[go: up one dir, main page]

WO2011113385A2 - 无线通信方法、基站和系统 - Google Patents

无线通信方法、基站和系统 Download PDF

Info

Publication number
WO2011113385A2
WO2011113385A2 PCT/CN2011/073330 CN2011073330W WO2011113385A2 WO 2011113385 A2 WO2011113385 A2 WO 2011113385A2 CN 2011073330 W CN2011073330 W CN 2011073330W WO 2011113385 A2 WO2011113385 A2 WO 2011113385A2
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user terminal
uplink
vlc
downlink
Prior art date
Application number
PCT/CN2011/073330
Other languages
English (en)
French (fr)
Other versions
WO2011113385A3 (zh
Inventor
刘晟
王锐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/073330 priority Critical patent/WO2011113385A2/zh
Priority to EP11755702.5A priority patent/EP2696649A4/en
Priority to CN201180000246.3A priority patent/CN103329613B/zh
Publication of WO2011113385A2 publication Critical patent/WO2011113385A2/zh
Publication of WO2011113385A3 publication Critical patent/WO2011113385A3/zh
Priority to US14/063,787 priority patent/US9461739B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1149Arrangements for indoor wireless networking of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • H04B10/1125Bidirectional transmission using a single common optical path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a wireless communication method, a base station, and a system. Background technique
  • Future wireless cellular networks will be multi-layered. For example: Long Term Evolution;
  • Macrocell's signal will cover a large area, and try to eliminate the blind spot of wireless service; while in the hotspot area covered by macro cell, microcell Femtocell or picocell Picocell will be deployed. Therefore, in these hotspot areas, there are both Macrocell signals and Femtocell or Picocell signals, forming a two-layer wireless signal coverage.
  • the visible light communication uses a Light Emitting Diode (LED) lamp as a signal source to transmit information to the brightness of the LED lamp for transmission.
  • LED Light Emitting Diode
  • Visible light communication can be used under indoor and outdoor streetlights, and these application scenarios are exactly the same as those of most Femtocell and Picocell applications in HetNet systems.
  • a two-layer network composed of two transmission modes, a radio frequency (RF) and a visible light communication (VLC), may be used.
  • RF radio frequency
  • VLC visible light communication
  • the RF transmission method and the VLC transmission method in the prior art respectively Two resource management and signal processing methods are adopted, and the transmitted data stream needs to be switched between two resource management and signal processing, so that the resource management and signal processing operations performed by the base station are complicated. Summary of the invention
  • the embodiments of the present invention provide a wireless communication method, a base station, and a system, to solve the problem that the resource management and signal processing operations performed by the base station in the prior art are complicated.
  • An embodiment of the present invention provides a base station, including: a plurality of LED light lamps, and/or Several visible light communication VLC/infrared IR receivers;
  • the plurality of LED LEDs are configured to send a downlink signal of an orthogonal frequency division multiple access OFDMA system to a user terminal;
  • the plurality of VLC/IR receivers are configured to receive an uplink signal of a single carrier frequency division multiple access SC-FDMA system sent by the user equipment;
  • the base station further includes: a baseband signal processing unit, configured to convert the plurality of LED lights, and/or the plurality of VLC/IR receivers to a remote radio unit of a long-term evolution LTE mode,
  • the downlink signals sent by the LEDs of the LEDs and/or the uplink signals received by the plurality of VLC/IRs are processed and resource managed.
  • the embodiment of the invention further provides a wireless communication method, including:
  • the downlink signal is sent by a plurality of LED LED lights in an OFDMA format, and/or the uplink signal is divided by a plurality of visible light communication VLC/infrared IR receivers by single carrier frequency
  • the system receiving of the multiple access SC-FDMA, the plurality of LED lights, and/or the plurality of VLC/IR receivers are equivalent to the remote radio unit of the Long Term Evolution LTE mode by the baseband signal processing unit, to the LED
  • the light group and the downlink signal sent by the RF transmitter, and the uplink signal received by the RF receiver are processed and resource managed.
  • the embodiment of the present invention further provides a wireless communication system, including: a user terminal and a base station; the base station includes: a plurality of LED light lamps, and/or a plurality of visible light communication VLC/infrared IR receivers;
  • the plurality of LED LEDs are configured to send a downlink signal of an orthogonal frequency division multiple access OFDMA system to a user terminal;
  • the plurality of VLC/IR receivers are configured to receive an uplink signal of a single carrier frequency division multiple access SC-FDMA system sent by the user equipment;
  • the base station further includes: a baseband signal processing unit, configured to convert the plurality of LED lights, and/or the plurality of VLC/IR receivers to a remote radio unit of a long term evolution LTE mode, The downlink signals sent by the plurality of LEDs and/or the uplink signals received by the plurality of VLCs/IRs for processing and resource management;
  • a baseband signal processing unit configured to convert the plurality of LED lights, and/or the plurality of VLC/IR receivers to a remote radio unit of a long term evolution LTE mode, The downlink signals sent by the plurality of LEDs and/or the uplink signals received by the plurality of VLCs/IRs for processing and resource management;
  • the user terminal is configured to: send an uplink signal of the SC-FDMA system to the base station, and receive a downlink signal of the OFDMA system sent by the base station.
  • the base station may be equivalent to a plurality of LED lights for transmitting the downlink VLC signal, and/or several VLC/IR receivers for receiving the uplink VLC signal.
  • the remote radio unit in the evolved LTE mode performs baseband signal processing and resource management. Therefore, when the RF and VLC hybrid transmission modes are adopted, the VLC transmission mode can reuse the baseband signal processing and resource management modes of the existing LTE system, simplify the resource management and baseband signal processing operations performed by the base station, and save the resources of the base station.
  • FIG. 1 is a schematic structural diagram of a second embodiment of a base station according to the present invention.
  • FIG. 2 is another schematic structural diagram of a second embodiment of a base station according to the present invention.
  • FIG. 3 is an equivalent schematic diagram of base station signal processing and resource management provided by the base station according to the present invention
  • FIG. 4 is a schematic structural diagram of a third embodiment of a base station according to the present invention.
  • FIG. 5 is another schematic structural diagram of a third embodiment of a base station according to the present invention.
  • FIG. 6 is a schematic structural diagram of a base station processing unit in a base station according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a fourth embodiment of a base station according to the present invention.
  • FIG. 8 is another schematic structural diagram of a fourth embodiment of a base station according to the present invention.
  • FIG. 9 is a schematic structural diagram of a first embodiment of a wireless communication system according to the present invention.
  • FIG. 10 is a flowchart of a first embodiment of a method for wireless communication provided by the present invention
  • FIG. 11 is a flowchart of a cell handover method provided by the present invention. detailed description
  • the base station includes: a plurality of LED light lamps, and/or a plurality of visible light communication VLC/infrared IR receivers;
  • the plurality of LED LEDs are configured to send a downlink signal of an orthogonal frequency division multiple access OFDMA system to a user terminal;
  • the plurality of VLC/IR receivers are configured to receive an uplink signal of a single carrier frequency division multiple access SC-FDMA system sent by the user equipment;
  • the base station further includes: a baseband signal processing unit, configured to convert the plurality of LED lights, and/or the plurality of VLC/IR receivers into a remote radio unit of a long-term evolution LTE mode, and a plurality of illuminating
  • a baseband signal processing unit configured to convert the plurality of LED lights, and/or the plurality of VLC/IR receivers into a remote radio unit of a long-term evolution LTE mode, and a plurality of illuminating
  • the downlink signal sent by the diode LED lamp, and/or the uplink signals received by several VLC/IRs are processed and resource managed.
  • the base station provided by the embodiment of the present invention may be a micro cell Femtocell or a pico cell Picocell, and the base station adopts a VLC mode for downlink signal transmission of an Orthogonal Frequency Division Multiple Access (OFDMA) system, and/or a single carrier frequency. Uplink signal transmission in the Single Carrier Frequency Division Multiple Access (SC-FDMA) system.
  • the base station can also perform mixed downlink signal transmission in VLC mode and RF mode, and/or mixed uplink signal transmission in VLC mode and RF mode.
  • the uplink transmission adopts the SC-FDMA standard
  • the downlink transmission adopts the OFDMA standard. Therefore, in order to ensure the adoption of the VLC mode, or the VLC and RF modes,
  • the existing LTE baseband signal processing and resource management can be multiplexed.
  • the uplink signals sent by the base station in all embodiments of the present invention should also adopt the SC-FDMA standard, and the downlink signals should also adopt the OFDMA standard. In the following embodiments, No longer.
  • the base station signal processing unit may equate a plurality of LED lights for transmitting downlink VLC signals and/or several VLC/IR receivers for receiving uplink VLC signals into long-term evolution LTE mode.
  • a remote radio unit that processes and manages the downlink signals sent by several LEDs and/or the uplink signals received by several VLC/IRs (ie, baseband signals).
  • the remote radio unit equivalent to the long-term evolution LTE mode may be a sector equivalent to LTE or a carrier equivalent to LTE.
  • each LED light group can be divided into several LED light groups according to the physical space distance, and each LED light group can transmit a downlink signal with an independent frame structure, so that the downlink signal is in the downlink Up, each LED group can be equivalent to an LTE base station sector; when the uplink signal only uses VLC/IR transmission mode, each VLC/IR receiver can be used to receive an independent frame structure sent by the user terminal.
  • the uplink signal is such that each VLC/IR receiver can be equivalent to an LTE base station sector in the uplink direction; it can be understood that when the downlink signal and the uplink signal are both in VLC transmission mode, each LED light
  • the group and its corresponding VLC/IR receiver can be equivalent to one LTE base station sector.
  • each LED light can be divided into several LED light groups according to the physical space distance, and each LED light group can be equivalent to one LTE carrier, so that in the downlink direction There are several LTE carriers (wherein the RF transmission mode corresponds to one RF carrier, and each LED light group corresponds to one equivalent carrier).
  • the VLC transmission mode can reuse the baseband signal processing and resource management modes of the existing LTE system when the RF and VLC hybrid transmission modes are adopted, and the resource management and baseband signal processing operations performed by the base station are simplified. Save the resources of the base station.
  • the wireless communication system can also provide a wide range of RF signal coverage by using a macrocell Macrocell, and the Femtocell or Picocell can be located. Within the coverage of the Macrocell, or in the void covered by the Macrocell. Therefore, the user terminal can switch to the cell within the coverage of the Macrocell when the VLC signal is interrupted, and adopts RF signal communication.
  • the base station provided by the embodiment of the present invention may also be a Macrocell.
  • the base station may use multiple LED lights to assist downlink transmission on the basis of providing an RF uplink signal and an RF downlink signal, and/or adopt several VLCs.
  • the /IR receiver assists in uplink transmission.
  • several LED lights can be divided into several LED light groups according to physical space distance, and each LED light group can be equivalent to one LTE carrier, so that there are several in the downlink direction.
  • the LTE carrier ie, each LED group corresponds to an equivalent carrier
  • the equivalent carrier in the uplink direction is similar.
  • the base station may be equivalent to a plurality of LED lights for transmitting the downlink VLC signal, and/or a plurality of VLC/IR receivers for receiving the uplink VLC signal, which are equivalent to the long-term evolution LTE mode.
  • the radio unit performs baseband signal processing and resource management. Therefore, when the RF and VLC hybrid transmission modes are adopted, the VLC transmission mode can reuse the baseband signal processing and resource management modes of the existing LTE system, simplify resource management and baseband signal processing operations performed by the base station, and save resources of the base station.
  • the base station is a Femtocell as an example, but the base station may also be a Picocell. Among them, the Femtocell is within the coverage of the Macrocell, or the cavity covered by the Macrocell.
  • the downlink transmission of the Femtocell adopts the VLC mode, and sends signals to the user terminal through multiple LED light groups as downlink transmitting antennas.
  • the uplink transmission of Femtocell adopts VLC mode or I R mode.
  • the uplink and downlink data transmission may adopt Time Division Duplexing (TDD) mode or Frequency Division Duplexing (FDD). ); and: 3 ⁇ 4 fruit fruit uplink transmission and downlink transmission use the same color of light as the carrier, then the uplink and downlink data transmission needs to adopt TDD mode.
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • LED lights can be installed indoors or outdoors, and can be divided into multiple LED light groups according to physical space distance, for example: indoor space including several rooms, which can be in each room An LED light group is set to send a downlink signal to the user terminal, and a VLC/IR receiver can be set in each room to receive an uplink signal from the user terminal.
  • indoor space including several rooms, which can be in each room
  • An LED light group is set to send a downlink signal to the user terminal
  • a VLC/IR receiver can be set in each room to receive an uplink signal from the user terminal.
  • a plurality of different areas can be divided according to the spatial distance, an LED light group is set in each area, and a VLC/IR receiver can be set in each area.
  • the transmitted spectrum can be spatially multiplexed to increase the overall throughput of the system.
  • FIG. 1 shows that one LED light group is installed in each of three indoor rooms (each LED light group may include multiple LED lights 1). ), each LED light group serves as a downlink antenna of the base station, and a VLC/IR receiver 2 is respectively installed in each room.
  • Figure 2 shows the installation of one LED light group in each of the four indoor areas, and a VLC/I R receiver 2 is installed in each area.
  • each LED light group can be provided by the same wired link, which can be an optical fiber, a power line, or other type of wired transmission medium. All LED lights 1 in each LED light group emit signals of the same LTE frame structure, different LED light groups are provided with signals by different wired links, and each LED light group sends a downlink signal with an independent frame structure to the user terminal.
  • each VLC/IR receiver 2 receives an uplink signal transmitted by a user terminal having an independent frame structure.
  • each LED light group and the VLC/IR receiver 2 corresponding to the LED light group can be equivalent to an independent base station sector on the air interface, and the cell has the same as other LED light groups (ie, other sectors).
  • Independent uplink and downlink frame structure Independent uplink and downlink frame structure.
  • one LED lamp group can be further divided into a plurality of sub-LED lamp groups, and the LED lamps 1 in each sub-LED lamp group emit the same signal, but each sub-LED lamp group is used to send different layers in the same frame structure to the user terminal.
  • the downlink signal in this way, each sub-LED lamp group in a group of LED lights can be equivalent to Multiple-Input Multiple-Out-put (MIMO) in LTE An antenna.
  • MIMO Multiple-Input Multiple-Out-put
  • the VLC transmission mode under the coverage of the base station can use the LTE protocol, and the baseband processing unit of the base station can implement each LED light group and the VLC/IR receiver 2 corresponding to the LED light group as one.
  • the independent base station sector on the air interface processes and manages the downlink signal sent by the LED light group and the uplink signal (ie, the baseband signal) received by the VLC/IR receiver 2, as shown in FIG.
  • the baseband signal processing and resource management may specifically be: for a user terminal that is subjected to interference less than or equal to a threshold, controlling a currently equivalent base station sector to send a downlink signal to the user terminal and performing uplink signal detection;
  • the user terminal controls the currently equivalent base station sector and the equivalent base station sector of the interference to jointly send a downlink signal and perform uplink signal detection to the user terminal.
  • the baseband processing of the base station can reuse the existing design as much as possible, for example: multiplexing existing inter-sector handover or coordinated transmission of sector edges, etc., thereby simplifying resource management and signal processing operations performed by the base station, saving the base station resource of.
  • the Femtocell is still taken as an example, and the Femtocell is in the coverage of the Macrocell or in the cavity covered by the Macrocell.
  • the downlink transmission of the base station adopts the VLC mode, and the uplink transmission of the base station adopts the RF mode.
  • the setting method of the plurality of LED light groups for transmitting the downlink signal to the user terminal is the same as that of the previous embodiment.
  • the difference from the previous embodiment is:
  • the base station adopts an RF mode in the uplink direction. Since the VLC mode is not transparent, the signal coverage of this mode is one room, and the RF mode is transparent. The new coverage of this mode is 3 rooms, that is, the uplink coverage of the RF signal. The range is greater than the downlink coverage of the VLC. Therefore, in the upstream direction, the uplink signals for the three rooms can be received by the same RF receiver 3.
  • the baseband processing unit of the base station may equivalent one LED light group to one sector of the base station in the downlink direction, and process and resource management the downlink signal sent by the LED light group and the uplink signal received by the RF receiver 3, for each For each sector, the transmitted downlink signal has an independent frame structure, that is, the user scheduling within the frame is independent between different sectors.
  • the user terminal For the uplink signal received by the RF receiver 3, the user terminal has mutual interference between uplink signals in different rooms.
  • different base station sectors have a uniform uplink frame structure in the uplink direction.
  • the different equivalent base station sectors receive the uplink signals sent by the user terminals on different time-frequency resources, and the uplink signals sent by the user terminals in different equivalent base station sectors have a unified user identifier.
  • user terminals of different equivalent base station sectors transmit random access sequences at different positions of the uplink signal, or user terminals of different equivalent base station sectors are in the uplink signal.
  • Different random access sequences are sent, correspondingly, so that the base station receives the uplink signal to know which sector it belongs to, and makes the random access response and the uplink resource allocation independent of each other for different sectors.
  • the downlink transmission of the base station adopts a hybrid transmission mode of the RF mode and the VLCMR, and the uplink transmission adopts the RF mode.
  • Each LED light group is divided according to the spatial distance of the indoor physical space.
  • the indoor space including 3 rooms is respectively provided with an LED light group in each room to transmit a downlink signal to the user terminal, because the RF signal is worn.
  • an RF receiver 3 can be placed indoors to receive an uplink signal from the user terminal, and an RF transmitter 4 is provided indoors to transmit a downlink signal to the user terminal.
  • 4 different areas can be divided according to the spatial distance, an LED light group is set in each area, and an RF receiver 3 is set in the room.
  • the LED lights in the same LED group provide downlink signals from the same wired link, and transmit downlink signals with the same LTE frame structure.
  • the downlink media of RF can be used as the base carrier, and the VLC spectrum of each LED group is equivalent to different independent carriers, that is, LEDs in different rooms or different areas.
  • the VLC spectrum of a lamp set can be equivalent to different independent carriers. Therefore, the base station can be regarded as an LTE system with four equivalent carriers, and the equivalent carrier includes the RF spectrum, and the VLC spectrum corresponding to the first room, the second room, and the third room, respectively.
  • the baseband signal processing unit can be used in the traditional LTE system.
  • the carrier aggregation technique performs carrier aggregation processing and resource management on the downlink signals transmitted by the LED lamp group and the RF transmitter 4, and the uplink signals (ie, baseband signals) received by the RF receiver 3.
  • the two equivalent carrier RF spectrums that can be used by the user terminal in the first room and the VLC media of the first room receive the downlink data.
  • the RF transmitter can broadcast the equivalent number of independent carriers supported by the base station and its corresponding LED group identifier in the downlink channel of the RF carrier, for example: LED group number.
  • each of the LED lamp groups transmits a downlink frame on an equivalent carrier, it is required to broadcast an LED lamp group identifier corresponding to an equivalent independent carrier in a downlink frame of the equivalent carrier in a certain period. After the user terminal receives the LED light group identifier, it can be determined whether the equivalent carrier used changes. If the change occurs, the user terminal needs to feed back to the base station, thereby implementing equivalent carrier switching.
  • the uplink and downlink spectrum pairing is fixed, that is, after the user terminal learns the downlink media, the uplink media can also be known.
  • the VLC mode is transmitted in the downlink, the user terminal will not be able to know the uplink transmission spectrum. Therefore, if the downlink signal is transmitted only in the VLC/IR mode, each LED group can be used to broadcast the corresponding equivalent base station sector uplink information in the downlink signal.
  • the base station may be a Femtocell or
  • each LED group under the Macrocell can be equivalent to one downlink carrier, and each VLC/IR receiver 2 under the Macrocell is equivalent to an uplink carrier for signal transmission.
  • the uplink and/or downlink adopt the VLC mode.
  • Femtocell or Picoce the positions where the signal transmitter and receiver are placed may be far apart, and the number may vary, resulting in different signal quality between the uplink and downlink.
  • the existing LTE cell handover procedure is determined based on the quality of the downlink channel. However, this method may switch the user to a cell with better downlink channel quality and poor uplink channel quality.
  • FIG. 6 is a schematic structural diagram of a base station processing unit in a base station according to an embodiment of the present invention.
  • the baseband processing unit may include: a receiving module 51, an obtaining module 52, and a switching control module 53;
  • the receiving module 51 is configured to receive downlink channel quality of the target base station and the user terminal sent by the current serving base station of the user terminal, and uplink and downlink channel quality of the serving base station and the user terminal, and an obtaining module 52, configured to send the random from the user terminal And obtaining, by the access signal, an uplink channel quality of the target base station and the user terminal, where downlink signals transmitted on the downlink channel of the target base station and the user terminal are sent by the plurality of LED lights, and/or, the target base station and An uplink signal transmitted on an uplink channel of the user terminal is received by the plurality of VLC/IR receivers;
  • the handover control module 53 is configured to determine whether to handover the user terminal from the serving base station to the target base station according to the uplink and downlink channel quality of the target base station and the user terminal and the uplink and downlink channel qualities of the serving base station and the user terminal.
  • the serving base station may be an existing base station of various types, or a base station provided by the embodiment of the present invention.
  • the user terminal may search for the downlink signal according to the command of the serving base station, or search for the downlink signal according to a certain period, detect the downlink signal quality, and feed back the detection result to the serving base station. If the serving base station decides to switch the user terminal to the target base station that sends the VLC signal, Then, the user terminal sends a random access signal to the target base station to synchronize with the target base station.
  • the receiving module 51 of the target base station can receive the uplink and downlink channel quality of the serving base station and the user terminal sent by the serving base station, and the downlink channel quality of the target base station and the user terminal through the X2 interface.
  • the acquiring module 52 of the target base station may obtain the uplink channel quality of the target base station and the user terminal from the random access signal sent by the user terminal. Thereby, the acquisition module 52 of the target base station can obtain the user terminal to itself And the uplink and downlink quality of the serving base station.
  • the handover control module 53 of the target base station can determine whether to handover the user terminal from the serving base station to the target base station according to the uplink and downlink quality. The handover control module 53 determines whether the handover can adopt multiple methods.
  • H11 and H12 are uplink and downlink channel gains of the user terminal to the serving base station
  • H21 and H22 are uplink and downlink channel gains of the user terminal to the target base station, W1 and W2. It is the weight of the uplink and the downlink. If W1*H11 + W2*H12 is less than W1*H21 + W2*H22, the switching control module 53 performs switching, otherwise, no switching is performed.
  • the data transmission in the VLC mode depends on whether the direct path between the base station and the user terminal is blocked by an obstacle, thereby causing communication interruption.
  • the embodiment of the present invention further provides a handover method:
  • the macrocell signal synchronization needs to be maintained, and the user terminal can receive the synchronization signal of the Macrocell in a certain period to maintain synchronization with the Macrocell.
  • the user terminal may send the macrocell to the Macrocell. Random access signal to switch to Macrocell
  • FIG. 9 is a schematic structural diagram of a first embodiment of a wireless communication system according to the present invention.
  • the wireless communication system includes: a user terminal 6 and a base station 7;
  • the base station 7 includes: a plurality of LED LED lamps, and/or a plurality of visible light communication VLC/infrared IR receivers;
  • a plurality of LED LEDs for transmitting a downlink signal of an orthogonal frequency division multiple access OFDMA system to the user terminal 6;
  • VLC/IR receivers for receiving single carrier frequency division multiple access transmitted by the user terminal 6
  • the base station 7 further includes: a baseband signal processing unit, configured to convert the plurality of LED lights, and/or the plurality of VLC/IR receivers to a remote radio unit of a long term evolution LTE mode, for the plurality of The downlink signal sent by the LED light of the LED, and/or the uplink signal received by the plurality of VLC/IRs for processing and resource management;
  • a baseband signal processing unit configured to convert the plurality of LED lights, and/or the plurality of VLC/IR receivers to a remote radio unit of a long term evolution LTE mode, for the plurality of The downlink signal sent by the LED light of the LED, and/or the uplink signal received by the plurality of VLC/IRs for processing and resource management;
  • the user terminal 6 is configured to: send an uplink signal of the SC-FDMA system to the base station 7, and receive a downlink signal of the OFDMA system transmitted by the base station.
  • the plurality of LED lights of the base station 7 are divided into a plurality of LED light groups according to a spatial distance, and each of the LED light groups is configured to send a downlink signal of an OFDMA system having an independent frame structure to the user terminal 7.
  • the base station 7 involved in the embodiment of the present invention may be a microcell Femtocell or a picocell.
  • the base station 7 uses the VLC mode for downlink signal transmission of the OFDMA system, and/or the uplink signal transmission of the SC-FDMA system.
  • the base station 7 can also perform mixed downlink signal transmission in VLC mode and RF mode, and/or mixed uplink signal transmission in VLC mode and RF mode.
  • the BBU in the base station 7 can equate several LED lights for transmitting the downlink VLC signal, and/or several VLC/IR receivers for receiving the uplink VLC signal into the RRU of the Long Term Evolution LTE mode, the number of LEDs.
  • the downlink signal sent by the lamp, and/or the uplink signals received by several VLC/IRs are processed and resource managed.
  • the remote radio unit equivalent to the Long Term Evolution (LTE) mode may be a sector equivalent to LTE or a carrier equivalent to LTE.
  • VLC transmission mode can reuse the baseband signal processing and resource management mode of the existing LTE system when using the mixed transmission mode of RF and VLC, simplify resource management and baseband signal processing operations performed by the base station, and save the base station. resource of.
  • the base station 7 involved in the embodiment of the present invention may also be a Macrocell.
  • the base station 7 may use multiple LED lights to assist downlink transmission on the basis of providing an RF uplink signal and an RF downlink signal, and/or Several VLC/IR receivers assist in uplink transmission.
  • several LED lights can be divided into several LED light groups according to physical space distance, and each LED light group can be equivalent to one LTE carrier, so that there are several in the downlink direction.
  • LTE Carrier the equivalent carrier in the upstream direction is similar.
  • the base station may equate a plurality of LED lights for transmitting a downlink VLC signal and/or a plurality of VLC/IR receivers for receiving an uplink VLC signal into a long-term evolution LTE mode.
  • the remote radio unit performs baseband signal processing and resource management. Therefore, when the RF and VLC hybrid transmission modes are adopted, the VLC transmission mode can reuse the baseband signal processing and resource management modes of the existing LTE system, simplify resource management performed by the base station, and baseband signal processing operations, thereby saving resources of the base station.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory.
  • ROM Read-Only Memory
  • RAM random access memory
  • FIG. 10 is a flowchart of a first embodiment of a method for wireless communication according to the present invention. As shown in FIG. 10, the method includes:
  • the transmitted downlink signal, and/or the uplink signals received by several VLC/IRs are processed and resource managed.
  • the execution body of the above steps is a base station, and the base station may be a microcell Femtocell or a picocell Picocell, or may be a MacrocelL.
  • the S102 sends the downlink signal of the OFDMA system to the user terminal, which may be specifically:
  • Each LED light group transmits a downlink signal having an independent frame structure to the user terminal, and the LED light group is divided by the plurality of LED lights according to a spatial distance.
  • the uplink signal sent by the S101 to the user terminal may be specifically:
  • the VLC/IR receiver receives an uplink signal of the SC-FDMA system having an independent frame structure transmitted by the user terminal, and each of the VLC/IR receivers corresponds to one of the LED lamp groups.
  • each of the LED lamp groups and their corresponding ones of the VLC/IR receivers are equivalent to one base station sector of the LTE mode by the baseband signal processing unit, and the LED lights are performed by a baseband signal processing unit
  • the downlink signal sent by the group and the uplink signal received by the VLC/IR receiver are processed and resource managed.
  • the uplink signal sent by the S101 to the user terminal may also be specifically:
  • the wireless spectrum RF receiver receives an uplink signal of the SC-FDMA system with a unified frame structure, and each of the LED light groups is equivalent to one base station sector of the LTE mode by the baseband signal processing unit. And processing, and resource management, by the baseband signal processing unit, the downlink signal sent by the LED light group and the uplink signal received by the RF receiver.
  • the uplink signal of the wireless spectrum RF receiver receiving the SC-FDMA system with the unified frame structure of the user terminal is specifically:
  • the RF receiver Receiving, by the RF receiver, an uplink signal sent by the user terminal on different time-frequency resources of different uplink base station sectors in an uplink signal of the SC-FDMA system of the unified frame structure, the different equivalent
  • the user terminal in the base station sector has a uniform user identity.
  • the method can also include:
  • the S101 receives the uplink signal sent by the user terminal.
  • the RF receiver receives an uplink signal of the SC-FDMA system sent by the user terminal on an independent RF carrier;
  • the sending, by the S102, the downlink signal to the user terminal is: the RF transmitter and each LED light group send a downlink signal of the OFDMA system to the user terminal, where each LED light group is separated by the plurality of LED lights according to a spatial distance Dividing, each of the LED light groups is equivalent to an independent carrier of the LTE mode by the baseband signal processing unit, and the downlink signal sent by the baseband signal processing unit to the LED light group and the RF transmitter, And the uplink signal received by the RF receiver performs carrier aggregation processing and resource management.
  • the method may further include: the RF transmitter broadcasting an equivalent number of independent carriers supported by the base station and its corresponding LED group identifier in a downlink channel of the RF carrier.
  • the method still further includes: each of the LED light groups broadcasting an LED light group identification corresponding to the equivalent independent carrier in an equivalent independent carrier downlink channel.
  • the method may further include: using each of the LED light groups to broadcast spectrum information of the corresponding equivalent base station sector uplink in the downlink signal.
  • the handover process of the current serving base station of the user terminal to the target base station is as shown in FIG. 11, which specifically includes: S201: Acquire the current serving base station of the user terminal.
  • S202 acquiring the target base station and the random access signal sent by the user terminal Determining the uplink channel quality of the user terminal, the downlink signal transmitted on the downlink channel of the target base station and the user terminal is sent by the several LED lights, and/or the uplink transmitted on the uplink channel of the target base station and the user terminal Signals are received by the plurality of VLC/IR receivers;
  • S203 Determine, according to uplink and downlink channel quality of the target base station and the user terminal, and uplink and downlink channel quality of the serving base station and the user terminal, whether to switch the user terminal from the serving base station to the The target base station.
  • the wireless communication method provided by the embodiment of the present invention corresponds to the transmission operation performed by the base station provided by the embodiment of the present invention.
  • For the specific implementation process of the wireless communication method refer to the foregoing base station embodiment, and details are not described herein again.
  • the base station may equate a plurality of LED lights for transmitting a downlink VLC signal, and/or a plurality of VLC/IR receivers for receiving an uplink VLC signal into a long-term evolution LTE mode.
  • the remote radio unit performs baseband signal processing and resource management. Therefore, when the RF and VLC hybrid transmission modes are adopted, the VLC transmission mode can reuse the baseband signal processing and resource management modes of the existing LTE system, simplify resource management performed by the base station, and baseband signal processing operations, thereby saving resources of the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种无线通信方法、基站和系统。所述基站包括数个LED灯和/或数台VLC/IR接收机;数个LED灯用于向用户终端发送OFDMA制式的下行信号;数台VLC/IR接收机用于接收用户终端发送的SC-FDMA制式的上行信号;所述基站还包括基带信号处理单元(BBU),用于将数个LED灯和/或数台VLC/IR接收机等效为LTE模式的远端射频单元(RRU)以进行处理和资源管理。本发明实施例能够复用现有的LTE系统的基带信号处理和资源管理方式,简化基站执行的资源管理和基带信号处理操作,节约基站的资源。

Description

无线通信方法、 基站和系统
技术领域
本发明涉及通信技术领域, 特别涉及一种无线通信方法、 基站和系统。 背景技术
未来的无线蜂窝网络将是多层的。例如:长期演进( Long Term Evolution;
LTE ) 标准中的 HetNet 所描述的场景, 在未来的无线蜂窝网络中宏蜂窝
Macrocell的信号将覆盖广大的区域, 尽量消除无线服务的盲区; 而在宏蜂窝 覆盖下的热点区域将布设微蜂窝 Femtocell或者微微蜂窝 Picocell。 因此, 在 这些热点区域, 同时存在着 Macrocell 的信号, 以及 Femtocell或 Picocell 的信号, 形成两层的无线信号覆盖。
可见光通信是利用发光二极管 (Light Emitting Diode; LED )灯作为信 号的发射源, 把信息加载在 LED灯的亮度上进行传输。 可见光通信可以用于 室内和室外路灯下, 而这些应用场景正好和 HetNet系统中大多数 Femtocell 和 Picocell的应用场景一致。
现有技术中, 可以采用无线频媒 ( Radio Frequency; RF )和可见光通 信(Visible Light Communication; VLC )两种传输模式构成的双层网络, 然 而, 现有技术中 RF传输方式和 VLC传输方式分别采用两种资源管理和信号 处理方式, 传输的数据流需要在两种资源管理和信号处理之间切换, 使得基 站执行的资源管理和信号处理操作较为复杂。 发明内容
本发明实施例提供了一种无线通信方法、 基站和系统, 以解决现有技术 中基站执行的资源管理和信号处理操作较为复杂的问题。
本发明实施例提供一种基站, 包括: 数个发光二极管 LED 灯, 和 /或, 数台可见光通信 VLC/红外线 IR接收机;
所述数个发光二极管 LED 灯, 用于向用户终端发送正交频分多址 OFDMA制式的下行信号;
所述数台 VLC/IR接收机, 用于接收所述用户终端发送的单载波频分多 址 SC-FDMA制式的上行信号;
所述基站还包括: 基带信号处理单元, 用于将所述数个 LED 灯, 和 /或 数台所述 VLC/IR接收机等效为长期演进 LTE模式的远端射频单元, 对所述 数个发光二极管 LED灯发送的下行信号,和 /或所述数台 VLC/IR接收的上行 信号进行处理和资源管理。
本发明实施例还提供一种无线通信方法, 包括:
接收用户终端发送的上行信号;
向所述用户终端发送下行信号,所述下行信号由数个发光二极管 LED灯 以 OFDMA的制式发送, 和 /或, 所述上行信号由数台可见光通信 VLC/红外 线 IR接收机以单载波频分多址 SC-FDMA的制式接收, 所述数个 LED灯, 和 /或数台所述 VLC/IR接收机由基带信号处理单元等效为长期演进 LTE模式 的远端射频单元, 对所述 LED灯组和所述 RF发射机发送的下行信号, 以及 所述 RF接收机接收的上行信号进行处理和资源管理。
本发明实施例还提供一种无线通信系统, 包括: 用户终端和基站; 所述基站包括: 数个发光二极管 LED灯, 和 /或, 数台可见光通信 VLC/ 红外线 IR接收机;
所述数个发光二极管 LED 灯, 用于向用户终端发送正交频分多址 OFDMA制式的下行信号;
所述数台 VLC/IR接收机, 用于接收所述用户终端发送的单载波频分多 址 SC-FDMA制式的上行信号;
所述基站还包括: 基带信号处理单元, 用于将所述数个 LED 灯, 和 /或 数台所述 VLC/IR接收机等效为长期演进 LTE模式的远端射频单元, 对所述 数个发光二极管 LED灯发送的下行信号,和 /或所述数台 VLC/IR接收的上行 信号进行处理和资源管理;
所述用户终端用于: 向所述基站发送 SC-FDMA制式的上行信号, 并接 收所述基站发送的 OFDMA制式的下行信号。
本发明实施例提供的无线通信方法、 基站和系统, 基站可以将用于发送 下行 VLC信号的数个 LED灯, 和 /或用于接收上行 VLC信号的数台 VLC/IR 接收机等效为长期演进 LTE模式的远端射频单元进行基带信号处理和资源管 理。 从而在采用 RF和 VLC混合传输方式时, VLC传输方式能够复用现有的 LTE 系统的基带信号处理和资源管理方式, 简化基站执行的资源管理和基带 信号处理操作, 节约基站的资源。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的基站第二实施例的一种结构示意图;
图 2为本发明提供的基站第二实施例的另一种结构示意图;
图 3为本发明提供的基站进行基带信号处理和资源管理的等效示意图; 图 4为本发明提供的基站第三实施例的一种结构示意图;
图 5为本发明提供的基站第三实施例的另一种结构示意图;
图 6为本发明实施例提供的基站中的基站处理单元的结构示意图; 图 7为本发明提供的基站第四实施例的一种结构示意图;
图 8为本发明提供的基站第四实施例的另一种结构示意图;
图 9为本发明提供的无线通信系统第一实施例的结构示意图;
图 10为本发明提供的无线通信方法第一实施例的流程图; 图 11为本发明提供的小区切换方法的流程图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明提供的基站第一实施例中,该基站包括:数个发光二极管 LED灯, 和 /或, 数台可见光通信 VLC/红外线 IR接收机;
所述数个发光二极管 LED 灯, 用于向用户终端发送正交频分多址 OFDMA制式的下行信号;
所述数台 VLC/IR接收机, 用于接收所述用户终端发送的单载波频分多 址 SC-FDMA制式的上行信号;
所述基站还包括: 基带信号处理单元, 用于将所述数个 LED灯, 和 /或数 台所述 VLC/IR接收机等效为长期演进 LTE模式的远端射频单元, 对数个发光 二极管 LED灯发送的下行信号,和 /或数台 VLC/IR接收的上行信号进行处理和 资源管理。
本发明实施例提供的基站可以为微蜂窝 Femtocell或者微微蜂窝 Picocell , 该基站采用 VLC模式进行正交频分多址 ( Orthogonal Frequency Division Multiple Access; OFDMA )制式的下行信号传输, 和 /或单载波 频分多址 ( Single Carrier Frequency Division Multiple Access; SC-FDMA )制式的上行信号传输。 该基站还可以采用 VLC模式和 RF模式进 行混合下行信号传输, 和 /或 VLC模式和 RF模式混合上行信号传输。
由于现有的 LTE的传输制式中, 上行传输采用 SC-FDMA制式, 下行传输 采用 OFDMA制式, 因此, 为了保证采用 VLC模式, 或者 VLC和 RF模式进行 混合传输时能够复用现有的 LTE基带信号处理和资源管理, 本发明所有实施 例中的基站发送的上行信号也应该采用 SC-FDMA制式, 下行信号也应采用 OFDMA制式,下面的实施例中不再——赘述。基站信号处理单元( Base Band Unit; BBU )可以将用于发送下行 VLC信号的数个 LED灯, 和 /或用于接收上 行 VLC信号的数台 VLC/IR接收机等效为长期演进 LTE模式的远端射频单元 ( Radio Remote Unit; RRU ) , 对数个 LED灯发送的下行信号, 和 /或数台 VLC/IR接收的上行信号 (即基带信号)进行处理和资源管理。 其中, 等效为 长期演进 LTE模式的远端射频单元可以是等效为 LTE的扇区, 或者是等效为 LTE的载波。
具体的: 当下行信号只采用 VLC传输方式时, 可以将数个 LED灯按照物 理空间距离划分为若干个 LED灯组, 每个 LED灯组可以发送具有独立帧结构 的下行信号, 这样使得在下行方向上, 每个 LED灯组可以等效为一个 LTE的 基站扇区; 当上行信号只采用 VLC/IR传输方式时, 每一台 VLC/IR接收机可以 用来接收用户终端发送的具有独立帧结构的上行信号, 使得在上行方向上, 每台 VLC/IR接收机可以等效为一个 LTE的基站扇区; 可以理解的是, 当下行 信号和上行信号都采用 VLC传输方式时, 每个 LED灯组及其对应的一台 VLC/IR接收机可以等效为一个 LTE的基站扇区。 当下行信号采用 VLC和 RF混 合传输方式时, 则可以将数个 LED灯按照物理空间距离划分为若干个 LED灯 组, 每个 LED灯组可以等效为一个 LTE的载波, 这样, 在下行方向上, 便具 有若干个 LTE载波(其中, RF传输方式对应一个 RF载波, 每个 LED灯组对应 一个等效载波) 。
通过上述的等效, 可以实现在采用 RF和 VLC混合传输方式时, VLC传输 方式能够复用现有的 LTE系统的基带信号处理和资源管理方式, 简化基站执 行的资源管理和基带信号处理操作, 节约基站的资源。
另外, 当基站为 Femtocell或者 Picocell时, 无线通信系统还可以采用宏 蜂窝 Macrocell提供大范围的 RF信号覆盖, Femtocell或者 Picocell可以位于 Macrocell的覆盖范围内, 或者 Macrocell覆盖的空洞中。从而使得用户终端在 VLC信号中断时能够切换到 Macrocell覆盖范围内的小区, 采用 RF信号通信。
本发明实施例提供的基站还可以为 Macrocell, 这种情况下, 该基站在提 供 RF上行信号和 RF下行信号的基础上, 可以采用数个 LED灯辅助下行传输, 和 /或, 采用数台 VLC/IR接收机辅助上行传输。 类似的, 在下行方向上, 可以 将数个 LED灯按照物理空间距离划分为若干个 LED灯组, 每个 LED灯组可以 等效为一个 LTE的载波,这样,在下行方向上,便存在若干个等效 LTE载波(即 每个 LED灯组对应一个等效载波) , 上行方向上的等效载波与此类似。
本发明实施例提供的基站, 基站可以将用于发送下行 VLC信号的数个 LED灯, 和 /或用于接收上行 VLC信号的数台 VLC/IR接收机等效为长期演进 LTE模式的远端射频单元进行基带信号处理和资源管理。 从而在采用 RF和 VLC混合传输方式时, VLC传输方式能够复用现有的 LTE系统的基带信号处 理和资源管理方式, 简化基站执行的资源管理和基带信号处理操作, 节约基 站的资源。
本发明提供的基站第二实施例中, 以该基站为 Femtocell为例进行说明, 但不以此作为本发明的限制, 该基站还可以为 Picocell。 其中, Femtocell在 Macrocell的覆盖范围内, 或者 Macrocell覆盖的空洞中。 该 Femtocell的下行 传输采用 VLC模式, 通过多个 LED灯组作为下行的发射天线向用户终端发送 信号。 Femtocell的上行传输采用 VLC模式或 I R模式。
需要说明的是, 如果上行传输和下行传输采用不同颜色的光作为载波, 则上行和下行的数据传输可以采用时分双工( Time Division Duplexing; TDD ) 方式或者频分双工 ( Frequency Division Duplexing; FDD )方式; 而: ¾口果上 行传输和下行传输采用相同颜色的光作为载波, 则上行和下行的数据传输需 采用 TDD方式。
其中, 数个 LED灯可以安装于室内或室外, 可以根据物理的空间距离划 分为多个 LED灯组, 例如: 包括若干房间的室内空间, 可以分别在每个房间 设置一个 LED灯组来向用户终端发送下行信号,并且可以在每个房间内设置 一台 VLC/IR接收机接收来自用户终端的上行信号。 在无房间间隔的室内空 间, 可以按照空间距离划分出多个不同的区域, 在每个区域内设置一个 LED 灯组, 并且可以在每个区域内对应设置一台 VLC/IR接收机。
由于 VLC或者 IR模式下, 信号不具备够穿透性, 并且在空间中的衰减 很快, 因此, 发射的频谱可以进行空间范围内复用以提高系统的整体吞吐量。
本实施例以图 1和图 2所示的情况为例进行说明, 图 1所示为在室内的 3个房间内分别安装一个 LED灯组(每个 LED灯组中可以包括多个 LED灯 1 ), 每个 LED灯组作为基站的下行天线, 并且在每个房间内分别对应安装一 台 VLC/IR接收机 2。 图 2所示为在室内的 4个区域内分别安装一个 LED灯 组, 并且在每个区域内分别对应安装一台 VLC/I R接收机 2。
由于上行信号和下行信号只有在艮小的区域内 (例如: 连通房间的门附 近) 才相互干扰, 因此, 不同的房间可以独立传输不同的信号, 即不同的房 间可以传输具有独立的 LTE帧结构的信号。具体是:每个 LED灯组可以由同 一条有线链路提供信号, 该有线链路可以是光纤、 电力线或者其他类型的有 线传输介质。 每个 LED灯组中的所有 LED灯 1都发射相同 LTE帧结构的信 号, 不同 LED灯组由不同的有线链路提供信号, 每个 LED灯组向用户终端 发送具有独立帧结构的下行信号, 同样的, 每台 VLC/IR接收机 2接收用户 终端发送的具有独立帧结构的上行信号。
因此,每个 LED灯组以及与该 LED灯组对应的 VLC/IR接收机 2可以等 效为一个在空口上独立的基站扇区, 该小区具有和其他 LED灯组(即其他扇 区)相独立的上行和下行帧结构。
其中,一个 LED灯组还可以进一步划分为多个子 LED灯组,每个子 LED 灯组内的 LED灯 1发射相同的信号, 但每个子 LED灯组用于向用户终端发 送同一帧结构中不同层的下行信号, 这样, 一组 LED灯内的各个子 LED灯 组可以等效为 LTE中多输入多输出( Multiple-Input Multiple-Out-put; MIMO ) 的一根天线。
通过以上的等效, 使得基站覆盖范围下的 VLC传输模式可以使用 LTE 协议, 基站的基带处理单元可以将每个 LED灯组以及与该 LED灯组对应的 VLC/IR接收机 2效为一个在空口上独立的基站扇区, 对 LED灯组发送的下 行信号和 VLC/IR接收机 2接收的上行信号 (即基带信号 )进行处理和资源 管理, 如图 3所示。 这些基带信号处理和资源管理具体可以是: 对于受到干 扰小于等于门限值的用户终端, 控制当前等效的基站扇区向用户终端发送下 行信号和进行上行信号检测; 对于受到干扰大于门限值的用户终端, 控制当 前等效的基站扇区与干扰的等效的基站扇区共同向用户终端发送下行信号和 进行上行信号检测。 该基站的基带处理可以尽可能的复用现有的设计, 例如: 复用现有的扇区间切换或者扇区边缘的协作传输等等, 从而简化基站执行的 资源管理和信号处理操作, 节约基站的资源。
本发明提供的基站第三实施例中, 仍以基站为 Femtocell为例进行说明, Femtocell在 Macrocell的覆盖范围内, 或者 Macrocell覆盖的空洞中。 该基 站的下行传输采用 VLC模式, 基站的上行传输采用 RF模式。
参见图 4和图 5, 本实施例中, 向用户终端发送下行信号的多个 LED灯 组的设置方法与前一实施例相同。 与前一实施例的区别在于: 本实施例中, 基站在上行方向上采用 RF模式。 由于 VLC模式不具备穿透性, 因此这种采 用模式的信号覆盖范围是一个房间, 而 RF模式具备穿透性, 采用这种模式 的新覆盖范围是 3个房间, 即, RF信号的上行覆盖范围大于 VLC的下行覆 盖范围。 因此, 在上行方向上, 对于 3个房间的上行信号可以由同一台 RF 接收机 3进行接收。
其中,基站的基带处理单元可以将一个 LED灯组等效为基站在下行方向 上的一个扇区, 对 LED灯组发送的下行信号和 RF接收机 3接收的上行信号 进行处理和资源管理, 对于每个扇区, 发送的下行信号具有独立帧结构, 即, 帧内的用户调度在不同扇区间是独立的。 对于 RF接收机 3接收的上行信号而言, 用户终端在不同房间的上行信 号之间存在相互干扰, 为了避免干扰, 在上行方向上, 不同基站扇区具有统 一的上行帧结构。 不同的等效的基站扇区在不同的时频资源上接收用户终端 发送的上行信号, 不同的等效的基站扇区中的用户终端发送的上行信号具有 统一的用户标识。
为了保证上述帧结构能够正确运作, 不同的等效的基站扇区的用户终端 在上行信号的不同位置发送随机接入序列, 或者, 不同的等效的基站扇区的 用户终端在所述上行信号中发送不同的随机接入序列, 相应的, 以使基站接 收到上行信号获知属于哪个扇区, 并且使得随机接入响应和上行资源分配对 于不同扇区是相互独立的。
本发明提供的基站第四实施例中, 基站的下行传输采用 RF 模式和 VLCMR的混合传输模式, 上行传输采用 RF模式。
各个 LED灯组根据室内物理的空间距离上进行划分, 如图 7所示, 包括 3房间的室内空间, 分别在每个房间设置一个 LED灯组来向用户终端发射下 行信号, 由于 RF信号具有穿透性, 因此可以在室内设置一台 RF接收机 3 接收来自用户终端的上行信号, 并且在室内设置一台 RF发射机 4向用户终 端发送下行信号。 如图 8所示, 在无房间间隔的室内空间, 可以按照空间距 离划分出 4不同的区域, 在每个区域内设置一个 LED灯组, 并且室内设置一 台 RF接收机 3。
其中, 同一 LED灯组内的 LED灯由同一有线链路提供下行信号, 发射 具有相同 LTE帧结构的下行信号。
在 RF和 VLC\IR混合模式下传输 LTE信号时,可以将 RF的下行频媒作 为基础载波, 将每个 LED灯组的 VLC频谱等效为不同的独立载波, 即不同 房间或者不同区域的 LED灯组的 VLC频谱可以等效为不同的独立载波。 因 此,基站可以视为具有 4个等效载波的 LTE系统,其等效载波包括 RF频谱, 第 1房间、 第 2房间和第 3房间分别对应的 VLC频谱。 这里需要说明的是, 虽然三个房间的 LED灯发出的下行信号实际使用的光媒可以是一样的,但是 由于相互干扰很小, 因此可以视为独立的等效载波, 从而基带信号处理单元 可以采用传统的 LTE系统中的载波汇聚技术对 LED灯组和 RF发射机 4发送 的下行信号, 以及 RF接收机 3接收的上行信号 (即基带信号)进行载波聚 合的处理和资源管理。 例如: 第 1房间中的用户终端可以使用的两个等效载 波 RF频谱和第 1房间的 VLC频媒接收下行数据。
RF发射机可以在 RF载波的下行信道中广播基站支持的等效的独立载波数及 其对应的 LED灯组标识, 例如: LED灯组号等。
需要说明的是, 每个所述 LED灯组在等效载波上发送下行帧时, 需要以 一定周期在等效载波的下行帧内广播等效的独立载波对应的 LED灯组标识。 以使用户终端接收到 LED灯组标识后,可以判断所使用的等效载波是否发生 变化, 如果发生变化, 则用户终端需要向基站反馈, 从而实现等效载波的切 换。
此外, 在传统的 RF模式下采用 FDD双工方式时, 上下行的频谱配对是 固定的, 即当用户终端获知下行的频媒之后, 上行的频媒也能够获知。 但当 下行传输 VLC模式时, 用户终端将无法获知上行的传输频谱。 因此, 如果下 行信号只采用 VLC/IR模式传输, 则可以采用每个 LED灯组在下行信号中广 播对应的等效的基站扇区上行的频媒信息。
以上提供的基站第二实施例-第四实施例中, 基站可以为 Femtocell或者
Picocell, 而当基站为 Macrocell时, 同样可以采用多个 LED灯组向用户终端 发送下行信号, 以辅助 RF模式的下行传输; 同样可以采用 VLC/IR接收机 2 接收用户终端发送的上行信号, 以辅助 RF模式的上行传输。 这种情况下, 可以将 Macrocell下的每个 LED灯组等效为一个下行载波,并且将 Macrocell 下的每个 VLC/IR接收机 2等效为一个上行载波进行信号传输。
在基站的第一实施例 ~第四实施例中, 上行和 /或下行采用 VLC模式的 Femtocell或者 Picoce卩内, 信号发射端和接收端放置的位置可能相距较远, 而且数量存在差异,导致上行和下行的信号质量可能会有所不同。现有的 LTE 小区切换流程基于下行信道的质量来决定, 然而这种方法可能将用户切换到 下行信道质量较好而上行信道质量差的小区。
为了提高小区切换的质量, 本发明实施例还提供一种小区切换方法, 该 小区切换方法由目标基站的基带处理单元执行, 图 6为本发明实施例提供的 基站中的基站处理单元的结构示意图, 该基带处理单元可以包括: 接收模块 51、 获取模块 52和切换控制模块 53;
接收模块 51 , 用于接收用户终端当前的服务基站发送的目标基站与用户 终端的下行信道质量, 以及服务基站与用户终端的上行和下行信道质量; 获取模块 52 , 用于从用户终端发送的随机接入信号中获取目标基站与所 述用户终端的上行信道质量, 所述目标基站与用户终端的下行信道上传输的 下行信号由所述数个 LED 灯发送, 和 /或, 所述目标基站与用户终端的上行 信道上传输的上行信号由所述数台 VLC/IR接收机接收;
切换控制模块 53, 用于根据目标基站与用户终端的上行和下行信道质量 以及服务基站与用户终端的上行和下行信道质量, 确定是否将用户终端从服 务基站切换至目标基站。
具体的, 服务基站可以为现有的各种类型的基站, 或者本发明实施例提 供的基站。 用户终端可以根据服务基站的命令, 或者自身根据一定的周期搜 索下行信号, 检测该下行信号质量, 并将检测结果向服务基站反馈, 如果服 务基站决定将用户终端切换到发出 VLC信号的目标基站,则用户终端向目标 基站发出随机接入信号, 以实现与目标基站同步。 同时, 目标基站的接收模 块 51可以通过 X2接口接收到服务基站发送的服务基站与用户终端的上行和 下行信道质量, 以及目标基站与用户终端的下行信道质量。 目标基站的获取 模块 52 可以从用户终端发送的随机接入信号中获取目标基站与所述用户终 端的上行信道质量。从而, 目标基站的获取模块 52能够获得用户终端到自身 以及服务基站的上下行链路质量。进而, 目标基站的切换控制模块 53可以根 据这些上下行链路质量确定是否将用户终端从服务基站切换至目标基站。 切 换控制模块 53确定是否切换可以采用多种方法,例如:可以假定 H11和 H12 是用户终端到服务基站的上下行信道增益, H21和 H22是用户终端到目标基 站的上下行信道增益, W1和 W2是上下行的权值,则如果 W1*H11 +W2*H12 小于 W1*H21 +W2*H22则切换控制模块 53进行切换, 反之则不进行切换。
由于目标基站的下行采用 VLC传输, 或者是 RF和 VLC混合的传输方 式, 然而 VLC模式的数据传输依赖于基站和用户终端间的直达路径是否受到 障碍物的遮挡, 从而导致通信中断。
例如: 用户将手机放入口袋, 或者用户从一个扇区进入另一个扇区, 而 扇区间可能有些区域没有 VLC下行信号均会造成 VLC下行信号中断。 针对 这种情况, 本发明实施例进一步提出一种切换方法:
用户终端在接入 VLC模式的 Femtocell或者 Picocell之后, 需要保持对 Macrocell信号的同步, 用户终端可以一定周期接收 Macrocell的同步信号, 保持与 Macrocell的同步。 当用户终端无法接收到下行 VLC信号的时间超过 设定的门限值, 或者, 用户终端需要反馈的上行信号在一个门限值内还没有 收到服务基站的反馈时, 用户终端可以向 Macrocell发出随机接入的信号, 以切换至 Macrocell„
图 9为本发明提供的无线通信系统第一实施例的结构示意图, 如图 9所 示, 该无线通信系统包括: 用户终端 6和基站 7;
基站 7包括: 数个发光二极管 LED灯, 和 /或, 数台可见光通信 VLC/红 外线 IR接收机;
数个发光二极管 LED灯, 用于向用户终端 6发送正交频分多址 OFDMA 制式的下行信号;
数台 VLC/IR接收机, 用于接收所述用户终端 6发送的单载波频分多址
SC-FDMA制式的上行信号; 基站 7还包括: 基带信号处理单元, 用于将所述数个 LED灯, 和 /或数 台所述 VLC/IR接收机等效为长期演进 LTE模式的远端射频单元, 对所述数 个发光二极管 LED灯发送的下行信号,和 /或所述数台 VLC/IR接收的上行信 号进行处理和资源管理;
用户终端 6用于: 向基站 7发送 SC-FDMA制式的上行信号, 并接收所 述基站发送的 OFDMA制式的下行信号。
进一步的, 基站 7的所述数个 LED灯根据空间距离划分为多个 LED灯 组, 每个所述 LED 灯组用于向所述用户终端 7 发送具有独立帧结构的 OFDMA制式的下行信号。
本发明实施例中涉及的基站 7可以为微蜂窝 Femtocell或者微微蜂窝
Picocell , 该基站 7采用 VLC模式进行 OFDMA制式的下行信号传输, 和 /或 SC-FDMA制式的上行信号传输。 该基站 7还可以采用 VLC模式和 RF模式进行 混合下行信号传输, 和 /或 VLC模式和 RF模式混合上行信号传输。
基站 7中的 BBU可以将用于发送下行 VLC信号的数个 LED灯, 和 /或用于 接收上行 VLC信号的数台 VLC/IR接收机等效为长期演进 LTE模式的 RRU , 对 数个 LED灯发送的下行信号,和 /或数台 VLC/IR接收的上行信号(即基带信号) 进行处理和资源管理。 其中, 等效为长期演进 LTE模式的远端射频单元可以 是等效为 LTE的扇区, 或者是等效为 LTE的载波。
通过等效, 可以实现在采用 RF和 VLC混合传输方式时, VLC传输方式能 够复用现有的 LTE系统的基带信号处理和资源管理方式, 简化基站执行的资 源管理和基带信号处理操作, 节约基站的资源。
本发明实施例中涉及的基站 7还可以为 Macrocell, 这种情况下, 该基站 7 在提供 RF上行信号和 RF下行信号的基础上,可以采用数个 LED灯辅助下行传 输, 和 /或, 采用数台 VLC/IR接收机辅助上行传输。 类似的, 在下行方向上, 可以将数个 LED灯按照物理空间距离划分为若干个 LED灯组, 每个 LED灯组 可以等效为一个 LTE的载波, 这样, 在下行方向上, 便存在若干个等效 LTE 载波, 上行方向上的等效载波与此类似。
本发明实施例提供的无线通信系统,基站可以将用于发送下行 VLC信号 的数个 LED灯, 和 /或用于接收上行 VLC信号的数台 VLC/IR接收机等效为 长期演进 LTE模式的远端射频单元进行基带信号处理和资源管理。 从而在采 用 RF和 VLC混合传输方式时, VLC传输方式能够复用现有的 LTE系统的 基带信号处理和资源管理方式, 简化基站执行的资源管理和基带信号处理操 作, 节约基站的资源。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体
( Read-Only Memory, ROM )或随机存者 i己忆体( Random Access Memory, RAM )等。
图 10为本发明提供的无线通信方法第一实施例的流程图,如图 10所示, 该方法包括:
5101、 接收用户终端发送的上行信号;
5102、 向用户终端发送下行信号, 下行信号由数个发光二极管 LED灯 以 OFDMA的制式发送, 和 /或, 上行信号由数台可见光通信 VLC/红外线 IR 接收机以单载波频分多址 SC-FDMA的制式接收, 数个 LED灯, 和 /或数台 VLC/IR接收机由基带信号处理单元等效为长期演进 LTE模式的远端射频单 元, 由基带信号处理单元对数个发光二极管 LED 灯发送的下行信号, 和 /或 数台 VLC/I R接收的上行信号进行处理和资源管理。
以上步骤的执行主体为基站, 该基站可以为微蜂窝 Femtocell或微微蜂 窝 Picocell, 还可以为 MacrocelL
作为一种可行的实施方式, S102向用户终端发送 OFDMA制式的下行信 号, 可以具体为: 每个 LED 灯组向所述用户终端发送具有独立帧结构的下行信号, 所述 LED灯组由所述数个 LED灯根据空间距离划分。
S101接收用户终端发送的上行信号可以具体为:
VLC/IR接收机接收所述用户终端发送的具有独立帧结构的 SC-FDMA制 式的上行信号, 每台所述 VLC/IR接收机与一个所述 LED灯组对应。
其中, 每个所述 LED灯组及其对应的一台所述 VLC/IR接收机由所述基 带信号处理单元等效为 LTE模式的一个基站扇区, 由基带信号处理单元对所 述 LED灯组发送的下行信号和所述 VLC/IR接收机接收的上行信号进行处理 和资源管理。
作为另一种可行的实施方式, S101接收用户终端发送的上行信号还可以 具体为:
无线频谱 RF 接收机接收所述用户终端发送具有统一帧结构的 SC-FDMA制式的上行信号, 所述每个所述 LED灯组由所述基带信号处理单 元等效为 LTE模式的一个基站扇区, 由基带信号处理单元对所述 LED灯组 发送的下行信号和所述 RF接收机接收的上行信号进行处理和资源管理。
无线频谱 RF 接收机接收所述用户终端发送具有统一帧结构的 SC-FDMA制式的上行信号具体为:
所述 RF接收机接收所述用户终端对于不同的等效基站扇区在所述统一 帧结构的 SC-FDMA制式的上行信号的不同的时频资源上发送的上行信号, 所述不同的等效的基站扇区中的所述用户终端具有统一的用户标识。
该方法还可以包括:
所述 RF接收机接收所述用户终端对于不同的等效的基站扇区在所述上 行信号的不同位置发送的随机接入序列, 或者, 所述 RF接收机接收所述用 户终端于不同的等效的基站扇区在所述上行信号中发送的不同的随机接入序 列。
作为又一种可行的实施方式, S101 接收用户终端发送的上行信号具体 为: RF接收机接收所述用户终端在独立的 RF载波上发送的 SC-FDMA制式 的上行信号;
S102向所述用户终端发送下行信号具体为: RF发射机和每个 LED灯组 向所述用户终端发送 OFDMA制式的下行信号,所述每个 LED灯组由所述数 个 LED灯根据空间距离划分, 每个所述 LED灯组由所述基带信号处理单元 等效为 LTE模式的一个独立载波, 由所述基带信号处理单元对所述 LED灯 组和所述 RF发射机发送的下行信号,以及所述 RF接收机接收的上行信号进 行载波聚合的处理和资源管理。
该方法还可以包括:所述 RF发射机在所述 RF载波的下行信道中广播所 述基站支持的等效的独立载波数及其对应的 LED灯组标识。
该方法还进一步包括:每个所述 LED灯组在等效的独立载波下行信道中 广播所述等效的独立载波对应的 LED灯组标识。
如果下行信号只采用 VLC/IR模式传输, 则所述方法还可以进一步包括: 采用每个所述 LED灯组在下行信号中广播对应的等效的基站扇区上行的频谱 信息。
当以上步骤的执行主体基站为用户终端进行小区切换的目标基站时, 从 用户终端当前的服务基站切换到目标基站的切换流程参见图 11 , 具体包括: S201、 获取所述用户终端当前的服务基站发送的目标基站与用户终端的 下行信道质量, 以及所述服务基站与所述用户终端的上行和下行信道质量; S202、 从所述用户终端发送的随机接入信号中获取所述目标基站与所述 用户终端的上行信道质量, 所述目标基站与用户终端的下行信道上传输的下 行信号由所述数个 LED 灯发送, 和 /或, 所述目标基站与用户终端的上行信 道上传输的上行信号由所述数台 VLC/I R接收机接收;
S203、 根据所述目标基站与所述用户终端的上行和下行信道质量以及所 述服务基站与所述用户终端的上行和下行信道质量, 确定是否将所述用户终 端从所述服务基站切换至所述目标基站。 本发明实施例提供的无线通信方法与本发明实施例提供的基站所执行的 传输操作相对应, 该无线通信方法具体的执行过程可参见前述基站实施例, 在此不再赘述。
本发明实施例提供的无线通信方法,基站可以将用于发送下行 VLC信号 的数个 LED灯, 和 /或用于接收上行 VLC信号的数台 VLC/IR接收机等效为 长期演进 LTE模式的远端射频单元进行基带信号处理和资源管理。 从而在采 用 RF和 VLC混合传输方式时, VLC传输方式能够复用现有的 LTE系统的 基带信号处理和资源管理方式, 简化基站执行的资源管理和基带信号处理操 作, 节约基站的资源。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种基站, 其特征在于, 包括: 数个发光二极管 LED灯, 和 /或, 数 台可见光通信 VLC/红外线 IR接收机;
所述数个发光二极管 LED 灯, 用于向用户终端发送正交频分多址 OFDMA制式的下行信号;
所述数台 VLC/IR接收机, 用于接收所述用户终端发送的单载波频分多 址 SC-FDMA制式的上行信号;
所述基站还包括: 基带信号处理单元, 用于将所述数个 LED 灯, 和 /或 数台所述 VLC/IR接收机等效为长期演进 LTE模式的远端射频单元, 对所述 数个发光二极管 LED灯发送的下行信号,和 /或所述数台 VLC/IR接收的上行 信号进行处理和资源管理。
2、 根据权利要求 1所述的基站, 其特征在于, 所述数个 LED灯根据空 间距离划分为多个 LED灯组, 每个所述 LED灯组用于向所述用户终端发送 具有独立帧结构的 OFDMA制式的下行信号。
3、 根据权利要求 2所述的基站, 其特征在于, 所述每个 LED灯组包括 多个子 LED灯组;
每个所述子 LED灯组用于: 向所述用户终端发送同一帧结构中不同层的 OFDMA制式的下行信号。
4、 根据权利要求 2或 3所述的基站, 其特征在于, 每个所述 LED灯组 对应一台所述 VLC/IR接收机,所述 VLC/IR接收机用于接收所述用户终端发 送的具有独立帧结构的 SC-FDMA制式的上行信号。
5、 根据权利要求 4所述的基站, 其特征在于, 每个所述 LED灯组对应 一台所述 VLC/IR接收机;
所述基带信号处理单元具体用于: 将每个所述 LED灯组及其对应的一台 所述 VLC/IR接收机等效为 LTE模式的一个基站扇区,对所述 LED灯组发送 的下行信号和所述 VLC/IR接收机接收的上行信号进行处理和资源管理。
6、 根据权利要求 2所述的基站, 其特征在于, 还包括与所述多个 LED 灯组对应的一台无线频谱 RF接收机;
所述 RF 接收机用于: 接收所述用户终端发送具有统一帧结构的 SC-FDMA制式的上行信号。
所述基带信号处理单元具体用于: 将每个所述 LED灯组等效为 LTE模 式的一个基站扇区, 对所述 LED灯组发送的下行信号和所述 RF接收机接收 的上行信号进行处理和资源管理。
7、 根据权利要求 6所述的基站, 其特征在于, 所述不同的等效的基站扇 区在所述统一帧结构的 SC-FDMA制式的上行信号的不同时频资源上接收所 述用户终端发送的上行信号, 所述不同的等效的基站扇区中的用户终端具有 统一的用户标识。
8、 根据权利要求 7所述的基站, 其特征在于, 所述不同的等效的基站扇 区的所述用户终端在所述上行信号的不同位置发送随机接入序列, 或者, 所 述不同的等效的基站扇区的所述用户终端在所述上行信号中发送不同的随机 接入序列。
9、 根据权利要求 2所述的基站, 其特征在于, 包括多个 LED灯组, 还 包括: 一台 RF发射机和一台 RF接收机;
所述 RF发射机用于:采用独立的 RF载波向所述用户终端发送 OFDMA 制式的下行信号;
所述 RF接收机用于: 接收所述用户终端在独立的 RF 载波上发送的
SC-FDMA制式的上行信号;
所述基带信号处理单元具体用于: 将每个所述 LED灯组等效为 LTE模 式的一个独立载波, 对所述 LED灯组和所述 RF发射机发送的下行信号, 以 及所述 RF接收机接收的上行信号进行载波聚合的处理和资源管理。
10、 根据权利要求 9所述的基站, 其特征在于, 所述 RF发射机还用于: 在所述 RF载波的下行信道中广播所述基站支持的等效的独立载波数及其对 应的 LED灯组标识。
11、 根据权利要求 9或 10所述的基站, 其特征在于, 每个所述 LED灯 组还用于: 在等效的独立载波下行信道中广播所述等效的独立载波对应的 LED灯组标识。
12、 根据权利要求 2-3, 或 5-8任一项所述的基站, 其特征在于, 每个 所述 LED灯组还用于:在下行信号中广播对应的等效的基站扇区上行的频谱 信息。
13、 根据权利要求 1 -3、 5-9任一项所述的基站, 其特征在于, 当所述基 站为目标基站, 则所述基带信号处理单元包括:
接收模块, 用于接收所述用户终端当前的服务基站发送的所述目标基站 与用户终端的下行信道质量, 以及所述服务基站与所述用户终端的上行和下 行信道质量;
获取模块, 用于从所述用户终端发送的随机接入信号中获取所述目标基 站与所述用户终端的上行信道质量, 所述目标基站与用户终端的下行信道上 传输的下行信号由所述数个 LED 灯发送, 和 /或, 所述目标基站与用户终端 的上行信道上传输的上行信号由所述数台 VLC/I R接收机接收;
切换控制模块, 用于根据所述目标基站与所述用户终端的上行和下行信 道质量以及所述服务基站与所述用户终端的上行和下行信道质量, 确定是否 将所述用户终端从所述服务基站切换至所述目标基站。
14、 一种无线通信方法, 其特征在于, 包括:
接收用户终端发送的上行信号;
向所述用户终端发送下行信号,所述下行信号由数个发光二极管 LED灯 以 OFDMA的制式发送, 和 /或, 所述上行信号由数台可见光通信 VLC/红外 线 IR接收机以单载波频分多址 SC-FDMA的制式接收, 所述数个 LED灯, 和 /或数台 VLC/IR接收机由基带信号处理单元等效为长期演进 LTE模式的远 端射频单元, 由基带信号处理单元对所述数个发光二极管 LED灯发送的下行 信号, 和 /或所述数台 VLC/IR接收的上行信号进行处理和资源管理。
15、 根据权利要求 14 所述的方法, 其特征在于, 所述向所述用户终端 发送下行信号, 具体为:
每个 LED灯组向所述用户终端发送具有独立帧结构的 OFDMA制式的下 行信号, 所述 LED灯组由所述数个 LED灯根据空间距离划分。
16、 根据权利要求 15 所述的方法, 其特征在于, 所述接收用户终端发 送的上行信号, 具体为:
VLC/IR接收机接收所述用户终端发送的具有独立帧结构的 SC-FDMA制 式的上行信号, 每台所述 VLC/IR接收机与一个所述 LED灯组对应。
17、 根据权利要求 16所述的方法, 其特征在于, 每个所述 LED灯组及 其对应的一台所述 VLC/IR接收机由所述基带信号处理单元等效为 LTE模式 的一个基站扇区, 由基带信号处理单元对所述 LED灯组发送的下行信号和所 述 VLC/IR接收机接收的上行信号进行处理和资源管理。
18、 根据权利要求 15 所述的方法, 其特征在于, 所述接收用户终端发 送的上行信号, 具体为:
无线频谱 RF 接收机接收所述用户终端发送具有统一帧结构的 SC-FDMA制式的上行信号, 所述每个所述 LED灯组由所述基带信号处理单 元等效为 LTE模式的一个基站扇区, 由基带信号处理单元对所述 LED灯组 发送的下行信号和所述 RF接收机接收的上行信号进行处理和资源管理。
19、 根据权利要求 18所述的方法, 其特征在于, 所述无线频谱 RF接收 机接收所述用户终端发送具有统一帧结构的 SC-FDMA制式的上行信号, 具 体为:
所述 RF接收机接收所述用户终端对于不同的等效基站扇区在所述统一 帧结构的 SC-FDMA制式的上行信号的不同时频资源上发送的上行信号, 所 述不同的等效的基站扇区中的所述用户终端具有统一的用户标识。
20、 根据权利要求 19所述的方法, 其特征在于, 还包括: 所述 RF接收机接收所述用户终端对于不同的等效的基站扇区在所述上 行信号的不同位置发送的随机接入序列, 或者, 所述 RF接收机接收所述用 户终端于不同的等效的基站扇区在所述上行信号中发送的不同的随机接入序 列。
21、 根据权利要求 14 所述的方法, 其特征在于, 所述接收用户终端发 送的上行信号具体为: RF接收机接收所述用户终端在独立的 RF载波上发送 的 SC-FDMA制式的上行信号;
所述向所述用户终端发送下行信号具体为: RF发射机和每个 LED灯组 向所述用户终端发送 OFDMA制式的下行信号,所述每个 LED灯组由所述数 个 LED灯根据空间距离划分, 每个所述 LED灯组由所述基带信号处理单元 等效为 LTE模式的一个独立载波, 由所述基带信号处理单元对所述 LED灯 组和所述 RF发射机发送的下行信号,以及所述 RF接收机接收的上行信号进 行载波聚合的处理和资源管理。
22、 根据权利要求 21所述的方法, 其特征在于, 还包括:
所述 RF发射机在所述 RF载波的下行信道中广播所述基站支持的等效的 独立载波数及其对应的 LED灯组标识。
23、 根据权利要求 21或 22所述的方法, 其特征在于, 还包括: 每个所述 LED灯组在等效的独立载波下行信道中广播所述等效的独立载 波^"应的 LED灯组标识。
24、 根据权利要求 15-20任一项所述的方法, 其特征在于, 还包括: 每个所述 LED灯组在下行信号中广播对应的等效的独立载波上行的频谱 信息。
25、 根据权利要求 15-20任一项所述的方法, 其特征在于, 还包括: 获取所述用户终端当前的服务基站发送的目标基站与用户终端的下行信 道质量, 以及所述服务基站与所述用户终端的上行和下行信道质量;
从所述用户终端发送的随机接入信号中获取所述目标基站与所述用户终 端的上行信道质量, 所述目标基站与用户终端的下行信道上传输的下行信号 由所述数个 LED 灯发送, 和 /或, 所述目标基站与用户终端的上行信道上传 输的上行信号由所述数台 VLC/IR接收机接收;
根据所述目标基站与所述用户终端的上行和下行信道质量以及所述服务 基站与所述用户终端的上行和下行信道质量, 确定是否将所述用户终端从所 述服务基站切换至所述目标基站。
26、 一种无线通信系统, 其特征在于, 包括: 用户终端和基站; 所述基站包括: 数个发光二极管 LED灯, 和 /或, 数台可见光通信 VLC/ 红外线 IR接收机;
所述数个发光二极管 LED 灯, 用于向用户终端发送正交频分多址
OFDMA制式的下行信号;
所述数台 VLC/IR接收机, 用于接收所述用户终端发送的单载波频分多 址 SC-FDMA制式的上行信号;
所述基站还包括: 基带信号处理单元, 用于将所述数个 LED 灯, 和 /或 数台所述 VLC/IR接收机等效为长期演进 LTE模式的远端射频单元, 对所述 数个发光二极管 LED灯发送的下行信号,和 /或所述数台 VLC/IR接收的上行 信号进行处理和资源管理;
所述用户终端用于: 向所述基站发送 SC-FDMA制式的上行信号, 并接 收所述基站发送的 OFDMA制式的下行信号。
27、 根据权利要求 26 所述的无线通信系统, 其特征在于, 所述基站的 所述数个 LED灯根据空间距离划分为多个 LED灯组, 每个所述 LED灯组用 于向所述用户终端发送具有独立帧结构的 OFDMA制式的下行信号。
PCT/CN2011/073330 2011-04-26 2011-04-26 无线通信方法、基站和系统 WO2011113385A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2011/073330 WO2011113385A2 (zh) 2011-04-26 2011-04-26 无线通信方法、基站和系统
EP11755702.5A EP2696649A4 (en) 2011-04-26 2011-04-26 PROCESS, BASIC STATION AND SYSTEM FOR WIRELESS COMMUNICATION
CN201180000246.3A CN103329613B (zh) 2011-04-26 无线通信方法、基站和系统
US14/063,787 US9461739B2 (en) 2011-04-26 2013-10-25 Wireless communication method, base station and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073330 WO2011113385A2 (zh) 2011-04-26 2011-04-26 无线通信方法、基站和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/063,787 Continuation US9461739B2 (en) 2011-04-26 2013-10-25 Wireless communication method, base station and system

Publications (2)

Publication Number Publication Date
WO2011113385A2 true WO2011113385A2 (zh) 2011-09-22
WO2011113385A3 WO2011113385A3 (zh) 2012-04-19

Family

ID=44649650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073330 WO2011113385A2 (zh) 2011-04-26 2011-04-26 无线通信方法、基站和系统

Country Status (3)

Country Link
US (1) US9461739B2 (zh)
EP (1) EP2696649A4 (zh)
WO (1) WO2011113385A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014085694A1 (en) * 2012-12-01 2014-06-05 Qualcomm Incorporated Methods and apparatus for communications using visible light communications signaling in combination with wireless radio signaling
CN105530049A (zh) * 2016-01-11 2016-04-27 北京邮电大学 一种室内可见光异构网络中的负载均衡方法及装置
US11375422B2 (en) * 2016-12-16 2022-06-28 Telefonaktiebolaget Lm Ericsson (Publ) UE communication handover between light fidelity access points in a communication system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016360730B2 (en) * 2015-11-26 2021-05-13 Philips Lighting Holding B.V. System and method for targeted data communication
WO2017129614A1 (en) * 2016-01-29 2017-08-03 Philips Lighting Holding B.V. Managing data traffic in hybrid application control systems
GB201618065D0 (en) * 2016-10-26 2016-12-07 University Court Of The University Of Edinburgh Multiuser access for optical communications
EP3435560B1 (en) * 2017-07-24 2019-10-23 Deutsche Telekom AG Visible light communication, vlc, network and method
EP4183064A1 (en) * 2020-07-17 2023-05-24 Signify Holding B.V. An optical wireless communication receiving unit, system and method
CN114745755B (zh) * 2021-01-07 2023-12-26 大唐移动通信设备有限公司 一种通信方法、基站、终端及存储介质
CN117098145A (zh) * 2022-05-10 2023-11-21 中国移动通信有限公司研究院 波束管理方法、装置、相关设备及存储介质

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128512A (en) * 1995-09-06 2000-10-03 Cisco Systems, Inc. Cellular communication system with dedicated repeater channels
US6005694A (en) * 1995-12-28 1999-12-21 Mci Worldcom, Inc. Method and system for detecting optical faults within the optical domain of a fiber communication network
US20040052076A1 (en) * 1997-08-26 2004-03-18 Mueller George G. Controlled lighting methods and apparatus
US9130651B2 (en) * 2010-08-07 2015-09-08 Joseph Akwo Tabe Mega communication and media apparatus configured to provide faster data transmission speed and to generate electrical energy
US8188878B2 (en) * 2000-11-15 2012-05-29 Federal Law Enforcement Development Services, Inc. LED light communication system
US6542270B2 (en) * 2000-12-08 2003-04-01 Motorola, Inc. Interference-robust coded-modulation scheme for optical communications and method for modulating illumination for optical communications
EP1858179A1 (en) * 2002-10-24 2007-11-21 Nakagawa Laboratories, Inc. Illumination light communication device
US7046166B2 (en) * 2003-04-29 2006-05-16 Rockwell Scientific Licensing, Llc Modular wireless integrated network sensor (WINS) node with a dual bus architecture
CN1545225A (zh) * 2003-11-11 2004-11-10 武汉虹信通信技术有限责任公司 自由空间光传输移动通信直放站
US7080921B2 (en) * 2004-02-13 2006-07-25 Argent Electric, Inc. Linear light using LEDs
KR20060130715A (ko) * 2004-03-03 2006-12-19 닛본 덴끼 가부시끼가이샤 측위 시스템, 측위 방법, 및 그 프로그램
WO2006023149A2 (en) * 2004-07-08 2006-03-02 Color Kinetics Incorporated Led package methods and systems
JP4939024B2 (ja) * 2005-09-27 2012-05-23 京セラ株式会社 光通信装置、及び光通信方法
KR100678024B1 (ko) * 2006-02-10 2007-02-02 삼성전자주식회사 무선 통신을 이용한 복합 수동형 광가입자망
CN101026413B (zh) * 2006-02-17 2012-01-04 华为技术有限公司 照明光无线通信系统
KR101364393B1 (ko) * 2007-07-19 2014-02-17 삼성전자주식회사 가시광 통신에서 통신 링크의 정렬을 위한 장치 및 방법
US8169992B2 (en) * 2007-08-08 2012-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Uplink scrambling during random access
WO2009027102A2 (en) * 2007-08-29 2009-03-05 Eppendorf Ag Device and method for radiometric measurement of a plurality of samples
US7912376B2 (en) * 2007-09-28 2011-03-22 Rockwell Automation Technologies, Inc. Non-interfering transmitted-beam pairs
KR101015643B1 (ko) * 2008-06-17 2011-02-22 삼성전자주식회사 가시광 통신 방법 및 장치
KR100987458B1 (ko) * 2008-06-24 2010-10-13 엘지전자 주식회사 상향링크 신호 전송 방법
US8463130B2 (en) * 2008-07-03 2013-06-11 Apple Inc. Method and system for implementing a wireless network
EP2159950B1 (en) * 2008-08-11 2016-04-27 LG Electronics Inc. Method and apparatus for transmitting uplink signals using multi antenna
US8554200B2 (en) * 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
KR20100059502A (ko) * 2008-11-26 2010-06-04 삼성전자주식회사 가시광 통신 시스템에서 브로드캐스팅 서비스 방법 및 시스템
US9237372B2 (en) * 2008-12-15 2016-01-12 At&T Intellectual Property I, L.P. Method and apparatus for presenting media content
JP5303784B2 (ja) * 2009-03-10 2013-10-02 株式会社日立製作所 無線通信システム
KR101663616B1 (ko) * 2009-04-29 2016-10-07 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 참조 신호 시퀀스 생성 방법 및 이를 위한 장치
US20100296298A1 (en) * 2009-05-22 2010-11-25 Martin Jr Richard Massie Rear-beveled mirror with day/night adjustable backlighting
EP2449807A4 (en) * 2009-07-02 2015-04-22 Apple Inc ACCESS POINT AND DEVICE COMMUNICATIONS
CN101764630B (zh) * 2009-08-13 2013-01-16 中国科学院苏州纳米技术与纳米仿生研究所 射频无线电与可见光双模无线通信系统及其工作方法
TWI495377B (zh) * 2009-08-21 2015-08-01 Interdigital Patent Holdings 在不同無線存取技術中分裂下鏈-上鏈之多無線存取技術層方法及裝置
WO2011032571A1 (en) * 2009-09-17 2011-03-24 Universität Duisburg-Essen Transmitter and receiver for transceiving optical signals
EP3343803A1 (en) * 2009-09-18 2018-07-04 Interdigital Patent Holdings, Inc. Method and apparatus for dimming with rate control for visible light communications (vlc)
KR101654934B1 (ko) * 2009-10-31 2016-09-23 삼성전자주식회사 가시광 통신 방법 및 장치
US8285298B2 (en) * 2009-12-23 2012-10-09 At&T Mobility Ii Llc Chromatic scheduler for network traffic with disparate service requirements
WO2011100331A1 (en) * 2010-02-09 2011-08-18 Interdigital Patent Holdings, Inc Method and apparatus for trusted federated identity
US8737191B2 (en) * 2010-02-25 2014-05-27 Interdigital Patent Holdings, Inc. Blind timing synchronization and low complexity channel estimation in ACO-OFDM systems
KR101709785B1 (ko) * 2010-03-31 2017-02-23 삼성전자주식회사 가시광 통신 시스템에서 슬립 모드 설정에 따른 가시 프레임 전송 방법 및 장치
JP2013541279A (ja) * 2010-09-14 2013-11-07 ノキア シーメンス ネットワークス オサケユキチュア 通信ネットワークにおいてデータフレームに基づいてデータ伝送スキームを構成する方法及びそのための基地局
WO2012043992A2 (ko) * 2010-09-30 2012-04-05 엘지전자 주식회사 무선통신 시스템에서 릴레이 노드가 채널품질 지시자를 보고하는 방법 및 이를 위한 장치
CN102684819B (zh) * 2011-03-15 2015-06-03 华为技术有限公司 一种数据传输方法及相关设备、系统
GB2496379A (en) * 2011-11-04 2013-05-15 Univ Edinburgh A freespace optical communication system which exploits the rolling shutter mechanism of a CMOS camera
US9202397B1 (en) * 2014-06-09 2015-12-01 Richard J. Petrocy Modularized lighting display system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2696649A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014085694A1 (en) * 2012-12-01 2014-06-05 Qualcomm Incorporated Methods and apparatus for communications using visible light communications signaling in combination with wireless radio signaling
US9143230B2 (en) 2012-12-01 2015-09-22 Qualcomm Incorporated Methods and apparatus for communications using visible light communications signaling in combination with wireless radio signaling
KR101763295B1 (ko) 2012-12-01 2017-08-04 퀄컴 인코포레이티드 무선 라디오 시그널링과 결합하여 가시광 통신 시그널링을 사용하는 통신들을 위한 방법들 및 장치
CN105530049A (zh) * 2016-01-11 2016-04-27 北京邮电大学 一种室内可见光异构网络中的负载均衡方法及装置
CN105530049B (zh) * 2016-01-11 2018-01-30 北京邮电大学 一种室内可见光异构网络中的负载均衡方法及装置
US11375422B2 (en) * 2016-12-16 2022-06-28 Telefonaktiebolaget Lm Ericsson (Publ) UE communication handover between light fidelity access points in a communication system

Also Published As

Publication number Publication date
CN103329613A (zh) 2013-09-25
EP2696649A4 (en) 2014-09-03
WO2011113385A3 (zh) 2012-04-19
US20140050487A1 (en) 2014-02-20
US9461739B2 (en) 2016-10-04
EP2696649A2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2011113385A2 (zh) 无线通信方法、基站和系统
USRE48280E1 (en) Method and system for dynamic cell configuration
US20240049001A1 (en) Virtualized Cell Architecture
TW201342961A (zh) 用於毫微微細胞服務區通道選擇的方法和系統
KR101584550B1 (ko) 분산 안테나 시스템에서의 신호 송수신 방법 및 장치
WO2012155721A1 (zh) 一种实现超级小区数据传输的方法、系统及控制站
WO2013189402A2 (zh) 一种对多个小基站进行小区合并的方法、管理方法和系统
JP2017508398A (ja) エアインターフェース同期の方法及びシステム
CN103329613B (zh) 无线通信方法、基站和系统
Ericson et al. Initial Access, RRC and Mobility
WO2025047747A1 (ja) 通信方法、ユーザ装置、及び中継装置
KRISHNA et al. ADVANCES IN 4G COMMUNICATION NETWORKS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755702

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011755702

Country of ref document: EP