WO2011118591A1 - Method for producing molds and method for producing products with superfine concave-convex structures on surface - Google Patents
Method for producing molds and method for producing products with superfine concave-convex structures on surface Download PDFInfo
- Publication number
- WO2011118591A1 WO2011118591A1 PCT/JP2011/056860 JP2011056860W WO2011118591A1 WO 2011118591 A1 WO2011118591 A1 WO 2011118591A1 JP 2011056860 W JP2011056860 W JP 2011056860W WO 2011118591 A1 WO2011118591 A1 WO 2011118591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- group
- producing
- meth
- pores
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/56—Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
- B29C33/58—Applying the releasing agents
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/045—Anodisation of aluminium or alloys based thereon for forming AAO templates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/12—Anodising more than once, e.g. in different baths
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/24—Chemical after-treatment
- C25D11/246—Chemical after-treatment for sealing layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
- B29C33/3857—Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
- B29C2033/3864—Spraying at least one layer to create the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
- B29L2011/0016—Lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
- B29L2011/0058—Mirrors
Definitions
- the present invention relates to a method for producing a mold having a fine concavo-convex structure on the surface and a method for producing an article having a fine concavo-convex structure on the surface.
- a concavo-convex structure called a moth-eye structure is an effective antireflection means by continuously increasing the refractive index from the refractive index of air to the refractive index of the material of the article.
- a method of forming a fine concavo-convex structure on the surface of an article a method of transferring a fine concavo-convex structure of the mold to the surface of an article using a mold having an inverted structure of the fine concavo-convex structure formed on the surface is attracting attention .
- the surface on the side where the fine relief structure is formed is usually treated with a release agent (Patent Document 1).
- the present invention provides a method for producing a mold capable of maintaining releasability over a long period of time even if the fine concavo-convex structure on the surface is repeatedly transferred, and a method for producing an article having the fine concavo-convex structure on the surface with high productivity.
- the mold manufacturing method of the present invention is characterized by having the following steps (I) to (IV).
- (I) The process of producing the mold main body by which the fine uneven structure was formed on the surface.
- step (II) After step (I), the surface of the mold body on which the fine concavo-convex structure is formed has a functional group (B) that can react with the functional group (A) present on the surface.
- the process of processing with an agent is performed with an agent.
- III A step of placing the mold body under heating and humidification after step (II).
- (IV) A step of repeating the steps (II) and (III) two or more times.
- the functional group (B) is preferably a hydrolyzable silyl group. More preferably, the functional group (B) of the release agent of the present invention is a hydrolyzable silyl group and has a perfluoropolyether structure.
- the mold in which the fine concavo-convex structure in the step (I) is formed is preferably an anodized aluminum substrate and a fine concavo-convex structure having two or more pores formed on the surface thereof.
- the method for producing an article having a fine concavo-convex structure on the surface of the present invention is characterized in that the fine concavo-convex structure on the surface of the mold obtained by the mold production method of the present invention is transferred to the surface of the article main body.
- a method for producing a mold comprising the following steps (I) to (IV): (I) The process of producing the mold main body by which the fine uneven structure was formed on the surface. (II) After step (I), the surface of the mold body on which the fine concavo-convex structure is formed has a functional group (B) that can react with the functional group (A) present on the surface. The process of processing with an agent. (III) A step of placing the mold body under heating and humidification after step (II). (IV) A step of repeating the steps (II) and (III) twice or more. (2) The method for producing a mold according to (1), wherein the functional group (B) is a hydrolyzable silyl group.
- the step (I) includes the following steps (a) to (f):
- the step (II) includes the following steps (g) to (j):
- the step (III) has the following step (k) and / or (l):
- (A) A step of forming an oxide film on the surface of an aluminum substrate by anodizing the aluminum substrate in an electrolytic solution under a constant voltage.
- (B) A step of removing the oxide film and forming anodic oxidation pore generation points on the surface of the aluminum substrate.
- step (C) After the step (b), the step of anodizing the aluminum base material again in the electrolytic solution to form an oxide film having pores at the pore generation points.
- step (D) A step of enlarging the diameter of the pores after the step (c).
- step (E) A step of anodizing again in the electrolytic solution after the step (d).
- F) The process of obtaining the mold main body by which the said process (d) and the said process (e) are repeated, and the anodic oxidation alumina which has a 2 or more pore is formed in the surface of the said aluminum base material.
- G A step of washing the mold body after the step (f).
- step (H) After the step (g), air is blown onto the mold body to remove impurities adhering to the surface of the mold body.
- J) A step of drying the mold body after the step (i).
- step (K) A step of placing the mold body under heating and humidification after step (i).
- step L A step of washing the mold body immediately after the step (k) with a fluorinated solvent.
- (M) A step in which the steps (i) to (l) are defined as one cycle and the cycle is repeated twice or more.
- (N) A step of drying the mold body after the step (m).
- (9) A fine concavo-convex structure comprising transferring the fine concavo-convex structure on the surface of the mold obtained by the method for producing a mold according to any one of (1) to (8) to the surface of the article body. A method for producing an article on a surface.
- the mold manufacturing method of the present invention it is possible to manufacture a mold that can maintain releasability over a long period of time even if the fine concavo-convex structure on the surface is repeatedly transferred. According to the method for producing an article having the fine uneven structure on the surface of the present invention, an article having the fine uneven structure on the surface can be produced with high productivity.
- (meth) acrylate means acrylate or methacrylate.
- an active energy ray means visible light, an ultraviolet-ray, an electron beam, plasma, a heat ray (infrared rays etc.), etc.
- the method for producing a mold of the present invention is a method having the following steps (I) to (IV).
- (I) The process of producing the mold main body by which the fine uneven structure was formed on the surface.
- step (II) After step (I), the surface of the mold body on which the fine concavo-convex structure is formed has a functional group (B) that can react with the functional group (A) present on the surface.
- III A step of placing the mold body under heating and humidification after step (II).
- IV A step of repeating the steps (II) and (III) twice or more.
- a mold body is produced by forming a fine relief structure on the surface of the substrate.
- the material for the substrate include metals (including those having an oxide film formed on the surface), quartz, glass, resin, and ceramics.
- the shape of the substrate include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
- Examples of the method for producing the mold main body include a method of forming anodized alumina having two or more pores (concave portions) on the surface of an aluminum base.
- the above method is a preferable production method from the viewpoint that the area can be increased and the production is simple.
- a method having the following steps (a) to (f) is preferable.
- B A step of removing the oxide film and forming anodic oxidation pore generation points on the surface of the aluminum substrate.
- C After the step (b), the step of anodizing the aluminum substrate again in the electrolytic solution to form an oxide film having pores at the pore generation points.
- D A step of expanding the diameter of the pores after the step (c).
- E A step of anodizing again in the electrolytic solution after the step (d).
- F A step of repeating steps (d) and (e) to obtain a mold body in which anodized alumina having two or more pores is formed on the surface of an aluminum substrate.
- examples of the shape of the aluminum substrate include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape. Since the oil used when processing the aluminum base material into a predetermined shape may be adhered, it is preferable to degrease the aluminum base material in advance.
- the aluminum substrate is preferably subjected to electrolytic polishing (etching) in order to smooth the surface state.
- the purity of aluminum is preferably 99% or more, more preferably 99.5% or more, and particularly preferably 99.8% or more.
- the purity of aluminum is low, when anodized, an uneven structure having a size to scatter visible light may be formed due to segregation of impurities, or the regularity of pores obtained by anodization may be lowered.
- the electrolytic solution include sulfuric acid, oxalic acid, and phosphoric acid.
- the concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid exceeds 0.7M, the current value becomes too high, and the surface of the oxide film may become rough. When the formation voltage is 30 to 60 V, anodized alumina having highly regular pores with an average interval of 100 nm can be obtained. Regardless of whether the formation voltage is higher or lower than this range, the regularity tends to decrease.
- the temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution exceeds 60 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.
- the concentration of sulfuric acid is preferably 0.7 M or less. If the concentration of sulfuric acid exceeds 0.7M, the current value may become too high to maintain a constant voltage.
- the formation voltage is 25 to 30 V, anodized alumina having highly regular pores with an average interval of 63 nm can be obtained. The regularity tends to decrease whether the formation voltage is higher or lower than this range.
- the temperature of the electrolytic solution is preferably 30 ° C. or lower, and more preferably 20 ° C. or lower. When the temperature of the electrolytic solution exceeds 30 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.
- Examples of the method for removing the oxide film include a method in which aluminum is not dissolved but dissolved in a solution that selectively dissolves the oxide film and removed.
- Examples of such a solution include a chromic acid / phosphoric acid mixed solution.
- Anodizing conditions are not particularly limited, but anodizing is performed in the same conditions as in step (a) or in a shorter time than in step (a).
- the pore diameter expansion treatment is a treatment for expanding the diameter of the pores obtained by anodic oxidation by immersing in a solution dissolving the oxide film. Examples of such a solution include a phosphoric acid aqueous solution of about 5% by mass. The longer the pore diameter expansion processing time, the larger the pore diameter.
- An oxide film 14 is formed, and a mold body 18 having anodized alumina (aluminum porous oxide film (alumite)) on the surface of the aluminum substrate 10 is obtained.
- the end may be completed in either step (d) or step (e), but it is preferable to end in step (d).
- the total number of repetitions is preferably 3 times or more, and more preferably 5 times or more.
- the diameter of the pores decreases discontinuously, so that the effect of reducing the reflectance of the moth-eye structure formed using anodized alumina having such pores is insufficient.
- Examples of the shape of the pore 12 include a substantially conical shape, a pyramid shape, a cylindrical shape, and the like, and a cross-sectional area of the pore perpendicular to the depth direction from the outermost surface, such as a conical shape and a pyramid shape, A shape that continuously decreases in the depth direction is preferable.
- the average interval between the pores 12 is not more than the wavelength of visible light, that is, not more than 400 nm.
- the average interval between the pores 12 is preferably 20 nm or more.
- the range of the average interval between the pores 12 is preferably 20 nm or more and 400 nm or less, more preferably 50 nm or more and 300 nm or less, and further preferably 90 nm or more and 250 nm or less.
- the average interval between the pores 12 was measured by measuring the distance between adjacent pores 12 (distance from the center of the pore 12 to the center of the adjacent pore 12) by electron microscope observation, and averaging these values. It is a
- the depth of the pores 12 is preferably 80 to 500 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm.
- the depth of the pore 12 is a value obtained by measuring the distance between the bottom of the pore 12 and the top of the convex portion existing between the pores 12 when observed with an electron microscope at a magnification of 30000 times. It is.
- the aspect ratio of the pores 12 is preferably 0.8 to 5, more preferably 1.2 to 4, and particularly preferably 1.5 to 3.
- step (II) the surface of the mold body on which the fine concavo-convex structure is formed is treated with a release agent having a functional group (B) that can react with the functional group (A).
- the functional group (A) means a group capable of forming a chemical bond by reacting with a reactive functional group (B) possessed by a release agent described later.
- the functional group (A) include a hydroxyl group, an amino group, a carboxyl group, a mercapto group, an epoxy group, and an ester group, and a water release agent that is described later often has a reactive functional group (B).
- a hydroxyl group is particularly preferred from the viewpoint of good reactivity with the decomposable silyl group.
- the functional group (A) is a hydroxyl group.
- the functional group (A) When the functional group (A) is not present on the surface of the mold body on which the fine concavo-convex structure is formed, for example, the functional group (A) by the following method (II-1) or method (II-2) May be introduced.
- (II-1) A method in which the functional group (A) is introduced into the surface of the mold main body by performing plasma treatment on the surface on which the fine concavo-convex structure is formed.
- II-2) By treating the surface of the mold body on which the fine concavo-convex structure is formed with a functional group (A) or a compound having a precursor thereof (such as a silane coupling agent), a functional group is formed on the surface.
- a functional group A method of introducing (A).
- the functional group (B) means a group that can react with the functional group (A) to form a chemical bond or a group that can be easily converted into the group.
- Examples of the functional group (B) when the functional group (A) is a hydroxyl group include a hydrolyzable silyl group, a silanol group, a hydrolyzable group containing a titanium atom or an aluminum atom, and the reactivity with the hydroxyl group is good. From the viewpoint, a hydrolyzable silyl group or a silanol group is preferable, and a hydrolyzable silyl group is more preferable.
- the hydrolyzable silyl group is a group that generates a silanol group (Si—OH) by hydrolysis, Si—OR (R is an alkyl group), and Si—X (X is a halogen atom). ) And the like.
- the release agent examples include a silicone resin having a functional group (B), a fluororesin having a functional group (B), a fluorine compound having a functional group (B), and the like, and a fluorine compound having a hydrolyzable silyl group Is more preferable.
- fluorine compounds having hydrolyzable silyl groups include fluoroalkylsilanes, and those having a perfluoropolyether structure include “OPTOOL (registered trademark)” series manufactured by Daikin Industries.
- the release agent is particularly preferably a fluorine compound having a functional group (B), wherein the functional group (B) is a hydrolyzable silyl group and has a perfluoropolyether structure.
- the functional group (B) is a hydrolyzable silyl group and has a perfluoropolyether structure
- the functional group (A) is highly reactive and the releasability is particularly good.
- Examples of the treatment method using a release agent include the following methods (II-3) to (II-4), and the surface of the mold body on which the fine concavo-convex structure is formed can be treated with the release agent without unevenness. Therefore, the method (II-3) is particularly preferable.
- (II-3) A method of immersing the mold body in a dilute solution of a release agent.
- III-4) A method in which a release agent or a diluted solution thereof is applied to the surface of the mold body on the side where the fine relief structure is formed.
- a method having the following steps (g) to (j) is preferable.
- (G) A step of washing the mold body with water after the step (f) as necessary.
- (H) After the step (g), if necessary, a step of blowing air to the mold body to remove impurities adhering to the surface of the mold body.
- (I) A step of immersing the mold body having a hydroxyl group introduced on the surface thereof in a diluted solution obtained by diluting a fluorine compound having a hydrolyzable silyl group with a fluorine-based solvent after the steps (f) to (h).
- (J) A step of drying the mold body after step (i), if necessary.
- the fluorine-based solvent for dilution examples include hydrofluoropolyether, perfluorohexane, perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, and dichloropentafluoropropane.
- the concentration of the fluorine compound having a hydrolyzable silyl group is preferably from 0.01 to 0.2% by mass, more preferably from 0.06% by mass to 0.15% by mass in the diluted solution (100% by mass).
- the immersion time is preferably 1 to 30 minutes.
- the immersion temperature is preferably 0 to 50 ° C.
- the mold body may be air-dried or forcibly heated and dried with a dryer or the like.
- the drying temperature is preferably 50 to 150 ° C.
- the drying time is preferably 5 to 300 minutes.
- Step (III) includes, for example, the following step (k) and / or step (l).
- K A step of placing the mold body under heating and humidification after step (i).
- L A step of washing the mold main body immediately after the step (k) with a fluorine-based solvent as necessary.
- the heating temperature is preferably 40 to 100 ° C.
- the humidification condition is preferably a relative humidity of 85% or more.
- the standing time is preferably 10 minutes to 1 day.
- the mold main body washed with the fluorinated solvent may be further washed with water or alcohol.
- Step (IV) includes, for example, the following step (m) and / or step (n).
- M A step of repeating steps (i) to (l) as one cycle and repeating the cycle twice or more.
- N A step of drying the mold body after the step (m) as necessary.
- the mold body may be air-dried or forcibly heated and dried with a dryer or the like.
- the drying temperature is preferably 40 to 150 ° C.
- the drying time is preferably 5 to 300 minutes.
- the mold manufacturing method of the present invention is particularly effective as a mold manufacturing method having an anodized alumina on the surface for the following reasons.
- the surface of the anodized alumina hardly reacts with the hydrolyzable silyl group (silanol group), and a gap free from the release agent is easily formed only by treating with the release agent once. Therefore, the release agent is easily peeled from the gap, and the mold releasability is likely to be lowered.
- the present invention since the treatment with the release agent is repeated twice or more, the gap can be filled with the release agent as much as possible, and the mold releasability is unlikely to deteriorate.
- An article having a fine concavo-convex structure on its surface is manufactured as follows using, for example, a manufacturing apparatus shown in FIG. An active energy ray curable resin from the tank 22 between a roll-shaped mold 20 having a fine concavo-convex structure (not shown) on the surface and a strip-shaped film 42 (article main body) moving along the surface of the roll-shaped mold 20. Supply the composition.
- the film 42 and the active energy ray curable resin composition are nipped between the roll-shaped mold 20 and the nip roll 26 whose nip pressure is adjusted by the pneumatic cylinder 24, and the active energy ray curable resin composition is niped with the film 42. And the roll-shaped mold 20 are uniformly distributed, and at the same time, the concave portions of the fine concavo-convex structure of the roll-shaped mold 20 are filled.
- the active energy ray curable resin composition By irradiating the active energy ray curable resin composition through the film 42 from the active energy ray irradiating device 28 installed below the roll-shaped mold 20, the active energy ray curable resin composition is cured. Then, the cured resin layer 44 to which the fine uneven structure on the surface of the roll-shaped mold 20 is transferred is formed. By peeling the film 42 having the cured resin layer 44 formed on the surface from the roll-shaped mold 20 with the peeling roll 30, an article 40 as shown in FIG. 3 is obtained.
- the active energy ray irradiation device 28 is preferably a high-pressure mercury lamp, a metal halide lamp, or the like.
- the amount of light irradiation energy is preferably 100 to 10,000 mJ / cm 2 .
- the film 42 is a light transmissive film.
- the film material include acrylic resin, polycarbonate, styrene resin, polyester, cellulose resin (such as triacetyl cellulose), polyolefin, and alicyclic polyolefin.
- the cured resin layer 44 is a film made of a cured product of an active energy ray-curable resin composition described later, and has a fine uneven structure on the surface.
- the fine uneven structure on the surface of the article 40 is formed by transferring the fine uneven structure on the surface of the anodized alumina, and the active energy ray-curable resin composition is cured. It has two or more convex parts 46 which consist of things.
- the fine concavo-convex structure is preferably a so-called moth-eye structure in which two or more protrusions (convex portions) having a substantially conical shape or a pyramid shape are arranged. It is known that the moth-eye structure in which the distance between the protrusions is less than or equal to the wavelength of visible light is an effective anti-reflection measure by continuously increasing the refractive index from the refractive index of air to the refractive index of the material. It has been.
- the average interval between the convex portions is preferably not more than the wavelength of visible light, that is, not more than 400 nm.
- the average distance between the convex portions is about 100 nm, so that it is more preferably 200 nm or less, and particularly preferably 150 nm or less.
- the average interval between the convex portions is preferably 20 nm or more from the viewpoint of easy formation of the convex portions.
- the range of the average distance between the convex portions is preferably 20 to 400 nm, more preferably 50 to 300 nm, and further preferably 90 to 250 nm.
- the average interval between the convex portions is obtained by measuring 50 intervals between adjacent convex portions (distance from the center of the convex portion to the center of the adjacent convex portion) by electron microscope observation, and averaging these values. .
- the height of the protrusions is preferably 80 to 500 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm when the average interval is 100 nm. If the height of the convex portion is 80 nm or more, the reflectance is sufficiently low and the wavelength dependency of the reflectance is small. If the height of a convex part is 500 nm or less, the scratch resistance of a convex part will become favorable.
- the height of the convex portion is a value obtained by measuring the distance between the topmost portion of the convex portion and the bottommost portion of the concave portion existing between the convex portions when observed with an electron microscope at a magnification of 30000 times.
- the aspect ratio of the protrusions (the height of the protrusions / the average interval between the protrusions) is preferably 0.8 to 5, more preferably 1.2 to 4, and particularly preferably 1.5 to 3. If the aspect ratio of the convex portion is 0.8 or more, the reflectance is sufficiently low. When the aspect ratio of the convex portion is 5 or less, the scratch resistance of the convex portion is good.
- the shape of the convex part is a shape in which the convex sectional area in the direction perpendicular to the height direction continuously increases in the depth direction from the outermost surface, that is, the sectional shape in the height direction of the convex part is a triangle, trapezoid, A shape such as a bell shape is preferred.
- the difference between the refractive index of the cured resin layer 44 and the refractive index of the film 42 is preferably 0.2 or less, more preferably 0.1 or less, and particularly preferably 0.05 or less.
- the refractive index difference is 0.2 or less, reflection at the interface between the cured resin layer 44 and the film 42 is suppressed.
- the water contact angle on the surface of the fine uneven structure is preferably 90 ° or more, more preferably 110 ° or more, and particularly preferably 120 ° or more. If the water contact angle is 90 ° or more, water stains are less likely to adhere, so that sufficient antifouling properties are exhibited. Moreover, since water does not adhere easily, anti-icing can be expected.
- the range of the water contact angle on the surface of the fine relief structure is preferably 90 ° or more and 180 ° or less, more preferably 110 ° or more and 180 ° or less, and 120 ° or more and 180 ° or less. Is particularly preferred.
- the water contact angle on the surface of the fine uneven structure is preferably 30 ° or less, more preferably 25 ° or less, further preferably 23 ° or less, and particularly preferably 21 ° or less. If the water contact angle is 30 ° or less, the dirt adhering to the surface is washed away with water and the oil dirt is less likely to adhere, so that sufficient antifouling properties are exhibited.
- the water contact angle is preferably 3 ° or more from the viewpoint of suppressing the deformation of the fine concavo-convex structure due to water absorption of the cured resin layer 44 and the accompanying increase in reflectance.
- the range of the water contact angle on the surface of the fine concavo-convex structure is preferably 3 ° to 30 °, more preferably 3 ° to 25 °, more preferably 3 ° to 23 °. The following is more preferable, and 3 ° to 21 ° is particularly preferable.
- the active energy ray-curable resin composition contains a polymerizable compound and a polymerization initiator.
- the polymerizable compound include monomers, oligomers, and reactive polymers having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule.
- the active energy ray-curable resin composition may contain a non-reactive polymer and an active energy ray sol-gel reactive composition.
- Examples of the monomer having a radical polymerizable bond include monofunctional monomers and polyfunctional monomers.
- Monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, s-butyl (meth) acrylate, t- Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, alkyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, Phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate
- Polyfunctional monomers include ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, triethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate , Neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, polybutylene glycol di (Meth) acrylate, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (3- (Meth) acryloxy-2-hydroxypropoxy) phenyl) propane, 1,2-bis (3- (meth) acryloxy-2-hydroxypropoxy
- Examples of the monomer having a cationic polymerizable bond include monomers having an epoxy group, an oxetanyl group, an oxazolyl group, a vinyloxy group, and the like, and a monomer having an epoxy group is particularly preferable.
- oligomer or reactive polymer examples include unsaturated polyesters such as a condensate of unsaturated dicarboxylic acid and polyhydric alcohol; polyester (meth) acrylate, polyether (meth) acrylate, polyol (meth) acrylate, epoxy (meth) Examples thereof include acrylates, urethane (meth) acrylates, cationic polymerization type epoxy compounds, and single or copolymerized monomers of the above-mentioned monomers having radical polymerizable bonds in the side chains.
- non-reactive polymers examples include acrylic resins, styrene resins, polyurethane, cellulose resins, polyvinyl butyral, polyester, and thermoplastic elastomers.
- active energy ray sol-gel reactive composition examples include alkoxysilane compounds and alkylsilicate compounds.
- R 11 x Si (OR 12 ) y (1)
- R 11 and R 12 each represent an alkyl group having 1 to 10 carbon atoms
- alkoxysilane compound examples include tetramethoxysilane, tetra-i-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-t-butoxysilane, methyltriethoxysilane, Examples include methyltripropoxysilane, methyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, trimethylpropoxysilane, and trimethylbutoxysilane.
- alkyl silicate compound examples include a compound of the following formula (2).
- R 21 to R 24 each represents an alkyl group having 1 to 5 carbon atoms, and z represents an integer of 3 to 20.
- alkyl silicate compound examples include methyl silicate, ethyl silicate, isopropyl silicate, n-propyl silicate, n-butyl silicate, n-pentyl silicate, acetyl silicate, and the like.
- examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxy.
- Carbonyl compounds such as -1-one; sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; 2,4,6-trimethylbenzoyldiphenylphosphine oxide And benzoyldiethoxyphosphine oxide and the like. These may be used alone or in combination of two or more.
- examples of the polymerization initiator include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t- Thioxanthones such as butylanthraquinone, 2-ethylanthraquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, and 2,4-dichlorothioxanthone; diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, Benzyldimethyl ketal, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, and 2-benzyl-2-dimethylamino-1- Acetophenones such as 4-morpholinophenyl) -butanone; benzophenone, 4,4-bis
- thermal polymerization initiator examples include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxy octoate, organic peroxides such as t-butylperoxybenzoate and lauroyl peroxide; azo compounds such as azobisisobutyronitrile; and N, N-dimethylaniline and N, N-dimethyl as the organic peroxide Examples thereof include a redox polymerization initiator combined with an amine such as -p-toluidine.
- the amount of the polymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound. When the amount of the polymerization initiator is less than 0.1 parts by mass, the polymerization is difficult to proceed. When the amount of the polymerization initiator exceeds 10 parts by mass, the cured film may be colored or the mechanical strength may be lowered.
- the active energy ray-curable resin composition may contain an antistatic agent, a release agent, an additive such as a fluorine compound for improving the antifouling property, fine particles, and a small amount of a solvent, if necessary. .
- a fluorine-containing compound or a silicone compound is used as an active energy ray-curable resin composition capable of forming a hydrophobic material. It is preferable to use the composition containing.
- Fluorine-containing compounds As the fluorine-containing compound, a compound having a fluoroalkyl group represented by the following formula (3) is preferable. -(CF 2 ) n -X (3) However, X represents a fluorine atom or a hydrogen atom, n represents an integer of 1 or more, preferably 1 to 20, more preferably 3 to 10, and particularly preferably 4 to 8.
- fluorine-containing compound examples include a fluorine-containing monomer, a fluorine-containing silane coupling agent, a fluorine-containing surfactant, and a fluorine-containing polymer.
- fluorine-containing monomer examples include a fluoroalkyl group-substituted vinyl monomer and a fluoroalkyl group-substituted ring-opening polymerizable monomer.
- fluoroalkyl group-substituted vinyl monomer examples include fluoroalkyl group-substituted (meth) acrylates, fluoroalkyl group-substituted (meth) acrylamides, fluoroalkyl group-substituted vinyl ethers, and fluoroalkyl group-substituted styrenes.
- fluoroalkyl group-substituted ring-opening polymerizable monomer examples include fluoroalkyl group-substituted epoxy compounds, fluoroalkyl group-substituted oxetane compounds, and fluoroalkyl group-substituted oxazoline compounds.
- a fluoroalkyl group-substituted (meth) acrylate is preferable, and a compound of the following formula (4) is particularly preferable.
- CH 2 C (R 41 ) C (O) O— (CH 2 ) m — (CF 2 ) n —X (4)
- R 41 represents a hydrogen atom or a methyl group
- X represents a hydrogen atom or a fluorine atom
- m represents an integer of 1 to 6, preferably 1 to 3, more preferably 1 or 2
- n represents an integer of 1 to 20, preferably 3 to 10, and more preferably 4 to 8.
- a fluoroalkyl group-substituted silane coupling agent is preferable, and a compound of the following formula (5) is particularly preferable.
- R f represents a fluorine-substituted alkyl group having 1 to 20 carbon atoms which may contain one or more ether bonds or ester bonds.
- R f includes a 3,3,3-trifluoropropyl group, a tridecafluoro-1,1,2,2-tetrahydrooctyl group, a 3-trifluoromethoxypropyl group, a 3-trifluoroacetoxypropyl group, and the like. Can be mentioned.
- R 51 represents an alkyl group having 1 to 10 carbon atoms.
- examples of R 51 include a methyl group, an ethyl group, and a cyclohexyl group.
- Y represents a hydroxyl group or a hydrolyzable group.
- the hydrolyzable group include an alkoxy group, a halogen atom, and R 52 C (O) O (wherein R 52 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
- alkoxy group examples include methoxy group, ethoxy group, propyloxy group, i-propyloxy group, butoxy group, i-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, Examples include octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group.
- halogen atom examples include Cl, Br, and I.
- R 52 C (O) O examples include CH 3 C (O) O, C 2 H 5 C (O) O, and the like.
- Fluorine-containing silane coupling agents include 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriacetoxysilane, dimethyl-3,3,3-trifluoropropylmethoxysilane, and Examples include tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane.
- fluorine-containing surfactant examples include a fluoroalkyl group-containing anionic surfactant and a fluoroalkyl group-containing cationic surfactant.
- fluoroalkyl group-containing anionic surfactant examples include a fluoroalkylcarboxylic acid having 2 to 10 carbon atoms or a metal salt thereof, disodium perfluorooctanesulfonylglutamate, 3- [omega-fluoroalkyl (C 6 -C 11 ) oxy.
- fluoroalkyl group-containing cationic surfactant examples include aliphatic quaternary compounds such as fluoroalkyl group-containing aliphatic primary, secondary or tertiary amine acids, and perfluoroalkyl (C 6 -C 10 ) sulfonamidopropyltrimethylammonium salts. Examples thereof include ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolinium salts, and the like.
- the fluorine-containing polymer examples include a polymer of a fluoroalkyl group-containing monomer, a copolymer of a fluoroalkyl group-containing monomer and a poly (oxyalkylene) group-containing monomer, and a fluoroalkyl group-containing monomer and a crosslinking reactive group-containing monomer.
- a copolymer etc. are mentioned.
- the fluorine-containing polymer may be a copolymer with another copolymerizable monomer.
- fluorine-containing polymer a copolymer of a fluoroalkyl group-containing monomer and a poly (oxyalkylene) group-containing monomer is preferable.
- poly (oxyalkylene) group a group represented by the following formula (6) is preferable.
- R 61 represents an alkylene group having 2 to 4 carbon atoms, and p represents an integer of 2 or more. Examples of R 61 include —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH (CH 3 ) CH 2 —, and —CH (CH 3 ) CH (CH 3 ) —.
- the poly (oxyalkylene) group may be composed of the same oxyalkylene unit (OR 61 ) or may be composed of two or more oxyalkylene units (OR 61 ).
- the arrangement of two or more oxyalkylene units (OR 61 ) may be a block or random.
- Silicone compounds examples include (meth) acrylic acid-modified silicone, silicone resin, silicone silane coupling agent, and the like.
- Examples of the (meth) acrylic acid-modified silicone include silicone (di) (meth) acrylate.
- the active energy ray-curable resin composition capable of forming a hydrophilic material is a composition containing at least a hydrophilic monomer. Is preferably used. From the viewpoint of scratch resistance and imparting water resistance, those containing a cross-linkable polyfunctional monomer are more preferable. In addition, the same (namely, hydrophilic polyfunctional monomer) may be sufficient as the polyfunctional monomer which can be bridge
- the active energy ray-curable resin composition capable of forming a hydrophilic material it is more preferable to use a composition containing the following polymerizable compound. 10-50% by mass of tetrafunctional or higher polyfunctional (meth) acrylate, A polymerizable compound comprising a total of 100% by mass of 30 to 80% by mass of a bifunctional or higher functional hydrophilic (meth) acrylate and 0 to 20% by mass of a monofunctional monomer.
- tetrafunctional or higher polyfunctional (meth) acrylates examples include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, di Pentaerythritol hexa (meth) acrylate, succinic acid / trimethylolethane / acrylic acid molar mixture 1: 2: 4 condensation reaction mixture, urethane acrylates (manufactured by Daicel-Cytec: EBECRYL220, EBECRYL1290K, EBECRYL1290K, EBECRYL5129, EBECRYL8210, EBECRYL 8301, KRM 8200), polyether acrylates (manufactured by Daicel-Cytec:
- the ratio of the tetrafunctional or higher polyfunctional (meth) acrylate is preferably 10 to 50% by mass, more preferably 20 to 50% by mass, and particularly preferably 30 to 50% by mass from the viewpoint of water resistance and chemical resistance. If the ratio of the tetrafunctional or higher polyfunctional (meth) acrylate is 10% by mass or more, the elastic modulus is increased and the scratch resistance is improved. If the ratio of the tetrafunctional or higher polyfunctional (meth) acrylate is 50% by mass or less, small cracks are hardly formed on the surface, and the appearance is hardly deteriorated.
- polyfunctional acrylates having polyethylene glycol Long-chains such as Aronix M-240, Aronix M260 (manufactured by Toagosei Co., Ltd.), NK ester AT-20E, and NK ester ATM-35E (manufactured by Shin-Nakamura Chemical Co., Ltd.)
- polyfunctional acrylates having polyethylene glycol and polyethylene glycol dimethacrylate. These may be used alone or in combination of two or more.
- polyethylene glycol dimethacrylate the total of the average repeating units of polyethylene glycol chains present in one molecule is preferably 6 to 40, more preferably 9 to 30, and particularly preferably 12 to 20.
- the average repeating unit of the polyethylene glycol chain is 6 or more, the hydrophilicity is sufficient and the antifouling property is improved.
- the average repeating unit of the polyethylene glycol chain is 40 or less, the compatibility with a polyfunctional (meth) acrylate having 4 or more functionalities is improved, and the active energy ray-curable resin composition is hardly separated.
- the ratio of the bifunctional or higher functional hydrophilic (meth) acrylate is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass.
- the ratio of the bifunctional or higher hydrophilic (meth) acrylate is 30% by mass or more, the hydrophilicity is sufficient and the antifouling property is improved.
- the proportion of the bifunctional or higher hydrophilic (meth) acrylate is 80% by mass or less, the elastic modulus is increased and the scratch resistance is improved.
- hydrophilic monofunctional monomers examples include monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group such as M-20G, M-90G, and M-230G (manufactured by Shin-Nakamura Chemical Co.); hydroxyalkyl (meth) acrylates, etc. And monofunctional (meth) acrylates having a hydroxyl group in the ester group; monofunctional acrylamides; and cationic monomers such as methacrylamidopropyltrimethylammonium methylsulfate and methacryloyloxyethyltrimethylammonium methylsulfate.
- viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone
- adhesion improvers such as acryloyl isocyanates that improve adhesion to the article body may be used.
- the proportion of the monofunctional monomer is preferably 0 to 20% by mass, and more preferably 5 to 15% by mass.
- the proportion of the monofunctional monomer is 20% by mass or less, antifouling property or scratch resistance is sufficient without a shortage of tetrafunctional or higher polyfunctional (meth) acrylate or bifunctional or higher hydrophilic (meth) acrylate.
- the monofunctional monomer may be blended in an active energy ray-curable resin composition in an amount of 0 to 35 parts by mass as a low-polymerization polymer obtained by (co) polymerizing one or more types.
- a polymer having a low degree of polymerization 40/60 of monofunctional (meth) acrylates having a polyethylene glycol chain in an ester group such as M-230G (manufactured by Shin-Nakamura Chemical Co., Ltd.) and methacrylamide propyltrimethylammonium methyl sulfate.
- Copolymer oligomer (MRC Unitech Co., Ltd., MG polymer) and the like can be mentioned.
- Applications of the article 40 include antireflection articles, antifogging articles, antifouling articles, and water repellent articles, more specifically antireflection for displays, automobile meter covers, automobile mirrors, automobile windows, organic or inorganic electro Examples include a light extraction efficiency improving member for luminescence, a solar cell member, and the like.
- the article having the fine concavo-convex structure on the surface is not limited to the article 40 in the illustrated example.
- the fine uneven structure may be directly formed on the surface of the film 42 without providing the cured resin layer 44.
- TAS Succinic acid / trimethylolethane / acrylic acid molar ratio 1: 2: 4 condensation reaction mixture; 45 parts by mass C6DA: 1,6-hexanediol diacrylate (manufactured by Osaka Organic Chemical Co., Ltd.); 45 parts by mass X-22-1602: radical polymerizable silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.); 10 parts by mass Irg184: 1-hydroxycyclohexyl phenyl ketone (manufactured by Ciba Specialty Chemicals, Irgacure 184); 3 parts by mass.
- Example 1 A 50 mm ⁇ 50 mm ⁇ 0.3 mm thick aluminum plate (purity 99.99%) electropolished in a perchloric acid / ethanol mixed solution (1/4 volume ratio) was used.
- the formed mold body a was obtained.
- Example 2 A mold was obtained in the same manner as in Example 1 except that the number of repetitions in the step (m) was two. A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
- Example 3 A mold was obtained in the same manner as in Example 1 except that the number of repetitions in the step (m) was one. A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
- the mold release property can be extended for a long time even if the fine concavo-convex structure on the surface is repeatedly transferred. It can be seen that a mold that can be maintained over time can be produced. In particular, it can be seen that the releasability can be maintained for a very long time by repeating the heat and humidification treatment at a concentration of about 0.1% by weight of the release agent twice or more.
- the mold obtained by the production method of the present invention is useful as a mold for producing an antireflection film and a water repellent film by an imprint method.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
本願は2010年3月25日に日本に出願された、特願2010-070281号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing a mold having a fine concavo-convex structure on the surface and a method for producing an article having a fine concavo-convex structure on the surface.
This application claims priority based on Japanese Patent Application No. 2010-070281 filed in Japan on March 25, 2010, the contents of which are incorporated herein by reference.
(I)表面に微細凹凸構造が形成されたモールド本体を作製する工程。
(II)工程(I)の後、前記モールド本体の前記微細凹凸構造が形成された側の表面を、前記表面に存在する官能基(A)と反応し得る官能基(B)を有する離型剤で処理する工程。
(III)工程(II)の後、前記モールド本体を加熱加湿下に置く工程。
(IV)前記工程(II)、工程(III)を2回以上繰り返す工程。 The mold manufacturing method of the present invention is characterized by having the following steps (I) to (IV).
(I) The process of producing the mold main body by which the fine uneven structure was formed on the surface.
(II) After step (I), the surface of the mold body on which the fine concavo-convex structure is formed has a functional group (B) that can react with the functional group (A) present on the surface. The process of processing with an agent.
(III) A step of placing the mold body under heating and humidification after step (II).
(IV) A step of repeating the steps (II) and (III) two or more times.
前記工程(I)の微細凹凸構造が形成されたモールドは、アルミニウム基材を陽極酸化し、その表面に2以上の細孔を有する微細凹凸構造を形成したものが好ましい。 In the mold manufacturing method of the present invention, the functional group (B) is preferably a hydrolyzable silyl group. More preferably, the functional group (B) of the release agent of the present invention is a hydrolyzable silyl group and has a perfluoropolyether structure.
The mold in which the fine concavo-convex structure in the step (I) is formed is preferably an anodized aluminum substrate and a fine concavo-convex structure having two or more pores formed on the surface thereof.
(1)下記の工程(I)~(IV)を有する、モールドの製造方法。
(I)表面に微細凹凸構造が形成されたモールド本体を作製する工程。
(II)工程(I)の後、前記モールド本体の前記微細凹凸構造が形成された側の表面を、前記表面に存在する官能基(A)と反応し得る官能基(B)を有する離型剤で処理する工程。
(III)工程(II)の後、前記モールド本体を加熱加湿下に置く工程。
(IV)前記工程(II)、および工程(III)を2回以上繰り返す工程。
(2)前記官能基(B)が、加水分解性シリル基である、(1)に記載のモールドの製造方法。
(3)前記離型剤の官能基(B)が、加水分解性シリル基であり、かつパーフルオロポリエーテル構造を有する離型剤である、(1)または(2)記載のモールドの製造方法。
(4)前記工程(II)において、前記離型剤の濃度が0.06質量%以上0.15質量%以下である(1)~(3)のいずれか1項に記載のモールドの製造方法。
(5)前記工程(I)の微細凹凸構造が形成されたモールドが、アルミニウム基材を陽極酸化し、その表面に2個以上の細孔を有する微細凹凸構造を形成したものである(1)~(4)のいずれか1項に記載のモールドの製造方法。
(6)前記細孔の平均間隔が、400nm以下である、(1)~(5)のいずれか1項に記載のモールドの製造方法。
(7)前記細孔の平均間隔が、20nm以上400nm以下である、(6)に記載のモールドの製造方法。
(8)前記工程(I)が下記の工程(a)~(f)を有し、
前記工程(II)が下記の工程(g)~(j)を有し、
前記工程(III)が下記の工程(k)および/または(l)を有し、
前記工程(IV)が下記の工程(m)および/または(n)を有する、(1)~(7)のいずれか1項に記載のモールドの製造方法。
(a)アルミニウム基材を電解液中、定電圧下で陽極酸化してアルミニウム基材の表面に酸化皮膜を形成する工程。
(b)前記酸化皮膜を除去し、前記アルミニウム基材の表面に陽極酸化の細孔発生点を形成する工程。
(c)前記工程(b)の後、前記アルミニウム基材を電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
(d)前記工程(c)の後、細孔の径を拡大させる工程。
(e)前記工程(d)の後、電解液中、再度陽極酸化する工程。
(f)前記工程(d)と前記工程(e)を繰り返し行い、2個以上の細孔を有する陽極酸化アルミナが前記アルミニウム基材の表面に形成されたモールド本体を得る工程。
(g)前記工程(f)の後、前記モールド本体を水洗する工程。
(h)前記工程(g)の後、前記モールド本体にエアーを吹き付け、前記モールド本体の表面に付着した不純物を除去する工程。
(i)前記工程(f)~(h)の後、加水分解性シリル基を有するフッ素化合物をフッ素系溶媒で希釈した希釈溶液に、表面に水酸基が導入されたモールド本体を浸漬する工程。
(j)前記工程(i)の後、前記モールド本体を乾燥させる工程。
(k)工程(i)の後、前記モールド本体を加熱加湿下に置く工程。
(l)工程(k)の直後の前記モールド本体を、フッ素系溶媒で洗浄する工程。
(m)前記工程(i)~前記工程(l)を1サイクルとし、前記サイクルを2回以上繰り返す工程。
(n)前記工程(m)の後、前記モールド本体を乾燥させる工程。
(9)(1)~(8)のいずれか1項に記載のモールドの製造方法で得られたモールドの表面の微細凹凸構造を、物品本体の表面に転写することを含む、微細凹凸構造を表面に有する物品の製造方法。 That is, the present invention relates to the following.
(1) A method for producing a mold, comprising the following steps (I) to (IV):
(I) The process of producing the mold main body by which the fine uneven structure was formed on the surface.
(II) After step (I), the surface of the mold body on which the fine concavo-convex structure is formed has a functional group (B) that can react with the functional group (A) present on the surface. The process of processing with an agent.
(III) A step of placing the mold body under heating and humidification after step (II).
(IV) A step of repeating the steps (II) and (III) twice or more.
(2) The method for producing a mold according to (1), wherein the functional group (B) is a hydrolyzable silyl group.
(3) The mold production method according to (1) or (2), wherein the functional group (B) of the release agent is a hydrolyzable silyl group and a release agent having a perfluoropolyether structure. .
(4) The method for producing a mold according to any one of (1) to (3), wherein in the step (II), the concentration of the release agent is 0.06% by mass or more and 0.15% by mass or less. .
(5) The mold in which the fine concavo-convex structure in the step (I) is formed is obtained by anodizing an aluminum substrate and forming a fine concavo-convex structure having two or more pores on the surface thereof (1) The method for producing a mold according to any one of (4) to (4).
(6) The mold manufacturing method according to any one of (1) to (5), wherein an average interval between the pores is 400 nm or less.
(7) The mold production method according to (6), wherein an average interval between the pores is 20 nm or more and 400 nm or less.
(8) The step (I) includes the following steps (a) to (f):
The step (II) includes the following steps (g) to (j):
The step (III) has the following step (k) and / or (l):
The method for producing a mold according to any one of (1) to (7), wherein the step (IV) includes the following steps (m) and / or (n):
(A) A step of forming an oxide film on the surface of an aluminum substrate by anodizing the aluminum substrate in an electrolytic solution under a constant voltage.
(B) A step of removing the oxide film and forming anodic oxidation pore generation points on the surface of the aluminum substrate.
(C) After the step (b), the step of anodizing the aluminum base material again in the electrolytic solution to form an oxide film having pores at the pore generation points.
(D) A step of enlarging the diameter of the pores after the step (c).
(E) A step of anodizing again in the electrolytic solution after the step (d).
(F) The process of obtaining the mold main body by which the said process (d) and the said process (e) are repeated, and the anodic oxidation alumina which has a 2 or more pore is formed in the surface of the said aluminum base material.
(G) A step of washing the mold body after the step (f).
(H) After the step (g), air is blown onto the mold body to remove impurities adhering to the surface of the mold body.
(I) After the steps (f) to (h), a step of immersing the mold body having a hydroxyl group introduced into the surface thereof in a diluted solution obtained by diluting a fluorine compound having a hydrolyzable silyl group with a fluorine-based solvent.
(J) A step of drying the mold body after the step (i).
(K) A step of placing the mold body under heating and humidification after step (i).
(L) A step of washing the mold body immediately after the step (k) with a fluorinated solvent.
(M) A step in which the steps (i) to (l) are defined as one cycle and the cycle is repeated twice or more.
(N) A step of drying the mold body after the step (m).
(9) A fine concavo-convex structure comprising transferring the fine concavo-convex structure on the surface of the mold obtained by the method for producing a mold according to any one of (1) to (8) to the surface of the article body. A method for producing an article on a surface.
本発明の微細凹凸構造を表面に有する物品の製造方法によれば、微細凹凸構造を表面に有する物品を生産性よく製造できる。 According to the mold manufacturing method of the present invention, it is possible to manufacture a mold that can maintain releasability over a long period of time even if the fine concavo-convex structure on the surface is repeatedly transferred.
According to the method for producing an article having the fine uneven structure on the surface of the present invention, an article having the fine uneven structure on the surface can be produced with high productivity.
本発明のモールドの製造方法は、下記の工程(I)~(IV)を有する方法である。
(I)表面に微細凹凸構造が形成されたモールド本体を作製する工程。
(II)工程(I)の後、前記モールド本体の前記微細凹凸構造が形成された側の表面を、前記表面に存在する官能基(A)と反応し得る官能基(B)を有する離型剤で処理する工程。
(III)工程(II)の後、前記モールド本体を加熱加湿下に置く工程。
(IV)前記工程(II)、および工程(III)を2回以上繰り返す工程。 <Mold manufacturing method>
The method for producing a mold of the present invention is a method having the following steps (I) to (IV).
(I) The process of producing the mold main body by which the fine uneven structure was formed on the surface.
(II) After step (I), the surface of the mold body on which the fine concavo-convex structure is formed has a functional group (B) that can react with the functional group (A) present on the surface. The process of processing with an agent.
(III) A step of placing the mold body under heating and humidification after step (II).
(IV) A step of repeating the steps (II) and (III) twice or more.
工程(I)においては、基材の表面に微細凹凸構造を形成してモールド本体を作製する。基材の材料としては、金属(表面に酸化皮膜が形成されたものを含む。)、石英、ガラス、樹脂、およびセラミックス等が挙げられる。基材の形状としては、ロール状、円管状、平板状、およびシート状等が挙げられる。 (Process (I))
In step (I), a mold body is produced by forming a fine relief structure on the surface of the substrate. Examples of the material for the substrate include metals (including those having an oxide film formed on the surface), quartz, glass, resin, and ceramics. Examples of the shape of the substrate include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
(a)アルミニウム基材を電解液中、定電圧下で陽極酸化してアルミニウム基材の表面に酸化皮膜を形成する工程。
(b)酸化皮膜を除去し、アルミニウム基材の表面に陽極酸化の細孔発生点を形成する工程。
(c)工程(b)の後、アルミニウム基材を電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
(d)工程(c)の後、細孔の径を拡大させる工程。
(e)工程(d)の後、電解液中、再度陽極酸化する工程。
(f)工程(d)と工程(e)を繰り返し行い、2個以上の細孔を有する陽極酸化アルミナがアルミニウム基材の表面に形成されたモールド本体を得る工程。 As the above method, specifically, a method having the following steps (a) to (f) is preferable.
(A) A step of forming an oxide film on the surface of an aluminum substrate by anodizing the aluminum substrate in an electrolytic solution under a constant voltage.
(B) A step of removing the oxide film and forming anodic oxidation pore generation points on the surface of the aluminum substrate.
(C) After the step (b), the step of anodizing the aluminum substrate again in the electrolytic solution to form an oxide film having pores at the pore generation points.
(D) A step of expanding the diameter of the pores after the step (c).
(E) A step of anodizing again in the electrolytic solution after the step (d).
(F) A step of repeating steps (d) and (e) to obtain a mold body in which anodized alumina having two or more pores is formed on the surface of an aluminum substrate.
図1に示すように、アルミニウム基材10を陽極酸化すると、細孔12を有する酸化皮膜14が形成される。ここでアルミニウム基材の形状としては、ロール状、円管状、平板状、およびシート状等が挙げられる。
アルミニウム基材は、所定の形状に加工する際に用いた油が付着していることがあるため、あらかじめ脱脂処理されることが好ましい。また、アルミニウム基材は、表面状態を平滑にするために、電解研磨処理(エッチング処理)されることが好ましい。 Step (a):
As shown in FIG. 1, when the
Since the oil used when processing the aluminum base material into a predetermined shape may be adhered, it is preferable to degrease the aluminum base material in advance. The aluminum substrate is preferably subjected to electrolytic polishing (etching) in order to smooth the surface state.
電解液としては、硫酸、シュウ酸、およびリン酸等が挙げられる。 The purity of aluminum is preferably 99% or more, more preferably 99.5% or more, and particularly preferably 99.8% or more. When the purity of aluminum is low, when anodized, an uneven structure having a size to scatter visible light may be formed due to segregation of impurities, or the regularity of pores obtained by anodization may be lowered.
Examples of the electrolytic solution include sulfuric acid, oxalic acid, and phosphoric acid.
図1に示すように、酸化皮膜14を一旦除去し、これを陽極酸化の細孔発生点16にすることで細孔の規則性を向上することができる。 Step (b):
As shown in FIG. 1, the regularity of the pores can be improved by removing the
図1に示すように、酸化皮膜を除去したアルミニウム基材10を再度、陽極酸化すると、円柱状の細孔12を有する酸化皮膜14が形成される。
陽極酸化条件は、特に限定はないが、工程(a)と同様な条件または工程(a)より短い時間での陽極酸化を行う。 Step (c):
As shown in FIG. 1, when the
Anodizing conditions are not particularly limited, but anodizing is performed in the same conditions as in step (a) or in a shorter time than in step (a).
図1に示すように、細孔12の径を拡大させる処理(以下、細孔径拡大処理と記す。)を行う。細孔径拡大処理は、酸化皮膜を溶解する溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。 Step (d):
As shown in FIG. 1, a process for expanding the diameter of the pores 12 (hereinafter referred to as a pore diameter expansion process) is performed. The pore diameter expansion treatment is a treatment for expanding the diameter of the pores obtained by anodic oxidation by immersing in a solution dissolving the oxide film. Examples of such a solution include a phosphoric acid aqueous solution of about 5% by mass. The longer the pore diameter expansion processing time, the larger the pore diameter.
図1に示すように、再度、陽極酸化すると、円柱状の細孔12の底部から下に延びる、直径の小さい円柱状の細孔12がさらに形成される。
陽極酸化は、工程(a)と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。 Step (e):
As shown in FIG. 1, when anodized again,
Anodization may be performed under the same conditions as in step (a). Deeper pores can be obtained as the anodic oxidation time is lengthened.
図1に示すように、工程(d)の細孔径拡大処理と、工程(e)の陽極酸化を繰り返すと、直径が開口部から深さ方向に連続的に減少する形状の細孔12を有する酸化皮膜14が形成され、アルミニウム基材10の表面に陽極酸化アルミナ(アルミニウムの多孔質の酸化皮膜(アルマイト))を有するモールド本体18が得られる。最後は工程(d)または工程(e)のいずれで終了してもよいが、工程(d)で終了することが好ましい。 Step (f):
As shown in FIG. 1, when the pore diameter enlargement process in the step (d) and the anodic oxidation in the step (e) are repeated, the
細孔12間の平均間隔は、可視光の波長以下、すなわち400nm以下である。細孔12間の平均間隔は、20nm以上が好ましい。
細孔12間の平均間隔の範囲は、20nm以上400nm以下が好ましく、50nm以上300nm以下がより好ましく、90nm以上250nm以下がさらに好ましい。
細孔12間の平均間隔は、電子顕微鏡観察によって隣接する細孔12間の間隔(細孔12の中心から隣接する細孔12の中心までの距離)を50点測定し、これらの値を平均したものである。 Examples of the shape of the
The average interval between the
The range of the average interval between the
The average interval between the
細孔12の深さは、電子顕微鏡観察によって倍率30000倍で観察したときにおける、細孔12の最底部と、細孔12間に存在する凸部の最頂部との間の距離を測定した値である。
細孔12のアスペクト比(細孔の深さ/細孔間の平均間隔)は、0.8~5が好ましく、1.2~4がより好ましく、1.5~3が特に好ましい。 When the average interval is 100 nm, the depth of the
The depth of the
The aspect ratio of the pores 12 (depth of pores / average interval between pores) is preferably 0.8 to 5, more preferably 1.2 to 4, and particularly preferably 1.5 to 3.
工程(II)においては、モールド本体の微細凹凸構造が形成された側の表面を、官能基(A)と反応し得る官能基(B)を有する離型剤で処理する。 (Process (II))
In the step (II), the surface of the mold body on which the fine concavo-convex structure is formed is treated with a release agent having a functional group (B) that can react with the functional group (A).
官能基(A)としては、水酸基、アミノ基、カルボキシル基、メルカプト基、エポキシ基、およびエステル基等が挙げられ、後述の離型剤が反応性の官能基(B)として有することが多い加水分解性シリル基との反応性がよい点から、水酸基が特に好ましい。離型剤で処理される表面が陽極酸化アルミナの場合、官能基(A)は水酸基である。 The functional group (A) means a group capable of forming a chemical bond by reacting with a reactive functional group (B) possessed by a release agent described later.
Examples of the functional group (A) include a hydroxyl group, an amino group, a carboxyl group, a mercapto group, an epoxy group, and an ester group, and a water release agent that is described later often has a reactive functional group (B). A hydroxyl group is particularly preferred from the viewpoint of good reactivity with the decomposable silyl group. When the surface treated with the release agent is anodized alumina, the functional group (A) is a hydroxyl group.
(II-1)モールド本体の微細凹凸構造が形成された側の表面をプラズマ処理することによって、前記表面に官能基(A)を導入する方法。
(II-2)モールド本体の微細凹凸構造が形成された側の表面を、官能基(A)またはその前駆体を有する化合物(シランカップリング剤等)で処理することによって、前記表面に官能基(A)を導入する方法。 When the functional group (A) is not present on the surface of the mold body on which the fine concavo-convex structure is formed, for example, the functional group (A) by the following method (II-1) or method (II-2) May be introduced.
(II-1) A method in which the functional group (A) is introduced into the surface of the mold main body by performing plasma treatment on the surface on which the fine concavo-convex structure is formed.
(II-2) By treating the surface of the mold body on which the fine concavo-convex structure is formed with a functional group (A) or a compound having a precursor thereof (such as a silane coupling agent), a functional group is formed on the surface. A method of introducing (A).
官能基(A)が水酸基の場合の官能基(B)としては、加水分解性シリル基、シラノール基、チタン原子もしくはアルミニウム原子を含む加水分解性基等が挙げられ、水酸基との反応性がよい点から、加水分解性シリル基またはシラノール基が好ましく、加水分解性シリル基がより好ましい。加水分解性シリル基とは、加水分解によってシラノール基(Si-OH)を生成する基であり、Si-OR(Rはアルキル基である。)、およびSi-X(Xはハロゲン原子である。)等が挙げられる。 The functional group (B) means a group that can react with the functional group (A) to form a chemical bond or a group that can be easily converted into the group.
Examples of the functional group (B) when the functional group (A) is a hydroxyl group include a hydrolyzable silyl group, a silanol group, a hydrolyzable group containing a titanium atom or an aluminum atom, and the reactivity with the hydroxyl group is good. From the viewpoint, a hydrolyzable silyl group or a silanol group is preferable, and a hydrolyzable silyl group is more preferable. The hydrolyzable silyl group is a group that generates a silanol group (Si—OH) by hydrolysis, Si—OR (R is an alkyl group), and Si—X (X is a halogen atom). ) And the like.
さらに離型剤としては、官能基(B)を有するフッ素化合物であって、前記官能基(B)が加水分解性シリル基であり、かつパーフルオロポリエーテル構造を有するフッ素化合物が特に好ましい。前記官能基(B)が加水分解性シリル基であり、かつパーフルオロポリエーテル構造を有すると、官能基(A)と反応性がよく、かつ離型性が特に良好である。 Examples of the release agent include a silicone resin having a functional group (B), a fluororesin having a functional group (B), a fluorine compound having a functional group (B), and the like, and a fluorine compound having a hydrolyzable silyl group Is more preferable. Commercially available fluorine compounds having hydrolyzable silyl groups include fluoroalkylsilanes, and those having a perfluoropolyether structure include “OPTOOL (registered trademark)” series manufactured by Daikin Industries.
Further, the release agent is particularly preferably a fluorine compound having a functional group (B), wherein the functional group (B) is a hydrolyzable silyl group and has a perfluoropolyether structure. When the functional group (B) is a hydrolyzable silyl group and has a perfluoropolyether structure, the functional group (A) is highly reactive and the releasability is particularly good.
(II-3)離型剤の希釈溶液にモールド本体を浸漬する方法。
(II-4)離型剤またはその希釈溶液を、モールド本体の微細凹凸構造が形成された側の表面に塗布する方法。 Examples of the treatment method using a release agent include the following methods (II-3) to (II-4), and the surface of the mold body on which the fine concavo-convex structure is formed can be treated with the release agent without unevenness. Therefore, the method (II-3) is particularly preferable.
(II-3) A method of immersing the mold body in a dilute solution of a release agent.
(II-4) A method in which a release agent or a diluted solution thereof is applied to the surface of the mold body on the side where the fine relief structure is formed.
(g)必要に応じて、工程(f)の後、モールド本体を水洗する工程。
(h)必要に応じて、工程(g)の後、モールド本体にエアーを吹き付け、モールド本体の表面に付着した不純物等を除去する工程。
(i)工程(f)~(h)の後、加水分解性シリル基を有するフッ素化合物をフッ素系溶媒で希釈した希釈溶液に、表面に水酸基が導入されたモールド本体を浸漬する工程。
(j)必要に応じて、工程(i)の後、モールド本体を乾燥させる工程。 As the method (II-3), a method having the following steps (g) to (j) is preferable.
(G) A step of washing the mold body with water after the step (f) as necessary.
(H) After the step (g), if necessary, a step of blowing air to the mold body to remove impurities adhering to the surface of the mold body.
(I) A step of immersing the mold body having a hydroxyl group introduced on the surface thereof in a diluted solution obtained by diluting a fluorine compound having a hydrolyzable silyl group with a fluorine-based solvent after the steps (f) to (h).
(J) A step of drying the mold body after step (i), if necessary.
モールド本体には、微細凹凸構造を形成する際に用いた薬剤(細孔径拡大処理に用いたリン酸水溶液等)、および不純物(埃等)等が付着しているため、水洗によってこれを除去する。 Step (g):
Since the chemicals used in forming the fine concavo-convex structure (phosphoric acid aqueous solution used in the pore size enlargement process) and impurities (dust etc.) are adhered to the mold body, they are removed by washing with water. .
モールド本体の表面に水滴が付着していると、工程(i)の離型剤による処理の効率が低下するため、モールド本体にエアーを吹き付け、目に見える水滴はほぼ除去する。 Step (h):
If water droplets are attached to the surface of the mold main body, the efficiency of the treatment with the release agent in the step (i) is lowered, so that air is blown onto the mold main body and the visible water droplets are almost removed.
希釈用のフッ素系溶媒としては、ハイドロフルオロポリエーテル、パーフルオロヘキサン、パーフルオロメチルシクロヘキサン、パーフルオロ-1,3-ジメチルシクロヘキサン、およびジクロロペンタフルオロプロパン等が挙げられる。
加水分解性シリル基を有するフッ素化合物の濃度は、希釈溶液(100質量%)中、0.01~0.2質量%が好ましく、0.06質量%以上0.15質量%以下がさらに好ましい。加水分解性シリル基を有するフッ素化合物のフッ素化合物の濃度が前記範囲内であると、保存または使用時に離型剤の自己縮合反応により離型剤溶液が劣化することを抑制でき、かつ十分な離型性が得られる。
浸漬時間は、1~30分が好ましい。
浸漬温度は、0~50℃が好ましい。 Step (i):
Examples of the fluorine-based solvent for dilution include hydrofluoropolyether, perfluorohexane, perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, and dichloropentafluoropropane.
The concentration of the fluorine compound having a hydrolyzable silyl group is preferably from 0.01 to 0.2% by mass, more preferably from 0.06% by mass to 0.15% by mass in the diluted solution (100% by mass). When the concentration of the fluorine compound having a hydrolyzable silyl group is within the above range, it is possible to suppress deterioration of the release agent solution due to the self-condensation reaction of the release agent during storage or use, and sufficient release. Type characteristics are obtained.
The immersion time is preferably 1 to 30 minutes.
The immersion temperature is preferably 0 to 50 ° C.
モールド本体を風乾させてもよく、乾燥機等で強制的に加熱乾燥させてもよい。
乾燥温度は、50~150℃が好ましい。
乾燥時間は、5~300分が好ましい。 Step (j):
The mold body may be air-dried or forcibly heated and dried with a dryer or the like.
The drying temperature is preferably 50 to 150 ° C.
The drying time is preferably 5 to 300 minutes.
工程(III)は、例えば、下記の工程(k)、および/または工程(l)からなる。
(k)工程(i)の後、モールド本体を加熱加湿下に置く工程。
(l)必要に応じて、工程(k)の直後のモールド本体をフッ素系溶媒で洗浄する工程。 (Process (III))
Step (III) includes, for example, the following step (k) and / or step (l).
(K) A step of placing the mold body under heating and humidification after step (i).
(L) A step of washing the mold main body immediately after the step (k) with a fluorine-based solvent as necessary.
モールド本体を加熱加湿下に放置することによって、フッ素化合物(離型剤)の加水分解性シリル基が加水分解されてシラノール基が生成し、前記シラノール基とモールド本体の表面の水酸基との反応が十分に進行し、フッ素化合物の定着性が向上する。
加熱温度は、40~100℃が好ましい。
加湿条件は、相対湿度85%以上が好ましい。
放置時間は、10分~1日が好ましい。 Step (k):
By leaving the mold body under heating and humidification, the hydrolyzable silyl group of the fluorine compound (release agent) is hydrolyzed to form a silanol group, and the reaction between the silanol group and the hydroxyl group on the surface of the mold body It proceeds sufficiently and improves the fixability of the fluorine compound.
The heating temperature is preferably 40 to 100 ° C.
The humidification condition is preferably a relative humidity of 85% or more.
The standing time is preferably 10 minutes to 1 day.
洗浄用のフッ素系溶媒としては、パーフルオロヘキサン、パーフルオロメチルシクロヘキサン、パーフルオロ-1,3-ジメチルシクロヘキサン、およびジクロロペンタフルオロプロパン等が挙げられる。
フッ素系溶媒で洗浄されたモールド本体を、水、またはアルコール類等でさらに洗浄してもよい。 Step (l):
Examples of the fluorinated solvent for washing include perfluorohexane, perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, and dichloropentafluoropropane.
The mold main body washed with the fluorinated solvent may be further washed with water or alcohol.
工程(IV)は、例えば、下記の工程(m)、および/または工程(n)からなる。
(m)工程(i)~工程(l)を1サイクルとし、前記サイクルを2回以上繰り返す工程。
(n)必要に応じて、工程(m)の後、モールド本体を乾燥させる工程。 (Process (IV))
Step (IV) includes, for example, the following step (m) and / or step (n).
(M) A step of repeating steps (i) to (l) as one cycle and repeating the cycle twice or more.
(N) A step of drying the mold body after the step (m) as necessary.
工程(i)~工程(l)のサイクルの繰り返し回数は、2回以上であり、2~10回が好ましく、3~5回がより好ましい。繰り返し回数が2回以上であれば、モールドの離型性を長時間にわたって維持できる。 Step (m):
The number of repetitions of the cycle of step (i) to step (l) is 2 times or more, preferably 2 to 10 times, more preferably 3 to 5 times. If the number of repetitions is 2 or more, the mold releasability can be maintained for a long time.
モールド本体を風乾させてもよく、乾燥機等で強制的に加熱乾燥させてもよい。
乾燥温度は、40~150℃が好ましい。
乾燥時間は、5~300分が好ましい。 Step (n):
The mold body may be air-dried or forcibly heated and dried with a dryer or the like.
The drying temperature is preferably 40 to 150 ° C.
The drying time is preferably 5 to 300 minutes.
以上説明した本発明のモールドの製造方法にあっては、モールド本体の前記微細凹凸構造が形成された側の表面を離型剤で処理する工程(II)と、前記モールド本体を加熱加湿下に置く工程(III)とを2回以上繰り返すため、表面の微細凹凸構造を繰り返し転写しても離型性を長時間にわたって維持できるモールドを製造できる。 (Function and effect)
In the mold manufacturing method of the present invention described above, the step (II) of treating the surface of the mold body on the side where the fine concavo-convex structure is formed with a release agent, and the mold body under heating and humidification Since the placing step (III) is repeated twice or more, it is possible to produce a mold capable of maintaining the releasability for a long time even if the fine concavo-convex structure on the surface is repeatedly transferred.
陽極酸化アルミナの表面は、加水分解性シリル基(シラノール基)と反応しにくく、離型剤で1回処理しただけでは、離型剤の存在しない隙間が形成されやすい。そのため、前記隙間から離型剤の剥離が生じやすく、モールドの離型性が低下しやすい。一方、本発明においては、離型剤による処理を2回以上繰り返しているため、隙間を離型剤でできるだけ埋めることができ、モールドの離型性が低下しにくい。 The mold manufacturing method of the present invention is particularly effective as a mold manufacturing method having an anodized alumina on the surface for the following reasons.
The surface of the anodized alumina hardly reacts with the hydrolyzable silyl group (silanol group), and a gap free from the release agent is easily formed only by treating with the release agent once. Therefore, the release agent is easily peeled from the gap, and the mold releasability is likely to be lowered. On the other hand, in the present invention, since the treatment with the release agent is repeated twice or more, the gap can be filled with the release agent as much as possible, and the mold releasability is unlikely to deteriorate.
微細凹凸構造を表面に有する物品は、例えば、図2に示す製造装置を用いて、下記のようにして製造される。
表面に微細凹凸構造(図示略)を有するロール状モールド20と、ロール状モールド20の表面に沿って移動する帯状のフィルム42(物品本体)との間に、タンク22から活性エネルギー線硬化性樹脂組成物を供給する。 <Method for producing article having fine concavo-convex structure on surface>
An article having a fine concavo-convex structure on its surface is manufactured as follows using, for example, a manufacturing apparatus shown in FIG.
An active energy ray curable resin from the
剥離ロール30により、表面に硬化樹脂層44が形成されたフィルム42をロール状モールド20から剥離することによって、図3に示すような物品40を得る。 By irradiating the active energy ray curable resin composition through the
By peeling the
陽極酸化アルミナのモールドを用いた場合の物品40の表面の微細凹凸構造は、陽極酸化アルミナの表面の微細凹凸構造を転写して形成されたものであり、活性エネルギー線硬化性樹脂組成物の硬化物からなる2以上の凸部46を有する。 The cured
When the anodized alumina mold is used, the fine uneven structure on the surface of the
凸部間の平均間隔の範囲は、20~400nmが好ましく、50~300nmがより好ましく、90~250nmがさらに好ましい。
凸部間の平均間隔は、電子顕微鏡観察によって隣接する凸部間の間隔(凸部の中心から隣接する凸部の中心までの距離)を50点測定し、これらの値を平均したものである。 The average interval between the convex portions is preferably 20 nm or more from the viewpoint of easy formation of the convex portions.
The range of the average distance between the convex portions is preferably 20 to 400 nm, more preferably 50 to 300 nm, and further preferably 90 to 250 nm.
The average interval between the convex portions is obtained by measuring 50 intervals between adjacent convex portions (distance from the center of the convex portion to the center of the adjacent convex portion) by electron microscope observation, and averaging these values. .
凸部の高さは、電子顕微鏡によって倍率30000倍で観察したときにおける、凸部の最頂部と、凸部間に存在する凹部の最底部との間の距離を測定した値である。 The height of the protrusions is preferably 80 to 500 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm when the average interval is 100 nm. If the height of the convex portion is 80 nm or more, the reflectance is sufficiently low and the wavelength dependency of the reflectance is small. If the height of a convex part is 500 nm or less, the scratch resistance of a convex part will become favorable.
The height of the convex portion is a value obtained by measuring the distance between the topmost portion of the convex portion and the bottommost portion of the concave portion existing between the convex portions when observed with an electron microscope at a magnification of 30000 times.
硬化樹脂層44の材料が疎水性の場合の微細凹凸構造の表面の水接触角の範囲は、90゜以上180゜以下が好ましく、110゜以上180゜以下がより好ましく、120゜以上180゜以下が特に好ましい。 When the material of the cured
When the material of the cured
硬化樹脂層44の材料が親水性の場合の、微細凹凸構造の表面の水接触角の範囲は、3゜以上30゜以下が好ましく、3゜以上25゜以下がより好ましく、3゜以上23゜以下がさらに好ましく、3゜以上21゜以下が特に好ましい。 When the material of the cured
When the material of the cured
活性エネルギー線硬化性樹脂組成物は、重合性化合物および重合開始剤を含む。
重合性化合物としては、分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、および反応性ポリマー等が挙げられる。
活性エネルギー線硬化性樹脂組成物は、非反応性のポリマー、および活性エネルギー線ゾルゲル反応性組成物を含んでいてもよい。 (Active energy ray-curable resin composition)
The active energy ray-curable resin composition contains a polymerizable compound and a polymerization initiator.
Examples of the polymerizable compound include monomers, oligomers, and reactive polymers having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule.
The active energy ray-curable resin composition may contain a non-reactive polymer and an active energy ray sol-gel reactive composition.
単官能モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アルキル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、および2-エトキシエチル(メタ)アクリレート等の(メタ)アクリレート誘導体;(メタ)アクリル酸、(メタ)アクリロニトリル;スチレン、およびα-メチルスチレン等のスチレン誘導体;および(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、およびジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体等が挙げられる。
これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。 Examples of the monomer having a radical polymerizable bond include monofunctional monomers and polyfunctional monomers.
Monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, s-butyl (meth) acrylate, t- Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, alkyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, Phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, allyl (meth) acrylate, 2-hydroxyethyl ( )) (Meth) acrylate derivatives such as hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, and 2-ethoxyethyl (meth) acrylate; (meth) acrylic acid, (meth) acrylonitrile; styrene, And styrene derivatives such as α-methylstyrene; and (meth) acrylamide derivatives such as (meth) acrylamide, N-dimethyl (meth) acrylamide, N-diethyl (meth) acrylamide, and dimethylaminopropyl (meth) acrylamide It is done.
These may be used alone or in combination of two or more.
活性エネルギー線ゾルゲル反応性組成物としては、アルコキシシラン化合物、およびアルキルシリケート化合物等が挙げられる。 Examples of non-reactive polymers include acrylic resins, styrene resins, polyurethane, cellulose resins, polyvinyl butyral, polyester, and thermoplastic elastomers.
Examples of the active energy ray sol-gel reactive composition include alkoxysilane compounds and alkylsilicate compounds.
R11 xSi(OR12)y ・・・(1)
ただし、R11、およびR12は、それぞれ炭素数1~10のアルキル基を表し、x、およびyは、x+y=4の関係を満たす整数を表す。 As an alkoxysilane compound, the compound of following formula (1) is mentioned.
R 11 x Si (OR 12 ) y (1)
However, R 11 and R 12 each represent an alkyl group having 1 to 10 carbon atoms, and x and y represent integers satisfying the relationship of x + y = 4.
R21O[Si(OR23)(OR24)O]zR22 ・・・(2)
ただし、R21~R24は、それぞれ炭素数1~5のアルキル基を表し、zは、3~20の整数を表す。 Examples of the alkyl silicate compound include a compound of the following formula (2).
R 21 O [Si (OR 23 ) (OR 24 ) O] z R 22 (2)
R 21 to R 24 each represents an alkyl group having 1 to 5 carbon atoms, and z represents an integer of 3 to 20.
これらは、1種を単独で用いてもよく、2種以上を併用してもよい。 When using a photocuring reaction, examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl, benzophenone, p-methoxybenzophenone, 2,2-diethoxy. Acetophenone, α, α-dimethoxy-α-phenylacetophenone, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-bis (dimethylamino) benzophenone, and 2-hydroxy-2-methyl-1-phenylpropane Carbonyl compounds such as -1-one; sulfur compounds such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; 2,4,6-trimethylbenzoyldiphenylphosphine oxide And benzoyldiethoxyphosphine oxide and the like.
These may be used alone or in combination of two or more.
硬化樹脂層44の微細凹凸構造の表面の水接触角を90°以上にするためには、疎水性の材料を形成し得る活性エネルギー線硬化性樹脂組成物として、フッ素含有化合物またはシリコーン系化合物を含む組成物を用いることが好ましい。 (Hydrophobic material)
In order to increase the water contact angle of the surface of the fine uneven structure of the cured
フッ素含有化合物としては、下記式(3)で表されるフルオロアルキル基を有する化合物が好ましい。
-(CF2)n-X ・・・(3)
ただし、Xは、フッ素原子または水素原子を表し、nは、1以上の整数を表し、1~20が好ましく、3~10がより好ましく、4~8が特に好ましい。 Fluorine-containing compounds:
As the fluorine-containing compound, a compound having a fluoroalkyl group represented by the following formula (3) is preferable.
-(CF 2 ) n -X (3)
However, X represents a fluorine atom or a hydrogen atom, n represents an integer of 1 or more, preferably 1 to 20, more preferably 3 to 10, and particularly preferably 4 to 8.
フルオロアルキル基置換ビニルモノマーとしては、フルオロアルキル基置換(メタ)アクリレート、フルオロアルキル基置換(メタ)アクリルアミド、フルオロアルキル基置換ビニルエーテル、およびフルオロアルキル基置換スチレン等が挙げられる。 Examples of the fluorine-containing monomer include a fluoroalkyl group-substituted vinyl monomer and a fluoroalkyl group-substituted ring-opening polymerizable monomer.
Examples of the fluoroalkyl group-substituted vinyl monomer include fluoroalkyl group-substituted (meth) acrylates, fluoroalkyl group-substituted (meth) acrylamides, fluoroalkyl group-substituted vinyl ethers, and fluoroalkyl group-substituted styrenes.
CH2=C(R41)C(O)O-(CH2)m-(CF2)n-X ・・・(4)
ただし、R41は、水素原子またはメチル基を表し、Xは、水素原子またはフッ素原子を表し、mは、1~6の整数を表し、1~3が好ましく、1または2がより好ましく、nは、1~20の整数を表し、3~10が好ましく、4~8がより好ましい。 As the fluorine-containing monomer, a fluoroalkyl group-substituted (meth) acrylate is preferable, and a compound of the following formula (4) is particularly preferable.
CH 2 = C (R 41 ) C (O) O— (CH 2 ) m — (CF 2 ) n —X (4)
R 41 represents a hydrogen atom or a methyl group, X represents a hydrogen atom or a fluorine atom, m represents an integer of 1 to 6, preferably 1 to 3, more preferably 1 or 2, and n Represents an integer of 1 to 20, preferably 3 to 10, and more preferably 4 to 8.
(Rf)aR51 bSiYc ・・・(5) As the fluorine-containing silane coupling agent, a fluoroalkyl group-substituted silane coupling agent is preferable, and a compound of the following formula (5) is particularly preferable.
(R f ) a R 51 b SiY c (5)
加水分解性基としては、アルコキシ基、およびハロゲン原子、R52C(O)O(ただし、R52は、水素原子または炭素数1~10のアルキル基を表す。)等が挙げられる。
アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、i-プロピルオキシ基、ブトキシ基、i-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、およびラウリルオキシ基等が挙げられる。
ハロゲン原子としては、Cl、Br、およびI等が挙げられる。
R52C(O)Oとしては、CH3C(O)O、C2H5C(O)O等が挙げられる。 Y represents a hydroxyl group or a hydrolyzable group.
Examples of the hydrolyzable group include an alkoxy group, a halogen atom, and R 52 C (O) O (wherein R 52 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, i-propyloxy group, butoxy group, i-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, Examples include octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group.
Examples of the halogen atom include Cl, Br, and I.
Examples of R 52 C (O) O include CH 3 C (O) O, C 2 H 5 C (O) O, and the like.
ポリ(オキシアルキレン)基としては、下記式(6)で表される基が好ましい。
-(OR61)p- ・・・(6)
ただし、R61は、炭素数2~4のアルキレン基を表し、pは、2以上の整数を表す。
R61としては、-CH2CH2-、-CH2CH2CH2-、-CH(CH3)CH2-、および-CH(CH3)CH(CH3)-等が挙げられる。 As the fluorine-containing polymer, a copolymer of a fluoroalkyl group-containing monomer and a poly (oxyalkylene) group-containing monomer is preferable.
As the poly (oxyalkylene) group, a group represented by the following formula (6) is preferable.
-(OR 61 ) p- (6)
R 61 represents an alkylene group having 2 to 4 carbon atoms, and p represents an integer of 2 or more.
Examples of R 61 include —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH (CH 3 ) CH 2 —, and —CH (CH 3 ) CH (CH 3 ) —.
シリコーン系化合物としては、(メタ)アクリル酸変性シリコーン、シリコーン樹脂、およびシリコーン系シランカップリング剤等が挙げられる。
(メタ)アクリル酸変性シリコーンとしては、シリコーン(ジ)(メタ)アクリレート等が挙げられる。 Silicone compounds:
Examples of the silicone compound include (meth) acrylic acid-modified silicone, silicone resin, silicone silane coupling agent, and the like.
Examples of the (meth) acrylic acid-modified silicone include silicone (di) (meth) acrylate.
硬化樹脂層44の微細凹凸構造の表面の水接触角を25°以下にするためには、親水性の材料を形成し得る活性エネルギー線硬化性樹脂組成物として、少なくとも親水性モノマーを含む組成物を用いることが好ましい。また、耐擦傷性や耐水性付与の観点からは、架橋可能な多官能モノマーを含むものがより好ましい。なお、親水性モノマーと架橋可能な多官能モノマーは、同一(すなわち、親水性多官能モノマー)であってもよい。さらに、活性エネルギー線硬化性樹脂組成物は、その他のモノマーを含んでいてもよい。 (Hydrophilic material)
In order to make the water contact angle of the surface of the fine concavo-convex structure of the cured
4官能以上の多官能(メタ)アクリレートの10~50質量%、
2官能以上の親水性(メタ)アクリレートの30~80質量%、および
単官能モノマーの0~20質量%の合計100質量%からなる重合性化合物。 As the active energy ray-curable resin composition capable of forming a hydrophilic material, it is more preferable to use a composition containing the following polymerizable compound.
10-50% by mass of tetrafunctional or higher polyfunctional (meth) acrylate,
A polymerizable compound comprising a total of 100% by mass of 30 to 80% by mass of a bifunctional or higher functional hydrophilic (meth) acrylate and 0 to 20% by mass of a monofunctional monomer.
4官能以上の多官能(メタ)アクリレートとしては、5官能以上の多官能(メタ)アクリレートがより好ましい。 Examples of tetrafunctional or higher polyfunctional (meth) acrylates include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, di Pentaerythritol hexa (meth) acrylate, succinic acid / trimethylolethane / acrylic acid molar mixture 1: 2: 4 condensation reaction mixture, urethane acrylates (manufactured by Daicel-Cytec: EBECRYL220, EBECRYL1290K, EBECRYL1290K, EBECRYL5129, EBECRYL8210, EBECRYL 8301, KRM 8200), polyether acrylates (manufactured by Daicel-Cytec: EBEC) YL81), modified epoxy acrylates (manufactured by Daicel-Cytec: EBECRYL3416), polyester acrylates (manufactured by Daicel-Cytech: EBECRYL450, EBECRYL657, EBECRYL800, EBECRYL810, EBECRYL8111, EBECRYL81L, EBECRYL81L It is done. These may be used alone or in combination of two or more.
The polyfunctional (meth) acrylate having 4 or more functional groups is more preferably a polyfunctional (meth) acrylate having 5 or more functional groups.
ポリエチレングリコールジメタクリレートにおいて、一分子内に存在するポリエチレングリコール鎖の平均繰り返し単位の合計は、6~40が好ましく、9~30がより好ましく、12~20が特に好ましい。ポリエチレングリコール鎖の平均繰り返し単位が6以上であれば、親水性が十分となり、防汚性が向上する。ポリエチレングリコール鎖の平均繰り返し単位が40以下であれば、4官能以上の多官能(メタ)アクリレートとの相溶性が良好となり、活性エネルギー線硬化性樹脂組成物が分離しにくい。 Long-chains such as Aronix M-240, Aronix M260 (manufactured by Toagosei Co., Ltd.), NK ester AT-20E, and NK ester ATM-35E (manufactured by Shin-Nakamura Chemical Co., Ltd.) And polyfunctional acrylates having polyethylene glycol; and polyethylene glycol dimethacrylate. These may be used alone or in combination of two or more.
In polyethylene glycol dimethacrylate, the total of the average repeating units of polyethylene glycol chains present in one molecule is preferably 6 to 40, more preferably 9 to 30, and particularly preferably 12 to 20. If the average repeating unit of the polyethylene glycol chain is 6 or more, the hydrophilicity is sufficient and the antifouling property is improved. When the average repeating unit of the polyethylene glycol chain is 40 or less, the compatibility with a polyfunctional (meth) acrylate having 4 or more functionalities is improved, and the active energy ray-curable resin composition is hardly separated.
親水性単官能モノマーとしては、M-20G、M-90G、M-230G(新中村化学社製)等のエステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート;ヒドロキシアルキル(メタ)アクリレート等のエステル基に水酸基を有する単官能(メタ)アクリレート;単官能アクリルアミド類;およびメタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート、およびメタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェート等のカチオン性モノマー類等が挙げられる。
また、単官能モノマーとして、アクリロイルモルホリン、およびビニルピロリドン等の粘度調整剤;および物品本体への密着性を向上させるアクリロイルイソシアネート類等の密着性向上剤等を用いてもよい。 As the monofunctional monomer, a hydrophilic monofunctional monomer is preferable.
Examples of hydrophilic monofunctional monomers include monofunctional (meth) acrylates having a polyethylene glycol chain in the ester group such as M-20G, M-90G, and M-230G (manufactured by Shin-Nakamura Chemical Co.); hydroxyalkyl (meth) acrylates, etc. And monofunctional (meth) acrylates having a hydroxyl group in the ester group; monofunctional acrylamides; and cationic monomers such as methacrylamidopropyltrimethylammonium methylsulfate and methacryloyloxyethyltrimethylammonium methylsulfate.
In addition, as a monofunctional monomer, viscosity modifiers such as acryloylmorpholine and vinylpyrrolidone; and adhesion improvers such as acryloyl isocyanates that improve adhesion to the article body may be used.
物品40の用途としては、反射防止物品、防曇性物品、防汚性物品、および撥水性物品、より具体的にはディスプレー用反射防止、自動車メーターカバー、自動車ミラー、自動車窓、有機または無機エレクトロルミネッセンスの光取り出し効率向上部材、および太陽電池部材等が挙げられる。 (Use)
Applications of the
以上説明した本発明の微細凹凸構造を表面に有する物品の製造方法にあっては、本発明のモールドの製造方法で得られたモールドを用いているため、モールドの微細凹凸構造を物品の表面に繰り返し転写した場合であっても、離型性が低下しにくくなり、その結果、微細凹凸構造を表面に有する物品を生産性よく製造できるようになる。 (Function and effect)
In the method for producing an article having the fine concavo-convex structure of the present invention described above on the surface, since the mold obtained by the mold production method of the present invention is used, the fine concavo-convex structure of the mold is formed on the surface of the article. Even when it is repeatedly transferred, the releasability is hardly lowered, and as a result, an article having a fine concavo-convex structure on the surface can be manufactured with high productivity.
陽極酸化アルミナの一部を削り、断面にプラチナを1分間蒸着し、電界放出形走査電子顕微鏡(日本電子社製、JSM-7400F)を用いて、加速電圧3.00kVの条件にて、断面を観察し、細孔の間隔、および細孔の深さを測定した。各測定は、それぞれ50点について行い、平均値を求めた。 (Pores of anodized alumina)
Part of the anodized alumina is shaved, platinum is deposited on the cross section for 1 minute, and the cross section is subjected to an acceleration voltage of 3.00 kV using a field emission scanning electron microscope (JSM-7400F, manufactured by JEOL Ltd.). Observed and measured pore spacing and pore depth. Each measurement was performed for 50 points, and the average value was obtained.
モールドの微細凹凸構造が形成された側の表面に、活性エネルギー線硬化性樹脂組成物Aを1μL流し込み、ポリエチレンテレフタレート(PET)フィルムを被せた後、UV照射機(高圧水銀ランプ:積算光量1100mJ/cm2)によって硬化を行った。ついで、PETフィルムごと硬化樹脂をモールドから剥離(離型)した。
モールドを変更することなく、この操作をくりかえし、400回目の離型時に90度剥離試験を行い、剥離強度を求めた。 (Transfer test, peel strength)
1 μL of the active energy ray-curable resin composition A is poured onto the surface of the mold on which the fine concavo-convex structure is formed, and after covering with a polyethylene terephthalate (PET) film, a UV irradiator (high pressure mercury lamp: integrated light quantity 1100 mJ / Curing was performed by cm 2 ). Next, the cured resin was peeled off (released) from the mold together with the PET film.
This operation was repeated without changing the mold, and a 90 ° peel test was performed at the 400th release to determine the peel strength.
TAS:コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応混合物;45質量部、
C6DA:1,6-ヘキサンジオールジアクリレート(大阪有機化学社製);45質量部、
X-22-1602:ラジカル重合性シリコーンオイル(信越化学工業社製);10質量部、
Irg184:1-ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティーケミカルズ社製、イルガキュア184);3質量部。 (Active energy ray-curable resin composition A)
TAS: Succinic acid / trimethylolethane / acrylic acid molar ratio 1: 2: 4 condensation reaction mixture; 45 parts by mass
C6DA: 1,6-hexanediol diacrylate (manufactured by Osaka Organic Chemical Co., Ltd.); 45 parts by mass
X-22-1602: radical polymerizable silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.); 10 parts by mass
Irg184: 1-hydroxycyclohexyl phenyl ketone (manufactured by Ciba Specialty Chemicals, Irgacure 184); 3 parts by mass.
50mm×50mm×厚さ0.3mmのアルミニウム板(純度99.99%)を、過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨したものを使用した。
工程(a):
前記アルミニウム板について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で6時間陽極酸化を行った。
工程(b):
酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に3時間浸漬して、酸化皮膜を除去した。
工程(c):
前記アルミニウム板について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。 [Example 1]
A 50 mm × 50 mm × 0.3 mm thick aluminum plate (purity 99.99%) electropolished in a perchloric acid / ethanol mixed solution (1/4 volume ratio) was used.
Step (a):
The aluminum plate was anodized in a 0.3 M oxalic acid aqueous solution for 6 hours under conditions of a direct current of 40 V and a temperature of 16 ° C.
Step (b):
The aluminum plate on which the oxide film was formed was immersed in a 6% by mass phosphoric acid / 1.8% by mass chromic acid mixed aqueous solution for 3 hours to remove the oxide film.
Step (c):
The aluminum plate was anodized in a 0.3 M oxalic acid aqueous solution for 30 seconds under conditions of a direct current of 40 V and a temperature of 16 ° C.
酸化皮膜が形成されたアルミニウム板を、32℃の5質量%リン酸水溶液に8分間浸漬して、細孔径拡大処理を行った。
工程(e):
前記アルミニウム板について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。 Step (d):
The aluminum plate on which the oxide film was formed was immersed in a 5% by mass phosphoric acid aqueous solution at 32 ° C. for 8 minutes to perform pore diameter expansion treatment.
Step (e):
The aluminum plate was anodized in a 0.3 M oxalic acid aqueous solution for 30 seconds under conditions of a direct current of 40 V and a temperature of 16 ° C.
前記工程(d)および工程(e)を合計で4回繰り返し、最後に工程(d)を行い、平均間隔:100nm、深さ:240nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールド本体aを得た。 Step (f):
The step (d) and the step (e) are repeated a total of four times, and finally the step (d) is performed. The formed mold body a was obtained.
シャワーを用いてモールド本体aの表面のリン酸水溶液を軽く洗い流した後、モールド本体aを流水中に10分間浸漬した。
工程(h):
モールド本体aにエアーガンからエアーを吹き付け、モールド本体aの表面に付着した水滴を除去した。 Step (g):
The phosphoric acid aqueous solution on the surface of the mold main body a was lightly washed off using a shower, and then the mold main body a was immersed in running water for 10 minutes.
Step (h):
Air was blown from the air gun onto the mold body a to remove water droplets adhering to the surface of the mold body a.
モールド本体aを、オプツールDSX(ダイキン化成品販売社製)を希釈剤HD-ZV(ハーベス社製)で0.1質量%に希釈した溶液に室温で10分間浸漬した。モールド本体aを希釈溶液から3mm/secでゆっくりと引き上げた。
工程(j):
モールド本体aを15分間風乾した。
工程(k):
離型剤処理したモールド本体aについて、恒温恒湿器(楠本化成社製)を用いて、温度60℃、相対湿度85%に1時間放置し、加熱加湿処理した。
工程(m):
工程(i)~(k)をさらに4回繰り返した。
工程(n):
モールド本体aを一晩風乾し、モールドを得た。
前記モールドを用いて転写試験を行った。90度剥離試験から求めた1回目から400回目の剥離強度を指数近似により外挿して800回目の剥離強度とし、剥離強度が35N/mに達する転写回数を概算し、転写可能回数とした。結果を表1に示す。
なお、後述の比較例1では転写可能回数240回で剥離強度が35N/mに達し、モールド側に硬化樹脂が付着したために離型出来ない領域が発生した。 Step (i):
The mold main body a was immersed in a solution obtained by diluting OPTOOL DSX (manufactured by Daikin Chemicals Sales Co., Ltd.) to 0.1% by mass with a diluent HD-ZV (manufactured by Harves) at room temperature for 10 minutes. The mold body a was slowly pulled up from the diluted solution at 3 mm / sec.
Step (j):
The mold body a was air-dried for 15 minutes.
Step (k):
The mold main body a treated with the release agent was left to stand at a temperature of 60 ° C. and a relative humidity of 85% for 1 hour using a thermo-hygrostat (manufactured by Enomoto Kasei Co., Ltd.) and subjected to heating and humidification treatment.
Step (m):
Steps (i) to (k) were repeated four more times.
Step (n):
The mold body a was air-dried overnight to obtain a mold.
A transfer test was performed using the mold. The first to 400th peel strength obtained from the 90-degree peel test was extrapolated by exponential approximation to obtain the 800th peel strength, and the number of transfer times at which the peel strength reached 35 N / m was estimated to be the number of transferable times. The results are shown in Table 1.
In Comparative Example 1 described later, the peel strength reached 35 N / m after 240 transferable times, and a region that could not be released due to adhesion of the cured resin on the mold side was generated.
工程(m)における繰り返し回数を2回とした以外は、実施例1と同様にしてモールドを得た。
前記モールドを用いて実施例1と同様に転写試験を行った。結果を表1に示す。 [Example 2]
A mold was obtained in the same manner as in Example 1 except that the number of repetitions in the step (m) was two.
A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
工程(m)における繰り返し回数を1回とした以外は、実施例1と同様にしてモールドを得た。
前記モールドを用いて実施例1と同様に転写試験を行った。結果を表1に示す。 Example 3
A mold was obtained in the same manner as in Example 1 except that the number of repetitions in the step (m) was one.
A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
工程(k)および工程(m)を行わなかったこと以外は、実施例1と同様にしてモールドを得た。
前記モールドを用いて実施例1と同様に転写試験を行った。結果を表1に示す。 [Comparative Example 1]
A mold was obtained in the same manner as in Example 1 except that the step (k) and the step (m) were not performed.
A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
工程(m)を行わなかったこと以外は、実施例1と同様にしてモールドを得た。
前記モールドを用いて実施例1と同様に転写試験を行った。結果を表1に示す。 [Comparative Example 2]
A mold was obtained in the same manner as in Example 1 except that the step (m) was not performed.
A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
工程(k)を行わなかったこと以外は、実施例2と同様にしてモールドを得た。
前記モールドを用いて実施例1と同様に転写試験を行った。結果を表1に示す。 [Comparative Example 3]
A mold was obtained in the same manner as in Example 2 except that the step (k) was not performed.
A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
オプツールDSXの希釈溶液の濃度を0.3質量%に変更した以外は、比較例1と同様にしてモールドを得た。
前記モールドを用いて実施例1と同様に転写試験を行った。結果を表1に示す。 [Comparative Example 4]
A mold was obtained in the same manner as in Comparative Example 1 except that the concentration of the diluted OPTOOL DSX solution was changed to 0.3% by mass.
A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
オプツールDSXの希釈溶液の濃度を0.3質量%に変更した以外は、比較例2と同様にしてモールドを得た。
前記モールドを用いて実施例1と同様に転写試験を行った。結果を表1に示す。 [Comparative Example 5]
A mold was obtained in the same manner as in Comparative Example 2 except that the concentration of the diluted OPTOOL DSX solution was changed to 0.3% by mass.
A transfer test was conducted in the same manner as in Example 1 using the mold. The results are shown in Table 1.
特に、離型剤の濃度0.1質量%付近で加熱加湿処理を2回以上繰り返すことで、非常に長時間にわたって離型性を維持できることがわかる。 From the above examples and comparative examples, by repeating the heating and humidification treatment on the mold body treated with the release agent under an appropriate release agent concentration, the mold release property can be extended for a long time even if the fine concavo-convex structure on the surface is repeatedly transferred. It can be seen that a mold that can be maintained over time can be produced.
In particular, it can be seen that the releasability can be maintained for a very long time by repeating the heat and humidification treatment at a concentration of about 0.1% by weight of the release agent twice or more.
12 細孔
14 酸化皮膜(陽極酸化アルミナ)
18 モールド本体
20 ロール状モールド
40 物品
42 フィルム(物品本体) 10
18
Claims (9)
- 下記の工程(I)~(IV)を有する、モールドの製造方法。
(I)表面に微細凹凸構造が形成されたモールド本体を作製する工程。
(II)工程(I)の後、前記モールド本体の前記微細凹凸構造が形成された側の表面を、前記表面に存在する官能基(A)と反応し得る官能基(B)を有する離型剤で処理する工程。
(III)工程(II)の後、前記モールド本体を加熱加湿下に置く工程。
(IV)前記工程(II)、および工程(III)を2回以上繰り返す工程。 A method for producing a mold, comprising the following steps (I) to (IV):
(I) The process of producing the mold main body by which the fine uneven structure was formed on the surface.
(II) After step (I), the surface of the mold body on which the fine concavo-convex structure is formed has a functional group (B) that can react with the functional group (A) present on the surface. The process of processing with an agent.
(III) A step of placing the mold body under heating and humidification after step (II).
(IV) A step of repeating the steps (II) and (III) twice or more. - 前記官能基(B)が、加水分解性シリル基である、請求項1に記載のモールドの製造方法。 The method for producing a mold according to claim 1, wherein the functional group (B) is a hydrolyzable silyl group.
- 前記離型剤の官能基(B)が、加水分解性シリル基であり、かつパーフルオロポリエーテル構造を有する離型剤である、請求項1または2記載のモールドの製造方法。 The method for producing a mold according to claim 1 or 2, wherein the functional group (B) of the release agent is a hydrolyzable silyl group and a release agent having a perfluoropolyether structure.
- 前記工程(II)において、前記離型剤の濃度が0.06質量%以上0.15質量%以下である請求項1~3のいずれか1項に記載のモールドの製造方法。 The method for producing a mold according to any one of claims 1 to 3, wherein in the step (II), the concentration of the release agent is 0.06 mass% or more and 0.15 mass% or less.
- 前記工程(I)の微細凹凸構造が形成されたモールドが、アルミニウム基材を陽極酸化し、その表面に2個以上の細孔を有する微細凹凸構造を形成したものである請求項1~4のいずれか1項に記載のモールドの製造方法。 5. The mold having the fine concavo-convex structure formed in the step (I) is obtained by anodizing an aluminum base material to form a fine concavo-convex structure having two or more pores on the surface thereof. The manufacturing method of the mold of any one of Claims 1.
- 前記細孔の平均間隔が、400nm以下である、請求項1~5のいずれか1項に記載のモールドの製造方法。 The method for producing a mold according to any one of claims 1 to 5, wherein an average interval between the pores is 400 nm or less.
- 前記細孔の平均間隔が、20nm以上400nm以下である、請求項6に記載のモールドの製造方法。 The method for producing a mold according to claim 6, wherein an average interval between the pores is 20 nm or more and 400 nm or less.
- 前記工程(I)が下記の工程(a)~(f)を有し、
前記工程(II)が下記の工程(g)~(j)を有し、
前記工程(III)が下記の工程(k)および/または(l)を有し、
前記工程(IV)が下記の工程(m)および/または(n)を有する、請求項1~7のいずれか1項に記載のモールドの製造方法。
(a)アルミニウム基材を電解液中、定電圧下で陽極酸化してアルミニウム基材の表面に酸化皮膜を形成する工程。
(b)前記酸化皮膜を除去し、前記アルミニウム基材の表面に陽極酸化の細孔発生点を形成する工程。
(c)前記工程(b)の後、前記アルミニウム基材を電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
(d)前記工程(c)の後、細孔の径を拡大させる工程。
(e)前記工程(d)の後、電解液中、再度陽極酸化する工程。
(f)前記工程(d)と前記工程(e)を繰り返し行い、2個以上の細孔を有する陽極酸化アルミナが前記アルミニウム基材の表面に形成されたモールド本体を得る工程。
(g)前記工程(f)の後、前記モールド本体を水洗する工程。
(h)前記工程(g)の後、前記モールド本体にエアーを吹き付け、前記モールド本体の表面に付着した不純物を除去する工程。
(i)前記工程(f)~(h)の後、加水分解性シリル基を有するフッ素化合物をフッ素系溶媒で希釈した希釈溶液に、表面に水酸基が導入されたモールド本体を浸漬する工程。
(j)前記工程(i)の後、前記モールド本体を乾燥させる工程。
(k)工程(i)の後、前記モールド本体を加熱加湿下に置く工程。
(l)工程(k)の直後の前記モールド本体を、フッ素系溶媒で洗浄する工程。
(m)前記工程(i)~前記工程(l)を1サイクルとし、前記サイクルを2回以上繰り返す工程。
(n)前記工程(m)の後、前記モールド本体を乾燥させる工程。 The step (I) includes the following steps (a) to (f):
The step (II) includes the following steps (g) to (j):
The step (III) has the following step (k) and / or (l):
The method for producing a mold according to any one of claims 1 to 7, wherein the step (IV) includes the following steps (m) and / or (n).
(A) A step of forming an oxide film on the surface of an aluminum substrate by anodizing the aluminum substrate in an electrolytic solution under a constant voltage.
(B) A step of removing the oxide film and forming anodic oxidation pore generation points on the surface of the aluminum substrate.
(C) After the step (b), the step of anodizing the aluminum base material again in the electrolytic solution to form an oxide film having pores at the pore generation points.
(D) A step of enlarging the diameter of the pores after the step (c).
(E) A step of anodizing again in the electrolytic solution after the step (d).
(F) The process of obtaining the mold main body by which the said process (d) and the said process (e) are repeated, and the anodic oxidation alumina which has a 2 or more pore is formed in the surface of the said aluminum base material.
(G) A step of washing the mold body after the step (f).
(H) After the step (g), air is blown onto the mold body to remove impurities adhering to the surface of the mold body.
(I) After the steps (f) to (h), a step of immersing the mold body having a hydroxyl group introduced into the surface thereof in a diluted solution obtained by diluting a fluorine compound having a hydrolyzable silyl group with a fluorine-based solvent.
(J) A step of drying the mold body after the step (i).
(K) A step of placing the mold body under heating and humidification after step (i).
(L) A step of washing the mold body immediately after the step (k) with a fluorinated solvent.
(M) A step in which the steps (i) to (l) are defined as one cycle and the cycle is repeated twice or more.
(N) A step of drying the mold body after the step (m). - 請求項1~8のいずれか1項に記載のモールドの製造方法で得られたモールドの表面の微細凹凸構造を、物品本体の表面に転写することを含む、微細凹凸構造を表面に有する物品の製造方法。 An article having a fine concavo-convex structure on its surface, comprising transferring the fine concavo-convex structure on the surface of the mold obtained by the method for producing a mold according to any one of claims 1 to 8 to the surface of the article main body. Production method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180012912.5A CN102791454B (en) | 2010-03-25 | 2011-03-22 | Method for producing molds and method for producing products with superfine concave-convex structures on surface |
JP2011517130A JP5549943B2 (en) | 2010-03-25 | 2011-03-22 | Method for producing mold and method for producing article having fine uneven structure on surface |
KR1020127024356A KR101473069B1 (en) | 2010-03-25 | 2011-03-22 | Method for producing molds and method for producing products with superfine concave-convex structures on surface |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-070281 | 2010-03-25 | ||
JP2010070281 | 2010-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118591A1 true WO2011118591A1 (en) | 2011-09-29 |
Family
ID=44673142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056860 WO2011118591A1 (en) | 2010-03-25 | 2011-03-22 | Method for producing molds and method for producing products with superfine concave-convex structures on surface |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5549943B2 (en) |
KR (1) | KR101473069B1 (en) |
CN (1) | CN102791454B (en) |
TW (1) | TW201144028A (en) |
WO (1) | WO2011118591A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012133390A1 (en) * | 2011-03-30 | 2012-10-04 | シャープ株式会社 | Mold release treatment method, and antireflective film production method |
WO2013146656A1 (en) * | 2012-03-26 | 2013-10-03 | シャープ株式会社 | Mold release treatment method and method for producing anti-reflective film |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6046505B2 (en) * | 2013-01-29 | 2016-12-14 | 株式会社ダイセル | Sheet mold, method for producing the same, and use thereof |
CN105137712A (en) * | 2015-07-21 | 2015-12-09 | 苏州大学 | Method for constructing organic liquid crystal molecule single crystal micron line array patterning by utilizing nano imprinting technology |
US11135761B2 (en) * | 2016-06-14 | 2021-10-05 | Daikin Industries, Ltd. | Process for producing receiving object having transferred pattern |
CN106670744B (en) * | 2016-12-21 | 2018-09-25 | 西安理工大学 | A kind of preparation method of the wear-resisting hydrophobic sliding functional membrane of inner surface of bearing bush |
EP3511292A1 (en) * | 2018-01-10 | 2019-07-17 | SABIC Global Technologies B.V. | A hydrophobic impact textured surface and a method of making the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001088138A (en) * | 1999-09-20 | 2001-04-03 | Jsr Corp | Method for treating mold made of resin and mold made of resin |
JP2002263795A (en) * | 2001-03-14 | 2002-09-17 | Ryoei Engineering Kk | Method for spraying releasing agent for die-casting machine, and device thereof |
JP2006116896A (en) * | 2004-10-25 | 2006-05-11 | Alps Electric Co Ltd | Mold manufacturing method |
JP2006264187A (en) * | 2005-03-24 | 2006-10-05 | Fuji Xerox Co Ltd | Method for forming multilayer type mold-release layer, cylindrical mold, and method for manufacturing seamless tubular article |
JP2009184117A (en) * | 2008-02-01 | 2009-08-20 | Konica Minolta Opto Inc | Resin molding die and method of manufacturing the same |
JP2010005841A (en) * | 2008-06-25 | 2010-01-14 | Mitsubishi Rayon Co Ltd | Mold manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2820022B2 (en) * | 1994-03-25 | 1998-11-05 | 信越化学工業株式会社 | Production method of release sheet |
JP4930517B2 (en) * | 2007-02-07 | 2012-05-16 | 旭硝子株式会社 | Imprint mold and manufacturing method thereof |
-
2011
- 2011-03-22 KR KR1020127024356A patent/KR101473069B1/en active Active
- 2011-03-22 WO PCT/JP2011/056860 patent/WO2011118591A1/en active Application Filing
- 2011-03-22 JP JP2011517130A patent/JP5549943B2/en active Active
- 2011-03-22 CN CN201180012912.5A patent/CN102791454B/en active Active
- 2011-03-23 TW TW100109890A patent/TW201144028A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001088138A (en) * | 1999-09-20 | 2001-04-03 | Jsr Corp | Method for treating mold made of resin and mold made of resin |
JP2002263795A (en) * | 2001-03-14 | 2002-09-17 | Ryoei Engineering Kk | Method for spraying releasing agent for die-casting machine, and device thereof |
JP2006116896A (en) * | 2004-10-25 | 2006-05-11 | Alps Electric Co Ltd | Mold manufacturing method |
JP2006264187A (en) * | 2005-03-24 | 2006-10-05 | Fuji Xerox Co Ltd | Method for forming multilayer type mold-release layer, cylindrical mold, and method for manufacturing seamless tubular article |
JP2009184117A (en) * | 2008-02-01 | 2009-08-20 | Konica Minolta Opto Inc | Resin molding die and method of manufacturing the same |
JP2010005841A (en) * | 2008-06-25 | 2010-01-14 | Mitsubishi Rayon Co Ltd | Mold manufacturing method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012133390A1 (en) * | 2011-03-30 | 2012-10-04 | シャープ株式会社 | Mold release treatment method, and antireflective film production method |
WO2013146656A1 (en) * | 2012-03-26 | 2013-10-03 | シャープ株式会社 | Mold release treatment method and method for producing anti-reflective film |
CN104245267A (en) * | 2012-03-26 | 2014-12-24 | 夏普株式会社 | Mold release treatment method and method for producing anti-reflective film |
US20150321386A1 (en) * | 2012-03-26 | 2015-11-12 | Sharp Kabushiki Kaisha | Mold release treatment method and method for producing anti-reflective film |
JPWO2013146656A1 (en) * | 2012-03-26 | 2015-12-14 | シャープ株式会社 | Mold release processing method and manufacturing method of antireflection film |
CN104245267B (en) * | 2012-03-26 | 2017-06-23 | 夏普株式会社 | The manufacture method of mold release treatment method and antireflection film |
US9821494B2 (en) | 2012-03-26 | 2017-11-21 | Sharp Kabushiki Kaisha | Mold release treatment method and method for producing anti-reflective film |
Also Published As
Publication number | Publication date |
---|---|
KR101473069B1 (en) | 2014-12-15 |
KR20120130220A (en) | 2012-11-29 |
JP5549943B2 (en) | 2014-07-16 |
TW201144028A (en) | 2011-12-16 |
CN102791454A (en) | 2012-11-21 |
CN102791454B (en) | 2015-01-07 |
JPWO2011118591A1 (en) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5005114B2 (en) | Method for manufacturing article having fine concavo-convex structure on surface | |
JP5742220B2 (en) | Film production method | |
JP4990414B2 (en) | Method for producing article having fine concavo-convex structure on surface, mold release treatment method, and active energy ray curable resin composition for mold surface release treatment | |
JP2010005841A (en) | Mold manufacturing method | |
JP5362826B2 (en) | Method for producing an article in which a cured resin layer having a fine relief structure is formed on the surface of a substrate | |
JP5605223B2 (en) | Antireflection article and display device | |
JP5673534B2 (en) | MOLD, ITS MANUFACTURING METHOD, ARTICLE HAVING FINE RADIO-CONDENSED STRUCTURE ON THE SURFACE, AND MANUFACTURING METHOD | |
JP5549943B2 (en) | Method for producing mold and method for producing article having fine uneven structure on surface | |
JP2013050704A (en) | Light transmissive film | |
JP2011025683A (en) | Method of manufacturing mold | |
JP5768711B2 (en) | Method for evaluating performance of organic release agent, method for producing mold, and method for producing transparent film having fine uneven structure on surface | |
JP2009271298A (en) | Antifogging transparent member and article equipped with the same | |
JP2012108502A (en) | Method for manufacturing article having fine relief structure on surface | |
WO2012105539A1 (en) | Active-energy-ray-curable composition, and process for production of transparent film having fine uneven structure on surface thereof | |
JP2009271205A (en) | Optical mirror | |
JP2013224015A (en) | Light transmissive film and method for manufacturing the same | |
JP4856785B2 (en) | Manufacturing method and manufacturing apparatus for article having fine uneven structure on surface | |
JP5269467B2 (en) | Protective plate for lighting device and lighting device equipped with the same | |
JP2009270327A (en) | Wall material and wall structure including the same | |
JP2017032756A (en) | Transparent film and method for manufacturing the same | |
JP2013182007A (en) | Method and device for manufacturing article having fine rugged structure on front face |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180012912.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011517130 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11759396 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127024356 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11759396 Country of ref document: EP Kind code of ref document: A1 |