[go: up one dir, main page]

WO2011126044A1 - Production method and production device for article having microrelief structure on surface thereof - Google Patents

Production method and production device for article having microrelief structure on surface thereof Download PDF

Info

Publication number
WO2011126044A1
WO2011126044A1 PCT/JP2011/058698 JP2011058698W WO2011126044A1 WO 2011126044 A1 WO2011126044 A1 WO 2011126044A1 JP 2011058698 W JP2011058698 W JP 2011058698W WO 2011126044 A1 WO2011126044 A1 WO 2011126044A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
article
release agent
fine concavo
convex structure
Prior art date
Application number
PCT/JP2011/058698
Other languages
French (fr)
Japanese (ja)
Inventor
覚 小澤
祐介 中井
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201180028379.1A priority Critical patent/CN102933363B/en
Priority to JP2011518097A priority patent/JP4856785B2/en
Publication of WO2011126044A1 publication Critical patent/WO2011126044A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/58Applying the releasing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the present invention relates to a method and an apparatus for manufacturing an article having a fine concavo-convex structure on its surface by transferring the fine concavo-convex structure on the surface of a mold whose surface is treated with a release agent to the surface of the article main body.
  • a fine concavo-convex structure with a period of less than or equal to the wavelength of visible light on the surface exhibit an antireflection effect, a lotus effect, and the like, and thus have been attracting attention for their usefulness.
  • a fine concavo-convex structure called a moth-eye structure is an effective antireflection means by continuously increasing the refractive index from the refractive index of air to the refractive index of the material of the article. .
  • a method for producing an article having a fine concavo-convex structure on its surface for example, a method having the following steps (i) to (iii) is known (for example, Patent Document 1).
  • An ultraviolet curable resin composition is sandwiched between a mold having an inverted structure of a fine concavo-convex structure on the surface and the surface treated with a release agent, and a base film serving as a main body of the article Process.
  • a mold treated with a mold release agent often deteriorates in performance due to repeated transfer of a fine concavo-convex structure, and finally the mold cannot be released from the cured resin layer. If it becomes the said state, cured resin will adhere to the surface of a mold, and washing
  • a method capable of easily monitoring the state of the mold release agent on the mold surface online is required.
  • the present invention provides a manufacturing method and a manufacturing apparatus for an article having a fine concavo-convex structure on the surface, which can easily monitor on-line the state of the mold release agent on the mold surface and suppress a decrease in productivity.
  • the method of manufacturing an article having a fine concavo-convex structure on the surface thereof transfers the fine concavo-convex structure on the surface of the mold whose surface has been treated with a release agent to the surface of the article main body, and the fine concavo-convex structure on the surface.
  • the state of the mold release agent on the surface of the mold is determined to be poor, the surface of the article main body of the fine concavo-convex structure on the mold surface
  • the transfer onto the mold may be stopped, or a release agent may be supplied to the fine concavo-convex structure on the surface of the mold.
  • the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent in the infrared spectroscopic spectrum and the surface of the mold When the area ratio ((A) / (B)) to the absorbance area (B) of the peak near the wave number derived from the chemical structure is equal to or higher than a preset threshold value, the state of the mold release agent on the mold surface is good. Is preferably determined.
  • the apparatus for manufacturing an article having a fine concavo-convex structure on the surface of the present invention transfers the fine concavo-convex structure on the surface of the mold whose surface is treated with a release agent to the surface of the article main body, and the fine concavo-convex structure on the surface.
  • a reflection type infrared spectroscopic device for measuring an infrared spectrum of the surface of the mold after peeling, and a determination means for judging the quality of the release agent on the surface of the mold based on the infrared spectrum It is characterized by that.
  • the present invention relates to the following.
  • a method for producing an article having a fine concavo-convex structure on its surface by transferring the fine concavo-convex structure on the surface of the mold whose surface has been treated with a release agent to the surface of the article body. Appropriateness of production continuity by transferring to the surface of the article main body, measuring the infrared spectrum of the mold surface after peeling the article main body from the mold, and the state of the release agent on the mold surface.
  • a method for manufacturing the article comprising: determining.
  • the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent or the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent
  • the area ratio ((A) / (B)) with the absorbance area (B) of the peak near the wave number derived from the chemical structure existing on the surface of the mold is equal to or higher than a preset threshold
  • the separation of the mold surface A method for producing an article having a fine concavo-convex structure on the surface thereof according to any one of (1) to (3), comprising determining that the state of the mold is good.
  • the mold is made of alumina, the release agent is a fluorine compound, the absorbance area (A) has a threshold value of 0.13, and the absorbance area ratio ((A) / (B))
  • the absorbance area (A) is 0.13 or more and 1 or less, and the area ratio ((A) / (B)) of the absorbance is 0.047 or more and 10 or less.
  • An apparatus for manufacturing an article having a fine concavo-convex structure on the surface by transferring the fine concavo-convex structure on the surface of the mold whose surface is treated with a release agent to the surface of the article body, A mold having a structure, the surface of which is treated with a release agent, and a fine concavo-convex structure is transferred to the surface of the article body, and the infrared spectrum of the mold surface is measured after the article body is peeled from the mold.
  • An apparatus for manufacturing an article having a fine concavo-convex structure on a surface thereof comprising: a reflective infrared spectroscopic device for performing determination; and a determination means for determining the quality of a release agent on the surface of the mold based on the infrared spectroscopic spectrum.
  • the state of the mold release agent on the mold surface can be easily monitored online, and the reduction in productivity can be suppressed.
  • the state of the mold release agent on the mold surface can be easily monitored online, and a decrease in productivity can be suppressed.
  • (meth) acrylate means acrylate or methacrylate.
  • transparent means that light having a wavelength of 400 to 1170 nm is transmitted.
  • an active energy ray means visible light, an ultraviolet-ray, an electron beam, plasma, a heat ray (infrared rays etc.), etc.
  • the apparatus for manufacturing an article having a fine concavo-convex structure on the surface thereof according to the present invention has a fine concavo-convex structure on the surface, the surface is treated with a release agent, and the fine concavo-convex structure is transferred to the surface of the article main body.
  • FIG. 1 is a schematic configuration diagram showing an example of an apparatus for manufacturing an article having a fine concavo-convex structure on the surface according to the present invention.
  • the manufacturing apparatus has a roll-shaped mold 20 having a fine concavo-convex structure (not shown) on the surface, and the surface is treated with a release agent; and the surface of the roll-shaped mold 20 in synchronization with the rotation of the roll-shaped mold 20
  • a tank 22 for supplying an active energy ray-curable resin composition between the roll-shaped mold 20 and the belt-shaped film 42 (article main body) moving along the roll; and the film 42 and the active energy between the roll-shaped mold 20
  • a nip roll 26 that nips the linear curable resin composition
  • a pneumatic cylinder 24 that adjusts the nip pressure of the nip roll 26
  • an active energy that is installed under the roll-shaped mold 20 and passes through the film 42 to the active energy linear curable resin composition.
  • “immediately after being peeled” means from the time when the article main body having a fine concavo-convex structure on the surface is peeled off from the mold until the mold next contacts the article main body. Specifically, from when the cured resin layer 44 is peeled from the roll-shaped mold 20 together with the film 42 to when the active energy ray-curable resin composition is supplied between the film 42 and the roll-shaped mold 20. .
  • the reflection type infrared spectroscopic device 50 includes a light source 52 that irradiates the surface of the roll-shaped mold 20 with infrared light; and receives and spectrally analyzes the infrared light reflected from the surface of the roll-shaped mold 20, and detects the dispersed infrared light.
  • a detector 54 that obtains an outer spectral spectrum; and an operation control device 56 that controls the light source 52 and the detector 54 and transmits the infrared spectral spectrum obtained by the detector 54 to the determination means 60.
  • the active energy ray-curable resin composition is supplied between the film 42 and the roll mold 20 after the cured resin layer 44 is peeled from the roll mold 20 together with the film 42. It is installed at a position where the infrared spectrum of the surface of the roll-shaped mold 20 can be measured.
  • the reflection infrared spectroscopic device 50 include a Fourier transform type and a dispersion type using a diffraction grating, and a Fourier transform type infrared spectroscopic device is preferable because the measurement time is short.
  • the determination means 60 includes, for example, an extraction unit (not shown) that extracts the intensity or area of a peak near a predetermined wave number derived from a specific chemical structure from an infrared spectrum; and the intensity of two types of peaks as necessary Or a calculation unit (not shown) for calculating the area ratio; the intensity of the peak, the area, or the ratio thereof is greater than or equal to a preset threshold value (or less than the threshold value in some cases).
  • a determination unit for determining that the state of the release agent is good; a storage unit (not shown) for storing a threshold value inputted from the outside; and a determination unit for the release agent on the surface of the roll mold 20 And a transmission unit that transmits the information to the control device 62 when the state is determined to be defective.
  • the determination unit has an absorbance area (A) of a peak near the wave number derived from the chemical structure of the release agent, or a peak near the wave number derived from the chemical structure existing on the surface of the roll mold 20 with the absorbance area (A).
  • A absorbance area
  • the area ratio ((A) / (B)) to the absorbance area (B) is equal to or higher than a preset threshold value, the state of the mold release agent on the mold surface is preferably determined to be good. .
  • each part of the determination means 60 is preferably as follows.
  • the extractor is based on the absorbance area (A) of the peak in the vicinity of wave number 1080 to 1290 cm ⁇ 1 derived from the chemical structure of the fluorine compound having a hydrolyzable silyl group or silanol group, and the chemistry of the anodized alumina. It is preferable to extract the absorbance area (B) of the peak near the wave number 730 to 1080 cm ⁇ 1 derived from the structure.
  • the baseline in this case is a line connecting the start point and end point of the absorption curve having a peak at a predetermined wave number.
  • these wave numbers may change with the state of a mold release agent or an anodized alumina, and can be suitably changed with the peak position which appears.
  • the calculation unit calculates an area (A) extracted by the extraction unit or an area ratio ((A) / (B)) between the area (A) and the area (B).
  • the determination unit determines that the state of the release agent on the surface of the roll-shaped mold 20 is good when the area (A) or the area ratio ((A) / (B)) is equal to or greater than a preset threshold value. It is preferable.
  • the thickness of the anodized alumina is constant, the area ratio ((A) / (B)) is more stable because problems such as reproducibility and error between apparatuses are reduced. This is preferable because it can be expected to be measured. However, when the thickness of the anodized alumina is not constant, it can be judged only by the area of the peak (A).
  • the determination means 60 may be realized by dedicated hardware, and the determination means 60 is constituted by a memory and a central processing unit (CPU), and is a program for realizing the function of the determination means 60. The function may be realized by loading the program into a memory and executing it.
  • an input device, a display device, and the like are connected to the determination unit 60 as peripheral devices.
  • the input device refers to an input device such as a display touch panel, a switch panel, and a keyboard
  • the display device refers to a CRT, a liquid crystal display device, and the like.
  • the control device 62 includes a processing unit (not shown), an interface unit (not shown), and a storage unit (not shown).
  • the interface unit is used to electrically connect each device or the like constituting the manufacturing apparatus and the processing unit.
  • the processing unit controls the operation of the devices and the like based on various settings stored in the storage unit, determination information from the determination unit 60, and the like. For example, when the determination means 60 determines that the state of the release agent on the surface of the roll-shaped mold 20 is poor, the film 42 moves, the roll-shaped mold 20 rotates, and the active energy ray curable from the tank 22. The supply of the resin composition or the like is stopped, and the transfer of the fine uneven structure on the surface of the roll-shaped mold 20 to the surface of the film 42 is stopped.
  • the processing unit may be realized by dedicated hardware, and the processing unit is constituted by a memory and a central processing unit (CPU), and a program for realizing the function of the processing unit is stored in the memory.
  • the function may be realized by loading and executing.
  • an input device, a display device, and the like are connected to the control device 62 as peripheral devices.
  • the input device refers to an input device such as a display touch panel, a switch panel, and a keyboard
  • the display device refers to a CRT, a liquid crystal display device, and the like.
  • the control device 62 a device having the function of the determination unit 60 may be used, and the determination unit 60 provided separately from the control device 62 may be omitted.
  • Examples of the active energy ray irradiation device 28 include a high-pressure mercury lamp, a metal halide lamp, and a fusion lamp.
  • the mold has a fine concavo-convex structure on the surface of a mold substrate, and the surface is treated with a release agent.
  • the material for the mold base include metals (including those having an oxide film formed on the surface), quartz, glass, resin, and ceramics.
  • the shape of the mold substrate include a tubular shape, a flat plate shape, and a sheet shape in addition to the roll shape.
  • Examples of the mold production method include the following method (I-1) and method (I-2), and the method (I--) is possible because the area can be increased and the production is simple. 1) is particularly preferred.
  • (I-1) A method of forming anodized alumina having two or more pores (recesses) on the surface of an aluminum substrate.
  • (I-2) A method of directly forming a fine concavo-convex structure on the surface of a mold substrate by lithography or the like.
  • a method having the following steps (a) to (f) is preferable.
  • B A step of removing the oxide film and forming anodic oxidation pore generation points on the surface of the aluminum substrate.
  • C A step of anodizing the aluminum substrate again in the electrolytic solution to form an oxide film having pores at the pore generation points.
  • D A step of enlarging the diameter of the pores.
  • E A step of anodizing again in the electrolytic solution after the step (d).
  • F A step of repeating steps (d) and (e) to obtain a mold in which anodized alumina having two or more pores is formed on the surface of an aluminum substrate.
  • the shape of the aluminum substrate include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
  • the aluminum substrate is preferably polished by mechanical polishing, feather polishing, chemical polishing, electrolytic polishing (etching) or the like in order to smooth the surface state.
  • etching electrolytic polishing
  • the purity of aluminum is preferably 99% or more, more preferably 99.5% or more, and particularly preferably 99.8% or more.
  • the purity of aluminum is low, when anodized, an uneven structure having a size that scatters visible light due to segregation of impurities may be formed, or the regularity of pores obtained by anodization may be lowered.
  • the electrolytic solution include sulfuric acid, oxalic acid, and phosphoric acid.
  • the concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid exceeds 0.7M, the current value becomes too high, and the surface of the oxide film may become rough. When the formation voltage is 30 to 60 V, anodized alumina having highly regular pores with a period of 100 nm can be obtained. Regardless of whether the formation voltage is higher or lower than this range, the regularity tends to decrease.
  • the temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution exceeds 60 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken, or the surface may melt and the regularity of the pores may be disturbed.
  • the concentration of sulfuric acid is preferably 0.7M or less. If the concentration of sulfuric acid exceeds 0.7M, the current value may become too high to maintain a constant voltage. When the formation voltage is 25 to 30 V, anodized alumina having highly regular pores with a period of 63 nm can be obtained. The regularity tends to decrease whether the formation voltage is higher or lower than this range.
  • the temperature of the electrolytic solution is preferably 30 ° C. or less, and more preferably 20 ° C. or less. When the temperature of the electrolytic solution exceeds 30 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.
  • the method for removing the oxide film include a method in which aluminum is not dissolved but is dissolved in a solution that selectively dissolves the oxide film and removed. Examples of such a solution include a chromic acid / phosphoric acid mixed solution.
  • the pore diameter expansion treatment is a treatment for expanding the diameter of the pores obtained by anodic oxidation by immersing in a solution dissolving the oxide film. Examples of such a solution include a phosphoric acid aqueous solution of about 5% by mass. The longer the pore diameter expansion processing time, the larger the pore diameter.
  • the total number of repetitions is preferably 3 times or more, and more preferably 5 times or more.
  • the diameter of the pores decreases discontinuously, so that the effect of reducing the reflectance of the moth-eye structure formed using anodized alumina having such pores is insufficient.
  • Examples of the shape of the pore 12 include a substantially conical shape, a pyramid shape, a cylindrical shape, and the like, and a cross-sectional area of the pore perpendicular to the depth direction from the outermost surface, such as a conical shape and a pyramid shape, A shape that continuously decreases in the depth direction is preferable.
  • the average interval between the pores 12 is not more than the wavelength of visible light, that is, not more than 400 nm.
  • the average interval between the pores 12 is preferably 20 nm or more.
  • the range of the average interval between the pores 12 is preferably 20 nm or more and 400 nm or less, more preferably 50 nm or more and 300 nm or less, and further preferably 90 nm or more and 250 nm or less.
  • the average interval between the pores 12 was measured by measuring the distance between adjacent pores 12 (distance from the center of the pore 12 to the center of the adjacent pore 12) by electron microscope observation, and averaging these values. It is a
  • the depth of the pores 12 is preferably 80 to 500 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm.
  • the depth of the pore 12 is a value obtained by measuring the distance between the bottom of the pore 12 and the top of the convex portion existing between the pores 12 when observed with an electron microscope at a magnification of 30000 times. It is.
  • the aspect ratio (pore depth / average interval between pores) of the pores 12 is preferably 0.8 to 5.0, more preferably 1.2 to 4.0, and 1.5 to 3.0. Is particularly preferred.
  • release agent those having a functional group capable of forming a chemical bond with the anodized alumina of the aluminum substrate are preferable.
  • the mold release agent examples include silicone resin, fluororesin, and fluorine compound, and may have a silanol group or a hydrolyzable silyl group from the viewpoint of excellent releasability and excellent adhesion to a mold.
  • a fluorine compound having a hydrolyzable silyl group is particularly preferable.
  • Commercially available fluorine compounds having hydrolyzable silyl groups include fluoroalkylsilane, KBM-7803 (manufactured by Shin-Etsu Chemical Co., Ltd.), “OPTOOL (registered trademark)” series (manufactured by Daikin Industries, Ltd.), and Novec EGC-1720. (Manufactured by Sumitomo 3M).
  • Examples of the treatment method using a release agent include the following method (II-1) and method (II-2), and the surface of the mold on which the fine relief structure is formed can be treated with the release agent without unevenness.
  • method (II-1) is particularly preferred.
  • (II-1) A method of immersing a mold in a dilute solution of a release agent.
  • III-2) A method in which a release agent or a diluted solution thereof is applied to the surface of the mold on which the fine concavo-convex structure is formed.
  • a method having the following steps (g) to (l) is preferable.
  • (G) A step of washing the mold with water.
  • (H) A step of blowing air to the mold to remove water droplets attached to the surface of the mold.
  • (I) A step of immersing the mold in a diluted solution obtained by diluting a fluorine compound having a hydrolyzable silyl group with a solvent.
  • (J) A step of slowly lifting the immersed mold from the solution.
  • K A step of heating and humidifying the mold after the step (j) as necessary.
  • (L) A step of drying the mold.
  • the method of manufacturing an article having a fine concavo-convex structure on the surface thereof according to the present invention transfers the fine concavo-convex structure on the surface of the mold whose surface has been treated with a release agent to the surface of the article main body, and the fine concavo-convex structure on the surface.
  • Examples of the method for transferring the fine concavo-convex structure on the surface of the mold to the surface of the article main body include a method having the following steps (i) to (iii).
  • the material of the article main body is preferably a highly transparent material because active energy rays are irradiated through the article main body, and examples thereof include acrylic resins, polyethylene terephthalate, polycarbonate, and triacetyl cellulose.
  • examples of the shape of the article body include a film, a sheet, an injection molded product, and a press molded product.
  • the active energy ray-curable resin composition contains a polymerizable compound and a polymerization initiator.
  • the polymerizable compound include monomers, oligomers, and reactive polymers having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule.
  • the active energy ray-curable resin composition may contain a non-reactive polymer and an active energy ray sol-gel reactive composition.
  • Examples of the monomer having a radical polymerizable bond include monofunctional monomers and polyfunctional monomers.
  • Monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, s-butyl (meth) acrylate, t- Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, alkyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, Phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate
  • Polyfunctional monomers include ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate , Neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, polybutylene glycol di (Meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (3- (Meth) acryloxy-2-hydroxypropoxy) phenyl) propane, 1,2-bis (3- (meth) acryloxy-2-hydroxypropoxy
  • Examples of the monomer having a cationic polymerizable bond include monomers having an epoxy group, an oxetanyl group, an oxazolyl group, a vinyloxy group, and the like, and a monomer having an epoxy group is particularly preferable.
  • oligomer or reactive polymer examples include unsaturated polyesters such as a condensate of unsaturated dicarboxylic acid and polyhydric alcohol; polyester (meth) acrylate, polyether (meth) acrylate, polyol (meth) acrylate, epoxy (meth) Examples thereof include acrylates, urethane (meth) acrylates, cationic polymerization type epoxy compounds, and single or copolymerized monomers of the above-mentioned monomers having radical polymerizable bonds in the side chains.
  • non-reactive polymers examples include acrylic resins, styrene resins, polyurethane, cellulose resins, polyvinyl butyral, polyester, and thermoplastic elastomers.
  • active energy ray sol-gel reactive composition examples include alkoxysilane compounds and alkylsilicate compounds.
  • R 11 x Si (OR 12 ) y (1)
  • alkoxysilane compound examples include tetramethoxysilane, tetra-i-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-t-butoxysilane, methyltriethoxysilane, Examples include methyltripropoxysilane, methyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, trimethylpropoxysilane, and trimethylbutoxysilane.
  • alkyl silicate compound examples include a compound of the following formula (2).
  • R 21 to R 24 each represents an alkyl group having 1 to 5 carbon atoms, and z represents an integer of 3 to 20.
  • alkyl silicate compound examples include methyl silicate, ethyl silicate, isopropyl silicate, n-propyl silicate, n-butyl silicate, n-pentyl silicate, acetyl silicate, and the like.
  • examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxy.
  • Carbonyl compounds such as -1-one; sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; and 2,4,6-trimethylbenzoyldiphenylphosphine Kisaido, and benzo dichloride ethoxy phosphine oxide, and the like. These may be used alone or in combination of two or more.
  • examples of the polymerization initiator include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t- Thioxanthones such as butylanthraquinone, 2-ethylanthraquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, and 2,4-dichlorothioxanthone; diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, Benzyldimethyl ketal, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, and 2-benzyl-2-dimethylamino-1- Acetophenones such as 4-morpholinophenyl) -butanone; benzophenone, 4,4-bis
  • thermal polymerization initiator examples include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxy octoate, organic peroxides such as t-butylperoxybenzoate and lauroyl peroxide; azo compounds such as azobisisobutyronitrile; and N, N-dimethylaniline and N, N-dimethyl as the organic peroxide. Examples thereof include a redox polymerization initiator combined with an amine such as -p-toluidine.
  • the amount of the polymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound. When the amount of the polymerization initiator is less than 0.1 parts by mass, the polymerization is difficult to proceed. When the amount of the polymerization initiator exceeds 10 parts by mass, the cured film may be colored or the mechanical strength may be lowered.
  • the active energy ray-curable resin composition may contain an antistatic agent, a release agent, an additive such as a fluorine compound for improving antifouling properties; fine particles, and a small amount of a solvent, if necessary. .
  • the active energy ray-curable resin composition capable of forming a hydrophobic material includes a fluorine-containing compound or a silicone-based compound. It is preferable to use a composition.
  • Fluorine-containing compounds As the fluorine-containing compound, a compound having a fluoroalkyl group represented by the following formula (3) is preferable. -(CF 2 ) n -X (3) However, X represents a fluorine atom or a hydrogen atom, n represents an integer of 1 or more, preferably 1 to 20, more preferably 3 to 10, and particularly preferably 4 to 8.
  • fluorine-containing compound examples include a fluorine-containing monomer, a fluorine-containing silane coupling agent, a fluorine-containing surfactant, and a fluorine-containing polymer.
  • fluorine-containing monomer examples include a fluoroalkyl group-substituted vinyl monomer and a fluoroalkyl group-substituted ring-opening polymerizable monomer.
  • fluoroalkyl group-substituted vinyl monomer examples include fluoroalkyl group-substituted (meth) acrylates, fluoroalkyl group-substituted (meth) acrylamides, fluoroalkyl group-substituted vinyl ethers, and fluoroalkyl group-substituted styrenes.
  • fluoroalkyl group-substituted ring-opening polymerizable monomer examples include fluoroalkyl group-substituted epoxy compounds, fluoroalkyl group-substituted oxetane compounds, and fluoroalkyl group-substituted oxazoline compounds.
  • a fluoroalkyl group-substituted (meth) acrylate is preferable, and a compound of the following formula (4) is particularly preferable.
  • CH 2 C (R 41 ) C (O) O— (CH 2 ) m — (CF 2 ) n —X (4)
  • R 41 represents a hydrogen atom or a methyl group
  • X represents a hydrogen atom or a fluorine atom
  • m represents an integer of 1 to 6, preferably 1 to 3, more preferably 1 or 2
  • n represents an integer of 1 to 20, preferably 3 to 10, and more preferably 4 to 8.
  • a fluoroalkyl group-substituted silane coupling agent is preferable, and a compound of the following formula (5) is particularly preferable.
  • R f represents a fluorine-substituted alkyl group having 1 to 20 carbon atoms which may contain one or more ether bonds or ester bonds.
  • R f includes a 3,3,3-trifluoropropyl group, a tridecafluoro-1,1,2,2-tetrahydrooctyl group, a 3-trifluoromethoxypropyl group, a 3-trifluoroacetoxypropyl group, and the like. Can be mentioned.
  • R 51 represents an alkyl group having 1 to 10 carbon atoms.
  • examples of R 51 include a methyl group, an ethyl group, and a cyclohexyl group.
  • Y represents a hydroxyl group or a hydrolyzable group.
  • the hydrolyzable group include an alkoxy group, a halogen atom, and R 52 C (O) O (wherein R 52 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
  • alkoxy group examples include methoxy group, ethoxy group, propyloxy group, i-propyloxy group, butoxy group, i-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, Examples include octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group.
  • halogen atom examples include Cl, Br, and I.
  • R 52 C (O) O examples include CH 3 C (O) O and C 2 H 5 C (O) O.
  • Fluorine-containing silane coupling agents include 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriacetoxysilane, dimethyl-3,3,3-trifluoropropylmethoxysilane, and Examples include tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane.
  • fluorine-containing surfactant examples include a fluoroalkyl group-containing anionic surfactant and a fluoroalkyl group-containing cationic surfactant.
  • fluoroalkyl group-containing anionic surfactant examples include a fluoroalkylcarboxylic acid having 2 to 10 carbon atoms or a metal salt thereof, disodium perfluorooctanesulfonylglutamate, 3- [omega-fluoroalkyl (C 6 -C 11 ) oxy.
  • fluoroalkyl group-containing cationic surfactant examples include aliphatic quaternary compounds such as fluoroalkyl group-containing aliphatic primary, secondary or tertiary amine acids, and perfluoroalkyl (C 6 -C 10 ) sulfonamidopropyltrimethylammonium salts. Examples thereof include ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolinium salts, and the like.
  • the fluorine-containing polymer examples include a polymer of a fluoroalkyl group-containing monomer, a copolymer of a fluoroalkyl group-containing monomer and a poly (oxyalkylene) group-containing monomer, and a fluoroalkyl group-containing monomer and a crosslinking reactive group-containing monomer.
  • a copolymer etc. are mentioned.
  • the fluorine-containing polymer may be a copolymer with another copolymerizable monomer.
  • fluorine-containing polymer a copolymer of a fluoroalkyl group-containing monomer and a poly (oxyalkylene) group-containing monomer is preferable.
  • poly (oxyalkylene) group a group represented by the following formula (6) is preferable.
  • R 61 represents an alkylene group having 2 to 4 carbon atoms, and p represents an integer of 2 or more. Examples of R 61 include —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH (CH 3 ) CH 2 —, —CH (CH 3 ) CH (CH 3 ) —, and the like.
  • the poly (oxyalkylene) group may be composed of the same oxyalkylene unit (OR 61 ) or may be composed of two or more oxyalkylene units (OR 61 ).
  • the arrangement of two or more oxyalkylene units (OR 61 ) may be a block or random.
  • Silicone compounds examples include (meth) acrylic acid-modified silicone, silicone resin, silicone silane coupling agent, and the like.
  • Examples of the (meth) acrylic acid-modified silicone include silicone (di) (meth) acrylate.
  • an active energy ray-curable resin composition capable of forming a hydrophilic material is a composition containing at least a hydrophilic monomer. It is preferable to use it. From the viewpoint of scratch resistance and imparting water resistance, those containing a cross-linkable polyfunctional monomer are more preferable. In addition, the same (namely, hydrophilic polyfunctional monomer) may be sufficient as the polyfunctional monomer which can be bridge
  • the active energy ray-curable resin composition capable of forming a hydrophilic material it is more preferable to use a composition containing the following polymerizable compound. 10-50% by mass of tetrafunctional or higher polyfunctional (meth) acrylate, A polymerizable compound comprising a total of 100% by mass of 30 to 80% by mass of a bifunctional or higher functional hydrophilic (meth) acrylate and 0 to 20% by mass of a monofunctional monomer.
  • Examples of the tetrafunctional or higher polyfunctional (meth) acrylate include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, di Pentaerythritol hexa (meth) acrylate, succinic acid / trimethylolethane / acrylic acid molar mixture 1: 2: 4 condensation reaction mixture, urethane acrylates (manufactured by Daicel-Cytec: EBECRYL220, EBECRYL1290K, EBECRYL1290K, EBECRYL5129, EBECRYL8210, EBECRYL8301 and KRM8200), polyether acrylates (manufactured by Daicel-Cytec
  • the proportion of the tetrafunctional or higher polyfunctional (meth) acrylate is preferably 10 to 50% by mass, more preferably 20 to 50% by mass, and particularly preferably 30 to 50% by mass from the viewpoint of water resistance and chemical resistance. . If the ratio of the tetrafunctional or higher polyfunctional (meth) acrylate is 10% by mass or more, the elastic modulus is increased and the scratch resistance is improved. If the ratio of the tetrafunctional or higher polyfunctional (meth) acrylate is 50% by mass or less, small cracks are hardly formed on the surface, and the appearance is hardly deteriorated.
  • bifunctional or more hydrophilic (meth) acrylate As the bifunctional or more hydrophilic (meth) acrylate, Aronix (registered trademark) M-240, Aronix (registered trademark) M260 (manufactured by Toagosei Co., Ltd.), NK ester AT-20E, NK ester ATM-35E (Shin Nakamura Chemical) And polyfunctional acrylates having a long-chain polyethylene glycol such as polyethylene glycol dimethacrylate. These may be used alone or in combination of two or more. In polyethylene glycol dimethacrylate, the total of the average repeating units of polyethylene glycol chains present in one molecule is preferably 6 to 40, more preferably 9 to 30, and particularly preferably 12 to 20.
  • the average repeating unit of the polyethylene glycol chain is 6 or more, the hydrophilicity is sufficient and the antifouling property is improved.
  • the average repeating unit of the polyethylene glycol chain is 40 or less, the compatibility with a polyfunctional (meth) acrylate having 4 or more functionalities is improved, and the active energy ray-curable resin composition is hardly separated.
  • the ratio of the bifunctional or higher functional hydrophilic (meth) acrylate is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass.
  • the ratio of the bifunctional or higher hydrophilic (meth) acrylate is 30% by mass or more, the hydrophilicity is sufficient and the antifouling property is improved.
  • the proportion of the bifunctional or higher hydrophilic (meth) acrylate is 80% by mass or less, the elastic modulus is increased and the scratch resistance is improved.
  • hydrophilic monofunctional monomers examples include monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group such as M-20G, M-90G, and M-230G (manufactured by Shin-Nakamura Chemical Co., Ltd.); hydroxyalkyl (meth) acrylates And monofunctional (meth) acrylates having a hydroxyl group in the ester group; monofunctional acrylamides; and cationic monomers such as methacrylamidopropyltrimethylammonium methylsulfate and methacryloyloxyethyltrimethylammonium methylsulfate.
  • viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone
  • adhesion improvers such as acryloyl isocyanates that improve adhesion to the article body may be used.
  • the proportion of the monofunctional monomer is preferably 0 to 20% by mass, and more preferably 5 to 15% by mass.
  • the proportion of the monofunctional monomer is 20% by mass or less, antifouling property or scratch resistance is sufficient without a shortage of tetrafunctional or higher polyfunctional (meth) acrylate or bifunctional or higher hydrophilic (meth) acrylate.
  • the monofunctional monomer may be blended in an active energy ray-curable resin composition in an amount of 0 to 35 parts by mass as a low-polymerization polymer obtained by (co) polymerizing one or more types.
  • a polymer having a low degree of polymerization 40/60 of monofunctional (meth) acrylates having a polyethylene glycol chain in an ester group such as M-230G (manufactured by Shin-Nakamura Chemical Co., Ltd.) and methacrylamide propyltrimethylammonium methyl sulfate.
  • Copolymer oligomer (MRC Unitech Co., Ltd., MG polymer) and the like can be mentioned.
  • the active energy ray-curable resin composition is supplied from the tank 22.
  • the film 42 and the active energy ray curable resin composition are nipped between the roll-shaped mold 20 and the nip roll 26 whose nip pressure is adjusted by the pneumatic cylinder 24, and the active energy ray curable resin composition is niped with the film 42. At the same time, it is filled in the concave portions of the fine concavo-convex structure of the roll-shaped mold 20.
  • the active energy ray curable resin composition By irradiating the active energy ray curable resin composition through the film 42 from the active energy ray irradiating device 28 installed below the roll-shaped mold 20, the active energy ray curable resin composition is cured. Then, the cured resin layer 44 to which the fine uneven structure on the surface of the roll-shaped mold 20 is transferred is formed.
  • the amount of light irradiation energy from the active energy ray irradiation device 28 is preferably 100 to 10,000 mJ / cm 2 .
  • An article 40 as shown in FIG. 3 is obtained by peeling the film 42 having the cured resin layer 44 formed on the surface from the roll-shaped mold 20 by the peeling roll 30.
  • the infrared spectrum of the surface of the roll-shaped mold 20 immediately after the film 42 is peeled is measured by the reflection type infrared spectrometer 50.
  • the measurement of the infrared spectrum of the surface of the mold is preferably performed continuously or intermittently at predetermined intervals from the viewpoint of constantly grasping the state of the mold release agent on the mold surface.
  • the reflective infrared spectroscopic device 50 may be a fixed type or a scanning type.
  • the extraction unit extracts the intensity or area of a peak near a predetermined wave number derived from a specific chemical structure from the infrared spectrum measured by the reflection type infrared spectroscopy device 50; If necessary, calculate the ratio of the intensity or area of the two peaks; if the peak intensity, area, or ratio of the peaks is greater than a preset threshold (or less than the threshold in some cases)
  • a preset threshold or less than the threshold in some cases
  • the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent or the absorbance of the peak near the wave number derived from the chemical structure of the release agent from the point of relatively high accuracy of determination is not less than a preset threshold value. In this case, it is preferable to determine that the state of the mold release agent on the surface of the mold is good.
  • a fluorine compound having a hydrolyzable silyl group or silanol group is used as a release agent, and anodized alumina having two or more pores is used as the roll-shaped mold 20 with aluminum.
  • a fluorine compound having a hydrolyzable silyl group or silanol group is used as a release agent, and anodized alumina having two or more pores is used as the roll-shaped mold 20 with aluminum.
  • the absorbance area (A) of the peak in the vicinity of wave number 1080 to 1290 cm ⁇ 1 derived from the chemical structure of the fluorine compound having a hydrolyzable silyl group or silanol group, and the anodized alumina is extracted.
  • the baseline in this case is a broken line connecting the start point and end point of an absorption curve having a peak at a predetermined wave number. A specific example is shown in FIG.
  • the calculation unit calculates the area (A) and the area (B) extracted by the extraction unit, and the area ratio ((A) / (B)) between the two.
  • the determination unit determines that the state of the release agent on the surface of the roll-shaped mold 20 is good when the area (A) or the area ratio ((A) / (B)) is equal to or greater than a preset threshold value.
  • the threshold of the area (A) or the area ratio ((A) / (B)) is preliminarily performed using the same manufacturing apparatus and the same material as those used in actual manufacturing, and the roll-shaped mold 20 is cured.
  • the area (A) or the area ratio ((A) / (B)) may be confirmed and set immediately before it becomes impossible to release from the resin layer 44 or when a defect due to defective release occurs in part.
  • a fluorine compound having a hydrolyzable silyl group or silanol group (Optool (registered trademark) DSX, manufactured by Daikin Industries, Ltd.)
  • the upper limit of the area (A) or the area ratio ((A) / (B)) is not particularly limited. However, when the amount of the release agent increases, there arises a problem that the fine uneven structure of the roll-shaped mold 20 cannot be accurately transferred. Therefore, the area (A) is preferably 1 or less, and more preferably 0.8 or less. Further, the area ratio ((A) / (B)) is preferably 10 or less, and more preferably 5 or less.
  • the fluorine compound (Optool (registered trademark) DSX, manufactured by Daikin Industries, Ltd.) is used, and as the roll-shaped mold 20, a mold having anodized alumina having two or more pores on the surface of an aluminum substrate Is preferably 0.13 or more and 1 or less, more preferably 0.15 or more and 0.8 or less.
  • the area ratio ((A) / (B)) is preferably 0.047 or more and 10 or less, and 0.070 or more and 5 or less. More preferred.
  • control device 62 for example, when the determination unit 60 determines that the state of the release agent on the surface of the roll mold 20 is defective, the movement of the film 42, the rotation of the roll mold 20, and the tank 22. The supply of the active energy ray-curable resin composition is stopped, and the transfer of the fine uneven structure on the surface of the roll-shaped mold 20 to the surface of the film 42 is stopped. After the stop, the mold may be removed and a release agent may be applied. Further, the control device 62 can be configured to apply a release agent to the surface of the roll-shaped mold 20 in accordance with the output from the determination means 60.
  • FIG. 3 is a cross-sectional view showing an example of an article 40 having a fine concavo-convex structure on the surface obtained by the production method of the present invention.
  • the film 42 is a light transmissive film.
  • the film material include polycarbonate, polystyrene resin, polyester, polyurethane, acrylic resin, polyether sulfone, polysulfone, polyether ketone, cellulose resin (triacetyl cellulose, etc.), polyolefin, and alicyclic polyolefin. Can be mentioned.
  • the cured resin layer 44 is a film made of a cured product of the active energy ray curable resin composition, and has a fine uneven structure on the surface.
  • the fine uneven structure on the surface of the article 40 is formed by transferring the fine uneven structure on the surface of the anodized alumina, and the active energy ray-curable resin composition is cured. It has two or more convex parts 46 which consist of things.
  • the fine concavo-convex structure is preferably a so-called moth-eye structure in which two or more protrusions (convex portions) having a substantially conical shape or a pyramid shape are arranged. It is known that the moth-eye structure in which the distance between the protrusions is less than or equal to the wavelength of visible light is an effective anti-reflection measure by continuously increasing the refractive index from the refractive index of air to the refractive index of the material. It has been.
  • the average interval between the convex portions is not more than the wavelength of visible light, that is, not more than 400 nm.
  • the average distance between the convex portions is about 100 to 200 nm, and is particularly preferably 250 nm or less.
  • the average interval between the convex portions is preferably 20 nm or more from the viewpoint of easy formation of the convex portions.
  • the range of the average distance between the convex portions is preferably 20 to 400 nm, more preferably 50 to 300 nm, and further preferably 90 to 250 nm.
  • the average interval between the convex portions is obtained by measuring 50 intervals between adjacent convex portions (distance from the center of the convex portion to the center of the adjacent convex portion) by electron microscope observation, and averaging these values. .
  • the height of the protrusions is preferably 80 to 500 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm when the average interval is 100 nm. If the height of the convex portion is 80 nm or more, the reflectance is sufficiently low and the wavelength dependency of the reflectance is small. If the height of a convex part is 500 nm or less, the scratch resistance of a convex part will become favorable.
  • the height of the convex portion is a value obtained by measuring the distance between the topmost portion of the convex portion and the bottommost portion of the concave portion existing between the convex portions when observed with an electron microscope at a magnification of 30000 times.
  • the aspect ratio of the convex part (height of convex part / average interval between convex parts) is preferably 0.8 to 5.0, more preferably 1.2 to 4.0, and 1.5 to 3.0. Particularly preferred. If the aspect ratio of the convex portion is 1.0 or more, the reflectance is sufficiently low. If the aspect ratio of the convex portion is 5.0 or less, the scratch resistance of the convex portion is good.
  • the shape of the convex part is a shape in which the convex sectional area in the direction perpendicular to the height direction continuously increases in the depth direction from the outermost surface, that is, the sectional shape in the height direction of the convex part is a triangle, trapezoid, A shape such as a bell shape is preferred.
  • the difference between the refractive index of the cured resin layer 44 and the refractive index of the film 42 is preferably 0.2 or less, more preferably 0.1 or less, and particularly preferably 0.05 or less.
  • the refractive index difference is 0.2 or less, reflection at the interface between the cured resin layer 44 and the film 42 is suppressed.
  • the water contact angle on the surface of the fine uneven structure is preferably 90 ° or more, more preferably 110 ° or more, and particularly preferably 120 ° or more. If the water contact angle is 90 ° or more, water stains are less likely to adhere, so that sufficient antifouling properties are exhibited. Moreover, since water does not adhere easily, anti-icing can be expected.
  • the range of the water contact angle on the surface of the fine relief structure is preferably 90 ° or more and 180 ° or less, more preferably 110 ° or more and 180 ° or less, and 120 ° or more and 180 ° or less. Is particularly preferred.
  • the water contact angle on the surface of the fine uneven structure is preferably 25 ° or less, more preferably 23 ° or less, and particularly preferably 21 ° or less. If the water contact angle is 25 ° or less, the dirt attached to the surface is washed away with water, and oil dirt is less likely to adhere, so that sufficient antifouling properties are exhibited.
  • the water contact angle is preferably 3 ° or more from the viewpoint of suppressing the deformation of the fine concavo-convex structure due to water absorption of the cured resin layer 44 and the accompanying increase in reflectance.
  • the range of the water contact angle on the surface of the fine concavo-convex structure is preferably 3 ° to 30 °, more preferably 3 ° to 23 °, and more preferably 3 ° to 21 °.
  • Applications of the article 40 include antireflection articles, antifogging articles, antifouling articles, and water repellent articles, and more specifically, antireflection for displays, automobile meter covers, automobile mirrors, automobile windows, organic or inorganic Examples include an electroluminescence light extraction efficiency improving member, a solar cell member, and the like.
  • the fine concavo-convex structure is transferred to the surface of the article main body, and the mold immediately after the article main body is peeled off from the mold. Since the surface infrared spectrum is measured and the quality of the mold release agent state on the mold surface is judged based on the infrared spectrum, the mold surface release agent condition can be easily monitored online. As a result, a mold release failure can be grasped in advance, and a decrease in productivity of an article having a fine concavo-convex structure on the surface can be suppressed.
  • the state of the mold release agent on the surface of the mold can be determined in a non-contact and non-destructive manner, it can be determined online during the manufacture of the article. Therefore, it is possible to predict a release failure in advance, and it is possible to stop the production of the article immediately before the release failure.
  • the mold can be used efficiently, and the cured resin can be prevented from adhering to the release failure, so that the mold can be easily cleaned.
  • troubles due to mold release defects can be avoided, articles can be manufactured more safely.
  • the reason why the reflection infrared spectroscopy is employed is as follows. As described above, when the fine concavo-convex structure on the surface of the mold is continuously transferred to the surface of the article main body, the releasability is eventually deteriorated. As the cause, dropping of the release agent from the mold, alteration of the release agent due to active energy rays (ultraviolet rays or the like), heat, or the like can be considered.
  • TOF-SIMS and XPS cannot measure a mold of a certain size or more because of a problem in the apparatus configuration, so that it is difficult to measure during the manufacture of an article and cannot be monitored online.
  • the ATR method which is excellent in surface sensitivity among infrared spectroscopy, cannot be measured in a non-contact manner and damages the surface of the mold, and thus cannot be measured during the manufacture of the article.
  • the surface of the mold has a fine concavo-convex structure, it is difficult to determine which part is being measured. Therefore, by performing measurement by reflection infrared spectroscopy, the above problem can be solved, and the amount of the release agent can be grasped in a non-contact manner regardless of the size of the mold.
  • the active energy ray-curable resin composition was poured onto the side of the mold where the fine concavo-convex structure was formed, and the acrylic film was covered, followed by curing with a UV irradiation machine (high pressure mercury lamp, integrated light quantity: 400 mJ / cm 2 ). . Subsequently, the fine concavo-convex structure was transferred to the surface of the acrylic film by releasing the cured resin layer from the mold together with the acrylic film. This operation was repeated, and the number of times until a release failure that could be clearly recognized visually occurred was defined as the number of transferable times.
  • the defective mold release in this case is a state in which a resin residue is generated on the fine uneven surface of the mold due to adhesion of the cured resin to the mold and the mold and the cured resin layer are difficult to release.
  • (Active energy ray-curable resin composition) 45 parts by weight of a condensation reaction mixture of succinic acid / trimethylolethane / acrylic acid molar ratio 1: 2: 4, 45 parts by mass of 1,6-hexanediol diacrylate (produced by Osaka Organic Chemical Co., Ltd.) 10 parts by mass of radical-polymerizable silicone oil (Shin-Etsu Chemical Co., Ltd., X-22-1602) and 3 parts by mass of 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals Co., Ltd., Irgacure 184) are mixed.
  • An active energy ray-curable resin composition was prepared.
  • Example 1 The infrared spectrum of the surface of the mold was measured using a Fourier transform infrared spectrometer (manufactured by ThermoFisher Scientific, Nicolet 380 / Continum). The results are shown in FIG. A peak A observed at 1080 to 1290 cm ⁇ 1 is derived from a release agent, and a peak B observed at 730 to 1080 cm ⁇ 1 is derived from anodized alumina. The absorbance area (A) of peak A is 0.43, the area ratio of absorbance ((A) / (B)) of the peak is 0.18, and the transfer test is performed once using the mold. The releasability was good.
  • Example 2 Subsequent to Example 1, the transfer test was performed 100 times, and the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.21, the area ratio of absorbance ((A) / (B)) of the peak was 0.089, and the transfer test was performed once using the mold. As a result, the releasability was good.
  • Example 3 The infrared spectrum of another mold surface produced by the same method as in Example 1 was measured. As a result, the absorbance area (A) of peak A was 0.35, and the area ratio of absorbance ((A) / (B)) of the peak was 0.14. Further, when the transfer test was performed once using the mold, the releasability was good.
  • Example 4 After repeating the transfer from Example 3 19 times (the release property was good during this time), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.29, and the area ratio of absorbance ((A) / (B)) of the peak was 0.12. Further, when the transfer test was further performed once using the mold, the releasability was good.
  • Example 5 The transfer was repeated 19 times from Example 4 (the release property was good during this time), and the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.22, and the peak absorbance area ratio ((A) / (B)) was 0.085. Further, when the transfer test was further performed once using the mold, the releasability was good.
  • Example 6 After the transfer was repeated 19 times from Example 5 (the release property was good during this period), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.18, and the peak absorbance area ratio ((A) / (B)) was 0.074. Further, when the transfer test was further performed once using the mold, the releasability was good.
  • Example 7 After repeating the transfer from Example 6 19 times (the release property was good during this period), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.13, and the peak absorbance area ratio ((A) / (B)) was 0.056. Furthermore, when the transfer test was further performed once using the mold, it was possible to release the mold although a little force was required.
  • Example 8 The mold used in Comparative Example 1 was again treated with a release agent in the same manner as the above-described production method.
  • the infrared spectrum of the mold surface was measured.
  • the absorbance area (A) of peak A was 0.26
  • the area ratio of absorbance ((A) / (B)) of the peak was 0.11. Further, when the transfer test was performed once using the mold, the releasability was good.
  • Example 9 The transfer was repeated 19 times from Example 8 (the release property was good during this time), and the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.22, and the peak absorbance area ratio ((A) / (B)) was 0.090. Further, when the transfer test was further performed once using the mold, the releasability was good.
  • Example 10 The transfer from Example 9 was repeated 19 times (the release property was good during this time), and the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.18, and the area ratio of absorbance ((A) / (B)) of the peak was 0.078. Further, when the transfer test was further performed once using the mold, the releasability was good.
  • Example 11 After repeating the transfer from Example 10 19 times (the release property was good during this period), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.14, and the area ratio of absorbance ((A) / (B)) of the peak was 0.062. Furthermore, when the transfer test was further performed once using the mold, it was possible to release the mold although a little force was required.
  • Example 12 After the transfer was repeated nine times from Example 11 (the release property was good during this period), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.13, and the area ratio ((A) / (B)) of peak absorbance was 0.055. Furthermore, when the transfer test was further performed once using the mold, it was possible to release the mold although a little force was required.
  • the method and apparatus for producing an article having a fine concavo-convex structure on the surface of the present invention are useful for efficient mass production of antireflection articles, antifogging articles, antifouling articles, and water repellent articles.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Provided is a method for producing an article having a microrelief structure on the surface thereof, wherein a microrelief structure on the surface of a roll-shaped mold, the surface of which has been treated by release agent, is transferred onto a surface of a film (article body), and wherein the method comprises transferring the finely rugged structure to the surface of the film, measuring the infrared spectroscopic spectrum of the surface of the roll-shaped mold from which the film has been removed, and assessing whether the status of the release agent is good or bad on the surface of the roll-shaped mold on the basis of the infrared spectroscopic spectrum. The production method and the production device for an article having a microrelief structure on the surface thereof enables the easy online monitoring of the status of the release agent on the surface of the mold, and can suppress reductions in productivity.

Description

微細凹凸構造を表面に有する物品の製造方法および製造装置Manufacturing method and manufacturing apparatus for article having fine uneven structure on surface
 本発明は、表面が離型剤で処理されたモールドの表面の微細凹凸構造を、物品本体の表面に転写して、微細凹凸構造を表面に有する物品を製造する方法および装置に関する。
 本願は2010年4月9日に日本に出願された、特願2010-090456号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method and an apparatus for manufacturing an article having a fine concavo-convex structure on its surface by transferring the fine concavo-convex structure on the surface of a mold whose surface is treated with a release agent to the surface of the article main body.
This application claims priority based on Japanese Patent Application No. 2010-090456 for which it applied to Japan on April 9, 2010, and uses the content here.
 近年、可視光の波長以下の周期の微細凹凸構造を表面に有する物品は、反射防止効果、およびロータス効果等を発現することから、その有用性が注目されている。特に、モスアイ構造と呼ばれる微細凹凸構造は、空気の屈折率から物品の材料の屈折率へと連続的に屈折率が増大していくことで有効な反射防止の手段となることが知られている。 In recent years, articles having a fine concavo-convex structure with a period of less than or equal to the wavelength of visible light on the surface exhibit an antireflection effect, a lotus effect, and the like, and thus have been attracting attention for their usefulness. In particular, it is known that a fine concavo-convex structure called a moth-eye structure is an effective antireflection means by continuously increasing the refractive index from the refractive index of air to the refractive index of the material of the article. .
 微細凹凸構造を表面に有する物品の製造方法としては、例えば、下記の工程(i)~(iii)を有する方法が知られている(例えば、特許文献1)。
 (i)微細凹凸構造の反転構造を表面に有し、かつ前記表面が離型剤で処理されたモールドと、物品の本体となる基材フィルムとの間に、紫外線硬化性樹脂組成物を挟持する工程。
 (ii)紫外線硬化性樹脂組成物に紫外線を照射し、前記紫外線硬化性樹脂組成物を硬化させて微細凹凸構造を有する硬化樹脂層を形成する工程。
 (iii)基材フィルムの表面の硬化樹脂層からモールドを離型し、微細凹凸構造を表面に有する物品を得る工程。
As a method for producing an article having a fine concavo-convex structure on its surface, for example, a method having the following steps (i) to (iii) is known (for example, Patent Document 1).
(I) An ultraviolet curable resin composition is sandwiched between a mold having an inverted structure of a fine concavo-convex structure on the surface and the surface treated with a release agent, and a base film serving as a main body of the article Process.
(Ii) A step of irradiating the ultraviolet curable resin composition with ultraviolet rays to cure the ultraviolet curable resin composition to form a cured resin layer having a fine uneven structure.
(Iii) A step of releasing the mold from the cured resin layer on the surface of the base film to obtain an article having a fine concavo-convex structure on the surface.
 離型剤によって処理されたモールドは、微細凹凸構造の転写を繰り返すことによって性能が低下することが多く、ついには硬化樹脂層からモールドを離型できなくなる。前記状態になると、モールドの表面に硬化樹脂が付着して洗浄が困難となったり、製造中に基材フィルムが破断したりする。そのため、製造が長時間中断し、生産性が著しく低下する。前記問題を解決するため、モールド表面の離型剤の状態をオンラインで簡易にモニタリングできる方法が求められている。 A mold treated with a mold release agent often deteriorates in performance due to repeated transfer of a fine concavo-convex structure, and finally the mold cannot be released from the cured resin layer. If it becomes the said state, cured resin will adhere to the surface of a mold, and washing | cleaning will become difficult, or a base film will fracture | rupture during manufacture. Therefore, the production is interrupted for a long time, and the productivity is significantly reduced. In order to solve the above-mentioned problem, a method capable of easily monitoring the state of the mold release agent on the mold surface online is required.
特開2007-326367号公報JP 2007-326367 A
 本発明は、モールド表面の離型剤の状態をオンラインで簡易にモニタリングでき、生産性の低下を抑えることができる、微細凹凸構造を表面に有する物品の製造方法および製造装置を提供する。 The present invention provides a manufacturing method and a manufacturing apparatus for an article having a fine concavo-convex structure on the surface, which can easily monitor on-line the state of the mold release agent on the mold surface and suppress a decrease in productivity.
 本発明の、微細凹凸構造を表面に有する物品の製造方法は、表面が離型剤で処理されたモールドの表面の微細凹凸構造を、物品本体の表面に転写して、微細凹凸構造を表面に有する物品を製造する方法であって、微細凹凸構造を物品本体の表面に転写し、前記物品本体をモールドから剥離した後のモールドの表面の赤外分光スペクトルを測定し、前記赤外分光スペクトルに基づいてモールドの表面の離型剤の状態の良否を判定することを特徴とする。 The method of manufacturing an article having a fine concavo-convex structure on the surface thereof according to the present invention transfers the fine concavo-convex structure on the surface of the mold whose surface has been treated with a release agent to the surface of the article main body, and the fine concavo-convex structure on the surface. A method for manufacturing an article having a structure in which a fine concavo-convex structure is transferred to a surface of an article body, an infrared spectrum of the surface of the mold after the article body is peeled from the mold is measured, and the infrared spectrum is obtained. The quality of the state of the mold release agent on the surface of the mold is determined based on this.
 本発明の、微細凹凸構造を表面に有する物品の製造方法においては、モールドの表面の離型剤の状態が不良と判定された際には、モールドの表面の微細凹凸構造の、物品本体の表面への転写を停止してもよく、またモールドの表面の微細凹凸構造に離型剤を供給するようにしてもよい。
 本発明の、微細凹凸構造を表面に有する物品の製造方法においては、モールドの表面の赤外分光スペクトルを連続的または断続的に測定することが好ましい。
In the method for manufacturing an article having a fine concavo-convex structure on the surface of the present invention, when the state of the mold release agent on the surface of the mold is determined to be poor, the surface of the article main body of the fine concavo-convex structure on the mold surface The transfer onto the mold may be stopped, or a release agent may be supplied to the fine concavo-convex structure on the surface of the mold.
In the method for producing an article having a fine concavo-convex structure on the surface of the present invention, it is preferable to continuously or intermittently measure the infrared spectrum of the mold surface.
 本発明の、微細凹凸構造を表面に有する物品の製造方法においては、赤外分光スペクトルにおける、離型剤の化学構造に由来する波数付近のピークの吸光度面積(A)と、モールドの表面に存在する化学構造に由来する波数付近のピークの吸光度面積(B)との面積比((A)/(B))があらかじめ設定された閾値以上のときにモールドの表面の離型剤の状態を良と判定することが好ましい。 In the method for producing an article having a fine concavo-convex structure on the surface of the present invention, the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent in the infrared spectroscopic spectrum and the surface of the mold When the area ratio ((A) / (B)) to the absorbance area (B) of the peak near the wave number derived from the chemical structure is equal to or higher than a preset threshold value, the state of the mold release agent on the mold surface is good. Is preferably determined.
 本発明の、微細凹凸構造を表面に有する物品の製造装置は、表面が離型剤で処理されたモールドの表面の微細凹凸構造を、物品本体の表面に転写して、微細凹凸構造を表面に有する物品を製造する装置であって、表面に微細凹凸構造を有し、前記表面が離型剤で処理されたモールドと、微細凹凸構造を物品本体の表面に転写し、前記物品本体をモールドから剥離した後のモールドの表面の赤外分光スペクトルを測定する反射型赤外分光装置と、前記赤外分光スペクトルに基づいてモールドの表面の離型剤の状態の良否を判定する判定手段とを有することを特徴とする。 The apparatus for manufacturing an article having a fine concavo-convex structure on the surface of the present invention transfers the fine concavo-convex structure on the surface of the mold whose surface is treated with a release agent to the surface of the article main body, and the fine concavo-convex structure on the surface. An apparatus for manufacturing an article having a fine concavo-convex structure on a surface, the mold having the surface treated with a release agent, and transferring the fine concavo-convex structure to the surface of the article main body. A reflection type infrared spectroscopic device for measuring an infrared spectrum of the surface of the mold after peeling, and a determination means for judging the quality of the release agent on the surface of the mold based on the infrared spectrum It is characterized by that.
 すなわち、本発明は以下に関する。
(1)表面が離型剤で処理されたモールドの表面の微細凹凸構造を、物品本体の表面に転写して、微細凹凸構造を表面に有する物品を製造する方法であって、微細凹凸構造を物品本体の表面に転写すること、前記物品本体をモールドから剥離した後のモールドの表面の赤外分光スペクトルを測定すること、およびモールドの表面の離型剤の状態の良否により製造継続の適否を判定することを含む、前記物品の製造方法。
(2)モールドの表面の離型剤の状態が不良と判定された際には、モールド表面の微細凹凸構造を物品本体の表面に転写することを停止すること、および/または、モールドの表面を再度離型剤で処理することをさらに含む、(1)に記載の微細凹凸構造を表面に有する物品の製造方法。
(3)前記モールドの表面の赤外分光スペクトルを測定することが、前記モールドの表面の赤外分光スペクトルを連続的または断続的に測定することを含む、(1)または(2)に記載の微細凹凸構造を表面に有する物品の製造方法。
(4)赤外分光スペクトルにおける、離型剤の化学構造に由来する波数付近のピークの吸光度面積(A)、あるいは離型剤の化学構造に由来する波数付近のピークの吸光度面積(A)とモールドの表面に存在する化学構造に由来する波数付近のピークの吸光度面積(B)との面積比((A)/(B))が、あらかじめ設定された閾値以上のときにモールドの表面の離型剤の状態を良と判定することを含む、(1)~(3)のいずれか1項に記載の微細凹凸構造を表面に有する物品の製造方法。
(5)前記モールドがアルミナから成り、前記離型剤がフッ素化合物であり、前記吸光度面積(A)の閾値が0.13であり、かつ前記吸光度の面積比((A)/(B))の閾値が0.047である、(4)に記載の微細凹凸構造を表面に有する物品の製造方法。
(6)前記吸光度面積(A)が0.13以上1以下であり、かつ前記吸光度の面積比((A)/(B))が0.047以上10以下である、(5)に記載の微細凹凸構造を表面に有する物品の製造方法。
(7)表面が離型剤で処理されたモールドの表面の微細凹凸構造を、物品本体の表面に転写して、微細凹凸構造を表面に有する物品を製造する装置であって、表面に微細凹凸構造を有し、前記表面が離型剤で処理されたモールドと、微細凹凸構造を物品本体の表面に転写し、前記物品本体をモールドから剥離した後のモールドの表面の赤外分光スペクトルを測定する反射型赤外分光装置と、前記赤外分光スペクトルに基づいてモールドの表面の離型剤の状態の良否を判定する判定手段とを有する、微細凹凸構造を表面に有する物品の製造装置。
That is, the present invention relates to the following.
(1) A method for producing an article having a fine concavo-convex structure on its surface by transferring the fine concavo-convex structure on the surface of the mold whose surface has been treated with a release agent to the surface of the article body. Appropriateness of production continuity by transferring to the surface of the article main body, measuring the infrared spectrum of the mold surface after peeling the article main body from the mold, and the state of the release agent on the mold surface. A method for manufacturing the article, comprising: determining.
(2) When it is determined that the state of the mold release agent on the surface of the mold is poor, the transfer of the fine uneven structure on the surface of the mold to the surface of the article body is stopped, and / or the surface of the mold is The manufacturing method of the article | item which has the fine concavo-convex structure as described in (1) further including processing with a mold release agent again.
(3) The method according to (1) or (2), wherein measuring the infrared spectral spectrum of the surface of the mold includes continuously or intermittently measuring the infrared spectral spectrum of the surface of the mold. A method for producing an article having a fine relief structure on its surface.
(4) In the infrared spectrum, the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent, or the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent When the area ratio ((A) / (B)) with the absorbance area (B) of the peak near the wave number derived from the chemical structure existing on the surface of the mold is equal to or higher than a preset threshold, the separation of the mold surface A method for producing an article having a fine concavo-convex structure on the surface thereof according to any one of (1) to (3), comprising determining that the state of the mold is good.
(5) The mold is made of alumina, the release agent is a fluorine compound, the absorbance area (A) has a threshold value of 0.13, and the absorbance area ratio ((A) / (B)) The manufacturing method of the article | item which has the fine concavo-convex structure as described in (4) whose surface is 0.047.
(6) The absorbance area (A) is 0.13 or more and 1 or less, and the area ratio ((A) / (B)) of the absorbance is 0.047 or more and 10 or less. A method for producing an article having a fine relief structure on its surface.
(7) An apparatus for manufacturing an article having a fine concavo-convex structure on the surface by transferring the fine concavo-convex structure on the surface of the mold whose surface is treated with a release agent to the surface of the article body, A mold having a structure, the surface of which is treated with a release agent, and a fine concavo-convex structure is transferred to the surface of the article body, and the infrared spectrum of the mold surface is measured after the article body is peeled from the mold. An apparatus for manufacturing an article having a fine concavo-convex structure on a surface thereof, comprising: a reflective infrared spectroscopic device for performing determination; and a determination means for determining the quality of a release agent on the surface of the mold based on the infrared spectroscopic spectrum.
 本発明の、微細凹凸構造を表面に有する物品の製造方法によれば、モールド表面の離型剤の状態をオンラインで簡易にモニタリングでき、生産性の低下を抑えることができる。
 本発明の、微細凹凸構造を表面に有する物品の製造装置によれば、モールド表面の離型剤の状態をオンラインで簡易にモニタリングでき、生産性の低下を抑えることができる。
According to the method for producing an article having a fine concavo-convex structure on the surface of the present invention, the state of the mold release agent on the mold surface can be easily monitored online, and the reduction in productivity can be suppressed.
According to the apparatus for manufacturing an article having a fine concavo-convex structure on the surface of the present invention, the state of the mold release agent on the mold surface can be easily monitored online, and a decrease in productivity can be suppressed.
本発明の微細凹凸構造を表面に有する物品の製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus of the articles | goods which have the fine concavo-convex structure of this invention on the surface. 陽極酸化アルミナを表面に有するモールドの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the mold which has an anodized alumina on the surface. 本発明の微細凹凸構造を表面に有する物品の一例を示す断面図である。It is sectional drawing which shows an example of the article | item which has the fine concavo-convex structure of this invention on the surface. 表面が加水分解性シリル基を有するフッ素化合物で処理された、陽極酸化アルミナを表面に有するモールドの表面の赤外分光スペクトルの一例を示す図である。It is a figure which shows an example of the infrared spectroscopy spectrum of the surface of the mold which the surface treated with the fluorine compound which has a hydrolyzable silyl group, and which has anodized alumina on the surface. 吸光度面積(A)および吸光度面積(B)を抽出する際のベースライン(各々の吸収曲線の始点と終点とを結ぶ破線)の一例を示す図である。It is a figure which shows an example of the baseline (dashed line which connects the start point and the end point of each absorption curve) at the time of extracting an absorbance area (A) and an absorbance area (B).
 本明細書において、(メタ)アクリレートは、アクリレートまたはメタクリレートを意味する。また、透明は、少なくとも波長400~1170nmの光を透過することを意味する。また、活性エネルギー線は、可視光線、紫外線、電子線、プラズマ、および熱線(赤外線等)等を意味する。 In the present specification, (meth) acrylate means acrylate or methacrylate. The term “transparent” means that light having a wavelength of 400 to 1170 nm is transmitted. Moreover, an active energy ray means visible light, an ultraviolet-ray, an electron beam, plasma, a heat ray (infrared rays etc.), etc.
<微細凹凸構造を表面に有する物品の製造装置>
 本発明の、微細凹凸構造を表面に有する物品の製造装置は、表面に微細凹凸構造を有し、前記表面が離型剤で処理されたモールドと、微細凹凸構造を物品本体の表面に転写し、前記物品本体をモールドから剥離した直後のモールドの表面の赤外分光スペクトルを測定する反射型赤外分光装置と、前記赤外分光スペクトルに基づいてモールドの表面の離型剤の状態の良否を判定する判定手段とを有するものである。
<Production apparatus for articles having fine concavo-convex structure on the surface>
The apparatus for manufacturing an article having a fine concavo-convex structure on the surface thereof according to the present invention has a fine concavo-convex structure on the surface, the surface is treated with a release agent, and the fine concavo-convex structure is transferred to the surface of the article main body. A reflective infrared spectroscopic device for measuring the infrared spectral spectrum of the surface of the mold immediately after the article main body is peeled from the mold, and the state of the release agent on the mold surface based on the infrared spectral spectrum. Determination means for determining.
 図1は、本発明の、微細凹凸構造を表面に有する物品の製造装置の一例を示す概略構成図である。前記製造装置は、表面に微細凹凸構造(図示略)を有し、前記表面が離型剤で処理されたロール状モールド20と;ロール状モールド20の回転に同期してロール状モールド20の表面に沿って移動する帯状のフィルム42(物品本体)とロール状モールド20との間に活性エネルギー線硬化性樹脂組成物を供給するタンク22と;ロール状モールド20との間でフィルム42および活性エネルギー線硬化性樹脂組成物をニップするニップロール26と;ニップロール26のニップ圧を調整する空気圧シリンダ24と;ロール状モールド20の下方に設置され、フィルム42を通して活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射する活性エネルギー線照射装置28と;表面に硬化樹脂層44が形成されたフィルム42をロール状モールド20から剥離する剥離ロール30と;フィルム42とともに硬化樹脂層44が剥離された直後のロール状モールド20の表面の赤外分光スペクトルを測定する反射型赤外分光装置50と;赤外分光スペクトルに基づいてモールドの表面の離型剤の状態の良否を判定する判定手段60と;製造装置の運転を制御する制御装置62とを有する。なお、本発明においては、「剥離された直後」とは、微細凹凸構造を表面に有する物品本体がモールドから剥離されたときから、前記モールドが次に物品本体と接触するまでをいう。具体的には、フィルム42とともに硬化樹脂層44がロール状モールド20から剥離されたときから、フィルム42とロール状モールド20との間に活性エネルギー線硬化性樹脂組成物が供給されるまでをいう。 FIG. 1 is a schematic configuration diagram showing an example of an apparatus for manufacturing an article having a fine concavo-convex structure on the surface according to the present invention. The manufacturing apparatus has a roll-shaped mold 20 having a fine concavo-convex structure (not shown) on the surface, and the surface is treated with a release agent; and the surface of the roll-shaped mold 20 in synchronization with the rotation of the roll-shaped mold 20 A tank 22 for supplying an active energy ray-curable resin composition between the roll-shaped mold 20 and the belt-shaped film 42 (article main body) moving along the roll; and the film 42 and the active energy between the roll-shaped mold 20 A nip roll 26 that nips the linear curable resin composition; a pneumatic cylinder 24 that adjusts the nip pressure of the nip roll 26; an active energy that is installed under the roll-shaped mold 20 and passes through the film 42 to the active energy linear curable resin composition. An active energy ray irradiation device 28 for irradiating a line; and a film 42 having a cured resin layer 44 formed on the surface thereof A peeling roll 30 that peels from the mold 20; a reflective infrared spectrometer 50 that measures the infrared spectrum of the surface of the roll mold 20 immediately after the cured resin layer 44 is peeled together with the film 42; and infrared spectroscopy. It has the determination means 60 which determines the quality of the state of the mold release agent on the surface of a mold based on a spectrum, and the control apparatus 62 which controls operation | movement of a manufacturing apparatus. In the present invention, “immediately after being peeled” means from the time when the article main body having a fine concavo-convex structure on the surface is peeled off from the mold until the mold next contacts the article main body. Specifically, from when the cured resin layer 44 is peeled from the roll-shaped mold 20 together with the film 42 to when the active energy ray-curable resin composition is supplied between the film 42 and the roll-shaped mold 20. .
(反射型赤外分光装置)
 反射型赤外分光装置50は、ロール状モールド20の表面に赤外線を照射する光源52と;ロール状モールド20の表面を反射した赤外線を受光、および分光し、分光された赤外線を検出して赤外分光スペクトルを得る検出器54と;光源52および検出器54を制御し、検出器54で得られた赤外分光スペクトルを判定手段60に伝達する操作制御機器56とを有する。反射型赤外分光装置50は、フィルム42とともに硬化樹脂層44がロール状モールド20から剥離されたときから、フィルム42とロール状モールド20との間に活性エネルギー線硬化性樹脂組成物が供給されるまでの間のロール状モールド20の表面の赤外線分光スペクトルを測定できる位置に設置される。
 反射型赤外分光装置50としては、フーリエ変換型、および回折格子を用いた分散型等が挙げられ、測定時間が短いことから、フーリエ変換型赤外分光装置が好ましい。
(Reflective infrared spectrometer)
The reflection type infrared spectroscopic device 50 includes a light source 52 that irradiates the surface of the roll-shaped mold 20 with infrared light; and receives and spectrally analyzes the infrared light reflected from the surface of the roll-shaped mold 20, and detects the dispersed infrared light. A detector 54 that obtains an outer spectral spectrum; and an operation control device 56 that controls the light source 52 and the detector 54 and transmits the infrared spectral spectrum obtained by the detector 54 to the determination means 60. In the reflective infrared spectrometer 50, the active energy ray-curable resin composition is supplied between the film 42 and the roll mold 20 after the cured resin layer 44 is peeled from the roll mold 20 together with the film 42. It is installed at a position where the infrared spectrum of the surface of the roll-shaped mold 20 can be measured.
Examples of the reflection infrared spectroscopic device 50 include a Fourier transform type and a dispersion type using a diffraction grating, and a Fourier transform type infrared spectroscopic device is preferable because the measurement time is short.
(判定手段)
 判定手段60は、例えば、赤外分光スペクトルから特定の化学構造に由来する所定の波数付近のピークの強度または面積を抽出する抽出部(図示略)と;必要に応じて2種のピークの強度または面積の比を算出する算出部(図示略)と;ピークの強度、面積、またはそれらの比等があらかじめ設定された閾値以上(場合によっては閾値以下)のときにロール状モールド20の表面の離型剤の状態を良と判定する判定部(図示略)と;外部から入力された閾値等を記憶する記憶部(図示略)と;判定部がロール状モールド20の表面の離型剤の状態を不良と判定した場合に、その情報を制御装置62に伝達する伝達部とを有する。
(Judgment means)
The determination means 60 includes, for example, an extraction unit (not shown) that extracts the intensity or area of a peak near a predetermined wave number derived from a specific chemical structure from an infrared spectrum; and the intensity of two types of peaks as necessary Or a calculation unit (not shown) for calculating the area ratio; the intensity of the peak, the area, or the ratio thereof is greater than or equal to a preset threshold value (or less than the threshold value in some cases). A determination unit (not shown) for determining that the state of the release agent is good; a storage unit (not shown) for storing a threshold value inputted from the outside; and a determination unit for the release agent on the surface of the roll mold 20 And a transmission unit that transmits the information to the control device 62 when the state is determined to be defective.
 判定部は、離型剤の化学構造に由来する波数付近のピークの吸光度面積(A)、または前記吸光度面積(A)とロール状モールド20の表面に存在する化学構造に由来する波数付近のピークの吸光度面積(B)との面積比((A)/(B))が、あらかじめ設定された閾値以上のときにモールドの表面の離型剤の状態を良と判定するものであることが好ましい。 The determination unit has an absorbance area (A) of a peak near the wave number derived from the chemical structure of the release agent, or a peak near the wave number derived from the chemical structure existing on the surface of the roll mold 20 with the absorbance area (A). When the area ratio ((A) / (B)) to the absorbance area (B) is equal to or higher than a preset threshold value, the state of the mold release agent on the mold surface is preferably determined to be good. .
 離型剤として、加水分解性シリル基またはシラノール基を有するフッ素化合物を用い、ロール状モールド20として、2個以上の細孔を有する陽極酸化アルミナをアルミニウム基材の表面に有するモールドを用いる場合、判定手段60の各部は、具体的には以下のものであることが好ましい。 When using a fluorine compound having a hydrolyzable silyl group or silanol group as a release agent, and using a mold having an anodized alumina having two or more pores on the surface of an aluminum substrate as the roll-shaped mold 20, Specifically, each part of the determination means 60 is preferably as follows.
 抽出部は、赤外分光スペクトルから、加水分解性シリル基またはシラノール基を有するフッ素化合物の化学構造に由来する波数1080~1290cm-1付近のピークの吸光度面積(A)と、陽極酸化アルミナの化学構造に由来する波数730~1080cm-1付近のピークの吸光度面積(B)とを抽出するものであることが好ましい。この際のベースラインは、所定の波数にピークを有する吸収曲線の始点と終点とを結ぶ線とする。なお、これらの波数は離型剤や陽極酸化アルミナの状態によって変化する場合があり、出現するピーク位置により適宜変更することができる。
 算出部は、抽出部で抽出された面積(A)、あるいは面積(A)と面積(B)との面積比((A)/(B))を算出するものであることが好ましい。
 判定部は、面積(A)または面積比((A)/(B))があらかじめ設定された閾値以上のときにロール状モールド20の表面の離型剤の状態を良と判定するものであることが好ましい。
 ここで、判定に用いる値としては、陽極酸化アルミナの厚みが一定であれば面積比((A)/(B))を用いる方が、再現性、および装置間誤差などの問題が少なくなり安定した測定が期待できるため好適である。しかしながら、陽極酸化アルミナの厚みが一定で無い場合などはピーク(A)の面積のみで判断することもできる。
From the infrared spectroscopic spectrum, the extractor is based on the absorbance area (A) of the peak in the vicinity of wave number 1080 to 1290 cm −1 derived from the chemical structure of the fluorine compound having a hydrolyzable silyl group or silanol group, and the chemistry of the anodized alumina. It is preferable to extract the absorbance area (B) of the peak near the wave number 730 to 1080 cm −1 derived from the structure. The baseline in this case is a line connecting the start point and end point of the absorption curve having a peak at a predetermined wave number. In addition, these wave numbers may change with the state of a mold release agent or an anodized alumina, and can be suitably changed with the peak position which appears.
It is preferable that the calculation unit calculates an area (A) extracted by the extraction unit or an area ratio ((A) / (B)) between the area (A) and the area (B).
The determination unit determines that the state of the release agent on the surface of the roll-shaped mold 20 is good when the area (A) or the area ratio ((A) / (B)) is equal to or greater than a preset threshold value. It is preferable.
Here, as the value used for the determination, if the thickness of the anodized alumina is constant, the area ratio ((A) / (B)) is more stable because problems such as reproducibility and error between apparatuses are reduced. This is preferable because it can be expected to be measured. However, when the thickness of the anodized alumina is not constant, it can be judged only by the area of the peak (A).
 なお、判定手段60は専用のハードウエアによって実現されるものであってもよく、また、判定手段60はメモリおよび中央演算装置(CPU)によって構成され、判定手段60の機能を実現するためのプログラムをメモリにロードして実行することによってその機能を実現させるものであってもよい。
 また、判定手段60には、周辺機器として、入力装置、および表示装置等が接続されるものとする。ここで、入力装置とは、ディスプレイタッチパネル、スイッチパネル、およびキーボード等の入力デバイスのことをいい、表示装置とは、CRT、および液晶表示装置等のことをいう。
The determination means 60 may be realized by dedicated hardware, and the determination means 60 is constituted by a memory and a central processing unit (CPU), and is a program for realizing the function of the determination means 60. The function may be realized by loading the program into a memory and executing it.
In addition, an input device, a display device, and the like are connected to the determination unit 60 as peripheral devices. Here, the input device refers to an input device such as a display touch panel, a switch panel, and a keyboard, and the display device refers to a CRT, a liquid crystal display device, and the like.
(制御装置)
 制御装置62は、処理部(図示略)とインターフェイス部(図示略)と記憶部(図示略)とを具備する。
 インターフェイス部は、製造装置を構成する各機器等と処理部との間を電気的に接続するものである。
 処理部は、記憶部に記憶された各種設定、および判定手段60からの判定情報等に基づいて前記各機器等の運転等を制御するものである。例えば、判定手段60においてロール状モールド20の表面の離型剤の状態が不良と判定された際には、フィルム42の移動、ロール状モールド20の回転、およびタンク22からの活性エネルギー線硬化性樹脂組成物の供給等を停止し、ロール状モールド20の表面の微細凹凸構造の、フィルム42の表面への転写を停止するものである。
(Control device)
The control device 62 includes a processing unit (not shown), an interface unit (not shown), and a storage unit (not shown).
The interface unit is used to electrically connect each device or the like constituting the manufacturing apparatus and the processing unit.
The processing unit controls the operation of the devices and the like based on various settings stored in the storage unit, determination information from the determination unit 60, and the like. For example, when the determination means 60 determines that the state of the release agent on the surface of the roll-shaped mold 20 is poor, the film 42 moves, the roll-shaped mold 20 rotates, and the active energy ray curable from the tank 22. The supply of the resin composition or the like is stopped, and the transfer of the fine uneven structure on the surface of the roll-shaped mold 20 to the surface of the film 42 is stopped.
 なお、処理部は専用のハードウエアによって実現されるものであってもよく、また、処理部はメモリおよび中央演算装置(CPU)によって構成され、処理部の機能を実現するためのプログラムをメモリにロードして実行することによってその機能を実現させるものであってもよい。
 また、制御装置62には、周辺機器として、入力装置、および表示装置等が接続されるものとする。ここで、入力装置とは、ディスプレイタッチパネル、スイッチパネル、およびキーボード等の入力デバイスのことをいい、表示装置とは、CRT、および液晶表示装置等のことをいう。
 また、制御装置62として、前記判定手段60の機能を兼ね備えたものを用い、制御装置62とは別に設けられていた前記判定手段60を省略してもよい。
The processing unit may be realized by dedicated hardware, and the processing unit is constituted by a memory and a central processing unit (CPU), and a program for realizing the function of the processing unit is stored in the memory. The function may be realized by loading and executing.
In addition, an input device, a display device, and the like are connected to the control device 62 as peripheral devices. Here, the input device refers to an input device such as a display touch panel, a switch panel, and a keyboard, and the display device refers to a CRT, a liquid crystal display device, and the like.
Further, as the control device 62, a device having the function of the determination unit 60 may be used, and the determination unit 60 provided separately from the control device 62 may be omitted.
(活性エネルギー線照射装置)
 活性エネルギー線照射装置28としては、高圧水銀ランプ、メタルハライドランプ、およびフュージョンランプ等が挙げられる。
(Active energy ray irradiation device)
Examples of the active energy ray irradiation device 28 include a high-pressure mercury lamp, a metal halide lamp, and a fusion lamp.
(モールド)
 モールドは、モールド基材の表面に微細凹凸構造を有し、かつ前記表面が離型剤で処理されたものである。
 モールド基材の材料としては、金属(表面に酸化皮膜が形成されたものを含む。)、石英、ガラス、樹脂、およびセラミックス等が挙げられる。
 モールド基材の形状としては、ロール状以外に、円管状、平板状、およびシート状等が挙げられる。
(mold)
The mold has a fine concavo-convex structure on the surface of a mold substrate, and the surface is treated with a release agent.
Examples of the material for the mold base include metals (including those having an oxide film formed on the surface), quartz, glass, resin, and ceramics.
Examples of the shape of the mold substrate include a tubular shape, a flat plate shape, and a sheet shape in addition to the roll shape.
 モールドの作製方法としては、例えば、下記の方法(I-1)、および方法(I-2)が挙げられ、大面積化が可能であり、かつ作製が簡便である点から、方法(I-1)が特に好ましい。
 (I-1)アルミニウム基材の表面に、2個以上の細孔(凹部)を有する陽極酸化アルミナを形成する方法。
 (I-2)モールド基材の表面にリソグラフィ法等によって微細凹凸構造を直接形成する方法。
Examples of the mold production method include the following method (I-1) and method (I-2), and the method (I--) is possible because the area can be increased and the production is simple. 1) is particularly preferred.
(I-1) A method of forming anodized alumina having two or more pores (recesses) on the surface of an aluminum substrate.
(I-2) A method of directly forming a fine concavo-convex structure on the surface of a mold substrate by lithography or the like.
 方法(I-1)としては、下記の工程(a)~(f)を有する方法が好ましい。
 (a)アルミニウム基材を電解液中、定電圧下で陽極酸化してアルミニウム基材の表面に酸化皮膜を形成する工程。
 (b)酸化皮膜を除去し、アルミニウム基材の表面に陽極酸化の細孔発生点を形成する工程。
 (c)アルミニウム基材を電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
 (d)細孔の径を拡大させる工程。
 (e)工程(d)の後、電解液中、再度陽極酸化する工程。
 (f)工程(d)と工程(e)を繰り返し行い、2個以上の細孔を有する陽極酸化アルミナがアルミニウム基材の表面に形成されたモールドを得る工程。
As the method (I-1), a method having the following steps (a) to (f) is preferable.
(A) A step of forming an oxide film on the surface of an aluminum substrate by anodizing the aluminum substrate in an electrolytic solution under a constant voltage.
(B) A step of removing the oxide film and forming anodic oxidation pore generation points on the surface of the aluminum substrate.
(C) A step of anodizing the aluminum substrate again in the electrolytic solution to form an oxide film having pores at the pore generation points.
(D) A step of enlarging the diameter of the pores.
(E) A step of anodizing again in the electrolytic solution after the step (d).
(F) A step of repeating steps (d) and (e) to obtain a mold in which anodized alumina having two or more pores is formed on the surface of an aluminum substrate.
 工程(a):
 図2に示すように、アルミニウム基材10を陽極酸化すると、細孔12を有する酸化皮膜14が形成される。
 アルミニウム基材の形状としては、ロール状、円管状、平板状、およびシート状等が挙げられる。
 また、アルミニウム基材は、表面状態を平滑化にするために、機械研磨、羽布研磨、化学的研磨、および電解研磨処理(エッチング処理)などで研磨されることが好ましい。また、アルミニウム基材は、所定の形状に加工する際に用いた油が付着していることがあるため、陽極酸化の前にあらかじめ脱脂処理されることが好ましい。
Step (a):
As shown in FIG. 2, when the aluminum substrate 10 is anodized, an oxide film 14 having pores 12 is formed.
Examples of the shape of the aluminum substrate include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
The aluminum substrate is preferably polished by mechanical polishing, feather polishing, chemical polishing, electrolytic polishing (etching) or the like in order to smooth the surface state. Moreover, since the oil used when processing an aluminum base material in a defined shape may adhere, it is preferable to degrease in advance before anodizing.
 アルミニウムの純度は、99%以上が好ましく、99.5%以上がより好ましく、99.8%以上が特に好ましい。アルミニウムの純度が低いと、陽極酸化した時に、不純物の偏析によって可視光を散乱する大きさの凹凸構造が形成されたり、陽極酸化で得られる細孔の規則性が低下したりすることがある。
 電解液としては、硫酸、シュウ酸、およびリン酸等が挙げられる。
The purity of aluminum is preferably 99% or more, more preferably 99.5% or more, and particularly preferably 99.8% or more. When the purity of aluminum is low, when anodized, an uneven structure having a size that scatters visible light due to segregation of impurities may be formed, or the regularity of pores obtained by anodization may be lowered.
Examples of the electrolytic solution include sulfuric acid, oxalic acid, and phosphoric acid.
 シュウ酸を電解液として用いる場合:
 シュウ酸の濃度は、0.7M以下が好ましい。シュウ酸の濃度が0.7Mを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。
 化成電圧が30~60Vの時、周期が100nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向にある。
 電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
When using oxalic acid as electrolyte:
The concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid exceeds 0.7M, the current value becomes too high, and the surface of the oxide film may become rough.
When the formation voltage is 30 to 60 V, anodized alumina having highly regular pores with a period of 100 nm can be obtained. Regardless of whether the formation voltage is higher or lower than this range, the regularity tends to decrease.
The temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution exceeds 60 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken, or the surface may melt and the regularity of the pores may be disturbed.
 硫酸を電解液として用いる場合:
 硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7Mを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。
 化成電圧が25~30Vの時、周期が63nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向がある。
 電解液の温度は、30℃以下が好ましく、20℃以下がより好ましい。電解液の温度が30℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
When using sulfuric acid as the electrolyte:
The concentration of sulfuric acid is preferably 0.7M or less. If the concentration of sulfuric acid exceeds 0.7M, the current value may become too high to maintain a constant voltage.
When the formation voltage is 25 to 30 V, anodized alumina having highly regular pores with a period of 63 nm can be obtained. The regularity tends to decrease whether the formation voltage is higher or lower than this range.
The temperature of the electrolytic solution is preferably 30 ° C. or less, and more preferably 20 ° C. or less. When the temperature of the electrolytic solution exceeds 30 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.
 工程(b):
 図2に示すように、酸化皮膜14を一旦除去し、これを陽極酸化の細孔発生点16にすることで細孔の規則性を向上することができる。
 酸化皮膜を除去する方法としては、アルミニウムを溶解せず、酸化皮膜を選択的に溶解する溶液に溶解させて除去する方法が挙げられる。このような溶液としては、例えば、クロム酸/リン酸混合液等が挙げられる。
Step (b):
As shown in FIG. 2, the regularity of the pores can be improved by removing the oxide film 14 once and using it as the pore generation points 16 for anodic oxidation.
Examples of the method for removing the oxide film include a method in which aluminum is not dissolved but is dissolved in a solution that selectively dissolves the oxide film and removed. Examples of such a solution include a chromic acid / phosphoric acid mixed solution.
 工程(c):
 図2に示すように、酸化皮膜を除去したアルミニウム基材10を再度、陽極酸化すると、円柱状の細孔12を有する酸化皮膜14が形成される。
 陽極酸化は、工程(a)と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
Step (c):
As shown in FIG. 2, when the aluminum substrate 10 from which the oxide film has been removed is anodized again, an oxide film 14 having cylindrical pores 12 is formed.
Anodization may be performed under the same conditions as in step (a). Deeper pores can be obtained as the anodic oxidation time is lengthened.
 工程(d):
 図2に示すように、細孔12の径を拡大させる処理(以下、細孔径拡大処理と記す。)を行う。細孔径拡大処理は、酸化皮膜を溶解する溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。
 細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。
Step (d):
As shown in FIG. 2, a process for expanding the diameter of the pores 12 (hereinafter referred to as a pore diameter expansion process) is performed. The pore diameter expansion treatment is a treatment for expanding the diameter of the pores obtained by anodic oxidation by immersing in a solution dissolving the oxide film. Examples of such a solution include a phosphoric acid aqueous solution of about 5% by mass.
The longer the pore diameter expansion processing time, the larger the pore diameter.
 工程(e):
 図2に示すように、再度、陽極酸化すると、円柱状の細孔12の底部から下に延びる、直径の小さい円柱状の細孔12がさらに形成される。
 陽極酸化は、工程(a)と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
Step (e):
As shown in FIG. 2, when anodized again, cylindrical pores 12 having a small diameter that extend downward from the bottom of the cylindrical pores 12 are further formed.
Anodization may be performed under the same conditions as in step (a). Deeper pores can be obtained as the anodic oxidation time is lengthened.
 工程(f):
 図2に示すように、工程(d)の細孔径拡大処理と、工程(e)の陽極酸化を繰り返すと、直径が開口部から深さ方向に連続的に減少する形状の細孔12を有する酸化皮膜14が形成され、アルミニウム基材10の表面に陽極酸化アルミナ(アルミニウムの多孔質の酸化皮膜(アルマイト))を有するモールド18が得られる。最後は工程(d)で終わることが好ましい。
Step (f):
As shown in FIG. 2, when the pore diameter enlargement process in the step (d) and the anodization in the step (e) are repeated, the pores 12 have a shape in which the diameter continuously decreases in the depth direction from the opening. An oxide film 14 is formed, and a mold 18 having anodized alumina (aluminum porous oxide film (alumite)) on the surface of the aluminum substrate 10 is obtained. It is preferable that the last end is step (d).
 繰り返し回数は、合計で3回以上が好ましく、5回以上がより好ましい。繰り返し回数が2回以下では、非連続的に細孔の直径が減少するため、このような細孔を有する陽極酸化アルミナを用いて形成されたモスアイ構造の反射率低減効果は不十分である。 The total number of repetitions is preferably 3 times or more, and more preferably 5 times or more. When the number of repetitions is 2 times or less, the diameter of the pores decreases discontinuously, so that the effect of reducing the reflectance of the moth-eye structure formed using anodized alumina having such pores is insufficient.
 細孔12の形状としては、略円錐形状、角錐形状、および円柱形状等が挙げられ、円錐形状、および角錐形状等のように、深さ方向と直交する方向の細孔断面積が最表面から深さ方向に連続的に減少する形状が好ましい。
 細孔12間の平均間隔は、可視光の波長以下、すなわち400nm以下である。細孔12間の平均間隔は、20nm以上が好ましい。
 細孔12間の平均間隔の範囲は、20nm以上400nm以下が好ましく、50nm以上300nm以下がより好ましく、90nm以上250nm以下がさらに好ましい。
 細孔12間の平均間隔は、電子顕微鏡観察によって隣接する細孔12間の間隔(細孔12の中心から隣接する細孔12の中心までの距離)を50点測定し、これらの値を平均したものである。
Examples of the shape of the pore 12 include a substantially conical shape, a pyramid shape, a cylindrical shape, and the like, and a cross-sectional area of the pore perpendicular to the depth direction from the outermost surface, such as a conical shape and a pyramid shape, A shape that continuously decreases in the depth direction is preferable.
The average interval between the pores 12 is not more than the wavelength of visible light, that is, not more than 400 nm. The average interval between the pores 12 is preferably 20 nm or more.
The range of the average interval between the pores 12 is preferably 20 nm or more and 400 nm or less, more preferably 50 nm or more and 300 nm or less, and further preferably 90 nm or more and 250 nm or less.
The average interval between the pores 12 was measured by measuring the distance between adjacent pores 12 (distance from the center of the pore 12 to the center of the adjacent pore 12) by electron microscope observation, and averaging these values. It is a thing.
 細孔12の深さは、平均間隔が100nmの場合は、80~500nmが好ましく、120~400nmがより好ましく、150~300nmが特に好ましい。
 細孔12の深さは、電子顕微鏡観察によって倍率30000倍で観察したときにおける、細孔12の最底部と、細孔12間に存在する凸部の最頂部との間の距離を測定した値である。
 細孔12のアスペクト比(細孔の深さ/細孔間の平均間隔)は、0.8~5.0が好ましく、1.2~4.0がより好ましく、1.5~3.0が特に好ましい。
When the average interval is 100 nm, the depth of the pores 12 is preferably 80 to 500 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm.
The depth of the pore 12 is a value obtained by measuring the distance between the bottom of the pore 12 and the top of the convex portion existing between the pores 12 when observed with an electron microscope at a magnification of 30000 times. It is.
The aspect ratio (pore depth / average interval between pores) of the pores 12 is preferably 0.8 to 5.0, more preferably 1.2 to 4.0, and 1.5 to 3.0. Is particularly preferred.
(離型剤)
 ついで、モールドの微細凹凸構造が形成された側の表面を離型剤で処理する。
 離型剤としては、アルミニウム基材の陽極酸化アルミナと化学結合を形成し得る官能基を有するものが好ましい。
(Release agent)
Next, the surface of the mold on which the fine uneven structure is formed is treated with a release agent.
As the release agent, those having a functional group capable of forming a chemical bond with the anodized alumina of the aluminum substrate are preferable.
 離型剤としては、シリコーン樹脂、フッ素樹脂、およびフッ素化合物等が挙げられ、離型性に優れる点、およびモールドとの密着性に優れる点から、シラノール基あるいは加水分解性シリル基を有することが好ましく、その中でも加水分解性シリル基を有するフッ素化合物が特に好ましい。加水分解性シリル基を有するフッ素化合物の市販品としては、フルオロアルキルシラン、KBM-7803(信越化学工業社製)、「オプツール(登録商標)」シリーズ(ダイキン工業社製)、およびノベックEGC-1720(住友3M社製)等が挙げられる。 Examples of the mold release agent include silicone resin, fluororesin, and fluorine compound, and may have a silanol group or a hydrolyzable silyl group from the viewpoint of excellent releasability and excellent adhesion to a mold. Among them, a fluorine compound having a hydrolyzable silyl group is particularly preferable. Commercially available fluorine compounds having hydrolyzable silyl groups include fluoroalkylsilane, KBM-7803 (manufactured by Shin-Etsu Chemical Co., Ltd.), “OPTOOL (registered trademark)” series (manufactured by Daikin Industries, Ltd.), and Novec EGC-1720. (Manufactured by Sumitomo 3M).
 離型剤による処理方法としては、下記の方法(II-1)、および方法(II-2)が挙げられ、モールドの微細凹凸構造が形成された側の表面をムラなく離型剤で処理できる点から、方法(II-1)が特に好ましい。
 (II-1)離型剤の希釈溶液にモールドを浸漬する方法。
 (II-2)離型剤またはその希釈溶液を、モールドの微細凹凸構造が形成された側の表面に塗布する方法。
Examples of the treatment method using a release agent include the following method (II-1) and method (II-2), and the surface of the mold on which the fine relief structure is formed can be treated with the release agent without unevenness. In view of this, method (II-1) is particularly preferred.
(II-1) A method of immersing a mold in a dilute solution of a release agent.
(II-2) A method in which a release agent or a diluted solution thereof is applied to the surface of the mold on which the fine concavo-convex structure is formed.
 方法(II-1)としては、下記の工程(g)~(l)を有する方法が好ましい。
 (g)モールドを水洗する工程。
 (h)モールドにエアーを吹き付け、モールドの表面に付着した水滴を除去する工程。
 (i)加水分解性シリル基を有するフッ素化合物を溶媒で希釈した希釈溶液に、モールドを浸漬する工程。
 (j)浸漬したモールドをゆっくりと溶液から引き上げる工程。
 (k)必要に応じて、工程(j)よりも後段にて、モールドを加熱加湿させる工程。
 (l)モールドを乾燥させる工程。
As the method (II-1), a method having the following steps (g) to (l) is preferable.
(G) A step of washing the mold with water.
(H) A step of blowing air to the mold to remove water droplets attached to the surface of the mold.
(I) A step of immersing the mold in a diluted solution obtained by diluting a fluorine compound having a hydrolyzable silyl group with a solvent.
(J) A step of slowly lifting the immersed mold from the solution.
(K) A step of heating and humidifying the mold after the step (j) as necessary.
(L) A step of drying the mold.
<微細凹凸構造を表面に有する物品の製造方法>
 本発明の、微細凹凸構造を表面に有する物品の製造方法は、表面が離型剤で処理されたモールドの表面の微細凹凸構造を、物品本体の表面に転写して、微細凹凸構造を表面に有する物品を製造する方法であって、微細凹凸構造を物品本体の表面に転写し、前記物品本体をモールドから剥離した後のモールドの表面の赤外分光スペクトルを測定し、前記赤外分光スペクトルに基づいてモールドの表面の離型剤の状態の良否を判定する方法である。
<Method for producing article having fine concavo-convex structure on surface>
The method of manufacturing an article having a fine concavo-convex structure on the surface thereof according to the present invention transfers the fine concavo-convex structure on the surface of the mold whose surface has been treated with a release agent to the surface of the article main body, and the fine concavo-convex structure on the surface. A method for manufacturing an article having a structure in which a fine concavo-convex structure is transferred to a surface of an article body, an infrared spectrum of the surface of the mold after the article body is peeled from the mold is measured, and the infrared spectrum is obtained. This is a method for determining the quality of the state of the mold release agent on the surface of the mold.
 モールドの表面の微細凹凸構造を物品本体の表面に転写する方法としては、例えば、下記の工程(i)~(iii)を有する方法が挙げられる。
 (i)微細凹凸構造を表面に有し、かつ前記表面が離型剤で処理されたモールドと、物品本体との間に、活性エネルギー線硬化性樹脂組成物を挟持する工程。
 (ii)活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射し、前記活性エネルギー線硬化性樹脂組成物を硬化させて微細凹凸構造を有する硬化樹脂層を形成する工程。
 (iii)物品本体の表面の硬化樹脂層からモールドを離型し、微細凹凸構造を表面に有する物品を得る工程。
Examples of the method for transferring the fine concavo-convex structure on the surface of the mold to the surface of the article main body include a method having the following steps (i) to (iii).
(I) A step of sandwiching an active energy ray-curable resin composition between a mold having a fine concavo-convex structure on the surface and the surface treated with a release agent, and the article body.
(Ii) A step of irradiating the active energy ray-curable resin composition with active energy rays to cure the active energy ray-curable resin composition to form a cured resin layer having a fine concavo-convex structure.
(Iii) A step of releasing the mold from the cured resin layer on the surface of the article body to obtain an article having a fine concavo-convex structure on the surface.
(物品本体)
 物品本体の材料としては、物品本体越しに活性エネルギー線の照射を行うため、透明性の高い材料が好ましく、例えば、アクリル系樹脂、ポリエチレンテレフタレート、ポリカーボネート、およびトリアセチルセルロース等が挙げられる。
 物品本体の形状としては、フィルム、シート、射出成形品、およびプレス成形品等が挙げられる。
(Article body)
The material of the article main body is preferably a highly transparent material because active energy rays are irradiated through the article main body, and examples thereof include acrylic resins, polyethylene terephthalate, polycarbonate, and triacetyl cellulose.
Examples of the shape of the article body include a film, a sheet, an injection molded product, and a press molded product.
(活性エネルギー線硬化性樹脂組成物)
 活性エネルギー線硬化性樹脂組成物は、重合性化合物および重合開始剤を含む。
 重合性化合物としては、分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、および反応性ポリマー等が挙げられる。
 活性エネルギー線硬化性樹脂組成物は、非反応性のポリマー、および活性エネルギー線ゾルゲル反応性組成物を含んでいてもよい。
(Active energy ray-curable resin composition)
The active energy ray-curable resin composition contains a polymerizable compound and a polymerization initiator.
Examples of the polymerizable compound include monomers, oligomers, and reactive polymers having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule.
The active energy ray-curable resin composition may contain a non-reactive polymer and an active energy ray sol-gel reactive composition.
 ラジカル重合性結合を有するモノマーとしては、単官能モノマー、および多官能モノマーが挙げられる。
 単官能モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アルキル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、および2-エトキシエチル(メタ)アクリレート等の(メタ)アクリレート誘導体;(メタ)アクリル酸、(メタ)アクリロニトリル;スチレン、およびα-メチルスチレン等のスチレン誘導体;並びに(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、およびジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体等が挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。
Examples of the monomer having a radical polymerizable bond include monofunctional monomers and polyfunctional monomers.
Monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, s-butyl (meth) acrylate, t- Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, alkyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, Phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, allyl (meth) acrylate, 2-hydroxyethyl ( )) (Meth) acrylate derivatives such as hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, and 2-ethoxyethyl (meth) acrylate; (meth) acrylic acid, (meth) acrylonitrile; styrene, And styrene derivatives such as α-methylstyrene; and (meth) acrylamide derivatives such as (meth) acrylamide, N-dimethyl (meth) acrylamide, N-diethyl (meth) acrylamide, and dimethylaminopropyl (meth) acrylamide It is done. These may be used alone or in combination of two or more.
 多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、およびメチレンビスアクリルアミド等の二官能性モノマー;ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート等の三官能モノマー;コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、およびテトラメチロールメタンテトラ(メタ)アクリレート等の四官能以上のモノマー;並びに二官能以上のウレタンアクリレート、および二官能以上のポリエステルアクリレート等が挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。 Polyfunctional monomers include ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate , Neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, polybutylene glycol di (Meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (3- (Meth) acryloxy-2-hydroxypropoxy) phenyl) propane, 1,2-bis (3- (meth) acryloxy-2-hydroxypropoxy) ethane, 1,4-bis (3- (meth) acryloxy-2-hydroxypropoxy) ) Butane, dimethylol tricyclodecane di (meth) acrylate, ethylene oxide adduct di (meth) acrylate of bisphenol A, propylene oxide adduct di (meth) acrylate of bisphenol A, neopentyl glycol di (meth) hydroxypivalate Bifunctional monomers such as acrylate, divinylbenzene, and methylenebisacrylamide; pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethyleneo Trifunctional monomers such as side-modified tri (meth) acrylate, trimethylolpropane propylene oxide-modified triacrylate, trimethylolpropane ethylene oxide-modified triacrylate, and isocyanuric acid ethylene oxide-modified tri (meth) acrylate; succinic acid / trimethylolethane / acrylic A tetra- or higher functional monomer such as an acid condensation reaction mixture, dipentaerystol hexa (meth) acrylate, dipentaerystol penta (meth) acrylate, ditrimethylolpropane tetraacrylate, and tetramethylolmethane tetra (meth) acrylate; Bifunctional or higher urethane acrylate, bifunctional or higher polyester acrylate, and the like can be given. These may be used alone or in combination of two or more.
 カチオン重合性結合を有するモノマーとしては、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等を有するモノマーが挙げられ、エポキシ基を有するモノマーが特に好ましい。 Examples of the monomer having a cationic polymerizable bond include monomers having an epoxy group, an oxetanyl group, an oxazolyl group, a vinyloxy group, and the like, and a monomer having an epoxy group is particularly preferable.
 オリゴマーまたは反応性ポリマーとしては、不飽和ジカルボン酸と多価アルコールとの縮合物等の不飽和ポリエステル類;ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、カチオン重合型エポキシ化合物、および側鎖にラジカル重合性結合を有する上述のモノマーの単独または共重合ポリマー等が挙げられる。 Examples of the oligomer or reactive polymer include unsaturated polyesters such as a condensate of unsaturated dicarboxylic acid and polyhydric alcohol; polyester (meth) acrylate, polyether (meth) acrylate, polyol (meth) acrylate, epoxy (meth) Examples thereof include acrylates, urethane (meth) acrylates, cationic polymerization type epoxy compounds, and single or copolymerized monomers of the above-mentioned monomers having radical polymerizable bonds in the side chains.
 非反応性のポリマーとしては、アクリル系樹脂、スチレン系樹脂、ポリウレタン、セルロース系樹脂、ポリビニルブチラール、ポリエステル、および熱可塑性エラストマー等が挙げられる。
 活性エネルギー線ゾルゲル反応性組成物としては、アルコキシシラン化合物、およびアルキルシリケート化合物等が挙げられる。
Examples of non-reactive polymers include acrylic resins, styrene resins, polyurethane, cellulose resins, polyvinyl butyral, polyester, and thermoplastic elastomers.
Examples of the active energy ray sol-gel reactive composition include alkoxysilane compounds and alkylsilicate compounds.
 アルコキシシラン化合物としては、下記式(1)の化合物が挙げられる。
 R11 Si(OR12 ・・・(1)
 ただし、R11、R12は、それぞれ炭素数1~10のアルキル基を表し、x、yは、x+y=4の関係を満たす整数を表す。
As an alkoxysilane compound, the compound of following formula (1) is mentioned.
R 11 x Si (OR 12 ) y (1)
R 11 and R 12 each represent an alkyl group having 1 to 10 carbon atoms, and x and y represent integers satisfying the relationship of x + y = 4.
 アルコキシシラン化合物としては、テトラメトキシシラン、テトラ-i-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-t-ブトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルプロポキシシラン、およびトリメチルブトキシシラン等が挙げられる。 Examples of the alkoxysilane compound include tetramethoxysilane, tetra-i-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-t-butoxysilane, methyltriethoxysilane, Examples include methyltripropoxysilane, methyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, trimethylpropoxysilane, and trimethylbutoxysilane.
 アルキルシリケート化合物としては、下記式(2)の化合物が挙げられる。
 R21O[Si(OR23)(OR24)O]22 ・・・(2)
 ただし、R21~R24は、それぞれ炭素数1~5のアルキル基を表し、zは、3~20の整数を表す。
Examples of the alkyl silicate compound include a compound of the following formula (2).
R 21 O [Si (OR 23 ) (OR 24 ) O] z R 22 (2)
R 21 to R 24 each represents an alkyl group having 1 to 5 carbon atoms, and z represents an integer of 3 to 20.
 アルキルシリケート化合物としては、メチルシリケート、エチルシリケート、イソプロピルシリケート、n-プロピルシリケート、n-ブチルシリケート、n-ペンチルシリケート、およびアセチルシリケート等が挙げられる。 Examples of the alkyl silicate compound include methyl silicate, ethyl silicate, isopropyl silicate, n-propyl silicate, n-butyl silicate, n-pentyl silicate, acetyl silicate, and the like.
 光硬化反応を利用する場合、光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジル、ベンゾフェノン、p-メトキシベンゾフェノン、2,2-ジエトキシアセトフェノン、α,α-ジメトキシ-α-フェニルアセトフェノン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、および2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のカルボニル化合物;テトラメチルチウラムモノスルフィド、およびテトラメチルチウラムジスルフィド等の硫黄化合物;並びに2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、およびベンゾイルジエトキシフォスフィンオキサイド等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。 When using a photocuring reaction, examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxy. Acetophenone, α, α-dimethoxy-α-phenylacetophenone, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylamino) benzophenone, and 2-hydroxy-2-methyl-1-phenylpropane Carbonyl compounds such as -1-one; sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; and 2,4,6-trimethylbenzoyldiphenylphosphine Kisaido, and benzo dichloride ethoxy phosphine oxide, and the like. These may be used alone or in combination of two or more.
 電子線硬化反応を利用する場合、重合開始剤としては、例えば、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、および2,4-ジクロロチオキサントン等のチオキサントン;ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、および2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、およびベンゾインイソブチルエーテル等のベンゾインエーテル;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド;並びにメチルベンゾイルホルメート、1,7-ビスアクリジニルヘプタン、および9-フェニルアクリジン等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。 When using an electron beam curing reaction, examples of the polymerization initiator include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t- Thioxanthones such as butylanthraquinone, 2-ethylanthraquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, and 2,4-dichlorothioxanthone; diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, Benzyldimethyl ketal, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, and 2-benzyl-2-dimethylamino-1- Acetophenones such as 4-morpholinophenyl) -butanone; benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,6- Acylphosphine oxides such as dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; and methylbenzoylformate, 1,7-bisacridini Examples include luheptane and 9-phenylacridine. These may be used alone or in combination of two or more.
 熱硬化反応を利用する場合、熱重合開始剤としては、例えば、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、t-ブチルパーオキシベンゾエート、およびラウロイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ系化合物;並びに前記有機過酸化物にN,N-ジメチルアニリン、およびN,N-ジメチル-p-トルイジン等のアミンを組み合わせたレドックス重合開始剤等が挙げられる。 When using a thermosetting reaction, examples of the thermal polymerization initiator include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxy octoate, organic peroxides such as t-butylperoxybenzoate and lauroyl peroxide; azo compounds such as azobisisobutyronitrile; and N, N-dimethylaniline and N, N-dimethyl as the organic peroxide. Examples thereof include a redox polymerization initiator combined with an amine such as -p-toluidine.
 重合開始剤の量は、重合性化合物100質量部に対して、0.1~10質量部が好ましい。重合開始剤の量が0.1質量部未満では、重合が進行しにくい。重合開始剤の量が10質量部を超えると、硬化膜が着色したり、機械強度が低下したりすることがある。 The amount of the polymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound. When the amount of the polymerization initiator is less than 0.1 parts by mass, the polymerization is difficult to proceed. When the amount of the polymerization initiator exceeds 10 parts by mass, the cured film may be colored or the mechanical strength may be lowered.
 活性エネルギー線硬化性樹脂組成物は、必要に応じて、帯電防止剤、離型剤、防汚性を向上させるためのフッ素化合物等の添加剤;微粒子、および少量の溶媒を含んでいてもよい。 The active energy ray-curable resin composition may contain an antistatic agent, a release agent, an additive such as a fluorine compound for improving antifouling properties; fine particles, and a small amount of a solvent, if necessary. .
(疎水性材料)
 硬化樹脂層の微細凹凸構造の表面の水接触角を90°以上にするためには、疎水性の材料を形成し得る活性エネルギー線硬化性樹脂組成物として、フッ素含有化合物またはシリコーン系化合物を含む組成物を用いることが好ましい。
(Hydrophobic material)
In order to make the water contact angle on the surface of the fine uneven structure of the cured resin layer 90 ° or more, the active energy ray-curable resin composition capable of forming a hydrophobic material includes a fluorine-containing compound or a silicone-based compound. It is preferable to use a composition.
 フッ素含有化合物:
 フッ素含有化合物としては、下記式(3)で表されるフルオロアルキル基を有する化合物が好ましい。
 -(CF-X  ・・・(3)
 ただし、Xは、フッ素原子または水素原子を表し、nは、1以上の整数を表し、1~20が好ましく、3~10がより好ましく、4~8が特に好ましい。
Fluorine-containing compounds:
As the fluorine-containing compound, a compound having a fluoroalkyl group represented by the following formula (3) is preferable.
-(CF 2 ) n -X (3)
However, X represents a fluorine atom or a hydrogen atom, n represents an integer of 1 or more, preferably 1 to 20, more preferably 3 to 10, and particularly preferably 4 to 8.
 フッ素含有化合物としては、フッ素含有モノマー、フッ素含有シランカップリング剤、フッ素含有界面活性剤、およびフッ素含有ポリマー等が挙げられる。 Examples of the fluorine-containing compound include a fluorine-containing monomer, a fluorine-containing silane coupling agent, a fluorine-containing surfactant, and a fluorine-containing polymer.
 フッ素含有モノマーとしては、フルオロアルキル基置換ビニルモノマー、およびフルオロアルキル基置換開環重合性モノマー等が挙げられる。
 フルオロアルキル基置換ビニルモノマーとしては、フルオロアルキル基置換(メタ)アクリレート、フルオロアルキル基置換(メタ)アクリルアミド、フルオロアルキル基置換ビニルエーテル、およびフルオロアルキル基置換スチレン等が挙げられる。
Examples of the fluorine-containing monomer include a fluoroalkyl group-substituted vinyl monomer and a fluoroalkyl group-substituted ring-opening polymerizable monomer.
Examples of the fluoroalkyl group-substituted vinyl monomer include fluoroalkyl group-substituted (meth) acrylates, fluoroalkyl group-substituted (meth) acrylamides, fluoroalkyl group-substituted vinyl ethers, and fluoroalkyl group-substituted styrenes.
 フルオロアルキル基置換開環重合性モノマーとしては、フルオロアルキル基置換エポキシ化合物、フルオロアルキル基置換オキセタン化合物、およびフルオロアルキル基置換オキサゾリン化合物等が挙げられる。 Examples of the fluoroalkyl group-substituted ring-opening polymerizable monomer include fluoroalkyl group-substituted epoxy compounds, fluoroalkyl group-substituted oxetane compounds, and fluoroalkyl group-substituted oxazoline compounds.
 フッ素含有モノマーとしては、フルオロアルキル基置換(メタ)アクリレートが好ましく、下記式(4)の化合物が特に好ましい。
 CH=C(R41)C(O)O-(CH-(CF-X ・・・(4)
 ただし、R41は、水素原子またはメチル基を表し、Xは、水素原子またはフッ素原子を表し、mは、1~6の整数を表し、1~3が好ましく、1または2がより好ましく、nは、1~20の整数を表し、3~10が好ましく、4~8がより好ましい。
As the fluorine-containing monomer, a fluoroalkyl group-substituted (meth) acrylate is preferable, and a compound of the following formula (4) is particularly preferable.
CH 2 = C (R 41 ) C (O) O— (CH 2 ) m — (CF 2 ) n —X (4)
R 41 represents a hydrogen atom or a methyl group, X represents a hydrogen atom or a fluorine atom, m represents an integer of 1 to 6, preferably 1 to 3, more preferably 1 or 2, and n Represents an integer of 1 to 20, preferably 3 to 10, and more preferably 4 to 8.
 フッ素含有シランカップリング剤としては、フルオロアルキル基置換シランカップリング剤が好ましく、下記式(5)の化合物が特に好ましい。
 (R51 SiY ・・・(5)
As the fluorine-containing silane coupling agent, a fluoroalkyl group-substituted silane coupling agent is preferable, and a compound of the following formula (5) is particularly preferable.
(R f ) a R 51 b SiY c (5)
 Rは、エーテル結合またはエステル結合を1個以上含んでいてもよい炭素数1~20のフッ素置換アルキル基を表す。Rとしては、3,3,3-トリフルオロプロピル基、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル基、3-トリフルオロメトキシプロピル基、および3-トリフルオロアセトキシプロピル基等が挙げられる。 R f represents a fluorine-substituted alkyl group having 1 to 20 carbon atoms which may contain one or more ether bonds or ester bonds. R f includes a 3,3,3-trifluoropropyl group, a tridecafluoro-1,1,2,2-tetrahydrooctyl group, a 3-trifluoromethoxypropyl group, a 3-trifluoroacetoxypropyl group, and the like. Can be mentioned.
 R51は、炭素数1~10のアルキル基を表す。R51としては、メチル基、エチル基、およびシクロヘキシル基等が挙げられる。 R 51 represents an alkyl group having 1 to 10 carbon atoms. Examples of R 51 include a methyl group, an ethyl group, and a cyclohexyl group.
 Yは、水酸基または加水分解性基を表す。
 加水分解性基としては、アルコキシ基、およびハロゲン原子、R52C(O)O(ただし、R52は、水素原子または炭素数1~10のアルキル基を表す。)等が挙げられる。
 アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、i-プロピルオキシ基、ブトキシ基、i-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、およびラウリルオキシ基等が挙げられる。
 ハロゲン原子としては、Cl、Br、およびI等が挙げられる。
 R52C(O)Oとしては、CHC(O)O、およびCC(O)O等が挙げられる。
Y represents a hydroxyl group or a hydrolyzable group.
Examples of the hydrolyzable group include an alkoxy group, a halogen atom, and R 52 C (O) O (wherein R 52 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, i-propyloxy group, butoxy group, i-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, Examples include octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group.
Examples of the halogen atom include Cl, Br, and I.
Examples of R 52 C (O) O include CH 3 C (O) O and C 2 H 5 C (O) O.
 a、b、およびcは、a+b+c=4であり、かつa≧1、およびc≧1を満たす整数を表し、a=1、b=0、およびc=3が好ましい。 A, b, and c are integers satisfying a + b + c = 4 and satisfying a ≧ 1 and c ≧ 1, and preferably a = 1, b = 0, and c = 3.
 フッ素含有シランカップリング剤としては、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリアセトキシシラン、ジメチル-3,3,3-トリフルオロプロピルメトキシシラン、およびトリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシラン等が挙げられる。 Fluorine-containing silane coupling agents include 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriacetoxysilane, dimethyl-3,3,3-trifluoropropylmethoxysilane, and Examples include tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane.
 フッ素含有界面活性剤としては、フルオロアルキル基含有アニオン系界面活性剤、フルオロアルキル基含有カチオン系界面活性剤等が挙げられる。 Examples of the fluorine-containing surfactant include a fluoroalkyl group-containing anionic surfactant and a fluoroalkyl group-containing cationic surfactant.
 フルオロアルキル基含有アニオン系界面活性剤としては、炭素数2~10のフルオロアルキルカルボン酸またはその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3-[オメガ-フルオロアルキル(C~C11)オキシ]-1-アルキル(C~C)スルホン酸ナトリウム、3-[オメガ-フルオロアルカノイル(C~C)-N-エチルアミノ]-1-プロパンスルホン酸ナトリウム、フルオロアルキル(C11~C20)カルボン酸またはその金属塩、パーフルオロアルキルカルボン酸(C~C13)またはその金属塩、パーフルオロアルキル(C~C12)スルホン酸またはその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N-プロピル-N-(2-ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(C~C10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(C~C10)-N-エチルスルホニルグリシン塩、およびモノパーフルオロアルキル(C~C16)エチルリン酸エステル等が挙げられる。 Examples of the fluoroalkyl group-containing anionic surfactant include a fluoroalkylcarboxylic acid having 2 to 10 carbon atoms or a metal salt thereof, disodium perfluorooctanesulfonylglutamate, 3- [omega-fluoroalkyl (C 6 -C 11 ) oxy. ] -1-alkyl (C 3 ~ C 4) sulfonate, sodium 3- [omega - fluoroalkanoyl (C 6 ~ C 8) -N- ethylamino] -1-sodium sulfonic acid, fluoroalkyl (C 11 ~ C 20 ) carboxylic acid or a metal salt thereof, perfluoroalkyl carboxylic acid (C 7 to C 13 ) or a metal salt thereof, perfluoroalkyl (C 4 to C 12 ) sulfonic acid or a metal salt thereof, perfluorooctanesulfonic acid diethanolamine N-propyl-N- (2-hydroxy Chill) perfluorooctane sulfonamide, perfluoroalkyl (C 6 ~ C 10) sulfonamide propyl trimethyl ammonium salts, perfluoroalkyl (C 6 ~ C 10) -N- ethylsulfonyl glycine salts and monoperfluoroalkyl, (C 6 -C 16 ) ethyl phosphate and the like.
 フルオロアルキル基含有カチオン系界面活性剤としては、フルオロアルキル基含有脂肪族一級、二級または三級アミン酸、パーフルオロアルキル(C~C10)スルホンアミドプロピルトリメチルアンモニウム塩等の脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、およびイミダゾリニウム塩等が挙げられる。 Examples of the fluoroalkyl group-containing cationic surfactant include aliphatic quaternary compounds such as fluoroalkyl group-containing aliphatic primary, secondary or tertiary amine acids, and perfluoroalkyl (C 6 -C 10 ) sulfonamidopropyltrimethylammonium salts. Examples thereof include ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolinium salts, and the like.
 フッ素含有ポリマーとしては、フルオロアルキル基含有モノマーの重合体、フルオロアルキル基含有モノマーとポリ(オキシアルキレン)基含有モノマーとの共重合体、およびフルオロアルキル基含有モノマーと架橋反応性基含有モノマーとの共重合体等が挙げられる。フッ素含有ポリマーは、共重合可能な他のモノマーとの共重合体であってもよい。 Examples of the fluorine-containing polymer include a polymer of a fluoroalkyl group-containing monomer, a copolymer of a fluoroalkyl group-containing monomer and a poly (oxyalkylene) group-containing monomer, and a fluoroalkyl group-containing monomer and a crosslinking reactive group-containing monomer. A copolymer etc. are mentioned. The fluorine-containing polymer may be a copolymer with another copolymerizable monomer.
 フッ素含有ポリマーとしては、フルオロアルキル基含有モノマーとポリ(オキシアルキレン)基含有モノマーとの共重合体が好ましい。
 ポリ(オキシアルキレン)基としては、下記式(6)で表される基が好ましい。
 -(OR61- ・・・(6)
 ただし、R61は、炭素数2~4のアルキレン基を表し、pは、2以上の整数を表す。
 R61としては、-CHCH-、-CHCHCH-、-CH(CH)CH-、-CH(CH)CH(CH)-等が挙げられる。
As the fluorine-containing polymer, a copolymer of a fluoroalkyl group-containing monomer and a poly (oxyalkylene) group-containing monomer is preferable.
As the poly (oxyalkylene) group, a group represented by the following formula (6) is preferable.
-(OR 61 ) p- (6)
R 61 represents an alkylene group having 2 to 4 carbon atoms, and p represents an integer of 2 or more.
Examples of R 61 include —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH (CH 3 ) CH 2 —, —CH (CH 3 ) CH (CH 3 ) —, and the like.
 ポリ(オキシアルキレン)基は、同一のオキシアルキレン単位(OR61)からなるものであってもよく、2種以上のオキシアルキレン単位(OR61)からなるものであってもよい。2種以上のオキシアルキレン単位(OR61)の配列は、ブロックであってもよく、ランダムであってもよい。 The poly (oxyalkylene) group may be composed of the same oxyalkylene unit (OR 61 ) or may be composed of two or more oxyalkylene units (OR 61 ). The arrangement of two or more oxyalkylene units (OR 61 ) may be a block or random.
シリコーン系化合物:
 シリコーン系化合物としては、(メタ)アクリル酸変性シリコーン、シリコーン樹脂、およびシリコーン系シランカップリング剤等が挙げられる。
 (メタ)アクリル酸変性シリコーンとしては、シリコーン(ジ)(メタ)アクリレート等が挙げられる。
Silicone compounds:
Examples of the silicone compound include (meth) acrylic acid-modified silicone, silicone resin, silicone silane coupling agent, and the like.
Examples of the (meth) acrylic acid-modified silicone include silicone (di) (meth) acrylate.
(親水性材料)
 硬化樹脂層の微細凹凸構造の表面の水接触角を25°以下にするためには、親水性の材料を形成し得る活性エネルギー線硬化性樹脂組成物として、少なくとも親水性モノマーを含む組成物を用いることが好ましい。また、耐擦傷性や耐水性付与の観点からは、架橋可能な多官能モノマーを含むものがより好ましい。なお、親水性モノマーと架橋可能な多官能モノマーは、同一(すなわち、親水性多官能モノマー)であってもよい。さらに、活性エネルギー線硬化性樹脂組成物は、その他のモノマーを含んでいてもよい。
(Hydrophilic material)
In order to set the water contact angle on the surface of the fine uneven structure of the cured resin layer to 25 ° or less, an active energy ray-curable resin composition capable of forming a hydrophilic material is a composition containing at least a hydrophilic monomer. It is preferable to use it. From the viewpoint of scratch resistance and imparting water resistance, those containing a cross-linkable polyfunctional monomer are more preferable. In addition, the same (namely, hydrophilic polyfunctional monomer) may be sufficient as the polyfunctional monomer which can be bridge | crosslinked with a hydrophilic monomer. Furthermore, the active energy ray-curable resin composition may contain other monomers.
 親水性の材料を形成し得る活性エネルギー線硬化性樹脂組成物としては、下記の重合性化合物を含む組成物を用いることがより好ましい。
 4官能以上の多官能(メタ)アクリレートの10~50質量%、
 2官能以上の親水性(メタ)アクリレートの30~80質量%、および
 単官能モノマーの0~20質量%の合計100質量%からなる重合性化合物。
As the active energy ray-curable resin composition capable of forming a hydrophilic material, it is more preferable to use a composition containing the following polymerizable compound.
10-50% by mass of tetrafunctional or higher polyfunctional (meth) acrylate,
A polymerizable compound comprising a total of 100% by mass of 30 to 80% by mass of a bifunctional or higher functional hydrophilic (meth) acrylate and 0 to 20% by mass of a monofunctional monomer.
 4官能以上の多官能(メタ)アクリレートとしては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応混合物、ウレタンアクリレート類(ダイセル・サイテック社製:EBECRYL220、EBECRYL1290、EBECRYL1290K、EBECRYL5129、EBECRYL8210、EBECRYL8301、およびKRM8200)、ポリエーテルアクリレート類(ダイセル・サイテック社製:EBECRYL81)、変性エポキシアクリレート類(ダイセル・サイテック社製:EBECRYL3416)、およびポリエステルアクリレート類(ダイセル・サイテック社製:EBECRYL450、EBECRYL657、EBECRYL800、EBECRYL810、EBECRYL811、EBECRYL812、EBECRYL1830、EBECRYL845、EBECRYL846、およびEBECRYL1870)等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 4官能以上の多官能(メタ)アクリレートとしては、5官能以上の多官能(メタ)アクリレートがより好ましい。
Examples of the tetrafunctional or higher polyfunctional (meth) acrylate include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, di Pentaerythritol hexa (meth) acrylate, succinic acid / trimethylolethane / acrylic acid molar mixture 1: 2: 4 condensation reaction mixture, urethane acrylates (manufactured by Daicel-Cytec: EBECRYL220, EBECRYL1290K, EBECRYL1290K, EBECRYL5129, EBECRYL8210, EBECRYL8301 and KRM8200), polyether acrylates (manufactured by Daicel-Cytec Corp .: E ECRYL81), modified epoxy acrylates (manufactured by Daicel-Cytech: EBECRYL3416), and polyester acrylates (manufactured by Daicel-Cytech: EBECRYL450, EBECRYL657, EBECRYL800, EBECRYL810, EBECRYL811, EBECRYL81L Is mentioned. These may be used alone or in combination of two or more.
The polyfunctional (meth) acrylate having 4 or more functional groups is more preferably a polyfunctional (meth) acrylate having 5 or more functional groups.
 4官能以上の多官能(メタ)アクリレートの割合は、10~50質量%が好ましく、耐水性、および耐薬品性の点から、20~50質量%がより好ましく、30~50質量%が特に好ましい。4官能以上の多官能(メタ)アクリレートの割合が10質量%以上であれば、弾性率が高くなって耐擦傷性が向上する。4官能以上の多官能(メタ)アクリレートの割合が50質量%以下であれば、表面に小さな亀裂が入りにくく、外観不良となりにくい。 The proportion of the tetrafunctional or higher polyfunctional (meth) acrylate is preferably 10 to 50% by mass, more preferably 20 to 50% by mass, and particularly preferably 30 to 50% by mass from the viewpoint of water resistance and chemical resistance. . If the ratio of the tetrafunctional or higher polyfunctional (meth) acrylate is 10% by mass or more, the elastic modulus is increased and the scratch resistance is improved. If the ratio of the tetrafunctional or higher polyfunctional (meth) acrylate is 50% by mass or less, small cracks are hardly formed on the surface, and the appearance is hardly deteriorated.
 2官能以上の親水性(メタ)アクリレートとしては、アロニックス(登録商標)M-240、アロニックス(登録商標)M260(東亞合成社製)、NKエステルAT-20E、NKエステルATM-35E(新中村化学社製)等の長鎖ポリエチレングリコールを有する多官能アクリレート、およびポリエチレングリコールジメタクリレート等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ポリエチレングリコールジメタクリレートにおいて、一分子内に存在するポリエチレングリコール鎖の平均繰り返し単位の合計は、6~40が好ましく、9~30がより好ましく、12~20が特に好ましい。ポリエチレングリコール鎖の平均繰り返し単位が6以上であれば、親水性が十分となり、防汚性が向上する。ポリエチレングリコール鎖の平均繰り返し単位が40以下であれば、4官能以上の多官能(メタ)アクリレートとの相溶性が良好となり、活性エネルギー線硬化性樹脂組成物が分離しにくい。
As the bifunctional or more hydrophilic (meth) acrylate, Aronix (registered trademark) M-240, Aronix (registered trademark) M260 (manufactured by Toagosei Co., Ltd.), NK ester AT-20E, NK ester ATM-35E (Shin Nakamura Chemical) And polyfunctional acrylates having a long-chain polyethylene glycol such as polyethylene glycol dimethacrylate. These may be used alone or in combination of two or more.
In polyethylene glycol dimethacrylate, the total of the average repeating units of polyethylene glycol chains present in one molecule is preferably 6 to 40, more preferably 9 to 30, and particularly preferably 12 to 20. If the average repeating unit of the polyethylene glycol chain is 6 or more, the hydrophilicity is sufficient and the antifouling property is improved. When the average repeating unit of the polyethylene glycol chain is 40 or less, the compatibility with a polyfunctional (meth) acrylate having 4 or more functionalities is improved, and the active energy ray-curable resin composition is hardly separated.
 2官能以上の親水性(メタ)アクリレートの割合は、30~80質量%が好ましく、40~70質量%がより好ましい。2官能以上の親水性(メタ)アクリレートの割合が30質量%以上であれば、親水性が十分となり、防汚性が向上する。2官能以上の親水性(メタ)アクリレートの割合が80質量%以下であれば、弾性率が高くなって耐擦傷性が向上する。 The ratio of the bifunctional or higher functional hydrophilic (meth) acrylate is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass. When the ratio of the bifunctional or higher hydrophilic (meth) acrylate is 30% by mass or more, the hydrophilicity is sufficient and the antifouling property is improved. When the proportion of the bifunctional or higher hydrophilic (meth) acrylate is 80% by mass or less, the elastic modulus is increased and the scratch resistance is improved.
 単官能モノマーとしては、親水性単官能モノマーが好ましい。
 親水性単官能モノマーとしては、M-20G、M-90G、およびM-230G(新中村化学社製)等のエステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート;ヒドロキシアルキル(メタ)アクリレート等のエステル基に水酸基を有する単官能(メタ)アクリレート;単官能アクリルアミド類;並びにメタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート、およびメタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェート等のカチオン性モノマー類等が挙げられる。
 また、単官能モノマーとして、アクリロイルモルホリン、およびビニルピロリドン等の粘度調整剤、並びに物品本体への密着性を向上させるアクリロイルイソシアネート類等の密着性向上剤等を用いてもよい。
As the monofunctional monomer, a hydrophilic monofunctional monomer is preferable.
Examples of hydrophilic monofunctional monomers include monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group such as M-20G, M-90G, and M-230G (manufactured by Shin-Nakamura Chemical Co., Ltd.); hydroxyalkyl (meth) acrylates And monofunctional (meth) acrylates having a hydroxyl group in the ester group; monofunctional acrylamides; and cationic monomers such as methacrylamidopropyltrimethylammonium methylsulfate and methacryloyloxyethyltrimethylammonium methylsulfate.
In addition, as a monofunctional monomer, viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone, and adhesion improvers such as acryloyl isocyanates that improve adhesion to the article body may be used.
 単官能モノマーの割合は、0~20質量%が好ましく、5~15質量%がより好ましい。単官能モノマーを用いることによって、物品本体と硬化樹脂との密着性が向上する。単官能モノマーの割合が20質量%以下であれば、4官能以上の多官能(メタ)アクリレートまたは2官能以上の親水性(メタ)アクリレートが不足することなく、防汚性または耐擦傷性が十分に発現する。 The proportion of the monofunctional monomer is preferably 0 to 20% by mass, and more preferably 5 to 15% by mass. By using a monofunctional monomer, the adhesion between the article body and the cured resin is improved. When the proportion of the monofunctional monomer is 20% by mass or less, antifouling property or scratch resistance is sufficient without a shortage of tetrafunctional or higher polyfunctional (meth) acrylate or bifunctional or higher hydrophilic (meth) acrylate. Expressed in
 単官能モノマーは、1種または2種以上を(共)重合した低重合度の重合体として活性エネルギー線硬化性樹脂組成物に0~35質量部配合してもよい。低重合度の重合体としては、M-230G(新中村化学社製)等のエステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類と、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェートとの40/60共重合オリゴマー(MRCユニテック社製、MGポリマー)等が挙げられる。 The monofunctional monomer may be blended in an active energy ray-curable resin composition in an amount of 0 to 35 parts by mass as a low-polymerization polymer obtained by (co) polymerizing one or more types. As a polymer having a low degree of polymerization, 40/60 of monofunctional (meth) acrylates having a polyethylene glycol chain in an ester group such as M-230G (manufactured by Shin-Nakamura Chemical Co., Ltd.) and methacrylamide propyltrimethylammonium methyl sulfate. Copolymer oligomer (MRC Unitech Co., Ltd., MG polymer) and the like can be mentioned.
(製造方法の具体例)
 図1に示す製造装置を用いた、本発明の微細凹凸構造を表面に有する物品の製造方法の具体例を説明する。
(Specific example of manufacturing method)
The specific example of the manufacturing method of the articles | goods which have the fine concavo-convex structure of this invention on the surface using the manufacturing apparatus shown in FIG. 1 is demonstrated.
 表面に微細凹凸構造(図示略)を有するロール状モールド20と、ロール状モールド20の回転に同期してロール状モールド20の表面に沿って移動する帯状のフィルム42(物品本体)との間に、タンク22から活性エネルギー線硬化性樹脂組成物を供給する。 Between the roll-shaped mold 20 having a fine concavo-convex structure (not shown) on the surface and a strip-shaped film 42 (article main body) that moves along the surface of the roll-shaped mold 20 in synchronization with the rotation of the roll-shaped mold 20. The active energy ray-curable resin composition is supplied from the tank 22.
 ロール状モールド20と、空気圧シリンダ24によってニップ圧が調整されたニップロール26との間で、フィルム42および活性エネルギー線硬化性樹脂組成物をニップし、活性エネルギー線硬化性樹脂組成物を、フィルム42とロール状モールドとの間に均一に行き渡らせると同時に、ロール状モールド20の微細凹凸構造の凹部内に充填する。 The film 42 and the active energy ray curable resin composition are nipped between the roll-shaped mold 20 and the nip roll 26 whose nip pressure is adjusted by the pneumatic cylinder 24, and the active energy ray curable resin composition is niped with the film 42. At the same time, it is filled in the concave portions of the fine concavo-convex structure of the roll-shaped mold 20.
 ロール状モールド20の下方に設置された活性エネルギー線照射装置28から、フィルム42を通して活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射し、活性エネルギー線硬化性樹脂組成物を硬化させることによって、ロール状モールド20の表面の微細凹凸構造が転写された硬化樹脂層44を形成する。活性エネルギー線照射装置28からの光照射エネルギー量は、100~10000mJ/cmが好ましい。
 剥離ロール30によって、表面に硬化樹脂層44が形成されたフィルム42をロール状モールド20から剥離することによって、図3に示すような物品40を得る。
By irradiating the active energy ray curable resin composition through the film 42 from the active energy ray irradiating device 28 installed below the roll-shaped mold 20, the active energy ray curable resin composition is cured. Then, the cured resin layer 44 to which the fine uneven structure on the surface of the roll-shaped mold 20 is transferred is formed. The amount of light irradiation energy from the active energy ray irradiation device 28 is preferably 100 to 10,000 mJ / cm 2 .
An article 40 as shown in FIG. 3 is obtained by peeling the film 42 having the cured resin layer 44 formed on the surface from the roll-shaped mold 20 by the peeling roll 30.
 ついで、反射型赤外分光装置50によって、フィルム42が剥離された直後のロール状モールド20の表面の赤外分光スペクトルを測定する。モールドの表面の赤外分光スペクトルの測定は、モールド表面の離型剤の状態を常時把握する点から、連続的、または所定間隔をあけて断続的に行うことが好ましい。反射型赤外分光装置50は固定式であっても走査式であってもよい。 Then, the infrared spectrum of the surface of the roll-shaped mold 20 immediately after the film 42 is peeled is measured by the reflection type infrared spectrometer 50. The measurement of the infrared spectrum of the surface of the mold is preferably performed continuously or intermittently at predetermined intervals from the viewpoint of constantly grasping the state of the mold release agent on the mold surface. The reflective infrared spectroscopic device 50 may be a fixed type or a scanning type.
 ついで、判定手段60において、抽出部にて反射型赤外分光装置50で測定された赤外分光スペクトルから特定の化学構造に由来する所定の波数付近のピークの強度または面積を抽出し;算出部にて必要に応じて2種のピークの強度または面積の比を算出し;判定部にてピークの強度、面積、またはそれらの比等があらかじめ設定された閾値以上(場合によっては閾値以下)のときにロール状モールド20の表面の離型剤の状態を良と判定し;判定部にてロール状モールド20の表面の離型剤の状態を不良と判定した場合に、伝達部からその情報を制御装置62に伝達する。 Next, in the determination means 60, the extraction unit extracts the intensity or area of a peak near a predetermined wave number derived from a specific chemical structure from the infrared spectrum measured by the reflection type infrared spectroscopy device 50; If necessary, calculate the ratio of the intensity or area of the two peaks; if the peak intensity, area, or ratio of the peaks is greater than a preset threshold (or less than the threshold in some cases) Sometimes the state of the release agent on the surface of the roll-shaped mold 20 is determined as good; when the determination unit determines that the state of the release agent on the surface of the roll-shaped mold 20 is defective, the information is transmitted from the transmission unit. This is transmitted to the control device 62.
 判定部においては、判定の精度が比較的高い点から、離型剤の化学構造に由来する波数付近のピークの吸光度面積(A)あるいは離型剤の化学構造に由来する波数付近のピークの吸光度面積(A)と、ロール状モールド20の表面に存在する化学構造に由来する波数付近のピークの吸光度面積(B)との面積比((A)/(B))があらかじめ設定された閾値以上のときにモールドの表面の離型剤の状態を良と判定することが好ましい。 In the determination unit, the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent or the absorbance of the peak near the wave number derived from the chemical structure of the release agent from the point of relatively high accuracy of determination. The area ratio ((A) / (B)) between the area (A) and the absorbance area (B) of the peak near the wave number derived from the chemical structure existing on the surface of the roll-shaped mold 20 is not less than a preset threshold value. In this case, it is preferable to determine that the state of the mold release agent on the surface of the mold is good.
 判定手段60においては、具体的には、離型剤として、加水分解性シリル基またはシラノール基を有するフッ素化合物を用い、ロール状モールド20として、2個以上の細孔を有する陽極酸化アルミナをアルミニウム基材の表面に有するモールドを用いる場合、以下の処理を行うことが好ましい。 Specifically, in the determination means 60, a fluorine compound having a hydrolyzable silyl group or silanol group is used as a release agent, and anodized alumina having two or more pores is used as the roll-shaped mold 20 with aluminum. When using the mold which has in the surface of a base material, it is preferable to perform the following processes.
 抽出部にて、赤外分光スペクトルから、加水分解性シリル基またはシラノール基を有するフッ素化合物の化学構造に由来する波数1080~1290cm-1付近のピークの吸光度面積(A)と、陽極酸化アルミナの化学構造に由来する波数730~1080cm-1付近のピークの吸光度面積(B)とを抽出する。この際のベースラインは、所定の波数にピークを有する吸収曲線の始点と終点とを結ぶ破線とする。具体例を図5に示す。
 算出部にて、抽出部で抽出された面積(A)と面積(B)、さらに両者の面積比((A)/(B))を算出する。
 判定部にて、面積(A)または面積比((A)/(B))があらかじめ設定された閾値以上のときにロール状モールド20の表面の離型剤の状態を良と判定する。
In the extraction part, from the infrared spectroscopic spectrum, the absorbance area (A) of the peak in the vicinity of wave number 1080 to 1290 cm −1 derived from the chemical structure of the fluorine compound having a hydrolyzable silyl group or silanol group, and the anodized alumina The absorbance area (B) of the peak near the wave number 730 to 1080 cm −1 derived from the chemical structure is extracted. The baseline in this case is a broken line connecting the start point and end point of an absorption curve having a peak at a predetermined wave number. A specific example is shown in FIG.
The calculation unit calculates the area (A) and the area (B) extracted by the extraction unit, and the area ratio ((A) / (B)) between the two.
The determination unit determines that the state of the release agent on the surface of the roll-shaped mold 20 is good when the area (A) or the area ratio ((A) / (B)) is equal to or greater than a preset threshold value.
 面積(A)または面積比((A)/(B))の閾値は、実際の製造に用いるものと同じ製造装置、および同じ材料を用いてあらかじめ予備実験を実施し、ロール状モールド20を硬化樹脂層44から離型できなくなる直前、または一部に離型不良による欠陥が生じた時点の面積(A)または面積比((A)/(B))を確認し、設定すればよい。離型剤として、加水分解性シリル基またはシラノール基を有するフッ素化合物(ダイキン工業社製、オプツール(登録商標)DSX)を用い、ロール状モールド20として、2個以上の細孔を有する陽極酸化アルミナをアルミニウム基材の表面に有するモールドを用いる場合、面積(A)が0.13、または面積比((A)/(B))が0.047以上であれば離型不良が発生しないこと、面積(A)が0.15、または面積比((A)/(B))が0.070以上であればより安定して転写を行えることを、本発明者らは繰り返し予備実験を実施することによって確認している。面積(A)または面積比((A)/(B))の上限は特に制限されないが、離型剤の量が多くなるとロール状モールド20の微細凹凸構造を正確に転写できない等の問題が生じるため、面積(A)は1以下が好ましく、0.8以下がさらに好ましい。また、面積比((A)/(B))は10以下が好ましく、5以下がよりに好ましい。 The threshold of the area (A) or the area ratio ((A) / (B)) is preliminarily performed using the same manufacturing apparatus and the same material as those used in actual manufacturing, and the roll-shaped mold 20 is cured. The area (A) or the area ratio ((A) / (B)) may be confirmed and set immediately before it becomes impossible to release from the resin layer 44 or when a defect due to defective release occurs in part. Anodized alumina having two or more pores as a roll-shaped mold 20 using a fluorine compound having a hydrolyzable silyl group or silanol group (Optool (registered trademark) DSX, manufactured by Daikin Industries, Ltd.) as a release agent When the mold having the surface of the aluminum substrate is used, if the area (A) is 0.13, or the area ratio ((A) / (B)) is 0.047 or more, there will be no release defects. When the area (A) is 0.15 or the area ratio ((A) / (B)) is 0.070 or more, the present inventors repeatedly perform preliminary experiments that transfer can be performed more stably. By confirming that. The upper limit of the area (A) or the area ratio ((A) / (B)) is not particularly limited. However, when the amount of the release agent increases, there arises a problem that the fine uneven structure of the roll-shaped mold 20 cannot be accurately transferred. Therefore, the area (A) is preferably 1 or less, and more preferably 0.8 or less. Further, the area ratio ((A) / (B)) is preferably 10 or less, and more preferably 5 or less.
 離型剤として、前記フッ素化合物(ダイキン工業社製、オプツール(登録商標)DSX)を用い、ロール状モールド20として、2個以上の細孔を有する陽極酸化アルミナをアルミニウム基材の表面に有するモールドを用いる場合、面積(A)は0.13以上1以下が好ましく、0.15以上0.8以下がより好ましい。
 離型剤として前記フッ素化合物を用い、ロール状モールド20として、前記モールドを用いる場合、面積比((A)/(B))は0.047以上10以下が好ましく、0.070以上5以下がより好ましい。
As the mold release agent, the fluorine compound (Optool (registered trademark) DSX, manufactured by Daikin Industries, Ltd.) is used, and as the roll-shaped mold 20, a mold having anodized alumina having two or more pores on the surface of an aluminum substrate Is preferably 0.13 or more and 1 or less, more preferably 0.15 or more and 0.8 or less.
When the fluorine compound is used as a release agent and the mold is used as the roll mold 20, the area ratio ((A) / (B)) is preferably 0.047 or more and 10 or less, and 0.070 or more and 5 or less. More preferred.
 制御装置62においては、例えば、判定手段60においてロール状モールド20の表面の離型剤の状態が不良と判定された際には、フィルム42の移動、ロール状モールド20の回転、およびタンク22からの活性エネルギー線硬化性樹脂組成物の供給等を停止し、ロール状モールド20の表面の微細凹凸構造の、フィルム42の表面への転写を停止する。停止後にモールドを取り外して離型剤を塗布してもよい。また、制御装置62は、判定手段60からの出力に応じて、ロール状モールド20の表面に離型剤を塗布するように構成することができる。 In the control device 62, for example, when the determination unit 60 determines that the state of the release agent on the surface of the roll mold 20 is defective, the movement of the film 42, the rotation of the roll mold 20, and the tank 22. The supply of the active energy ray-curable resin composition is stopped, and the transfer of the fine uneven structure on the surface of the roll-shaped mold 20 to the surface of the film 42 is stopped. After the stop, the mold may be removed and a release agent may be applied. Further, the control device 62 can be configured to apply a release agent to the surface of the roll-shaped mold 20 in accordance with the output from the determination means 60.
(物品)
 図3は、本発明の製造方法で得られる、微細凹凸構造を表面に有する物品40の一例を示す断面図である。
 フィルム42は、光透過性フィルムである。フィルムの材料としては、ポリカーボネート、ポリスチレン系樹脂、ポリエステル、ポリウレタン、アクリル系樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルケトン、セルロース系樹脂(トリアセチルセルロース等)、ポリオレフィン、および脂環式ポリオレフィン等が挙げられる。
(Goods)
FIG. 3 is a cross-sectional view showing an example of an article 40 having a fine concavo-convex structure on the surface obtained by the production method of the present invention.
The film 42 is a light transmissive film. Examples of the film material include polycarbonate, polystyrene resin, polyester, polyurethane, acrylic resin, polyether sulfone, polysulfone, polyether ketone, cellulose resin (triacetyl cellulose, etc.), polyolefin, and alicyclic polyolefin. Can be mentioned.
 硬化樹脂層44は、活性エネルギー線硬化性樹脂組成物の硬化物からなる膜であり、表面に微細凹凸構造を有する。
 陽極酸化アルミナのモールドを用いた場合の物品40の表面の微細凹凸構造は、陽極酸化アルミナの表面の微細凹凸構造を転写して形成されたものであり、活性エネルギー線硬化性樹脂組成物の硬化物からなる2個以上の凸部46を有する。
The cured resin layer 44 is a film made of a cured product of the active energy ray curable resin composition, and has a fine uneven structure on the surface.
When the anodized alumina mold is used, the fine uneven structure on the surface of the article 40 is formed by transferring the fine uneven structure on the surface of the anodized alumina, and the active energy ray-curable resin composition is cured. It has two or more convex parts 46 which consist of things.
 微細凹凸構造としては、略円錐形状、または角錐形状等の突起(凸部)が2個以上並んだ、いわゆるモスアイ構造が好ましい。突起間の間隔が可視光の波長以下であるモスアイ構造は、空気の屈折率から材料の屈折率へと連続的に屈折率が増大していくことで有効な反射防止の手段となることが知られている。 The fine concavo-convex structure is preferably a so-called moth-eye structure in which two or more protrusions (convex portions) having a substantially conical shape or a pyramid shape are arranged. It is known that the moth-eye structure in which the distance between the protrusions is less than or equal to the wavelength of visible light is an effective anti-reflection measure by continuously increasing the refractive index from the refractive index of air to the refractive index of the material. It has been.
 凸部間の平均間隔は、可視光の波長以下、すなわち400nm以下である。陽極酸化アルミナのモールドを用いて凸部を形成した場合、凸部間の平均間隔は100から200nm程度となることから、250nm以下が特に好ましい。 The average interval between the convex portions is not more than the wavelength of visible light, that is, not more than 400 nm. When the convex portions are formed using an anodized alumina mold, the average distance between the convex portions is about 100 to 200 nm, and is particularly preferably 250 nm or less.
 凸部間の平均間隔は、凸部の形成のしやすさの点から、20nm以上が好ましい。
 凸部間の平均間隔の範囲は、20~400nmが好ましく、50~300nmがより好ましく、90~250nmがさらに好ましい。
 凸部間の平均間隔は、電子顕微鏡観察によって隣接する凸部間の間隔(凸部の中心から隣接する凸部の中心までの距離)を50点測定し、これらの値を平均したものである。
The average interval between the convex portions is preferably 20 nm or more from the viewpoint of easy formation of the convex portions.
The range of the average distance between the convex portions is preferably 20 to 400 nm, more preferably 50 to 300 nm, and further preferably 90 to 250 nm.
The average interval between the convex portions is obtained by measuring 50 intervals between adjacent convex portions (distance from the center of the convex portion to the center of the adjacent convex portion) by electron microscope observation, and averaging these values. .
 凸部の高さは、平均間隔が100nmの場合は、80~500nmが好ましく、120~400nmがより好ましく、150~300nmが特に好ましい。凸部の高さが80nm以上であれば、反射率が十分低くなり、かつ反射率の波長依存性が少ない。凸部の高さが500nm以下であれば、凸部の耐擦傷性が良好となる。
 凸部の高さは、電子顕微鏡によって倍率30000倍で観察したときにおける、凸部の最頂部と、凸部間に存在する凹部の最底部との間の距離を測定した値である。
The height of the protrusions is preferably 80 to 500 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm when the average interval is 100 nm. If the height of the convex portion is 80 nm or more, the reflectance is sufficiently low and the wavelength dependency of the reflectance is small. If the height of a convex part is 500 nm or less, the scratch resistance of a convex part will become favorable.
The height of the convex portion is a value obtained by measuring the distance between the topmost portion of the convex portion and the bottommost portion of the concave portion existing between the convex portions when observed with an electron microscope at a magnification of 30000 times.
 凸部のアスペクト比(凸部の高さ/凸部間の平均間隔)は、0.8~5.0が好ましく、1.2~4.0がより好ましく、1.5~3.0が特に好ましい。凸部のアスペクト比が1.0以上であれば、反射率が十分に低くなる。凸部のアスペクト比が5.0以下であれば、凸部の耐擦傷性が良好となる。 The aspect ratio of the convex part (height of convex part / average interval between convex parts) is preferably 0.8 to 5.0, more preferably 1.2 to 4.0, and 1.5 to 3.0. Particularly preferred. If the aspect ratio of the convex portion is 1.0 or more, the reflectance is sufficiently low. If the aspect ratio of the convex portion is 5.0 or less, the scratch resistance of the convex portion is good.
 凸部の形状は、高さ方向と直交する方向の凸部断面積が最表面から深さ方向に連続的に増加する形状、すなわち、凸部の高さ方向の断面形状が、三角形、台形、および釣鐘型等の形状が好ましい。 The shape of the convex part is a shape in which the convex sectional area in the direction perpendicular to the height direction continuously increases in the depth direction from the outermost surface, that is, the sectional shape in the height direction of the convex part is a triangle, trapezoid, A shape such as a bell shape is preferred.
 硬化樹脂層44の屈折率とフィルム42の屈折率との差は、0.2以下が好ましく、0.1以下がより好ましく、0.05以下が特に好ましい。屈折率差が0.2以下であれば、硬化樹脂層44とフィルム42との界面における反射が抑えられる。 The difference between the refractive index of the cured resin layer 44 and the refractive index of the film 42 is preferably 0.2 or less, more preferably 0.1 or less, and particularly preferably 0.05 or less. When the refractive index difference is 0.2 or less, reflection at the interface between the cured resin layer 44 and the film 42 is suppressed.
 表面に微細凹凸構造を有する場合、その表面が疎水性の材料から形成されていればロータス効果により超撥水性が得られ、その表面が親水性の材料から形成されていれば超親水性が得られることが知られている。 When the surface has a fine concavo-convex structure, if the surface is made of a hydrophobic material, super water repellency can be obtained by the lotus effect, and if the surface is made of a hydrophilic material, super hydrophilicity can be obtained. It is known that
 硬化樹脂層44の材料が疎水性の場合の微細凹凸構造の表面の水接触角は、90゜以上が好ましく、110゜以上がより好ましく、120゜以上が特に好ましい。水接触角が90゜以上であれば、水汚れが付着しにくくなるため、十分な防汚性が発揮される。また、水が付着しにくいため、着氷防止を期待できる。
 硬化樹脂層44の材料が疎水性の場合の微細凹凸構造の表面の水接触角の範囲は、90゜以上180゜以下が好ましく、110゜以上180゜以下がより好ましく、120゜以上180゜以下が特に好ましい。
When the material of the cured resin layer 44 is hydrophobic, the water contact angle on the surface of the fine uneven structure is preferably 90 ° or more, more preferably 110 ° or more, and particularly preferably 120 ° or more. If the water contact angle is 90 ° or more, water stains are less likely to adhere, so that sufficient antifouling properties are exhibited. Moreover, since water does not adhere easily, anti-icing can be expected.
When the material of the cured resin layer 44 is hydrophobic, the range of the water contact angle on the surface of the fine relief structure is preferably 90 ° or more and 180 ° or less, more preferably 110 ° or more and 180 ° or less, and 120 ° or more and 180 ° or less. Is particularly preferred.
 硬化樹脂層44の材料が親水性の場合の微細凹凸構造の表面の水接触角は、25゜以下が好ましく、23゜以下がより好ましく、21゜以下が特に好ましい。水接触角が25゜以下であれば、表面に付着した汚れが水で洗い流され、また油汚れが付着しにくくなるため、十分な防汚性が発揮される。前記水接触角は、硬化樹脂層44の吸水による微細凹凸構造の変形、それに伴う反射率の上昇を抑える点から、3゜以上が好ましい。
 硬化樹脂層44の材料が親水性の場合の、微細凹凸構造の表面の水接触角の範囲は、3゜以上30゜以下が好ましく、3゜以上23゜以下がより好ましく、3゜以上21゜以下が特に好ましい。
When the material of the cured resin layer 44 is hydrophilic, the water contact angle on the surface of the fine uneven structure is preferably 25 ° or less, more preferably 23 ° or less, and particularly preferably 21 ° or less. If the water contact angle is 25 ° or less, the dirt attached to the surface is washed away with water, and oil dirt is less likely to adhere, so that sufficient antifouling properties are exhibited. The water contact angle is preferably 3 ° or more from the viewpoint of suppressing the deformation of the fine concavo-convex structure due to water absorption of the cured resin layer 44 and the accompanying increase in reflectance.
When the material of the cured resin layer 44 is hydrophilic, the range of the water contact angle on the surface of the fine concavo-convex structure is preferably 3 ° to 30 °, more preferably 3 ° to 23 °, and more preferably 3 ° to 21 °. The following are particularly preferred:
(用途)
 物品40の用途としては、反射防止物品、防曇性物品、防汚性物品、および撥水性物品、より具体的には、ディスプレー用反射防止、自動車メーターカバー、自動車ミラー、自動車窓、有機または無機エレクトロルミネッセンスの光取り出し効率向上部材、および太陽電池部材等が挙げられる。
(Use)
Applications of the article 40 include antireflection articles, antifogging articles, antifouling articles, and water repellent articles, and more specifically, antireflection for displays, automobile meter covers, automobile mirrors, automobile windows, organic or inorganic Examples include an electroluminescence light extraction efficiency improving member, a solar cell member, and the like.
(作用効果)
 以上説明した本発明の、微細凹凸構造を表面に有する物品の製造方法および製造装置にあっては、微細凹凸構造を物品本体の表面に転写し、前記物品本体をモールドから剥離した直後のモールドの表面の赤外分光スペクトルを測定し、前記赤外分光スペクトルに基づいてモールドの表面の離型剤の状態の良否を判定するため、モールド表面の離型剤の状態をオンラインで簡易にモニタリングできる。その結果、モールドの離型不良を事前に把握することができ、微細凹凸構造を表面に有する物品の生産性の低下を抑えることができる。
(Function and effect)
In the manufacturing method and the manufacturing apparatus of the article having the fine concavo-convex structure on the surface according to the present invention described above, the fine concavo-convex structure is transferred to the surface of the article main body, and the mold immediately after the article main body is peeled off from the mold. Since the surface infrared spectrum is measured and the quality of the mold release agent state on the mold surface is judged based on the infrared spectrum, the mold surface release agent condition can be easily monitored online. As a result, a mold release failure can be grasped in advance, and a decrease in productivity of an article having a fine concavo-convex structure on the surface can be suppressed.
 すなわち、本発明によれば、モールドの表面の離型剤の状態を非接触、および非破壊で判定できるため、物品の製造中にオンラインで判定できる。したがって、離型不良を事前に予測することができ、離型不良の直前に物品の製造を中止できる。その結果、離型不良の直前まで物品を製造できるため、モールドを効率的に用いることができ、離型不良による硬化樹脂の付着を防げるため、モールドの洗浄が容易となる。また、離型不良におけるトラブルを回避できるため、より安全に物品を製造できる。 That is, according to the present invention, since the state of the mold release agent on the surface of the mold can be determined in a non-contact and non-destructive manner, it can be determined online during the manufacture of the article. Therefore, it is possible to predict a release failure in advance, and it is possible to stop the production of the article immediately before the release failure. As a result, since an article can be manufactured until just before the release failure, the mold can be used efficiently, and the cured resin can be prevented from adhering to the release failure, so that the mold can be easily cleaned. Moreover, since troubles due to mold release defects can be avoided, articles can be manufactured more safely.
 なお、本発明において、反射赤外分光法を採用している理由は、下記の通りである。
 上述のように、モールドの表面の微細凹凸構造を、物品本体の表面に転写し続けると、やがて離型性が悪化してくる。その原因としては、モールドからの離型剤の脱落、および活性エネルギー線(紫外線等)や熱等による離型剤の変質等が考えられる。そこで、離型剤として加水分解性シリル基を有するフッ素化合物を用いた場合の離型不良の原因を見極めるために、初期のモールドと離型不良となったモールドの表面を分析し、離型剤の量を見積もることとした。通常、離型剤は極薄くモールドに塗布されているため、表面感度の優れた手法を用いる必要がある。例えば、TOF-SIMS、XPS、およびIR法等を用いることが考えられる。そこで、XPS、およびTOF-SIMSで分析した結果、例えばXPSから求められる離型剤の量(原子数比F/Al)は、初期の8.3から離型不良時には2.1に低下していた。また、モールド上に残存している離型剤の構造変化は認められなかった。この結果から、離型不良の原因は離型剤の脱落にあることが明白となった。よって、モールドの表面の離型剤の量を把握することで離型不良を事前に予測することが可能となる。
In the present invention, the reason why the reflection infrared spectroscopy is employed is as follows.
As described above, when the fine concavo-convex structure on the surface of the mold is continuously transferred to the surface of the article main body, the releasability is eventually deteriorated. As the cause, dropping of the release agent from the mold, alteration of the release agent due to active energy rays (ultraviolet rays or the like), heat, or the like can be considered. Therefore, in order to determine the cause of mold release failure when a fluorine compound having a hydrolyzable silyl group is used as a mold release agent, the surface of the mold that had the initial mold and the mold release failure was analyzed, and the mold release agent We decided to estimate the amount of Usually, since the release agent is applied to the mold very thinly, it is necessary to use a method with excellent surface sensitivity. For example, it is conceivable to use TOF-SIMS, XPS, and IR methods. Therefore, as a result of analysis by XPS and TOF-SIMS, for example, the amount of release agent (atomic ratio F / Al) obtained from XPS has decreased from 8.3 at the initial stage to 2.1 at the time of release failure. It was. Moreover, the structural change of the mold release agent remaining on the mold was not recognized. From this result, it became clear that the cause of the release failure was the release of the release agent. Therefore, it becomes possible to predict a mold release failure in advance by grasping the amount of the mold release agent on the surface of the mold.
 しかしながら、TOF-SIMSやXPSでは、装置構成上の問題から、一定の大きさ以上のモールドは測定できないため、物品の製造中に測定することは困難であり、オンラインでモニタリングできない問題がある。また、赤外分光法の中でも表面感度に優れるATR法は、非接触での測定ができず、モールドの表面を傷つけてしまうため、物品の製造中に測定できない。さらに、これらの手法では、モールドの表面が微細凹凸構造を有しているため、どの部分を測定しているのかの判別も困難である。そこで、反射赤外分光法による測定を行うことで、上記問題を解決することができ、モールドの大きさによらず、かつ非接触で離型剤の量を把握できる。 However, TOF-SIMS and XPS cannot measure a mold of a certain size or more because of a problem in the apparatus configuration, so that it is difficult to measure during the manufacture of an article and cannot be monitored online. In addition, the ATR method, which is excellent in surface sensitivity among infrared spectroscopy, cannot be measured in a non-contact manner and damages the surface of the mold, and thus cannot be measured during the manufacture of the article. Furthermore, in these methods, since the surface of the mold has a fine concavo-convex structure, it is difficult to determine which part is being measured. Therefore, by performing measurement by reflection infrared spectroscopy, the above problem can be solved, and the amount of the release agent can be grasped in a non-contact manner regardless of the size of the mold.
 ここで、反射赤外分光法について説明する。モールドに赤外線を照射すると、赤外線は、表面にある加水分解性シリル基を有するフッ素化合物からなる離型剤や陽極酸化アルミナの大部分は透過し、アルミニウム基材の金属面で反射する。その反射光を分光することで離型剤の赤外分光スペクトルが得られる。この場合、モールドの微細凹凸構造の内外の全ての離型剤の情報が得られることになる。また、この方法によれば、モールドと非接触で測定できるため、モールドを傷付けることがなく、物品の製造中に測定することも可能である。また、大型のロール状モールド等、大きさや形状の制約を受けない。これらの特徴から、インラインでの測定も可能である。また、赤外線としては、目的に応じて近赤外~遠赤外まで用いることができる。 Here, the reflection infrared spectroscopy will be described. When the mold is irradiated with infrared rays, most of the release agent made of a fluorine compound having a hydrolyzable silyl group and anodized alumina on the surface is transmitted and reflected by the metal surface of the aluminum substrate. By analyzing the reflected light, an infrared spectrum of the release agent can be obtained. In this case, information on all the mold release agents inside and outside the fine concavo-convex structure of the mold can be obtained. Further, according to this method, since measurement can be performed without contact with the mold, measurement can be performed during manufacturing of an article without damaging the mold. Moreover, there is no restriction on the size or shape of a large roll mold or the like. From these features, in-line measurement is also possible. As infrared rays, near infrared rays to far infrared rays can be used depending on purposes.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
(陽極酸化アルミナの細孔)
 陽極酸化アルミナの一部を削り、断面にプラチナを1分間蒸着し、電界放出形走査電子顕微鏡(日本電子社製、JSM-7400F)を用いて、加速電圧3.00kVの条件にて、断面を観察し、細孔の間隔、および細孔の深さを測定した。各測定は、それぞれ50点について行い、平均値を求めた。
(Pores of anodized alumina)
Part of the anodized alumina is shaved, platinum is deposited on the cross section for 1 minute, and the cross section is subjected to an acceleration voltage of 3.00 kV using a field emission scanning electron microscope (JSM-7400F, manufactured by JEOL Ltd.). Observed and measured pore spacing and pore depth. Each measurement was performed for 50 points, and the average value was obtained.
(転写試験)
 モールドの微細凹凸構造が形成された側に活性エネルギー線硬化性樹脂組成物を流し込み、アクリルフィルムを被せた後、UV照射機(高圧水銀ランプ、積算光量:400mJ/cm)によって硬化を行った。ついで、アクリルフィルムごと硬化樹脂層をモールドから離型することによって、アクリルフィルムの表面に微細凹凸構造を転写した。この操作を繰り返し行い、目視ではっきりと認識できる離型不良が発生するまでの回数を転写可能回数とした。この場合の離型不良とは、モールドへの硬化樹脂の付着等の原因によって、モールドの微細凹凸面に樹脂残りが発生し、モールドと硬化樹脂層とが離型困難になった状態である。
(Transcription test)
The active energy ray-curable resin composition was poured onto the side of the mold where the fine concavo-convex structure was formed, and the acrylic film was covered, followed by curing with a UV irradiation machine (high pressure mercury lamp, integrated light quantity: 400 mJ / cm 2 ). . Subsequently, the fine concavo-convex structure was transferred to the surface of the acrylic film by releasing the cured resin layer from the mold together with the acrylic film. This operation was repeated, and the number of times until a release failure that could be clearly recognized visually occurred was defined as the number of transferable times. The defective mold release in this case is a state in which a resin residue is generated on the fine uneven surface of the mold due to adhesion of the cured resin to the mold and the mold and the cured resin layer are difficult to release.
(活性エネルギー線硬化性樹脂組成物)
 コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応混合物の45質量部、
 1,6-ヘキサンジオールジアクリレート(大阪有機化学社製)の45質量部、
 ラジカル重合性シリコーンオイル(信越化学工業社製、X-22-1602)の10質量部、および
 1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティーケミカルズ社製、イルガキュア184)の3質量部
 を混合し、活性エネルギー線硬化性樹脂組成物を調製した。
(Active energy ray-curable resin composition)
45 parts by weight of a condensation reaction mixture of succinic acid / trimethylolethane / acrylic acid molar ratio 1: 2: 4,
45 parts by mass of 1,6-hexanediol diacrylate (produced by Osaka Organic Chemical Co., Ltd.)
10 parts by mass of radical-polymerizable silicone oil (Shin-Etsu Chemical Co., Ltd., X-22-1602) and 3 parts by mass of 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals Co., Ltd., Irgacure 184) are mixed. An active energy ray-curable resin composition was prepared.
(モールドの作製方法)
 50mm×50mm×厚さ0.3mmのアルミニウム板(純度99.99%)を、過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨したものを用意した。
 工程(a):
 前記アルミニウム板について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で6時間陽極酸化を行った。
 工程(b):
 酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に3時間浸漬して、酸化皮膜を除去した。
 工程(c):
 前記アルミニウム板について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。
(Mold production method)
A 50 mm × 50 mm × 0.3 mm thick aluminum plate (purity 99.99%) prepared by electrolytic polishing in a perchloric acid / ethanol mixed solution (1/4 volume ratio) was prepared.
Step (a):
The aluminum plate was anodized in a 0.3 M oxalic acid aqueous solution for 6 hours under conditions of a direct current of 40 V and a temperature of 16 ° C.
Step (b):
The aluminum plate on which the oxide film was formed was immersed in a 6% by mass phosphoric acid / 1.8% by mass chromic acid mixed aqueous solution for 3 hours to remove the oxide film.
Step (c):
The aluminum plate was anodized in a 0.3 M oxalic acid aqueous solution for 30 seconds under conditions of a direct current of 40 V and a temperature of 16 ° C.
 工程(d):
 酸化皮膜が形成されたアルミニウム板を、32℃の5質量%リン酸水溶液に8分間浸漬して、細孔径拡大処理を行った。
 工程(e):
 前記アルミニウム板について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。
Step (d):
The aluminum plate on which the oxide film was formed was immersed in a 5% by mass phosphoric acid aqueous solution at 32 ° C. for 8 minutes to perform pore diameter expansion treatment.
Step (e):
The aluminum plate was anodized in a 0.3 M oxalic acid aqueous solution for 30 seconds under conditions of a direct current of 40 V and a temperature of 16 ° C.
 工程(f):
 前記工程(d)および工程(e)を合計で4回繰り返し、最後に工程(d)を行い、平均間隔:100nm、深さ:240nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールドを得た。
Step (f):
The step (d) and the step (e) are repeated four times in total, and finally the step (d) is performed, and anodized alumina having substantially conical pores with an average interval of 100 nm and a depth of 240 nm is formed on the surface. A formed mold was obtained.
 工程(g):
 シャワーを用いてモールドの表面のリン酸水溶液を軽く洗い流した後、モールドを流水中に10分間浸漬した。
 工程(h):
 モールドにエアーガンからエアーを吹き付け、モールドの表面に付着した水滴を除去した。
Step (g):
The phosphoric acid aqueous solution on the surface of the mold was gently washed away using a shower, and then the mold was immersed in running water for 10 minutes.
Step (h):
Air was blown from the air gun to the mold to remove water droplets attached to the surface of the mold.
 工程(i):
 モールドを、オプツール(登録商標)DSX(ダイキン化成品販売社製)を希釈剤HD-ZV(ハーベス社製)で0.1質量%に希釈した溶液に室温で10分間浸漬した。
 工程(j):
 モールドを希釈溶液から3mm/secでゆっくりと引き上げた。
 工程(l):
 モールドを15分間風乾して、離型剤で処理されたモールドを得た。
Step (i):
The mold was immersed for 10 minutes at room temperature in a solution obtained by diluting OPTOOL (registered trademark) DSX (manufactured by Daikin Chemicals Sales Co., Ltd.) to 0.1% by mass with a diluent HD-ZV (manufactured by Harves).
Step (j):
The mold was slowly pulled up from the diluted solution at 3 mm / sec.
Step (l):
The mold was air-dried for 15 minutes to obtain a mold treated with a release agent.
〔実施例1〕
 モールドの表面の赤外分光スペクトルを、フーリエ変換赤外分光装置(ThermoFisher Scientific社製、Nicolet380/Continum)を用いて測定した。結果を図4に示す。1080~1290cm-1に見られるピークAが離型剤由来であり、730~1080cm-1に見られるピークBが陽極酸化アルミナ由来である。ピークAの吸光度面積(A)は0.43であり、ピークの吸光度の面積比((A)/(B))は0.18であり、前記モールドを用いて転写試験を1回行ったところ、離型性は良好であった。
[Example 1]
The infrared spectrum of the surface of the mold was measured using a Fourier transform infrared spectrometer (manufactured by ThermoFisher Scientific, Nicolet 380 / Continum). The results are shown in FIG. A peak A observed at 1080 to 1290 cm −1 is derived from a release agent, and a peak B observed at 730 to 1080 cm −1 is derived from anodized alumina. The absorbance area (A) of peak A is 0.43, the area ratio of absorbance ((A) / (B)) of the peak is 0.18, and the transfer test is performed once using the mold. The releasability was good.
〔実施例2〕
 実施例1に引き続き、転写試験を100回行い、モールドの表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度面積(A)は0.21であり、ピークの吸光度の面積比((A)/(B))は0.089であり、前記モールドを用いて転写試験を1回行ったところ、離型性は良好であった。
[Example 2]
Subsequent to Example 1, the transfer test was performed 100 times, and the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.21, the area ratio of absorbance ((A) / (B)) of the peak was 0.089, and the transfer test was performed once using the mold. As a result, the releasability was good.
〔実施例3〕
 実施例1と同様の方法で作製した別のモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度面積(A)は0.35であり、ピークの吸光度の面積比((A)/(B))は0.14であった。さらに前記モールドを用いて転写試験を1回行ったところ、離型性は良好であった。
Example 3
The infrared spectrum of another mold surface produced by the same method as in Example 1 was measured. As a result, the absorbance area (A) of peak A was 0.35, and the area ratio of absorbance ((A) / (B)) of the peak was 0.14. Further, when the transfer test was performed once using the mold, the releasability was good.
〔実施例4〕
 実施例3から転写を繰り返し19回行った(この間、離型性は良好であった)後にモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度面積(A)は0.29であり、ピークの吸光度の面積比((A)/(B))は0.12であった。さらに前記モールドを用いてさらに転写試験を1回行ったところ、離型性は良好であった。
Example 4
After repeating the transfer from Example 3 19 times (the release property was good during this time), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.29, and the area ratio of absorbance ((A) / (B)) of the peak was 0.12. Further, when the transfer test was further performed once using the mold, the releasability was good.
〔実施例5〕
 実施例4から転写を繰り返し19回行った(この間、離型性は良好であった)後にモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度の面積(A)は0.22であり、ピークの吸光度の面積比((A)/(B))は0.085であった。さらに前記モールドを用いてさらに転写試験を1回行ったところ、離型性は良好であった。
Example 5
The transfer was repeated 19 times from Example 4 (the release property was good during this time), and the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.22, and the peak absorbance area ratio ((A) / (B)) was 0.085. Further, when the transfer test was further performed once using the mold, the releasability was good.
〔実施例6〕
 実施例5から転写を繰り返し19回行った(この間、離型性は良好であった)後にモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度の面積(A)は0.18であり、ピークの吸光度の面積比((A)/(B))は0.074であった。さらに前記モールドを用いてさらに転写試験を1回行ったところ、離型性は良好であった。
Example 6
After the transfer was repeated 19 times from Example 5 (the release property was good during this period), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.18, and the peak absorbance area ratio ((A) / (B)) was 0.074. Further, when the transfer test was further performed once using the mold, the releasability was good.
〔実施例7〕
 実施例6から転写を繰り返し19回行った(この間、離型性は良好であった)後にモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度の面積(A)は0.13であり、ピークの吸光度の面積比((A)/(B))は0.056であった。さらに前記モールドを用いてさらに転写試験を1回行ったところ、やや力を要したが離型できた。
Example 7
After repeating the transfer from Example 6 19 times (the release property was good during this period), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.13, and the peak absorbance area ratio ((A) / (B)) was 0.056. Furthermore, when the transfer test was further performed once using the mold, it was possible to release the mold although a little force was required.
〔比較例1〕
 実施例7から転写を繰り返し9回行った。この間剥離に要する力が増え、実施例7から10回目に転写した際、作製した微細凹凸構造を有するフィルムにクラックが発生した(離型性不良)。この時点のモールド表面の赤外分光スペクトルを測定した結果、ピークAの吸光度面積(A)は0.12であり、ピークの吸光度の面積比((A)/(B))は0.045であった。
[Comparative Example 1]
The transfer was repeated 9 times from Example 7. During this time, the force required for peeling increased, and cracks occurred in the produced film having a fine concavo-convex structure when transferred for the 10th time from Example 7 (poor mold releasability). As a result of measuring the infrared spectrum of the mold surface at this time, the absorbance area (A) of peak A is 0.12, and the area ratio ((A) / (B)) of peak absorbance is 0.045. there were.
〔実施例8〕
 比較例1で用いたモールドを前述の作製方法と同様に再び離型剤で処理した。そのモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度面積(A)は0.26であり、ピークの吸光度の面積比((A)/(B))は0.11であった。さらに前記モールドを用いて転写試験を1回行ったところ、離型性は良好であった。
Example 8
The mold used in Comparative Example 1 was again treated with a release agent in the same manner as the above-described production method. The infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.26, and the area ratio of absorbance ((A) / (B)) of the peak was 0.11. Further, when the transfer test was performed once using the mold, the releasability was good.
〔実施例9〕
 実施例8から転写を繰り返し19回行った(この間、離型性は良好であった)後にモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度面積(A)は0.22であり、ピークの吸光度の面積比((A)/(B))は0.090であった。さらに前記モールドを用いてさらに転写試験を1回行ったところ、離型性は良好であった。
Example 9
The transfer was repeated 19 times from Example 8 (the release property was good during this time), and the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.22, and the peak absorbance area ratio ((A) / (B)) was 0.090. Further, when the transfer test was further performed once using the mold, the releasability was good.
〔実施例10〕
 実施例9から転写を繰り返し19回行った(この間、離型性は良好であった)後にモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度面積(A)は0.18であり、ピークの吸光度の面積比((A)/(B))は0.078であった。さらに前記モールドを用いてさらに転写試験を1回行ったところ、離型性は良好であった。
Example 10
The transfer from Example 9 was repeated 19 times (the release property was good during this time), and the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.18, and the area ratio of absorbance ((A) / (B)) of the peak was 0.078. Further, when the transfer test was further performed once using the mold, the releasability was good.
〔実施例11〕
 実施例10から転写を繰り返し19回行った(この間、離型性は良好であった)後にモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度面積(A)は0.14であり、ピークの吸光度の面積比((A)/(B))は0.062であった。さらに前記モールドを用いてさらに転写試験を1回行ったところ、やや力を要したが離型できた。
Example 11
After repeating the transfer from Example 10 19 times (the release property was good during this period), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.14, and the area ratio of absorbance ((A) / (B)) of the peak was 0.062. Furthermore, when the transfer test was further performed once using the mold, it was possible to release the mold although a little force was required.
〔実施例12〕
 実施例11から転写を繰り返し9回行った(この間、離型性は良好であった)後にモールド表面の赤外分光スペクトルを測定した。その結果、ピークAの吸光度面積(A)は0.13であり、ピークの吸光度の面積比((A)/(B))は0.055であった。さらに前記モールドを用いてさらに転写試験を1回行ったところ、やや力を要したが離型できた。
Example 12
After the transfer was repeated nine times from Example 11 (the release property was good during this period), the infrared spectrum of the mold surface was measured. As a result, the absorbance area (A) of peak A was 0.13, and the area ratio ((A) / (B)) of peak absorbance was 0.055. Furthermore, when the transfer test was further performed once using the mold, it was possible to release the mold although a little force was required.
〔比較例2〕
 実施例12から転写を繰り返し8回行った。この間、剥離に要する力が増え、実施例11から9回目に転写した際、作製した微細凹凸構造を有するフィルムにクラックが発生した(離型性不良)。この時点のモールド表面の赤外分光スペクトルを測定した結果、ピークAの吸光度面積(A)は0.11であり、ピークの吸光度の面積比((A)/(B))は0.041であった。
[Comparative Example 2]
The transfer was repeated 8 times from Example 12. During this time, the force required for peeling increased, and when the transfer was performed for the ninth time from Example 11, cracks occurred in the produced film having a fine concavo-convex structure (poor mold releasability). As a result of measuring the infrared spectrum of the mold surface at this time, the absorbance area (A) of peak A is 0.11, and the area ratio ((A) / (B)) of the absorbance of the peak is 0.041. there were.
 本発明の、微細凹凸構造を表面に有する物品の製造方法および製造装置は、反射防止物品、防曇性物品、防汚性物品、および撥水性物品の効率的な量産にとって有用である。 The method and apparatus for producing an article having a fine concavo-convex structure on the surface of the present invention are useful for efficient mass production of antireflection articles, antifogging articles, antifouling articles, and water repellent articles.
 12 細孔(微細凹凸構造)
 18 モールド
 20 ロール状モールド
 40 物品
 42 フィルム(物品本体)
 46 凸部(微細凹凸構造)
 50 反射型赤外分光装置
 60 判定手段
12 pores (fine relief structure)
18 mold 20 roll-shaped mold 40 article 42 film (article body)
46 Convex (fine concavo-convex structure)
50 Reflective Infrared Spectrometer 60 Determination Means

Claims (7)

  1.  表面が離型剤で処理されたモールドの表面の微細凹凸構造を、物品本体の表面に転写して、微細凹凸構造を表面に有する物品を製造する方法であって、
     微細凹凸構造を物品本体の表面に転写すること、
     前記物品本体をモールドから剥離した後のモールドの表面の赤外分光スペクトルを測定すること、および
     モールドの表面の離型剤の状態の良否により製造継続の適否を判定することを含む、前記物品の製造方法。
    A method of producing an article having a fine concavo-convex structure on the surface by transferring the fine concavo-convex structure on the surface of the mold whose surface is treated with a release agent to the surface of the article body,
    Transferring the micro uneven structure to the surface of the article body,
    Measuring the infrared spectroscopic spectrum of the surface of the mold after the article body is peeled from the mold, and determining whether or not the production is continued according to the state of the mold release agent on the surface of the mold. Production method.
  2.  モールドの表面の離型剤の状態が不良と判定された際には、モールド表面の微細凹凸構造を物品本体の表面に転写することを停止すること、および/または、モールドの表面を再度離型剤で処理することをさらに含む、請求項1に記載の微細凹凸構造を表面に有する物品の製造方法。 When it is determined that the state of the mold release agent on the mold surface is poor, the transfer of the fine uneven structure on the mold surface to the surface of the article body is stopped, and / or the mold surface is released again. The manufacturing method of the articles | goods which have the fine concavo-convex structure of Claim 1 on the surface further including processing with an agent.
  3.  前記モールドの表面の赤外分光スペクトルを測定することが、
     前記モールドの表面の赤外分光スペクトルを連続的または断続的に測定することを含む、請求項1または2に記載の微細凹凸構造を表面に有する物品の製造方法。
    Measuring an infrared spectrum of the surface of the mold,
    The manufacturing method of the articles | goods which have the fine concavo-convex structure on the surface of Claim 1 or 2 including measuring the infrared spectroscopy spectrum of the surface of the said mold continuously or intermittently.
  4.  赤外分光スペクトルにおける、離型剤の化学構造に由来する波数付近のピークの吸光度面積(A)、あるいは離型剤の化学構造に由来する波数付近のピークの吸光度面積(A)とモールドの表面に存在する化学構造に由来する波数付近のピークの吸光度面積(B)との面積比((A)/(B))が、あらかじめ設定された閾値以上のときにモールドの表面の離型剤の状態を良と判定することを含む、請求項1~3のいずれか1項に記載の微細凹凸構造を表面に有する物品の製造方法。 Absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent in the infrared spectrum, or the absorbance area (A) of the peak near the wave number derived from the chemical structure of the release agent and the mold surface When the area ratio ((A) / (B)) to the absorbance area (B) of the peak near the wave number derived from the chemical structure existing in the mold is equal to or higher than a preset threshold value, The method for producing an article having the fine concavo-convex structure according to any one of claims 1 to 3, comprising determining that the state is good.
  5.  前記モールドがアルミナから成り、
     前記離型剤がフッ素化合物であり、
     前記吸光度面積(A)の閾値が0.13、あるいは
     前記吸光度の面積比((A)/(B))の閾値が0.047である、請求項4に記載の微細凹凸構造を表面に有する物品の製造方法。
    The mold is made of alumina;
    The release agent is a fluorine compound;
    The threshold value of the absorbance area (A) is 0.13, or the threshold value of the area ratio of absorbance ((A) / (B)) is 0.047, and the surface has the fine uneven structure according to claim 4. Article manufacturing method.
  6.  前記吸光度面積(A)が0.13以上1以下、あるいは
     前記吸光度の面積比((A)/(B))が0.047以上10以下である、請求項5に記載の微細凹凸構造を表面に有する物品の製造方法。
    6. The fine concavo-convex structure according to claim 5, wherein the absorbance area (A) is 0.13 or more and 1 or less, or the absorbance area ratio ((A) / (B)) is 0.047 or more and 10 or less. A method for manufacturing an article.
  7.  表面が離型剤で処理されたモールドの表面の微細凹凸構造を、物品本体の表面に転写して、微細凹凸構造を表面に有する物品を製造する装置であって、
     表面に微細凹凸構造を有し、前記表面が離型剤で処理されたモールドと、
     微細凹凸構造を物品本体の表面に転写し、前記物品本体をモールドから剥離した後のモールドの表面の赤外分光スペクトルを測定する反射型赤外分光装置と、
     前記赤外分光スペクトルに基づいてモールドの表面の離型剤の状態の良否を判定する判定手段と
     を有する、微細凹凸構造を表面に有する物品の製造装置。
    An apparatus for producing an article having a fine concavo-convex structure on the surface by transferring the fine concavo-convex structure on the surface of the mold whose surface is treated with a release agent to the surface of the article body,
    A mold having a fine concavo-convex structure on the surface, and wherein the surface is treated with a release agent;
    A reflective infrared spectroscopic device for measuring the infrared spectrum of the surface of the mold after transferring the fine concavo-convex structure to the surface of the article body and peeling the article body from the mold;
    An apparatus for manufacturing an article having a fine concavo-convex structure on a surface thereof, comprising: a determination unit that determines whether the state of the release agent on the surface of the mold is good based on the infrared spectrum.
PCT/JP2011/058698 2010-04-09 2011-04-06 Production method and production device for article having microrelief structure on surface thereof WO2011126044A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180028379.1A CN102933363B (en) 2010-04-09 2011-04-06 Method of manufacturing product having micro protrusion and recess face structure on surface thereof and manufacturing device thereof
JP2011518097A JP4856785B2 (en) 2010-04-09 2011-04-06 Manufacturing method and manufacturing apparatus for article having fine uneven structure on surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-090456 2010-04-09
JP2010090456 2010-04-09

Publications (1)

Publication Number Publication Date
WO2011126044A1 true WO2011126044A1 (en) 2011-10-13

Family

ID=44762979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058698 WO2011126044A1 (en) 2010-04-09 2011-04-06 Production method and production device for article having microrelief structure on surface thereof

Country Status (4)

Country Link
JP (1) JP4856785B2 (en)
CN (1) CN102933363B (en)
TW (1) TWI418454B (en)
WO (1) WO2011126044A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135946A (en) * 2010-12-27 2012-07-19 Mitsubishi Rayon Co Ltd Method and apparatus for manufacturing article having fine uneven structure on surface
CN107148335A (en) * 2014-11-06 2017-09-08 夏普株式会社 The manufacture method of mould and the manufacture method of antireflection film
US11391717B2 (en) * 2016-10-12 2022-07-19 General Electric Company Characterization and control system and method for a resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234092A (en) * 1989-03-08 1990-09-17 Tokyo Keiki Co Ltd Detecting method for residue in forming die
JP2007069217A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Release agent application state detection method and release agent application state detection device
JP2007253410A (en) * 2006-03-22 2007-10-04 Toppan Printing Co Ltd Imprint mold and manufacturing method thereof
JP2010005841A (en) * 2008-06-25 2010-01-14 Mitsubishi Rayon Co Ltd Mold manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656049A (en) * 1986-03-10 1987-04-07 General Dynamics Corp. Space Systems Division Method and apparatus for the proper quantized application of a mold release agent onto a mold surface
AU2001284844A1 (en) * 2000-08-18 2002-03-04 Reflexite Corporation Differentially cured materials and process for forming same
EP2380734A1 (en) * 2006-02-07 2011-10-26 Dai Nippon Printing Co., Ltd. Embrossed release sheet and apparatus and method for manufacturing same
CN101484614B (en) * 2006-06-30 2011-09-07 三菱丽阳株式会社 Mold, process for manufacturing mold, and process for producing sheet
CN102666055B (en) * 2009-12-24 2014-09-17 三菱丽阳株式会社 Method for evaluating performance of organic release agent, process for producing mold, and process for producing transparent film with finely roughened structure on surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234092A (en) * 1989-03-08 1990-09-17 Tokyo Keiki Co Ltd Detecting method for residue in forming die
JP2007069217A (en) * 2005-09-02 2007-03-22 Toyota Motor Corp Release agent application state detection method and release agent application state detection device
JP2007253410A (en) * 2006-03-22 2007-10-04 Toppan Printing Co Ltd Imprint mold and manufacturing method thereof
JP2010005841A (en) * 2008-06-25 2010-01-14 Mitsubishi Rayon Co Ltd Mold manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135946A (en) * 2010-12-27 2012-07-19 Mitsubishi Rayon Co Ltd Method and apparatus for manufacturing article having fine uneven structure on surface
CN107148335A (en) * 2014-11-06 2017-09-08 夏普株式会社 The manufacture method of mould and the manufacture method of antireflection film
US11391717B2 (en) * 2016-10-12 2022-07-19 General Electric Company Characterization and control system and method for a resin

Also Published As

Publication number Publication date
CN102933363A (en) 2013-02-13
TWI418454B (en) 2013-12-11
CN102933363B (en) 2015-05-27
TW201200328A (en) 2012-01-01
JP4856785B2 (en) 2012-01-18
JPWO2011126044A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP4990414B2 (en) Method for producing article having fine concavo-convex structure on surface, mold release treatment method, and active energy ray curable resin composition for mold surface release treatment
JP5742220B2 (en) Film production method
JP5673534B2 (en) MOLD, ITS MANUFACTURING METHOD, ARTICLE HAVING FINE RADIO-CONDENSED STRUCTURE ON THE SURFACE, AND MANUFACTURING METHOD
JP2010005841A (en) Mold manufacturing method
EP2447740A1 (en) Antireflection article and display device
JP6085908B2 (en) Light transmissive film
JP5549943B2 (en) Method for producing mold and method for producing article having fine uneven structure on surface
JP2009271782A (en) Conductive transparent substrate and touch panel
JP5768711B2 (en) Method for evaluating performance of organic release agent, method for producing mold, and method for producing transparent film having fine uneven structure on surface
JP2011025683A (en) Method of manufacturing mold
JP4856785B2 (en) Manufacturing method and manufacturing apparatus for article having fine uneven structure on surface
WO2012105539A1 (en) Active-energy-ray-curable composition, and process for production of transparent film having fine uneven structure on surface thereof
JP6455127B2 (en) Production method of transparent film
JP2012108502A (en) Method for manufacturing article having fine relief structure on surface
JP2009271205A (en) Optical mirror
JP2015223725A (en) Production method of article having fine uneven structure on surface
JP2013182007A (en) Manufacturing method and manufacturing apparatus for article having fine uneven structure on surface
JP2011224900A (en) Mold, manufacturing method and treating method for the same, and manufacturing method for article
JP2009257946A (en) Pressure sensor and pressure detection method
JP5751535B2 (en) Mold cleaning method and article manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028379.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011518097

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765944

Country of ref document: EP

Kind code of ref document: A1