[go: up one dir, main page]

WO2011110701A1 - System for adjusting the position and attitude of orbiting bodies using guide satellites - Google Patents

System for adjusting the position and attitude of orbiting bodies using guide satellites Download PDF

Info

Publication number
WO2011110701A1
WO2011110701A1 PCT/ES2011/000011 ES2011000011W WO2011110701A1 WO 2011110701 A1 WO2011110701 A1 WO 2011110701A1 ES 2011000011 W ES2011000011 W ES 2011000011W WO 2011110701 A1 WO2011110701 A1 WO 2011110701A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
primary
propulsion
flow
guide
Prior art date
Application number
PCT/ES2011/000011
Other languages
Spanish (es)
French (fr)
Inventor
Claudio Bombardelli
Jesús PELÁEZ ÁLVAREZ
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Publication of WO2011110701A1 publication Critical patent/WO2011110701A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1078Maintenance satellites
    • B64G1/1081Maintenance satellites for debris removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories

Definitions

  • the present invention is framed in the aerospace field. More particularly, it belongs to the guidance, maneuver and control systems and mechanisms for satellites. Specifically, to those who employ propulsion through a directed flow of ions as a means to modify the position and / or orientation (attitude) of satellites or more generally bodies in orbit.
  • the spatial object whose orbit is to be modified is non-cooperative, that is, it does not have any control system designed to engage with another satellite.
  • the spatial object in the worst case will have an unstable position without a fixed orientation (for example, rotating chaotically around its center of mass) as often happens in the case of space debris. Performing a controlled coupling in these cases constitutes a very difficult and risky technological problem, for which advanced robotic tools and highly complex control systems are required.
  • ions that make up this plasma are accelerated by an electrical or electromagnetic system at speeds of 30 km / s and more.
  • ionic propellants are technologically many more complex than gas propellants and require a power system to expel high-speed ions, they offer two fundamental advantages: a much higher specific thrust and a much smaller divergence angle.
  • a measuring module configured to estimate by means of the information obtained with a radar, the mass of the body, the effective section (A ⁇ ) of the body for impact and the relative distance (d) of the body with the guide satellite;
  • control module coupled with the measurement module, said control module configured to activate and direct, in accordance with the orientation and relative distance (d) with the body, the primary means;
  • control module further configured to activate secondary propulsion means of the guide satellite to orient and move said guide satellite, the means Secondary controlled according to the estimated mass (m2) of the body and the propulsion force generated by the activated primary means, so that the secondary means compensate for variations in the relative distance (d) to keep it substantially constant.
  • This proposed system is suitable for the modification of orbits and / or position of a body that is orbiting. Specifically, this system allows to move active satellites (to correct orbit injection errors or to prolong their life), space debris or small celestial bodies (asteroids, meteoroids, etc.) thanks to the action of guide satellites.
  • the necessary thrust is transmitted without physical contact with the body whose orbit and / or position is to be modified thus avoiding problems of collision in orbit and without requiring complex "rendezvous and docking" maneuvers.
  • the prior art systems mentioned perform very complicated maneuvers and present a high risk of collisions or damage to the participating satellites.
  • the present invention drastically reduces the complexity and risks associated with this type of maneuver since any type of mechanical contact between the bodies involved is avoided, the thrust being transmitted indirectly through a high-speed ion stream.
  • the basic purpose of the system is to solve the fundamental problem of the displacement of satellites and, more generally, of space objects allowing the displacement to occur in the simplest way possible and minimizing the risks of collisions or damage of satellites involved in the maneuver.
  • a eff being the effective section, with respect to the direction of the guide satellite, of the space object to be controlled.
  • the angle of divergence ⁇ can reach a theoretical value, for example using xenon ions, less than 3 degrees, which corresponds to a distance of about ⁇ ⁇ A eff .
  • mercury the angle of divergence drops to less than 2 degrees while with argon it rises to more than 4 degrees.
  • neon and krypton ions are also suitable for use in the invention.
  • the thrust transmitted by the ion stream can be calculated in several ways.
  • a widely used formula is as follows:
  • P is the electrical power available on board the satellite and dedicated to the propulsion system
  • 77 is the performance of the propulsion system.
  • the value of ⁇ depends on the type of propellant and exceeds 70% in ionic engines.
  • the value of P depends on the mass dedicated to the power system on board the satellite. For example, a 1 kW system It normally has a mass cost of 10-20 kg.
  • a thrust of about 0.05 N is reached. Although small, this thrust turns out to be several orders of magnitude greater than the atmospheric resistance force, acting on a conventional satellite , in low Earth orbit (400 to 1000 km) and can be used, for example, to clear congested orbits of space debris.
  • Figure 1 represents an example of how the displacement of a non-active body or satellite (2), target of the ion flow (7) directed by the ion generation / expulsion system (primary propulsion system) (3) occurs.
  • a guide satellite (1) that includes a secondary propulsion system (4) to maintain a distance and a relative position between both objects and a radar system (5) to measure the distance and the effective section of the object.
  • Figure 2 represents an example of how the displacement of an active satellite (2) occurs.
  • the key elements of the system are the same except for distance measurement that must be more sophisticated and can include not only a radar system but also a vision system to estimate the orientation of the active satellite and locate suitable points to direct the flow of ions.
  • Figure 3 schematically represents an embodiment of the invention, with inputs and outputs so that said system can be provided with the devices and subsystems responsible for calculating the parameters necessary to perform the maneuver properly.
  • Figure 4 represents a block diagram, where the relationships between the different modules have been illustrated. They appear in the figure, the control module (9) that governs the ionic propeller (3) used to move external bodies, the propeller of the satellite itself (4), the measurement module (10) that collects information from a radar (5) ) and optionally a vision system (11).
  • a trigger device (12) is shown that allows the ionic propeller (3) to be directed towards a target without the need to maneuver the guide satellite as a whole.
  • These non-essential modules are shown in dashed line.
  • the known parameters at the input are the mass m, of the guide satellite, the maximum distance d max that the ion flow can reach;
  • the parameters estimated at the entrance are the mass m 2 of the object to maneuver, its effective section A,. * and its position d with respect to the guide satellite.
  • Space object to be maneuvered (2) It can be artificial (e.g. active or inactive satellite or part thereof, rocket etc.) or natural (asteroid, comet, meteoroid, etc.).
  • Guide satellite 1 or more satellites that are responsible for transmitting the thrust to the object to be maneuvered without coming into physical contact with it.
  • Electrostatic ionic propellant (3) that is to say a system that ionizes argon, mercury or xenon atoms by exposing electrons from a cathode, and accelerates the ions produced by passing them through charged grids before expelling them generating the desired thrust.
  • This propellant system will always be used as a primary propellant to transmit the thrust the thrust to the object to be maneuvered and can optionally be used as a secondary propellant to control the relative distance between the bodies involved in the maneuver.
  • Power system (8) Provides the guidance satellite with the power needed to power the various propellers and measuring and control instruments. It can be any: solar panels, electrodynamic moorings, nuclear system, etc. Secondary propeller (4), that is to say a system, housed in the guide satellite, that provides the necessary thrust to control the relative distance between the bodies involved in the maneuver. It can be any type of propellant (ionic, chemical, electrodynamic mooring, solar sail, etc.).
  • Measuring radar (5) It is housed in the guide satellite and has the function of measuring the relative distance between the guide satellite and the object to maneuver and to estimate the size (ie the effective section) of the latter.
  • Attitude control module (9) It is housed in the guide satellite and has the function of controlling the orientation of the latter so that it can correctly direct the flow of ions to the object to maneuver.
  • Relative distance control module (10) Collect the necessary information from the measurement radar (5) to control the two propulsion systems (3,4) so that the relative distance between the bodies is kept constant. Optionally, if it exists, you can use the information provided by a vision module.
  • Vision module (11) It is housed in the guide satellite and has the function of measuring the relative distance between guide and object satellite to maneuver and estimate not only the size (effective section) of the latter but also its orientation and necessary physical characteristics to ensure that the ion stream is directed to non-sensitive parts of the controlled object avoiding possible damage to the operation of the latter. Said systems elaborate an image of the analyzed object which has to be processed by last generation recognition algorithms so that sensitive and non-sensitive parts of the controlled object can be identified.
  • Pointing device (12) it allows to vary the ejection of the ion flow without the need to maneuver the orientation of the guide satellite so that the control of the object to be maneuvered is more effective.
  • the invention which is implemented in a guide satellite (1), has a system for generating and expelling a flow of high-speed ions (3) directed towards the celestial body whose orbit and / or position you want to modify (2), and a secondary propulsion system (4).
  • the system of generation and expulsion of high-speed ions produces a thrust F pl on the body (2) and, by Newton's law of action and reaction, an equal and opposite thrust (-F ⁇ ) on the guide satellite.
  • the secondary propulsion system (4) must provide an additional thrust F 2 to balance the system and achieve relative acceleration (a re / ) null between the two bodies according to what is indicated by the following equation:
  • Equation E is the control equation of the system to perform the movement maneuver of the celestial body (2).
  • the mass m x of the guide satellite is known with some precision while m 2 is known only approximately (for example through spatial object databases).
  • a measurement system based on a radar (5), or if available, in more precise vision systems (1 1), is able to estimate the distance d between the two bodies at different times.
  • the attitude control module (9) is responsible for performing the necessary correction and acting on the two thrusters so that said distance remains constantly equal to a desired distance (the latter cannot exceed the maximum limit established by equation C) .
  • the secondary propulsion system (4) does not have to be another ionic propellant.
  • Electrodynamic moorings, solar sails, aerobraking propulsion systems, and liquid or solid propellant rockets can be used.
  • the relative distance control module (10) is necessary not only to keep the distance between the body and the guide satellite constant but also to locate the position of the body with sufficient precision and direct the flow of ions (7) towards it.
  • the guide satellite can additionally have a more sophisticated vision module (1 1) capable of estimating the attitude of the active satellite and locating sensitive parts of it and which are robust.
  • the vision module (11) produces an image of the satellite that has to be processed by recognition algorithms of latest generation so that the ion flow direction control system acts as established.
  • the guide satellite is located in the vicinity of the geostationary satellite until it reaches a maximum distance d max given by the formula C.
  • a vision system locates the side of the satellite that corresponds to the nozzle of the apogee engine, that is to say the Primary propulsion system (3) used to maneuver these types of satellites throughout their lifespan.
  • the position of the guide satellite is controlled so that the flow of high-speed ions can be directed against the nozzle of said motor (fig. 2) because it is a stronger part.
  • the displacement maneuver begins in which the guide satellite provides the necessary thrust, while controlling the relative distance between the two satellites (which must be kept constant) and the alignment of the ion flow with the nozzle of the controlled satellite.
  • the latter can be used not only to provide the thrust, but also to control, through minor modifications of the firing direction, the position of the geostationary satellite when necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Plasma Technology (AREA)

Abstract

System for adjusting the position and attitude of orbiting bodies using guide satellites that includes a satellite (1) fitted with a system for outputting a high-speed ion stream (3) and a secondary propulsion system (4), said satellite being located close to a body (2) the orbit and/or position of which is to be adjusted, and the position of the satellite being controlled such that the ion stream generated is directed against the body (2) generating the thrust necessary to adjust the orbit and/or orientation thereof. The system can be used to move active satellites, space debris or any other celestial body, transmitting the necessary thrust without physical contact with the body the orbit and/or orientation of which is to be adjusted. This helps to prevent problems related to collisions in orbit and enables complex rendezvous and docking manoeuvres.

Description

SISTEMA DE MODIFICACIÓN DE LA POSICIÓN Y ACTITUD DE CUERPOS EN ÓRBITA POR MEDIO DE SATÉLITES GUÍA  SYSTEM OF MODIFICATION OF THE POSITION AND ATTITUDE OF BODIES IN ORBIT THROUGH GUIDE SATELLITES

Campo técnico de la invención Technical Field of the Invention

La presente invención se enmarca en el campo aeroespacial. Más en particular, pertenece a los sistemas y mecanismos de guía, maniobra y control para satélites. En concreto, a aquellos que emplean la propulsión a través de un flujo dirigido de iones como medio para modificar la posición y/o la orientación (actitud) de satélites o más en general cuerpos en órbita. The present invention is framed in the aerospace field. More particularly, it belongs to the guidance, maneuver and control systems and mechanisms for satellites. Specifically, to those who employ propulsion through a directed flow of ions as a means to modify the position and / or orientation (attitude) of satellites or more generally bodies in orbit.

Estado de la Técnica State of the Art

La técnica anterior se ha ocupado ya del problema de modificar órbitas de cuerpos por medio de satélites. En casi todos los casos, el sistema propuesto ha comprendido siempre un sistema físico de acoplamiento (docking) entre el satélite y el cuerpo orbitador involucrados. The prior art has already dealt with the problem of modifying orbits of bodies by means of satellites. In almost all cases, the proposed system has always included a physical docking system between the satellite and the orbiter body involved.

El problema de estos métodos es que, en general, el objeto espacial cuya órbita se quiere modificar es no-cooperativo, es decir, no posee ningún sistema de control diseñado para efectuar el acoplamiento con otro satélite. Además, el objeto espacial en el peor de los casos tendrá una posición inestable sin una orientación fija (por ejemplo girando de forma caótica alrededor de su centro de masa) como ocurre, con frecuencia, en el caso de la basura espacial. Realizar un acoplamiento controlado en estos casos constituye un problema tecnológico muy difícil y arriesgado, para el que se requieren herramientas robóticas avanzadas y sistemas de control de alta complejidad. The problem with these methods is that, in general, the spatial object whose orbit is to be modified is non-cooperative, that is, it does not have any control system designed to engage with another satellite. In addition, the spatial object in the worst case will have an unstable position without a fixed orientation (for example, rotating chaotically around its center of mass) as often happens in the case of space debris. Performing a controlled coupling in these cases constitutes a very difficult and risky technological problem, for which advanced robotic tools and highly complex control systems are required.

En la actualidad, una solución para este problema se trata en la solicitud estadounidense US 2007/0285304. En ella, se propone transmitir un empuje entre satélites a través de un flujo de gas expulsado por un cohete. La velocidad de expulsión de las partículas de dicho gas es proporcionada por una reacción química de combustión. Sin embargo, el sistema de empuje con gas adolece de importantes limitaciones. Primero, el ángulo de divergencia del gas expulsado por la tobera siempre supera los 20-30 grados, de forma que para transmitir el empuje de forma efectiva la distancia entre el satélite guía y el cuerpo empujado por el gas debe de ser muy pequeña. Segundo, el sistema posee un empuje específico muy bajo, cuando se compara con los modernos propulsores iónicos, de manera que el consumo de combustible resulta muy alto. Estas limitaciones pueden ser superadas utilizando propulsores de tecnología radicalmente distinta que en lugar de gas expulsen plasma de alta velocidad. Los iones que componen dicho plasma son acelerados por un sistema eléctrico o electromagnético hacia velocidades de 30 km/s y más. Aunque los propulsores iónicos sean tecnológicamente muchos más complejos de los propulsores a gas y necesiten de un sistema de potencia para expulsar iones de alta velocidad ofrecen dos ventajas fundamentales: un empuje específico mucho más alto y un ángulo de divergencia mucho más pequeño. Currently, a solution to this problem is addressed in US application US 2007/0285304. In it, it is proposed to transmit a thrust between satellites through a flow of gas ejected by a rocket. The expulsion rate of the particles of said gas is provided by a chemical combustion reaction. However, the gas thrust system suffers from important limitations. First, the angle of divergence of the gas expelled by the nozzle always exceeds 20-30 degrees, so that in order to effectively transmit the thrust the distance between the guide satellite and the body pushed by the gas must be very small. Second, the system has a very low specific thrust, when compared to modern ionic thrusters, so that fuel consumption is very high. These limitations may be overcome using radically different technology propellants that instead of gas expel high speed plasma. The ions that make up this plasma are accelerated by an electrical or electromagnetic system at speeds of 30 km / s and more. Although ionic propellants are technologically many more complex than gas propellants and require a power system to expel high-speed ions, they offer two fundamental advantages: a much higher specific thrust and a much smaller divergence angle.

Una de las necesidades más perentorias e interesantes para el mercado actual es la modificación de órbitas de satélites geoestacionarios que han llegado al fin de su vida útil, generalmente por agotamiento del combustible. Debido a perturbaciones orbitales de varios tipos, estos satélites se alejan de su órbita nominal, con el consiguiente deterioro en el rendimiento y en su cometido. Diversos análisis han demostrado que sería económicamente conveniente corregir las órbitas de estos satélites por medio de satélites guía equipados con sistemas de acoplamiento; algunos sistemas con este propósito han sido ya patentados por ejemplo en US 6,945,500 donde se describe un sistema para extender la vida de un satélite (Satellite Life Extensión Spacecraft) que comprende un mecanismo de conexión con el satélite cuya vida se quiere extender, junto a un sistema de cohetes distribuidos para localizar y controlar el centro de masa del conjunto de los dos satélites. Se destaca que, en dicha invención, la trasmisión de empuje requiere que los dos satélites sean conectados mecánicamente. Realizar una conexión de este estilo requiere maniobras previas de encuentro y acoplamiento ("rendezvous and docking"). One of the most urgent and interesting needs for the current market is the modification of geostationary satellite orbits that have reached the end of their useful life, usually due to fuel depletion. Due to orbital disturbances of various types, these satellites move away from their nominal orbit, with the consequent deterioration in performance and in their role. Various analyzes have shown that it would be economically convenient to correct the orbits of these satellites by means of guide satellites equipped with coupling systems; Some systems for this purpose have already been patented, for example, in US 6,945,500, which describes a system to extend the life of a satellite (Satellite Life Extension Spacecraft) that includes a mechanism for connecting with the satellite whose life you want to extend, together with a distributed rocket system to locate and control the center of mass of the set of the two satellites. It is noted that, in said invention, push transmission requires that the two satellites be mechanically connected. Making a connection of this style requires prior meeting and coupling maneuvers ("rendezvous and docking").

Breve descripción de la invención Brief Description of the Invention

La presente invención se refiere a un sistema de modificación de la posición de un cuerpo para un satélite guía caracterizado por que comprende: The present invention relates to a system for modifying the position of a body for a guide satellite characterized in that it comprises:

- unos medios primarios de propulsión mediante eyección de un flujo de iones para incidir y efectuar un empuje sobre el cuerpo;  - primary means of propulsion by ejection of a flow of ions to influence and effect a thrust on the body;

- un módulo de medición configurado para estimar mediante la información obtenida con un radar, la masa del cuerpo, la sección eficaz (A^) del cuerpo para el impacto y la distancia relativa (d) del cuerpo con el satélite guía;  - a measuring module configured to estimate by means of the information obtained with a radar, the mass of the body, the effective section (A ^) of the body for impact and the relative distance (d) of the body with the guide satellite;

- un módulo de control acoplado con el módulo de medición, dicho módulo de control configurado para activar y dirigir, de acuerdo con la orientación y con la distancia relativa (d) con el cuerpo, los medios primarios;  - a control module coupled with the measurement module, said control module configured to activate and direct, in accordance with the orientation and relative distance (d) with the body, the primary means;

- el módulo de control configurado además para activar unos medios secundarios de propulsión del satélite guía para orientar y desplazar dicho satélite guía, los medios secundarios controlados de acuerdo con la masa (m2) estimada del cuerpo y de la fuerza de propulsión generada por los medios primarios activados, de manera que los medios secundarios compensan variaciones en la distancia relativa (d) para mantenerla sustancialmente constante. - the control module further configured to activate secondary propulsion means of the guide satellite to orient and move said guide satellite, the means Secondary controlled according to the estimated mass (m2) of the body and the propulsion force generated by the activated primary means, so that the secondary means compensate for variations in the relative distance (d) to keep it substantially constant.

Es sistema propuesto es adecuado para la modificación de órbitas y/o posición de un cuerpo que se encuentra orbitando. Específicamente, este sistema permite desplazar satélites activos (para corregir errores de inyección en órbita o para prolongar la vida de los mismos), basura espacial o cuerpos celestes pequeños (asteroides, meteoroides, etc) gracias a la acción de satélites guía. El empuje necesario se transmite sin contacto físico con el cuerpo cuya órbita y/o posición se quiere modificar evitando así problemas de colisión en órbita y sin necesitar maniobras complejas de "rendezvous and docking". Los sistemas del estado de la técnica mencionados, realizan maniobras muy complicadas y presentan un alto riesgo de colisiones o daños para los satélites participantes. La presente invención reduce drásticamente la complejidad y los riesgos asociados a este tipo de maniobras ya que se evita cualquier tipo de contacto mecánico entre los cuerpos involucrados siendo el empuje transmitido, indirectamente, a través de un chorro de iones de alta velocidad. This proposed system is suitable for the modification of orbits and / or position of a body that is orbiting. Specifically, this system allows to move active satellites (to correct orbit injection errors or to prolong their life), space debris or small celestial bodies (asteroids, meteoroids, etc.) thanks to the action of guide satellites. The necessary thrust is transmitted without physical contact with the body whose orbit and / or position is to be modified thus avoiding problems of collision in orbit and without requiring complex "rendezvous and docking" maneuvers. The prior art systems mentioned, perform very complicated maneuvers and present a high risk of collisions or damage to the participating satellites. The present invention drastically reduces the complexity and risks associated with this type of maneuver since any type of mechanical contact between the bodies involved is avoided, the thrust being transmitted indirectly through a high-speed ion stream.

La finalidad básica del sistema es resolver el problema fundamental del desplazamiento de satélites y, más en general, de objetos espaciales permitiendo que el desplazamiento ocurra de la manera más sencilla posible y reduciendo al máximo los riesgos de colisiones o daños de los satélites que intervienen en la maniobra. The basic purpose of the system is to solve the fundamental problem of the displacement of satellites and, more generally, of space objects allowing the displacement to occur in the simplest way possible and minimizing the risks of collisions or damage of satellites involved in the maneuver.

Se propone trasmitir un empuje entre dos satélites o, de forma más general, entre un satélite y un cuerpo en órbita, a través de un flujo de iones de alta velocidad evitando el contacto físico directo entre las dos entidades. En el estado actual de la técnica es posible acelerar iones producidos por sistemas de propulsión eléctrica, hasta alcanzar velocidades superiores a 30 km/s. Estos sistemas de propulsión nunca se han utilizado para producir empuje dirigido en otro satélite localizado a cierta distancia de la fuente del flujo de iones. Además, los propulsores iónicos modernos pueden alcanzar valores muy pequeños del ángulo de divergencia de flujo. El valor teórico de divergencia se puede estimar a través de la siguiente fórmula:

Figure imgf000006_0001
It is proposed to transmit a thrust between two satellites or, more generally, between a satellite and an orbiting body, through a flow of high-speed ions avoiding direct physical contact between the two entities. In the current state of the art it is possible to accelerate ions produced by electric propulsion systems, up to speeds exceeding 30 km / s. These propulsion systems have never been used to produce directed thrust on another satellite located some distance from the source of the ion flow. In addition, modern ionic propellants can reach very small values of the flow divergence angle. The theoretical divergence value can be estimated using the following formula:
Figure imgf000006_0001

donde vE es la velocidad de eyección de los iones, mi su masa, TeV la temperatura termodinámica del plasma antes de ser acelerado (normalmente TeV * 1 eV) y qe = 1.6 χ 10"I9 es la carga del electrón. where v E is the ion ejection velocity, m i its mass, T eV the thermodynamic temperature of the plasma before being accelerated (normally T eV * 1 eV) and q e = 1.6 χ 10 "I9 is the charge of the electron.

Esto permite transmitir la totalidad del flujo iónico a una distancia máxima dada por: d = Itanp (B) This allows the entire ionic flow to be transmitted at a maximum distance given by: d = Itanp (B)

siendo Aeff la sección eficaz, con respecto a la dirección del satélite guía, del objeto espacial que se quiere controlar. A eff being the effective section, with respect to the direction of the guide satellite, of the space object to be controlled.

Al ser posible alcanzar velocidades vE de 30 km/s y mayores, el ángulo de divergencia φ puede alcanzar un valor teórico, por ejemplo utilizando iones de xenón, inferior a 3 grados, lo que corresponde a una distancia de cerca de \ ^Aeff . Utilizando mercurio el ángulo de divergencia baja a menos de 2 grados mientras con argón sube a más de 4 grados. Destacar que también los iones de neón y de kriptón son aptos para su empleo en la invención. Since it is possible to reach speeds v E of 30 km / s and greater, the angle of divergence φ can reach a theoretical value, for example using xenon ions, less than 3 degrees, which corresponds to a distance of about \ ^ A eff . Using mercury the angle of divergence drops to less than 2 degrees while with argon it rises to more than 4 degrees. Note that neon and krypton ions are also suitable for use in the invention.

En realidad, y debido a otros factores, el valor de φ es más grande de lo indicado por la ecuación (A) así que es razonable tomar como límite de la tecnología actual unos 6 grados y una distancia máxima de actuación:

Figure imgf000006_0002
In fact, and due to other factors, the value of φ is larger than indicated by equation (A) so it is reasonable to take 6 degrees and a maximum distance of action as the limit of current technology:
Figure imgf000006_0002

El empuje transmitido por el chorro de iones se puede calcular de varias maneras. Por ejemplo una fórmula muy utilizada es la siguiente: The thrust transmitted by the ion stream can be calculated in several ways. For example, a widely used formula is as follows:

Ρρ1 * 2η— (D) Ρ ρ1 * 2η— (D)

Donde P es la potencia eléctrica disponible a bordo del satélite y dedicada al sistema de propulsión, y 77 es el rendimiento del sistema de propulsión. El valor de η depende del tipo de propulsor y supera el 70% en motores iónicos. El valor de P depende de la masa dedicada al sistema de potencia a bordo del satélite. Por ejemplo, un sistema de 1 kW tiene, normalmente, un coste en masa de 10-20 kg. Utilizando dicho sistema y suponiendo 7 =0.7 y v£ =30 km/s se alcanza un empuje de cerca de 0.05 N. Aunque pequeño, dicho empuje resulta ser varios órdenes de magnitud superior a la fuerza de resistencia atmosférica, que actúa sobre un satélite convencional, en órbita terrestre baja (de 400 a 1000 km) y puede ser utilizado, por ejemplo, para despejar órbitas congestionadas de basura espacial. Where P is the electrical power available on board the satellite and dedicated to the propulsion system, and 77 is the performance of the propulsion system. The value of η depends on the type of propellant and exceeds 70% in ionic engines. The value of P depends on the mass dedicated to the power system on board the satellite. For example, a 1 kW system It normally has a mass cost of 10-20 kg. Using said system and assuming 7 = 0.7 and v £ = 30 km / s, a thrust of about 0.05 N is reached. Although small, this thrust turns out to be several orders of magnitude greater than the atmospheric resistance force, acting on a conventional satellite , in low Earth orbit (400 to 1000 km) and can be used, for example, to clear congested orbits of space debris.

Una vez definidos los límites tecnológicos del sistema de empuje se puede pasar a la descripción detallada de la invención. Once the technological limits of the thrust system have been defined, the detailed description of the invention can be passed.

Descripción de las figuras Description of the figures

Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña la presente memoria descriptiva de las figuras 1 a 4, como parte integrante de la misma. To complement the description and in order to help a better understanding of the features of the invention, the present specification of figures 1 to 4 is attached, as an integral part thereof.

La invención se describirá en lo que sigue con más detalle haciendo referencia a un ejemplo de ejecución de la misma representado en dichas figuras. La figura 1 representa un ejemplo de cómo se produce el desplazamiento de un cuerpo o satélite no activo (2), blanco del flujo de iones (7) dirigido mediante el sistema de generación/expulsión de iones (sistema primario de propulsión) (3) instalado en un satélite guía (1) que incluye un sistema secundario de propulsión (4) para mantener una distancia y una posición relativa entre ambos objetos y un sistema radar (5) para medir la distancia y la sección eficaz del objeto. The invention will be described in more detail below with reference to an exemplary embodiment thereof represented in said figures. Figure 1 represents an example of how the displacement of a non-active body or satellite (2), target of the ion flow (7) directed by the ion generation / expulsion system (primary propulsion system) (3) occurs. installed on a guide satellite (1) that includes a secondary propulsion system (4) to maintain a distance and a relative position between both objects and a radar system (5) to measure the distance and the effective section of the object.

La figura 2 representa un ejemplo de cómo se produce el desplazamiento de un satélite activo (2). Los elementos clave del sistema son los mismos a excepción de medida de distancia que debe ser más sofisticado pudiendo incluir no solamente un sistema radar sino también un sistema de visión para estimar la orientación del satélite activo y localizar puntos adecuados para dirigir el flujo de iones. Figure 2 represents an example of how the displacement of an active satellite (2) occurs. The key elements of the system are the same except for distance measurement that must be more sophisticated and can include not only a radar system but also a vision system to estimate the orientation of the active satellite and locate suitable points to direct the flow of ions.

La figura 3 representa esquemáticamente una realización de la invención, con entradas y salidas de manera que se pueda proveer a dicho sistema de los dispositivos y subsistemas encargados de calcular los parámetros necesarios para realizar la maniobra apropiadamente. La figura 4 representa un diagrama de bloques, donde se han ilustrado las relaciones entre los diferentes módulos. Aparecen en la figura, el módulo de control (9) que gobierna el propulsor iónico (3) empleado para desplazar cuerpos externos, el propulsor del propio satélite (4), el módulo de medición (10) que recoge información de un radar (5) y opcionalmente de un sistema de visión (11). También opcionalmente se muestra un dispositivo disparador (12) que permite dirigir el propulsor iónico (3) hacia un objetivo sin necesidad de maniobrar el satélite guía en su conjunto. Estos módulos no indispensables se muestran en línea discontinua. Descripción detallada de la invención Figure 3 schematically represents an embodiment of the invention, with inputs and outputs so that said system can be provided with the devices and subsystems responsible for calculating the parameters necessary to perform the maneuver properly. Figure 4 represents a block diagram, where the relationships between the different modules have been illustrated. They appear in the figure, the control module (9) that governs the ionic propeller (3) used to move external bodies, the propeller of the satellite itself (4), the measurement module (10) that collects information from a radar (5) ) and optionally a vision system (11). Optionally, a trigger device (12) is shown that allows the ionic propeller (3) to be directed towards a target without the need to maneuver the guide satellite as a whole. These non-essential modules are shown in dashed line. Detailed description of the invention

Los parámetros conocidos en entrada son la masa m, del satélite guía, la distancia máxima dmax que puede alcanzar el flujo de iones; los parámetros estimados en entrada son la masa m2 del objeto para maniobrar, su sección eficaz A,.* y su posición d con respecto al satélite guía. En salida tenemos las fuerzas Fpi y Fp2 que deben ser proporcionadas por los sistemas de propulsión la orientación necesaria para el satélite guía así que la maniobra se cumpla correctamente, y la dirección de disparo del flujo de iones. A continuación se explica el funcionamiento de la invención según una realización de la invención. Para ello se enumeran los dispositivos que están involucrados de una u otra manera. The known parameters at the input are the mass m, of the guide satellite, the maximum distance d max that the ion flow can reach; The parameters estimated at the entrance are the mass m 2 of the object to maneuver, its effective section A,. * and its position d with respect to the guide satellite. On the way out we have the forces F pi and F p2 that must be provided by the propulsion systems with the necessary guidance for the guide satellite so that the maneuver is correctly fulfilled, and the direction of firing of the ion flow. The operation of the invention according to an embodiment of the invention is explained below. For this, the devices that are involved in one way or another are listed.

Objeto espacial que se quiere maniobrar (2): Puede ser artificial (p.e. satélite activo o inactivo o parte de ello, cohete etc.) o natural (asteroide, cometa, meteoroide, etc.).  Space object to be maneuvered (2): It can be artificial (e.g. active or inactive satellite or part thereof, rocket etc.) or natural (asteroid, comet, meteoroid, etc.).

Satélite(s) guía (1): uno o más satélites que se encargan de trasmitir el empuje al objeto que se quiere maniobrar sin entrar en contacto físico con ello. Guide satellite (s): 1 or more satellites that are responsible for transmitting the thrust to the object to be maneuvered without coming into physical contact with it.

Propulsor iónico electrostático (3), es decir un sistema que ioniza átomos de argón, mercurio o xenón mediante la exposición de electrones provenientes de un cátodo, y acelera los iones producidos al pasarlos a través de rejillas cargadas ande de expulsarlos generando el empuje deseado. Este sistema propulsor será siempre utilizados como propulsor primario para transmitir el empuje el empuje al objeto que se quiere maniobrar y puede opcionalmente ser utilizado como propulsor segundario para controlar la distancia relativa entre los cuerpos involucrados en la maniobra.  Electrostatic ionic propellant (3), that is to say a system that ionizes argon, mercury or xenon atoms by exposing electrons from a cathode, and accelerates the ions produced by passing them through charged grids before expelling them generating the desired thrust. This propellant system will always be used as a primary propellant to transmit the thrust the thrust to the object to be maneuvered and can optionally be used as a secondary propellant to control the relative distance between the bodies involved in the maneuver.

Sistema de potencia (8): Proporciona al satélite guía la potencia necesaria para alimentar los varios propulsores y instrumentos de medida y control. Puede ser cualquiera: paneles solares, amarras electrodinámicas, sistema nuclear, etc.. Propulsor segundario (4), es decir un sistema, alojado en el satélite guía, que proporcione el empuje necesario para controlar la distancia relativa entre los cuerpos involucrados en la maniobra. Puede ser cualquier tipo de propulsor (iónico, químico, amarra electrodinámica, vela solar, etc.). Power system (8): Provides the guidance satellite with the power needed to power the various propellers and measuring and control instruments. It can be any: solar panels, electrodynamic moorings, nuclear system, etc. Secondary propeller (4), that is to say a system, housed in the guide satellite, that provides the necessary thrust to control the relative distance between the bodies involved in the maneuver. It can be any type of propellant (ionic, chemical, electrodynamic mooring, solar sail, etc.).

Radar de medida (5): Está alojado en el satélite guía y tiene la función de medir la distancia relativa entre satélite guía y objeto para maniobrar y de estimar el tamaño (e.d. la sección eficaz) de este último. Measuring radar (5): It is housed in the guide satellite and has the function of measuring the relative distance between the guide satellite and the object to maneuver and to estimate the size (ie the effective section) of the latter.

Módulo de control de actitud (9): Está alojado en el satélite guía y tiene la función de controlar la orientación de este último para que pueda dirigir correctamente el flujo de iones al objeto para maniobrar.  Attitude control module (9): It is housed in the guide satellite and has the function of controlling the orientation of the latter so that it can correctly direct the flow of ions to the object to maneuver.

Módulo de control de distancia relativa (10): Recoge la información necesaria del radar de medida (5) para controlar los dos sistemas de propulsión (3,4) de manera que la distancia relativa entre los cuerpos se mantenga constante. Opcionalmente, si existe, puede emplear la información suministrada por un módulo de visión.  Relative distance control module (10): Collect the necessary information from the measurement radar (5) to control the two propulsion systems (3,4) so that the relative distance between the bodies is kept constant. Optionally, if it exists, you can use the information provided by a vision module.

Dispositivos opcionales: Optional devices:

Módulo de visión (11): Está alojado en el satélite guía y tiene la función de medir la distancia relativa entre satélite guía y objeto para maniobrar y estimar no solamente el tamaño (sección eficaz) de este último sino también su orientación y características físicas necesarias para asegurar que el chorro de iones sea dirigido a partes no sensible del objeto controlado evitando posibles daño al funcionamiento de este último. Dichos sistemas elaboran una imagen del objeto analizado la cual tiene que ser procesada por algoritmos de reconocimiento de última generación de manera que se puedan identificar partes sensibles y no sensibles del objeto controlado.  Vision module (11): It is housed in the guide satellite and has the function of measuring the relative distance between guide and object satellite to maneuver and estimate not only the size (effective section) of the latter but also its orientation and necessary physical characteristics to ensure that the ion stream is directed to non-sensitive parts of the controlled object avoiding possible damage to the operation of the latter. Said systems elaborate an image of the analyzed object which has to be processed by last generation recognition algorithms so that sensitive and non-sensitive parts of the controlled object can be identified.

Dispositivo apuntador (12): permite variar la eyección del flujo de iones sin necesidad de maniobrar la orientación del satélite guía de manera que el control del objeto que se quiere maniobrar resulta más eficaz. Pointing device (12): it allows to vary the ejection of the ion flow without the need to maneuver the orientation of the guide satellite so that the control of the object to be maneuvered is more effective.

Como se desprende de los dibujos, la invención, que se implanta en un satélite guía (1 ), posee un sistema de generación y expulsión de un flujo de iones de alta velocidad (3) dirigido hacia el cuerpo celeste cuya órbita y/o posición se quiere modificar (2), y un sistema de propulsión segundario (4). El sistema de generación y expulsión de iones de alta velocidad produce un empuje Fpl sobre el cuerpo (2) y, por la ley de acción y reacción de Newton, un empuje igual y contrario (-F^ ) sobre el satélite guía. El sistema de propulsión segundario (4) deberá proporcionar un empuje adicional F 2 para equilibrar el sistema y conseguir aceleración relativa (are/ ) nula entre los dos cuerpos de acuerdo con lo indicado por la siguiente ecuación:

Figure imgf000010_0001
As can be seen from the drawings, the invention, which is implemented in a guide satellite (1), has a system for generating and expelling a flow of high-speed ions (3) directed towards the celestial body whose orbit and / or position you want to modify (2), and a secondary propulsion system (4). The system of generation and expulsion of high-speed ions produces a thrust F pl on the body (2) and, by Newton's law of action and reaction, an equal and opposite thrust (-F ^) on the guide satellite. The secondary propulsion system (4) must provide an additional thrust F 2 to balance the system and achieve relative acceleration (a re / ) null between the two bodies according to what is indicated by the following equation:
Figure imgf000010_0001

La ecuación E es la ecuación de control del sistema para realizar la maniobra de desplazamiento del cuerpo celeste (2). En dicha ecuación la masa mx del satélite guía se conoce con cierta precisión mientras m2 es conocida sólo aproximadamente (por ejemplo a través de bases de datos de objetos espaciales). Un sistema de medida basado en un radar (5), o si disponible, en sistemas de visión (1 1) más precisos, es capaz de estimar la distancia d entre los dos cuerpos en distintos instantes. Equation E is the control equation of the system to perform the movement maneuver of the celestial body (2). In this equation the mass m x of the guide satellite is known with some precision while m 2 is known only approximately (for example through spatial object databases). A measurement system based on a radar (5), or if available, in more precise vision systems (1 1), is able to estimate the distance d between the two bodies at different times.

El módulo de control de actitud (9) se encarga de realizar la corrección necesaria y actuar sobre los dos propulsores de manera que dicha distancia se mantenga constantemente igual a una distancia deseada (ésta última no podrá superar el límite máximo establecido por la ecuación C). The attitude control module (9) is responsible for performing the necessary correction and acting on the two thrusters so that said distance remains constantly equal to a desired distance (the latter cannot exceed the maximum limit established by equation C) .

Según el comportamiento del sistema durante la maniobra de control será incluso posible afinar la estimación de la masa m2 del objeto que se quiere desplazar. Depending on the behavior of the system during the control maneuver, it will even be possible to refine the estimate of the mass m 2 of the object to be moved.

Nótese que el sistema de propulsión segundario (4) no tiene por qué ser otro propulsor iónico. Amarras electrodinámicas, velas solares, sistemas de propulsión por aerobraking, y cohetes de propulsante líquido o sólido pueden ser utilizados. El módulo de control de distancia relativa (10) es necesario no solamente para mantener constante la distancia entre cuerpo y satélite guía sino también para localizar la posición del cuerpo con suficiente precisión y direccionar el flujo de iones (7) hacia el mismo. Note that the secondary propulsion system (4) does not have to be another ionic propellant. Electrodynamic moorings, solar sails, aerobraking propulsion systems, and liquid or solid propellant rockets can be used. The relative distance control module (10) is necessary not only to keep the distance between the body and the guide satellite constant but also to locate the position of the body with sufficient precision and direct the flow of ions (7) towards it.

En el caso de que el cuerpo que se quiere controlar sea un satélite activo será necesario evitar que el flujo de iones de alta velocidad impacte en alguna parte sensible del satélite. Por esta razón el satélite guía puede disponer adicionalmente de un módulo de visión (1 1) más sofisticado capaz de estimar la actitud del satélite activo y localizar partes sensibles de lo mismo y cuáles son robustas. El módulo de visión (11) elabora una imagen del satélite que tiene que ser procesada por algoritmos de reconocimiento de última generación de manera que el sistema de control de dirección del flujo de iones actúe como establecido. In the event that the body to be controlled is an active satellite, it will be necessary to prevent the flow of high-speed ions from impacting any sensitive part of the satellite. For this reason, the guide satellite can additionally have a more sophisticated vision module (1 1) capable of estimating the attitude of the active satellite and locating sensitive parts of it and which are robust. The vision module (11) produces an image of the satellite that has to be processed by recognition algorithms of latest generation so that the ion flow direction control system acts as established.

En esta invención, el satélite guía se sitúa en las proximidades del satélite geoestacionario hasta alcanzar una distancia máxima dmax dada por la fórmula C. Un sistema de visión localiza el lado del satélite que corresponde a la tobera del motor de apogeo, es decir el sistema de propulsión primario (3) utilizado para maniobrar estos tipos de satélites durante toda su vida útil. La posición del satélite guía se controla de manera que el flujo de iones de alta velocidad pueda ser dirigido contra la tobera de dicho motor (fig. 2) por ser ésta una parte más resistente. In this invention, the guide satellite is located in the vicinity of the geostationary satellite until it reaches a maximum distance d max given by the formula C. A vision system locates the side of the satellite that corresponds to the nozzle of the apogee engine, that is to say the Primary propulsion system (3) used to maneuver these types of satellites throughout their lifespan. The position of the guide satellite is controlled so that the flow of high-speed ions can be directed against the nozzle of said motor (fig. 2) because it is a stronger part.

A continuación, comienza la maniobra de desplazamiento en la que el satélite guía proporciona el empuje necesario, mientras se controla la distancia relativa entre los dos satélites (que debe mantenerse constante) y el alineamiento del flujo de iones con la tobera del satélite controlado. Esta última se puede utilizar no solamente para proporcionar el empuje, sino también para controlar, a través de pequeñas modificaciones de la dirección de disparo, la posición del satélite geoestacionario cuando sea necesario. Next, the displacement maneuver begins in which the guide satellite provides the necessary thrust, while controlling the relative distance between the two satellites (which must be kept constant) and the alignment of the ion flow with the nozzle of the controlled satellite. The latter can be used not only to provide the thrust, but also to control, through minor modifications of the firing direction, the position of the geostationary satellite when necessary.

Claims

Reivindicaciones Claims 1. Sistema de modificación de la posición de un cuerpo (2) para un satélite guía (1 ) caracterizado por que comprende: 1. System for modifying the position of a body (2) for a guide satellite (1) characterized in that it comprises: - unos medios primarios (3) de propulsión mediante eyección de un flujo de iones para incidir y efectuar un empuje sobre el cuerpo (2); - primary means (3) of propulsion by ejection of a flow of ions to influence and effect a thrust on the body (2); - un módulo de medición (10) configurado para estimar mediante la información obtenida con un radar (5), la masa (m2) del cuerpo (2), la sección eficaz (Α^) del cuerpo (2) para el impacto, la posición y la distancia relativa (d) del cuerpo (2) con el satélite guía (1); - a measuring module (10) configured to estimate by means of the information obtained with a radar (5), the mass (m2) of the body (2), the effective section (Α ^) of the body (2) for impact, the position and relative distance (d) of the body (2) with the guide satellite (1); - un módulo de control (9) acoplado con el módulo de medición (10), dicho módulo de control (9) configurado para activar y dirigir, de acuerdo con la orientación y con la distancia relativa (d) con el cuerpo (2), los medios primarios (3); - a control module (9) coupled with the measurement module (10), said control module (9) configured to activate and direct, according to the orientation and relative distance (d) with the body (2) , the primary means (3); - el módulo de control (9) configurado además para activar unos medios secundarios (4) de propulsión del satélite guía (1) para orientar y desplazar dicho satélite guía (1), los medios secundarios (4) controlados de acuerdo con la masa (m2) estimada del cuerpo (2) y de la fuerza de propulsión generada por los medios primarios (3) activados, de manera que los medios secundarios (4) compensan variaciones en la distancia relativa (d) para mantenerla sustancialmente constante. - the control module (9) further configured to activate secondary means (4) for propulsion of the guide satellite (1) to orient and move said guide satellite (1), the secondary means (4) controlled according to the mass ( m2) estimated of the body (2) and the propulsion force generated by the activated primary means (3), so that the secondary means (4) compensate for variations in the relative distance (d) to keep it substantially constant. 2. Sistema según reivindicación 1 , caracterizado por que el módulo de medición (10) está configurado para comunicar con el módulo de control (9) si la distancia relativa (d) supera un valor límite (dma ) que depende de la sección eficaz (Aeff) del cuerpo (2). 2. System according to claim 1, characterized in that the measuring module (10) is configured to communicate with the control module (9) if the relative distance (d) exceeds a limit value (d ma ) that depends on the effective section (Ae ff ) of the body (2). 3. Sistema según reivindicación 2, caracterizado por que el módulo de control (9) está configurado para desactivar los medios primarios (3) de propulsión y para activar los medios de propulsión secundarios (4) para orientar y desplazar el satélite guía (1). 3. System according to claim 2, characterized in that the control module (9) is configured to deactivate the primary propulsion means (3) and to activate the secondary propulsion means (4) to orient and move the guide satellite (1) . 4. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que los medios primarios (3) de propulsión comprenden un dispositivo apuntador (12) para dirigir el flujo de iones emitido por dichos medios primarios (3) en una dirección concreta. System according to any one of the preceding claims, characterized in that the primary propulsion means (3) comprise a pointing device (12) for directing the flow of ions emitted by said primary means (3) in a specific direction. 5. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que el módulo de medición (10) comprende un sistema de visión (1 1) configurado para estimar la distancia relativa (d), la sección eficaz, la orientación e identificar idoneidad de la zona de impacto en el cuerpo (2). System according to any one of the preceding claims, characterized in that the measuring module (10) comprises a vision system (1 1) configured to estimate the relative distance (d), the effective section, the orientation and identify suitability of the area of impact on the body (2). 6. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que el módulo de control (9) accede a una base de datos para recoger información acerca del cuerpo (2) a partir de los datos obtenidos por el módulo de medición ( 0) para determinar adicionalmente otras características y confirmar los datos obtenidos. System according to any one of the preceding claims, characterized in that the control module (9) accesses a database to collect information about the body (2) from the data obtained by the measurement module (0) to further determine other characteristics and confirm the data obtained. 7. Sistema según la reivindicación 5 ó 6, caracterizado por que cuando el cuerpo (2) es un satélite artificial, el sistema de visión (11) se configura para detectar la tobera del motor de apogeo en dicho satélite y estimar su sección eficaz (Aeff) correspondiente para guiar el flujo de iones emitido por los medios primarios (3) únicamente hacia esta zona. 7. System according to claim 5 or 6, characterized in that when the body (2) is an artificial satellite, the vision system (11) is configured to detect the nozzle of the apogee motor in said satellite and estimate its effective section ( A corresponding eff ) to guide the flow of ions emitted by the primary means (3) only towards this area. 8. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que los medios primarios (3) de propulsión eyectan un flujo de iones de argón. System according to any one of the preceding claims, characterized in that the primary means (3) of propulsion eject a flow of argon ions. 9. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que los medios primarios (3) de propulsión eyectan un flujo de iones de mercurio. 9. System according to any one of the preceding claims, characterized in that the primary propulsion means (3) eject a flow of mercury ions. 10. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que los medios primarios (3) de propulsión eyectan un flujo de iones de xenón. System according to any one of the preceding claims, characterized in that the primary propulsion means (3) eject a flow of xenon ions. 1 1. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que los medios primarios (3) de propulsión eyectan un flujo de iones de kriptón 1 System according to any one of the preceding claims, characterized in that the primary propulsion means (3) eject a flow of krypton ions 12. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que los medios primarios (3) de propulsión eyectan un flujo de iones de neón. 12. System according to any one of the preceding claims, characterized in that the primary propulsion means (3) eject a neon ion flow. 13. Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado por que el sistema de medición (10) permite ajustar la estimación de los parámetros del cuerpo (2) iterativamente cuando la información suministrada por el radar (5) y/o el sistema de visión artificial (1 1 ) es actualizada. 13. System according to any one of the preceding claims, characterized in that the measurement system (10) allows to adjust the estimation of the body parameters (2) iteratively when the information supplied by the radar (5) and / or the system of Artificial vision (1 1) is updated.
PCT/ES2011/000011 2010-03-11 2011-01-20 System for adjusting the position and attitude of orbiting bodies using guide satellites WO2011110701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030354A ES2365394B2 (en) 2010-03-11 2010-03-11 SYSTEM OF MODIFICATION OF THE POSITION AND ATTITUDE OF BODIES IN ORBIT THROUGH GUIDE SATELLITES.
ESP201030354 2010-03-11

Publications (1)

Publication Number Publication Date
WO2011110701A1 true WO2011110701A1 (en) 2011-09-15

Family

ID=44562903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000011 WO2011110701A1 (en) 2010-03-11 2011-01-20 System for adjusting the position and attitude of orbiting bodies using guide satellites

Country Status (2)

Country Link
ES (1) ES2365394B2 (en)
WO (1) WO2011110701A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490181C1 (en) * 2012-04-10 2013-08-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of control over active space object to be docked to passive space object
RU2568960C1 (en) * 2014-08-25 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" Contactless transportation of space objects
CN105109711A (en) * 2015-06-19 2015-12-02 北京控制工程研究所 Simulation system for rendezvous and docking of spacecraft
CN107264842A (en) * 2017-05-26 2017-10-20 西北工业大学 A kind of urgent avoidance system of space junk based on shock wave
RU2684022C1 (en) * 2018-04-11 2019-04-03 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Method of stabilization of angular motion of an uncooperative object during contactless transportation
US10611504B2 (en) 2014-08-26 2020-04-07 Effective Space Solutions Ltd. Docking system and method for satellites
US10625882B2 (en) 2017-03-06 2020-04-21 Effective Space Solutions Ltd. Service satellite for providing in-orbit services using variable thruster control
RU2784740C1 (en) * 2022-03-18 2022-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Spacecraft for cleaning near-earth space from space debris

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285304A1 (en) * 2006-03-16 2007-12-13 Guy Cooper Target orbit modification via gas-blast

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285304A1 (en) * 2006-03-16 2007-12-13 Guy Cooper Target orbit modification via gas-blast

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IZZO D.: "Optimization of interplanetary trajectories for impulsive and continuous asteroid deflection", JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, vol. 30, no. 2, March 2007 (2007-03-01) - April 2007 (2007-04-01), pages 401 - 408 *
LU E.T. ET AL: "Gravitational tractor for towing asteroids", NATURE, vol. 438, no. 7065, 10 November 2005 (2005-11-10), pages 177 - 178 *
MURDOCH N. ET AL: "Electrostatic tractor for near Earth object deflection", PROCEEDINGS OF THE 59TH INTERNATIONAL ASTRONAUTICS CONFERENCE, IAC2008, 2008 *
RADICE G.: "Avoiding Another Mass Extinction Due to N.E.O. Impact", JOURNAL OF COSMOLOGY, vol. 2, November 2009 (2009-11-01), pages 440 - 451, Retrieved from the Internet <URL:http://journalofcosmology.com/Extinction120.htm1> [retrieved on 20110602] *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490181C1 (en) * 2012-04-10 2013-08-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of control over active space object to be docked to passive space object
RU2568960C1 (en) * 2014-08-25 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" Contactless transportation of space objects
US10611504B2 (en) 2014-08-26 2020-04-07 Effective Space Solutions Ltd. Docking system and method for satellites
CN105109711A (en) * 2015-06-19 2015-12-02 北京控制工程研究所 Simulation system for rendezvous and docking of spacecraft
US10625882B2 (en) 2017-03-06 2020-04-21 Effective Space Solutions Ltd. Service satellite for providing in-orbit services using variable thruster control
US11117683B2 (en) 2017-03-06 2021-09-14 Astroscale Israel, Ltd. Service satellite for providing in-orbit services using variable thruster control
US11286061B2 (en) 2017-03-06 2022-03-29 Astroscale Israel, Ltd. Service satellite for providing in-orbit services using variable thruster control
CN107264842A (en) * 2017-05-26 2017-10-20 西北工业大学 A kind of urgent avoidance system of space junk based on shock wave
RU2684022C1 (en) * 2018-04-11 2019-04-03 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Method of stabilization of angular motion of an uncooperative object during contactless transportation
RU2784740C1 (en) * 2022-03-18 2022-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Spacecraft for cleaning near-earth space from space debris

Also Published As

Publication number Publication date
ES2365394A1 (en) 2011-10-03
ES2365394B2 (en) 2012-01-30

Similar Documents

Publication Publication Date Title
WO2011110701A1 (en) System for adjusting the position and attitude of orbiting bodies using guide satellites
US9522746B1 (en) Attitude slew methodology for space vehicles using gimbaled low-thrust propulsion subsystem
EP1654159B1 (en) Apparatus for a geosynchronous life extension spacecraft
US9650159B2 (en) Method and device for electric satellite propulsion
US9764859B2 (en) Efficient stationkeeping design for mixed fuel systems
US9963248B2 (en) Spin stabilization of a spacecraft for an orbit maneuver
JP6490314B2 (en) Pointing mechanism
US9963249B2 (en) Efficient stationkeeping design for mixed fuel systems in response to a failure of an electric thruster
Haque et al. Low-thrust orbital maneuver analysis for cubesat spacecraft with a micro-cathode arc thruster subsystem
Sah et al. Design development of debris chaser small satellite with robotic manipulators for debris removal
Wijnen et al. CubeSat lunar positioning system enabled by novel on-board electric propulsion
Wang et al. Nonlinear feedback control of a spinning two-spacecraft coulomb virtual structure
US9222755B2 (en) Intercepting vehicle and method
US10144531B2 (en) Reorientation of a spinning spacecraft using gimbaled electric thrusters
Shirasawa et al. Concept study of spacecraft system for end-of-life deorbit service using low-thrust formation
ES2498716B1 (en) Space propulsion system by electrostatic modification
Randolph et al. Three-axis electric propulsion attitude control system with a dual-axis gimbaled thruster
Oh et al. Feasibility of All-Electric Three Axis Momentum Management for Deep Space Small Body Rendezvous
JPWO2019044735A1 (en) Spacecraft control device, spacecraft control method, and program
Antropov et al. IONOSFERE Satellite with APPT Based EPS
Hudson et al. Integration of Micro Electric Propulsion System for CubeSat Orbital Maneuvers
Kazeev et al. Hybrid Electric Propulsion System on the Basis of SPT and PPT
Lévesque et al. Optimal Guidance using Density-Proportional Flightpath Angle Profile for Precision Landing on Mars
Munir et al. Yaw-Steered Payload Pointing and Orbital Control for a HIEO Spacecraft
CAVENY et al. SDIO electric propulsion objectives and programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11752883

Country of ref document: EP

Kind code of ref document: A1