の本発明のいずれかにおいて、前記ロードエリアと前記レーザ光照射エリアとの間で前記被処理体を移動させる被処理体移送装置を前記処理室内部に備えることを特徴とする。 A laser processing apparatus according to a ninth aspect of the present invention is the processing object transfer apparatus according to any one of the first to eighth aspects of the present invention, which moves the object to be processed between the load area and the laser beam irradiation area. Is provided in the inside of the processing chamber.
 ロードエリアに装入した被処理体は、処理室内部に備える被処理体移送装置によってレーザ光照射エリアに移動させることができる。また、必要に応じてレーザ光照射エリアからロードエリアに被処理体を移動させることができる。これにより、従来装置のように処理室外部にロードロック室から処理室に被処理体を移動させるための搬送ロボット室を設ける必要がない。 The object to be processed inserted into the load area can be moved to the laser light irradiation area by the object transfer device provided inside the processing chamber. Moreover, a to-be-processed object can be moved from a laser beam irradiation area to a load area as needed. Accordingly, it is not necessary to provide a transfer robot chamber for moving an object to be processed from the load lock chamber to the processing chamber outside the processing chamber unlike the conventional apparatus.
 第10の本発明のレーザ処理装置は、前記第9の本発明において、前記被処理体移送装置は、前記被処理体を保持して前記ロードエリアと前記レーザ光照射エリアとの間で移動可能なステージを有していることを特徴とする。 A laser processing apparatus according to a tenth aspect of the present invention is the method according to the ninth aspect, wherein the object transfer device is movable between the load area and the laser light irradiation area while holding the object to be processed. It has a characteristic stage.
 前記被処理体移動装置に被処理体を保持するステージを備えることにより、ロードエリアに装入する被処理体をステージ上に保持してそのままレーザ光照射エリアに移動させることができる。なお、ステージは被処理体を保持しない状態でも両エリア間で移動させることができる。 By providing a stage for holding the workpiece in the workpiece moving apparatus, the workpiece to be loaded in the load area can be held on the stage and moved to the laser light irradiation area as it is. Note that the stage can be moved between both areas even when the object to be processed is not held.
 第11の本発明のレーザ処理装置は、前記第10の本発明において、前記被処理体移送装置は、前記レーザ光照射エリアにおいて前記ステージを前記レーザ光に対し相対的に移動させることで前記レーザ光の走査を行うものであることを特徴とする。 The laser processing apparatus according to an eleventh aspect of the present invention is the laser processing apparatus according to the tenth aspect of the present invention, wherein the workpiece transfer apparatus moves the stage relative to the laser light in the laser light irradiation area. It is characterized by scanning light.
 被処理体をレーザ光で処理する際に、一般に、レーザ光を被処理体に対し相対的に走査しつつ処理することができる。本発明では、前記被処理体移送装置に備えるステージをレーザ光照射エリアに移動させた後、該ステージを移動させることでレーザ光照射時の走査を行うようにしてもよい。これにより走査装置と被処理体を移送する装置とを兼用することができ、装置構成を簡易なものにすることができる。また、被処理体をロードエリアからレーザ光照射エリアに移動させる方向と、上記走査の方向とが同じ一軸方向とすれば、移動および走査のための装置構成を簡略にすることができ、また、処理室のスペースを有効に利用することができる。また、レーザ光の相対的な走査のためにステージを移動させる際に、ステージの一部がロードエリア側の空間に位置するようにすれば、スペース効率がさらに向上する効果がある。 When processing an object to be processed with laser light, it is generally possible to perform processing while scanning the laser light relative to the object to be processed. In this invention, after moving the stage with which the said to-be-processed object transfer apparatus is moved to a laser beam irradiation area, you may make it perform the scanning at the time of laser beam irradiation by moving this stage. Accordingly, the scanning device and the device for transferring the object to be processed can be used together, and the device configuration can be simplified. Further, if the direction in which the object to be processed is moved from the load area to the laser light irradiation area and the scanning direction are the same uniaxial direction, the apparatus configuration for movement and scanning can be simplified. The space in the processing chamber can be used effectively. Further, when the stage is moved for the relative scanning of the laser beam, if a part of the stage is positioned in the space on the load area side, the space efficiency is further improved.
 第12の本発明のレーザ処理装置は、前記第10または第11の本発明において、前記ステージは、前記ロードエリア側に位置する際に、前記仕切部の一部を構成することを特徴とする。 The laser processing apparatus according to a twelfth aspect of the present invention is characterized in that, in the tenth or eleventh aspect of the present invention, when the stage is positioned on the load area side, the stage constitutes a part of the partition portion. .
 ステージを仕切部の一部として利用することで、仕切部の構成部分を簡略にすることができる。 構成 By using the stage as part of the partition, the components of the partition can be simplified.
 第13の本発明のレーザ処理装置は、前記第10~第12の本発明のいずれかにおいて、前記処理室内で、前記装入口の下方側から前記ロードエリア側に待機した前記ステージの装入口側端部位置に伸長して前記ステージとともに前記装入口側空間の下方または前記装入口側空間および前記レーザ光照射エリア側空間の下方を仕切る下方仕切壁を前記仕切部の一部として備えることを特徴とする。 A laser processing apparatus according to a thirteenth aspect of the present invention is the apparatus according to any one of the tenth to twelfth aspects of the present invention, wherein the stage is loaded on the loading side of the stage waiting from the lower side of the loading port to the load area side in the processing chamber. A lower partition wall that extends to an end position and partitions with the stage below the inlet side space or below the inlet side space and the laser light irradiation area side space is provided as a part of the partition part. And
 下方仕切壁の配置によって下方の空間を通してロードエリアの装入口側空間とレーザ光照射側空間とが連通するのを回避できる。 By arranging the lower partition wall, it is possible to avoid communication between the loading side space in the load area and the laser light irradiation side space through the lower space.
 第14の本発明のレーザ処理装置は、前記第1~第13の本発明のいずれかにおいて、前記仕切部は、前記被処理体の装入方向前後方向において前記装入口側の空間と前記レーザ光照射エリア側の空間とに仕切る前方仕切壁を有することを特徴とする。 According to a fourteenth aspect of the present invention, there is provided the laser processing apparatus according to any one of the first to thirteenth aspects of the present invention, wherein the partition portion includes the space on the inlet side in the front-rear direction of the object to be processed and the laser. It has the front partition wall partitioned off into the space by the side of a light irradiation area, It is characterized by the above-mentioned.
 仕切部は、前記被処理体の装入方向前後方向において装入口側の空間とレーザ光照射エリア側の空間とに仕切る前方仕切壁を有するものとすることができる。これにより、被処理体の装入方向において空間を前後に仕切ることができる。この前方仕切壁は、ロードエリアに位置させる場合は、被処理体が装入されて保持される保持ポジション側の空間と、装入口側空間とを仕切る位置に配置するのが望ましい。これにより、保持ポジション側の空間、さらにはレーザ光照射エリア側の空間に被処理体の装入によって雰囲気が影響を受けるのを極力回避することができる。
 また、前方仕切壁をロードエリアとレーザ光照射エリアとに仕切る位置に配置すれば、ロードエリアをロードロックエリアとして活用することができる。
The partition portion may have a front partition wall that partitions into a space on the inlet side and a space on the laser light irradiation area side in the front-rear direction of the object to be processed. Thereby, a space can be partitioned back and forth in the loading direction of the object to be processed. When the front partition wall is positioned in the load area, it is desirable to dispose the front partition wall in a position that partitions the space on the holding position side where the workpiece is inserted and held from the space on the inlet side. Thereby, it is possible to avoid as much as possible that the atmosphere is affected by the insertion of the object to be processed in the space on the holding position side, and further on the space on the laser light irradiation area side.
Further, if the front partition wall is disposed at a position where the front partition wall is partitioned into a load area and a laser beam irradiation area, the load area can be used as a load lock area.
 第15の本発明のレーザ処理装置は、前記第1~第14の本発明のいずれかにおいて、前記処理室内で、前記装入口の両側方から前記レーザ光照射エリア側に伸長して前記装入口側空間の側方または前記装入口側空間および前記レーザ光照射エリア側空間の側方を仕切る側方仕切壁を前記仕切部の一部として備えることを特徴とする。 The laser processing apparatus according to a fifteenth aspect of the present invention is the laser processing apparatus according to any one of the first to fourteenth aspects of the present invention, wherein the laser inlet extends from both sides of the inlet into the laser light irradiation area side in the processing chamber. A side partition wall that partitions the side of the side space or the side of the inlet side space and the side of the laser light irradiation area side space is provided as a part of the partition part.
 側方仕切壁の配置によって側方の空間を通してロードエリアの装入口側空間とレーザ光照射側空間とが連通するのを回避できる。 The arrangement of the side partition walls can avoid communication between the loading side space of the load area and the laser light irradiation side space through the side space.
 第16の本発明のレーザ処理装置は、前記第1~第15の本発明のいずれかにおいて、前記ロードエリアを装入口に連なる前記装入口側の空間と前記レーザ光照射エリア側の空間とに仕切る前記仕切部を第1の仕切部として備え、前記ロードエリアと前記レーザ光照射エリアとを仕切る前記仕切部を第2の仕切部としてを備えることを特徴とする。 According to a sixteenth aspect of the present invention, there is provided the laser processing apparatus according to any one of the first to fifteenth aspects of the present invention, wherein the load area is divided into a space on the loading inlet side connected to the loading inlet and a space on the laser light irradiation area side. The partition part for partitioning is provided as a first partition part, and the partition part for partitioning the load area and the laser light irradiation area is provided as a second partition part.
 第2の仕切部によって装入口側の空間とレーザ光照射エリアとをより確実に仕切ることができる。 The space on the inlet side and the laser light irradiation area can be more reliably partitioned by the second partition.
 第17の本発明のレーザ処理装置は、被処理体を収容して調整された雰囲気下で該被処理体にレーザ光を照射する処理室と、該処理室内に外部からレーザ光を導く光学系と、を備え、
 前記処理室は、前記処理室外部から前記処理室内部に前記被処理体を装入する開閉可能な装入口を有するとともに、前記処理室内部に、前記装入口に連なるロードロックエリアと、該ロードロックエリアに連なるレーザ光照射エリアと、を備え、
 前記ロードロックエリアとレーザ光照射エリアとの間で前記被処理体の移動が可能になっていることを特徴とする。
According to a seventeenth aspect of the present invention, there is provided a laser processing apparatus for irradiating a laser beam on the target object in an atmosphere adjusted to contain the target object, and an optical system for guiding the laser beam from the outside into the process chamber. And comprising
The processing chamber has an openable / closable inlet for charging the object to be processed into the processing chamber from the outside of the processing chamber, a load lock area connected to the charging port in the processing chamber, and the load A laser beam irradiation area that continues to the lock area,
The object can be moved between the load lock area and the laser light irradiation area.
 以上のように、本発明によれば、装入口側空間外における雰囲気への影響を低減させ、レーザ光照射エリアの雰囲気を短時間で安定した状態に制御可能となり、被処理体の処理時間削減につながり、かつ均一な非晶質半導体薄膜の結晶化が可能になるなど処理効果が向上する効果がある。
 また、ロードロック室や搬送ロボット室などの設置が不要になり、スペース効率が向上する。さらに、ロードロック室の雰囲気調整のために必要な時間や雰囲気ガスの使用量の低減効果がある。
As described above, according to the present invention, the influence on the atmosphere outside the inlet side space can be reduced, the atmosphere in the laser light irradiation area can be controlled in a stable state in a short time, and the processing time of the object to be processed can be reduced. In addition, there is an effect that the processing effect is improved, for example, it becomes possible to crystallize a uniform amorphous semiconductor thin film.
In addition, installation of a load lock room, a transfer robot room, and the like is unnecessary, and space efficiency is improved. Furthermore, there is an effect of reducing the time required for adjusting the atmosphere of the load lock chamber and the amount of atmospheric gas used.
この発明の一実施形態によるレーザアニール処理装置の概略を示す正面側の縦断面図である。1 is a longitudinal sectional view of a front side showing an outline of a laser annealing treatment apparatus according to an embodiment of the present invention. 同じく、平面側の断面図である。Similarly, it is sectional drawing by the side of a plane. 同じく、左側面での断面図である。Similarly, it is sectional drawing in a left side surface. 同じく、右側面での断面図である。Similarly, it is sectional drawing in a right side surface. 本発明の他の実施形態におけるレーザアニール処理装置の概略を示す正面側の縦断面図である。It is a longitudinal cross-sectional view of the front side which shows the outline of the laser annealing treatment apparatus in other embodiment of this invention. 同じく、平面側の断面図である。Similarly, it is sectional drawing by the side of a plane. 本発明のさらに他の実施形態におけるレーザアニール処理装置の概略を示す正面側の縦断面図である。It is a longitudinal cross-sectional view of the front side which shows the outline of the laser annealing treatment apparatus in further another embodiment of this invention. 同じく、平面側の断面図である。Similarly, it is sectional drawing by the side of a plane. 同じく、左側面での断面図(a)、右側面での断面図(b)である。Similarly, a sectional view (a) on the left side and a sectional view (b) on the right side. 本発明のさらに他の実施形態におけるレーザアニール処理装置の概略を示す正面側の縦断面図である。It is a longitudinal cross-sectional view of the front side which shows the outline of the laser annealing treatment apparatus in further another embodiment of this invention. 同じく、左側面での断面図である。Similarly, it is sectional drawing in a left side surface. 本発明のさらに他の実施形態におけるレーザアニール処理装置の概略を示す正面側の縦断面図である。It is a longitudinal cross-sectional view of the front side which shows the outline of the laser annealing treatment apparatus in further another embodiment of this invention. 従来のレーザアニール処理装置を示す概略図である。It is the schematic which shows the conventional laser annealing processing apparatus.
 以下に、本発明のレーザ処理装置1について添付図面に基づいて説明する。
 図1は、レーザ処理装置1の正面断面を示す図であり、図2は平面断面図、図3は、左側面断面図、図4は右側面断面図である。
 レーザ処理装置1は、処理室2と、該処理室2外にあるレーザ発振器3と該レーザ発振器3から出力されたレーザ光3aを整形して前記処理室2に導く光学系4を備えている。
 また、処理室2には、光学系4の一部としてレーザ光3aを処理室2外部から処理室2内に導く導入窓5を有しており、導入窓5を通して導かれるレーザ光3aは、処理室2内に設けたシールドボックス6に設けた透過孔6aを通して被処理体100に照射される。シールドボックス6は、被処理体100の照射部分にシールドガスを吹き付けるものである。
Below, the laser processing apparatus 1 of this invention is demonstrated based on an accompanying drawing.
1 is a front sectional view of the laser processing apparatus 1, FIG. 2 is a plan sectional view, FIG. 3 is a left side sectional view, and FIG. 4 is a right side sectional view.
The laser processing apparatus 1 includes a processing chamber 2, a laser oscillator 3 outside the processing chamber 2, and an optical system 4 that shapes the laser light 3 a output from the laser oscillator 3 and guides it to the processing chamber 2. .
Further, the processing chamber 2 has an introduction window 5 that guides the laser beam 3a from the outside of the processing chamber 2 into the processing chamber 2 as a part of the optical system 4, and the laser beam 3a guided through the introduction window 5 is: The object to be processed 100 is irradiated through a transmission hole 6 a provided in a shield box 6 provided in the processing chamber 2. The shield box 6 sprays a shielding gas on the irradiated portion of the workpiece 100.
 処理室2の側壁2aには、装入口7が設けられており、該装入口7の開閉を行うゲートバルブ8が備えられている。装入口7が位置する側で処理室2の外部に搬送ロボット9が位置する。なお、この例では、ゲートバルブ8を処理室2の側壁側に設けたが、図1示で正面側に設けるなどの構成も可能である。 An inlet 7 is provided on the side wall 2 a of the processing chamber 2, and a gate valve 8 that opens and closes the inlet 7 is provided. A transfer robot 9 is located outside the processing chamber 2 on the side where the loading port 7 is located. In this example, the gate valve 8 is provided on the side wall side of the processing chamber 2, but a configuration such as providing the gate valve 8 on the front side in FIG. 1 is also possible.
 処理室2内には、被処理体100の装入方向に対し前後方向および左右方向に移動可能なステージ10が設置されており、該ステージ10は、移動装置11によって移動される。該移動装置11は本発明の被処理体移送装置としての役割を有している。ステージ10は、平面矩形形状を有しており、シールドボックス6よりも装入口7側に待機位置を有しており、装入口7との間に間隙を有している。シールドボックス6と待機位置との間では大きな隙間を有する必要ない。
 待機位置のステージ10と装入口との間の間隙量は本発明としては特に限定されるものではないが、例えば、100~300mmを挙げることができる。装入口7から待機位置にあるステージ10の前方端に至るまでの空間がロードエリアAとなっており、ステージ10の前方端よりも前方側の空間がレーザ光照射エリアBになっている。
 なお、待機位置にあるステージ10の上面が被処理体100の保持ポジションとなる。
A stage 10 that can move in the front-rear direction and the left-right direction with respect to the loading direction of the workpiece 100 is installed in the processing chamber 2, and the stage 10 is moved by a moving device 11. The moving device 11 has a role as a workpiece transfer device of the present invention. The stage 10 has a planar rectangular shape, has a standby position closer to the loading port 7 than the shield box 6, and has a gap with the loading port 7. It is not necessary to have a large gap between the shield box 6 and the standby position.
The amount of the gap between the stage 10 at the standby position and the loading port is not particularly limited in the present invention, and examples thereof include 100 to 300 mm. A space from the loading opening 7 to the front end of the stage 10 at the standby position is a load area A, and a space ahead of the front end of the stage 10 is a laser light irradiation area B.
Note that the upper surface of the stage 10 at the standby position is a holding position of the workpiece 100.
 待機位置にあるステージ10の後方側には、該ステージ10の両側端部位置に、前後方向に沿った側面仕切壁12、12が板面を縦にして配置されている。側面仕切壁12は、上端面および後端面が処理室2の天板2bおよび処理室の側壁2aに隙間なく密着している。なお、装入口7は、両側の側面仕切壁12間に縦横ともに収まっている。また側面仕切壁12、12の前端は、ステージ10の後端面と僅かな隙間を有して位置している。側面仕切壁12の下端は、ステージ10の下端部のやや上方位置にまで伸長している。
 側面仕切壁12、12は本発明の仕切部の一部を構成する。
On the rear side of the stage 10 at the standby position, side partition walls 12 and 12 along the front-rear direction are arranged at both side end positions of the stage 10 with the plate surfaces being vertical. The side surface partition wall 12 is in close contact with the top plate 2b of the processing chamber 2 and the side wall 2a of the processing chamber without any gap. The loading / unloading port 7 is accommodated between the side partition walls 12 on both sides. Further, the front ends of the side partition walls 12 and 12 are located with a slight gap from the rear end surface of the stage 10. The lower end of the side partition wall 12 extends to a position slightly above the lower end portion of the stage 10.
The side partition walls 12 and 12 constitute a part of the partition portion of the present invention.
 また、側面仕切壁12、12間には、ステージ10の上面高さと略同じ高さに上面が位置する下方水平仕切壁13が板面を水平にして配置されており、下方水平仕切壁13は左右方向に伸長して左右方向両端面は、側面仕切壁12、12の内面に隙間なく密着している。下方水平仕切壁13は、本発明の下方仕切壁に相当する。 In addition, a lower horizontal partition wall 13 having an upper surface located at substantially the same height as the upper surface height of the stage 10 is disposed between the side partition walls 12 and 12 with the plate surface horizontal, and the lower horizontal partition wall 13 is Extending in the left-right direction, both end surfaces in the left-right direction are in close contact with the inner surfaces of the side partition walls 12, 12 without a gap. The lower horizontal partition wall 13 corresponds to the lower partition wall of the present invention.
 下方水平仕切壁13の前端は側面仕切壁12の前端にまで伸長している。したがって、下方水平仕切壁13の前端は、ステージ10の後端面と僅かな隙間を有している。
 下方水平仕切壁13の後端は、側壁2a付近で装入口7の開口部分に達している。さらに下方水平仕切壁13の後端には、板面を縦にした後方縦仕切壁14が下方に屈曲して連続しており、後方縦仕切壁14は左右方向に伸長して左右方向両端面は側面仕切壁12、12の内面に隙間なく密着している。
The front end of the lower horizontal partition wall 13 extends to the front end of the side partition wall 12. Therefore, the front end of the lower horizontal partition wall 13 has a slight gap with the rear end surface of the stage 10.
The rear end of the lower horizontal partition wall 13 reaches the opening of the loading port 7 in the vicinity of the side wall 2a. Further, a rear vertical partition wall 14 having a vertical plate surface is bent downward and continuous at the rear end of the lower horizontal partition wall 13, and the rear vertical partition wall 14 extends in the left-right direction and extends in the left-right direction. Are in close contact with the inner surfaces of the side partition walls 12, 12 without any gaps.
 また、後方縦仕切壁14の後方面は、装入口7の開口の下方側を塞ぐとともに、その周囲で側壁2aに密着して側面仕切壁12の下端と同位置にまで下方に伸長している。この後方縦仕切壁14によって装入口7の下方側が塞がれている。後方縦仕切壁14で塞がれることなく開放されている装入口7において被処理体100の装入に必要な開口は確保されている。
 下方水平仕切壁13および後方縦仕切壁14は、本発明の仕切部の一部を構成する。
Further, the rear surface of the rear vertical partition wall 14 closes the lower side of the opening of the loading port 7 and extends downward to the same position as the lower end of the side partition wall 12 in close contact with the side wall 2a. . The rear vertical partition wall 14 blocks the lower side of the loading port 7. An opening necessary for loading the workpiece 100 is secured at the loading port 7 that is open without being blocked by the rear vertical partition wall 14.
The lower horizontal partition wall 13 and the rear vertical partition wall 14 constitute a part of the partition portion of the present invention.
 さらに側面仕切壁12の前端上部側では、側面仕切壁12、12間に、前方縦仕切壁15が板面を縦にして配置されており、前面縦仕切壁15の上端面は処理室2の天板2bに隙間なく密着している。また、前方縦仕切壁15は左右に伸長して左右方向両端面は側面仕切壁12、12の内面に隙間なく密着している。また、前面縦仕切壁15の下端は、下方水平仕切壁13の上面にまで至らず、該上面との間で隙間G1が確保されている。前方縦仕切壁15は、本発明の前方仕切壁に相当し、仕切部の一部を構成する。
 前記隙間G1を通して被処理体100の移動が可能になっており、隙間G1は、仕切部の開放部を構成する。
Further, on the upper side of the front end of the side partition wall 12, a front vertical partition wall 15 is disposed between the side partition walls 12, 12 with the plate surface being vertical, and the upper end surface of the front vertical partition wall 15 is located in the processing chamber 2. The top plate 2b is in close contact with the gap. Further, the front vertical partition wall 15 extends left and right, and both end surfaces in the left-right direction are in close contact with the inner surfaces of the side partition walls 12 and 12 without a gap. Further, the lower end of the front vertical partition wall 15 does not reach the upper surface of the lower horizontal partition wall 13, and a gap G1 is secured between the upper surface and the upper surface. The front vertical partition wall 15 corresponds to the front partition wall of the present invention and constitutes a part of the partition portion.
The workpiece 100 can be moved through the gap G1, and the gap G1 constitutes an opening of the partition.
 上記側面仕切壁12、12、下方水平仕切壁13、後方縦仕切壁14、前方縦仕切壁15によって、本発明の仕切部となる仕切壁が構成されている。該仕切壁は、酸素などによる汚染を受けにくい材質が望ましく、例えばアルマイト処理されたアルミニウム板を用いることができる。 The above-mentioned side partition walls 12, 12, the lower horizontal partition wall 13, the rear vertical partition wall 14, and the front vertical partition wall 15 constitute a partition wall serving as a partition portion of the present invention. The partition wall is preferably made of a material that is not easily contaminated by oxygen or the like. For example, an alumite-treated aluminum plate can be used.
 上記側面仕切壁12、12、下方水平仕切壁13、後方縦仕切壁14、前方縦仕切壁15で囲まれた空間は、ロードエリアAの装入口側空間A1となり、待機したステージ10上の空間がロードエリアAのレーザ光照射側空間A2となっている。したがって、ステージ10の上面は、仕切部の一部を構成している。また、この実施形態では、レーザ光照射側空間A2は、被処理体100の保持ポジション側空間になっている。 The space surrounded by the side partition walls 12, 12, the lower horizontal partition wall 13, the rear vertical partition wall 14, and the front vertical partition wall 15 becomes a loading-side space A 1 of the load area A, and is a space on the stage 10 that has been waiting. Is the laser light irradiation side space A2 of the load area A. Therefore, the upper surface of the stage 10 constitutes a part of the partition. In this embodiment, the laser light irradiation side space A2 is a holding position side space of the workpiece 100.
 なお、この形態では、ステージ10が左右方向に移動するが、仕切部の前端がステージ10よりも後方側に位置するため、移動するステージ10と仕切部とが干渉することはない。
 なお、上記では仕切部は固定物として説明したが、仕切部を可動のものや可変形状のものによって構成することも可能である。
In this embodiment, the stage 10 moves in the left-right direction. However, since the front end of the partitioning portion is located behind the stage 10, the moving stage 10 and the partitioning portion do not interfere with each other.
In addition, although the partition part was demonstrated as a fixed thing above, it is also possible to comprise a partition part with the thing of a movable thing or a variable shape.
 さらに、装入口側空間A1には、装入口側空間A1に窒素、アルゴンなどの雰囲気ガスを給気可能な装入口側給気ライン16と、装入口側空間A1内の雰囲気ガスを排気する装入口側排気ライン17とが接続されている。各ラインには、開閉弁16a、流量計16b、開閉弁17a、流量計17bが介設されている。装入口側給気ライン16と、開閉弁16a、流量計16bによって本発明の装入口側給気装置の一部を構成しており、装入口側排気ライン17と、開閉弁17a、流量計17bによって本発明の装入口側排気装置の一部を構成している。 Furthermore, in the inlet side space A1, an inlet side air supply line 16 capable of supplying an atmosphere gas such as nitrogen and argon to the inlet side space A1, and a device for exhausting the atmospheric gas in the inlet side space A1. An inlet side exhaust line 17 is connected. Each line is provided with an on-off valve 16a, a flow meter 16b, an on-off valve 17a, and a flow meter 17b. The inlet-side air supply line 16, the on-off valve 16a, and the flow meter 16b constitute a part of the inlet-side air supply device of the present invention. The inlet-side exhaust line 17, the on-off valve 17a, and the flow meter 17b Constitutes a part of the inlet side exhaust device of the present invention.
 装入口側空間A1に雰囲気ガスを給気することで、上記した仕切壁とステージ10との間の僅かな隙間からガスが外側に向けて吹き出されることでガスカーテンとしての機能が得られ、シールド性が向上する。したがって、仕切壁とステージ10との隙間は、ステージの移動を損なわない程度に極力小さくするのが望ましく、また、雰囲気ガスの給気によるガスカーテンの作用が十分に得られる程度に小さくすることが望ましい。 By supplying atmospheric gas to the inlet side space A1, the function as a gas curtain is obtained by blowing out gas from the slight gap between the partition wall and the stage 10 to the outside, Shielding property is improved. Therefore, it is desirable to make the gap between the partition wall and the stage 10 as small as possible so as not to impair the movement of the stage, and to make it small enough to obtain the effect of the gas curtain by supplying the atmospheric gas. desirable.
 また、レーザ光照射エリアBには、レーザ光照射エリアB内に窒素、アルゴンなどの雰囲気ガスを給気可能な照射エリア給気ライン18と、レーザ光照射エリアB内の雰囲気ガスを排気する照射エリア排気ライン19とが接続されている。各ラインには、開閉弁18a、流量計18b、開閉弁19a、流量計19bが介設されている。照射エリア給気ライン18と、開閉弁18a、流量計18bによって本発明の照射エリア給気装置の一部を構成しており、照射エリア排気ライン19と、開閉弁19a、流量計19bによって本発明の照射エリア排気装置の一部を構成している。なお、装入口側の給排気装置のみを有し、照射エリアの給排気装置を有しないものであってもよい。 Further, the laser light irradiation area B is irradiated with an irradiation area supply line 18 capable of supplying an atmosphere gas such as nitrogen or argon into the laser light irradiation area B and exhausting the atmospheric gas within the laser light irradiation area B. An area exhaust line 19 is connected. Each line is provided with an on-off valve 18a, a flow meter 18b, an on-off valve 19a, and a flow meter 19b. The irradiation area supply line 18, the on-off valve 18a, and the flow meter 18b constitute a part of the irradiation area supply apparatus of the present invention, and the irradiation area exhaust line 19, the on-off valve 19a, and the flow meter 19b of the present invention. This constitutes a part of the irradiation area exhaust device. In addition, it may have only the air supply / exhaust device on the inlet side, and may not have the air supply / exhaust device in the irradiation area.
 次に、上記レーザ処理装置1の動作について説明する。
 先ず、処理に先立ってステージ10を待機位置に移動させてゲートバルブ8を閉めておき、流量計16b、17b、18b、19bによって流量を調整しつつ、開閉弁16a、17a、18a、19aを開けて排気とともに雰囲気ガスを給気して処理室2内の雰囲気を調整する。
 また、レーザ光照射エリアBに設けた照射エリア給気ライン18と照射エリア排気ライン19は、被処理体100の搬入、処理、被処理体の搬出に至るまで、給気および排気を継続したままにするのが望ましい。
Next, the operation of the laser processing apparatus 1 will be described.
First, prior to processing, the stage 10 is moved to the standby position, the gate valve 8 is closed, and the flow rate is adjusted by the flow meters 16b, 17b, 18b, 19b, and the on-off valves 16a, 17a, 18a, 19a are opened. Then, the atmosphere in the processing chamber 2 is adjusted by supplying atmospheric gas together with the exhaust.
In addition, the irradiation area supply line 18 and the irradiation area exhaust line 19 provided in the laser light irradiation area B continue to supply and exhaust air until the object 100 is carried in, processed, and untreated. It is desirable to make it.
 給気および排気によって各エリア内の雰囲気調整が完了すると、ゲートバルブ8を開け、搬送ロボット9によって被処理体100を装入口7からロードエリアA内の装入口側空間A1に装入し、さらに間隙G1を通して装入口側空間A1からレーザ光照射エリア側空間A2に被処理体100を装入してステージ10上の保持ポジションに載置、保持する。ゲートバルブ8を開ける際に、装入口側給気ライン16によって装入口側空間A1に給気のみを行って外部の大気が装入口側空間A1内に混入するのを防止するのが望ましい。この際に、装入口側空間A1のシールドが図られているため、装入口側空間A1に大気が混入しても、大気がレーザ光照射エリア側空間A2、さらにはレーザ光照射エリアBに容易に侵入することはない。 When the atmosphere adjustment in each area is completed by supplying and exhausting air, the gate valve 8 is opened, and the workpiece 100 is loaded from the loading port 7 into the loading side space A1 in the loading area A by the transfer robot 9, and The workpiece 100 is loaded from the loading space A1 to the laser light irradiation area space A2 through the gap G1, and is placed and held at the holding position on the stage 10. When the gate valve 8 is opened, it is desirable to only supply air to the inlet side space A1 by the inlet side air supply line 16 to prevent outside air from being mixed into the inlet side space A1. At this time, since the entrance-side space A1 is shielded, even if the atmosphere is mixed into the entrance-side space A1, the atmosphere can easily enter the laser light irradiation area-side space A2 and further the laser light irradiation area B. Never invade.
 被処理体100をレーザ光照射エリア側空間A2の保持ポジションに装入した後、ゲートバルブ8を閉め、装入口側給気ライン16、照射エリア給気ライン18による給気と、装入口側排気ライン17、照射エリア排気ライン19による排気とを行って、処理室2内の雰囲気を安定化させる。この際に、レーザ光照射エリアBへの大気の混入は殆どなく、装入口側空間A1における雰囲気を安定化させるための時間程度で済むため、雰囲気安定化のための処理時間は短くなる。 After the workpiece 100 is inserted into the holding position of the laser light irradiation area side space A2, the gate valve 8 is closed to supply air through the inlet side air supply line 16 and irradiation area air supply line 18, and to the inlet side exhaust. Exhaust by the line 17 and the irradiation area exhaust line 19 is performed to stabilize the atmosphere in the processing chamber 2. At this time, almost no air is mixed into the laser light irradiation area B, and only a time for stabilizing the atmosphere in the inlet side space A1 is required, so the processing time for stabilizing the atmosphere is shortened.
 雰囲気の安定化後、ステージ10を移動装置11によって図1示左方に移動させる。この移動の途中で被処理体100の一部が照射位置に達するので、被処理体100が完全にレーザ光照射エリアBに移動する前にレーザ光の照射を開始することができる。レーザ光3aは、レーザ発振器3から出力され、光学系4および光学系4内の導入窓5、さらに処理室2内のシールドボックス6を通して、透過孔6aからレーザ光照射エリアB内に位置する被処理体100に照射される。 After the atmosphere is stabilized, the stage 10 is moved to the left in FIG. Since part of the object to be processed 100 reaches the irradiation position in the middle of the movement, the irradiation of the laser light can be started before the object to be processed 100 completely moves to the laser light irradiation area B. The laser beam 3 a is output from the laser oscillator 3, passes through the optical system 4, the introduction window 5 in the optical system 4, and the shield box 6 in the processing chamber 2. The processing body 100 is irradiated.
 ステージ10は、移動装置11によって前後方向に移動することでレーザ光3aが走査される。走査の際には、ステージ10はロードエリアA側への移動が可能になっており、ロードエリアA側の空間を利用することができる。
 また、ステージ10を左右方向で移動させて走査位置を変更することで、被処理体100の全面に亘ってレーザ光照射による処理を行うことができる。該処理において、仕切壁はステージ10および被処理体100の移動に支障となることはない。
The stage 10 is scanned in the laser beam 3 a by moving in the front-rear direction by the moving device 11. During scanning, the stage 10 can move to the load area A side, and the space on the load area A side can be used.
Further, by moving the stage 10 in the left-right direction and changing the scanning position, it is possible to perform processing by laser light irradiation over the entire surface of the object 100 to be processed. In the processing, the partition wall does not hinder the movement of the stage 10 and the workpiece 100.
 上記により被処理体100の処理を効率よく行うことができる。処理が完了した被処理体100は、ステージ10とともに移動装置11によってロードエリアA側に移動させ、装入口側空間給気ライン16によって装入口側空間A1側に給気のみを行った状態でゲートバルブ8を開け、搬送ロボット9によって処理室2外に搬出する。その後は、前記と同様に他の処理体100を搬入して同様の処理を行うことができる。 As described above, the object 100 can be processed efficiently. The object 100 to be processed is moved to the load area A side by the moving device 11 together with the stage 10, and the gate is supplied to the inlet side space A1 side only by the inlet side space air supply line 16. The valve 8 is opened and carried out of the processing chamber 2 by the transfer robot 9. Thereafter, the same processing can be performed by loading another processing body 100 in the same manner as described above.
(実施形態2)
 上記実施形態では、側面仕切壁12は、待機位置にあるステージ10の後方端部近くに前端が位置してロードエリアを装入口側空間と、保持ポジション側空間と同様のレーザ光照射側空間に仕切るものについて説明したが、仕切部の前端位置を保持ポジション側空間内に設けるものであってもよい。この例を図5、6に基づいて説明する。図5は、処理室2を縦に断面した図であり、図6は、天板を省略した平面図である。
 なお、前記実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
(Embodiment 2)
In the embodiment described above, the side partition wall 12 has a front end located near the rear end of the stage 10 in the standby position, and the load area is placed in the loading space and the laser beam irradiation side space similar to the holding position side space. Although what has been described has been described, the front end position of the partition portion may be provided in the holding position side space. This example will be described with reference to FIGS. FIG. 5 is a vertical cross-sectional view of the processing chamber 2, and FIG. 6 is a plan view in which the top plate is omitted.
In addition, the same code | symbol is attached | subjected about the structure similar to the said embodiment, and the description is abbreviate | omitted or simplified.
 この例では、ステージ10の両側端部位置に、前後方向に沿った側面仕切壁20、20が板面を縦にして配置されている。側面仕切壁20、20は、前記側面仕切壁12、12と同様の形状を後方側に有し、前方側は、ステージ10の上面直上に下端が位置するようにして、保持ポジション側空間に伸長している。側面仕切壁20、20の上端面は処理室2の天板2bに隙間なく密着している。 In this example, side partition walls 20 and 20 along the front-rear direction are disposed at both side end positions of the stage 10 with the plate surface being vertical. The side partition walls 20, 20 have the same shape as the side partition walls 12, 12 on the rear side, and the front side extends into the holding position side space so that the lower end is positioned directly above the upper surface of the stage 10. is doing. The upper end surfaces of the side partition walls 20, 20 are in close contact with the top plate 2 b of the processing chamber 2 without a gap.
 側面仕切壁20の後方側では、待機したステージ10の後方近くに、上記実施形態と同様に下方水平仕切壁13が位置し、装入口7側に後方縦仕切壁14を有している。側面仕切板20の前方端は、ステージ10が移動する際にステージ10が最前方に位置したときに、ステージ10の後端と重ならない位置になっている。これによりステージ10が被処理体100を保持して左右に移動する際に側面仕切壁20と干渉することはない。 On the rear side of the side partition wall 20, the lower horizontal partition wall 13 is located near the back of the standby stage 10 in the same manner as in the above embodiment, and the rear vertical partition wall 14 is provided on the loading port 7 side. The front end of the side partition plate 20 is in a position that does not overlap the rear end of the stage 10 when the stage 10 is positioned in the forefront when the stage 10 moves. Accordingly, the stage 10 does not interfere with the side partition wall 20 when the workpiece 10 is moved to the left and right while holding the workpiece 100.
 側面仕切壁20の前端部には、両側の側面仕切壁20に、板面を縦にした前方縦仕切壁21が架設されている。前方縦仕切壁21は、上端面が処理室2の天板2bに隙間なく密着しており、さらに左右に伸長して左右の両端面が両側の側面仕切壁20内面と隙間なく密着している。前方縦仕切壁21は、本発明の前方仕切壁に相当する。
 また、前方縦仕切壁21の下端と、ステージ10の上面との間には隙間G2が確保されている。前面縦仕切壁21は、本発明の仕切部の一部を構成する。
 前記隙間G2を通して被処理体100の移動が可能になっており、隙間G2は、仕切部の開放部を構成する。
 上記側面仕切板20、20、下方水平仕切板13、後方縦仕切壁14、前方縦仕切壁21によって、本発明の仕切部となる仕切壁が構成されている。
At the front end portion of the side partition wall 20, a front vertical partition wall 21 having a plate surface that is vertical is provided on the side partition walls 20 on both sides. The front vertical partition wall 21 has an upper end surface that is in close contact with the top plate 2b of the processing chamber 2, and further extends in the left and right directions so that both left and right end surfaces are in close contact with the inner surfaces of the side partition walls 20 on both sides. . The front vertical partition wall 21 corresponds to the front partition wall of the present invention.
A gap G <b> 2 is secured between the lower end of the front vertical partition wall 21 and the upper surface of the stage 10. The front vertical partition wall 21 constitutes a part of the partition portion of the present invention.
The workpiece 100 can be moved through the gap G2, and the gap G2 constitutes an opening part of the partition part.
The side partition plates 20, 20, the lower horizontal partition plate 13, the rear vertical partition wall 14, and the front vertical partition wall 21 constitute a partition wall that serves as a partition portion of the present invention.
 この実施形態においても、装入口7から待機位置にあるステージ10の前方端側に亘ってロードエリアAに割り当てられており、シールドボックス6側がレーザ光照射エリアBに割り当てられている。
 側面仕切壁20、20、下方水平仕切壁13、後方縦仕切壁14、前方縦仕切壁21で構成される仕切壁は、装入口7側空間の周囲を覆い、ロードエリアAを装入口側空間A3と、レーザ光照射エリア側空間A4とに仕切ってシールド性を得ている。
 装入口側空間A3には、前記実施形態と同様に装入口側給気ライン16と装入口側排気ライン17が接続されており、装入口側給気ライン16からの給気によってガスカーテン作用を得てシールド性を向上させることができ、また、装入口側排気ライン17によって混入した大気を早期に排除することができる。また、レーザ光照射エリアBには、前記実施形態と同様に、レーザ光照射側給気ライン18とレーザ光照射側排気ライン19が接続されて
Also in this embodiment, the load area A is allocated from the loading port 7 to the front end side of the stage 10 at the standby position, and the shield box 6 side is allocated to the laser light irradiation area B.
The partition wall composed of the side partition walls 20, 20, the lower horizontal partition wall 13, the rear vertical partition wall 14, and the front vertical partition wall 21 covers the periphery of the inlet 7 side space, and the load area A is connected to the inlet side space. A3 and a laser beam irradiation area side space A4 are partitioned to obtain shielding properties.
The inlet side air supply line 16 and the inlet side exhaust line 17 are connected to the inlet side space A3 in the same manner as in the above-described embodiment, and the gas curtain action is performed by the supply of air from the inlet side air supply line 16. As a result, the shielding property can be improved, and the air mixed in by the inlet side exhaust line 17 can be eliminated early. Further, similarly to the above embodiment, the laser light irradiation area B is connected with a laser light irradiation side supply line 18 and a laser light irradiation side exhaust line 19.
 この実施形態においても、前記実施形態と同様にして処理室2内への被処理体100の搬入、レーザ光照射による処理、処理室2外への被処理体100の搬出を行うことができる。この際に、レーザ光照射エリアBの雰囲気をできるだけ維持するとともに、被処理体100の搬入、搬出に際し、短時間で雰囲気の安定化を図ることができる。 Also in this embodiment, the object to be processed 100 can be carried into the processing chamber 2, processing by laser light irradiation, and the object to be processed 100 can be carried out of the processing chamber 2 in the same manner as in the above embodiment. At this time, the atmosphere of the laser beam irradiation area B can be maintained as much as possible, and the atmosphere can be stabilized in a short time when the object 100 is loaded and unloaded.
(実施形態3)
 上記各実施形態では、ロードエリアAを装入口側空間とレーザ光照射エリア側空間とに仕切る仕切部について説明したが、装入口側空間としてのロードエリアAとレーザ光照射エリア側空間としてのレーザ光照射エリアBとを仕切る仕切部を備えるものであってもよい。
 以下、図7~図9に基づいて説明する。なお、前記実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
(Embodiment 3)
In each of the above-described embodiments, the partition portion that partitions the load area A into the inlet side space and the laser light irradiation area side space has been described. However, the load area A as the inlet side space and the laser as the laser light irradiation area side space are described. You may provide the partition part which partitions off the light irradiation area B. FIG.
Hereinafter, a description will be given with reference to FIGS. In addition, the same code | symbol is attached | subjected about the structure similar to the said embodiment, and the description is abbreviate | omitted or simplified.
 この実施形態においても、レーザ処理装置1は、処理室2と、該処理室2外にあるレーザ発振器3と該レーザ発振器3から出力されたレーザ光3aを整形して前記処理室2に導く光学系4を備えている。また、処理室2には、光学系4の一部としてレーザ光3aを処理室2外部から処理室2内に導く導入窓5を有しており、導入窓5を通して導かれるレーザ光3aは、処理室2内に設けたシールドボックス6に設けた透過孔6aを通して被処理体100に照射される。シールドボックス6は、被処理体100の照射部分にシールドガスを吹き付けるものである。処理室2の側壁2aには、装入口7が設けられており、該装入口7の開閉を行うゲートバルブ8が備えられている。装入口7が位置する側で処理室2の外部に搬送ロボット9が位置する。 Also in this embodiment, the laser processing apparatus 1 includes a processing chamber 2, a laser oscillator 3 outside the processing chamber 2, and a laser beam 3 a output from the laser oscillator 3 and optically guided to the processing chamber 2. System 4 is provided. Further, the processing chamber 2 has an introduction window 5 that guides the laser beam 3a from the outside of the processing chamber 2 into the processing chamber 2 as a part of the optical system 4, and the laser beam 3a guided through the introduction window 5 is: The object to be processed 100 is irradiated through a transmission hole 6 a provided in a shield box 6 provided in the processing chamber 2. The shield box 6 sprays a shielding gas on the irradiated portion of the workpiece 100. An inlet 7 is provided on the side wall 2 a of the processing chamber 2, and a gate valve 8 that opens and closes the inlet 7 is provided. A transfer robot 9 is located outside the processing chamber 2 on the side where the loading port 7 is located.
 処理室2内には、ステージ10が設置されており、該ステージ10は、移動装置11によって移動される。該移動装置は本発明の被処理体移送装置としての役割も有している。ステージ10は、平面矩形形状を有しており、シールドボックス6よりも装入口7側に待機位置を有している。
 待機位置にあるステージ10の両側端縁上には、側面仕切壁30、30がステージ10の上面側縁に沿いつつ処理室2の天板2bに上端を隙間なく密着して固定されており、側面仕切壁30、30の下端面とステージ10の上面とは小隙間のみを有している。
 なお、この形態では、ステージ10が幅方向に移動するため、側面仕切壁30、30の下端面とステージ10の上面との間の隙間は、ステージ10上に載置した被処理体100が通過できる大きさに形成されている。なお、ステージ10を幅方向に移動させない場合には、該隙間をより狭いものにして気密性を高めることができる。
 また、ステージ10に保持された被処理体100と干渉しない部分はステージ10上面と側面仕切壁30との隙間を部分的に小さくしてもよい。
A stage 10 is installed in the processing chamber 2, and the stage 10 is moved by a moving device 11. The moving device also has a role as a workpiece transfer device of the present invention. The stage 10 has a planar rectangular shape, and has a standby position closer to the loading port 7 than the shield box 6.
On both side edges of the stage 10 at the standby position, side partition walls 30 and 30 are fixed along the top side edge of the stage 10 so that the upper end of the processing chamber 2 is closely attached to the top plate 2b without gaps. The lower end surfaces of the side partition walls 30 and 30 and the upper surface of the stage 10 have only a small gap.
In this embodiment, since the stage 10 moves in the width direction, the object 100 mounted on the stage 10 passes through the gap between the lower end surface of the side partition walls 30 and 30 and the upper surface of the stage 10. It is formed in a size that can be done. When the stage 10 is not moved in the width direction, the gap can be made narrower to improve the airtightness.
In addition, the gap between the upper surface of the stage 10 and the side partition wall 30 may be partially reduced at a portion that does not interfere with the workpiece 100 held on the stage 10.
 また、側面仕切壁30、30には、装入口7側においてステージ10の後方端側からステージ10の後端面に沿って下方に伸長する後方側面仕切壁30a、30aが連なっており、該後方側面仕切壁30a、30aは、装入口7側で側壁2aに隙間なく密着しており、後方側面仕切壁30a、30aの前方端面は、待機位置にあるステージ10の後端面と僅かに隙間を有している。 The side partition walls 30, 30 are connected to rear side partition walls 30a, 30a extending downward from the rear end side of the stage 10 along the rear end surface of the stage 10 on the loading port 7 side. The partition walls 30a and 30a are in close contact with the side wall 2a on the loading port 7 side, and the front end surfaces of the rear side partition walls 30a and 30a have a slight clearance from the rear end surface of the stage 10 in the standby position. ing.
 また、後方側面仕切壁30a、30aの両下端部は装入口7の下方側にまで伸長しており、後方側面仕切壁30a、30aの両下端部間には、装入口7よりも下方の位置で、板面を水平にした下方水平仕切壁31が架設されている。下方水平仕切壁31は、後端面が側壁2aに隙間なく密着し、左右に伸長して左右両端面が後方側面仕切壁30a、30aの内面に隙間なく密着している。また、下方水平仕切壁31の前方端面は、後方側面仕切壁30aの前端面にまで伸長している。すなわち、下方水平仕切壁31の前端面は、待機位置にあるステージ10の後端面と僅かな隙間を有している。 Further, both lower end portions of the rear side partition walls 30a, 30a extend to the lower side of the loading port 7, and the lower side portions of the rear side partition walls 30a, 30a are positioned below the loading port 7. Thus, a lower horizontal partition wall 31 having a flat plate surface is installed. The lower horizontal partition wall 31 has a rear end face that is in close contact with the side wall 2a without any gap, extends left and right, and both left and right end faces are in close contact with the inner surfaces of the rear side face partition walls 30a and 30a. The front end surface of the lower horizontal partition wall 31 extends to the front end surface of the rear side partition wall 30a. That is, the front end surface of the lower horizontal partition wall 31 has a slight gap with the rear end surface of the stage 10 in the standby position.
 側面仕切壁30、30の前方側端部は、待機位置にあるステージ10の前方端にまで伸長しており、側面仕切壁30、30の前端部上部の間には、縦板状の前方縦仕切壁32が架設されている。前方縦仕切壁32の上端面は天板2bに隙間なく密着しており、前方縦仕切壁32の下端は、側面仕切壁30の下端に揃っており、ステージ10に載置された被処理体100が通過できるようにステージ10上面との間に隙間G3が確保されている。該隙間G3は、仕切部における開放部に相当する。
 上記側面仕切壁30、30、後方側面仕切壁30a、30a、下方水平仕切壁31、前方縦仕切壁32によって、本発明の仕切部となる仕切壁が構成されている。この仕切部によって、装入口側空間としてのロードエリアAと、レーザ光照射エリア側空間であるレーザ光照射エリアBとが仕切られている。該仕切壁は、酸素などによる汚染を受けにくい材質が望ましく、例えばアルマイト処理されたアルミニウム板を用いることができる。
The front side end portions of the side partition walls 30 and 30 extend to the front end of the stage 10 in the standby position, and a vertical plate-like front vertical portion is interposed between the upper front end portions of the side partition walls 30 and 30. A partition wall 32 is installed. The upper end surface of the front vertical partition wall 32 is in close contact with the top plate 2 b without any gap, and the lower end of the front vertical partition wall 32 is aligned with the lower end of the side partition wall 30, and the object to be processed placed on the stage 10. A gap G3 is secured between the upper surface of the stage 10 so that 100 can pass through. The gap G3 corresponds to an open part in the partition part.
The side partition walls 30, 30, the rear side partition walls 30 a, 30 a, the lower horizontal partition wall 31, and the front vertical partition wall 32 constitute a partition wall serving as a partition portion of the present invention. By this partitioning portion, the load area A as the entrance side space and the laser light irradiation area B as the laser light irradiation area side space are partitioned. The partition wall is preferably made of a material that is not easily contaminated by oxygen or the like. For example, an alumite-treated aluminum plate can be used.
 ロードエリアAには、窒素、アルゴンなどの雰囲気ガスを給気可能な給気ライン16と、ロードエリアA内の雰囲気ガスを排気する排気ライン17とが接続されている。各ラインには、開閉弁16a、流量計16b、開閉弁17a、流量計17bが介設されている。
 上記給気ライン16、開閉弁16a、流量計16b、図示しないガス供給源などによって本発明の装入口側給気装置が構成されており、上記排気ライン17、開閉弁17a、流量計17b、図示しない排気ポンプなどによって本発明の装入口側排気装置が構成されている。
An air supply line 16 capable of supplying an atmospheric gas such as nitrogen and argon and an exhaust line 17 for exhausting the atmospheric gas in the load area A are connected to the load area A. Each line is provided with an on-off valve 16a, a flow meter 16b, an on-off valve 17a, and a flow meter 17b.
The inlet line side air supply device of the present invention is constituted by the air supply line 16, the on-off valve 16a, the flow meter 16b, a gas supply source (not shown), etc., and the exhaust line 17, the on-off valve 17a, the flow meter 17b, The exhaust-side exhaust device of the present invention is configured by an exhaust pump that does not.
 ロードエリアAに雰囲気ガスを給気することで、上記した仕切壁とステージ10との間の僅かな隙間からガスが外側に向けて吹き出されることでガスカーテンとしての機能が得られ、シールド性が向上する。したがって、仕切壁とステージ10との隙間は、ステージの移動を損なわない程度に極力小さくするのが望ましく、また、雰囲気ガスの給気によるガスカーテンの作用が十分に得られる程度に小さくすることが望ましい。 By supplying atmospheric gas to the load area A, the gas is blown out from the slight gap between the partition wall and the stage 10 to the outside so that a function as a gas curtain is obtained, and shielding properties are obtained. Will improve. Therefore, it is desirable to make the gap between the partition wall and the stage 10 as small as possible so as not to impair the movement of the stage, and to make it small enough to obtain the effect of the gas curtain by supplying the atmospheric gas. desirable.
 この実施形態においても、装入口7から待機位置にあるステージ10の前方端側に亘ってロードエリアAに割り当てられており、シールドボックス6側がレーザ光照射エリアBに割り当てられている。なお、この実施形態では、ロードエリアAとレーザ光照射エリアBとが仕切られており、ロードエリアAは、ロードロックエリアとして機能する。
 側面仕切壁30、30、下方水平仕切壁31、前方縦仕切壁32で構成される仕切部は、装入口7側空間の周囲を覆い、ロードエリアAである装入口側空間と、レーザ光照射エリアBであるレーザ光照射エリア側空間とに仕切ってシールド性を得ている。
 ロードエリアAは、装入口側給気ライン16からの給気によってガスカーテン作用を得てシールド性を向上させることができ、また、装入口側排気ライン17によって混入した大気を早期に排除することができる。
Also in this embodiment, the load area A is allocated from the loading port 7 to the front end side of the stage 10 at the standby position, and the shield box 6 side is allocated to the laser light irradiation area B. In this embodiment, the load area A and the laser beam irradiation area B are partitioned, and the load area A functions as a load lock area.
The partition part composed of the side partition walls 30 and 30, the lower horizontal partition wall 31 and the front vertical partition wall 32 covers the periphery of the inlet 7 side space, and the inlet side space which is the load area A, and laser light irradiation. The laser beam irradiation area side space, which is area B, is partitioned to obtain shielding properties.
In the load area A, the gas curtain action can be obtained by supplying air from the inlet side supply line 16 to improve the shielding performance, and the atmosphere mixed in by the inlet side exhaust line 17 can be eliminated early. Can do.
(実施形態4)
 なお、上記実施形態では、側面仕切壁12は、待機位置にあるステージ10上面の左右両側端縁上に位置してステージ10が左右方向に移動できるものとしたが、側面仕切壁の形状を変更してステージ10の移動を可能としたものであってもよい。この例を図10、11に基づいて説明する。なお、前記実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
(Embodiment 4)
In the above embodiment, the side partition wall 12 is positioned on the left and right side edges of the upper surface of the stage 10 at the standby position so that the stage 10 can move in the left-right direction. However, the shape of the side partition wall is changed. Thus, the stage 10 may be movable. This example will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the structure similar to the said embodiment, and the description is abbreviate | omitted or simplified.
 この例の側面仕切壁35、35は、ステージ10が左右方向に移動する範囲でステージの左右側壁面が干渉しない位置で天板2bに垂下固定されており、側面仕切壁35、35は、ステージ10の下面側近傍に至る長さを有している。また、側面仕切壁35、35の後方側は側壁2aに隙間なく固定されており、シールドボックス6側では、ステージ10の前方端縁に至る長さを有している。また、側面仕切壁35、35間には、待機位置にあるステージ10の後方側で横板状の下方水平仕切壁36が連結されており、下方水平仕切壁36の後方端は側壁2aに隙間なく固定され、前方端はステージ10の後端面と僅かな隙間を有する位置まで伸長している。 The side partition walls 35 and 35 of this example are suspended and fixed to the top plate 2b at positions where the left and right side wall surfaces of the stage do not interfere within the range in which the stage 10 moves in the left and right direction. 10 has a length reaching the vicinity of the lower surface side. Further, the rear side of the side partition walls 35, 35 is fixed to the side wall 2a without any gap, and the shield box 6 side has a length reaching the front edge of the stage 10. Further, a horizontal horizontal plate-shaped lower horizontal partition wall 36 is connected between the side partition walls 35 and 35 on the rear side of the stage 10 at the standby position, and the rear end of the lower horizontal partition wall 36 is spaced from the side wall 2a. The front end extends to a position having a slight gap with the rear end surface of the stage 10.
 また、側面仕切壁35、35の前方端は、ステージ10上面の前方端縁にまで伸長しており、該前方端に、縦板状の前方縦仕切壁37が架設されている。前方縦仕切壁37の上端面は天板2bに隙間なく密着して固定され、下端面はステージ10に載置された被処理体100が通過できる程度に隙間を有している。該隙間は、仕切手段における開放部に相当する。上記側面仕切壁35、35、下方水平仕切壁36、前方縦仕切壁37によって、本発明の仕切部となる仕切壁が構成されている。 Also, the front ends of the side partition walls 35, 35 extend to the front end edge of the upper surface of the stage 10, and a vertical plate-shaped front vertical partition wall 37 is installed at the front end. An upper end surface of the front vertical partition wall 37 is fixed in close contact with the top plate 2b without a gap, and a lower end surface has a gap so that the workpiece 100 placed on the stage 10 can pass therethrough. The gap corresponds to an open part in the partitioning means. The side partition walls 35, 35, the lower horizontal partition wall 36, and the front vertical partition wall 37 constitute a partition wall serving as a partition portion of the present invention.
 この実施形態においては、装入口7から待機位置にあるステージ10の上方側に至るまでの空間がロードエリアA0に割り当てられており、シールドボックス6側がレーザ光照射エリアBに割り当てられるように仕切られている。したがって、ロードエリアA0はロードロックエリアとして機能する。側面仕切壁35、35、下方水平仕切壁36、前方縦仕切壁37で構成される仕切壁は、装入口7の周囲を覆い、ロードエリアA0とレーザ光照射エリアBとを区画してシールド性を得ている。該ロードエリアA0は、給気ラインからの給気によってガスカーテン作用を得てシールド性を向上させることができ、また、排気ラインによって混入した大気を早期に排除することができる。 In this embodiment, the space from the loading opening 7 to the upper side of the stage 10 at the standby position is allocated to the load area A0, and the shield box 6 side is partitioned so as to be allocated to the laser light irradiation area B. ing. Therefore, the load area A0 functions as a load lock area. The partition wall composed of the side partition walls 35, 35, the lower horizontal partition wall 36, and the front vertical partition wall 37 covers the periphery of the inlet 7 and partitions the load area A0 and the laser light irradiation area B to provide shielding properties. Have gained. In the load area A0, the gas curtain action can be obtained by supplying air from the air supply line to improve the shielding performance, and the atmosphere mixed in by the exhaust line can be eliminated early.
 この実施形態においても、前記実施形態と同様にして処理室内への被処理体の搬入、レーザ光照射による処理、処理室外への処理体の搬出を行うことができる。この際に、レーザ光照射エリアの雰囲気をできるだけ維持するとともに、被処理体の搬入、搬出に際し、短時間で雰囲気の安定化を図ることができる。 Also in this embodiment, the object to be processed can be carried into the processing chamber, processed by laser light irradiation, and the processing object can be carried out of the processing chamber in the same manner as in the above embodiment. At this time, the atmosphere of the laser light irradiation area can be maintained as much as possible, and the atmosphere can be stabilized in a short time when the object to be processed is carried in and out.
(実施形態5)
 上記各実施形態では、ロードエリアに、装入口側空間とレーザ光照射エリア側空間とに仕切る仕切部について説明したが、ロードエリアAとレーザ光照射エリアBとを仕切る仕切部と、ロードエリアを装入口側空間とレーザ光照射エリア側空間に仕切る仕切部をそれぞれ備えるものであってもよい。
 この実施形態5では、図7~図9に示される仕切部を第2の仕切部として有し、さらにロードエリアを装入口側空間と保持ポジションを含む空間とに仕切る第1の仕切部を備えるものについて図12に基づいて説明する。なお、前記各実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
(Embodiment 5)
In each of the embodiments described above, the partition portion that partitions the load area into the loading entrance side space and the laser light irradiation area side space has been described. However, the partition portion that partitions the load area A and the laser light irradiation area B, and the load area You may provide each with the partition part partitioned off into the entrance side space and the laser beam irradiation area side space.
In the fifth embodiment, the partition shown in FIGS. 7 to 9 is provided as a second partition, and further provided with a first partition that partitions the load area into an inlet side space and a space including a holding position. A thing is demonstrated based on FIG. In addition, the same code | symbol is attached | subjected about the structure similar to each said embodiment, and the description is abbreviate | omitted or simplified.
 この形態では、側面仕切部30を有し、該側面仕切部30がステージ10の前端側にまで伸長している。側面仕切壁30とステージ10の上面とは、ステージ10上に被処理体100を保持してステージ10が移動する際に、被処理体100と側面仕切壁30とが干渉しないように、ステージ10との間に最小限の隙間が確保されている。なお、図12示想像線で示すように、ステージ10に保持された被処理体100と干渉しない部分はステージ10と側面仕切壁30との隙間を部分的に小さくしてもよい。
 側面仕切壁30の後方側には後方側面仕切壁30aを有し、該後方側面仕切壁30aの下端側に、上記実施形態3と同様に下方水平仕切板31が架設されている。また、ステージ10の後端側に位置する後方側面仕切壁30aの前端上部側に、前方縦仕切壁15が設けられている。前方縦仕切壁15は、上端面が天板2bに隙間なく密着している。前方縦仕切壁15とステージ10の上面との間には間隙G1が確保されている。隙間G1を通して被処理体100の移動が可能になっている。
 後方側面仕切壁30aと、下方水平仕切壁31、前方縦仕切壁15は、第1の仕切部を構成し、第1の仕切部によってロードエリアAを装入口側の空間A1とレーザ光照射エリア側の空間A2に仕切っている。
In this embodiment, the side partition 30 is provided, and the side partition 30 extends to the front end side of the stage 10. The side partition wall 30 and the upper surface of the stage 10 hold the target object 100 on the stage 10 so that the target object 100 and the side surface partition wall 30 do not interfere with each other when the stage 10 moves. A minimum gap is secured between them. Note that, as indicated by an imaginary line in FIG. 12, the gap between the stage 10 and the side partition wall 30 may be partially reduced at a portion that does not interfere with the workpiece 100 held on the stage 10.
A rear side partition wall 30a is provided on the rear side of the side partition wall 30, and a lower horizontal partition plate 31 is installed on the lower end side of the rear side partition wall 30a as in the third embodiment. In addition, a front vertical partition wall 15 is provided on the upper side of the front end of the rear side wall partition wall 30 a located on the rear end side of the stage 10. An upper end surface of the front vertical partition wall 15 is in close contact with the top plate 2b without a gap. A gap G <b> 1 is secured between the front vertical partition wall 15 and the upper surface of the stage 10. The workpiece 100 can be moved through the gap G1.
The rear side partition wall 30a, the lower horizontal partition wall 31, and the front vertical partition wall 15 constitute a first partition part, and the load area A and the laser beam irradiation area on the load entrance side are defined by the first partition part. It is partitioned into a side space A2.
 また、側面仕切壁30の前端部に前方縦仕切壁32を有している。前方縦仕切壁32は、上端面および左右両端面が処理室2の天板2bおよび両側の側面仕切壁30内面に隙間なく密着している。また、前方縦仕切壁32の下端と、ステージ10の上面との間には隙間が確保されている。前記隙間を通して被処理体100の移動が可能になっている。
 側面仕切壁30、前方縦仕切壁31およびステージ10上面は、本発明の第2の仕切部を構成している。第2の仕切部によってロードエリアAとレーザ光照射エリアBと割り当てられて仕切られている。したがって、ロードエリアAはロードロックエリアとして機能する。
A front vertical partition wall 32 is provided at the front end of the side partition wall 30. The front vertical partition wall 32 is in close contact with the top plate 2b of the processing chamber 2 and the inner surfaces of the side partition walls 30 on both sides without any gap at the upper end surface and the left and right end surfaces. A gap is secured between the lower end of the front vertical partition wall 32 and the upper surface of the stage 10. The object 100 can be moved through the gap.
The side partition wall 30, the front vertical partition wall 31, and the upper surface of the stage 10 constitute the second partition portion of the present invention. The load area A and the laser beam irradiation area B are allocated and partitioned by the second partitioning portion. Therefore, the load area A functions as a load lock area.
 第1の仕切部は、装入口7側空間の周囲を覆い、ロードエリアAを装入口側空間A1と、レーザ光照射エリア側空間A2とに仕切ってシールド性を得ている。さらに第2の仕切部は、処理室2内をロードエリアAとレーザ光照射エリアBとに仕切ってさらにシールド性を得ている。
 装入口側空間A1は、装入口側給気ラインからの給気によってガスカーテン作用を得てシールド性を向上させることができ、また、装入口側排気ラインによって混入した大気を早期に排除することができる。
The first partition covers the periphery of the inlet 7 side space and partitions the load area A into the inlet side space A1 and the laser light irradiation area side space A2 to obtain shielding properties. Further, the second partition section partitions the inside of the processing chamber 2 into a load area A and a laser beam irradiation area B, and further obtains a shielding property.
The inlet-side space A1 can obtain a gas curtain action by supplying air from the inlet-side air supply line to improve the shielding performance, and can quickly remove the air mixed in by the inlet-side exhaust line. Can do.
 以上、本発明について上記実施形態に基づいて説明を行ったが、本発明は上記実施形態の内容に限定されるものではなく、適宜の変更が可能である。 As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to the content of the said embodiment, A suitable change is possible.
 1  レーザ処理装置
 2  処理室
 3  レーザ発振器
 4  光学系
 6  シールドボックス
 7  装入口
 8  ゲートバルブ
 9  搬送ロボット
10  ステージ
11  移動装置
12  側面仕切壁
13  下方水平仕切壁
14  後方縦仕切壁
15  前方縦仕切壁
16  装入口側給気ライン
17  装入口側排気ライン
18  レーザ光照射側給気ライン
19  レーザ光照射側排気ライン
20  側面仕切壁
21  前方縦仕切壁
30  側面仕切壁
31  下方水平仕切壁
32  前方縦仕切壁
35  側面仕切壁
36  下方水平仕切壁
37  前方縦仕切壁
A   ロードエリア
A1  装入口側空間
A2  レーザ光照射側空間
A3  装入口側空間
A4  レーザ光照射側空間
 B  レーザ光照射エリア
100 被処理体
DESCRIPTION OF SYMBOLS 1 Laser processing apparatus 2 Processing chamber 3 Laser oscillator 4 Optical system 6 Shield box 7 Loading port 8 Gate valve 9 Transfer robot 10 Stage 11 Moving device 12 Side partition wall 13 Lower horizontal partition wall 14 Back vertical partition wall 15 Front vertical partition wall 16 Inlet side air supply line 17 Inlet side exhaust line 18 Laser light irradiation side air supply line 19 Laser light irradiation side exhaust line 20 Side partition wall 21 Front vertical partition wall 30 Side partition wall 31 Lower horizontal partition wall 32 Front vertical partition wall 35 Side partition wall 36 Lower horizontal partition wall 37 Front vertical partition wall A Load area A1 Entrance side space A2 Laser beam irradiation side space A3 Entrance side space A4 Laser beam irradiation side space B Laser beam irradiation area 100 Object to be processed

Claims (17)

  1.  被処理体を収容して調整された雰囲気下で該被処理体にレーザ光を照射する処理室と、該処理室内に外部からレーザ光を導く光学系と、を備え、
     前記処理室は、前記処理室外部から前記処理室内部に前記被処理体を装入する開閉可能な装入口を有するとともに、前記処理室内部に、前記装入口に連なるロードエリアと、該ロードエリアに連なるレーザ光照射エリアと、を備え、
     前記ロードエリアに、前記装入口側の空間と前記レーザ光照射エリアを含むレーザ光照射エリア側の空間とに仕切る仕切部を有し、該仕切部は、前記装入口側の空間と前記レーザ光照射エリア側の空間との間で前記被処理体の移動が可能であることを特徴とするレーザ処理装置。
    A processing chamber that irradiates the target object with laser light in an atmosphere adjusted to contain the target object; and an optical system that guides the laser beam from the outside into the processing chamber.
    The processing chamber has an openable and closable inlet for charging the object to be processed into the processing chamber from the outside of the processing chamber, a load area connected to the charging port in the processing chamber, and the load area And a laser beam irradiation area connected to
    The load area includes a partition part that partitions the space on the inlet side and the space on the laser light irradiation area side including the laser light irradiation area, and the partition part includes the space on the inlet side and the laser light. A laser processing apparatus, wherein the object to be processed is movable between a space on an irradiation area side.
  2.  前記仕切部は、前記装入口側の空間と前記レーザ光照射エリア側の空間とに仕切る仕切壁を有することを特徴とする請求項1記載のレーザ処理装置。 2. The laser processing apparatus according to claim 1, wherein the partitioning portion includes a partition wall that partitions the space on the inlet side and the space on the laser light irradiation area side.
  3.  前記仕切部は、前記装入口側の空間と前記レーザ光照射エリア側の空間とに仕切る雰囲気ガスカーテンを有することを特徴とする請求項1記載のレーザ処理装置。 2. The laser processing apparatus according to claim 1, wherein the partitioning portion includes an atmosphere gas curtain that partitions the space on the inlet side and the space on the laser light irradiation area side.
  4.  前記仕切部は、前記装入口側空間としての前記ロードエリアと、前記レーザ光照射エリア側空間としての前記レーザ光照射エリアを仕切るものであることを特徴とする請求項1~3のいずれかに記載のレーザ処理装置。 4. The partition section partitions the load area as the loading side space and the laser light irradiation area as the laser light irradiation area side space. The laser processing apparatus as described.
  5.  前記仕切部は、前記ロードエリア内にある前記装入口側空間と、前記ロードエリアの一部を含む前記レーザ光照射エリア側空間とを仕切っていることを特徴とする請求項1~3のいずれかに記載のレーザ処理装置。 4. The partition according to any one of claims 1 to 3, wherein the partitioning part partitions the inlet side space in the load area and the laser light irradiation area side space including a part of the load area. A laser processing apparatus according to claim 1.
  6.  前記仕切部は、前記ロードエリア内にある前記装入口側空間と、前記ロードエリアに装入された被処理体が保持される保持ポジション側空間を含む前記レーザ光照射エリア側空間とを仕切るものであることを特徴とする請求項1~3のいずれかに記載のレーザ処理装置。 The partitioning part partitions the loading side space in the load area and the laser light irradiation area side space including a holding position side space in which an object to be processed loaded in the loading area is held. The laser processing apparatus according to any one of claims 1 to 3, wherein:
  7.  前記装入口側空間に装入口側給気装置と装入口側排気装置とが通気可能に接続されていることを特徴とする請求項1~6のいずれかに記載のレーザ処理装置。 The laser processing apparatus according to any one of claims 1 to 6, wherein an inlet side air supply device and an inlet side exhaust device are connected to the inlet side space so as to allow ventilation.
  8.  前記レーザ光照射エリアに、照射エリア給気装置と照射エリア排気装置とが通気可能に接続されていることを特徴とする請求項1~7のいずれかに記載のレーザ処理装置。 8. The laser processing apparatus according to claim 1, wherein an irradiation area air supply device and an irradiation area exhaust device are connected to the laser light irradiation area so as to allow ventilation.
  9.  前記ロードエリアと前記レーザ光照射エリアとの間で前記被処理体を移動させる被処理体移送装置を前記処理室内部に備えることを特徴とする請求項1~8のいずれかに記載のレーザ処理装置。 The laser processing according to any one of claims 1 to 8, further comprising a processing object transfer device that moves the processing object between the load area and the laser light irradiation area in the processing chamber. apparatus.
  10.  前記被処理体移送装置は、前記被処理体を保持して前記ロードエリアと前記レーザ光照射エリアとの間で移動可能なステージを有していることを特徴とする請求項9記載のレーザ処理装置。 The laser processing according to claim 9, wherein the workpiece transfer apparatus includes a stage that holds the workpiece and is movable between the load area and the laser light irradiation area. apparatus.
  11.  前記被処理体移送装置は、前記レーザ光照射エリアにおいて前記ステージを前記レーザ光に対し相対的に移動させることで前記レーザ光の走査を行うものであることを特徴とする請求項10記載のレーザ処理装置。 11. The laser according to claim 10, wherein the workpiece transfer device performs scanning of the laser beam by moving the stage relative to the laser beam in the laser beam irradiation area. Processing equipment.
  12.  前記ステージは、前記ロードエリア側に位置する際に、前記仕切部の一部を構成することを特徴とする請求項10または11に記載のレーザ処理装置。 The laser processing apparatus according to claim 10 or 11, wherein the stage constitutes a part of the partition when positioned on the load area side.
  13.  前記処理室内で、前記装入口の下方側から前記ロードエリア側に待機した前記ステージの装入口側端部位置に伸長して前記ステージとともに前記装入口側空間の下方または前記装入口側空間および前記レーザ光照射エリア側空間の下方を仕切る下方仕切壁を前記仕切部の一部として備えることを特徴とする請求項10~12のいずれかに記載のレーザ処理装置。 In the processing chamber, it extends from the lower side of the loading port to the loading port side end position of the stage waiting on the load area side, and together with the stage, below the loading side space or the loading side space and the stage. 13. The laser processing apparatus according to claim 10, further comprising a lower partition wall that partitions a lower portion of the laser light irradiation area side space as a part of the partition portion.
  14.  前記仕切部は、前記被処理体の装入方向前後方向において前記装入口側の空間と前記レーザ光照射エリア側の空間とに仕切る前方仕切壁を有することを特徴とする請求項1~13のいずれかに記載のレーザ処理装置。 14. The partition according to claim 1, wherein the partition has a front partition wall that partitions the space on the inlet side and the space on the laser light irradiation area side in the front-rear direction of the object to be processed. The laser processing apparatus in any one.
  15.  前記処理室内で、前記装入口の両側方から前記レーザ光照射エリア側に伸長して前記装入口側空間の側方または前記装入口側空間および前記レーザ光照射エリア側空間の側方を仕切る側方仕切壁を前記仕切部の一部として備えることを特徴とする請求項1~14のいずれかに記載のレーザ処理装置。 In the processing chamber, a side that extends from both sides of the inlet to the laser light irradiation area side and partitions the side of the inlet side space or the side of the inlet side space and the laser light irradiation area side space. The laser processing apparatus according to any one of claims 1 to 14, further comprising a partition wall as a part of the partition portion.
  16.  前記仕切部を第1の仕切部として、前記ロードエリアと前記レーザ光照射エリアとを仕切る第2の仕切部を備えることを特徴とする請求項1~15のいずれかに記載のレーザ処理装置。 The laser processing apparatus according to any one of claims 1 to 15, further comprising a second partition section that partitions the load area and the laser light irradiation area using the partition section as a first partition section.
  17.  被処理体を収容して調整された雰囲気下で該被処理体にレーザ光を照射する処理室と、該処理室内に外部からレーザ光を導く光学系と、を備え、
     前記処理室は、前記処理室外部から前記処理室内部に前記被処理体を装入する開閉可能な装入口を有するとともに、前記処理室内部に、前記装入口に連なるロードロックエリアと、該ロードロックエリアに連なるレーザ光照射エリアと、を備え、
     前記ロードロックエリアとレーザ光照射エリアとの間で前記被処理体の移動が可能になっていることを特徴とするレーザ処理装置。
    A processing chamber that irradiates the target object with laser light in an atmosphere adjusted to contain the target object; and an optical system that guides the laser beam from the outside into the processing chamber.
    The processing chamber has an openable / closable inlet for charging the object to be processed into the processing chamber from the outside of the processing chamber, a load lock area connected to the charging port in the processing chamber, and the load A laser beam irradiation area that continues to the lock area,
    The laser processing apparatus, wherein the object to be processed is movable between the load lock area and the laser light irradiation area.
PCT/JP2011/058929 2010-04-12 2011-04-08 Laser processing apparatus WO2011129282A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180018247.0A CN102834899B (en) 2010-04-12 2011-04-08 Laser machining device
KR1020127024497A KR101896949B1 (en) 2010-04-12 2011-04-08 Laser processing apparatus
TW100112641A TWI471914B (en) 2010-04-12 2011-04-12 Laser treatment apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010091802A JP5467578B2 (en) 2010-04-12 2010-04-12 Laser processing equipment
JP2010-091802 2010-04-12
JP2011-086145 2011-04-08
JP2011086145A JP5447991B2 (en) 2011-04-08 2011-04-08 Laser processing equipment

Publications (1)

Publication Number Publication Date
WO2011129282A1 true WO2011129282A1 (en) 2011-10-20

Family

ID=44798658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058929 WO2011129282A1 (en) 2010-04-12 2011-04-08 Laser processing apparatus

Country Status (4)

Country Link
KR (1) KR101896949B1 (en)
CN (1) CN102834899B (en)
TW (1) TWI471914B (en)
WO (1) WO2011129282A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018659B2 (en) * 2015-02-27 2016-11-02 株式会社日本製鋼所 Atmosphere forming apparatus and levitation conveyance method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356917A (en) * 1991-06-03 1992-12-10 Matsushita Electric Ind Co Ltd laser annealing equipment
JPH10308357A (en) * 1997-05-07 1998-11-17 Sumitomo Heavy Ind Ltd Laser annealer
JPH1197382A (en) * 1997-09-19 1999-04-09 Japan Steel Works Ltd:The Laser annealing equipment
JP2000021891A (en) * 1998-06-26 2000-01-21 Toshiba Corp Substrate processor and substrate processing method
JP2006147859A (en) * 2004-11-19 2006-06-08 Sumitomo Heavy Ind Ltd Method and device for processing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001647B2 (en) * 1995-12-04 2007-10-31 株式会社半導体エネルギー研究所 Method for manufacturing crystalline semiconductor film
JP4593548B2 (en) * 1996-05-15 2010-12-08 株式会社半導体エネルギー研究所 Doping processing equipment
TW444275B (en) * 1998-01-13 2001-07-01 Toshiba Corp Processing device, laser annealing device, laser annealing method, manufacturing device and substrate manufacturing device for panel display
JP4014729B2 (en) * 1998-06-05 2007-11-28 クリーン・テクノロジー株式会社 UV cleaning equipment
JP2002164407A (en) 2000-11-27 2002-06-07 Japan Steel Works Ltd:The Laser annealing apparatus and method
JP4589606B2 (en) * 2003-06-02 2010-12-01 住友重機械工業株式会社 Manufacturing method of semiconductor device
US7390704B2 (en) * 2004-06-16 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP4170360B2 (en) * 2006-12-01 2008-10-22 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
US7923660B2 (en) * 2007-08-15 2011-04-12 Applied Materials, Inc. Pulsed laser anneal system architecture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356917A (en) * 1991-06-03 1992-12-10 Matsushita Electric Ind Co Ltd laser annealing equipment
JPH10308357A (en) * 1997-05-07 1998-11-17 Sumitomo Heavy Ind Ltd Laser annealer
JPH1197382A (en) * 1997-09-19 1999-04-09 Japan Steel Works Ltd:The Laser annealing equipment
JP2000021891A (en) * 1998-06-26 2000-01-21 Toshiba Corp Substrate processor and substrate processing method
JP2006147859A (en) * 2004-11-19 2006-06-08 Sumitomo Heavy Ind Ltd Method and device for processing

Also Published As

Publication number Publication date
CN102834899A (en) 2012-12-19
CN102834899B (en) 2015-08-05
TW201142924A (en) 2011-12-01
KR20130069549A (en) 2013-06-26
TWI471914B (en) 2015-02-01
KR101896949B1 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
US20150170945A1 (en) Efem
KR102337428B1 (en) Laser annealing device, serial conveyance path for laser annealing, laser beam radiation means, and laser annealing method
KR102354414B1 (en) Ion implantation apparatus and control method of ion implantation apparatus
US11810799B2 (en) Laser processing apparatus and laser processing method
WO2011129282A1 (en) Laser processing apparatus
KR101971453B1 (en) Substrate processing module and substrate processing system having the same
TWI518750B (en) Ion beam irradiation device
JP5654796B2 (en) Continuous diffusion processing equipment
JP5447991B2 (en) Laser processing equipment
JP5467578B2 (en) Laser processing equipment
JP4849316B2 (en) Vacuum deposition system
JP3175002B2 (en) Laser annealing equipment
JP5774439B2 (en) Laser processing equipment
CN107154348B (en) Deoxidizing device for excimer laser annealing process
US10784075B2 (en) Ion beam irradiation apparatus
KR101898066B1 (en) Substrate processing module and substrate processing system having the same
KR101877337B1 (en) Ion injection apparatus and tray therefor
KR101765232B1 (en) Substrate processing apparatus and substrate processing system
KR101818730B1 (en) Substrate processing apparatus, substrate processing system, and substrate processing method
KR20130073185A (en) Ion beam mask, substrate processing apparatus, and substrate processing system
US20170236686A1 (en) Ion beam irradiation apparatus
KR101425432B1 (en) Apparatus for processing substrate
KR20130024884A (en) Device and method for substrate processing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018247.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024497

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768803

Country of ref document: EP

Kind code of ref document: A1