WO2011108642A1 - Liquid crystal display element and manufacturing method thereof - Google Patents
Liquid crystal display element and manufacturing method thereof Download PDFInfo
- Publication number
- WO2011108642A1 WO2011108642A1 PCT/JP2011/054908 JP2011054908W WO2011108642A1 WO 2011108642 A1 WO2011108642 A1 WO 2011108642A1 JP 2011054908 W JP2011054908 W JP 2011054908W WO 2011108642 A1 WO2011108642 A1 WO 2011108642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- substrate
- sealing material
- crystal display
- display element
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13394—Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1341—Filling or closing of cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13398—Spacer materials; Spacer properties
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/28—Adhesive materials or arrangements
Definitions
- the present invention relates to a liquid crystal display element.
- a liquid crystal panel has a back substrate having a thin film transistor (TFT), a pixel electrode, an alignment film, and the like opposed to a front substrate having a color filter, an electrode, an alignment film, etc. It is configured to enclose.
- TFT thin film transistor
- a sealing material is generally used for the purpose of bonding the two substrates. Glass is generally used as the substrate. Recently, the glass substrate has been made thinner for the purpose of weight reduction, and the stress due to the deformation of the glass tends to increase due to the thinner film. For this reason, the seal portion is required to have flexibility to withstand such increasing stress.
- thermosetting sealing material mainly composed of an epoxy thermosetting resin
- a sealing agent requires a long time when the substrates are bonded together to cure the sealing material. Therefore, there is a problem that it is not suitable for mass continuous production and a lateral shift occurs between two substrates aligned in advance.
- the alignment is likely to be inaccurate due to the difference in thermal expansion coefficient of each substrate in the heating process.
- the thickness of the cell tends to be non-uniform.
- the LCD is manufactured by the liquid crystal dropping method (ODF method)
- the uncured sealing material and the liquid crystal are in direct contact with each other, so that the raw material for the sealing material is limited so as not to contaminate the liquid crystal.
- the present condition has not yet obtained what satisfy
- the problem to be solved by the present invention is that there is no peeling near the interface between the substrate and the sealing material, and in particular, there is no occurrence of interface peeling due to stress applied in the direction parallel to the substrate surface. Is to provide.
- the present inventors solved the above problems by providing protrusions on the surface of the substrate in contact with the sealing material.
- the present invention includes two substrates facing each other, a sealing material provided between the substrates, and a liquid crystal sealed in a sealing region surrounded by the sealing material, and the substrate in contact with the sealing material
- a liquid crystal display element having projections on its surface.
- the present invention also provides a method for producing the liquid crystal display element described above, A step of simultaneously providing a spacer provided on a surface to be a sealing region on a front substrate provided with a color filter and a protrusion provided on a surface in contact with a sealing material by a photolithography method or a droplet discharge method; A step of applying a sealing material to a surface provided with a protrusion on which the sealing material on the front substrate provided with the color filter comes into contact; Dropping a liquid crystal on a sealing region of a front substrate provided with the color filter; There is provided a method for producing a liquid crystal display element, comprising a step of bonding a front substrate provided with the color filter and a rear substrate provided with a TFT through a sealing material.
- the method for manufacturing the liquid crystal display element described above On the surface provided with the color filter of the front substrate, which has a portion to be a sealing region and a portion on which a sealing material that forms the sealing region is provided. A step of simultaneously providing a spacer in a portion to be the sealing region and a protrusion in a portion to be in contact with the sealing material by a photolithography method or a droplet discharge method; A step of applying a sealing material to a portion where the protrusion is provided and the sealing material is provided; Dropping liquid crystal on the sealing region of the front substrate; Bonding the front substrate and the rear substrate provided with TFTs through a sealing material; A method for manufacturing a liquid crystal display element, comprising:
- the present invention it is possible to provide a liquid crystal display element that does not peel near the interface between the substrate and the sealing material, and that does not cause interface peeling due to stress applied in a direction parallel to the substrate surface.
- the protrusions are formed on the front substrate provided with the color filter by a photolithography method or a droplet discharge method, with a spacer on the surface to be a sealing region, and a protrusion on the surface to be in contact with the sealing material. By providing, it can be easily attached.
- the liquid crystal display element of the present invention can form a seal region with little variation in seal width, the area of the sealing region for sealing the liquid crystal can be formed stably, and liquid crystal injection by an ODF (one-drop-fill) method is possible. It also has features such as being suitable for the seal and excellent in narrowing the seal width.
- the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which interface peeling or the like hardly occurs at a seal portion even when a thin film substrate or a flexible substrate is used.
- a liquid crystal display device according to the present invention will be described in detail with reference to the drawings.
- the present invention is not limited to these examples, and changes, additions, omissions, and the like may be made without departing from the present invention, such as the number, position, size, and type of material.
- the scale, number, and the like may be different from the actual structure in order to make each configuration easy to understand.
- 1 and 2 include two substrates facing each other, a sealing material provided between the substrates, and liquid crystal sealed in a sealing region surrounded by the sealing material, and the sealing material is in contact with each other.
- a substrate having members with reference numerals 100 to 105 is referred to as a “back substrate”, and a substrate having members having reference numerals 200 to 205 is referred to as a “front substrate”.
- the rear substrate is obtained by providing the TFT layer 102 and the pixel electrode 103 on the substrate a100 provided with the barrier film 101, and providing the passivation film 104 and the alignment film a105 thereon.
- the front substrate facing the rear substrate is obtained by providing a black matrix 202, a color filter 203, and a transparent electrode 204 on a substrate b200 provided with a barrier film 201, and an alignment film b205 thereon.
- a sealing material 301 and a liquid crystal layer 303 sealed in a sealing region surrounded by the sealing material are provided, and one of the substrate surfaces of the two substrates in contact with the sealing material 301 is provided.
- both are provided with protrusions 304.
- 1 is a cross-sectional view in which the protrusions 304 are provided on the front substrate
- FIG. 2 is a cross-sectional view in which the protrusions 304 are provided on both the front substrate and the back substrate.
- the material of the substrate a or the substrate b is not particularly limited as long as it is substantially transparent.
- plastic substrates include cellulose derivatives such as cellulose, triacetyl cellulose, diacetyl cellulose, polycycloolefin derivatives, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polypropylene, Polyolefins such as polyethylene, polycarbonate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyamide, polyimide, polyimide amide, polystyrene, polyacrylate, polymethyl methacrylate, polyether sulfone, polyarylate, and glass fiber -An inorganic-organic composite material such as epoxy resin, glass fiber-acrylic resin, or the like can be used.
- barrier film (101 and 201 in FIG. 1).
- the function of the barrier film is to reduce the moisture permeability of the plastic substrate and to improve the reliability of the electrical characteristics of the liquid crystal display element.
- the barrier films 101 and 201 are not particularly limited as long as they have high transparency and low water vapor permeability.
- a thin film formed by vapor deposition, sputtering, or a chemical vapor deposition method (CVD method) using an inorganic material such as silicon oxide can be used.
- CVD method chemical vapor deposition method
- the same material or different materials may be used as the substrate a and the substrate b, and there is no particular limitation.
- the plastic substrate is preferable because it is suitable for a production method by a roll-to-roll method and is suitable for weight reduction and flexibility.
- a plastic substrate and a glass substrate may be combined for the purpose of imparting flatness and heat resistance.
- a composite material of glass cloth and curable resin is used as the material of the substrate a100 or the substrate b200, and silicon oxide is used as the material of the barrier films 101 and 201.
- a TFT layer 102 and a pixel electrode 103 are provided on a substrate a100 provided with a barrier film 101. These layers are manufactured by a normal array process.
- a passivation film 104 and an alignment film a105 are provided thereon to obtain a back substrate.
- a passivation film 104 (also referred to as an inorganic protective film) is a film for protecting the TFT layer.
- a nitride film (SiNx), an oxide film (SiOx), or the like is formed by a chemical vapor deposition (CVD) technique or the like.
- the alignment film a105 is a film having a function of aligning liquid crystals, and a polymer material such as polyimide is usually used in many cases.
- an alignment agent solution composed of a polymer material and a solvent is usually used. Since the alignment film may hinder the adhesive force with the sealing material, a pattern is applied in the sealing region.
- a printing method such as a flexographic printing method or a droplet discharge method such as an ink jet method can be used.
- the applied alignment agent solution is crosslinked and cured by baking after the solvent is evaporated by temporary drying to obtain a polymer film. Thereafter, an alignment process is performed to provide an alignment function.
- a rubbing method is usually used for the alignment treatment. The polymer film formed as described above is rubbed in one direction using a rubbing cloth made of fibers such as rayon, thereby producing liquid crystal alignment ability.
- the photo-alignment method is a method of generating alignment ability by irradiating polarized light onto a film containing an organic material having photosensitivity, and does not cause damage to the substrate or dust due to the rubbing method.
- the organic material in the photo-alignment method include a material containing a dichroic dye.
- Dichroic dyes include molecular orientation induction or isomerization reaction (eg azobenzene group), dimerization reaction (eg cinnamoyl group), photocrosslinking reaction (eg benzophenone group) due to Weigert effect due to photodichroism.
- a dye having a group that causes a photoreaction that causes liquid crystal alignment ability
- a photodecomposition reaction eg, polyimide group
- the applied alignment agent solution is irradiated with light (polarized light) having an arbitrary deflection after the solvent is evaporated by temporary drying, thereby obtaining an alignment film having an alignment ability in an arbitrary direction. be able to.
- the front substrate is provided with a black matrix 202, a color filter 203, a transparent electrode 204, and an alignment film b205 on a substrate b200 provided with a barrier film 201.
- the black matrix 202 is produced by, for example, a pigment dispersion method. Specifically, a color resin solution in which a black colorant is uniformly dispersed for forming a black matrix is applied on a substrate b200 provided with a barrier film 201, thereby forming a colored layer. Subsequently, the colored layer is baked and cured. A photoresist is applied on this and prebaked.
- the pre-baked photoresist is exposed through a mask pattern having holes having a desired shape and pattern, and then developed to remove unnecessary portions, thereby patterning the colored layer. Thereafter, the photoresist layer on the patterned colored layer is peeled off, and the colored layer is baked to complete the black matrix 202.
- a photoresist type pigment dispersion may be used. In this case, a photoresist-type pigment dispersion is applied, pre-baked, exposed through a mask pattern, and then developed to pattern the colored layer. Thereafter, the colored layer is baked to complete the black matrix 202.
- the color filter 203 is created by, for example, a pigment dispersion method, an electrodeposition method, a printing method, or a staining method. Taking the pigment dispersion method as an example, it can be obtained by the following steps. A color resin liquid in which a pigment (for example, red) is uniformly dispersed is applied onto a substrate b200 provided with a barrier film 201, and this is baked and cured. Thereafter, a photoresist is further applied on the obtained cured film and prebaked. The pre-baked photoresist is exposed through a mask pattern and then developed and patterned. Thereafter, the patterned photoresist layer on the cured film is peeled off and baked again to complete the (red) color filter 203. There is no particular limitation on the color order to be created. Similarly, the green color filter 203 and the blue color filter 203 can be formed.
- the transparent electrode 204 is provided on the color filter 203 (if necessary, on an overcoat layer (not shown) provided on the color filter 203 for surface flattening).
- the transparent electrode 204 preferably has a high transmittance, and preferably has a low electrical resistance.
- an oxide film such as ITO is formed by sputtering or the like.
- a passivation film may be provided on the transparent electrode 204 for the purpose of protecting the transparent electrode 204.
- the description of the alignment film b205 can be the same as that of the alignment film a105 described above.
- the present invention is not limited to the specific embodiments as described above, and the liquid crystal display element is desired.
- corresponds is free.
- the barrier films 101 and 201 need not be used.
- the liquid crystal element of the present invention includes the back substrate and the front substrate facing each other, a sealing material provided between the substrates, and a liquid crystal sealed in a sealing region surrounded by the sealing material,
- the material is in contact with the rear substrate and the front substrate, and a protrusion is provided at one or both of the inner surface of the rear substrate and the inner surface (substrate surface) of the front substrate where the sealing material contacts.
- the position where the sealing material contacts the substrate surface is usually located at the end of the substrate.
- the position is not particularly limited, but is usually provided with a width in the range of 0.5 mm to 5 mm from the edge of the substrate.
- sealing materials having a width of 0.5 mm to 5 mm are provided on the upper, lower, left and right ends of the shape, that is, on the four sides.
- the protrusion provided at this position is preferably provided such that the bottom area thereof is in a ratio of 0.1% to 16% with respect to the area of the substrate surface (one surface) where the sealing material is in contact with the substrate. . If it is less than 0.1%, the anti-peeling action may be weak, and if it exceeds 16%, the coating amount of the sealing material may be too small.
- protrusions footprint per one projection is 100 ⁇ m 2 ⁇ 1600 ⁇ m 2 is provided approximately 10-100 It is preferable that the strength is increased with respect to the stress applied in the direction parallel to the substrate surface.
- the projection installation area is the area of the projection installation surface (projection bottom surface) on the substrate surface (sealing material region) on which the projection is installed.
- the substrate surface of the substrate on which the protrusion is provided may be on either the back substrate or the front substrate.
- the back substrate since the process of providing the protrusion in the manufacturing process of providing the TFT or the like causes the process to be complicated, the back substrate is often provided on the front substrate capable of relatively simplifying the manufacturing process. .
- the surface on which the protrusion is directly provided is on the transparent electrode 204 of the front substrate in the specific embodiment of FIG.
- the surface directly touched by the bottom surface of the protrusion 304 is the surface of the passivation film 104.
- the height of the protrusion is preferably a height that does not exceed the cell gap (interval between the substrates).
- the shape of the protrusion is not particularly limited and can be arbitrarily selected.
- the horizontal cross section of the protrusion relative to the substrate can be various shapes such as a circle, a polygon such as a quadrangle. In consideration of a misalignment margin during the process, it is particularly preferable that the horizontal cross section is a circle or a regular polygon.
- the protrusion shape is preferably a truncated cone or a truncated pyramid. Arrangement positions of the protrusions can be arbitrarily selected.
- the material of the protrusion is not particularly limited as long as it is a material that can be used for the sealing material, an organic solvent that can be used for forming the sealing material, or a material that does not dissolve in the liquid crystal. From the viewpoint of processing and weight reduction, a synthetic resin (curable resin) is preferable. Specific examples include (meth) acrylic polymers and urethane polymers.
- the protrusions can be formed by any method. To give a preferable example, the protrusions can be provided on the portion where the sealing material on the first substrate (front substrate) should come into contact by a photolithography method or a droplet discharge method. is there.
- a photocurable resin suitable for the photolithography method or the droplet discharge method for forming the protrusions it is preferable to use a photocurable resin suitable for the photolithography method or the droplet discharge method for forming the protrusions.
- a photocurable resin the (meth) acrylic-type monomer which has an unsaturated group, a urethane-type monomer, a polyol monomer etc. will be mentioned.
- the height of the protrusion is preferably a height that does not exceed the cell gap.
- the spacer has a function of keeping the distance between the substrates constant. For this reason, the height of the protrusion may be equal to or lower than that of the spacer. For these reasons and from the viewpoint of simplification of work, it is preferable that the protrusion is formed at a predetermined position on the substrate together with the spacer when the spacer is provided.
- the protrusion can be provided on the surface of the front substrate that contacts the sealing material at the same time.
- a resin solution for spacer formation (not containing a colorant) is applied on the transparent electrode 204 of the front substrate.
- the resin layer is baked and cured.
- a photoresist is applied on this and prebaked. After the prebaked photoresist layer is exposed through a predetermined mask pattern, development is performed to remove unnecessary portions of the resin layer and the photoresist layer, and the resin layer is patterned.
- the photoresist layer left on the patterned resin layer is peeled off, and the resin layer is baked to complete the spacer.
- the formation position of the spacer can be determined at a desired position by selecting a mask pattern. Therefore, if necessary, spacers can be simultaneously formed in both the sealing region and the outside of the sealing region (sealing material application portion) of the liquid crystal display element.
- a spacer formed outside the sealing region can be used as the protrusion.
- the spacer formed in the sealing region is preferably formed so as to be positioned on the black matrix so that the quality of the sealing region does not deteriorate.
- a spacer manufactured by a photolithography method in this way may be referred to as a column spacer or a photo spacer.
- the droplet discharge method is a method in which spherical spacers are dispersed in a solvent in which an adhesive is dissolved, and are arranged at predetermined positions by inkjet, and the same spherical spacers as the scattering spacers are formed.
- the protrusion can be provided at a predetermined position on the surface of the front substrate that contacts the sealing material.
- a droplet dispersion spacer liquid dispersion composed of a gap material, a binder resin, and a solvent having a desired size is discharged onto the transparent electrode 204 of the front substrate, Place the gap material at a fixed point.
- the solvent is dried and then heated to a temperature equal to or higher than the curing temperature of the binder resin to cure the resin, a spacer including the binder resin and a gap material having a desired shape such as a sphere or fiber is completed.
- the formation position of the spacer can be determined as desired according to the droplet discharge position. Therefore, spacers can be simultaneously formed both in the sealing region of the liquid crystal display element and outside the sealing region (sealing material application portion). As described above, the spacer formed outside the sealing region can be used as a protrusion.
- the spacer in the sealing region is preferably formed so as to be positioned on the black matrix so that the quality of the sealing region does not deteriorate.
- the material of the spacer can be arbitrarily selected.
- a negative water-soluble resin such as a PVA-stilbazo photosensitive resin, a mixture containing a polyfunctional acrylic monomer, an acrylic acid copolymer, a triazole-based initiator, or the like is used for spacer formation.
- a color resin in which a colorant is dispersed in a polyimide resin.
- the spacer can be obtained from a known material according to the compatibility with the liquid crystal or the sealing material to be used. Therefore, when the protrusion is provided on the substrate together with the spacer, the protrusion is also formed of the same material as the spacer.
- a sealing material (301 in FIG. 1) is applied to the portion of the front substrate surface that is in contact with the sealing material and has a projection (outside the sealing region).
- the material for the sealing material is not particularly limited.
- a curable resin composition in which a polymerization initiator is added to a photocurable, thermosetting, or photothermal combination curable resin such as an epoxy resin or an acrylic resin is used.
- fillers made of inorganic or organic substances may be added.
- the shape of these fillers is not particularly limited, and includes a spherical shape, a fiber shape, and an amorphous shape.
- a spherical or fibrous gap material having a monodisperse diameter is mixed, or a fibrous material that tends to get entangled with the protrusions on the substrate in order to further strengthen the adhesion to the substrate. May be mixed.
- the diameter of the fibrous material used at this time is desirably about 1/5 to 1/10 or less of the cell gap, and the length of the fibrous material is desirably shorter than the seal coating width.
- the material of the fibrous substance is not particularly limited as long as a predetermined shape can be obtained, and synthetic fibers such as cellulose, polyamide, or polyester, and inorganic materials such as glass or carbon can be appropriately selected. is there.
- the method for applying the sealing material can be arbitrarily selected. For example, there are a printing method and a dispensing method, but a dispensing method with a small amount of sealant used is desirable.
- the application position of the sealing material is usually on the black matrix outside the sealing area so as not to adversely affect the sealing area.
- the sealing material application shape is a closed loop shape.
- the specific shape of the closed loop shape, the arrangement of the closed loop, and the like can be arbitrarily set.
- the liquid crystal is dropped on the inside (sealing region) of the closed loop shape of the front substrate formed by applying the sealing material. Although dripping is performed by arbitrary methods, a dispenser is usually used.
- the amount of liquid crystal to be dropped is basically the same as the volume obtained by multiplying the height of the spacer (column spacer) and the area of the closed loop shape (sealing region) coated with the seal in order to match the liquid crystal cell volume. . However, in order to optimize liquid crystal leakage and display characteristics in the cell bonding step, the amount of liquid crystal to be dropped may be appropriately adjusted or the liquid crystal dropping position may be dispersed.
- the back substrate is bonded to the front substrate on which the sealing material is applied and the liquid crystal is dropped.
- the front substrate and the back substrate are adsorbed on a stage having a mechanism for adsorbing a substrate such as an electrostatic chuck, and the alignment film b on the front substrate and the alignment film a on the back substrate face each other. And it arrange
- the system is depressurized. After completion of the decompression, the positions of both substrates are adjusted while confirming the bonding position of the front substrate and the rear substrate (alignment operation).
- the two substrates are brought close to a position where the sealing material on the front substrate and the rear substrate are in contact with each other so that the bonding is correctly performed.
- the system is filled with an inert gas, and the pressure is gradually returned to normal pressure while releasing the reduced pressure.
- the front substrate and the rear substrate are bonded together by atmospheric pressure, and a cell gap is formed at the height position of the spacer (column spacer).
- a liquid crystal cell can be formed by irradiating the sealing material with ultraviolet rays and curing the sealing material.
- a heating step is added depending on the case to accelerate the sealing material curing. A heating process is often added to enhance the adhesive strength of the sealing material and improve the reliability of electrical characteristics.
- This resin base material is loaded into a sputter roll coater, and by using DC magnetron sputtering, reactive sputtering using oxygen as a reactive gas and Si as a target, SiOx having a film thickness of 60 nm is formed on the resin base material.
- a black matrix forming composition having the following composition was applied in a wet state using a die coater so as to have a thickness of 10 ⁇ m, dried, and then at a temperature of 90 ° C. For 2 minutes to form a black matrix layer having a thickness of 2 ⁇ m.
- the substrate (1) with the black matrix layer obtained above was passed through an exposure apparatus provided with an unwinding device on the upstream side and a winding device on the downstream side.
- a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the continuous substrate (1) with the black matrix layer.
- the tension applied to the substrate (1) with the black matrix layer was 2 kg / 300 mm width.
- the temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ⁇ 0.1 ° C., and the relative humidity was adjusted to 60% ⁇ 1%.
- the gap (gap) between the coating surface of the substrate (1) and the prepared pattern (photomask). was automatically adjusted to 100 ⁇ m.
- the exposure position of the substrate (1) is automatically detected by automatically detecting the distance from the surface of the substrate (1) and automatically adjusting the distance from the substrate (1) to the photomask pattern position, and then intermittently exposing. Went.
- a high-pressure mercury lamp was used, the exposure area was 200 mm ⁇ 200 mm, I-line (wavelength: 365 nm) was used, and exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds to obtain an exposure amount of 300 mJ / cm 2 . .
- the developing process was performed by installing a developing device downstream of the exposure machine.
- the resin base material after the exposure treatment was conveyed at a constant speed of 400 mm / min to obtain a substrate (1) with a black matrix layer on which a black matrix having a predetermined pattern was laminated.
- the alignment mark formed of the black matrix is measured with a dimension measuring machine (NEXIV VMR-6555 manufactured by Nikon) at a temperature of 23 ° C. ⁇ 0.1 ° C., a relative humidity of 60% ⁇ 1%, and in the conveying direction (MD).
- the dimensional change in the direction (TD) perpendicular to the transport direction was measured.
- the size of the pattern of the black matrix (alignment mark) actually formed on the resin base material is MD: 99.000 mm with respect to the photomask dimension values MD: 100.000 mm and TD: 100.000 mm. It was 998 mm and TD: 100.001 mm.
- the black matrix was thermally cured by post-baking at 200 ° C.
- the obtained black matrix was measured under the same conditions (temperature; 23 ° C. ⁇ 0.1 ° C., relative humidity; 60% ⁇ 1%), the pattern of the black matrix formed on the substrate (1) was measured.
- the dimensions after baking were MD: 99.998 mm and TD: 100.001 mm.
- a colored pattern forming composition having the following composition was applied in a wet state using a die coater so that the distance from the barrier layer was 10 ⁇ m. . This was dried and then pre-baked at a temperature of 90 ° C. for 2 minutes to obtain a black matrix layer and a substrate (1) with a colored pattern forming composition each having a thickness of 2 ⁇ m.
- the composition of the red colored pattern forming composition is shown below.
- the red pigment is an arbitrary green pigment
- a GREEN colored pattern forming composition is obtained
- a blue pigment is used, a BLUE colored pattern forming composition is obtained.
- the substrate (1) with the black matrix layer and the composition for forming a colored pattern obtained above was passed through an exposure apparatus provided with an unwinding apparatus on the upstream side and a winding apparatus on the downstream side.
- a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the substrate (1) with a continuous black matrix layer and a composition for forming a colored pattern.
- the tension applied to the substrate (1) with the black matrix layer and the colored pattern forming composition was 2 kg / 300 mm width.
- the temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ⁇ 0.1 ° C., and the relative humidity was adjusted to 60% ⁇ 1%.
- substrate (1) with a black matrix layer and the composition for coloring pattern formation was determined as follows. That is, the distance from the surface of the substrate (1) with the black matrix layer and the colored pattern forming composition is automatically detected, and the photomask pattern position is detected from the substrate (1) with the black matrix layer and the colored pattern forming composition.
- the substrate (1) with the black matrix layer and the composition for forming a colored pattern after the exposure process is conveyed at a constant speed of 400 mm / min, and as a result, at a predetermined position of the opening of the black matrix on the resin substrate, That is, a substrate (1) was obtained in which a RED colored layer having a predetermined pattern was laminated at a location where no black matrix was formed. Thereafter, post baking was performed at 200 ° C. for 30 minutes in a baking furnace, and the RED colored layer was cured.
- RED is repeated to form a colored layer of GREEN and BLUE, and a color filter having a black matrix and a desired colored layer of RGB (RED, GREEN, and BLUE) formed on the substrate (1) Obtained.
- the dimensional change of the black matrix was 10 ppm in the production process from the development of the first layer (black matrix layer) to the post-baking of the fourth layer (BLUE layer).
- the resolution is 200 ppi (BM (black matrix) line width) on a resin substrate with a 4-inch size.
- a color filter having a stripe structure of 7 ⁇ m and a pitch of 42 ⁇ m was able to be formed without causing a pixel shift.
- this color filter is loaded into a sputter roll coater, and a film is formed on the black matrix and RGB colored layers by using ITO (indium tin oxide) as a target by reactive sputtering using oxygen as a reactive gas by DC sputtering.
- ITO indium tin oxide
- An ITO film having a thickness of 150 nm was formed and used as an ITO electrode layer.
- a pattern spacer forming composition made of a negative photosensitive resin was applied on a PET base film (long roll) having a width of 300 mm and a thickness of 25 ⁇ m using a die coater so as to have a thickness of 20 ⁇ m in a wet state. . After the coating film was dried, it was prebaked for 2 minutes at a temperature of 90 ° C. to obtain a coating film having a thickness of 5 ⁇ m. Thereafter, a PET cover film having a thickness of 25 ⁇ m was laminated thereon to obtain a dry film for forming a pattern spacer.
- the pattern spacer forming composition was prepared by removing the dry film for forming the pattern spacer from which the PET cover film was previously peeled off. Lamination was performed so as to face the ITO electrode layer. Thereafter, the composition layer for pattern spacer formation was continuously transferred under the conditions of roller pressure: 5 kg / cm 2 , roller surface temperature: 120 ° C., and speed: 800 mm / min. At this time, the base film was not peeled off, and proceeded to the next exposure step in a state of being attached on the pattern spacer forming composition.
- the laminated raw material obtained above was passed through an exposure apparatus provided with an unwinding device on the upstream side and a winding device on the downstream side.
- a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the laminated raw material having a continuous shape.
- the tension applied to the laminated original fabric was 2 kg / 300 mm width.
- the temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ⁇ 0.1 ° C., and the relative humidity was adjusted to 60% ⁇ 1%.
- the gap (gap) between the base film of the stack and the prepared photomask pattern (photomask) is automatically adjusted to 30 ⁇ m. did.
- a photomask pattern used at this time a pattern A (see FIG. 3) having both a spacer creation pattern for forming a spacer on a black matrix and a projection creation pattern for forming a projection on a sealing material application portion, and comparison
- a pattern B having only a spacer forming pattern for forming a spacer on a black matrix was prepared.
- the exposure position of the pattern of the laminated original fabric was determined as follows.
- the front substrate A on which the black matrix, the RGB colored layer, the ITO electrode layer, the pattern spacer, and the protrusions were formed on the substrate (1), and the pattern B were used.
- a front substrate B having a black matrix, an RGB colored layer, an ITO electrode layer, and a pattern spacer formed on the substrate (1) was obtained.
- TFT electrode layer A quartz glass substrate was used as the transparent substrate, and a TFT electrode layer was formed on the transparent substrate according to the method described in JP-A-2004-140381. That is, after forming an amorphous Si layer with a thickness of 100 nm on a quartz glass substrate, an oxide Si layer (SiOx) was formed thereon by a vacuum film forming method. Thereafter, a TFT layer and a pixel electrode were formed on the oxidized Si layer by using a photolithography method and an etching method, respectively. Next, a water-soluble adhesive was applied on the TFT layer and the pixel electrode, and a separately prepared glass substrate was attached.
- SiOx oxide Si layer
- XeCl excimer laser was irradiated from the first quartz glass substrate side to peel off at the interface between the amorphous Si layer and the oxidized Si layer.
- a TFT array layer in which a TFT layer and a pixel electrode were formed on an SiOx layer having a thickness of 0.1 ⁇ m was formed.
- a TFT layer and a pixel electrode exist between the SiOx layer and the glass substrate.
- the TFT array layer is sandwiched between two substrates on the glass substrate on which the TFT array layer is formed, that is, another substrate is disposed on the surface of the SiOx layer that is in contact with the amorphous Si layer.
- a substrate (1) similar to that used for the front substrates A and B was bonded.
- a low curing shrinkage type curable adhesive (Luxtrac LCR0629B manufactured by Toagosei Co., Ltd.) was used.
- the adhesive is applied to the SiOx side on which the substrate (1) is bonded, and then the TFT array layer and the substrate (1) are bonded on the bonding apparatus using alignment marks previously formed on the respective substrates.
- a liquid crystal alignment film was formed as follows in a portion corresponding to the sealing region of the front substrate A and the back substrate manufactured as described above. After washing both substrates with pure water, a liquid crystal aligning agent was applied to a portion corresponding to the sealing region using a printer for applying a liquid crystal alignment film and dried in an oven at 180 ° C. for 20 minutes. In this way, a thin coating film having a dry average film thickness of 600 mm was formed on the surface of the front substrate A on which the ITO was formed and on the surface of the rear substrate on which the TFT electrode layer was formed.
- a rubbing machine having a roll in which a rayon cloth is wound around this coating film is rubbed at a roll rotation speed of 400 rpm, a stage moving speed of 30 mm / second, and a hair foot indentation length of 0.4 mm, and then washed with water. It was. Then, it dried for 10 minutes on 120 degreeC oven.
- the sealant was applied to the portion of the front substrate A where the sealant was to be applied using a dispenser so as to draw a closed loop.
- a photo-curing type sealing material was used, and 1% by weight of spherical spacers having the same size as the spacer (column spacer) were mixed in the sealing material.
- three types of sample cells A1 to A3 were prepared. That is, the application width of the sealing material was set to three types of seal widths suitable for an evaluation test described later (1.2 mm, 2 mm, and 3 mm).
- an appropriate amount of liquid crystal was dropped using a dispenser at a predetermined position in the closed loop formed by the sealing material.
- the front substrate A and the rear substrate after dropping the liquid crystal were adsorbed to the electrostatic chuck.
- the front substrate A and the rear substrate were disposed so as to face each other, and the rear substrate was slowly lowered to stand still at a distance of 300 ⁇ m from the front substrate A. In this state, the pressure in the vacuum chamber was reduced to 100 Pa.
- the alignment position of the front substrate A and the rear substrate was adjusted using an alignment mark formed in advance.
- the front substrate A and the rear substrate were brought closer to each other, and both base materials were held at a height where the sealing material and the TFT electrode layer were in contact with each other.
- an inert gas was introduced into the vacuum chamber, and the system was returned to atmospheric pressure.
- the front substrate A and the back substrate were pressed by atmospheric pressure, and a cell gap was formed at the height of the spacer (column spacer) including the liquid crystal alignment film.
- the sealing material application portion was irradiated with ultraviolet rays (365 nm, 30 kJ / m 2 ) to cure the sealing material, and liquid crystal cells A (A1 to A3) were obtained.
- liquid crystal cells C (Creation of liquid crystal cell C for Example)
- liquid crystal cells C (C2 to C3) were obtained in the same manner as in the above method except that a sealing material to which a fibrous substance was added was used.
- the amount of the fibrous substance added was 1 part by weight with respect to 100 parts by weight of the sealing material.
- the fibrous material cellulose ultrafine fibers were used, and the fibers themselves were produced according to the method described in Japanese Patent Application Laid-Open No. 2008-266828.
- the obtained ultrafine cellulose fibers had an average fiber diameter of about 1 ⁇ m and an average fiber length of about 0.2 mm.
- Liquid crystal cells B (B1 to B3) were obtained in the same manner as the liquid crystal cell A except that the front substrate B was used instead of the front substrate A. Considering that no column spacers (protrusions) are formed in the seal formation region in the liquid crystal cell B, the sealing material has approximately the same size as the column spacer so that a cell gap equivalent to that in the liquid crystal filling region can be maintained. 1% by weight of a spherical spacer was mixed.
- ⁇ Seal width evaluation> Measurement method of seal width
- the seal width of the liquid crystal cell was measured using a digital microscope (KH-7700, manufactured by Hilox).
- the measurement interval of the seal width was set to 2 mm, 64 points were measured, and the average value and the standard deviation were obtained.
- the variation in the seal width of the liquid crystal cell A (A1) was as small as about one third compared with the variation of the liquid crystal cell B (B1). Even when the seal width was 2 mm, the liquid crystal cell A (A2) had small seal width variations, and was able to achieve almost the target seal width. In contrast, in the liquid crystal cell B (B2), when the seal width was 2 mm, the target seal width was greatly exceeded. From this result, it can be seen that by providing a protrusion on the seal application part, it is possible to suppress the variation in the seal width and to improve the controllability of the seal width.
- the spherical spacers dispersed in the seal material are narrower than the seal width. It was confirmed that they were unevenly distributed.
- the sealing material tends to extend in the seal width direction, which is considered to be because the sealing material easily flows on the side where the spherical spacers are not dispersed. As a result, the seal width was wide and the variation was large.
- the provided protrusions or spacers suppress excessive flow of the sealing material, and thus it is considered that the variation in the seal width is suppressed to a small value. From this, it was shown that by forming a spacer (column spacer) in the sealant application portion, the seal width controllability is improved and effective for narrowing the frame of the liquid crystal panel.
- a 90 ° peel test of the liquid crystal cell was performed using a tensile tester (Tensilon, manufactured by A & D), and the stress when the substrate peeled was measured.
- the end (mimi) of the substrate of the produced liquid crystal cell A, B or C was fixed to a tensilon air chuck, and the other substrate was fixed to a 90 ° peel test dedicated jig.
- the air chuck side was pulled upward at a pulling speed of 100 mm / min. At this time, the other substrate moved horizontally on the dedicated jig.
- the apparatus was stopped when the air chuck was lifted by about 50 mm while peeling the cell substrate. From the stress when the cell substrate started to peel to the stress when the apparatus was stopped, the average value was obtained.
- the stress was normalized by the seal width, and the stress per 1 m of the seal width was defined as the peel strength.
- the peel strength of the liquid crystal cells A was about 5 ⁇ 10 2 N / m on average. At the time of peeling, the seal was not peeled off at the cell substrate interface, and was destroyed from the inside of the substrate. In contrast, the peel strength of the liquid crystal cells B (B1 to B3) was about 1 ⁇ 10 2 N / m on average, and the seal peeled off at the cell substrate interface at the time of peeling. From this result, it was proved that it is possible to greatly increase the breaking strength of the cell by providing the protrusion on the sealing material application portion.
- the peel strength in the liquid crystal cells C (C1 to C3) is about 7 ⁇ 10 2 N / m on average, and by mixing a fibrous substance in the sealing material, the breaking strength of the cells can be increased. I knew it would be possible.
- liquid crystal display element that is free from peeling near the interface between a substrate and a sealing material, and that does not cause peeling especially due to stress applied in a direction parallel to the substrate surface.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
Disclosed is a liquid crystal display element comprising a pair of mutually opposed substrates (100, 200); a seal material (301) disposed between the substrates; and a liquid crystal layer (303) sealed in a sealed region surrounded by the seal member (301). Protrusions (304) are disposed upon the substrate surfaces whereat the seal material (301) makes contact.
Description
本発明は液晶表示素子に関する。
The present invention relates to a liquid crystal display element.
一般に液晶パネル(LCD)は、薄膜トランジスタ(TFT)、画素電極、及び配向膜等を備える背面基板と、カラーフィルタ、電極、及び配向膜等を備える前面基板とを対向させ、前記両基板間に液晶を封入して構成されている。さらに2枚の前記基板を接着させる目的で、シール材が一般に使用されている。
基板としてはガラスが一般的に使用される。最近では軽量化の目的でガラス基板の薄膜化が進んでおり、薄膜化によりガラスの変形による応力が増大する傾向にある。このことから、シール部にはこのような増大する応力に耐えうる柔軟性が要求される。
一方、軽量化あるいはフレキシブル化を目的として、従来のガラス基板の代わりにポリイミドフィルム等のプラスチックフィルムを基板として使用する試みが検討されている。特に最近では製造効率向上を目的として、プラスチックフィルムを使用したロールツウロール(Roll to Roll)法によるLCDの製造方法の研究が進んでいる。このようなフレキシブル基板を使用する場合、シール部には、基板の屈曲に追随可能な高い接着性と柔軟性とが要求される。 In general, a liquid crystal panel (LCD) has a back substrate having a thin film transistor (TFT), a pixel electrode, an alignment film, and the like opposed to a front substrate having a color filter, an electrode, an alignment film, etc. It is configured to enclose. Further, a sealing material is generally used for the purpose of bonding the two substrates.
Glass is generally used as the substrate. Recently, the glass substrate has been made thinner for the purpose of weight reduction, and the stress due to the deformation of the glass tends to increase due to the thinner film. For this reason, the seal portion is required to have flexibility to withstand such increasing stress.
On the other hand, an attempt to use a plastic film such as a polyimide film instead of a conventional glass substrate as a substrate for the purpose of weight reduction or flexibility has been studied. In particular, recently, for the purpose of improving production efficiency, research on LCD production methods by a roll-to-roll method using a plastic film has been advanced. When such a flexible substrate is used, the seal portion is required to have high adhesion and flexibility that can follow the bending of the substrate.
基板としてはガラスが一般的に使用される。最近では軽量化の目的でガラス基板の薄膜化が進んでおり、薄膜化によりガラスの変形による応力が増大する傾向にある。このことから、シール部にはこのような増大する応力に耐えうる柔軟性が要求される。
一方、軽量化あるいはフレキシブル化を目的として、従来のガラス基板の代わりにポリイミドフィルム等のプラスチックフィルムを基板として使用する試みが検討されている。特に最近では製造効率向上を目的として、プラスチックフィルムを使用したロールツウロール(Roll to Roll)法によるLCDの製造方法の研究が進んでいる。このようなフレキシブル基板を使用する場合、シール部には、基板の屈曲に追随可能な高い接着性と柔軟性とが要求される。 In general, a liquid crystal panel (LCD) has a back substrate having a thin film transistor (TFT), a pixel electrode, an alignment film, and the like opposed to a front substrate having a color filter, an electrode, an alignment film, etc. It is configured to enclose. Further, a sealing material is generally used for the purpose of bonding the two substrates.
Glass is generally used as the substrate. Recently, the glass substrate has been made thinner for the purpose of weight reduction, and the stress due to the deformation of the glass tends to increase due to the thinner film. For this reason, the seal portion is required to have flexibility to withstand such increasing stress.
On the other hand, an attempt to use a plastic film such as a polyimide film instead of a conventional glass substrate as a substrate for the purpose of weight reduction or flexibility has been studied. In particular, recently, for the purpose of improving production efficiency, research on LCD production methods by a roll-to-roll method using a plastic film has been advanced. When such a flexible substrate is used, the seal portion is required to have high adhesion and flexibility that can follow the bending of the substrate.
従来、液晶パネル用シール材としては、エポキシ系の熱硬化型樹脂を主成分とした熱硬化型シール材が主に使用されている。しかしこのようなシール剤は、基板を貼り合わせてシール材料を硬化するときに長時間を要する。よって、大量連続生産に適さず、また予め位置合わせした2枚の基板に横方向のずれが生じたりするなどの問題点があった。また、一対の基板の材質が互いに異なる場合には、加熱工程において、各基板の熱膨張係数の違いにより位置合わせが不正確になり易いという問題もあった。更には、セルの厚さも不均一になり易いという問題もあった。これらの不都合により、得られた液晶表示パネルの表示品位が低下するという欠点があった。
一方、紫外線硬化型樹脂をシール材として使用した液晶パネルが、特許文献1、特許文献2、及び特許文献3などに報告されている。しかしながらいずれのシール材も、基板となるガラス面あるいはプラスチック面との界面での接着強度が不十分であり、特に、基板面に対して平行方向にかかる応力に対して界面剥がれ等が生じることがあった。
一般に接着剤分野において、組成を検討することで界面剥がれに対する接着力を高める方法はいくつかある。しかしながら、LCDを液晶滴下工法(ODF法)にて製造する場合、未硬化のシール材と液晶とが直接触れることから、液晶を汚染させないためにシール材原料には制限がある。
このように、シール材のみで前記要求特性を満たしたものは、未だ得られていないのが現状である。 Conventionally, as a sealing material for a liquid crystal panel, a thermosetting sealing material mainly composed of an epoxy thermosetting resin has been mainly used. However, such a sealing agent requires a long time when the substrates are bonded together to cure the sealing material. Therefore, there is a problem that it is not suitable for mass continuous production and a lateral shift occurs between two substrates aligned in advance. In addition, when the materials of the pair of substrates are different from each other, there is a problem that the alignment is likely to be inaccurate due to the difference in thermal expansion coefficient of each substrate in the heating process. Furthermore, there has been a problem that the thickness of the cell tends to be non-uniform. Due to these disadvantages, there is a drawback that the display quality of the obtained liquid crystal display panel is lowered.
On the other hand, a liquid crystal panel using an ultraviolet curable resin as a sealing material has been reported in Patent Document 1, Patent Document 2, and Patent Document 3. However, any of the sealing materials has insufficient adhesive strength at the interface with the glass surface or plastic surface serving as the substrate, and in particular, interface peeling may occur due to stress applied in a direction parallel to the substrate surface. there were.
In general, in the adhesive field, there are several methods for increasing the adhesive strength against interface peeling by examining the composition. However, when the LCD is manufactured by the liquid crystal dropping method (ODF method), the uncured sealing material and the liquid crystal are in direct contact with each other, so that the raw material for the sealing material is limited so as not to contaminate the liquid crystal.
Thus, the present condition has not yet obtained what satisfy | filled the said required characteristic only with a sealing material.
一方、紫外線硬化型樹脂をシール材として使用した液晶パネルが、特許文献1、特許文献2、及び特許文献3などに報告されている。しかしながらいずれのシール材も、基板となるガラス面あるいはプラスチック面との界面での接着強度が不十分であり、特に、基板面に対して平行方向にかかる応力に対して界面剥がれ等が生じることがあった。
一般に接着剤分野において、組成を検討することで界面剥がれに対する接着力を高める方法はいくつかある。しかしながら、LCDを液晶滴下工法(ODF法)にて製造する場合、未硬化のシール材と液晶とが直接触れることから、液晶を汚染させないためにシール材原料には制限がある。
このように、シール材のみで前記要求特性を満たしたものは、未だ得られていないのが現状である。 Conventionally, as a sealing material for a liquid crystal panel, a thermosetting sealing material mainly composed of an epoxy thermosetting resin has been mainly used. However, such a sealing agent requires a long time when the substrates are bonded together to cure the sealing material. Therefore, there is a problem that it is not suitable for mass continuous production and a lateral shift occurs between two substrates aligned in advance. In addition, when the materials of the pair of substrates are different from each other, there is a problem that the alignment is likely to be inaccurate due to the difference in thermal expansion coefficient of each substrate in the heating process. Furthermore, there has been a problem that the thickness of the cell tends to be non-uniform. Due to these disadvantages, there is a drawback that the display quality of the obtained liquid crystal display panel is lowered.
On the other hand, a liquid crystal panel using an ultraviolet curable resin as a sealing material has been reported in Patent Document 1, Patent Document 2, and Patent Document 3. However, any of the sealing materials has insufficient adhesive strength at the interface with the glass surface or plastic surface serving as the substrate, and in particular, interface peeling may occur due to stress applied in a direction parallel to the substrate surface. there were.
In general, in the adhesive field, there are several methods for increasing the adhesive strength against interface peeling by examining the composition. However, when the LCD is manufactured by the liquid crystal dropping method (ODF method), the uncured sealing material and the liquid crystal are in direct contact with each other, so that the raw material for the sealing material is limited so as not to contaminate the liquid crystal.
Thus, the present condition has not yet obtained what satisfy | filled the said required characteristic only with a sealing material.
本発明が解決しようとする課題は、基板とシール材との界面付近で剥がれ等がなく、特に基板面に対して平行方向にかかる応力に対して界面剥がれ等の生じることのない、液晶表示素子を提供することにある。
The problem to be solved by the present invention is that there is no peeling near the interface between the substrate and the sealing material, and in particular, there is no occurrence of interface peeling due to stress applied in the direction parallel to the substrate surface. Is to provide.
本発明者らは、前記シール材が接する基板面に突起を設けることで、上記課題を解決した。
The present inventors solved the above problems by providing protrusions on the surface of the substrate in contact with the sealing material.
即ち、本発明は、互いに対向する二つの基板と、前記基板間に設けられたシール材と、前記シール材に囲まれた封止領域に封入された液晶とを備え、前記シール材が接する基板面に突起が設けられている液晶表示素子を提供する。
That is, the present invention includes two substrates facing each other, a sealing material provided between the substrates, and a liquid crystal sealed in a sealing region surrounded by the sealing material, and the substrate in contact with the sealing material Provided is a liquid crystal display element having projections on its surface.
また本発明は、前記記載の液晶表示素子の製造方法であって、
フォトリソグラフィによる方法又は液滴吐出法により、カラーフィルタを設けた前面基板上の封止領域となる面に設けるスペーサと、シール材とが接する面に設ける突起物と、を同時に設ける工程と、
前記カラーフィルタを設けた前面基板上のシール材が接する突起物を設けた面に、シール材を塗布する工程と、
前記カラーフィルタを設けた前面基板の封止領域に液晶を滴下する工程と、
前記カラーフィルタを設けた前面基板とTFTを設けた背面基板とをシール材を介して貼り合わせる工程とを有する、液晶表示素子の製造方法を提供する。
言い換えれば、前記記載の液晶表示素子の製造方法であって、
封止領域となる部分と、封止領域を形成するシール材が設けられる部分とを有する、前面基板のカラーフィルタが設けられた面の上に、
フォトリソグラフィによる方法又は液滴吐出法により、前記封止領域となる部分にはスペーサを、シール材が接する位置となる部分には突起を、同時に設ける工程と、
突起が設けられた、シール材が設けられる部分に、シール材を塗布する工程と、
前記前面基板の封止領域に液晶を滴下する工程と、
前記前面基板とTFTを設けた背面基板とを、シール材を介して貼り合わせる工程と、
を有することを特徴とする液晶表示素子の製造方法を提供する。 The present invention also provides a method for producing the liquid crystal display element described above,
A step of simultaneously providing a spacer provided on a surface to be a sealing region on a front substrate provided with a color filter and a protrusion provided on a surface in contact with a sealing material by a photolithography method or a droplet discharge method;
A step of applying a sealing material to a surface provided with a protrusion on which the sealing material on the front substrate provided with the color filter comes into contact;
Dropping a liquid crystal on a sealing region of a front substrate provided with the color filter;
There is provided a method for producing a liquid crystal display element, comprising a step of bonding a front substrate provided with the color filter and a rear substrate provided with a TFT through a sealing material.
In other words, the method for manufacturing the liquid crystal display element described above,
On the surface provided with the color filter of the front substrate, which has a portion to be a sealing region and a portion on which a sealing material that forms the sealing region is provided.
A step of simultaneously providing a spacer in a portion to be the sealing region and a protrusion in a portion to be in contact with the sealing material by a photolithography method or a droplet discharge method;
A step of applying a sealing material to a portion where the protrusion is provided and the sealing material is provided;
Dropping liquid crystal on the sealing region of the front substrate;
Bonding the front substrate and the rear substrate provided with TFTs through a sealing material;
A method for manufacturing a liquid crystal display element, comprising:
フォトリソグラフィによる方法又は液滴吐出法により、カラーフィルタを設けた前面基板上の封止領域となる面に設けるスペーサと、シール材とが接する面に設ける突起物と、を同時に設ける工程と、
前記カラーフィルタを設けた前面基板上のシール材が接する突起物を設けた面に、シール材を塗布する工程と、
前記カラーフィルタを設けた前面基板の封止領域に液晶を滴下する工程と、
前記カラーフィルタを設けた前面基板とTFTを設けた背面基板とをシール材を介して貼り合わせる工程とを有する、液晶表示素子の製造方法を提供する。
言い換えれば、前記記載の液晶表示素子の製造方法であって、
封止領域となる部分と、封止領域を形成するシール材が設けられる部分とを有する、前面基板のカラーフィルタが設けられた面の上に、
フォトリソグラフィによる方法又は液滴吐出法により、前記封止領域となる部分にはスペーサを、シール材が接する位置となる部分には突起を、同時に設ける工程と、
突起が設けられた、シール材が設けられる部分に、シール材を塗布する工程と、
前記前面基板の封止領域に液晶を滴下する工程と、
前記前面基板とTFTを設けた背面基板とを、シール材を介して貼り合わせる工程と、
を有することを特徴とする液晶表示素子の製造方法を提供する。 The present invention also provides a method for producing the liquid crystal display element described above,
A step of simultaneously providing a spacer provided on a surface to be a sealing region on a front substrate provided with a color filter and a protrusion provided on a surface in contact with a sealing material by a photolithography method or a droplet discharge method;
A step of applying a sealing material to a surface provided with a protrusion on which the sealing material on the front substrate provided with the color filter comes into contact;
Dropping a liquid crystal on a sealing region of a front substrate provided with the color filter;
There is provided a method for producing a liquid crystal display element, comprising a step of bonding a front substrate provided with the color filter and a rear substrate provided with a TFT through a sealing material.
In other words, the method for manufacturing the liquid crystal display element described above,
On the surface provided with the color filter of the front substrate, which has a portion to be a sealing region and a portion on which a sealing material that forms the sealing region is provided.
A step of simultaneously providing a spacer in a portion to be the sealing region and a protrusion in a portion to be in contact with the sealing material by a photolithography method or a droplet discharge method;
A step of applying a sealing material to a portion where the protrusion is provided and the sealing material is provided;
Dropping liquid crystal on the sealing region of the front substrate;
Bonding the front substrate and the rear substrate provided with TFTs through a sealing material;
A method for manufacturing a liquid crystal display element, comprising:
本発明により、基板とシール材との界面付近で剥がれ等がない、特に基板面に対し平行方向にかかる応力に対して界面剥がれ等の生じることのない、液晶表示素子を提供することができる。
前記突起は、フォトリソグラフィによる方法又は液滴吐出法により、カラーフィルタを設けた前面基板上の、封止領域となる面にはスペーサを、シール材が接するべき面には突起物とを、同時に設けることで簡便に取り付けることが可能である。
また、本発明の液晶表示素子は、シール幅のばらつきの少ないシール領域を形成できるため、液晶を封入する封止領域の面積を安定に形成でき、ODF(one-drop-fill)法による液晶注入に適していることや、シール幅細線化に優れるなどの特徴も有する。 According to the present invention, it is possible to provide a liquid crystal display element that does not peel near the interface between the substrate and the sealing material, and that does not cause interface peeling due to stress applied in a direction parallel to the substrate surface.
The protrusions are formed on the front substrate provided with the color filter by a photolithography method or a droplet discharge method, with a spacer on the surface to be a sealing region, and a protrusion on the surface to be in contact with the sealing material. By providing, it can be easily attached.
In addition, since the liquid crystal display element of the present invention can form a seal region with little variation in seal width, the area of the sealing region for sealing the liquid crystal can be formed stably, and liquid crystal injection by an ODF (one-drop-fill) method is possible. It also has features such as being suitable for the seal and excellent in narrowing the seal width.
前記突起は、フォトリソグラフィによる方法又は液滴吐出法により、カラーフィルタを設けた前面基板上の、封止領域となる面にはスペーサを、シール材が接するべき面には突起物とを、同時に設けることで簡便に取り付けることが可能である。
また、本発明の液晶表示素子は、シール幅のばらつきの少ないシール領域を形成できるため、液晶を封入する封止領域の面積を安定に形成でき、ODF(one-drop-fill)法による液晶注入に適していることや、シール幅細線化に優れるなどの特徴も有する。 According to the present invention, it is possible to provide a liquid crystal display element that does not peel near the interface between the substrate and the sealing material, and that does not cause interface peeling due to stress applied in a direction parallel to the substrate surface.
The protrusions are formed on the front substrate provided with the color filter by a photolithography method or a droplet discharge method, with a spacer on the surface to be a sealing region, and a protrusion on the surface to be in contact with the sealing material. By providing, it can be easily attached.
In addition, since the liquid crystal display element of the present invention can form a seal region with little variation in seal width, the area of the sealing region for sealing the liquid crystal can be formed stably, and liquid crystal injection by an ODF (one-drop-fill) method is possible. It also has features such as being suitable for the seal and excellent in narrowing the seal width.
本発明は、液晶表示素子に関し、更に詳しくは、薄膜基板やフレキシブル基板を使用した場合においてもシール箇所における界面剥がれ等が生じにくい液晶表示素子に関する。
以下、図面を参照しつつ、本発明に係る液晶表示装置の好適な実施の形態について詳細に説明する。ただし本発明はこれらの例のみに限定されず、数、位置、サイズ、及び材料の種類など、本発明を超えない範囲で、変更、追加、または省略などをしてもよい。また図面においては、各構成をわかりやすくするために、縮尺や数等が、実際の構造と異なる場合がある。
図1及び図2は、互いに対向する二つの基板と、前記基板間に設けられたシール材と、前記シール材に囲まれた封止領域に封入された液晶とを備え、前記シール材が接する片方または両方の基板面に突起が設けられている液晶表示素子を示す、部分断面図である。
具体的には、液晶表示素子の具体的態様を示している。これら図において、参照数字100~105の部材を備えた基板を「背面基板」、参照数字200~205の部材を備えた基板を「前面基板」と称している。さらに詳細に説明すると、背面基板は、バリア膜101を設けた基板a100上に、TFT層102、画素電極103を設け、その上からパッシベーション膜104及び配向膜a105を設けたものである。前記背面基板と対向する前面基板は、バリア膜201を設けた基板b200上に、ブラックマトリックス202、カラーフィルタ203、及び透明電極204を設け、その上から配向膜b205を設けたものである。前記2つの基板間には、シール材301と、前記シール材に囲まれた封止領域に封入された液晶層303とが備えられ、前記シール材301が接する前記2つの基板の基板面の一方又は両方には、突起304が設けられている。図1は、突起304が前面基板に設けられた断面図であり、図2は、突起304が前面基板及び背面基板の両方に設けられた断面図である。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which interface peeling or the like hardly occurs at a seal portion even when a thin film substrate or a flexible substrate is used.
Hereinafter, preferred embodiments of a liquid crystal display device according to the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these examples, and changes, additions, omissions, and the like may be made without departing from the present invention, such as the number, position, size, and type of material. In the drawings, the scale, number, and the like may be different from the actual structure in order to make each configuration easy to understand.
1 and 2 include two substrates facing each other, a sealing material provided between the substrates, and liquid crystal sealed in a sealing region surrounded by the sealing material, and the sealing material is in contact with each other. It is a fragmentary sectional view which shows the liquid crystal display element by which the processus | protrusion is provided in the one or both board | substrate surface.
Specifically, a specific mode of the liquid crystal display element is shown. In these drawings, a substrate having members withreference numerals 100 to 105 is referred to as a “back substrate”, and a substrate having members having reference numerals 200 to 205 is referred to as a “front substrate”. More specifically, the rear substrate is obtained by providing the TFT layer 102 and the pixel electrode 103 on the substrate a100 provided with the barrier film 101, and providing the passivation film 104 and the alignment film a105 thereon. The front substrate facing the rear substrate is obtained by providing a black matrix 202, a color filter 203, and a transparent electrode 204 on a substrate b200 provided with a barrier film 201, and an alignment film b205 thereon. Between the two substrates, a sealing material 301 and a liquid crystal layer 303 sealed in a sealing region surrounded by the sealing material are provided, and one of the substrate surfaces of the two substrates in contact with the sealing material 301 is provided. Or, both are provided with protrusions 304. 1 is a cross-sectional view in which the protrusions 304 are provided on the front substrate, and FIG. 2 is a cross-sectional view in which the protrusions 304 are provided on both the front substrate and the back substrate.
以下、図面を参照しつつ、本発明に係る液晶表示装置の好適な実施の形態について詳細に説明する。ただし本発明はこれらの例のみに限定されず、数、位置、サイズ、及び材料の種類など、本発明を超えない範囲で、変更、追加、または省略などをしてもよい。また図面においては、各構成をわかりやすくするために、縮尺や数等が、実際の構造と異なる場合がある。
図1及び図2は、互いに対向する二つの基板と、前記基板間に設けられたシール材と、前記シール材に囲まれた封止領域に封入された液晶とを備え、前記シール材が接する片方または両方の基板面に突起が設けられている液晶表示素子を示す、部分断面図である。
具体的には、液晶表示素子の具体的態様を示している。これら図において、参照数字100~105の部材を備えた基板を「背面基板」、参照数字200~205の部材を備えた基板を「前面基板」と称している。さらに詳細に説明すると、背面基板は、バリア膜101を設けた基板a100上に、TFT層102、画素電極103を設け、その上からパッシベーション膜104及び配向膜a105を設けたものである。前記背面基板と対向する前面基板は、バリア膜201を設けた基板b200上に、ブラックマトリックス202、カラーフィルタ203、及び透明電極204を設け、その上から配向膜b205を設けたものである。前記2つの基板間には、シール材301と、前記シール材に囲まれた封止領域に封入された液晶層303とが備えられ、前記シール材301が接する前記2つの基板の基板面の一方又は両方には、突起304が設けられている。図1は、突起304が前面基板に設けられた断面図であり、図2は、突起304が前面基板及び背面基板の両方に設けられた断面図である。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which interface peeling or the like hardly occurs at a seal portion even when a thin film substrate or a flexible substrate is used.
Hereinafter, preferred embodiments of a liquid crystal display device according to the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these examples, and changes, additions, omissions, and the like may be made without departing from the present invention, such as the number, position, size, and type of material. In the drawings, the scale, number, and the like may be different from the actual structure in order to make each configuration easy to understand.
1 and 2 include two substrates facing each other, a sealing material provided between the substrates, and liquid crystal sealed in a sealing region surrounded by the sealing material, and the sealing material is in contact with each other. It is a fragmentary sectional view which shows the liquid crystal display element by which the processus | protrusion is provided in the one or both board | substrate surface.
Specifically, a specific mode of the liquid crystal display element is shown. In these drawings, a substrate having members with
前記基板a又は前記基板bは、実質的に透明であれば材質に特に限定はない。例えばガラス、セラミックス、及びプラスチック等を使用することができる。プラスチック基板の例としては、セルロ-ス、トリアセチルセルロ-ス、ジアセチルセルロ-ス等のセルロ-ス誘導体、ポリシクロオレフィン誘導体、ポリエチレンテレフタレ-ト、ポリエチレンナフタレ-ト等のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリカーボネート、ポリビニルアルコ-ル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド、ポリイミド、ポリイミドアミド、ポリスチレン、ポリアクリレート、ポリメチルメタクリレ-ト、ポリエーテルサルホン、ポリアリレート、さらにガラス繊維-エポキシ樹脂、ガラス繊維-アクリル樹脂などの無機-有機複合材料などを用いることができる。
なおプラスチック基板を使用する際には、バリア膜(図1における101、201)を設けることが好ましい。バリア膜の機能は、プラスチック基板が有する透湿性を低下させ、液晶表示素子の電気特性の信頼性を向上することにある。バリア膜101、201としては、それぞれ、透明性が高く水蒸気透過性が小さいものであれば特に限定されない。一般的には酸化ケイ素などの無機材料を用いて、蒸着、スパッタリング、又はケミカルベーパーデポジション法(CVD法)によって形成した薄膜を使用できる。
本発明においては、前記基板a及び前記基板bとして互いに同素材を使用しても又は異素材を使用してもよく、特に限定はない。プラスチック基板は、ロールツウロール法による製造方法に適し、且つ軽量化やフレキシブル化に適しており好ましい。また本発明では、平坦性及び耐熱性付与を目的として、プラスチック基板とガラス基板とを組み合わせる場合がある。
なお後述の実施例においては、基板a100又は基板b200の材質としてガラス布と硬化性樹脂との複合材料を、バリア膜101及び201の材質として酸化ケイ素を使用している。 The material of the substrate a or the substrate b is not particularly limited as long as it is substantially transparent. For example, glass, ceramics, plastics, etc. can be used. Examples of plastic substrates include cellulose derivatives such as cellulose, triacetyl cellulose, diacetyl cellulose, polycycloolefin derivatives, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polypropylene, Polyolefins such as polyethylene, polycarbonate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyamide, polyimide, polyimide amide, polystyrene, polyacrylate, polymethyl methacrylate, polyether sulfone, polyarylate, and glass fiber -An inorganic-organic composite material such as epoxy resin, glass fiber-acrylic resin, or the like can be used.
When a plastic substrate is used, it is preferable to provide a barrier film (101 and 201 in FIG. 1). The function of the barrier film is to reduce the moisture permeability of the plastic substrate and to improve the reliability of the electrical characteristics of the liquid crystal display element. The barrier films 101 and 201 are not particularly limited as long as they have high transparency and low water vapor permeability. In general, a thin film formed by vapor deposition, sputtering, or a chemical vapor deposition method (CVD method) using an inorganic material such as silicon oxide can be used.
In the present invention, the same material or different materials may be used as the substrate a and the substrate b, and there is no particular limitation. The plastic substrate is preferable because it is suitable for a production method by a roll-to-roll method and is suitable for weight reduction and flexibility. In the present invention, a plastic substrate and a glass substrate may be combined for the purpose of imparting flatness and heat resistance.
In the examples described later, a composite material of glass cloth and curable resin is used as the material of the substrate a100 or the substrate b200, and silicon oxide is used as the material of the barrier films 101 and 201.
なおプラスチック基板を使用する際には、バリア膜(図1における101、201)を設けることが好ましい。バリア膜の機能は、プラスチック基板が有する透湿性を低下させ、液晶表示素子の電気特性の信頼性を向上することにある。バリア膜101、201としては、それぞれ、透明性が高く水蒸気透過性が小さいものであれば特に限定されない。一般的には酸化ケイ素などの無機材料を用いて、蒸着、スパッタリング、又はケミカルベーパーデポジション法(CVD法)によって形成した薄膜を使用できる。
本発明においては、前記基板a及び前記基板bとして互いに同素材を使用しても又は異素材を使用してもよく、特に限定はない。プラスチック基板は、ロールツウロール法による製造方法に適し、且つ軽量化やフレキシブル化に適しており好ましい。また本発明では、平坦性及び耐熱性付与を目的として、プラスチック基板とガラス基板とを組み合わせる場合がある。
なお後述の実施例においては、基板a100又は基板b200の材質としてガラス布と硬化性樹脂との複合材料を、バリア膜101及び201の材質として酸化ケイ素を使用している。 The material of the substrate a or the substrate b is not particularly limited as long as it is substantially transparent. For example, glass, ceramics, plastics, etc. can be used. Examples of plastic substrates include cellulose derivatives such as cellulose, triacetyl cellulose, diacetyl cellulose, polycycloolefin derivatives, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polypropylene, Polyolefins such as polyethylene, polycarbonate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyamide, polyimide, polyimide amide, polystyrene, polyacrylate, polymethyl methacrylate, polyether sulfone, polyarylate, and glass fiber -An inorganic-organic composite material such as epoxy resin, glass fiber-acrylic resin, or the like can be used.
When a plastic substrate is used, it is preferable to provide a barrier film (101 and 201 in FIG. 1). The function of the barrier film is to reduce the moisture permeability of the plastic substrate and to improve the reliability of the electrical characteristics of the liquid crystal display element. The
In the present invention, the same material or different materials may be used as the substrate a and the substrate b, and there is no particular limitation. The plastic substrate is preferable because it is suitable for a production method by a roll-to-roll method and is suitable for weight reduction and flexibility. In the present invention, a plastic substrate and a glass substrate may be combined for the purpose of imparting flatness and heat resistance.
In the examples described later, a composite material of glass cloth and curable resin is used as the material of the substrate a100 or the substrate b200, and silicon oxide is used as the material of the
背面基板では、バリア膜101を設けた基板a100上に、TFT層102及び画素電極103を設けている。これら層は通常のアレイ工程にて製造される。この上にパッシベーション膜104及び配向膜a105を設けて、背面基板が得られる。
パッシベーション膜104(無機保護膜ともいう)はTFT層を保護するための膜で、通常は窒化膜(SiNx)や酸化膜(SiOx)等を化学的気相成長(CVD)技術等により形成する。
また、配向膜a105は、液晶を配向させる機能を有する膜であり、通常ポリイミドのような高分子材料が用いられることが多い。配向膜を形成する塗布液(配向剤溶液)には、高分子材料と溶剤からなる配向剤溶液が通常使われる。配向膜はシール材との接着力を阻害する可能性があるため、封止領域内にパターン塗布する。塗布にはフレキソ印刷法のような印刷法、あるいはインクジェットのような液滴吐出法を用いる事ができる。塗布された配向剤溶液は仮乾燥により溶剤が蒸発した後、ベーキングにより架橋硬化され、高分子膜を得る。この後、配向機能を出すために、配向処理を行う。
配向処理には通常ラビング法が用いられる。前述のように形成された高分子膜上を、レーヨンのような繊維から成るラビング布を用いて一方向にこすることにより液晶配向能が生じる。
また、光配向法を用いることもある。光配向法は、光感受性を有する有機材料を含む膜上に偏光を照射することにより配向能を発生させる方法であり、ラビング法による基板の傷や埃の発生が生じない。光配向法における有機材料の例としては二色性染料を含有する材料がある。二色性染料としては、光二色性に起因するワイゲルト効果による分子の配向誘起もしくは異性化反応(例:アゾベンゼン基)、二量化反応(例:シンナモイル基)、光架橋反応(例:ベンゾフェノン基)、あるいは光分解反応(例:ポリイミド基)のような、液晶配向能の起源となる光反応を生じる基(以下、光配向性基と略す)を有する染料を用いることができる。光配向法を用いる場合、塗布された配向剤溶液は仮乾燥により溶剤が蒸発した後、任意の偏向を有する光(偏光)を照射することで、任意の方向に配向能を有する配向膜を得ることができる。 In the rear substrate, aTFT layer 102 and a pixel electrode 103 are provided on a substrate a100 provided with a barrier film 101. These layers are manufactured by a normal array process. A passivation film 104 and an alignment film a105 are provided thereon to obtain a back substrate.
A passivation film 104 (also referred to as an inorganic protective film) is a film for protecting the TFT layer. Usually, a nitride film (SiNx), an oxide film (SiOx), or the like is formed by a chemical vapor deposition (CVD) technique or the like.
The alignment film a105 is a film having a function of aligning liquid crystals, and a polymer material such as polyimide is usually used in many cases. As the coating liquid (alignment agent solution) for forming the alignment film, an alignment agent solution composed of a polymer material and a solvent is usually used. Since the alignment film may hinder the adhesive force with the sealing material, a pattern is applied in the sealing region. For the application, a printing method such as a flexographic printing method or a droplet discharge method such as an ink jet method can be used. The applied alignment agent solution is crosslinked and cured by baking after the solvent is evaporated by temporary drying to obtain a polymer film. Thereafter, an alignment process is performed to provide an alignment function.
A rubbing method is usually used for the alignment treatment. The polymer film formed as described above is rubbed in one direction using a rubbing cloth made of fibers such as rayon, thereby producing liquid crystal alignment ability.
Moreover, the photo-alignment method may be used. The photo-alignment method is a method of generating alignment ability by irradiating polarized light onto a film containing an organic material having photosensitivity, and does not cause damage to the substrate or dust due to the rubbing method. Examples of the organic material in the photo-alignment method include a material containing a dichroic dye. Dichroic dyes include molecular orientation induction or isomerization reaction (eg azobenzene group), dimerization reaction (eg cinnamoyl group), photocrosslinking reaction (eg benzophenone group) due to Weigert effect due to photodichroism. Alternatively, a dye having a group (hereinafter abbreviated as a photo-alignment group) that causes a photoreaction that causes liquid crystal alignment ability, such as a photodecomposition reaction (eg, polyimide group) can be used. When using the photo-alignment method, the applied alignment agent solution is irradiated with light (polarized light) having an arbitrary deflection after the solvent is evaporated by temporary drying, thereby obtaining an alignment film having an alignment ability in an arbitrary direction. be able to.
パッシベーション膜104(無機保護膜ともいう)はTFT層を保護するための膜で、通常は窒化膜(SiNx)や酸化膜(SiOx)等を化学的気相成長(CVD)技術等により形成する。
また、配向膜a105は、液晶を配向させる機能を有する膜であり、通常ポリイミドのような高分子材料が用いられることが多い。配向膜を形成する塗布液(配向剤溶液)には、高分子材料と溶剤からなる配向剤溶液が通常使われる。配向膜はシール材との接着力を阻害する可能性があるため、封止領域内にパターン塗布する。塗布にはフレキソ印刷法のような印刷法、あるいはインクジェットのような液滴吐出法を用いる事ができる。塗布された配向剤溶液は仮乾燥により溶剤が蒸発した後、ベーキングにより架橋硬化され、高分子膜を得る。この後、配向機能を出すために、配向処理を行う。
配向処理には通常ラビング法が用いられる。前述のように形成された高分子膜上を、レーヨンのような繊維から成るラビング布を用いて一方向にこすることにより液晶配向能が生じる。
また、光配向法を用いることもある。光配向法は、光感受性を有する有機材料を含む膜上に偏光を照射することにより配向能を発生させる方法であり、ラビング法による基板の傷や埃の発生が生じない。光配向法における有機材料の例としては二色性染料を含有する材料がある。二色性染料としては、光二色性に起因するワイゲルト効果による分子の配向誘起もしくは異性化反応(例:アゾベンゼン基)、二量化反応(例:シンナモイル基)、光架橋反応(例:ベンゾフェノン基)、あるいは光分解反応(例:ポリイミド基)のような、液晶配向能の起源となる光反応を生じる基(以下、光配向性基と略す)を有する染料を用いることができる。光配向法を用いる場合、塗布された配向剤溶液は仮乾燥により溶剤が蒸発した後、任意の偏向を有する光(偏光)を照射することで、任意の方向に配向能を有する配向膜を得ることができる。 In the rear substrate, a
A passivation film 104 (also referred to as an inorganic protective film) is a film for protecting the TFT layer. Usually, a nitride film (SiNx), an oxide film (SiOx), or the like is formed by a chemical vapor deposition (CVD) technique or the like.
The alignment film a105 is a film having a function of aligning liquid crystals, and a polymer material such as polyimide is usually used in many cases. As the coating liquid (alignment agent solution) for forming the alignment film, an alignment agent solution composed of a polymer material and a solvent is usually used. Since the alignment film may hinder the adhesive force with the sealing material, a pattern is applied in the sealing region. For the application, a printing method such as a flexographic printing method or a droplet discharge method such as an ink jet method can be used. The applied alignment agent solution is crosslinked and cured by baking after the solvent is evaporated by temporary drying to obtain a polymer film. Thereafter, an alignment process is performed to provide an alignment function.
A rubbing method is usually used for the alignment treatment. The polymer film formed as described above is rubbed in one direction using a rubbing cloth made of fibers such as rayon, thereby producing liquid crystal alignment ability.
Moreover, the photo-alignment method may be used. The photo-alignment method is a method of generating alignment ability by irradiating polarized light onto a film containing an organic material having photosensitivity, and does not cause damage to the substrate or dust due to the rubbing method. Examples of the organic material in the photo-alignment method include a material containing a dichroic dye. Dichroic dyes include molecular orientation induction or isomerization reaction (eg azobenzene group), dimerization reaction (eg cinnamoyl group), photocrosslinking reaction (eg benzophenone group) due to Weigert effect due to photodichroism. Alternatively, a dye having a group (hereinafter abbreviated as a photo-alignment group) that causes a photoreaction that causes liquid crystal alignment ability, such as a photodecomposition reaction (eg, polyimide group) can be used. When using the photo-alignment method, the applied alignment agent solution is irradiated with light (polarized light) having an arbitrary deflection after the solvent is evaporated by temporary drying, thereby obtaining an alignment film having an alignment ability in an arbitrary direction. be able to.
一方、前面基板は、バリア膜201を設けた基板b200上に、ブラックマトリックス202、カラーフィルタ203、透明電極204、及び配向膜b205を設けている。
ブラックマトリックス202は、例えば、顔料分散法にて作製する。具体的にはバリア膜201を設けた基板b200上に、ブラックマトリックス形成用に黒色の着色剤を均一分散させたカラーレジン液を塗布し、着色層を形成する。続いて、着色層をベーキングして硬化する。この上にフォトレジストを塗布し、これをプリベークする。プリベークしたフォトレジストを、所望の形状やパターンの穴を有するマスクパターンを通して露光した後に、現像を行って不要な箇所を削除することで、着色層をパターニングする。この後、パターニングされた着色層上のフォトレジスト層を剥離し、着色層をベーキングしてブラックマトリックス202が完成する。
あるいは、フォトレジスト型の顔料分散液を使用してもよい。この場合は、フォトレジスト型の顔料分散液を塗布し、プリベークしたのち、マスクパターンを通して露光した後に、現像を行って着色層をパターニングする。この後、着色層をベーキングしてブラックマトリックス202が完成する。 On the other hand, the front substrate is provided with ablack matrix 202, a color filter 203, a transparent electrode 204, and an alignment film b205 on a substrate b200 provided with a barrier film 201.
Theblack matrix 202 is produced by, for example, a pigment dispersion method. Specifically, a color resin solution in which a black colorant is uniformly dispersed for forming a black matrix is applied on a substrate b200 provided with a barrier film 201, thereby forming a colored layer. Subsequently, the colored layer is baked and cured. A photoresist is applied on this and prebaked. The pre-baked photoresist is exposed through a mask pattern having holes having a desired shape and pattern, and then developed to remove unnecessary portions, thereby patterning the colored layer. Thereafter, the photoresist layer on the patterned colored layer is peeled off, and the colored layer is baked to complete the black matrix 202.
Alternatively, a photoresist type pigment dispersion may be used. In this case, a photoresist-type pigment dispersion is applied, pre-baked, exposed through a mask pattern, and then developed to pattern the colored layer. Thereafter, the colored layer is baked to complete theblack matrix 202.
ブラックマトリックス202は、例えば、顔料分散法にて作製する。具体的にはバリア膜201を設けた基板b200上に、ブラックマトリックス形成用に黒色の着色剤を均一分散させたカラーレジン液を塗布し、着色層を形成する。続いて、着色層をベーキングして硬化する。この上にフォトレジストを塗布し、これをプリベークする。プリベークしたフォトレジストを、所望の形状やパターンの穴を有するマスクパターンを通して露光した後に、現像を行って不要な箇所を削除することで、着色層をパターニングする。この後、パターニングされた着色層上のフォトレジスト層を剥離し、着色層をベーキングしてブラックマトリックス202が完成する。
あるいは、フォトレジスト型の顔料分散液を使用してもよい。この場合は、フォトレジスト型の顔料分散液を塗布し、プリベークしたのち、マスクパターンを通して露光した後に、現像を行って着色層をパターニングする。この後、着色層をベーキングしてブラックマトリックス202が完成する。 On the other hand, the front substrate is provided with a
The
Alternatively, a photoresist type pigment dispersion may be used. In this case, a photoresist-type pigment dispersion is applied, pre-baked, exposed through a mask pattern, and then developed to pattern the colored layer. Thereafter, the colored layer is baked to complete the
カラーフィルタ203は、例えば、顔料分散法、電着法、印刷法あるいは染色法等にて作成する。顔料分散法を例にとると、以下のような工程で得ることができる。(例えば赤色の)顔料を均一分散させたカラーレジン液をバリア膜201を設けた基板b200上に塗布し、これをベーキング硬化する。この後、得られた硬化膜上にフォトレジストを更に塗布し、プリベークする。プリベークしたフォトレジストをマスクパターンを通して露光した後に現像を行い、パターニングする。この後パターニングされた前記硬化膜上のフォトレジスト層を剥離し、再度ベーキングすることで、(赤色の)カラーフィルタ203が完成する。作成する色順序に特に限定はない。同様にして、緑カラーフィルタ203、及び青カラーフィルタ203を形成できる。
The color filter 203 is created by, for example, a pigment dispersion method, an electrodeposition method, a printing method, or a staining method. Taking the pigment dispersion method as an example, it can be obtained by the following steps. A color resin liquid in which a pigment (for example, red) is uniformly dispersed is applied onto a substrate b200 provided with a barrier film 201, and this is baked and cured. Thereafter, a photoresist is further applied on the obtained cured film and prebaked. The pre-baked photoresist is exposed through a mask pattern and then developed and patterned. Thereafter, the patterned photoresist layer on the cured film is peeled off and baked again to complete the (red) color filter 203. There is no particular limitation on the color order to be created. Similarly, the green color filter 203 and the blue color filter 203 can be formed.
透明電極204は、前記カラーフィルタ203上に(必要に応じて前記カラーフィルタ203上に表面平坦化のためにオーバーコート層(不図示)を設けたその上に)設ける。透明電極204は透過率が高い方が好ましく、電気抵抗が小さいほうが好ましい。透明電極204としてはITOなどの酸化膜をスパッタリング法などによって形成する。
また、前記透明電極204を保護する目的で、透明電極204の上にパッシベーション膜を設ける場合もある。
配向膜b205の説明としては、前述の配向膜a105と同じ説明をすることができる。 Thetransparent electrode 204 is provided on the color filter 203 (if necessary, on an overcoat layer (not shown) provided on the color filter 203 for surface flattening). The transparent electrode 204 preferably has a high transmittance, and preferably has a low electrical resistance. As the transparent electrode 204, an oxide film such as ITO is formed by sputtering or the like.
In addition, a passivation film may be provided on thetransparent electrode 204 for the purpose of protecting the transparent electrode 204.
The description of the alignment film b205 can be the same as that of the alignment film a105 described above.
また、前記透明電極204を保護する目的で、透明電極204の上にパッシベーション膜を設ける場合もある。
配向膜b205の説明としては、前述の配向膜a105と同じ説明をすることができる。 The
In addition, a passivation film may be provided on the
The description of the alignment film b205 can be the same as that of the alignment film a105 described above.
以上本発明で使用する前記背面基板及び前記前面基板についての具体的態様を述べたが、前述したように本願においては前記具体的態様のみに限定されることはなく、所望される液晶表示素子に応じた態様の変更は自由である。例えば基板a及びbにガラスを使用した場合には、バリア膜101及び201は使用しなくても良い。
Although specific embodiments of the back substrate and the front substrate used in the present invention have been described above, the present invention is not limited to the specific embodiments as described above, and the liquid crystal display element is desired. The change of the aspect which respond | corresponds is free. For example, when glass is used for the substrates a and b, the barrier films 101 and 201 need not be used.
本発明の液晶素子は、前記互いに対向する背面基板と前面基板と、前記基板間に設けられたシール材と、前記シール材に囲まれた封止領域に封入された液晶とを備え、前記シール材は背面基板と前面基板に接しており、前記シール材が接する背面基板の内面及び前面基板の内面(基板面)の片方又は両方の位置には、突起が設けられていることを特徴とする。
前記シール材が基板面に接する位置は、通常基板の端に位置する。前記位置は特に限定されるものではないが、通常は基板の端から0.5mm~5mmの範囲の幅で設けることが多い。例えば、作成される液晶素子が四角い形状の場合、その形状の上下左右の端に、すなわち4辺に、0.5mm~5mmの幅内のシール材が設けられる。この位置に設ける突起は、その底面積が、シール材が基板と接している基板面(片面)の面積に対し、0.1%~16%の割合となるように設けられていることが好ましい。0.1%未満であると剥離防止作用が弱いおそれがあり、また16%を超えるとシール材塗布量が少なくなりすぎるおそれがある。
具体的には、シール材が片方の基板と接している基板面の面積1mm2に対して、突起1つあたりの設置面積が100μm2~1600μm2である突起が、おおよそ10~100個設けられていると、基板面に対して平行方向にかかる応力に対してより強度が増し好ましい。ここで突起の設置面積とは、突起が設置された基板面(シール材領域)における、突起設置面(突起底面)の面積である。
突起が設けられる基板の基板面は、背面基板、及び前面基板のどちら側でもよい。しかしながら、背面基板の場合、TFT等を設ける製造工程に突起を設ける工程を組み込むことが工程複雑化の原因になるため、比較的製造工程が単純化することが可能な前面基板に設けることが多い。
また、突起が直接設けられる面は、図1の具体的態様においては、前面基板の透明電極204上になる。あるいは透明電極204にパッシベーション膜を設ける場合(不図示)には、突起304の底面が直接触れる面はパッシベーション膜104の面となる。
また突起の高さは、セルギャップ(基板同士の間隔)を超えない高さであることが好ましい。 The liquid crystal element of the present invention includes the back substrate and the front substrate facing each other, a sealing material provided between the substrates, and a liquid crystal sealed in a sealing region surrounded by the sealing material, The material is in contact with the rear substrate and the front substrate, and a protrusion is provided at one or both of the inner surface of the rear substrate and the inner surface (substrate surface) of the front substrate where the sealing material contacts. .
The position where the sealing material contacts the substrate surface is usually located at the end of the substrate. The position is not particularly limited, but is usually provided with a width in the range of 0.5 mm to 5 mm from the edge of the substrate. For example, when the liquid crystal element to be formed has a square shape, sealing materials having a width of 0.5 mm to 5 mm are provided on the upper, lower, left and right ends of the shape, that is, on the four sides. The protrusion provided at this position is preferably provided such that the bottom area thereof is in a ratio of 0.1% to 16% with respect to the area of the substrate surface (one surface) where the sealing material is in contact with the substrate. . If it is less than 0.1%, the anti-peeling action may be weak, and if it exceeds 16%, the coating amount of the sealing material may be too small.
Specifically, with respect to an area 1 mm 2 of the substrate surface on which the sealing member is in contact with one substrate, protrusions footprint per one projection is 100μm 2 ~ 1600μm 2 is provided approximately 10-100 It is preferable that the strength is increased with respect to the stress applied in the direction parallel to the substrate surface. Here, the projection installation area is the area of the projection installation surface (projection bottom surface) on the substrate surface (sealing material region) on which the projection is installed.
The substrate surface of the substrate on which the protrusion is provided may be on either the back substrate or the front substrate. However, in the case of the back substrate, since the process of providing the protrusion in the manufacturing process of providing the TFT or the like causes the process to be complicated, the back substrate is often provided on the front substrate capable of relatively simplifying the manufacturing process. .
Further, the surface on which the protrusion is directly provided is on thetransparent electrode 204 of the front substrate in the specific embodiment of FIG. Alternatively, when a passivation film is provided on the transparent electrode 204 (not shown), the surface directly touched by the bottom surface of the protrusion 304 is the surface of the passivation film 104.
The height of the protrusion is preferably a height that does not exceed the cell gap (interval between the substrates).
前記シール材が基板面に接する位置は、通常基板の端に位置する。前記位置は特に限定されるものではないが、通常は基板の端から0.5mm~5mmの範囲の幅で設けることが多い。例えば、作成される液晶素子が四角い形状の場合、その形状の上下左右の端に、すなわち4辺に、0.5mm~5mmの幅内のシール材が設けられる。この位置に設ける突起は、その底面積が、シール材が基板と接している基板面(片面)の面積に対し、0.1%~16%の割合となるように設けられていることが好ましい。0.1%未満であると剥離防止作用が弱いおそれがあり、また16%を超えるとシール材塗布量が少なくなりすぎるおそれがある。
具体的には、シール材が片方の基板と接している基板面の面積1mm2に対して、突起1つあたりの設置面積が100μm2~1600μm2である突起が、おおよそ10~100個設けられていると、基板面に対して平行方向にかかる応力に対してより強度が増し好ましい。ここで突起の設置面積とは、突起が設置された基板面(シール材領域)における、突起設置面(突起底面)の面積である。
突起が設けられる基板の基板面は、背面基板、及び前面基板のどちら側でもよい。しかしながら、背面基板の場合、TFT等を設ける製造工程に突起を設ける工程を組み込むことが工程複雑化の原因になるため、比較的製造工程が単純化することが可能な前面基板に設けることが多い。
また、突起が直接設けられる面は、図1の具体的態様においては、前面基板の透明電極204上になる。あるいは透明電極204にパッシベーション膜を設ける場合(不図示)には、突起304の底面が直接触れる面はパッシベーション膜104の面となる。
また突起の高さは、セルギャップ(基板同士の間隔)を超えない高さであることが好ましい。 The liquid crystal element of the present invention includes the back substrate and the front substrate facing each other, a sealing material provided between the substrates, and a liquid crystal sealed in a sealing region surrounded by the sealing material, The material is in contact with the rear substrate and the front substrate, and a protrusion is provided at one or both of the inner surface of the rear substrate and the inner surface (substrate surface) of the front substrate where the sealing material contacts. .
The position where the sealing material contacts the substrate surface is usually located at the end of the substrate. The position is not particularly limited, but is usually provided with a width in the range of 0.5 mm to 5 mm from the edge of the substrate. For example, when the liquid crystal element to be formed has a square shape, sealing materials having a width of 0.5 mm to 5 mm are provided on the upper, lower, left and right ends of the shape, that is, on the four sides. The protrusion provided at this position is preferably provided such that the bottom area thereof is in a ratio of 0.1% to 16% with respect to the area of the substrate surface (one surface) where the sealing material is in contact with the substrate. . If it is less than 0.1%, the anti-peeling action may be weak, and if it exceeds 16%, the coating amount of the sealing material may be too small.
Specifically, with respect to an area 1 mm 2 of the substrate surface on which the sealing member is in contact with one substrate, protrusions footprint per one projection is 100μm 2 ~ 1600μm 2 is provided approximately 10-100 It is preferable that the strength is increased with respect to the stress applied in the direction parallel to the substrate surface. Here, the projection installation area is the area of the projection installation surface (projection bottom surface) on the substrate surface (sealing material region) on which the projection is installed.
The substrate surface of the substrate on which the protrusion is provided may be on either the back substrate or the front substrate. However, in the case of the back substrate, since the process of providing the protrusion in the manufacturing process of providing the TFT or the like causes the process to be complicated, the back substrate is often provided on the front substrate capable of relatively simplifying the manufacturing process. .
Further, the surface on which the protrusion is directly provided is on the
The height of the protrusion is preferably a height that does not exceed the cell gap (interval between the substrates).
前記突起の形状は特に限定されず任意に選択できる。基板に対する突起の水平断面は、円形、四角形などの多角形など様々な形状にすることができ。工程時のミスアラインマージンを考慮して、水平断面を円形または正多角形にすることが特に好ましい。また前記突起形状は、円錐台または角錐台であることが好ましい。突起の配置位置も任意で選択できる。
The shape of the protrusion is not particularly limited and can be arbitrarily selected. The horizontal cross section of the protrusion relative to the substrate can be various shapes such as a circle, a polygon such as a quadrangle. In consideration of a misalignment margin during the process, it is particularly preferable that the horizontal cross section is a circle or a regular polygon. The protrusion shape is preferably a truncated cone or a truncated pyramid. Arrangement positions of the protrusions can be arbitrarily selected.
前記突起の材質は、シール材に使用できる材料、及びシール材形成に使用できる有機溶剤、あるいは液晶に溶解しない材質などであれば特に限定されない。加工及び軽量化の面からは、合成樹脂(硬化性樹脂)であることが好ましい。具体例を挙げれば、(メタ)アクリル系重合体、及びウレタン系重合体などが挙げられる。
前記突起は任意の方法で形成できるが、好ましい例を挙げれば、フォトリソグラフィによる方法や液滴吐出法により、第一の基板(前面基板)上のシール材が接するべき部分に設けることが可能である。このような理由から、フォトリソグラフィによる方法や液滴吐出法に適した、光硬化性樹脂を突起形成に使用することが好ましい。光硬化性樹脂の具体例を挙げれば、不飽和基を有する、(メタ)アクリル系モノマー、ウレタン系モノマー、ポリオールモノマーなどが挙げられる。 The material of the protrusion is not particularly limited as long as it is a material that can be used for the sealing material, an organic solvent that can be used for forming the sealing material, or a material that does not dissolve in the liquid crystal. From the viewpoint of processing and weight reduction, a synthetic resin (curable resin) is preferable. Specific examples include (meth) acrylic polymers and urethane polymers.
The protrusions can be formed by any method. To give a preferable example, the protrusions can be provided on the portion where the sealing material on the first substrate (front substrate) should come into contact by a photolithography method or a droplet discharge method. is there. For this reason, it is preferable to use a photocurable resin suitable for the photolithography method or the droplet discharge method for forming the protrusions. If the specific example of a photocurable resin is given, the (meth) acrylic-type monomer which has an unsaturated group, a urethane-type monomer, a polyol monomer etc. will be mentioned.
前記突起は任意の方法で形成できるが、好ましい例を挙げれば、フォトリソグラフィによる方法や液滴吐出法により、第一の基板(前面基板)上のシール材が接するべき部分に設けることが可能である。このような理由から、フォトリソグラフィによる方法や液滴吐出法に適した、光硬化性樹脂を突起形成に使用することが好ましい。光硬化性樹脂の具体例を挙げれば、不飽和基を有する、(メタ)アクリル系モノマー、ウレタン系モノマー、ポリオールモノマーなどが挙げられる。 The material of the protrusion is not particularly limited as long as it is a material that can be used for the sealing material, an organic solvent that can be used for forming the sealing material, or a material that does not dissolve in the liquid crystal. From the viewpoint of processing and weight reduction, a synthetic resin (curable resin) is preferable. Specific examples include (meth) acrylic polymers and urethane polymers.
The protrusions can be formed by any method. To give a preferable example, the protrusions can be provided on the portion where the sealing material on the first substrate (front substrate) should come into contact by a photolithography method or a droplet discharge method. is there. For this reason, it is preferable to use a photocurable resin suitable for the photolithography method or the droplet discharge method for forming the protrusions. If the specific example of a photocurable resin is given, the (meth) acrylic-type monomer which has an unsaturated group, a urethane-type monomer, a polyol monomer etc. will be mentioned.
前述の通り、前記突起の高さはセルギャップを超えない高さであることが好ましい。スペーサは、基板同士の間隔を一定に保つ働きを有する。このことから、突起は、スペーサと同等、あるいはそれ以下の高さであればよい。このような理由から、また作業の簡易化の点から、突起は、スペーサを設ける際にスペーサと一緒に基板上の所定の位置に作成することが好ましい。
As described above, the height of the protrusion is preferably a height that does not exceed the cell gap. The spacer has a function of keeping the distance between the substrates constant. For this reason, the height of the protrusion may be equal to or lower than that of the spacer. For these reasons and from the viewpoint of simplification of work, it is preferable that the protrusion is formed at a predetermined position on the substrate together with the spacer when the spacer is provided.
例えば、前面基板上にスペーサをフォトリソグラフィ法によって得る場合、同時に前記前面基板のシール材が接する面に前記突起を設けることができる。
スペーサと突起を同時に作成する具体例としては、以下の工程が挙げられる。まず最初に、前面基板の透明電極204上に、スペーサ形成用の(着色剤を含まない)レジン液を塗布する。続いて、このレジン層をベーキングして硬化する。この上にフォトレジストを塗布し、これをプリベークする。プリベークしたフォトレジストの層を所定のマスクパターンを通して露光した後に、現像を行って、必要のない個所のレジン層とフォトレジスト層の組み合わせ部分を除去して、レジン層をパターニングする。この後、パターニングされたレジン層上に残されたフォトレジスト層を剥離し、レジン層をベーキングしてスペーサが完成する。
スペーサの形成位置はマスクパターンの選択によって所望の位置に決めることができる。従って、必要に応じて、液晶表示素子の封止領域内と封止領域外(シール材塗布部分)との両方に同時にスペーサを作成することができる。本発明では、封止領域外に形成されたスペーサを突起として使用することができる。また封止領域内に形成されるスペーサは封止領域の品質が低下することがないように、ブラックマトリックスの上に位置するように形成させることが好ましい。このようにフォトリソグラフィ法によって作製されたスペーサのことを、本発明では、カラムスペーサ又はフォトスペーサと呼ぶことがある。なお液滴吐出法とは粘着剤を溶かした溶剤中に球状のスペーサを分散させ、インクジェットにより所定の位置に配置する手法であり、散布型のスペーサと同じ球形のスペーサが形成される。 For example, when the spacer is obtained on the front substrate by photolithography, the protrusion can be provided on the surface of the front substrate that contacts the sealing material at the same time.
The following processes are mentioned as a specific example which produces a spacer and protrusion simultaneously. First, a resin solution for spacer formation (not containing a colorant) is applied on thetransparent electrode 204 of the front substrate. Subsequently, the resin layer is baked and cured. A photoresist is applied on this and prebaked. After the prebaked photoresist layer is exposed through a predetermined mask pattern, development is performed to remove unnecessary portions of the resin layer and the photoresist layer, and the resin layer is patterned. Thereafter, the photoresist layer left on the patterned resin layer is peeled off, and the resin layer is baked to complete the spacer.
The formation position of the spacer can be determined at a desired position by selecting a mask pattern. Therefore, if necessary, spacers can be simultaneously formed in both the sealing region and the outside of the sealing region (sealing material application portion) of the liquid crystal display element. In the present invention, a spacer formed outside the sealing region can be used as the protrusion. The spacer formed in the sealing region is preferably formed so as to be positioned on the black matrix so that the quality of the sealing region does not deteriorate. In the present invention, a spacer manufactured by a photolithography method in this way may be referred to as a column spacer or a photo spacer. Note that the droplet discharge method is a method in which spherical spacers are dispersed in a solvent in which an adhesive is dissolved, and are arranged at predetermined positions by inkjet, and the same spherical spacers as the scattering spacers are formed.
スペーサと突起を同時に作成する具体例としては、以下の工程が挙げられる。まず最初に、前面基板の透明電極204上に、スペーサ形成用の(着色剤を含まない)レジン液を塗布する。続いて、このレジン層をベーキングして硬化する。この上にフォトレジストを塗布し、これをプリベークする。プリベークしたフォトレジストの層を所定のマスクパターンを通して露光した後に、現像を行って、必要のない個所のレジン層とフォトレジスト層の組み合わせ部分を除去して、レジン層をパターニングする。この後、パターニングされたレジン層上に残されたフォトレジスト層を剥離し、レジン層をベーキングしてスペーサが完成する。
スペーサの形成位置はマスクパターンの選択によって所望の位置に決めることができる。従って、必要に応じて、液晶表示素子の封止領域内と封止領域外(シール材塗布部分)との両方に同時にスペーサを作成することができる。本発明では、封止領域外に形成されたスペーサを突起として使用することができる。また封止領域内に形成されるスペーサは封止領域の品質が低下することがないように、ブラックマトリックスの上に位置するように形成させることが好ましい。このようにフォトリソグラフィ法によって作製されたスペーサのことを、本発明では、カラムスペーサ又はフォトスペーサと呼ぶことがある。なお液滴吐出法とは粘着剤を溶かした溶剤中に球状のスペーサを分散させ、インクジェットにより所定の位置に配置する手法であり、散布型のスペーサと同じ球形のスペーサが形成される。 For example, when the spacer is obtained on the front substrate by photolithography, the protrusion can be provided on the surface of the front substrate that contacts the sealing material at the same time.
The following processes are mentioned as a specific example which produces a spacer and protrusion simultaneously. First, a resin solution for spacer formation (not containing a colorant) is applied on the
The formation position of the spacer can be determined at a desired position by selecting a mask pattern. Therefore, if necessary, spacers can be simultaneously formed in both the sealing region and the outside of the sealing region (sealing material application portion) of the liquid crystal display element. In the present invention, a spacer formed outside the sealing region can be used as the protrusion. The spacer formed in the sealing region is preferably formed so as to be positioned on the black matrix so that the quality of the sealing region does not deteriorate. In the present invention, a spacer manufactured by a photolithography method in this way may be referred to as a column spacer or a photo spacer. Note that the droplet discharge method is a method in which spherical spacers are dispersed in a solvent in which an adhesive is dissolved, and are arranged at predetermined positions by inkjet, and the same spherical spacers as the scattering spacers are formed.
また、例えば、前記前面基板上にスペーサを液滴吐出法によって得る場合においても、同時に前記前面基板のシール材が接する面の所定の位置に前記突起を設けることができる。
具体的には、図1の具体的態様においては、前記前面基板の透明電極204上に、所望の大きさを有するギャップ材とバインダー樹脂と溶剤からなる液滴吐出用スペーサ分散液を吐出し、ギャップ材を定点配置する。溶剤を乾燥後、バインダー樹脂の硬化温度以上に加熱して樹脂を硬化すると、バインダー樹脂と球形や繊維状などの所望の形状のギャップ材とを含むスペーサが完成する。
スペーサの形成位置は液滴吐出位置によって所望に決めることができる。従って、液晶表示素子の封止領域内と封止領域外(シール材塗布部分)との両方にスペーサを同時に作成することができる。前述したように、封止領域外に形成されたスペーサは突起として使用することができる。また封止領域内のスペーサは封止領域の品質が低下することがないように、ブラックマトリックスの上に位置するように形成させることが好ましい。 Further, for example, even when a spacer is obtained on the front substrate by a droplet discharge method, the protrusion can be provided at a predetermined position on the surface of the front substrate that contacts the sealing material.
Specifically, in the specific mode of FIG. 1, a droplet dispersion spacer liquid dispersion composed of a gap material, a binder resin, and a solvent having a desired size is discharged onto thetransparent electrode 204 of the front substrate, Place the gap material at a fixed point. When the solvent is dried and then heated to a temperature equal to or higher than the curing temperature of the binder resin to cure the resin, a spacer including the binder resin and a gap material having a desired shape such as a sphere or fiber is completed.
The formation position of the spacer can be determined as desired according to the droplet discharge position. Therefore, spacers can be simultaneously formed both in the sealing region of the liquid crystal display element and outside the sealing region (sealing material application portion). As described above, the spacer formed outside the sealing region can be used as a protrusion. The spacer in the sealing region is preferably formed so as to be positioned on the black matrix so that the quality of the sealing region does not deteriorate.
具体的には、図1の具体的態様においては、前記前面基板の透明電極204上に、所望の大きさを有するギャップ材とバインダー樹脂と溶剤からなる液滴吐出用スペーサ分散液を吐出し、ギャップ材を定点配置する。溶剤を乾燥後、バインダー樹脂の硬化温度以上に加熱して樹脂を硬化すると、バインダー樹脂と球形や繊維状などの所望の形状のギャップ材とを含むスペーサが完成する。
スペーサの形成位置は液滴吐出位置によって所望に決めることができる。従って、液晶表示素子の封止領域内と封止領域外(シール材塗布部分)との両方にスペーサを同時に作成することができる。前述したように、封止領域外に形成されたスペーサは突起として使用することができる。また封止領域内のスペーサは封止領域の品質が低下することがないように、ブラックマトリックスの上に位置するように形成させることが好ましい。 Further, for example, even when a spacer is obtained on the front substrate by a droplet discharge method, the protrusion can be provided at a predetermined position on the surface of the front substrate that contacts the sealing material.
Specifically, in the specific mode of FIG. 1, a droplet dispersion spacer liquid dispersion composed of a gap material, a binder resin, and a solvent having a desired size is discharged onto the
The formation position of the spacer can be determined as desired according to the droplet discharge position. Therefore, spacers can be simultaneously formed both in the sealing region of the liquid crystal display element and outside the sealing region (sealing material application portion). As described above, the spacer formed outside the sealing region can be used as a protrusion. The spacer in the sealing region is preferably formed so as to be positioned on the black matrix so that the quality of the sealing region does not deteriorate.
前記スペーサの材質は任意で選択できる。例えばPVA-スチルバゾ感光性樹脂などのネガ型水溶性樹脂や多官能アクリル系モノマー、アクリル酸共重合体、及びトリアゾール系開始剤などを含む混合物などがスペーサ形成に使用される。あるいはポリイミド樹脂に着色剤を分散させたカラーレジンを使う方法もある。
本発明においては特に限定はなく、使用する液晶やシール材との相性に従い公知の材質で、スペーサを得ることができる。
従って、前記突起をスペーサと一緒に基板上に設ける場合は、前記突起も前記スペーサと同等の材質で形成される。 The material of the spacer can be arbitrarily selected. For example, a negative water-soluble resin such as a PVA-stilbazo photosensitive resin, a mixture containing a polyfunctional acrylic monomer, an acrylic acid copolymer, a triazole-based initiator, or the like is used for spacer formation. Alternatively, there is a method using a color resin in which a colorant is dispersed in a polyimide resin.
In the present invention, there is no particular limitation, and the spacer can be obtained from a known material according to the compatibility with the liquid crystal or the sealing material to be used.
Therefore, when the protrusion is provided on the substrate together with the spacer, the protrusion is also formed of the same material as the spacer.
本発明においては特に限定はなく、使用する液晶やシール材との相性に従い公知の材質で、スペーサを得ることができる。
従って、前記突起をスペーサと一緒に基板上に設ける場合は、前記突起も前記スペーサと同等の材質で形成される。 The material of the spacer can be arbitrarily selected. For example, a negative water-soluble resin such as a PVA-stilbazo photosensitive resin, a mixture containing a polyfunctional acrylic monomer, an acrylic acid copolymer, a triazole-based initiator, or the like is used for spacer formation. Alternatively, there is a method using a color resin in which a colorant is dispersed in a polyimide resin.
In the present invention, there is no particular limitation, and the spacer can be obtained from a known material according to the compatibility with the liquid crystal or the sealing material to be used.
Therefore, when the protrusion is provided on the substrate together with the spacer, the protrusion is also formed of the same material as the spacer.
このようにして突起をスペーサと同時に基板上に設けた場合、前面基板面上の封止領域となる部分に突起物(スペーサ)を、及び封止領域外となる部分に突起を設けた後、前面基板面の、シール材が接するべき部分の面であって突起が設けられた部分(封止領域外)に、シール材(図1における301)を塗布する。
シール材の材質は特に限定はない。例えば、エポキシ系樹脂やアクリル系樹脂等の、光硬化性、熱硬化性、又は光熱併用硬化性の樹脂に、重合開始剤を添加した硬化性樹脂組成物などが使用される。また、透湿性や弾性率、及び粘度などを制御するために、無機物や有機物よりなるフィラー類を添加することがある。これらフィラー類の形状は特に限定されず、球形、繊維状、及び無定形などがある。さらに、セルギャップを良好に制御するために、単分散径を有する球形や繊維状のギャップ材を混合したり、基板との接着力をより強化するために、基板上突起と絡まりやすい繊維状物質を混合しても良い。このとき使用する繊維状物質の直径はセルギャップの1/5~1/10以下程度が望ましく、繊維状物質の長さはシール塗布幅よりも短いことが望ましい。
また、繊維状物質の材質は所定の形状が得られるものであれば特に限定されず、セルロース、ポリアミド、又はポリエステルなどの合成繊維や、ガラス、又は炭素などの無機材料を適宜選ぶことが可能である。
シール材を塗布する方法は任意で選択できる。例えば印刷法やディスペンス法があるが、シール材の使用量が少ないディスペンス法が望ましい。シール材の塗布位置は封止領域に悪影響を及ぼさないように、通常封止領域外のブラックマトリックス上とする。次工程において使用される液晶滴下領域を形成するため(液晶が漏れないように)、シール材塗布形状は閉ループ形状とする。閉ループ形状の具体的形状、閉ループの配置などは任意で設定できる。 When the protrusions are provided on the substrate simultaneously with the spacers in this way, after providing the protrusions (spacers) in the portions that become the sealing regions on the front substrate surface and the protrusions in the portions that are outside the sealing regions, A sealing material (301 in FIG. 1) is applied to the portion of the front substrate surface that is in contact with the sealing material and has a projection (outside the sealing region).
The material for the sealing material is not particularly limited. For example, a curable resin composition in which a polymerization initiator is added to a photocurable, thermosetting, or photothermal combination curable resin such as an epoxy resin or an acrylic resin is used. In order to control moisture permeability, elastic modulus, viscosity, and the like, fillers made of inorganic or organic substances may be added. The shape of these fillers is not particularly limited, and includes a spherical shape, a fiber shape, and an amorphous shape. Furthermore, in order to control the cell gap satisfactorily, a spherical or fibrous gap material having a monodisperse diameter is mixed, or a fibrous material that tends to get entangled with the protrusions on the substrate in order to further strengthen the adhesion to the substrate. May be mixed. The diameter of the fibrous material used at this time is desirably about 1/5 to 1/10 or less of the cell gap, and the length of the fibrous material is desirably shorter than the seal coating width.
The material of the fibrous substance is not particularly limited as long as a predetermined shape can be obtained, and synthetic fibers such as cellulose, polyamide, or polyester, and inorganic materials such as glass or carbon can be appropriately selected. is there.
The method for applying the sealing material can be arbitrarily selected. For example, there are a printing method and a dispensing method, but a dispensing method with a small amount of sealant used is desirable. The application position of the sealing material is usually on the black matrix outside the sealing area so as not to adversely affect the sealing area. In order to form a liquid crystal dropping region used in the next step (so that the liquid crystal does not leak), the sealing material application shape is a closed loop shape. The specific shape of the closed loop shape, the arrangement of the closed loop, and the like can be arbitrarily set.
シール材の材質は特に限定はない。例えば、エポキシ系樹脂やアクリル系樹脂等の、光硬化性、熱硬化性、又は光熱併用硬化性の樹脂に、重合開始剤を添加した硬化性樹脂組成物などが使用される。また、透湿性や弾性率、及び粘度などを制御するために、無機物や有機物よりなるフィラー類を添加することがある。これらフィラー類の形状は特に限定されず、球形、繊維状、及び無定形などがある。さらに、セルギャップを良好に制御するために、単分散径を有する球形や繊維状のギャップ材を混合したり、基板との接着力をより強化するために、基板上突起と絡まりやすい繊維状物質を混合しても良い。このとき使用する繊維状物質の直径はセルギャップの1/5~1/10以下程度が望ましく、繊維状物質の長さはシール塗布幅よりも短いことが望ましい。
また、繊維状物質の材質は所定の形状が得られるものであれば特に限定されず、セルロース、ポリアミド、又はポリエステルなどの合成繊維や、ガラス、又は炭素などの無機材料を適宜選ぶことが可能である。
シール材を塗布する方法は任意で選択できる。例えば印刷法やディスペンス法があるが、シール材の使用量が少ないディスペンス法が望ましい。シール材の塗布位置は封止領域に悪影響を及ぼさないように、通常封止領域外のブラックマトリックス上とする。次工程において使用される液晶滴下領域を形成するため(液晶が漏れないように)、シール材塗布形状は閉ループ形状とする。閉ループ形状の具体的形状、閉ループの配置などは任意で設定できる。 When the protrusions are provided on the substrate simultaneously with the spacers in this way, after providing the protrusions (spacers) in the portions that become the sealing regions on the front substrate surface and the protrusions in the portions that are outside the sealing regions, A sealing material (301 in FIG. 1) is applied to the portion of the front substrate surface that is in contact with the sealing material and has a projection (outside the sealing region).
The material for the sealing material is not particularly limited. For example, a curable resin composition in which a polymerization initiator is added to a photocurable, thermosetting, or photothermal combination curable resin such as an epoxy resin or an acrylic resin is used. In order to control moisture permeability, elastic modulus, viscosity, and the like, fillers made of inorganic or organic substances may be added. The shape of these fillers is not particularly limited, and includes a spherical shape, a fiber shape, and an amorphous shape. Furthermore, in order to control the cell gap satisfactorily, a spherical or fibrous gap material having a monodisperse diameter is mixed, or a fibrous material that tends to get entangled with the protrusions on the substrate in order to further strengthen the adhesion to the substrate. May be mixed. The diameter of the fibrous material used at this time is desirably about 1/5 to 1/10 or less of the cell gap, and the length of the fibrous material is desirably shorter than the seal coating width.
The material of the fibrous substance is not particularly limited as long as a predetermined shape can be obtained, and synthetic fibers such as cellulose, polyamide, or polyester, and inorganic materials such as glass or carbon can be appropriately selected. is there.
The method for applying the sealing material can be arbitrarily selected. For example, there are a printing method and a dispensing method, but a dispensing method with a small amount of sealant used is desirable. The application position of the sealing material is usually on the black matrix outside the sealing area so as not to adversely affect the sealing area. In order to form a liquid crystal dropping region used in the next step (so that the liquid crystal does not leak), the sealing material application shape is a closed loop shape. The specific shape of the closed loop shape, the arrangement of the closed loop, and the like can be arbitrarily set.
前記シール材を塗布して形成された、前面基板の閉ループ形状の内側(封止領域)に、液晶を滴下する。滴下は任意の方法で行なわれるが、通常はディスペンサーを使用する。滴下する液晶量は、液晶セル容積と一致させるため、スペーサ(カラムスペーサ)の高さとシールを塗布した閉ループ形状の内側(封止領域)の面積とを掛け合わせた体積と同量を基本とする。しかし、セル貼り合わせ工程における液晶漏れや表示特性の最適化のために、滴下する液晶量を適宜調整したり、液晶滴下位置を分散させることもある。
The liquid crystal is dropped on the inside (sealing region) of the closed loop shape of the front substrate formed by applying the sealing material. Although dripping is performed by arbitrary methods, a dispenser is usually used. The amount of liquid crystal to be dropped is basically the same as the volume obtained by multiplying the height of the spacer (column spacer) and the area of the closed loop shape (sealing region) coated with the seal in order to match the liquid crystal cell volume. . However, in order to optimize liquid crystal leakage and display characteristics in the cell bonding step, the amount of liquid crystal to be dropped may be appropriately adjusted or the liquid crystal dropping position may be dispersed.
次に、前記シール材を塗布し液晶を滴下した前面基板に、背面基板を貼り合わせる。具体的には、静電チャックのような基板を吸着させる機構を有するステージに前記前面基板と前記背面基板とを吸着させ、前面基板の配向膜bと背面基板の配向膜aとが向きあい、かつシール材ともう一方の基板(背面基板)が接しない位置(距離)を保つように配置する。この状態で系内を減圧する。減圧終了後、前面基板と背面基板の互いの貼り合せ位置を確認しながら両基板の位置を調整する(アライメント操作)。貼り合せ位置の調整が終了したら、貼り合せが正しく行なわれるように、前面基板上のシール材と背面基板とが接する位置まで2つの基板を接近させる。この状態で系内に不活性ガスを充填させ、徐々に減圧を開放しながら常圧に戻す。このとき、大気圧により前面基板と背面基板が貼り合わされ、スペーサ(カラムスペーサ)の高さ位置でセルギャップが形成される。この状態でシール材に紫外線を照射してシール材を硬化することによって液晶セルを形成できる。この後、場合によっては加熱工程を加え、シール材硬化を促進する。シール材の接着力強化や電気特性信頼性の向上のために、加熱工程を加えることが多い。
Next, the back substrate is bonded to the front substrate on which the sealing material is applied and the liquid crystal is dropped. Specifically, the front substrate and the back substrate are adsorbed on a stage having a mechanism for adsorbing a substrate such as an electrostatic chuck, and the alignment film b on the front substrate and the alignment film a on the back substrate face each other. And it arrange | positions so that the position (distance) which a sealing material and another board | substrate (back substrate) may not contact may be maintained. In this state, the system is depressurized. After completion of the decompression, the positions of both substrates are adjusted while confirming the bonding position of the front substrate and the rear substrate (alignment operation). When the adjustment of the bonding position is completed, the two substrates are brought close to a position where the sealing material on the front substrate and the rear substrate are in contact with each other so that the bonding is correctly performed. In this state, the system is filled with an inert gas, and the pressure is gradually returned to normal pressure while releasing the reduced pressure. At this time, the front substrate and the rear substrate are bonded together by atmospheric pressure, and a cell gap is formed at the height position of the spacer (column spacer). In this state, a liquid crystal cell can be formed by irradiating the sealing material with ultraviolet rays and curing the sealing material. After this, a heating step is added depending on the case to accelerate the sealing material curing. A heating process is often added to enhance the adhesive strength of the sealing material and improve the reliability of electrical characteristics.
次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(基板(1)の形成)
多官能アクリレート樹脂をガラス繊維に含浸した後に紫外線硬化装置により連続的に硬化し、樹脂60重量%、ガラス繊維40重量%、幅30cm、長さ100m、厚さ100μmの、樹脂製基材を得た。この樹脂製基材の30℃から150℃における線膨張係数は、14ppmであった。この樹脂製基材のガラス転移温度をtanδmaxで評価したところ300℃以上であった。またこの樹脂製基材の全光線透過率は90%であった。なお、線膨張係数はTMA(Thermal Mechanical Analyzer)を用いて30~150℃の範囲を測定することにより得られた値である。ガラス転移温度はDMA(Dynamic Mechanical Analyzer)を用いて測定した。
また全光線透過率はJIS K7361-1(プラスチック-透明材料の全光透過率の試験方法)に従って測定した。 (Formation of substrate (1))
After impregnating the glass fiber with the polyfunctional acrylate resin, it is continuously cured by an ultraviolet curing device to obtain a resin base material having a resin weight of 60%, glass fiber of 40%, width of 30 cm, length of 100 m, and thickness of 100 μm. It was. The linear expansion coefficient of this resin base material from 30 ° C. to 150 ° C. was 14 ppm. When the glass transition temperature of this resin substrate was evaluated by tan δmax, it was 300 ° C. or higher. The total light transmittance of this resinous substrate was 90%. The linear expansion coefficient is a value obtained by measuring a range of 30 to 150 ° C. using TMA (Thermal Mechanical Analyzer). The glass transition temperature was measured using DMA (Dynamic Mechanical Analyzer).
The total light transmittance was measured according to JIS K7361-1 (Plastic—Testing method for the total light transmittance of transparent materials).
多官能アクリレート樹脂をガラス繊維に含浸した後に紫外線硬化装置により連続的に硬化し、樹脂60重量%、ガラス繊維40重量%、幅30cm、長さ100m、厚さ100μmの、樹脂製基材を得た。この樹脂製基材の30℃から150℃における線膨張係数は、14ppmであった。この樹脂製基材のガラス転移温度をtanδmaxで評価したところ300℃以上であった。またこの樹脂製基材の全光線透過率は90%であった。なお、線膨張係数はTMA(Thermal Mechanical Analyzer)を用いて30~150℃の範囲を測定することにより得られた値である。ガラス転移温度はDMA(Dynamic Mechanical Analyzer)を用いて測定した。
また全光線透過率はJIS K7361-1(プラスチック-透明材料の全光透過率の試験方法)に従って測定した。 (Formation of substrate (1))
After impregnating the glass fiber with the polyfunctional acrylate resin, it is continuously cured by an ultraviolet curing device to obtain a resin base material having a resin weight of 60%, glass fiber of 40%, width of 30 cm, length of 100 m, and thickness of 100 μm. It was. The linear expansion coefficient of this resin base material from 30 ° C. to 150 ° C. was 14 ppm. When the glass transition temperature of this resin substrate was evaluated by tan δmax, it was 300 ° C. or higher. The total light transmittance of this resinous substrate was 90%. The linear expansion coefficient is a value obtained by measuring a range of 30 to 150 ° C. using TMA (Thermal Mechanical Analyzer). The glass transition temperature was measured using DMA (Dynamic Mechanical Analyzer).
The total light transmittance was measured according to JIS K7361-1 (Plastic—Testing method for the total light transmittance of transparent materials).
この樹脂製基材を、スパッタロールコート装置に装填し、DCマグネトロンスパッタにより、酸素を反応性ガスに用いた反応性スパッタでSiをターゲットとして用いて、樹脂製基材上に膜厚60nmのSiOx(x=1.8,XPSによる)の成膜を行ってバリア層を形成し、基板(1)とした。
This resin base material is loaded into a sputter roll coater, and by using DC magnetron sputtering, reactive sputtering using oxygen as a reactive gas and Si as a target, SiOx having a film thickness of 60 nm is formed on the resin base material. A barrier layer was formed by forming a film (x = 1.8, based on XPS) to obtain a substrate (1).
(前面基板A、Bの作成)
(ブラックマトリックスの形成)
上記基板(1)のバリア層上に、下記の組成のブラックマトリックス形成用組成物を、ウェット状態で、厚み;10μmになるようダイコーターを用いて塗布し、乾燥後、温度;90℃の条件で2分間プリベークして、2μmの厚みのブラックマトリックス層を形成した。 (Preparation of front substrates A and B)
(Formation of black matrix)
On the barrier layer of the substrate (1), a black matrix forming composition having the following composition was applied in a wet state using a die coater so as to have a thickness of 10 μm, dried, and then at a temperature of 90 ° C. For 2 minutes to form a black matrix layer having a thickness of 2 μm.
(ブラックマトリックスの形成)
上記基板(1)のバリア層上に、下記の組成のブラックマトリックス形成用組成物を、ウェット状態で、厚み;10μmになるようダイコーターを用いて塗布し、乾燥後、温度;90℃の条件で2分間プリベークして、2μmの厚みのブラックマトリックス層を形成した。 (Preparation of front substrates A and B)
(Formation of black matrix)
On the barrier layer of the substrate (1), a black matrix forming composition having the following composition was applied in a wet state using a die coater so as to have a thickness of 10 μm, dried, and then at a temperature of 90 ° C. For 2 minutes to form a black matrix layer having a thickness of 2 μm.
(ブラックマトリックス形成用塗料組成物)
・ベンジルメタクリレート/メタクリル酸共重合体(モル比=73/27) 300部
・ジペンタエリスリトールヘキサアクリレート 160部
・カーボンブラック分散液 300部
・光重合開始剤(2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1) 5部
・プロピレングリコールモノメチルエーテルアセテート 1200部
※部数はいずれも質量基準 (Black matrix forming coating composition)
Benzyl methacrylate / methacrylic acid copolymer (molar ratio = 73/27) 300 parts Dipentaerythritol hexaacrylate 160 parts Carbon black dispersion 300 parts Photopolymerization initiator (2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1) 5 parts, propylene glycol monomethyl ether acetate 1200 parts * All parts are based on mass
・ベンジルメタクリレート/メタクリル酸共重合体(モル比=73/27) 300部
・ジペンタエリスリトールヘキサアクリレート 160部
・カーボンブラック分散液 300部
・光重合開始剤(2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1) 5部
・プロピレングリコールモノメチルエーテルアセテート 1200部
※部数はいずれも質量基準 (Black matrix forming coating composition)
Benzyl methacrylate / methacrylic acid copolymer (molar ratio = 73/27) 300 parts Dipentaerythritol hexaacrylate 160 parts Carbon black dispersion 300 parts Photopolymerization initiator (2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1) 5 parts, propylene glycol monomethyl ether acetate 1200 parts * All parts are based on mass
その後、露光のために、上流側に巻き出し装置、下流側に巻き取り装置を備えた露光装置に、上記で得られたブラックマトリックス層付きの基板(1)を通した。この際、露光装置の入口側および出口側に設置されたニップローラ対を駆動して、連続した形状の前記ブラックマトリックス層付きの基板(1)を搬送した。この搬送状態において、ブラックマトリックス層付きの基板(1)にかかるテンションは、2kg/300mm幅であった。
露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。 Thereafter, for exposure, the substrate (1) with the black matrix layer obtained above was passed through an exposure apparatus provided with an unwinding device on the upstream side and a winding device on the downstream side. At this time, a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the continuous substrate (1) with the black matrix layer. In this transport state, the tension applied to the substrate (1) with the black matrix layer was 2 kg / 300 mm width.
The temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ± 0.1 ° C., and the relative humidity was adjusted to 60% ± 1%.
露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。 Thereafter, for exposure, the substrate (1) with the black matrix layer obtained above was passed through an exposure apparatus provided with an unwinding device on the upstream side and a winding device on the downstream side. At this time, a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the continuous substrate (1) with the black matrix layer. In this transport state, the tension applied to the substrate (1) with the black matrix layer was 2 kg / 300 mm width.
The temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ± 0.1 ° C., and the relative humidity was adjusted to 60% ± 1%.
露光においては、上記ブラックマトリックス層付きの基板(1)の一部を露光台上に吸着固定した後、基板(1)の塗膜表面と用意されたパターン(フォトマスク)との間隔(ギャップ)が100μmになるよう自動調整した。また基板(1)の露光位置は、基板(1)の表面からの距離を自動検出して、基板(1)からフォトマスクパターン位置までが一定距離になるよう自動調整した後に、断続的に露光を行った。光源としては、高圧水銀ランプを用いて、露光エリアを200mm×200mmとして、I線(波長;365nm)を用い、15mW/cm2の照度で20秒間露光し、300mJ/cm2の露光量とした。
In the exposure, after a part of the substrate (1) with the black matrix layer is adsorbed and fixed on the exposure table, the gap (gap) between the coating surface of the substrate (1) and the prepared pattern (photomask). Was automatically adjusted to 100 μm. The exposure position of the substrate (1) is automatically detected by automatically detecting the distance from the surface of the substrate (1) and automatically adjusting the distance from the substrate (1) to the photomask pattern position, and then intermittently exposing. Went. As a light source, a high-pressure mercury lamp was used, the exposure area was 200 mm × 200 mm, I-line (wavelength: 365 nm) was used, and exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds to obtain an exposure amount of 300 mJ / cm 2 . .
現像処理は、前記露光機の下流側に現像装置を設置して行った。露光処理後の樹脂製基材を400mm/minの一定速度で搬送し、所定のパターンのブラックマトリックスが積層されたブラックマトリックス層付きの基板(1)を得た。
The developing process was performed by installing a developing device downstream of the exposure machine. The resin base material after the exposure treatment was conveyed at a constant speed of 400 mm / min to obtain a substrate (1) with a black matrix layer on which a black matrix having a predetermined pattern was laminated.
ブラックマトリックスで形成されたアライメントマークを、寸法測定機(ニコン製NEXIV VMR-6555)で温度;23℃±0.1℃、相対湿度;60%±1%の条件で、搬送方向(MD)、搬送方向に垂直な方向(TD)での寸法変化を測定した。この結果、フォトマスクの寸法値MD:100.000mm、TD:100.000mmに対して、実際に樹脂製基材上に形成されたブラックマトリックス(アライメントマーク)のパターンの寸法は、MD:99.998mm、TD:100.001mmであった。
その後、ベーク炉にて200℃、30分のポストベークを行いブラックマトリックスを熱キュアした。得られたブラックマトリックスを、前記同条件(温度;23℃±0.1℃、相対湿度;60%±1%)で測定したところ、基板(1)上に形成された前記ブラックマトリックスのパターンのベーク後の寸法は、MD:99.998mm、TD:100.001mmであった。 The alignment mark formed of the black matrix is measured with a dimension measuring machine (NEXIV VMR-6555 manufactured by Nikon) at a temperature of 23 ° C. ± 0.1 ° C., a relative humidity of 60% ± 1%, and in the conveying direction (MD). The dimensional change in the direction (TD) perpendicular to the transport direction was measured. As a result, the size of the pattern of the black matrix (alignment mark) actually formed on the resin base material is MD: 99.000 mm with respect to the photomask dimension values MD: 100.000 mm and TD: 100.000 mm. It was 998 mm and TD: 100.001 mm.
Then, the black matrix was thermally cured by post-baking at 200 ° C. for 30 minutes in a baking furnace. When the obtained black matrix was measured under the same conditions (temperature; 23 ° C. ± 0.1 ° C., relative humidity; 60% ± 1%), the pattern of the black matrix formed on the substrate (1) was measured. The dimensions after baking were MD: 99.998 mm and TD: 100.001 mm.
その後、ベーク炉にて200℃、30分のポストベークを行いブラックマトリックスを熱キュアした。得られたブラックマトリックスを、前記同条件(温度;23℃±0.1℃、相対湿度;60%±1%)で測定したところ、基板(1)上に形成された前記ブラックマトリックスのパターンのベーク後の寸法は、MD:99.998mm、TD:100.001mmであった。 The alignment mark formed of the black matrix is measured with a dimension measuring machine (NEXIV VMR-6555 manufactured by Nikon) at a temperature of 23 ° C. ± 0.1 ° C., a relative humidity of 60% ± 1%, and in the conveying direction (MD). The dimensional change in the direction (TD) perpendicular to the transport direction was measured. As a result, the size of the pattern of the black matrix (alignment mark) actually formed on the resin base material is MD: 99.000 mm with respect to the photomask dimension values MD: 100.000 mm and TD: 100.000 mm. It was 998 mm and TD: 100.001 mm.
Then, the black matrix was thermally cured by post-baking at 200 ° C. for 30 minutes in a baking furnace. When the obtained black matrix was measured under the same conditions (temperature; 23 ° C. ± 0.1 ° C., relative humidity; 60% ± 1%), the pattern of the black matrix formed on the substrate (1) was measured. The dimensions after baking were MD: 99.998 mm and TD: 100.001 mm.
[RGB着色層の形成]
前記ブラックマトリックス層付きの基板(1)の上に、下記の組成の着色パターン形成用組成物を、ウェット状態で、前記バリア層からの距離が厚み;10μmになるようダイコーターを用いて塗布した。これを乾燥後、温度;90℃の条件で2分間プリベークして、それぞれが2μmの厚みを有するブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)を得た。 [Formation of RGB colored layer]
On the substrate (1) with the black matrix layer, a colored pattern forming composition having the following composition was applied in a wet state using a die coater so that the distance from the barrier layer was 10 μm. . This was dried and then pre-baked at a temperature of 90 ° C. for 2 minutes to obtain a black matrix layer and a substrate (1) with a colored pattern forming composition each having a thickness of 2 μm.
前記ブラックマトリックス層付きの基板(1)の上に、下記の組成の着色パターン形成用組成物を、ウェット状態で、前記バリア層からの距離が厚み;10μmになるようダイコーターを用いて塗布した。これを乾燥後、温度;90℃の条件で2分間プリベークして、それぞれが2μmの厚みを有するブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)を得た。 [Formation of RGB colored layer]
On the substrate (1) with the black matrix layer, a colored pattern forming composition having the following composition was applied in a wet state using a die coater so that the distance from the barrier layer was 10 μm. . This was dried and then pre-baked at a temperature of 90 ° C. for 2 minutes to obtain a black matrix layer and a substrate (1) with a colored pattern forming composition each having a thickness of 2 μm.
以下に、赤色の着色パターン形成用組成物の組成を示す。なお、赤色顔料を任意の緑色顔料にするとGREENの着色パターン形成用組成物が得られ、青色顔料にするとBLUEの着色パターン形成用組成物が得られる。
The composition of the red colored pattern forming composition is shown below. When the red pigment is an arbitrary green pigment, a GREEN colored pattern forming composition is obtained, and when a blue pigment is used, a BLUE colored pattern forming composition is obtained.
(着色パターン形成用組成物)
・ベンジルメタクリレート/メタクリル酸共重合体(モル比=73/27) 50部
・トリメチロールプロパントリアクリレート 40部
・赤色顔料(C.I.Pigment Red 177) 90部
・光重合開始剤(2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパノン-1) 1.5部
・プロピレングリコールモノメチルエーテルアセテート 600部
※部数はいずれも質量基準 (Coloring pattern forming composition)
Benzyl methacrylate / methacrylic acid copolymer (molar ratio = 73/27) 50 parts Trimethylolpropane triacrylate 40 parts Red pigment (CI Pigment Red 177) 90 parts Photopolymerization initiator (2-methyl -1- [4- (Methylthio) phenyl] -2-morpholinopropanone-1) 1.5 parts ・ Propylene glycol monomethyl ether acetate 600 parts * All parts are based on mass
・ベンジルメタクリレート/メタクリル酸共重合体(モル比=73/27) 50部
・トリメチロールプロパントリアクリレート 40部
・赤色顔料(C.I.Pigment Red 177) 90部
・光重合開始剤(2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパノン-1) 1.5部
・プロピレングリコールモノメチルエーテルアセテート 600部
※部数はいずれも質量基準 (Coloring pattern forming composition)
Benzyl methacrylate / methacrylic acid copolymer (molar ratio = 73/27) 50 parts Trimethylolpropane triacrylate 40 parts Red pigment (CI Pigment Red 177) 90 parts Photopolymerization initiator (2-methyl -1- [4- (Methylthio) phenyl] -2-morpholinopropanone-1) 1.5 parts ・ Propylene glycol monomethyl ether acetate 600 parts * All parts are based on mass
露光のために、上流側に巻き出し装置、下流側に巻き取り装置を備えた露光装置に、上記で得られたブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)を通した。この際、露光装置の入口側および出口側に設置されたニップローラ対を駆動して、連続した形状のブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)を搬送した。この搬送状態において、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)にかかるテンションは、2kg/300mm幅であった。
露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。
露光においては、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)の一部を露光台上に吸着固定した後、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)の塗膜表面と用意されたパターン(フォトマスク)との間隔(ギャップ)が100μmになるよう自動調整した。またブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)の露光位置は以下のように決定された。すなわち、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)の表面からの距離を自動検出して、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)からフォトマスクパターン位置が一定距離になるよう自動調整した後、前記ブラックマトリックス層形成時に同時に形成したブラックマトリックスで形成されたアライメントマークを用いてRED用フォトマスクとアライメントを行い、その後、露光を行った。光源としては、高圧水銀ランプを用いて、露光エリアを200mm×200mmとして、I線(波長;365nm)を用い、15mW/cm2の照度で20秒間露光し、100mJ/cm2の露光量とした。 For exposure, the substrate (1) with the black matrix layer and the composition for forming a colored pattern obtained above was passed through an exposure apparatus provided with an unwinding apparatus on the upstream side and a winding apparatus on the downstream side. At this time, a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the substrate (1) with a continuous black matrix layer and a composition for forming a colored pattern. In this transport state, the tension applied to the substrate (1) with the black matrix layer and the colored pattern forming composition was 2 kg / 300 mm width.
The temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ± 0.1 ° C., and the relative humidity was adjusted to 60% ± 1%.
In the exposure, a part of the substrate (1) with the black matrix layer and the composition for forming a colored pattern is adsorbed and fixed on the exposure table, and then the substrate (1) with the black matrix layer and the composition for forming a colored pattern (1). Automatic adjustment was performed so that the gap (gap) between the coating surface and the prepared pattern (photomask) was 100 μm. Moreover, the exposure position of the board | substrate (1) with a black matrix layer and the composition for coloring pattern formation was determined as follows. That is, the distance from the surface of the substrate (1) with the black matrix layer and the colored pattern forming composition is automatically detected, and the photomask pattern position is detected from the substrate (1) with the black matrix layer and the colored pattern forming composition. Was automatically adjusted so as to be a constant distance, and then alignment with a RED photomask was performed using an alignment mark formed with a black matrix formed simultaneously with the formation of the black matrix layer, and then exposure was performed. As a light source, a high-pressure mercury lamp was used, the exposure area was 200 mm × 200 mm, I-line (wavelength: 365 nm) was used, and exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds to obtain an exposure amount of 100 mJ / cm 2 . .
露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。
露光においては、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)の一部を露光台上に吸着固定した後、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)の塗膜表面と用意されたパターン(フォトマスク)との間隔(ギャップ)が100μmになるよう自動調整した。またブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)の露光位置は以下のように決定された。すなわち、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)の表面からの距離を自動検出して、ブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)からフォトマスクパターン位置が一定距離になるよう自動調整した後、前記ブラックマトリックス層形成時に同時に形成したブラックマトリックスで形成されたアライメントマークを用いてRED用フォトマスクとアライメントを行い、その後、露光を行った。光源としては、高圧水銀ランプを用いて、露光エリアを200mm×200mmとして、I線(波長;365nm)を用い、15mW/cm2の照度で20秒間露光し、100mJ/cm2の露光量とした。 For exposure, the substrate (1) with the black matrix layer and the composition for forming a colored pattern obtained above was passed through an exposure apparatus provided with an unwinding apparatus on the upstream side and a winding apparatus on the downstream side. At this time, a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the substrate (1) with a continuous black matrix layer and a composition for forming a colored pattern. In this transport state, the tension applied to the substrate (1) with the black matrix layer and the colored pattern forming composition was 2 kg / 300 mm width.
The temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ± 0.1 ° C., and the relative humidity was adjusted to 60% ± 1%.
In the exposure, a part of the substrate (1) with the black matrix layer and the composition for forming a colored pattern is adsorbed and fixed on the exposure table, and then the substrate (1) with the black matrix layer and the composition for forming a colored pattern (1). Automatic adjustment was performed so that the gap (gap) between the coating surface and the prepared pattern (photomask) was 100 μm. Moreover, the exposure position of the board | substrate (1) with a black matrix layer and the composition for coloring pattern formation was determined as follows. That is, the distance from the surface of the substrate (1) with the black matrix layer and the colored pattern forming composition is automatically detected, and the photomask pattern position is detected from the substrate (1) with the black matrix layer and the colored pattern forming composition. Was automatically adjusted so as to be a constant distance, and then alignment with a RED photomask was performed using an alignment mark formed with a black matrix formed simultaneously with the formation of the black matrix layer, and then exposure was performed. As a light source, a high-pressure mercury lamp was used, the exposure area was 200 mm × 200 mm, I-line (wavelength: 365 nm) was used, and exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds to obtain an exposure amount of 100 mJ / cm 2 . .
現像は、前記露光機の下流側に現像装置を設置して行った。露光処理後のブラックマトリックス層及び着色パターン形成用組成物付きの基板(1)を400mm/minの一定速度で搬送し、その結果、樹脂製基材上のブラックマトリックスの開口部の所定位置に、すなわちブラックマトリックスが形成されていない箇所に、所定のパターンのRED着色層が積層された、基板(1)を得た。その後、ベーク炉にて200℃、30分のポストベークを行い、RED着色層を熱キュアした。
Development was performed by installing a developing device downstream of the exposure machine. The substrate (1) with the black matrix layer and the composition for forming a colored pattern after the exposure process is conveyed at a constant speed of 400 mm / min, and as a result, at a predetermined position of the opening of the black matrix on the resin substrate, That is, a substrate (1) was obtained in which a RED colored layer having a predetermined pattern was laminated at a location where no black matrix was formed. Thereafter, post baking was performed at 200 ° C. for 30 minutes in a baking furnace, and the RED colored layer was cured.
上記REDと同様の方法を繰り返し、GREEN、及びBLUEの着色層形成を行い、基板(1)上にブラックマトリックスおよび所望のRGB(RED,GREEN,及びBLUE)の着色層が形成されたカラーフィルタが得られた。
The same method as RED is repeated to form a colored layer of GREEN and BLUE, and a color filter having a black matrix and a desired colored layer of RGB (RED, GREEN, and BLUE) formed on the substrate (1) Obtained.
なお、BLUE着色層のポストベーク処理後に、ブラックマトリックスで形成されたアライメントマークを、前記と同じ条件(温度;23℃±0.1℃、相対湿度;60%±1%)で測定したところ、プラスチックフィルム上に形成されたパターンの寸法は、MD:99.999mm、TD:100.002mmであった。
In addition, when the alignment mark formed with the black matrix after the post-baking treatment of the BLUE colored layer was measured under the same conditions (temperature; 23 ° C. ± 0.1 ° C., relative humidity; 60% ± 1%), The dimensions of the pattern formed on the plastic film were MD: 99.999 mm and TD: 100.002 mm.
ブラックマトリックスの寸法変化は、第1の層(ブラックマトリックス層)の現像後から第4の層(BLUE層)のポストベーク後までの製造工程において10ppmであった。このようにして、RED層、BLUE層、及びGREEN層を矩形状に、かつ所定の位置に配置した事により、樹脂製基材上に4インチサイズで解像度が200ppi(BM(ブラックマトリックス)線幅7μm、ピッチ42μm)の、ストライプ構造のカラーフィルタを、画素ズレを生じさせずに形成することができた。
The dimensional change of the black matrix was 10 ppm in the production process from the development of the first layer (black matrix layer) to the post-baking of the fourth layer (BLUE layer). In this way, by arranging the RED layer, BLUE layer, and GREEN layer in a rectangular shape and in a predetermined position, the resolution is 200 ppi (BM (black matrix) line width) on a resin substrate with a 4-inch size. A color filter having a stripe structure of 7 μm and a pitch of 42 μm was able to be formed without causing a pixel shift.
(ITO電極層の形成)
続いて、このカラーフィルタをスパッタロールコート装置に装填し、DCスパッタにより酸素を反応ガスに用いた反応性スパッタでITO(indium tin oxide)をターゲットとして用い、ブラックマトリックスおよびRGBの着色層上に膜厚150nmのITOの成膜を行い、これをITO電極層とした。 (Formation of ITO electrode layer)
Subsequently, this color filter is loaded into a sputter roll coater, and a film is formed on the black matrix and RGB colored layers by using ITO (indium tin oxide) as a target by reactive sputtering using oxygen as a reactive gas by DC sputtering. An ITO film having a thickness of 150 nm was formed and used as an ITO electrode layer.
続いて、このカラーフィルタをスパッタロールコート装置に装填し、DCスパッタにより酸素を反応ガスに用いた反応性スパッタでITO(indium tin oxide)をターゲットとして用い、ブラックマトリックスおよびRGBの着色層上に膜厚150nmのITOの成膜を行い、これをITO電極層とした。 (Formation of ITO electrode layer)
Subsequently, this color filter is loaded into a sputter roll coater, and a film is formed on the black matrix and RGB colored layers by using ITO (indium tin oxide) as a target by reactive sputtering using oxygen as a reactive gas by DC sputtering. An ITO film having a thickness of 150 nm was formed and used as an ITO electrode layer.
(スペーサ及び突起の形成)
(パターンスペーサ形成用ドライフィルムの準備)
幅300mm、厚み;25μmのPETベースフィルム(長尺ロール)上に、ネガ型感光性樹脂からなるパターンスペーサ形成用組成物を、ウェット状態で厚み;20μmになるようにダイコーターを用いて塗布した。塗膜の乾燥後、温度;90℃の条件で2分間プリベークして5μmの厚みの塗膜を得た。その後、その上に、厚み25μmのPETカバーフィルムをラミネートし、パターンスペーサ形成用ドライフィルムとした。 (Formation of spacers and protrusions)
(Preparation of dry film for forming pattern spacer)
A pattern spacer forming composition made of a negative photosensitive resin was applied on a PET base film (long roll) having a width of 300 mm and a thickness of 25 μm using a die coater so as to have a thickness of 20 μm in a wet state. . After the coating film was dried, it was prebaked for 2 minutes at a temperature of 90 ° C. to obtain a coating film having a thickness of 5 μm. Thereafter, a PET cover film having a thickness of 25 μm was laminated thereon to obtain a dry film for forming a pattern spacer.
(パターンスペーサ形成用ドライフィルムの準備)
幅300mm、厚み;25μmのPETベースフィルム(長尺ロール)上に、ネガ型感光性樹脂からなるパターンスペーサ形成用組成物を、ウェット状態で厚み;20μmになるようにダイコーターを用いて塗布した。塗膜の乾燥後、温度;90℃の条件で2分間プリベークして5μmの厚みの塗膜を得た。その後、その上に、厚み25μmのPETカバーフィルムをラミネートし、パターンスペーサ形成用ドライフィルムとした。 (Formation of spacers and protrusions)
(Preparation of dry film for forming pattern spacer)
A pattern spacer forming composition made of a negative photosensitive resin was applied on a PET base film (long roll) having a width of 300 mm and a thickness of 25 μm using a die coater so as to have a thickness of 20 μm in a wet state. . After the coating film was dried, it was prebaked for 2 minutes at a temperature of 90 ° C. to obtain a coating film having a thickness of 5 μm. Thereafter, a PET cover film having a thickness of 25 μm was laminated thereon to obtain a dry film for forming a pattern spacer.
(積層原反の作成)
上記で得られたブラックマトリックス、RGB着色層、およびITO電極層が形成された基板(1)上に、PETカバーフィルムを予め剥離した前記パターンスペーサ形成用ドライフィルムを、パターンスペーサ形成用組成物がITO電極層と向かい合うように積層した。その後、パターンスペーサ形成用組成物層を、ローラ圧;5kg/cm2、ローラ表面温度;120℃、および速度;800mm/minの条件にて、連続的に転写した。この際、ベースフィルムは剥離せず、パターンスペーサ形成用組成物上に付いた状態で次の露光工程へと進めた。 (Creation of laminated raw material)
On the substrate (1) on which the black matrix, the RGB colored layer, and the ITO electrode layer obtained above were formed, the pattern spacer forming composition was prepared by removing the dry film for forming the pattern spacer from which the PET cover film was previously peeled off. Lamination was performed so as to face the ITO electrode layer. Thereafter, the composition layer for pattern spacer formation was continuously transferred under the conditions of roller pressure: 5 kg / cm 2 , roller surface temperature: 120 ° C., and speed: 800 mm / min. At this time, the base film was not peeled off, and proceeded to the next exposure step in a state of being attached on the pattern spacer forming composition.
上記で得られたブラックマトリックス、RGB着色層、およびITO電極層が形成された基板(1)上に、PETカバーフィルムを予め剥離した前記パターンスペーサ形成用ドライフィルムを、パターンスペーサ形成用組成物がITO電極層と向かい合うように積層した。その後、パターンスペーサ形成用組成物層を、ローラ圧;5kg/cm2、ローラ表面温度;120℃、および速度;800mm/minの条件にて、連続的に転写した。この際、ベースフィルムは剥離せず、パターンスペーサ形成用組成物上に付いた状態で次の露光工程へと進めた。 (Creation of laminated raw material)
On the substrate (1) on which the black matrix, the RGB colored layer, and the ITO electrode layer obtained above were formed, the pattern spacer forming composition was prepared by removing the dry film for forming the pattern spacer from which the PET cover film was previously peeled off. Lamination was performed so as to face the ITO electrode layer. Thereafter, the composition layer for pattern spacer formation was continuously transferred under the conditions of roller pressure: 5 kg / cm 2 , roller surface temperature: 120 ° C., and speed: 800 mm / min. At this time, the base film was not peeled off, and proceeded to the next exposure step in a state of being attached on the pattern spacer forming composition.
(露光処理工程)
露光のために、上流側に巻き出し装置、下流側に巻き取り装置を備えた露光装置に、上記で得られた積層原反を通した。この際、露光装置の入口側および出口側に設置されたニップローラ対を駆動して、連続した形状の積層原反を搬送した。この搬送状態において、積層原反にかかるテンションは、2kg/300mm幅であった。
露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。
露光においては、積層原反の一部を露光台上に吸着固定した後、積層原反のベースフィルムと用意されたフォトマスクパターン(フォトマスク)との間隔(ギャップ)を30μmになるよう自動調整した。このとき使用したフォトマスクパターンとしては、ブラックマトリックス上にスペーサを形成するスペーサ作成パターンと、シール材塗布部分に突起を形成する突起作成パターンとを、両方有するパターンA(図3参照)及び、比較用にブラックマトリックス上にスペーサを形成するスペーサ作成パターンのみを有するパターンBを用意した。
また積層原反のパターンの露光位置は以下のように決定された。すわわち、積層原反の表面からの距離を自動検出して、この検出結果にしたがって積層原反からフォトマスクパターン位置が一定距離になるよう自動調整した後、前記ブラックマトリックス形成時に同時形成したブラックマトリックスのアライメントマークを用いてスペーサ用フォトマスクとのアライメントを行った後、露光を行った。光源としては、高圧水銀ランプを用いて、露光エリアを200mm×200mmとして、I線(波長;365nm)を用い、15mW/cm2の照度で20秒間露光し、300mJ/cm2の露光量とした。それぞれのパターンを用いて露光を行なった。 (Exposure process)
For exposure, the laminated raw material obtained above was passed through an exposure apparatus provided with an unwinding device on the upstream side and a winding device on the downstream side. At this time, a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the laminated raw material having a continuous shape. In this conveying state, the tension applied to the laminated original fabric was 2 kg / 300 mm width.
The temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ± 0.1 ° C., and the relative humidity was adjusted to 60% ± 1%.
In exposure, after a portion of the stack is sucked and fixed on the exposure table, the gap (gap) between the base film of the stack and the prepared photomask pattern (photomask) is automatically adjusted to 30 μm. did. As a photomask pattern used at this time, a pattern A (see FIG. 3) having both a spacer creation pattern for forming a spacer on a black matrix and a projection creation pattern for forming a projection on a sealing material application portion, and comparison For this purpose, a pattern B having only a spacer forming pattern for forming a spacer on a black matrix was prepared.
Moreover, the exposure position of the pattern of the laminated original fabric was determined as follows. In other words, after automatically detecting the distance from the surface of the laminated original fabric and automatically adjusting the photomask pattern position from the laminated original fabric to a certain distance according to this detection result, it was simultaneously formed when forming the black matrix After alignment with a photomask for spacers using a black matrix alignment mark, exposure was performed. As a light source, a high-pressure mercury lamp was used, the exposure area was 200 mm × 200 mm, I-line (wavelength: 365 nm) was used, and exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds to obtain an exposure amount of 300 mJ / cm 2 . . Exposure was performed using each pattern.
露光のために、上流側に巻き出し装置、下流側に巻き取り装置を備えた露光装置に、上記で得られた積層原反を通した。この際、露光装置の入口側および出口側に設置されたニップローラ対を駆動して、連続した形状の積層原反を搬送した。この搬送状態において、積層原反にかかるテンションは、2kg/300mm幅であった。
露光装置の本体の温度は23℃±0.1℃になるよう、また、相対湿度は60%±1%になるよう、それぞれ調整した。
露光においては、積層原反の一部を露光台上に吸着固定した後、積層原反のベースフィルムと用意されたフォトマスクパターン(フォトマスク)との間隔(ギャップ)を30μmになるよう自動調整した。このとき使用したフォトマスクパターンとしては、ブラックマトリックス上にスペーサを形成するスペーサ作成パターンと、シール材塗布部分に突起を形成する突起作成パターンとを、両方有するパターンA(図3参照)及び、比較用にブラックマトリックス上にスペーサを形成するスペーサ作成パターンのみを有するパターンBを用意した。
また積層原反のパターンの露光位置は以下のように決定された。すわわち、積層原反の表面からの距離を自動検出して、この検出結果にしたがって積層原反からフォトマスクパターン位置が一定距離になるよう自動調整した後、前記ブラックマトリックス形成時に同時形成したブラックマトリックスのアライメントマークを用いてスペーサ用フォトマスクとのアライメントを行った後、露光を行った。光源としては、高圧水銀ランプを用いて、露光エリアを200mm×200mmとして、I線(波長;365nm)を用い、15mW/cm2の照度で20秒間露光し、300mJ/cm2の露光量とした。それぞれのパターンを用いて露光を行なった。 (Exposure process)
For exposure, the laminated raw material obtained above was passed through an exposure apparatus provided with an unwinding device on the upstream side and a winding device on the downstream side. At this time, a pair of nip rollers installed on the entrance side and the exit side of the exposure apparatus were driven to transport the laminated raw material having a continuous shape. In this conveying state, the tension applied to the laminated original fabric was 2 kg / 300 mm width.
The temperature of the main body of the exposure apparatus was adjusted to 23 ° C. ± 0.1 ° C., and the relative humidity was adjusted to 60% ± 1%.
In exposure, after a portion of the stack is sucked and fixed on the exposure table, the gap (gap) between the base film of the stack and the prepared photomask pattern (photomask) is automatically adjusted to 30 μm. did. As a photomask pattern used at this time, a pattern A (see FIG. 3) having both a spacer creation pattern for forming a spacer on a black matrix and a projection creation pattern for forming a projection on a sealing material application portion, and comparison For this purpose, a pattern B having only a spacer forming pattern for forming a spacer on a black matrix was prepared.
Moreover, the exposure position of the pattern of the laminated original fabric was determined as follows. In other words, after automatically detecting the distance from the surface of the laminated original fabric and automatically adjusting the photomask pattern position from the laminated original fabric to a certain distance according to this detection result, it was simultaneously formed when forming the black matrix After alignment with a photomask for spacers using a black matrix alignment mark, exposure was performed. As a light source, a high-pressure mercury lamp was used, the exposure area was 200 mm × 200 mm, I-line (wavelength: 365 nm) was used, and exposure was performed at an illuminance of 15 mW / cm 2 for 20 seconds to obtain an exposure amount of 300 mJ / cm 2 . . Exposure was performed using each pattern.
(現像処理・ポストベーク処理工程)
現像処理は、前記露光機の下流側に現像装置を設置し、この現像装置内で露光後の積層原反のベースフィルムを剥離しながら、400mm/minの一定速度で搬送しながら行った。その結果、前記ブラックマトリックス、RGB着色層、およびITO電極層が形成された基板(1)上であって、かつブラックマトリックスの格子パターン部上の所定位置に、所定のパターンのスペーサ、またはスペーサ及び突起が形成されたカラーフィルタを得た。その後、ベーク炉にて200℃、30分のポストベーク処理を行って、所定のパターンのスペーサ、またはスペーサ及び突起を熱キュアした。 (Development and post-baking process)
The development process was performed while a developing device was installed on the downstream side of the exposure machine and the film was transported at a constant speed of 400 mm / min while peeling the base film of the laminated original film after exposure in this developing device. As a result, on the substrate (1) on which the black matrix, the RGB colored layer, and the ITO electrode layer are formed, and in a predetermined position on the lattice pattern portion of the black matrix, A color filter having protrusions was obtained. Thereafter, post-baking treatment was performed at 200 ° C. for 30 minutes in a baking furnace, and the spacers or spacers and protrusions having a predetermined pattern were thermally cured.
現像処理は、前記露光機の下流側に現像装置を設置し、この現像装置内で露光後の積層原反のベースフィルムを剥離しながら、400mm/minの一定速度で搬送しながら行った。その結果、前記ブラックマトリックス、RGB着色層、およびITO電極層が形成された基板(1)上であって、かつブラックマトリックスの格子パターン部上の所定位置に、所定のパターンのスペーサ、またはスペーサ及び突起が形成されたカラーフィルタを得た。その後、ベーク炉にて200℃、30分のポストベーク処理を行って、所定のパターンのスペーサ、またはスペーサ及び突起を熱キュアした。 (Development and post-baking process)
The development process was performed while a developing device was installed on the downstream side of the exposure machine and the film was transported at a constant speed of 400 mm / min while peeling the base film of the laminated original film after exposure in this developing device. As a result, on the substrate (1) on which the black matrix, the RGB colored layer, and the ITO electrode layer are formed, and in a predetermined position on the lattice pattern portion of the black matrix, A color filter having protrusions was obtained. Thereafter, post-baking treatment was performed at 200 ° C. for 30 minutes in a baking furnace, and the spacers or spacers and protrusions having a predetermined pattern were thermally cured.
このようにして、前記パターンAを使用した、基板(1)上にブラックマトリックス、RGB着色層、ITO電極層、パターンスペーサ、及び突起が形成された前面基板Aと、前記パターンBを使用した、基板(1)上にブラックマトリックス、RGB着色層、ITO電極層、パターンスペーサが形成された前面基板Bとを得た。
Thus, using the pattern A, the front substrate A on which the black matrix, the RGB colored layer, the ITO electrode layer, the pattern spacer, and the protrusions were formed on the substrate (1), and the pattern B were used. A front substrate B having a black matrix, an RGB colored layer, an ITO electrode layer, and a pattern spacer formed on the substrate (1) was obtained.
(背面基板の作成)
(TFT電極層の形成)
透明基板として、石英ガラス基板を用い、特開2004-140381号公報に記載された方法にしたがって、透明基板上にTFT電極層を形成した。
すなわち、石英ガラス基板上に、アモルファスSi層を100nm厚で形成した後、その上に酸化Si層(SiOx)を真空成膜法により形成した。その後、上記酸化Si層上に、フォトリソグラフィ法およびエッチング法を用いて、TFT層および画素電極をそれぞれ形成した。
次に、上記TFT層および画素電極上に水溶性粘着剤を塗布し、別途用意したガラス基板を貼り付けた。その後、最初の石英ガラス基板側よりXeClエキシマレーザーを照射して、上記アモルファスSi層と酸化Si層界面で剥離させた。
このような方法により、厚み0.1μmのSiOx層上にTFT層および画素電極がそれぞれ形成されたTFTアレイ層を形成した。なお、SiOx層とガラス基板の間にはTFT層および画素電極が存在する。 (Create back substrate)
(Formation of TFT electrode layer)
A quartz glass substrate was used as the transparent substrate, and a TFT electrode layer was formed on the transparent substrate according to the method described in JP-A-2004-140381.
That is, after forming an amorphous Si layer with a thickness of 100 nm on a quartz glass substrate, an oxide Si layer (SiOx) was formed thereon by a vacuum film forming method. Thereafter, a TFT layer and a pixel electrode were formed on the oxidized Si layer by using a photolithography method and an etching method, respectively.
Next, a water-soluble adhesive was applied on the TFT layer and the pixel electrode, and a separately prepared glass substrate was attached. After that, XeCl excimer laser was irradiated from the first quartz glass substrate side to peel off at the interface between the amorphous Si layer and the oxidized Si layer.
By such a method, a TFT array layer in which a TFT layer and a pixel electrode were formed on an SiOx layer having a thickness of 0.1 μm was formed. A TFT layer and a pixel electrode exist between the SiOx layer and the glass substrate.
(TFT電極層の形成)
透明基板として、石英ガラス基板を用い、特開2004-140381号公報に記載された方法にしたがって、透明基板上にTFT電極層を形成した。
すなわち、石英ガラス基板上に、アモルファスSi層を100nm厚で形成した後、その上に酸化Si層(SiOx)を真空成膜法により形成した。その後、上記酸化Si層上に、フォトリソグラフィ法およびエッチング法を用いて、TFT層および画素電極をそれぞれ形成した。
次に、上記TFT層および画素電極上に水溶性粘着剤を塗布し、別途用意したガラス基板を貼り付けた。その後、最初の石英ガラス基板側よりXeClエキシマレーザーを照射して、上記アモルファスSi層と酸化Si層界面で剥離させた。
このような方法により、厚み0.1μmのSiOx層上にTFT層および画素電極がそれぞれ形成されたTFTアレイ層を形成した。なお、SiOx層とガラス基板の間にはTFT層および画素電極が存在する。 (Create back substrate)
(Formation of TFT electrode layer)
A quartz glass substrate was used as the transparent substrate, and a TFT electrode layer was formed on the transparent substrate according to the method described in JP-A-2004-140381.
That is, after forming an amorphous Si layer with a thickness of 100 nm on a quartz glass substrate, an oxide Si layer (SiOx) was formed thereon by a vacuum film forming method. Thereafter, a TFT layer and a pixel electrode were formed on the oxidized Si layer by using a photolithography method and an etching method, respectively.
Next, a water-soluble adhesive was applied on the TFT layer and the pixel electrode, and a separately prepared glass substrate was attached. After that, XeCl excimer laser was irradiated from the first quartz glass substrate side to peel off at the interface between the amorphous Si layer and the oxidized Si layer.
By such a method, a TFT array layer in which a TFT layer and a pixel electrode were formed on an SiOx layer having a thickness of 0.1 μm was formed. A TFT layer and a pixel electrode exist between the SiOx layer and the glass substrate.
(TFT付樹脂製基板の作製)
上記TFTアレイ層が形成されたガラス基板に、上記TFTアレイ層が2つの基板に挟まれるように、即ちアモルファスSi層に接していたSiOx層の面上に別の基板が配置されるように、前面基板AやBで使用されたものと同様の基板(1)を貼り合わせた。
ここでは低硬化収縮タイプ硬化型接着剤(東亞合成(株)社製ラックストラックLCR0629B)を用いた。基板(1)を貼り合わせる側のSiOx側に前記接着剤を塗布し、その後、あらかじめそれぞれの基板に形成しておいたアライメントマークを用いて、貼り合せ装置上で、TFTアレイ層と基板(1)との間隔を100μm離した状態で、位置合わせを行った後、貼り合せをした。その後、TFTアレイ層上に形成されたガラス基板および水溶性粘着剤を剥離して、背面基板としてTFTアレイ付樹脂製基板を得た。 (Preparation of resin substrate with TFT)
The TFT array layer is sandwiched between two substrates on the glass substrate on which the TFT array layer is formed, that is, another substrate is disposed on the surface of the SiOx layer that is in contact with the amorphous Si layer. A substrate (1) similar to that used for the front substrates A and B was bonded.
Here, a low curing shrinkage type curable adhesive (Luxtrac LCR0629B manufactured by Toagosei Co., Ltd.) was used. The adhesive is applied to the SiOx side on which the substrate (1) is bonded, and then the TFT array layer and the substrate (1) are bonded on the bonding apparatus using alignment marks previously formed on the respective substrates. After the alignment was performed in a state where the distance from the substrate was separated by 100 μm, bonding was performed. Thereafter, the glass substrate and the water-soluble adhesive formed on the TFT array layer were peeled off to obtain a resin substrate with a TFT array as a back substrate.
上記TFTアレイ層が形成されたガラス基板に、上記TFTアレイ層が2つの基板に挟まれるように、即ちアモルファスSi層に接していたSiOx層の面上に別の基板が配置されるように、前面基板AやBで使用されたものと同様の基板(1)を貼り合わせた。
ここでは低硬化収縮タイプ硬化型接着剤(東亞合成(株)社製ラックストラックLCR0629B)を用いた。基板(1)を貼り合わせる側のSiOx側に前記接着剤を塗布し、その後、あらかじめそれぞれの基板に形成しておいたアライメントマークを用いて、貼り合せ装置上で、TFTアレイ層と基板(1)との間隔を100μm離した状態で、位置合わせを行った後、貼り合せをした。その後、TFTアレイ層上に形成されたガラス基板および水溶性粘着剤を剥離して、背面基板としてTFTアレイ付樹脂製基板を得た。 (Preparation of resin substrate with TFT)
The TFT array layer is sandwiched between two substrates on the glass substrate on which the TFT array layer is formed, that is, another substrate is disposed on the surface of the SiOx layer that is in contact with the amorphous Si layer. A substrate (1) similar to that used for the front substrates A and B was bonded.
Here, a low curing shrinkage type curable adhesive (Luxtrac LCR0629B manufactured by Toagosei Co., Ltd.) was used. The adhesive is applied to the SiOx side on which the substrate (1) is bonded, and then the TFT array layer and the substrate (1) are bonded on the bonding apparatus using alignment marks previously formed on the respective substrates. After the alignment was performed in a state where the distance from the substrate was separated by 100 μm, bonding was performed. Thereafter, the glass substrate and the water-soluble adhesive formed on the TFT array layer were peeled off to obtain a resin substrate with a TFT array as a back substrate.
(実施例用の液晶セルA作成)
(配向膜形成)
上記のように作製された前面基板A、及び背面基板の封止領域内に該当する箇所に、液晶配向膜を以下のように形成した。
両基板ともに純水にて洗浄後、液晶配向剤を、液晶配向膜塗布用印刷機を用いて封止領域に該当する箇所に塗布し、180℃のオーブン内で20分間乾燥した。このようにして、前面基板AのITOを形成した面上、及び背面基板のTFT電極層を形成した面上に、乾燥平均膜厚600Åの薄い塗膜を形成した。この塗膜にレーヨン製の布を巻き付けたロールを有するラビングマシーンにより、ロールの回転数400rpm、ステージの移動速度30mm/秒、毛足押し込み長さ0.4mmでラビング処理を行い、その後水洗を行った。この後、120℃のオーブン上で10分間乾燥した。 (Creation of liquid crystal cell A for Example)
(Alignment film formation)
A liquid crystal alignment film was formed as follows in a portion corresponding to the sealing region of the front substrate A and the back substrate manufactured as described above.
After washing both substrates with pure water, a liquid crystal aligning agent was applied to a portion corresponding to the sealing region using a printer for applying a liquid crystal alignment film and dried in an oven at 180 ° C. for 20 minutes. In this way, a thin coating film having a dry average film thickness of 600 mm was formed on the surface of the front substrate A on which the ITO was formed and on the surface of the rear substrate on which the TFT electrode layer was formed. A rubbing machine having a roll in which a rayon cloth is wound around this coating film is rubbed at a roll rotation speed of 400 rpm, a stage moving speed of 30 mm / second, and a hair foot indentation length of 0.4 mm, and then washed with water. It was. Then, it dried for 10 minutes on 120 degreeC oven.
(配向膜形成)
上記のように作製された前面基板A、及び背面基板の封止領域内に該当する箇所に、液晶配向膜を以下のように形成した。
両基板ともに純水にて洗浄後、液晶配向剤を、液晶配向膜塗布用印刷機を用いて封止領域に該当する箇所に塗布し、180℃のオーブン内で20分間乾燥した。このようにして、前面基板AのITOを形成した面上、及び背面基板のTFT電極層を形成した面上に、乾燥平均膜厚600Åの薄い塗膜を形成した。この塗膜にレーヨン製の布を巻き付けたロールを有するラビングマシーンにより、ロールの回転数400rpm、ステージの移動速度30mm/秒、毛足押し込み長さ0.4mmでラビング処理を行い、その後水洗を行った。この後、120℃のオーブン上で10分間乾燥した。 (Creation of liquid crystal cell A for Example)
(Alignment film formation)
A liquid crystal alignment film was formed as follows in a portion corresponding to the sealing region of the front substrate A and the back substrate manufactured as described above.
After washing both substrates with pure water, a liquid crystal aligning agent was applied to a portion corresponding to the sealing region using a printer for applying a liquid crystal alignment film and dried in an oven at 180 ° C. for 20 minutes. In this way, a thin coating film having a dry average film thickness of 600 mm was formed on the surface of the front substrate A on which the ITO was formed and on the surface of the rear substrate on which the TFT electrode layer was formed. A rubbing machine having a roll in which a rayon cloth is wound around this coating film is rubbed at a roll rotation speed of 400 rpm, a stage moving speed of 30 mm / second, and a hair foot indentation length of 0.4 mm, and then washed with water. It was. Then, it dried for 10 minutes on 120 degreeC oven.
前面基板Aのシール材塗布予定部分に、ディスペンサーを用いて、シール材を閉ループを描くように塗布した。
シール材としては光硬化型シール材を使用し、シール材の中にはスペーサ(カラムスペーサ)とほぼ同じサイズの球状スペーサを1重量%混合した。なおシール幅の違いによる差を評価するために、3種類のサンプルセルA1~A3を用意した。すなわち、シール材の塗布幅は、後述の評価試験に適した3種類のシール幅とした(1.2mm、2mm、及び3mm)。 The sealant was applied to the portion of the front substrate A where the sealant was to be applied using a dispenser so as to draw a closed loop.
As the sealing material, a photo-curing type sealing material was used, and 1% by weight of spherical spacers having the same size as the spacer (column spacer) were mixed in the sealing material. In order to evaluate the difference due to the difference in seal width, three types of sample cells A1 to A3 were prepared. That is, the application width of the sealing material was set to three types of seal widths suitable for an evaluation test described later (1.2 mm, 2 mm, and 3 mm).
シール材としては光硬化型シール材を使用し、シール材の中にはスペーサ(カラムスペーサ)とほぼ同じサイズの球状スペーサを1重量%混合した。なおシール幅の違いによる差を評価するために、3種類のサンプルセルA1~A3を用意した。すなわち、シール材の塗布幅は、後述の評価試験に適した3種類のシール幅とした(1.2mm、2mm、及び3mm)。 The sealant was applied to the portion of the front substrate A where the sealant was to be applied using a dispenser so as to draw a closed loop.
As the sealing material, a photo-curing type sealing material was used, and 1% by weight of spherical spacers having the same size as the spacer (column spacer) were mixed in the sealing material. In order to evaluate the difference due to the difference in seal width, three types of sample cells A1 to A3 were prepared. That is, the application width of the sealing material was set to three types of seal widths suitable for an evaluation test described later (1.2 mm, 2 mm, and 3 mm).
続いて、シール材によって形成された閉ループ内の所定の位置に、ディスペンサーを、用いて適当量の液晶を滴下した。
続いて、液晶滴下後の前面基板Aと背面基板とを静電チャックに吸着させた。前面基板Aと背面基板とが互いに向き合うように配置し、背面基板をゆっくり降下させて前面基板Aとの距離が300μmとなる距離で静止させた。この状態で真空チャンバー内を100Paまで減圧した。あらかじめ形成しておいたアライメントマークを用いて、前面基板Aと背面基板との貼り合わせ位置を調整した。アライメント完了後、前面基板Aと背面基板とをさらに接近させ、シール材とTFT電極層とが接する高さに両基材を保持した。この状態で真空チャンバー内に不活性ガスを導入し、系内を大気圧までもどした。大気圧により前面基板Aと背面基板が圧迫され、液晶配向膜を含むスペーサ(カラムスペーサ)の高さで、セルギャップが形成された。続いてシール材塗布部分に紫外線を照射して(365nm、30kJ/m2)シール材を硬化させ、液晶セルA(A1~A3)を得た。 Subsequently, an appropriate amount of liquid crystal was dropped using a dispenser at a predetermined position in the closed loop formed by the sealing material.
Subsequently, the front substrate A and the rear substrate after dropping the liquid crystal were adsorbed to the electrostatic chuck. The front substrate A and the rear substrate were disposed so as to face each other, and the rear substrate was slowly lowered to stand still at a distance of 300 μm from the front substrate A. In this state, the pressure in the vacuum chamber was reduced to 100 Pa. The alignment position of the front substrate A and the rear substrate was adjusted using an alignment mark formed in advance. After the alignment was completed, the front substrate A and the rear substrate were brought closer to each other, and both base materials were held at a height where the sealing material and the TFT electrode layer were in contact with each other. In this state, an inert gas was introduced into the vacuum chamber, and the system was returned to atmospheric pressure. The front substrate A and the back substrate were pressed by atmospheric pressure, and a cell gap was formed at the height of the spacer (column spacer) including the liquid crystal alignment film. Subsequently, the sealing material application portion was irradiated with ultraviolet rays (365 nm, 30 kJ / m 2 ) to cure the sealing material, and liquid crystal cells A (A1 to A3) were obtained.
続いて、液晶滴下後の前面基板Aと背面基板とを静電チャックに吸着させた。前面基板Aと背面基板とが互いに向き合うように配置し、背面基板をゆっくり降下させて前面基板Aとの距離が300μmとなる距離で静止させた。この状態で真空チャンバー内を100Paまで減圧した。あらかじめ形成しておいたアライメントマークを用いて、前面基板Aと背面基板との貼り合わせ位置を調整した。アライメント完了後、前面基板Aと背面基板とをさらに接近させ、シール材とTFT電極層とが接する高さに両基材を保持した。この状態で真空チャンバー内に不活性ガスを導入し、系内を大気圧までもどした。大気圧により前面基板Aと背面基板が圧迫され、液晶配向膜を含むスペーサ(カラムスペーサ)の高さで、セルギャップが形成された。続いてシール材塗布部分に紫外線を照射して(365nm、30kJ/m2)シール材を硬化させ、液晶セルA(A1~A3)を得た。 Subsequently, an appropriate amount of liquid crystal was dropped using a dispenser at a predetermined position in the closed loop formed by the sealing material.
Subsequently, the front substrate A and the rear substrate after dropping the liquid crystal were adsorbed to the electrostatic chuck. The front substrate A and the rear substrate were disposed so as to face each other, and the rear substrate was slowly lowered to stand still at a distance of 300 μm from the front substrate A. In this state, the pressure in the vacuum chamber was reduced to 100 Pa. The alignment position of the front substrate A and the rear substrate was adjusted using an alignment mark formed in advance. After the alignment was completed, the front substrate A and the rear substrate were brought closer to each other, and both base materials were held at a height where the sealing material and the TFT electrode layer were in contact with each other. In this state, an inert gas was introduced into the vacuum chamber, and the system was returned to atmospheric pressure. The front substrate A and the back substrate were pressed by atmospheric pressure, and a cell gap was formed at the height of the spacer (column spacer) including the liquid crystal alignment film. Subsequently, the sealing material application portion was irradiated with ultraviolet rays (365 nm, 30 kJ / m 2 ) to cure the sealing material, and liquid crystal cells A (A1 to A3) were obtained.
(実施例用の液晶セルC作成)
前記液晶セルAにおいて、使用するシール材に繊維状物質を添加したものを使用した以外は前記方法と同様にして、液晶セルC(C2~C3)を得た。繊維状物質の添加量はシール材100質量部に対し1重量部を添加した。なお繊維状物質はセルロース極細繊維を用い、繊維自体は特開2008-266828号公報に記載された方法に従い作製した。得られたセルロース極細繊維の平均繊維径は1μm程度、平均繊維長さは0.2mm程度であった。 (Creation of liquid crystal cell C for Example)
In the liquid crystal cell A, liquid crystal cells C (C2 to C3) were obtained in the same manner as in the above method except that a sealing material to which a fibrous substance was added was used. The amount of the fibrous substance added was 1 part by weight with respect to 100 parts by weight of the sealing material. As the fibrous material, cellulose ultrafine fibers were used, and the fibers themselves were produced according to the method described in Japanese Patent Application Laid-Open No. 2008-266828. The obtained ultrafine cellulose fibers had an average fiber diameter of about 1 μm and an average fiber length of about 0.2 mm.
前記液晶セルAにおいて、使用するシール材に繊維状物質を添加したものを使用した以外は前記方法と同様にして、液晶セルC(C2~C3)を得た。繊維状物質の添加量はシール材100質量部に対し1重量部を添加した。なお繊維状物質はセルロース極細繊維を用い、繊維自体は特開2008-266828号公報に記載された方法に従い作製した。得られたセルロース極細繊維の平均繊維径は1μm程度、平均繊維長さは0.2mm程度であった。 (Creation of liquid crystal cell C for Example)
In the liquid crystal cell A, liquid crystal cells C (C2 to C3) were obtained in the same manner as in the above method except that a sealing material to which a fibrous substance was added was used. The amount of the fibrous substance added was 1 part by weight with respect to 100 parts by weight of the sealing material. As the fibrous material, cellulose ultrafine fibers were used, and the fibers themselves were produced according to the method described in Japanese Patent Application Laid-Open No. 2008-266828. The obtained ultrafine cellulose fibers had an average fiber diameter of about 1 μm and an average fiber length of about 0.2 mm.
(比較例の液晶セルB作成)
前記前面基板Aの代わりに前面基板Bを使用した以外は液晶セルAと同様にして、液晶セルB(B1~B3)を得た。また、液晶セルBではシール形成領域にカラムスペーサ(突起)が形成されていないことを考慮して、液晶充填領域と同等のセルギャップを保持できるよう、シール材の中にカラムスペーサとほぼ同じサイズの球状スペーサを1重量%混合した。 (Comparative liquid crystal cell B)
Liquid crystal cells B (B1 to B3) were obtained in the same manner as the liquid crystal cell A except that the front substrate B was used instead of the front substrate A. Considering that no column spacers (protrusions) are formed in the seal formation region in the liquid crystal cell B, the sealing material has approximately the same size as the column spacer so that a cell gap equivalent to that in the liquid crystal filling region can be maintained. 1% by weight of a spherical spacer was mixed.
前記前面基板Aの代わりに前面基板Bを使用した以外は液晶セルAと同様にして、液晶セルB(B1~B3)を得た。また、液晶セルBではシール形成領域にカラムスペーサ(突起)が形成されていないことを考慮して、液晶充填領域と同等のセルギャップを保持できるよう、シール材の中にカラムスペーサとほぼ同じサイズの球状スペーサを1重量%混合した。 (Comparative liquid crystal cell B)
Liquid crystal cells B (B1 to B3) were obtained in the same manner as the liquid crystal cell A except that the front substrate B was used instead of the front substrate A. Considering that no column spacers (protrusions) are formed in the seal formation region in the liquid crystal cell B, the sealing material has approximately the same size as the column spacer so that a cell gap equivalent to that in the liquid crystal filling region can be maintained. 1% by weight of a spherical spacer was mixed.
<シール幅評価>
(シール幅の計測方法)
デジタルマイクロスコープ(KH-7700、ハイロックス社製)を用いて、液晶セルのシール幅を測定した。シール幅の測定間隔を2mmとし、64箇所測定して、平均値と標準偏差を求めた。シール幅のバラツキを3σ/平均値×100(%)で評価した(σ=標準偏差)。 <Seal width evaluation>
(Measurement method of seal width)
The seal width of the liquid crystal cell was measured using a digital microscope (KH-7700, manufactured by Hilox). The measurement interval of the seal width was set to 2 mm, 64 points were measured, and the average value and the standard deviation were obtained. The variation in the seal width was evaluated by 3σ / average value × 100 (%) (σ = standard deviation).
(シール幅の計測方法)
デジタルマイクロスコープ(KH-7700、ハイロックス社製)を用いて、液晶セルのシール幅を測定した。シール幅の測定間隔を2mmとし、64箇所測定して、平均値と標準偏差を求めた。シール幅のバラツキを3σ/平均値×100(%)で評価した(σ=標準偏差)。 <Seal width evaluation>
(Measurement method of seal width)
The seal width of the liquid crystal cell was measured using a digital microscope (KH-7700, manufactured by Hilox). The measurement interval of the seal width was set to 2 mm, 64 points were measured, and the average value and the standard deviation were obtained. The variation in the seal width was evaluated by 3σ / average value × 100 (%) (σ = standard deviation).
(シール幅ばらつき及び制御性評価)
前記液晶セル作成方法において、シール幅が1.2mmまたは2mmとなるように設定した、液晶セルA1および液晶セルA2、及び比較用の液晶セルB1および液晶セルB2をそれぞれ使用した。
液晶セルAおよび液晶セルBのシール幅計測結果を表4に示す。 (Seal width variation and controllability evaluation)
In the liquid crystal cell preparation method, the liquid crystal cell A1 and the liquid crystal cell A2, and the liquid crystal cell B1 and the liquid crystal cell B2 for comparison, which were set to have a seal width of 1.2 mm or 2 mm, were used.
Table 4 shows the measurement results of the seal widths of the liquid crystal cell A and the liquid crystal cell B.
前記液晶セル作成方法において、シール幅が1.2mmまたは2mmとなるように設定した、液晶セルA1および液晶セルA2、及び比較用の液晶セルB1および液晶セルB2をそれぞれ使用した。
液晶セルAおよび液晶セルBのシール幅計測結果を表4に示す。 (Seal width variation and controllability evaluation)
In the liquid crystal cell preparation method, the liquid crystal cell A1 and the liquid crystal cell A2, and the liquid crystal cell B1 and the liquid crystal cell B2 for comparison, which were set to have a seal width of 1.2 mm or 2 mm, were used.
Table 4 shows the measurement results of the seal widths of the liquid crystal cell A and the liquid crystal cell B.
シール幅1.2mmのときは液晶セルA(A1)のシール幅バラツキは、液晶セルB(B1)のバラツキと比べて約3分の1と小さかった。シール幅2mmのときも液晶セルA(A2)はシール幅バラツキが小さく、ほぼ目標シール幅を達成できた。これに対し、液晶セルB(B2)ではシール幅2mmのとき目標シール幅を大幅に超過した。
この結果より、シール塗布部に突起を設けることにより、シール幅のバラツキを低く抑え、かつ、シール幅の制御性を向上することが可能となることが判る。 When the seal width was 1.2 mm, the variation in the seal width of the liquid crystal cell A (A1) was as small as about one third compared with the variation of the liquid crystal cell B (B1). Even when the seal width was 2 mm, the liquid crystal cell A (A2) had small seal width variations, and was able to achieve almost the target seal width. In contrast, in the liquid crystal cell B (B2), when the seal width was 2 mm, the target seal width was greatly exceeded.
From this result, it can be seen that by providing a protrusion on the seal application part, it is possible to suppress the variation in the seal width and to improve the controllability of the seal width.
この結果より、シール塗布部に突起を設けることにより、シール幅のバラツキを低く抑え、かつ、シール幅の制御性を向上することが可能となることが判る。 When the seal width was 1.2 mm, the variation in the seal width of the liquid crystal cell A (A1) was as small as about one third compared with the variation of the liquid crystal cell B (B1). Even when the seal width was 2 mm, the liquid crystal cell A (A2) had small seal width variations, and was able to achieve almost the target seal width. In contrast, in the liquid crystal cell B (B2), when the seal width was 2 mm, the target seal width was greatly exceeded.
From this result, it can be seen that by providing a protrusion on the seal application part, it is possible to suppress the variation in the seal width and to improve the controllability of the seal width.
また、両タイプの液晶セルのシール部を、透過型の光学顕微鏡を用いて100~200倍程度に拡大して観察した結果より、シール材中に分散させた球状スペーサが、シール幅より狭い範囲に偏在していることが確認された。特に突起の無い液晶セルBでは、シール材がシール幅方向へ延びていきやすく、これは球状スペーサの散布されていない側にシール材が流れ易いためと考えられた。その結果シール幅が広く、そのバラツキも大きくなっていた。突起を設けた液晶セルAでは、設けた突起またはスペーサがシール材の過度の流動を抑制するため、シール幅のばらつきが小さく抑えられたと考えられる。このことより、シール材塗布部分に、スペーサ(カラムスペーサ)を形成することによって、シール幅制御性が向上し、液晶パネルの狭額縁化に有効であることが示された。
In addition, as a result of observing the seal portion of both types of liquid crystal cells by magnifying them about 100 to 200 times using a transmission type optical microscope, the spherical spacers dispersed in the seal material are narrower than the seal width. It was confirmed that they were unevenly distributed. In particular, in the liquid crystal cell B having no protrusion, the sealing material tends to extend in the seal width direction, which is considered to be because the sealing material easily flows on the side where the spherical spacers are not dispersed. As a result, the seal width was wide and the variation was large. In the liquid crystal cell A provided with the protrusions, the provided protrusions or spacers suppress excessive flow of the sealing material, and thus it is considered that the variation in the seal width is suppressed to a small value. From this, it was shown that by forming a spacer (column spacer) in the sealant application portion, the seal width controllability is improved and effective for narrowing the frame of the liquid crystal panel.
(接着性評価1)
JIS-K-6854による方法に従って、引っ張り試験機(テンシロン、A&D社製)を用いて、液晶セルの90°剥離試験を行い、基板が剥れるときの応力を測定した。
具体的には、作製した液晶セルA、BまたはCの基板の端(ミミ)をテンシロンのエアチャックに固定し、もう一方の基板を90°剥離試験用専用治具に固定した。
引っ張り速度100mm/minの速度でエアチャック側を上方に引き上げた。このとき、もう一方の基板は専用治具の上を水平に移動した。
セルの基板を剥がしながら50mmほどエアチャックを引き上げたところで装置を停止させた。
セル基板が剥れ始めたときの応力から装置を停止したときの応力までを連続に測定し、その平均値を求めた。
応力はシール幅で規格化し、シール幅1mあたりの応力を剥離強度と定義した。 (Adhesion evaluation 1)
According to the method according to JIS-K-6854, a 90 ° peel test of the liquid crystal cell was performed using a tensile tester (Tensilon, manufactured by A & D), and the stress when the substrate peeled was measured.
Specifically, the end (mimi) of the substrate of the produced liquid crystal cell A, B or C was fixed to a tensilon air chuck, and the other substrate was fixed to a 90 ° peel test dedicated jig.
The air chuck side was pulled upward at a pulling speed of 100 mm / min. At this time, the other substrate moved horizontally on the dedicated jig.
The apparatus was stopped when the air chuck was lifted by about 50 mm while peeling the cell substrate.
From the stress when the cell substrate started to peel to the stress when the apparatus was stopped, the average value was obtained.
The stress was normalized by the seal width, and the stress per 1 m of the seal width was defined as the peel strength.
JIS-K-6854による方法に従って、引っ張り試験機(テンシロン、A&D社製)を用いて、液晶セルの90°剥離試験を行い、基板が剥れるときの応力を測定した。
具体的には、作製した液晶セルA、BまたはCの基板の端(ミミ)をテンシロンのエアチャックに固定し、もう一方の基板を90°剥離試験用専用治具に固定した。
引っ張り速度100mm/minの速度でエアチャック側を上方に引き上げた。このとき、もう一方の基板は専用治具の上を水平に移動した。
セルの基板を剥がしながら50mmほどエアチャックを引き上げたところで装置を停止させた。
セル基板が剥れ始めたときの応力から装置を停止したときの応力までを連続に測定し、その平均値を求めた。
応力はシール幅で規格化し、シール幅1mあたりの応力を剥離強度と定義した。 (Adhesion evaluation 1)
According to the method according to JIS-K-6854, a 90 ° peel test of the liquid crystal cell was performed using a tensile tester (Tensilon, manufactured by A & D), and the stress when the substrate peeled was measured.
Specifically, the end (mimi) of the substrate of the produced liquid crystal cell A, B or C was fixed to a tensilon air chuck, and the other substrate was fixed to a 90 ° peel test dedicated jig.
The air chuck side was pulled upward at a pulling speed of 100 mm / min. At this time, the other substrate moved horizontally on the dedicated jig.
The apparatus was stopped when the air chuck was lifted by about 50 mm while peeling the cell substrate.
From the stress when the cell substrate started to peel to the stress when the apparatus was stopped, the average value was obtained.
The stress was normalized by the seal width, and the stress per 1 m of the seal width was defined as the peel strength.
(剥離強度1)
液晶セルA(A1~A3)の剥離強度は、平均で約5×102N/mであった。剥離時、セル基板界面でシールの剥離は起こらず、基板内部化から破壊された。これに対し、液晶セルB(B1~B3)の剥離強度は、平均で約1×102N/mであり、剥離時に、セル基板界面でシールが剥離した。
この結果より、シール材塗布部分に突起を設けることにより、セルの破壊強度を大幅に強くすることが可能となる事が証明された。 (Peel strength 1)
The peel strength of the liquid crystal cells A (A1 to A3) was about 5 × 10 2 N / m on average. At the time of peeling, the seal was not peeled off at the cell substrate interface, and was destroyed from the inside of the substrate. In contrast, the peel strength of the liquid crystal cells B (B1 to B3) was about 1 × 10 2 N / m on average, and the seal peeled off at the cell substrate interface at the time of peeling.
From this result, it was proved that it is possible to greatly increase the breaking strength of the cell by providing the protrusion on the sealing material application portion.
液晶セルA(A1~A3)の剥離強度は、平均で約5×102N/mであった。剥離時、セル基板界面でシールの剥離は起こらず、基板内部化から破壊された。これに対し、液晶セルB(B1~B3)の剥離強度は、平均で約1×102N/mであり、剥離時に、セル基板界面でシールが剥離した。
この結果より、シール材塗布部分に突起を設けることにより、セルの破壊強度を大幅に強くすることが可能となる事が証明された。 (Peel strength 1)
The peel strength of the liquid crystal cells A (A1 to A3) was about 5 × 10 2 N / m on average. At the time of peeling, the seal was not peeled off at the cell substrate interface, and was destroyed from the inside of the substrate. In contrast, the peel strength of the liquid crystal cells B (B1 to B3) was about 1 × 10 2 N / m on average, and the seal peeled off at the cell substrate interface at the time of peeling.
From this result, it was proved that it is possible to greatly increase the breaking strength of the cell by providing the protrusion on the sealing material application portion.
(剥離強度2)
液晶セルC(C1~C3)での剥離強度は、平均で約7×102N/mであり、シール材中に繊維状物質を混合することにより、セルの破壊強度をより強くすることが可能となる事が分かった。 (Peel strength 2)
The peel strength in the liquid crystal cells C (C1 to C3) is about 7 × 10 2 N / m on average, and by mixing a fibrous substance in the sealing material, the breaking strength of the cells can be increased. I knew it would be possible.
液晶セルC(C1~C3)での剥離強度は、平均で約7×102N/mであり、シール材中に繊維状物質を混合することにより、セルの破壊強度をより強くすることが可能となる事が分かった。 (Peel strength 2)
The peel strength in the liquid crystal cells C (C1 to C3) is about 7 × 10 2 N / m on average, and by mixing a fibrous substance in the sealing material, the breaking strength of the cells can be increased. I knew it would be possible.
基板とシール材との界面付近で剥がれ等がなく、特に基板面に対して平行方向にかかる応力に対して界面剥がれ等の生じることのない液晶表示素子を提供する。
Provided is a liquid crystal display element that is free from peeling near the interface between a substrate and a sealing material, and that does not cause peeling especially due to stress applied in a direction parallel to the substrate surface.
100:基板a
101:バリア膜
102:TFT層
103:画素電極
104:パッシベーション膜
105:配向膜a
200:基板b
201:バリア膜
202:ブラックマトリックス
203:カラーフィルタ
204:透明電極
205:配向膜b
301:シール材
302:カラムスペーサ
303:液晶層
304:突起
401:パターンA
402:パターンスペーサ形成用組成物
403:ベースフィルム 100: Substrate a
101: barrier film 102: TFT layer 103: pixel electrode 104: passivation film 105: alignment film a
200: Substrate b
201: Barrier film 202: Black matrix 203: Color filter 204: Transparent electrode 205: Alignment film b
301: Sealing material 302: Column spacer 303: Liquid crystal layer 304: Protrusion 401: Pattern A
402: Composition for forming pattern spacer 403: Base film
101:バリア膜
102:TFT層
103:画素電極
104:パッシベーション膜
105:配向膜a
200:基板b
201:バリア膜
202:ブラックマトリックス
203:カラーフィルタ
204:透明電極
205:配向膜b
301:シール材
302:カラムスペーサ
303:液晶層
304:突起
401:パターンA
402:パターンスペーサ形成用組成物
403:ベースフィルム 100: Substrate a
101: barrier film 102: TFT layer 103: pixel electrode 104: passivation film 105: alignment film a
200: Substrate b
201: Barrier film 202: Black matrix 203: Color filter 204: Transparent electrode 205: Alignment film b
301: Sealing material 302: Column spacer 303: Liquid crystal layer 304: Protrusion 401: Pattern A
402: Composition for forming pattern spacer 403: Base film
Claims (11)
- 互いに対向する二つの基板と、前記基板間に設けられたシール材と、前記シール材に囲まれた封止領域に封入された液晶とを備え、前記シール材が接する基板面に突起が設けられていることを特徴とする液晶表示素子。 Two substrates facing each other, a sealing material provided between the substrates, and a liquid crystal sealed in a sealing region surrounded by the sealing material, and a protrusion is provided on a substrate surface in contact with the sealing material A liquid crystal display element characterized by comprising:
- 互いに対向する二つの基板と、前記基板間に設けられたシール材と、前記シール材に囲まれた封止領域に配置されたスペーサとを備え、
前記シール材が接する二つの基板の少なくとも1つの基板面には突起が設けられており、前記突起は前記スペーサと同じ材質から得られる請求項1に記載の液晶表示素子。 Two substrates facing each other, a sealing material provided between the substrates, and a spacer disposed in a sealing region surrounded by the sealing material,
The liquid crystal display element according to claim 1, wherein a protrusion is provided on at least one substrate surface of the two substrates in contact with the sealing material, and the protrusion is obtained from the same material as the spacer. - 前記突起1つあたりの設置面積が100μm2~1600μm2の範囲である請求項1または2に記載の液晶表示素子。 The liquid crystal display device according to claim 1 or 2 footprint per the projections is in the range of 100 [mu] m 2 ~ 1600 .mu.m 2.
- 前記突起が、シール材が接する基板面の単位面積当たり0.1%~16%の割合で設けられている請求項1~3のいずれかに記載の液晶表示素子。 4. The liquid crystal display element according to claim 1, wherein the protrusions are provided at a rate of 0.1% to 16% per unit area of the substrate surface in contact with the sealing material.
- 前記突起の形状が円錐台または角錐台である、請求項1~4のいずれかに記載の液晶表示素子。 5. The liquid crystal display element according to claim 1, wherein the shape of the protrusion is a truncated cone or a truncated pyramid.
- 前記シール材が繊維状の物質を含む請求項1~5のいずれかに記載の液晶表示素子。 6. The liquid crystal display element according to claim 1, wherein the sealing material contains a fibrous substance.
- 前記シール材が光硬化性である請求項1~6のいずれかに記載の液晶表示素子。 The liquid crystal display element according to any one of claims 1 to 6, wherein the sealing material is photocurable.
- 前記スペーサがカラムスペーサである請求項1に記載の液晶表示素子。 The liquid crystal display element according to claim 1, wherein the spacer is a column spacer.
- 請求項1~7のいずれかに記載の液晶表示素子の製造方法であって、
封止領域となる部分と、封止領域を形成するシール材が設けられる部分とを有する、前面基板のカラーフィルタが設けられた面の上に、
フォトリソグラフィによる方法又は液滴吐出法により、前記封止領域となる部分にはカラムスペーサを、シール材が接する位置となる部分には突起を、同時に設ける工程と、
突起が設けられた、シール材が設けられる部分に、シール材を塗布する工程と、
前記前面基板の封止領域に液晶を滴下する工程と、
前記前面基板とTFTを設けた背面基板とを、シール材を介して貼り合わせる工程と、
を有することを特徴とする液晶表示素子の製造方法。 A method for producing a liquid crystal display element according to any one of claims 1 to 7,
On the surface provided with the color filter of the front substrate, which has a portion to be a sealing region and a portion on which a sealing material that forms the sealing region is provided.
A step of simultaneously providing a column spacer in the portion to be the sealing region and a protrusion in a portion to be in contact with the sealing material by a photolithography method or a droplet discharge method;
A step of applying a sealing material to a portion where the protrusion is provided and the sealing material is provided;
Dropping liquid crystal on the sealing region of the front substrate;
Bonding the front substrate and the rear substrate provided with TFTs through a sealing material;
A method for producing a liquid crystal display element, comprising: - 前記シール材が光硬化型であり、前記前面基板とTFTを設けた背面基板とをシール材を介して貼り合わせた後、光照射を行う工程を含む、請求項9に記載の液晶表示素子の製造方法。 The liquid crystal display element according to claim 9, wherein the sealing material is a photocurable type, and includes a step of performing light irradiation after the front substrate and a rear substrate provided with TFTs are bonded together via the sealing material. Production method.
- 前記スペーサーがカラムスペーサである、請求項9または10に記載の液晶表示素子の製造方法。 The method for manufacturing a liquid crystal display element according to claim 9, wherein the spacer is a column spacer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010048268A JP2013101163A (en) | 2010-03-04 | 2010-03-04 | Liquid crystal display element and manufacturing method for the same |
JP2010-048268 | 2010-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011108642A1 true WO2011108642A1 (en) | 2011-09-09 |
Family
ID=44542289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054908 WO2011108642A1 (en) | 2010-03-04 | 2011-03-03 | Liquid crystal display element and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013101163A (en) |
WO (1) | WO2011108642A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111323973A (en) * | 2018-12-14 | 2020-06-23 | 乐金显示有限公司 | display device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105097785A (en) * | 2014-05-09 | 2015-11-25 | 群创光电股份有限公司 | Multiple electrostatic discharge ring device for display panel |
JP2019184905A (en) * | 2018-04-13 | 2019-10-24 | 株式会社ジャパンディスプレイ | Liquid crystal display device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318816A (en) * | 1991-04-18 | 1992-11-10 | Dainippon Printing Co Ltd | Liquid crystal display device and its manufacture |
JP2000310784A (en) * | 1999-02-22 | 2000-11-07 | Matsushita Electric Ind Co Ltd | Liquid crystal panel, color filter and method for producing them |
JP2003066467A (en) * | 2001-08-27 | 2003-03-05 | Sharp Corp | Liquid crystal display device and manufacturing method therefor |
JP2008009049A (en) * | 2006-06-28 | 2008-01-17 | Optrex Corp | Liquid crystal display panel |
-
2010
- 2010-03-04 JP JP2010048268A patent/JP2013101163A/en active Pending
-
2011
- 2011-03-03 WO PCT/JP2011/054908 patent/WO2011108642A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318816A (en) * | 1991-04-18 | 1992-11-10 | Dainippon Printing Co Ltd | Liquid crystal display device and its manufacture |
JP2000310784A (en) * | 1999-02-22 | 2000-11-07 | Matsushita Electric Ind Co Ltd | Liquid crystal panel, color filter and method for producing them |
JP2003066467A (en) * | 2001-08-27 | 2003-03-05 | Sharp Corp | Liquid crystal display device and manufacturing method therefor |
JP2008009049A (en) * | 2006-06-28 | 2008-01-17 | Optrex Corp | Liquid crystal display panel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111323973A (en) * | 2018-12-14 | 2020-06-23 | 乐金显示有限公司 | display device |
Also Published As
Publication number | Publication date |
---|---|
JP2013101163A (en) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101326452B (en) | Method for producing partition wall for color filter, substrate with partition wall for color filter, color filter for display element, and display device | |
JP5051858B2 (en) | Manufacturing method of color filter for display device | |
CN102576190A (en) | Colored photosensitive resin composition, color filter, and liquid crystal display device | |
JP2009172835A (en) | Printing apparatus and printing method | |
WO2011108642A1 (en) | Liquid crystal display element and manufacturing method thereof | |
JP4972990B2 (en) | Color filter and manufacturing method thereof | |
JP5030599B2 (en) | PHOTOSPACER FOR LIQUID CRYSTAL DISPLAY, ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE | |
JP4208356B2 (en) | Color filter with spacer and manufacturing method thereof | |
JP5079583B2 (en) | Photosensitive colored resin composition, color filter using the same, and display device including the color filter | |
JP4901198B2 (en) | Substrate for display device with spacer | |
JP4623559B2 (en) | Color filter for display device, color filter member, and method for manufacturing color filter for display device | |
JP2001235754A (en) | Liquid crystal display device and method of manufacturing liquid crystal display device | |
JP5095908B2 (en) | Printing apparatus and printing method | |
JP2008107779A (en) | Photosensitive transfer material, partition wall and method for forming the same, color filter and method for manufacturing the same, and display device | |
JP4774954B2 (en) | Substrate for display device with spacer | |
JP2001083525A (en) | Color filter with spacer, its production and liquid crystal device using that color filter | |
WO2007105381A1 (en) | Photosensitive resin composition for photospacer, method for producing photospacer, substrate for liquid crystal display, liquid crystal display element, and liquid crystal display | |
JP4985261B2 (en) | Color filter for transflective liquid crystal display device and manufacturing method thereof | |
JP4752256B2 (en) | Multi-sided substrate for color filters | |
JPH11338134A (en) | Production of transfer film and color filter | |
JP4681481B2 (en) | Pattern forming method and color filter manufacturing method | |
JP2006285211A (en) | Liquid crystal alignment control protrusion and method for manufacturing the same, photosensitive resin composition, resin transfer material, substrate for liquid crystal display device, liquid crystal display element, and liquid crystal display device | |
JP2007304169A (en) | Tft substrate with color filter, and its manufacturing method | |
JP6080693B2 (en) | Patterned substrate manufacturing method, color filter, and display device | |
JP2007304179A (en) | Color filter and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11750751 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11750751 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |