[go: up one dir, main page]

WO2011124140A1 - 混光灯具 - Google Patents

混光灯具 Download PDF

Info

Publication number
WO2011124140A1
WO2011124140A1 PCT/CN2011/072513 CN2011072513W WO2011124140A1 WO 2011124140 A1 WO2011124140 A1 WO 2011124140A1 CN 2011072513 W CN2011072513 W CN 2011072513W WO 2011124140 A1 WO2011124140 A1 WO 2011124140A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
fresnel lens
fly
array
Prior art date
Application number
PCT/CN2011/072513
Other languages
English (en)
French (fr)
Inventor
杨毅
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to US13/640,284 priority Critical patent/US8858023B2/en
Publication of WO2011124140A1 publication Critical patent/WO2011124140A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/406Lighting for industrial, commercial, recreational or military use for theatres, stages or film studios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to the field of lighting technologies, and in particular, to a light mixing lamp that can achieve uniform light output.
  • LED stage lights based on red, blue and green can respectively illuminate red, blue and green monochromatic LEDs for single color or mixed color illumination.
  • yellow illumination light is provided after simultaneously illuminating red LEDs and green LEDs.
  • the mixed color light, the pink illumination light is the mixed color light provided by simultaneously illuminating the red LED and the blue LED, and the white illumination light is the mixed color light provided after simultaneously illuminating the red, blue and green LEDs according to a certain ratio.
  • illumination light requires not only light mixing but also power for mixing light.
  • the Chinese patent publication CN201014341Y provides a solution for producing solid color high power illumination light.
  • the solution densely arranges a group of LEDs, such as white LEDs, and places them near the focus of a Fresnel lens to output the LEDs in parallel.
  • the disadvantage is that the dense arrangement of the LEDs makes the heat dissipation of the lamps difficult and further limits the power.
  • the luminaires adopting this scheme are mostly projection lamps or directional lighting fixtures that do not require high color. This solution does not apply when the luminaire has a high color requirement.
  • the main object of the present invention is to provide a luminaire suitable for directional illumination with a higher uniformity of light mixing effect in view of the above-mentioned deficiencies of the prior art.
  • a light mixing lamp comprising a solid-state light-emitting device array composed of a plurality of solid-state light-emitting devices arranged in an array, and a plurality of collimating lenses arranged in an array.
  • a collimating lens array each collimating lens being respectively aligned with a corresponding solid state light emitting device to collimate output light from the solid state light emitting device;
  • a pair of fly-eye lenses is further provided, the pair of fly-eye lenses comprising a first fly-eye lens and a second fly-eye lens; collimated light from the array of collimating lenses is sequentially output through the first fly-eye lens and the second fly-eye lens.
  • the light mixing luminaire further includes a Fresnel lens pair including a first Fresnel lens and a second Fresnel lens, wherein the focus of the first Fresnel lens and the second Philippine lens The focus of the Neel lens is close to or coincident; the collimated light from the collimating lens array is sequentially output through the first Fresnel lens, the second Fresnel lens, and the first fly-eye lens and the second fly-eye lens.
  • a Fresnel lens pair including a first Fresnel lens and a second Fresnel lens, wherein the focus of the first Fresnel lens and the second Philippine lens The focus of the Neel lens is close to or coincident; the collimated light from the collimating lens array is sequentially output through the first Fresnel lens, the second Fresnel lens, and the first fly-eye lens and the second fly-eye lens.
  • the first Fresnel lens and the second Fresnel lens are assembled from a plurality of sub Fresnel lenses having the same focal length.
  • the solid state light emitting device array and the collimating lens array are plural, and each of the solid state light emitting device array and the collimating lens array corresponds to at least one sub Fresnel lens.
  • the area of the light receiving surface of the second Fresnel lens is greater than or equal to the area of the light receiving surface of the first Fresnel lens.
  • the focal length of the first Fresnel lens is 1.5 to 1.8 times the optical aperture of the first Fresnel lens
  • the focal length of the second Fresnel lens is 0.7 to 1 times the optical aperture of the second Fresnel lens.
  • the focal length of the sub Fresnel lens constituting the first Fresnel lens is 1.5 to 1.8 times the aperture of the sub Fresnel lens, and the sub Fresnel lens constituting the second Fresnel lens The focal length is 0.7 to 1 times the aperture of the sub-Fresnel lens.
  • the above-mentioned light mixing lamp may further include one or a plurality of light mixing rods between the first Fresnel lens and the second Fresnel lens, and focus the first Fresnel lens
  • the distance from the focal point of the second Fresnel lens is related to the diameter and length of the light mixing rod; each of the light mixing rods corresponds to a pair of sub Fresnel lens pairs.
  • the ratio of the length of the light mixing rod to the aperture is greater than 3.
  • the first fly-eye lens or the second fly-eye lens are each composed of a plurality of lens units that are closely coupled together and have the same mirror curvature.
  • the spacing between the second fly-eye lens and the first fly-eye lens is adjustable.
  • the above-mentioned light mixing luminaire may further comprise regulating means for controlling or adjusting the output optical power of the solid state light emitting device array or each solid state light emitting device.
  • the above-mentioned light mixing lamp may further comprise one or a group of optical probes for feeding back brightness or color information of the output light to the regulating device.
  • the light mixing lamp of the present invention is provided with a pair of fly-eye lenses, the collimated light from the collimating lens array can be diffused, and a light-mixed output light with higher uniformity can be formed on the light-emitting surface of the lamp, thereby avoiding the phenomenon of coloring;
  • the light source used for directional illumination can be adjusted in various colors, and the light use efficiency is high; in addition, the light mixing lamp of the present invention has a simple structure and is easy to implement.
  • FIG. 1 is a schematic structural view of a conventional luminaire for achieving light mixing
  • Figure 2 illustrates the principle of the color ring of Figure 1
  • Figure 3 illustrates the principle of generating a color image in the manner of Figure 1;
  • FIG. 4 is a schematic structural view of a fly-eye lens in the embodiment of the light mixing lamp of the present invention.
  • FIG. 5 is a schematic structural view of an embodiment of a light mixing lamp of the present invention.
  • FIG. 6 is a schematic structural view of still another embodiment of the light mixing lamp of the present invention.
  • Figure 7 is a schematic structural view of still another embodiment of the light mixing lamp of the present invention.
  • Figure 8 is a schematic structural view of still another embodiment of the light mixing lamp of the present invention.
  • Fig. 9 is a view showing the relationship between the outgoing light power of the LED and the driving current.
  • the basic idea of the present invention is to arrange the solid-state light-emitting device array to improve the power of the lamp, collimate the light from the light source by using the collimating lens, and then use the fly-eye lens to achieve the light-shaping and adjust the illumination angle of the lamp;
  • the Fresnel lens's circumferential radial distribution characteristics use a Fresnel lens pair to change the distribution trend of the uniform light, and cooperate with the compound eye lens to achieve the best uniformity. effect.
  • the light mixing lamp of the present invention comprises a solid state light emitting device array 1 composed of a plurality of solid state light emitting devices arranged in an array, and a collimating lens array 2 composed of a plurality of collimating lenses arranged in an array.
  • Each of the collimating lenses is respectively aligned with a corresponding solid state light emitting device to collimate the light from the solid state light emitting device, and further includes a fly eye lens pair (5, 6) including the fly eye lens pair (5, 6) The first fly-eye lens 5 and the second fly-eye lens 6; the collimated light from the collimator lens array 2 is sequentially output through the first fly-eye lens 5 and the second fly-eye lens 6.
  • the solid-state light-emitting device array 1 may include two or more solid-state light-emitting devices regularly arranged, such as but not limited to solid-state semiconductor light-emitting devices such as red LEDs, blue LEDs, or green LEDs;
  • the above solid state light emitting devices have different light emitting wavelengths and are staggered to form an array.
  • the LED may refer to a packaged light emitting diode, and may also refer to a light emitting diode chip generated based on a substrate.
  • the collimating lens array 2 is preferably integrally formed, and includes a transparent substrate, and each of the collimating lenses is seamlessly arranged in an array according to the transparent substrate.
  • Each of the collimating lenses may be an equal focal length convex lens, or a screw mirror with the same characteristic parameters, or a self-focusing lens or a compound parabolic concentrating film with the same characteristic parameters (Compound) Parabolic concentrate, CPC) lens.
  • These collimating lenses are in one-to-one correspondence with the LEDs, collimating the light from the corresponding LEDs into output light having a divergence half angle of less than 30 degrees.
  • each of the fly-eye lenses is an array of microlenses, and one-to-one correspondence.
  • the incident light is collimated input Light).
  • the working principle is that each pair of microlens pairs will project the incident light on it onto the final screen; the light on the screen is the superposition of all the microlenses on the respective projected light intensities.
  • a pair of fly-eye lenses with 10,000 pairs of microlenses. When incident light is incident on it, each microlens splits a beam of 1/10000 and projects it onto the entire screen. The brightness of the screen is The superposition of these 10,000 beamlets.
  • the dark part of it only affects the brightness of a small part of the microlens pair, and is diffused by the pair of microlenses to the entire screen, thus having little effect on the brightness of the entire screen. Homogenization.
  • the first fly-eye lens 5 and the second fly-eye lens 6 are opposed to each other by a plurality of lens units which are closely coupled and have the same mirror curvature.
  • the fly-eye lens pair (5, 6) performs cutting integration on incident light to improve light uniformity.
  • the focal length of each lens unit in the first fly-eye lens 5 may not be equal to the focal length of each lens unit in the second fly-eye lens 6.
  • the spacing between the second fly-eye lens 6 and the first fly-eye lens 5 is set to be adjustable, and the light exit angle of the lamp of the present invention can be controlled.
  • the present invention can diffuse the collimated light from the collimator lens array 2, and can form a higher uniformity of the mixed light output light on the light-emitting surface of the lamp, thereby improving the light mixing uniformity. And avoid the phenomenon of coloring.
  • the present invention can also apply the first fly-eye lens 5 and the second.
  • the compound eye lens 6 is opened in a block and then spliced together for use.
  • the light mixing luminaire of the present invention may further comprise a pair of Fresnel lens pairs (3, 4).
  • the collimated light from the collimator lens array 2 is sequentially output through the first Fresnel lens 3, the second Fresnel lens 4, the first fly-eye lens 5, and the second fly-eye lens 6.
  • a Fresnel lens is a variant of a convex lens that has an axisymmetric structure and has an optical feature similar to that of a convex lens: concentrating parallel light at a focus.
  • the collimated light is focused by the first Fresnel lens 3, and then pulled again by the second Fresnel lens 4, and then passed through the fly-eye lens pair (5, 6), thereby finally achieving uniformity.
  • Mixed light As mentioned above, if you want to solve the problem of coloring, you must form a uniform mixed light on the light-emitting surface of the luminaire, but not at the far-field illumination.
  • the Fresnel lens pair (3, 4) has a certain light mixing effect in the direction of axis symmetry in the process of focusing-collimation, and the obtained collimated light passes through the fly-eye lens pair (5).
  • the diffusion of 6) can obtain uniform light mixing on the light-emitting surface of the lamp, thus completely solving the problem of coloring.
  • the focal length of the first Fresnel lens 3 is f1 and the focal length f2 of the second Fresnel lens 4 is.
  • the Fresnel lens pairs (3, 4) will be placed such that their focal points are close to or coincident for the best homogenization and low diffusion. Further, if the light-receiving surface area of the first Fresnel lens 3 is greater than or equal to the light-emitting surface area of the collimator lens array 2, it is advantageous to improve the light use efficiency with respect to the light-emitting source.
  • the area of the light receiving surface of the second Fresnel lens 4 can also be designed to be greater than or equal to the area of the light receiving surface of the first Fresnel lens 3.
  • the light-receiving surface area of the second Fresnel lens 4 is larger than the light-receiving surface area of the first Fresnel lens 3, which not only improves the light efficiency, but also facilitates the illumination of the lamp. surface.
  • the focal lengths of the first Fresnel lens 3 and the second Fresnel lens 4 can be optimized such that the focal length of the first Fresnel lens 3 is 1.5 to 1.8 times its optical aperture,
  • the focal length of the two Fresnel lens 4 is 0.7 to 1 times the optical aperture, and the efficiency at this time is more than 10% higher than the efficiency of the two Fresnel lenses when the focal length of the two Fresnel lenses is equal to the optical aperture.
  • the result of the optimization is that the focal length of the first Fresnel lens 3 is 1.65 times that of the light receiving aperture, and the focal length of the second Fresnel lens 4 is 0.85 times the optical aperture, and the efficiency is higher than that of the two Fresnel.
  • the focal length of the lens is equal to 17% higher than the efficiency of the light receiving aperture.
  • the luminaire of the present invention can also include a plurality of (but not limited to, two of the figures) solid-state light-emitting device arrays 1, a corresponding number of collimating lens arrays 2, and a Fresnel lens pair, as shown in FIG.
  • the first Fresnel lens 3 and the second Fresnel lens 4 are each assembled from a plurality of Fresnel lenses having the same focal lengths f1 and f2.
  • the diameter of each Fresnel lens is reduced to 1/n, and the focal length is also shortened accordingly.
  • the focal length of the sub Fresnel lens constituting the first Fresnel lens 3 may be 1.5 to 1.8 times the aperture of the sub Fresnel lens; the sub Fresnel constituting the second Fresnel lens 4
  • the focal length of the lens is 0.7 to 1 times the aperture of the sub-Fresnel lens.
  • the light mixing lamp of the present invention may further include a light mixing rod 7 disposed between the first Fresnel lens 3 and the second Fresnel lens 4.
  • the light entrance port is adjacent to the first Fresnel lens 3, and the light exit port is adjacent to the second Fresnel lens 4, so that the focus of the first Fresnel lens 3 is separated from the focus of the second Fresnel lens 4, No longer coincide.
  • the distance of the pulling depends on the relationship between the aperture of the light mixing rod 7 and the focal length f1 or f2, and the length of the light mixing rod 7 is also superposed.
  • the length of the light mixing rod 7 is preferably greater than three times its diameter.
  • the light mixing rods 7 also have a plurality of corresponding light beams 7, each of which is opposed to a pair of sub-lens pairs.
  • the invention can also achieve the light uniformity, brightness or color adjustment of the luminaire by controlling the brightness of light emitted by different solid state light emitting devices or solid state light emitting device arrays.
  • the luminaire embodiment shown in FIG. 7 above may further include a regulating device for controlling or adjusting the power of the outgoing light of each of the solid state light emitting device arrays.
  • the regulating device can adjust the luminous intensity of each of the solid state light emitting devices by adjusting a driving current. As shown in FIG. 9, the relationship between the luminous power of a general LED and the driving current is shown.
  • the regulating device can also adjust the luminous intensity of the LED by adjusting the duty ratio of the driving voltage.
  • the present invention may further comprise one or a group of optical probes for detecting the brightness or color of the mixed light emitted from different positions of the luminaire, and feeding back information to the control device to control the LED arrays or having different illuminating wavelengths.
  • the luminous intensity of the LED In this way, the automatic control of the light emitted by the luminaire can be realized, and the color drift of the light caused by the different aging speeds of different LEDs can be avoided; in particular, it is also convenient to artificially set the color or color change of the emitted light.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

混光灯具
技术领域
本发明涉及照明技术领域,尤其涉及一种可实现均匀出光的混光灯具。
背景技术
以固态发光器件,例如固态半导体发光器件(尤其是LED)为发光源的灯具在实际使用中,绝大多数都需要由不同颜色的光混合起来进行照明。比如基于红、蓝、绿三基色的LED舞台灯可以分别点亮红、蓝、绿各单色LED来独色或混色照明,如黄色照明光为同时点亮红光LED与绿光LED后提供的混色光,粉色照明光为同时点亮红光LED与蓝光LED后提供的混色光,而白色照明光为按照一定比例同时点亮红、蓝、绿光LED后提供的混色光。
此外,在一些有特殊要求应的用场合,比如在演播室和博物馆,对照明显色指数有较高要求,而白光LED不足以提供高于90的显色指数,白光照明灯具也往往会也采用混光方案。例如美国专利US 7,213,940 使用白光LED与红光LED混合来提供具有高显色指数的照明白光。
众所周知,照明光不仅需要混光,而且对混光的功率也有要求。公开号为CN201014341Y的中国专利提供了一种产生纯色大功率照明光的方案。该方案将一组LED,例如白光LED密集排列在一起,并置于一块菲涅尔透镜的焦点附近,以使LED出射光平行输出。其不足在于:LED的密集排布使灯具散热困难而制约了功率的进一步提高。
为了克服上述不足,设计人员提出了多种提高混光效率的方案。目前采用较多的是在准直后直接在远场进行混光的方案来进行混光:如图1所示,将来自红光(R)LED和蓝光(B)LED的光分别经过一组准直透镜(collimator)进行准直后照射到远处的屏幕上,光线在远场交叠从而实现混光。该方案虽光路简单,但混光均匀性低,混光效果较差,并易于产生彩影(color shadowing)。彩影指的是光照射到物体上所产生的影子的边缘出现了异样彩色,其产生原理如图2所示:在远场的混光打到物体上时,在该物体影子的边缘A部分,由于蓝光无法穿透而红光可直接照射,该A部分将出现红色;同理类推,其它边缘部分也将出现相应的彩色。其原因在于,由于不同颜色光的空间位置不同,在远场的屏幕上将难以做到完全的交叠。另外更重要的是,由于各种LED的厚度不同,准直透镜对来自于LED的不同色光的准直效果存在差异,将使得远场处出现颜色环,如图3所示,当蓝光的准直角度更大时,在屏幕上就会出现蓝色圈。
因此,采用该方案的灯具多为对色彩要求不高的投射灯或定向照明灯具。当灯具对色彩要求较高时,该方案并不适用。
发明内容
本发明的主要目的在于针对上述现有技术的不足,提出一种适用于定向照明的灯具,具有更高均匀性的混光效果。
为了实现发明目的,本发明采用以下技术方案:一种混光灯具,包括由复数个呈阵列排布的固态发光器件构成的固态发光器件阵列,以及由复数个呈阵列排布的准直透镜构成的准直透镜阵列,各准直透镜分别对准一相应的固态发光器件以准直输出来自该固态发光器件的光;其中:
还设有一复眼透镜对,该复眼透镜对包括第一复眼透镜及第二复眼透镜;来自所述准直透镜阵列的准直光依次经过第一复眼透镜和第二复眼透镜后输出。
优选地,上述混光灯具还包括一菲涅尔透镜对,该菲涅尔透镜对包括第一菲涅尔透镜和第二菲涅尔透镜,其中第一菲涅尔透镜的焦点与第二菲涅尔透镜的焦点相接近或重合;来自所述准直透镜阵列的准直光依次经过第一菲涅尔透镜、第二菲涅尔透镜和第一复眼透镜、第二复眼透镜后输出。
优选地,所述第一菲涅尔透镜和第二菲涅尔透镜由复数块具有相同焦距的子菲涅尔透镜组装而成。
优选地,所述固态发光器件阵列和准直透镜阵列为复数个,且每一固态发光器件阵列和准直透镜阵列与至少一个子菲涅尔透镜相对应。
优选地,第二菲涅尔透镜的受光面面积大于或等于第一菲涅尔透镜的受光面面积。
优选地,第一菲涅尔透镜的焦距是该第一菲涅尔透镜受光口径的1.5~1.8倍,第二菲涅尔透镜的焦距是该第二菲涅尔透镜受光口径的0.7~1倍。
优选地,组成所述第一菲涅尔透镜的子菲涅尔透镜的焦距是该子菲涅尔透镜受光口径的1.5~1.8倍,组成所述第二菲涅尔透镜的子菲涅尔透镜的焦距是该子菲涅尔透镜受光口径的0.7~1倍。
优选地,上述混光灯具还可包括一个或复数个混光光棒,介于所述第一菲涅尔透镜与第二菲涅尔透镜之间,并使该第一菲涅尔透镜的焦点与第二菲涅尔透镜的焦点拉开距离,所拉开的距离与该混光光棒的口径及长度相关;每一混光光棒与一组子菲涅尔透镜对相对应。
优选地,所述混光光棒的长度与口径的比值大于3。
优选地,所述第一复眼透镜或第二复眼透镜各自由紧密联结在一起的且镜面曲率相同的复数个透镜单元构成。
优选地,所述第二复眼透镜与第一复眼透镜之间的间距可调。
优选地,上述混光灯具还可包括用来控制或调节所述固态发光器件阵列或各固态发光器件的出射光功率的调控装置。
优选地,上述混光灯具还可包括一个或一组光探头,用于向所述调控装置反馈输出光的亮度或颜色信息。
本发明混光灯具由于设置有复眼透镜对,可扩散来自准直透镜阵列的准直光,可在灯具的出光面即形成更高均匀性的混光输出光,从而避免彩影现象;并且,用来定向照明的光源可以有多种颜色可调,光使用效率高;此外,本发明混光灯具结构简单,易于实现。
附图说明
图1是现有灯具实现混光的结构原理示意图;
图2示意了图1方式产生颜色环的原理;
图3示意了图1方式产生彩影的原理;
图4是本发明混光灯具实施例中复眼透镜的结构示意图;
图5是本发明混光灯具一实施例的结构示意图;
图6是本发明混光灯具又一实施例的结构示意图;
图7是本发明混光灯具又一实施例的结构示意图;
图8是本发明混光灯具又一实施例的结构示意图;
图9是LED的出射光功率与驱动电流的关系示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
本发明的基本构思为:将固态发光器件阵列排布来提高灯具的功率,利用准直透镜对来自发光源的光进行准直,再利用复眼透镜来实现匀光及调整灯具的发光角度大小;为了更好实现匀光,可以进一步考虑利用菲涅尔透镜的圆周径向分布特性,使用一菲涅尔透镜对来改变匀光的分布趋势,并与复眼透镜对配合,达到最佳的匀光效果。
如图4所示,本发明混光灯具包括由复数个呈阵列排布的固态发光器件构成的固态发光器件阵列1,以及由复数个呈阵列排布的准直透镜构成的准直透镜阵列2,各准直透镜分别对准一相应的固态发光器件以准直输出来自该固态发光器件的光,此外,还包括一复眼透镜对(5、6),该复眼透镜对(5、6)包括第一复眼透镜5及第二复眼透镜6;来自准直透镜阵列2的准直光依次经过第一复眼透镜5、第二复眼透镜6后输出。
上述固态发光器件阵列1中可以包括规则排列的两种或两种以上的固态发光器件,例如但不限于固态半导体发光器件,如红光LED、蓝光LED或绿光LED;该两种或两种以上的固态发光器件具有不同的发光波长,交错排列形成阵列。所述LED可以指有封装的发光二极管,也可以指基于衬底生成的发光二极管芯片。
从成本方面考虑,所述准直透镜阵列2最好是一体成型的,包括有一透明基板,各所述准直透镜基于该透明基板按阵列排列进行无缝连接。各所述准直透镜可以是等焦距凸透镜,或是特性参数一致的螺丝镜,或是特性参数一致的自聚焦透镜或复合抛物面聚光(Compound parabolic concentrate,CPC)透镜。这些准直透镜与LED一一对应,把来自对应LED的光准直成发散半角小于30度的输出光。
复眼透镜对(5、6)的结构可参照图5所示,每一个复眼透镜都是一个微透镜的阵列,且一一对应。其入射光是准直光(collimated input light)。其工作原理是:每一对微透镜对都会把在其上的入射光,投射到最后的屏幕上;在屏幕上的光,是所有微透镜对各自投射光强的叠加。可想象一个具有10000个微透镜对的复眼透镜对,在入射光入射到其上时,每一格微透镜对分得1/10000的光束,并将其投射到整个屏幕上,而屏幕亮度就是这10000束小光束的叠加。即使入射光束是不均匀光束,其暗的部分只是影响到一个小局部的微透镜对的亮度,而且被该微透镜对扩散到整个屏幕,因此对整个屏幕上的亮度影响甚微,以上即实现了均匀化。
如前所述,第一复眼透镜5和第二复眼透镜6相对,均由紧密联结在一起的且镜面曲率各自相同的复数个透镜单元构成。该复眼透镜对(5、6)对入射光进行切割积分来提高光均匀性。第一复眼透镜5中的各透镜单元的焦距可以不等于第二复眼透镜6中的各透镜单元的焦距。此外,将所述第二复眼透镜6与第一复眼透镜5之间的间距设置成可调,可以控制本发明灯具的光出射角度。
在照明领域中,若希望解决彩影问题,必须在灯具的出光面即形成均匀的混合光,而不能在远场照明处才进行混光。本发明通过设置复眼透镜对(5、6),因而可扩散来自准直透镜阵列2的准直光,能在灯具的出光面形成更高均匀性的混光输出光,提高了混光均匀性并且避免了彩影现象。
当单个LED阵列规模较大采用多个LED阵列时,复眼透镜的面积会相应较大,从而增加了复眼透镜的加工难度和成本;为此,本发明还可以将第一复眼透镜5、第二复眼透镜6分块进行开模加工,然后拼接在一起使用。
参照图6所示,本发明混光灯具还可包括一对菲涅尔透镜对(3、4)。来自准直透镜阵列2的准直光依次经过第一菲涅尔透镜3、第二菲涅尔透镜4和第一复眼透镜5、第二复眼透镜6后输出。
菲涅尔透镜是凸透镜的一种变形,具有轴对称结构,并具有和凸透镜相近的光学特点:将平行光汇聚于焦点上。本发明实施例中,准直光线经过第一菲涅尔透镜3聚焦后,再经过第二片菲涅尔透镜4再次拉准直,再经过复眼透镜对(5、6),从而最终实现均匀混光。如前所述,若希望解决彩影问题,必须在灯具的出光面即形成均匀的混合光,而不能在远场照明处才进行混光。在本发明实施例结构中,菲涅尔透镜对(3、4)在聚焦-准直的过程中,沿轴对称方向具有一定的混光作用,得到的准直光再经过复眼透镜对(5、6)的扩散,可以在灯具的出光面得到均匀的混光,从而彻底解决彩影问题。
在一实施例中,第一菲涅尔透镜3的焦点焦距为f1,第二菲涅尔透镜4的焦点焦距f2。菲涅尔透镜对(3、4)将摆放得使它们的焦点相接近或重合,以取得最好的匀光和保持低扩散。并且,若第一菲涅尔透镜3的受光面面积大于或等于所述准直透镜阵列2的光出射面面积,将有利于提高对发光源的光利用效率。为调节灯具出射光斑的大小,第二菲涅尔透镜4的受光面面积也可以设计成大于或等于第一菲涅尔透镜3的受光面面积。在图6所示的实施例中,所述第二菲涅尔透镜4的受光面面积大于第一菲涅尔透镜3的受光面面积,既提高了光效率,又有利于灯具具有较大发光面。
为了取得更高的光利用效率,可以优化第一菲涅尔透镜3和第二菲涅尔透镜4的焦距,使第一菲涅尔透镜3的焦距是其受光口径的1.5~1.8倍,第二菲涅尔透镜4的焦距使其受光口径的0.7~1倍,此时的效率比两片菲涅尔透镜的焦距都等于其受光口径时的效率高10%以上。最优化的结果是,第一菲涅尔透镜3的焦距是其受光口径的1.65倍,第二菲涅尔透镜4的焦距使其受光口径的0.85倍,此时的效率比两片菲涅尔透镜的焦距都等于其受光口径时的效率高17%。
当对灯具的输出功率或发光面有较大要求时,光源阵列的尺寸变大将直接导致第一菲涅尔透镜3、第二菲涅尔透镜4之间的距离变大,使得灯具过长。为此,本发明灯具还可以如图7所示,包括复数个(以但不限于图中的2个为例)固态发光器件阵列1、相应数目的准直透镜阵列2及菲涅尔透镜对(3、4),即令第一菲涅尔透镜3和第二菲涅尔透镜4各自由复数块具有相同焦距f1和f2的菲涅尔透镜拼接组装而成。这样每一个菲涅尔透镜的口径缩小为原来的1/n,焦距也相应缩短。在一实施例中,组成第一菲涅尔透镜3的子菲涅尔透镜的焦距可是该子菲涅尔透镜受光口径的1.5~1.8倍;组成第二菲涅尔透镜4的子菲涅尔透镜的焦距是该子菲涅尔透镜受光口径的0.7~1倍。
为了进一步提高输出光的均匀性,本发明混光灯具如图8所示,还可以包括一混光光棒7,设置在第一菲涅尔透镜3与第二菲涅尔透镜4之间,其入光口靠近第一菲涅尔透镜3,出光口靠近第二菲涅尔透镜4,从而使该第一菲涅尔透镜3的焦点与第二菲涅尔透镜4的焦点拉开距离,不再重合。该拉开的距离取决于混光光棒7的口径与所述焦距f1或f2之间的关系,还得叠加考虑该混光光棒7的长度。为了达到最佳的集光效果,混光光棒7的长度最好大于其口径的三倍。当所述菲涅尔透镜对分别由多个菲涅尔透镜拼接组装成时,混光光棒7也相应具有多个,每一个混光光棒7与一组子透镜对相对。
本发明还可以通过控制不同固态发光器件或固态发光器件阵列发出的光亮度来实现灯具的出光匀度、亮度或颜色调节。例如,前述图7所示的灯具实施例中,还可以包括一个用来控制或调节各所述固态发光器件阵列的出射光功率的调控装置。该调控装置可以通过调节驱动电流来调节各所述固态发光器件的发光强度。如图9所示为一般的LED的发光功率与驱动电流之间的关系。该调控装置还可以通过调节驱动电压的占空比来调节LED的发光强度。这样,当存在多个LED阵列时,可以通过调控各LED阵列的发光强度来使灯具出射光达到整体均匀。此外,本发明还可以包括一个或一组光探头,用来探测灯具不同位置的混光出射光的亮度或颜色,并把信息反馈回所述调控装置,进而控制各LED阵列或具有不同发光波长的LED的发光强度。这样可以实现灯具出射光的自动调控,避免了由于不同LED的老化速度不同所造成的灯光颜色漂移;尤其还便于人为设定出射光的颜色或颜色变化。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种混光灯具,包括由复数个呈阵列排布的固态发光器件构成的固态发光器件阵列,以及由复数个呈阵列排布的准直透镜构成的准直透镜阵列,各准直透镜分别对准一相应的固态发光器件以准直输出来自该固态发光器件的光;其特征在于:
    还设有一复眼透镜对,该复眼透镜对包括第一复眼透镜及第二复眼透镜;来自所述准直透镜阵列的准直光依次经过第一复眼透镜和第二复眼透镜后输出。
  2. 如权利要求1所述的混光灯具,其特征在于,还包括一菲涅尔透镜对,该菲涅尔透镜对包括第一菲涅尔透镜和第二菲涅尔透镜,其中第一菲涅尔透镜的焦点与第二菲涅尔透镜的焦点相接近或重合;来自所述准直透镜阵列的准直光依次经过第一菲涅尔透镜、第二菲涅尔透镜和第一复眼透镜、第二复眼透镜后输出。
  3. 如权利要求2所述的混光灯具,其特征在于,所述第一菲涅尔透镜和第二菲涅尔透镜由复数块具有相同焦距的子菲涅尔透镜组装而成。
  4. 如权利要求3所述的混光灯具,其特征在于,所述固态发光器件阵列和准直透镜阵列为复数个,且每一固态发光器件阵列和准直透镜阵列与至少一个子菲涅尔透镜相对应。
  5. 如权利要求2或3所述的混光灯具,其特征在于,第二菲涅尔透镜的受光面面积大于或等于第一菲涅尔透镜的受光面面积。
  6. 如权利要求2所述的混光灯具,其特征在于,第一菲涅尔透镜的焦距是该第一菲涅尔透镜受光口径的1.5~1.8倍,第二菲涅尔透镜的焦距是该第二菲涅尔透镜受光口径的0.7~1倍。
  7. 如权利要求3所述的混光灯具,其特征在于,组成所述第一菲涅尔透镜的子菲涅尔透镜的焦距是该子菲涅尔透镜受光口径的1.5~1.8倍,组成所述第二菲涅尔透镜的子菲涅尔透镜的焦距是该子菲涅尔透镜受光口径的0.7~1倍。
  8. 如权利要求2或3所述的混光灯具,其特征在于,还包括一个或复数个混光光棒,介于所述第一菲涅尔透镜与第二菲涅尔透镜之间,并使该第一菲涅尔透镜的焦点与第二菲涅尔透镜的焦点拉开距离,所拉开的距离与该混光光棒的口径及长度相关;每一混光光棒与一组子菲涅尔透镜对相对应。
  9. 如权利要求8所述的混光灯具,其特征在于,所述混光光棒的长度与口径的比值大于3。
  10. 如权利要求1或2所述的混光灯具,其特征在于,所述第一复眼透镜或第二复眼透镜由镜面曲率相同的复数个透镜单元构成。
  11. 如权利要求1或2所述的混光灯具,其特征在于,所述第二复眼透镜与第一复眼透镜之间的间距可调。
  12. 如权利要求1或2所述的混光灯具,其特征在于, 还包括用来控制或调节所述固态发光器件阵列或各固态发光器件的出射光功率的调控装置。
  13. 如权利要求12所述的混光灯具,其特征在于,还包括一个或一组光探头,用于向所述调控装置反馈输出光的亮度或颜色信息。
PCT/CN2011/072513 2010-04-08 2011-04-07 混光灯具 WO2011124140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/640,284 US8858023B2 (en) 2010-04-08 2011-04-07 Light mixing lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010146802.5 2010-04-08
CN201010146802 2010-04-08

Publications (1)

Publication Number Publication Date
WO2011124140A1 true WO2011124140A1 (zh) 2011-10-13

Family

ID=44437309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072513 WO2011124140A1 (zh) 2010-04-08 2011-04-07 混光灯具

Country Status (3)

Country Link
US (1) US8858023B2 (zh)
CN (1) CN102155713B (zh)
WO (1) WO2011124140A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789897A4 (en) * 2011-12-11 2015-08-26 Appotronics Corp Ltd LIGHT SOURCE AND LIGHTING DEVICE

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722072B (zh) * 2011-12-25 2014-12-31 深圳市光峰光电技术有限公司 投影显示装置
DE112014000523B4 (de) * 2013-01-23 2021-07-08 Mitsubishi Electric Corporation Projektionsgerät
JP5866644B1 (ja) * 2014-12-26 2016-02-17 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイ及びヘッドアップディスプレイを備えた移動体
EP3568631B1 (en) * 2017-01-13 2022-06-08 Lumileds LLC Array with light emitting diodes and varying lens
CN107044618B (zh) * 2017-02-22 2020-05-05 横店集团得邦照明股份有限公司 一种适用于博物馆的全光谱led照明灯
CN207349826U (zh) * 2017-07-27 2018-05-11 极智光电股份有限公司 非同轴混光装置
US10837619B2 (en) 2018-03-20 2020-11-17 Ledengin, Inc. Optical system for multi-emitter LED-based lighting devices
CN108799861B (zh) * 2018-07-13 2020-07-07 深圳市蓝谱里克科技有限公司 一种带整体阵列式透镜的led集成封装模块
CN211509384U (zh) * 2019-11-27 2020-09-15 深圳市绎立锐光科技开发有限公司 照明装置及照明系统
CN110944438B (zh) * 2019-12-19 2021-07-06 杭州友邦演艺设备有限公司 一种舞台灯光影叠加控制方法
CN111562710A (zh) * 2020-06-05 2020-08-21 中盾金卫激光科技(昆山)有限公司 一种红曝消除方法及使用该方法的红外补光灯
CN112577020A (zh) * 2020-12-29 2021-03-30 中电海康集团有限公司 一种多感官天空灯

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053949A (ja) * 2002-07-19 2004-02-19 Nec Viewtechnology Ltd 光源装置及び投写型表示装置
CN1732403A (zh) * 2002-12-26 2006-02-08 三洋电机株式会社 照明装置以及投射型图像显示装置
CN2779448Y (zh) * 2004-12-13 2006-05-10 中国科学院长春光学精密机械与物理研究所 一种用于投影显示的新型光源装置
US20070253197A1 (en) * 2006-05-01 2007-11-01 Coretronic Corporation Light-emitting diode light source system
CN101371070A (zh) * 2006-01-19 2009-02-18 松下电器产业株式会社 照明装置及使用它的投射型显示装置
CN201851899U (zh) * 2010-04-08 2011-06-01 深圳市光峰光电技术有限公司 高均匀性混光灯具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070062611A (ko) 2002-12-26 2007-06-15 산요덴키가부시키가이샤 조명 장치
JP4799341B2 (ja) * 2005-10-14 2011-10-26 株式会社東芝 照明装置
US7229199B2 (en) * 2005-10-21 2007-06-12 Eastman Kodak Company Backlight using surface-emitting light sources
US7213940B1 (en) 2005-12-21 2007-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
DE602008003313D1 (de) * 2007-02-12 2010-12-16 Koninkl Philips Electronics Nv Beleuchtungsvorrichtung mit mindestens einer eingebetteten led
CN201014341Y (zh) 2007-03-01 2008-01-30 四川新力光源有限公司 Led照明模块
US8152317B2 (en) * 2007-12-26 2012-04-10 Victor Company Of Japan, Limited Light source device, lighting device and image display device
JP2010039086A (ja) * 2008-08-01 2010-02-18 Sony Corp 照明光学装置及び虚像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053949A (ja) * 2002-07-19 2004-02-19 Nec Viewtechnology Ltd 光源装置及び投写型表示装置
CN1732403A (zh) * 2002-12-26 2006-02-08 三洋电机株式会社 照明装置以及投射型图像显示装置
CN2779448Y (zh) * 2004-12-13 2006-05-10 中国科学院长春光学精密机械与物理研究所 一种用于投影显示的新型光源装置
CN101371070A (zh) * 2006-01-19 2009-02-18 松下电器产业株式会社 照明装置及使用它的投射型显示装置
US20070253197A1 (en) * 2006-05-01 2007-11-01 Coretronic Corporation Light-emitting diode light source system
CN201851899U (zh) * 2010-04-08 2011-06-01 深圳市光峰光电技术有限公司 高均匀性混光灯具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789897A4 (en) * 2011-12-11 2015-08-26 Appotronics Corp Ltd LIGHT SOURCE AND LIGHTING DEVICE
US9791132B2 (en) 2011-12-11 2017-10-17 Appotronics Corporation Limited Light source and illuminating device

Also Published As

Publication number Publication date
CN102155713B (zh) 2013-06-05
US8858023B2 (en) 2014-10-14
CN102155713A (zh) 2011-08-17
US20130194798A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2011124140A1 (zh) 混光灯具
CN103968268B (zh) 一种led光源系统和led照明装置
CN203258423U (zh) Led单元模组、发光装置以及光源系统
CN103328882B (zh) 太阳光模拟器和用于运行太阳光模拟器的方法
CN103968270B (zh) 一种led光源系统
US10725221B2 (en) Light pipes for LED array luminaire
CN201851899U (zh) 高均匀性混光灯具
WO2014183581A1 (zh) 激光光源、波长转换光源、合光光源及投影系统
WO2014111058A1 (zh) 照明系统及其相关发光装置
CN204254511U (zh) 复眼透镜装置和相关的光源系统
WO2018107634A1 (zh) 光源系统及投影装置
WO2017101773A1 (zh) 一种光源系统及照明系统
CN209341161U (zh) 一种多色led照明系统
CN103620296B (zh) 混色照明设备
CN101988631A (zh) Led舞台灯光照明设备及其改善颜色均匀性的方法
WO2018023999A1 (zh) 一种光源装置以及投影设备
CN201487708U (zh) 改善颜色均匀性的led舞台灯光照明设备
WO2014183583A1 (zh) 一种发光装置及舞台灯系统
CN204300745U (zh) 光源系统和舞台灯
CN201599583U (zh) 舞台灯光照明设备
CN206421144U (zh) 光源装置及数字光处理投影显示系统
WO2018006656A1 (zh) 一种光源系统及舞台灯
TWI308966B (en) Illumination system and projection apparatus
WO2018006633A1 (zh) 光源及相关投影系统
WO2014117702A1 (zh) 一种发光装置和灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13640284

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/12/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 11765058

Country of ref document: EP

Kind code of ref document: A1