WO2011123558A1 - Synthèse de complexes métalliques - Google Patents
Synthèse de complexes métalliques Download PDFInfo
- Publication number
- WO2011123558A1 WO2011123558A1 PCT/US2011/030573 US2011030573W WO2011123558A1 WO 2011123558 A1 WO2011123558 A1 WO 2011123558A1 US 2011030573 W US2011030573 W US 2011030573W WO 2011123558 A1 WO2011123558 A1 WO 2011123558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- membered
- optionally substituted
- porphyrin
- group
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title description 14
- 238000003786 synthesis reaction Methods 0.000 title description 11
- 239000002184 metal Substances 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 53
- -1 aluminum porphyrin Chemical compound 0.000 claims abstract description 27
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 20
- 125000005234 alkyl aluminium group Chemical group 0.000 claims abstract description 18
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims abstract description 6
- 150000003839 salts Chemical class 0.000 claims abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 60
- 229910052757 nitrogen Inorganic materials 0.000 claims description 42
- 125000003118 aryl group Chemical group 0.000 claims description 41
- 125000001931 aliphatic group Chemical group 0.000 claims description 40
- 125000000623 heterocyclic group Chemical group 0.000 claims description 38
- 150000001875 compounds Chemical class 0.000 claims description 36
- 125000005842 heteroatom Chemical group 0.000 claims description 32
- 125000001072 heteroaryl group Chemical group 0.000 claims description 31
- 229910052739 hydrogen Inorganic materials 0.000 claims description 31
- 239000001257 hydrogen Substances 0.000 claims description 31
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 30
- 239000011593 sulfur Chemical group 0.000 claims description 30
- 229910052717 sulfur Chemical group 0.000 claims description 30
- 229920006395 saturated elastomer Polymers 0.000 claims description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 28
- 239000001301 oxygen Chemical group 0.000 claims description 28
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 21
- 229910052736 halogen Inorganic materials 0.000 claims description 18
- 150000002367 halogens Chemical group 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 125000002837 carbocyclic group Chemical group 0.000 claims description 15
- 125000004429 atom Chemical group 0.000 claims description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- 150000004032 porphyrins Chemical class 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 239000003446 ligand Substances 0.000 claims description 5
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 claims description 4
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 claims description 4
- MQIKJSYMMJWAMP-UHFFFAOYSA-N dicobalt octacarbonyl Chemical group [Co+2].[Co+2].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] MQIKJSYMMJWAMP-UHFFFAOYSA-N 0.000 claims description 4
- YNHJECZULSZAQK-UHFFFAOYSA-N tetraphenylporphyrin Chemical compound C1=CC(C(=C2C=CC(N2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3N2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 YNHJECZULSZAQK-UHFFFAOYSA-N 0.000 claims description 4
- 150000004696 coordination complex Chemical class 0.000 claims description 3
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical group CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 claims description 3
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 claims 1
- 125000004432 carbon atom Chemical group C* 0.000 description 38
- 125000001424 substituent group Chemical group 0.000 description 23
- 239000002904 solvent Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000003153 chemical reaction reagent Substances 0.000 description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 150000002924 oxiranes Chemical class 0.000 description 12
- 125000003342 alkenyl group Chemical group 0.000 description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 11
- 125000000304 alkynyl group Chemical group 0.000 description 10
- 150000002431 hydrogen Chemical class 0.000 description 9
- 125000002950 monocyclic group Chemical group 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 125000003367 polycyclic group Chemical group 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 6
- 125000002619 bicyclic group Chemical group 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 125000006413 ring segment Chemical group 0.000 description 5
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- OIQOECYRLBNNBQ-UHFFFAOYSA-N carbon monoxide;cobalt Chemical compound [Co].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] OIQOECYRLBNNBQ-UHFFFAOYSA-N 0.000 description 3
- 230000006315 carbonylation Effects 0.000 description 3
- 238000005810 carbonylation reaction Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 125000004475 heteroaralkyl group Chemical group 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000000844 transformation Methods 0.000 description 3
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- CWUQORDMWXIBRL-UHFFFAOYSA-N carbon monoxide;cobalt;sodium Chemical compound [Na].[Co].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] CWUQORDMWXIBRL-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 150000004816 dichlorobenzenes Chemical class 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002829 nitrogen Chemical class 0.000 description 2
- 125000000466 oxiranyl group Chemical group 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000003039 tetrahydroisoquinolinyl group Chemical group C1(NCCC2=CC=CC=C12)* 0.000 description 2
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- 125000002471 4H-quinolizinyl group Chemical group C=1(C=CCN2C=CC=CC12)* 0.000 description 1
- 125000003341 7 membered heterocyclic group Chemical group 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 description 1
- 125000005915 C6-C14 aryl group Chemical group 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021012 Co2(CO)8 Inorganic materials 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- UMYVESYOFCWRIW-UHFFFAOYSA-N cobalt;methanone Chemical compound O=C=[Co] UMYVESYOFCWRIW-UHFFFAOYSA-N 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004856 decahydroquinolinyl group Chemical group N1(CCCC2CCCCC12)* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000002576 diazepinyl group Chemical group N1N=C(C=CC=C1)* 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000007037 hydroformylation reaction Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 125000005545 phthalimidyl group Chemical group 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000004929 pyrrolidonyl group Chemical group N1(C(CCC1)=O)* 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000005958 tetrahydrothienyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000005308 thiazepinyl group Chemical group S1N=C(C=CC=C1)* 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical group C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- LFXVBWRMVZPLFK-UHFFFAOYSA-N trioctylalumane Chemical group CCCCCCCC[Al](CCCCCCCC)CCCCCCCC LFXVBWRMVZPLFK-UHFFFAOYSA-N 0.000 description 1
- CNWZYDSEVLFSMS-UHFFFAOYSA-N tripropylalumane Chemical group CCC[Al](CCC)CCC CNWZYDSEVLFSMS-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
- B01J31/181—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
- B01J31/1825—Ligands comprising condensed ring systems, e.g. acridine, carbazole
- B01J31/183—Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/20—Carbonyls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/02—Compositional aspects of complexes used, e.g. polynuclearity
- B01J2531/0238—Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
- B01J2531/0241—Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
- B01J2531/025—Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/30—Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
- B01J2531/31—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/845—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2540/00—Compositional aspects of coordination complexes or ligands in catalyst systems
- B01J2540/20—Non-coordinating groups comprising halogens
Definitions
- Bimetallic complexes comprising a Lewis acid component and a carbonyl cobaltate are active catalysts for the ring-expanding carbonylation of strained heterocycles, including epoxides, aziridines, and lactones.
- bimetallic complexes comprising an aluminum porphyrin compound as a Lewis-acidic component are particularly useful for the double carbonylation of epoxides to succinic anhydrides (Rowley et al., J. Am. Chem. Soc, 2007, 129, 4948-4960).
- the present invention provides methods for preparing aluminum porphyrin complexes useful as catalysts in a variety of synthetic applications.
- the methods comprise reacting an alkyl aluminum porphyrin with a hydrido cobalt carbonyl to form a carbonyl cobaltate salt of the aluminum porphyrin.
- the present invention provides methods of making a compound of formula I:
- R 1 , R 2 , L, y, and p is as defined herein.
- halo and halogen as used herein refer to an atom selected from fluorine (fluoro, -F), chlorine (chloro, -CI), bromine (bromo, -Br), and iodine (iodo, -I).
- aliphatic or "aliphatic group”, as used herein, denotes a hydrocarbon moiety that may be straight-chain (i.e., unbranched), branched, or cyclic (including fused, bridging, and spiro-fused polycyclic) and may be completely saturated or may contain one or more units of unsaturation, but which is not aromatic.
- aliphatic groups contain 1-30 carbon atoms. In certain embodiments, aliphatic groups contain 1-12 carbon atoms. In certain embodiments, aliphatic groups contain 1-8 carbon atoms. In certain embodiments, aliphatic groups contain 1-6 carbon atoms.
- aliphatic groups contain 1-5 carbon atoms, in some embodiments, aliphatic groups contain 1-4 carbon atoms, in yet other embodiments aliphatic groups contain 1-3 carbon atoms, and in yet other embodiments aliphatic groups contain 1-2 carbon atoms.
- Suitable aliphatic groups include, but are not limited to, linear or branched, alkyl, alkenyl, and alkynyl groups, and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl.
- heteroaliphatic or “heteroaliphatic group”, as used herein, denotes an optionally substituted hydrocarbon moiety having, in addition to carbon atoms, from one to five heteroatoms, that may be straight-chain ⁇ i.e., unbranched), branched, or cyclic ("heterocyclic") and may be completely saturated or may contain one or more units of unsaturation, but which is not aromatic.
- heteroatom refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen.
- nitrogen also includes a substituted nitrogen.
- heteroaliphatic groups contain 1-6 carbon atoms wherein 1-3 carbon atoms are optionally and independently replaced with heteroatoms selected from oxygen, nitrogen and sulfur. In some embodiments, heteroaliphatic groups contain 1-4 carbon atoms, wherein 1-2 carbon atoms are optionally and independently replaced with heteroatoms selected from oxygen, nitrogen and sulfur. In yet other embodiments, heteroaliphatic groups contain 1-3 carbon atoms, wherein 1 carbon atom is optionally and independently replaced with a heteroatom selected from oxygen, nitrogen and sulfur. Suitable heteroaliphatic groups include, but are not limited to, linear or branched, heteroalkyl, heteroalkenyl, and heteroalkynyl groups.
- epoxide refers to a substituted oxirane.
- substituted oxiranes include monosubstituted oxiranes, disubstituted oxiranes, trisubstituted oxiranes, and tetrasubstituted oxiranes.
- Such epoxides may be further optionally substituted as defined herein.
- epoxides comprise a single oxirane moiety.
- epoxides comprise two or more oxirane moieties.
- cycloaliphatic used alone or as part of a larger moiety, refer to a saturated or partially unsaturated monocyclic, bicyclic, or polycyclic ring systems, as described herein, having from 3 to 20 members, wherein the aliphatic ring system is optionally substituted as defined above and described herein.
- Cycloaliphatic groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, cyclooctyl, cyclooctenyl, bicyclo[2.2.1]heptyl, norbornyl, spiro[4.5]decyl, and cyclooctadienyl.
- the cycloalkyl has 3-6 carbons.
- cycloaliphatic also include aliphatic rings that are fused to one or more aromatic or nonaromatic rings, such as decahydronaphthyl or tetrahydronaphthyl, where the radical or point of attachment is on the aliphatic ring.
- a carbocyclic group is bicyclic.
- a carbocyclic group is tricyclic.
- a carbocyclic group is polycyclic.
- the terms "3- to 14-membered carbocycle” and “C3_i 4 carbocycle” refer to a 3- to 8-membered saturated or partially unsaturated monocyclic carbocyclic ring, or a 7- to 14-membered saturated or partially unsaturated polycyclic carbocyclic ring.
- alkyl refers to saturated, straight- or branched-chain hydrocarbon radicals derived from an aliphatic moiety containing between one and six carbon atoms by removal of a single hydrogen atom. Unless otherwise specified, alkyl groups contain 1-12 carbon atoms. In certain embodiments, alkyl groups contain 1-8 carbon atoms. In certain embodiments, alkyl groups contain 1-6 carbon atoms. In some embodiments, alkyl groups contain 1-5 carbon atoms. In some embodiments, alkyl groups contain 1-4 carbon atoms. In certain embodiments, alkyl groups contain 1-3 carbon atoms. In some embodiments, alkyl groups contain 1-2 carbon atoms.
- alkyl radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, sec-pentyl, iso-pentyl, tert- butyl, n-pentyl, neopentyl, n-hexyl, sec-hexyl, n-heptyl, n-octyl, n-decyl, n-undecyl, dodecyl, and the like.
- alkenyl denotes a monovalent group derived from a straight- or branched-chain aliphatic moiety having at least one carbon-carbon double bond by the removal of a single hydrogen atom. Unless otherwise specified, alkenyl groups contain 2-12 carbon atoms. In certain embodiments, alkenyl groups contain 2-8 carbon atoms. In certain embodiments, alkenyl groups contain 2-6 carbon atoms. In some embodiments, alkenyl groups contain 2-5 carbon atoms. In some embodiments, alkenyl groups contain 2-4 carbon atoms. In some embodiments, alkenyl groups contain 2-3 carbon atoms. In some embodiments, alkenyl groups contain 2 carbon atoms. Alkenyl groups include, for example, ethenyl, propenyl, butenyl, l-methyl-2-buten-l-yl, and the like.
- alkynyl refers to a monovalent group derived from a straight- or branched-chain aliphatic moiety having at least one carbon-carbon triple bond by the removal of a single hydrogen atom. Unless otherwise specified, alkynyl groups contain 2-12 carbon atoms. In certain embodiments, alkynyl groups contain 2-8 carbon atoms. In certain embodiments, alkynyl groups contain 2-6 carbon atoms.
- alkynyl groups contain 2-5 carbon atoms, in some embodiments, alkynyl groups contain 2-4 carbon atoms, in yet other embodiments alkynyl groups contain 2-3 carbon atoms, and in yet other embodiments alkynyl groups contain 2 carbon atoms.
- Representative alkynyl groups include, but are not limited to, ethynyl, 2-propynyl (propargyl), 1-propynyl, and the like.
- aryloxy refers to monocyclic and polycyclic ring systems having a total of five to 20 ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains three to twelve ring members.
- aryl may be used interchangeably with the term “aryl ring”.
- aryl refers to an aromatic ring system which includes, but is not limited to, phenyl, biphenyl, naphthyl, anthracyl and the like, which may bear one or more substituents.
- aryl is a group in which an aromatic ring is fused to one or more additional rings, such as benzofuranyl, indanyl, phthalimidyl, naphthimidyl, phenantriidinyl, or tetrahydronaphthyl, and the like.
- the terms "6- to 10- membered aryl” and “C 6 -io aryl” refer to a phenyl or an 8- to 10-membered polycyclic aryl ring.
- the terms “6- to 14-membered aryl” and “C 6-14 aryl” refer to a phenyl or an 8- to 14-membered polycyclic aryl ring.
- heteroaryl and “heteroar-”, used alone or as part of a larger moiety refer to groups having 5 to 14 ring atoms, preferably 5, 6, or 9 ring atoms; having 6, 10, or 14 ⁇ electrons shared in a cyclic array; and having, in addition to carbon atoms, from one to five heteroatoms.
- heteroatom refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen.
- Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, benzofuranyl and pteridinyl.
- heteroaryl and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring.
- Nonlimiting examples include indolyl, isoindolyl, benzothienyl,
- a heteroaryl group may be mono- or bicyclic.
- heteroaryl may be used interchangeably with the terms “heteroaryl ring”, “heteroaryl group”, or “heteroaromatic”, any of which terms include rings that are optionally substituted.
- heteroarylkyl refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
- heteroarylkyl refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions
- the term “5- to 10-membered heteroaryl” refers to a 5- to 6-membered heteroaryl ring having 1 to 3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8- to 10-membered bicyclic heteroaryl ring having 1 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- the term “5- to 14-membered heteroaryl” refers to a 5- to 6-membered heteroaryl ring having 1 to 3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8- to 14-membered poly eye lie heteroaryl ring having 1 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- heterocycle As used herein, the terms “heterocycle”, “heterocyclyl”, “heterocyclic radical”, and “heterocyclic ring” are used interchangeably and refer to a stable 3- to 7-membered monocyclic or 7- 14-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms, as defined above.
- nitrogen includes a substituted nitrogen.
- the nitrogen in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl), or (as in N-substituted pyrrolidinyl).
- the term "3- to 7-membered heterocyclic” refers to a 3- to 7-membered saturated or partially unsaturated monocyclic heterocyclic ring having 1 to 2 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- the term "3- to 8-membered heterocycle” refers to a 3- to 8-membered saturated or partially unsaturated monocyclic heterocyclic ring having 1 to 2 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- the term "3- to 12-membered heterocyclic” refers to a 3- to 8-membered saturated or partially unsaturated monocyclic heterocyclic ring having 1 to 2 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 7- to 12-membered saturated or partially unsaturated polycyclic heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- the term "3- to 14-membered heterocycle” refers to a 3- to 8-membered saturated or partially unsaturated monocyclic heterocyclic ring having 1 to 2 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 7- to 14-membered saturated or partially unsaturated polycyclic heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- a heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure and any of the ring atoms can be optionally substituted.
- saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidonyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl.
- heterocycle used interchangeably herein, and also include groups in which a heterocyclyl ring is fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3H-indolyl, chromanyl, phenanthridinyl, or
- heterocyclyl group may be mono- or bicyclic.
- heterocyclylalkyl refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
- partially unsaturated refers to a ring moiety that includes at least one double or triple bond.
- partially unsaturated is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.
- compounds of the invention may contain "optionally substituted” moieties.
- substituted whether preceded by the term
- an "optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position.
- substituents are shown attached to a bond which crosses a bond in a ring of the depicted molecule. It will be appreciated that this indicates that one or more of the substituents may be attached to the ring at any available position (usually in place of a hydrogen atom of the parent structure). In cases where an atom of a ring so substituted has two substitutable positions, two groups may be present on the same ring atom. Unless otherwise indicated, when more than one substituent is present, each is defined independently of the others, and each may have a different structure. In cases where the substituent shown crossing a bond of the ring is -R 2 , this has the same meaning as if the ring were said to be "optionally substituted" as described in the preceding paragraph.
- Suitable monovalent substituents on a substitutable carbon atom of an "optionally substituted" group are independently halogen; -(CH 2 )o-4R°; -(CH 2 ) 0 ⁇ OR°;
- Suitable monovalent substituents on R° are independently halogen, -(CH 2 ) 0 2 R*, -(haloR*), -(CH 2 ) 0 2 OH, -(CH 2 ) 0 2 OR*, -(CH 2 ) 0 2 CH(OR*) 2 ;
- -(CH 2 )o_ 4 C(0)N(R°) 2 ; -(CH 2 ) 0 2SR*, -(CH 2 ) 0 2 SH, -(CH 2 ) 0 2 NH 2 , -(CH 2 ) 0 2 NHR*, -(CH 2 )o- 2 NR*2, -NO2, -SiR's, -OSiR's, -C(0)SR* -(Ci_ 4 straight or branched
- alkylene)C(0)OR* or -SSR* wherein each R* is unsubstituted or where preceded by "halo" is substituted only with one or more halogens, and is independently selected from Ci_ 4 aliphatic, -CH 2 Ph, -0(CH 2 )o-iPh, or a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable divalent substituents that are bound to vicinal substitutable carbons of an "optionally substituted” group include: -0(CR 2 ) 2 3 0-, wherein each independent occurrence of R is selected from hydrogen, Ci_6 aliphatic which may be substituted as defined below, or an unsubstituted 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on the aliphatic group of R * include halogen, -R*, -(haloR*),
- each R* is unsubstituted or where preceded by "halo" is substituted only with one or more halogens, and is independently Ci_ 4 aliphatic, -CH 2 Ph, -O(CH 2 ) 0 iPh, or a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on a substitutable nitrogen of an "optionally substituted" group include -R ⁇ , -NR ⁇ 2 , -C(0)R ⁇ , -C(0)OR ⁇ , -C(0)C(0)R ⁇ , -C(0)CH 2 C(0)R ⁇ , -S(0) 2 R ⁇ , -S(0) 2 NR ⁇ 2 , -C(S)NR ⁇ 2 , -C(NH)NR ⁇ 2 , or -N(R ⁇ )S(0) 2 R ⁇ ; wherein each R ⁇ is independently hydrogen, Ci_ 6 aliphatic which may be substituted as defined below, unsubstituted -OPh, or an unsubstituted 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4
- heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of R ⁇ , taken together with their intervening atom(s) form an unsubstituted 3-12-membered saturated, partially unsaturated, or aryl mono- or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- a substitutable nitrogen may be substituted with three R ⁇ substituents to provide a charged ammonium moiety -N + (R ⁇ ) 3 , wherein the ammonium moiety is further complexed with a suitable counterion.
- Suitable substituents on the aliphatic group of R ⁇ are independently halogen, -R*,
- each R* is unsubstituted or where preceded by "halo" is substituted only with one or more halogens, and is independently aliphatic, -CH 2 Ph, -O(CH 2 ) 0 -iPh, or a
- catalyst refers to a substance the presence of which increases the rate and/or extent of a chemical reaction, while not being consumed or undergoing a permanent chemical change itself.
- ligand refers to molecules, ions, or atoms attached to a central atom of a coordination compound or other complex.
- a ligand is a neutral two electron donor molecule of solvent or reagent attached to an aluminum metal center.
- Figure 1 depicts a ReactIR spectrum of the reaction of Co 2 (CO)g with H 2 /CO at
- Figure 2 depicts the presence of various IR wavenumbers in the same reaction shown in Figure 1.
- the present invention provides methods comprising reacting an alkyl aluminum porphyrin with a hydrido cobalt carbonyl to form a carbonyl cobaltate salt of the aluminum porphyrin.
- the present invention provides methods for preparing a compound of formula I:
- each R 1 and R 2 is independently hydrogen, halogen, -N0 2 , -N 3 , -CN, -OR, -SR, -N(R) 2 , -C(0)R, -C0 2 R, -C(0)C(0)R, -C(0)CH 2 C(0)R, -S(0)R, -S(0) 2 R, -C(0)N(R) 2 , -S0 2 N(R) 2 , -OC(0)R, -N(R)C(0)R, -N(R)N(R) 2 , -N(R)C(0)N(R) 2 , -N(R)S0 2 N(R) 2 , - N(R)S0 2 R, -OC(0)N(R) 2 , or an optionally substituted moiety selected from the group consisting of: Ci_i 2 aliphatic, Ci_i 2 heteroaliphatic, 3- to 14-membered carbocyclic, 5- to 14-membered heterocyclic,
- R 2 groups or one R 1 and one R 2 group are taken together with intervening atoms to form an optionally substituted ring selected from the group consisting of 3- to 14- membered carbocyclic, 5- to 14-membered heterocyclic, 6- to 14-membered aryl, and 5- to 14-membered heteroaryl;
- L is any ligand capable of coordinating the aluminum metal center
- y is 0, 1, or 2;
- each p is independently 0, 1, or 2; and each R is independently an optionally substituted moiety selected from the group consisting of: Ci_i2 aliphatic, C 1-12 heteroaliphatic, 3- to 14-membered carbocyclic, 5- to 14- membered heterocyclic, 6- to 14-membered aryl, and 5- to 14-membered heteroaryl; or: two R groups on the same nitrogen are taken together with intervening atoms to form an optionally substituted 3- to 7-membered saturated, partially unsaturated, or heteroaryl ring having 0-4 additional heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- p is 0. In some embodiments, p is 1. In some
- p is 2.
- R 1 is hydrogen, halogen, optionally substituted Ci_ 6 aliphatic, or optionally substituted 6- to 14-membered aryl. In certain embodiments, each R 1 is hydrogen, optionally substituted Ci_ 6 aliphatic, or optionally substituted 6- to 14-membered aryl. In some embodiments, each R 1 is hydrogen. In some embodiments, R 1 is optionally substituted 6- to 14-membered aryl. In some embodiments, R 1 is substituted phenyl. In some embodiments, R 1 is unsubstituted phenyl.
- R 1 is phenyl substituted with one or more substituents selected from the group consisting of halogen, -N0 2 , -CN, Ci_ 6 aliphatic optionally substituted with one or more halogens, and -OCi_ 6 aliphatic.
- substituents selected from the group consisting of halogen, -N0 2 , -CN, Ci_ 6 aliphatic optionally substituted with one or more halogens, and -OCi_ 6 aliphatic.
- Exemplary R 1 groups are depicted in Table 1, below.
- R 2 is hydrogen, halogen, or optionally substituted Ci_ 6 aliphatic. In some embodiments, each R 2 is hydrogen, halogen, or optionally substituted Ci_ 6 aliphatic. In some embodiments, each R 2 is hydrogen. In some embodiments, R 2 is optionally substituted Ci_ 6 aliphatic. In some embodiments, R 2 is ethyl. In some embodiments, R 2 is methyl.
- L is a neutral two electron donor.
- L is a solvent molecule.
- L is a solvent molecule which is an artifact from the synthesis of a compound of formula I.
- L is diethyl ether, t-butyl methyl ether, THF, glyme, or diglyme.
- L is acetonitrile, carbon disulfide, or pyridine.
- a compound of formula I is synthesized in a solvent which is not a neutral two electron donor and L is absent.
- a neutral two electron donor can be coordinatively or covalently bound to the aluminum metal center.
- a neutral two electron donor has the function of filling the coordination valence of the aluminum metal center.
- the value of y corresponds to the number of free valence sites on the aluminum metal center.
- y is 2.
- y is 1.
- y is 0.
- p is 2 and R 2 is H. In some embodiments, p is 2 and each
- R 2 is independently Ci_ 6 alkyl. In some embodiments, /? is 2, one occurrence of R 2 is methyl and the other is ethyl.
- two R 2 groups are taken together with intervening atoms to form an optionally substituted ring selected from the group consisting of 3- to 14-membered carbocyclic, 5- to 14-membered heterocyclic, 6- to 14-membered aryl, and 5- to 14-membered heteroaryl. In some embodiments, two R 2 groups are taken together to form an optionally substituted 5- to 6-membered heteroaryl or an optionally substituted phenyl ring.
- the present invention provides methods of preparing compounds of formula I according to Schemes I and II set forth below.
- One of ordinary skill in the art will appreciate that a variety of reaction conditions may be employed to promote each of the synthetic transformations as depicted in Schemes I and II, steps S-1 to S-3; therefore, a wide variety of reaction conditions are envisioned (see generally, March 's Advanced Organic
- the synthesis of compounds of formula I includes the reaction set forth in Scheme 1 :
- each of R 1 , R 2 , L, y, and p is as defined above and described in classes and subclasses herein, and each R 3 is independently a Ci_i 2 alkyl group.
- a porphyrin of formula A is reacted with a trialkylaluminum of formula B to form an alkyl aluminum porphyrin of formula C, thereby generating two equivalents of alkane D.
- Certain compounds of formulae A and C and methods for their preparation are described by Adler, A.D. et al., J. Org. Chem., 1967, 32, 476; and Konishi et al., J. Org. Chem., 1990, 55, 816-820, the entire contents of each of which are hereby incorporated by reference.
- y is 0 or 1 for a compound of formula C.
- a compound of formula A has no substituents that would react with a trialkylaluminum of formula B
- trialkylaluminum of formula B in a way other than depicted in step S-l.
- the methods described herein are carried out in a suitable medium.
- a suitable medium is a solvent or a solvent mixture that, in combination with the combined reacting partners and reagents, facilitates the progress of the reaction therebetween.
- step S-l comprises one or more suitable solvents.
- Solvents suitable for use in step S-l include aliphatic hydrocarbons (e.g., pentane, hexane, cyclohexane, petroleum ether), halogenated hydrocarbons (e.g., dichloromethane, chloroform, carbon tetrachloride, methyl chloroform, 1 ,2-dichloroethane, 1,1-dichloroethane), aromatic hydrocarbons (e.g., benzene, toluene, xylenes, ethylbenzene), aliphatic ethers (e.g., diethyl ether, t-butyl methyl ether, THF, glyme, diglyme), halogenated aromatic hydrocarbons (e.g., chlorobenzene, dichlorobenzenes), or combinations thereof.
- a solvent is an aliphatic halide.
- the solvent is dichloromethane, chloroform
- Suitable temperatures at which the reaction described in step S-l may occur include about -20 °C to about 60 °C. In some embodiments, the temperature is about 0 °C to about 40 °C. In some embodiments, the temperature is about 23 °C. In certain embodiments, the temperature is room temperature.
- R 3 is methyl. In certain embodiments, R 3 is ethyl. In certain embodiments, R 3 is n-propyl. In certain embodiments, R 3 is isopropyl. In certain embodiments, R 3 is n-butyl. In certain embodiments, R 3 is isobutyl.
- a compound of formula B can be any trialkylaluminum reagent. Several trialkylaluminum reagents are commercially available, and processes for the preparation trialkylaluminum reagents are known in the art, for example as described in US Pat. Nos.
- a trialkylaluminum reagent is trimethylaluminum. In some embodiments, a trialkylaluminum reagent is triethylaluminum. In some embodiments, a trialkylaluminum reagent is tripropylaluminum. In some embodiments, a trialkylaluminum reagent is
- a trialkylaluminum reagent is trioctylaluminum.
- a trialkylaluminum reagent used in step S-l is neat.
- a trialkylaluminum reagent is a highly concentrated solution (e.g., 93% or 97%).
- a trialkylaluminum reagent is a solution in a solvent (e.g., 9%).
- compounds of formula A are free base porphyrins.
- a compound of formula A is a tetraphenylporphyrin, wherein each phenyl group is optionally substituted.
- a compound of formula A is C1TPP (meso-tetra(4-chlorophenyl)porphyrin).
- a compound of formula A is TPP (tetraphenylporphyrin) .
- the present invention provides methods comprising the steps of:
- each R 3 is independently a C 1-12 alkyl group
- Scheme 2 depicts a synthesis of compounds of formula I using a compound of formula C.
- step S-2 dicobaltoctacarbonyl is reacted with hydrogen in the presence of carbon monoxide to form hydrido cobalt tetracarbonyl (HCo(CO) 4 ).
- step S-3 cobalt tetracarbonyl is reacted with an alkyl aluminum porphyrin of formula C to form a compound of formula I and an alkane of formula D.
- the source of hydrogen used in step S-2 is syngas or other process gasses containing hydrogen and CO.
- syngas is available and/or can be used with a variety of hydrogen to carbon monoxide ratios (e.g., mole ratio or partial pressure).
- the ratio of hydrogen to carbon monoxide is about 50:50.
- the ratio of hydrogen to carbon monoxide is about 60:40.
- the ratio of hydrogen to carbon monoxide is about 70:30.
- the ratio of hydrogen to carbon monoxide is about 80:20.
- the ratio of hydrogen to carbon monoxide is about 90: 10.
- the ratio of hydrogen to carbon monoxide is about 40:60. In certain embodiments, the ratio of hydrogen to carbon monoxide is about 30:70. In certain embodiments, the ratio of hydrogen to carbon monoxide is about 20:80. In certain embodiments, the ratio of hydrogen to carbon monoxide is about 10:90.
- Step S-2 is carried out at a pressure suitable for formation of hydrido cobalt tetracarbonyl.
- the pressure is about 100 psi to about 2000 psi.
- the pressure is about 200 psi to about 800 psi.
- the pressure is about 300 psi to about 700 psi.
- the pressure is about 400 psi to about 600 psi.
- step S-2 is carried out over a range of pressures. For example, in some embodiments, Co(CO)g and H 2 /CO are combined at one pressure prior to heating of the reaction vessel, and then the pressure is increased once temperature has equilibrated.
- Suitable reaction temperature for step S-2 are those that afford formation of hydrido cobalt tetracarbonyl.
- the temperature of step S-2 is about 0 °C to about 150 °C.
- the temperature of step S-2 is about 20 °C to about 100 °C.
- the temperature of step S-2 is about 50 °C to about 90 °C.
- the temperature of step S-2 is about 75 °C to about 85 °C.
- step S-2 is carried out in presence of a suitable solvent.
- a solvent for step S-2 is any solvent suitable for hydroformylation.
- solvents for use in step S-2 include aliphatic hydrocarbons (e.g., pentane, hexane, cyclohexane, petroleum ether), halogenated hydrocarbons (e.g., dichloromethane, chloroform, carbon tetrachloride, methyl chloroform, 1 ,2-dichloroethane, 1 ,1-dichloroethane), aromatic hydrocarbons (e.g., benzene, toluene, xylenes, ethylbenzene), aliphatic ethers (e.g., diethyl ether, t-butyl methyl ether, THF, glyme, diglyme), halogenated aromatic hydrocarbons (e.g., chlorobenzene, dichlorobenzenes), or combinations thereof.
- the solvent is THF, glyme, diglyme
- the present invention provides methods comprising the step of reacting the dicobaltoctacarbonyl with hydrogen in the presence of carbon monoxide to form hydrido cobalt tetracarbonyl.
- step S-3 hydrido cobalt tetracarbonyl is reacted with an alkyl aluminum porphyrin of formula C to provide a compound of formula I.
- Step S-3 is carried out at a pressure suitable for formation of compound of formula I.
- the pressure is about 50 psi to about 2000 psi.
- the pressure is about 200 psi to about 800 psi.
- the pressure is about 400 psi to about 700 psi.
- the pressure is about 500 psi to about 700 psi.
- step S-3 is carried out over a range of pressures. For example, in some embodiments, hydrido cobalt tetracarbonyl and a compound of formula C are combined at one pressure and then the pressure is increased following combination of the reactants.
- Suitable reaction temperature for step S-3 are those that afford formation of compounds of formula I.
- the temperature of step S-3 is about 0 °C to about 150 °C.
- the temperature of step S-3 is about 20 °C to about 100 °C.
- the temperature of step S-3 is about 50 °C to about 90 °C.
- the temperature of step S-3 is about 75 °C to about 85 °C.
- hydrido cobalt tetracarbonyl and a compound of formula C are combined at one temperature and then the temperature is increased following combination of the reactants.
- the present invention provides methods comprising the steps of: a) providing an alkyl aluminum porphyrin of formula C: wherein each of R 1 , R 2 , R 3 , L, y, and p is as defined above and described in classes and subclasses herein;
- the present invention provides methods comprising the steps of:
- R 1 , R 2 , and p is as defined above and described in classes and subclasses herein;
- each R 3 is independently a C 1-12 alkyl group
- reagents employed by and/or intermediates or products provided by the present invention are air and/or moisture sensitive.
- one or more of the aforementioned synthetic steps is performed using standard inert handling techniques (e.g., drybox, Schlenk line, etc.).
- each of steps S-2 and S-3 is performed sequentially with isolation of each intermediate C and HCo(CO)4 performed after each step.
- each of steps S-2 and S-3 may be performed in a manner whereby no isolation of intermediate HCo(CO)4 is performed.
- HCo(CO)4 is generated in situ and steps S-2 and S-3 are performed in sequence without any isolation of HCo(CO)4.
- all the steps of the aforementioned synthesis may be performed to prepare the desired final product.
- two sequential steps may be performed to prepare an intermediate or the desired final product.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
La présente invention concerne de nouveaux procédés de préparation de complexes aluminium-porphyrine-cobaltate de carbonyle, comprenant des procédés de réaction d'un hydruro-cobalt-carbonyle avec une alkyl-aluminium-porphyrine pour générer un sel de carbonyl-cobaltate de l'aluminium-porphyrine. La présente invention concerne en outre des procédés de préparation d'hydruro-cobalt-tétracarbonyle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32007710P | 2010-04-01 | 2010-04-01 | |
US61/320,077 | 2010-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011123558A1 true WO2011123558A1 (fr) | 2011-10-06 |
Family
ID=44712612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/030573 WO2011123558A1 (fr) | 2010-04-01 | 2011-03-30 | Synthèse de complexes métalliques |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011123558A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016015019A1 (fr) * | 2014-07-25 | 2016-01-28 | Novomer, Inc. | Synthèse de complexes métalliques et leurs utilisations |
US10099989B2 (en) | 2015-02-13 | 2018-10-16 | Novomer, Inc. | Distillation process for production of acrylic acid |
US10099988B2 (en) | 2015-02-13 | 2018-10-16 | Novomer, Inc. | Process for production of acrylic acid |
US10221278B2 (en) | 2011-05-13 | 2019-03-05 | Novomer, Inc. | Catalytic carbonylation catalysts and methods |
US10221150B2 (en) | 2015-02-13 | 2019-03-05 | Novomer, Inc. | Continuous carbonylation processes |
US10597294B2 (en) | 2014-05-30 | 2020-03-24 | Novomer, Inc. | Integrated methods for chemical synthesis |
US10858329B2 (en) | 2014-05-05 | 2020-12-08 | Novomer, Inc. | Catalyst recycle methods |
US11078172B2 (en) | 2015-02-13 | 2021-08-03 | Novomer, Inc. | Integrated methods for chemical synthesis |
US20210277028A1 (en) * | 2018-08-09 | 2021-09-09 | Novomer, Inc. | Metal-organic framework catalysts, and uses thereof |
WO2024259296A1 (fr) * | 2023-06-16 | 2024-12-19 | Novomer, Inc. | Synthèse de catalyseur de carbonylation à partir de sels de cobalt |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030162961A1 (en) * | 2001-12-06 | 2003-08-28 | Coates Geoffrey W. | Catalytic carbonylation of three and four membered heterocycles |
US20050014977A1 (en) * | 2003-04-09 | 2005-01-20 | Eit Drent | Process for the carbonylation of epoxides |
-
2011
- 2011-03-30 WO PCT/US2011/030573 patent/WO2011123558A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030162961A1 (en) * | 2001-12-06 | 2003-08-28 | Coates Geoffrey W. | Catalytic carbonylation of three and four membered heterocycles |
US20050014977A1 (en) * | 2003-04-09 | 2005-01-20 | Eit Drent | Process for the carbonylation of epoxides |
Non-Patent Citations (1)
Title |
---|
KONISHI ET AL.: "Hydrogen Transfer from Alcohols to Carbonyl Compounds Catalyzed by Aluminum Porphyrins. Stereochemical Aspects", JOUMAL OF ORGANIC CHEMISTRY, vol. 55, 1990, pages 816 - 820 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10221278B2 (en) | 2011-05-13 | 2019-03-05 | Novomer, Inc. | Catalytic carbonylation catalysts and methods |
US10479861B2 (en) | 2011-05-13 | 2019-11-19 | Novomer, Inc. | Catalytic carbonylation catalysts and methods |
US11667617B2 (en) | 2014-05-05 | 2023-06-06 | Novomer, Inc. | Catalyst recycle methods |
US10858329B2 (en) | 2014-05-05 | 2020-12-08 | Novomer, Inc. | Catalyst recycle methods |
US10597294B2 (en) | 2014-05-30 | 2020-03-24 | Novomer, Inc. | Integrated methods for chemical synthesis |
US10829372B2 (en) | 2014-05-30 | 2020-11-10 | Novomer, Inc. | Integrated methods for chemical synthesis |
WO2016015019A1 (fr) * | 2014-07-25 | 2016-01-28 | Novomer, Inc. | Synthèse de complexes métalliques et leurs utilisations |
CN106714966A (zh) * | 2014-07-25 | 2017-05-24 | 诺沃梅尔公司 | 金属络合物的合成及其用途 |
US10974234B2 (en) | 2014-07-25 | 2021-04-13 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
US20190030520A1 (en) * | 2014-07-25 | 2019-01-31 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
CN106714966B (zh) * | 2014-07-25 | 2021-02-02 | 诺沃梅尔公司 | 金属络合物的合成及其用途 |
AU2015292361B2 (en) * | 2014-07-25 | 2019-07-18 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
US10738022B2 (en) | 2015-02-13 | 2020-08-11 | Novomer, Inc. | Continuous carbonylation processes |
US10717695B2 (en) | 2015-02-13 | 2020-07-21 | Novomer, Inc. | Distillation process for production of acrylic acid |
US10626073B2 (en) | 2015-02-13 | 2020-04-21 | Novomer, Inc. | Process for production of acrylic acid |
US10221150B2 (en) | 2015-02-13 | 2019-03-05 | Novomer, Inc. | Continuous carbonylation processes |
US10927091B2 (en) | 2015-02-13 | 2021-02-23 | Novomer, Inc. | Continuous carbonylation processes |
US10099988B2 (en) | 2015-02-13 | 2018-10-16 | Novomer, Inc. | Process for production of acrylic acid |
US11078172B2 (en) | 2015-02-13 | 2021-08-03 | Novomer, Inc. | Integrated methods for chemical synthesis |
US11155511B2 (en) | 2015-02-13 | 2021-10-26 | Novomer, Inc. | Distillation process for production of acrylic acid |
US10099989B2 (en) | 2015-02-13 | 2018-10-16 | Novomer, Inc. | Distillation process for production of acrylic acid |
US11807613B2 (en) | 2015-02-13 | 2023-11-07 | Novomer, Inc. | Integrated methods for chemical synthesis |
US20210277028A1 (en) * | 2018-08-09 | 2021-09-09 | Novomer, Inc. | Metal-organic framework catalysts, and uses thereof |
WO2024259296A1 (fr) * | 2023-06-16 | 2024-12-19 | Novomer, Inc. | Synthèse de catalyseur de carbonylation à partir de sels de cobalt |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011123558A1 (fr) | Synthèse de complexes métalliques | |
US10974234B2 (en) | Synthesis of metal complexes and uses thereof | |
EP2707353B1 (fr) | Catalyseurs de carbonylation et procédé | |
US9493391B2 (en) | Process for beta-lactone production | |
US9156803B2 (en) | Succinic anhydride from ethylene oxide | |
WO2015138975A1 (fr) | Catalyseurs de carbonylation d'époxydes | |
US10676426B2 (en) | Acrylonitrile derivatives from epoxide and carbon monoxide reagents | |
WO2018200471A1 (fr) | Systèmes et procédés de thermolyse de polylactones pour produire des acides organiques | |
EP3256441A1 (fr) | Procédés de carbonylation continue | |
JP2015511947A (ja) | エポキシドから酸無水物を生成するためのプロセス | |
EP2734532A1 (fr) | Complexes métalliques | |
WO2014004858A1 (fr) | Catalyseurs et procédés de fabrication de polyester | |
EP2888271A1 (fr) | Complexes métalliques | |
WO2013138243A1 (fr) | Composés bifonctionnels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11763385 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.01.2013) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11763385 Country of ref document: EP Kind code of ref document: A1 |