WO2011097854A1 - 基于多天线系统的空间射频性能测试方法及系统 - Google Patents
基于多天线系统的空间射频性能测试方法及系统 Download PDFInfo
- Publication number
- WO2011097854A1 WO2011097854A1 PCT/CN2010/073908 CN2010073908W WO2011097854A1 WO 2011097854 A1 WO2011097854 A1 WO 2011097854A1 CN 2010073908 W CN2010073908 W CN 2010073908W WO 2011097854 A1 WO2011097854 A1 WO 2011097854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- spatial
- path
- test
- sub
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000013507 mapping Methods 0.000 claims abstract description 33
- 238000004458 analytical method Methods 0.000 claims abstract description 23
- 238000011056 performance test Methods 0.000 claims abstract description 10
- 238000010521 absorption reaction Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 5
- 239000000243 solution Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000010267 cellular communication Effects 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/0082—Monitoring; Testing using service channels; using auxiliary channels
- H04B17/0087—Monitoring; Testing using service channels; using auxiliary channels using auxiliary channels or channel simulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/12—Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/29—Performance testing
Definitions
- the present invention relates to radio frequency testing technology, and in particular to a spatial RF performance testing method and system based on a multi-antenna system. Background technique
- TRP total Radiated Power
- TRS Total Radiated Sensitivity
- CTIA Cellular Communication Standardization Association
- TRP and TRS should meet certain limit requirements.
- TRP, TRS and other indicators are generally tested in traditional darkrooms.
- MIMO multi-antenna technology communication equipment and communication terminals
- the traditional darkroom cannot evaluate the spatial RF performance of multi-antenna terminals. Therefore, it is necessary to add new equipment to form a new darkroom test solution based on the traditional darkroom. Evaluating the spatial RF performance of MIMO systems and terminal antennas.
- the current international standards have not specified the test methods and test procedures for radio frequency indicators under multi-antenna systems. To this end, the present invention aims to provide a multi-antenna system.
- the space RF performance test method and system is not specified.
- the main object of the present invention is to provide a spatial radio frequency performance testing method and system based on a multi-antenna system, which can test the radio frequency performance of a multi-antenna terminal space.
- the present invention provides a spatial RF performance test method based on a multi-antenna system, and sets a combined sub-path number and sub-path mapping rule.
- the method includes:
- the channel simulator outputs a path signal to the branching device according to the signal input by the base station signal simulator; the branching device maps the path signal from the channel simulator to the test antenna according to the preset combined number of sub-paths and sub-path mapping rules set in advance ;
- the test antenna transmits a spatial signal according to a path signal from the branching device
- the device under test receives the spatial signal, and then the spatial RF performance analysis and display module analyzes and displays the spatial RF performance of the device under test according to the spatial signal received by the device under test.
- the number of the test antennas is equal to the number of paths of the channel model used by the channel simulator.
- the mapping of the path signal from the channel simulator to the test antenna is: combining the sub-paths of the path signal according to the set number of the combined sub-paths, and then arranging the combined sub-paths according to the set
- the subpath mapping rules are mapped to the test antenna.
- the device to be tested is located at the center of the all-wave absorption darkroom, and the test antenna is located on the circumference centered on the device to be tested.
- the spatial RF performance analysis and display module is implemented by a corresponding functional module in the test instrument/instrument; or the spatial RF performance analysis and display module is a separate device.
- the corresponding relationship between the path and the test antenna is set, and the number of the combined sub-paths is 3, and the sub-path mapping rule is: the sub-path signal with the strongest signal power in the sub-path of the path is mapped to The antenna corresponding to the path, the signals of the other two sub-paths are mapped to the two antennas on both sides of the antenna corresponding to the path.
- the invention also provides a spatial RF performance testing system based on a multi-antenna system, comprising: a base station signal simulator, a channel simulator, a branching device, an all-wave absorption darkroom, a test antenna, a device to be tested, and a spatial RF performance analysis and Display module; wherein
- the base station signal simulator is configured to simulate a transmission signal of the base station and output the signal to the channel simulator; the channel simulator is configured to output a path signal to the branching device according to the signal input by the base station signal simulator;
- the splitting device is configured to map a path signal from the channel simulator to the test antenna according to the preset combined number of sub-paths and sub-path mapping rules;
- the test antenna is located in a full-wave absorption darkroom for transmitting a spatial signal according to a radial signal from the branching device;
- the device to be tested is configured to receive a spatial signal sent by the test antenna
- the spatial RF performance analysis and display module is configured to analyze and display spatial RF performance of the device under test according to the spatial signal received by the device under test.
- the number of test antennas is equal to the number of output paths of the channel model used by the channel simulator.
- the branching device maps the path signal from the channel simulator to the test antenna according to: combining the sub-paths of the path signal according to the set number of combined sub-paths, and then combining the combined sub-paths Map to the test antenna according to the set sub-path mapping rules.
- the device to be tested is located at the center of the all-wave absorption darkroom, and the test antenna is located on the circumference centered on the device to be tested.
- the spatial RF performance analysis and display module is implemented by a corresponding functional module in the test instrument/instrument;
- the spatial RF performance analysis and display module is a separate device.
- the present invention is based on a spatial RF performance test method and system for a multi-antenna system, and maps a path signal outputted by a channel simulator to a test antenna according to a preset combined number of sub-paths and sub-path mapping rules, and the test antenna is mapped according to the
- the path signal sends a spatial signal, and then analyzes and displays the spatial RF performance of the device under test according to the spatial signal received by the device to be tested, thereby implementing testing of the spatial RF performance of the multi-antenna terminal.
- FIG. 1 is a schematic flowchart of a method for testing a spatial RF performance based on a multi-antenna system according to the present invention
- FIG. 2 is a schematic diagram of signal mapping between a track and a test antenna according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of spatial RF performance based on a multi-antenna system according to the present invention
- FIG. 4 is a schematic structural diagram of a spatial RF performance testing system based on a multi-antenna system according to an embodiment of the present invention.
- the basic idea of the present invention is: mapping a path signal outputted by a channel simulator to a test antenna according to a preset number of merged sub-paths and a sub-path mapping rule, and transmitting, by the test antenna, a spatial signal according to the mapped path signal, and then The spatial signal received by the device under test analyzes and displays the spatial RF performance of the device under test, thereby testing the spatial RF performance of the multi-antenna terminal.
- FIG. 1 is a schematic flowchart of a method for testing a spatial RF performance based on a multi-antenna system according to the present invention. As shown in FIG. 1, the method for testing a spatial RF performance based on a multi-antenna system generally includes the following steps:
- Step 101 A base station signal simulator (BS emulator) simulates a base station transmit signal and outputs it to a channel simulator.
- BS emulator base station signal simulator
- the base station signal simulator simulates the transmission signal of the base station, and outputs the transmission signal of the M base station, that is, the transmission signal of the M base station antenna.
- Step 102 The channel simulator outputs a path signal to the branching device according to the signal input by the base station signal simulator.
- the M channel output signal of the base station simulator is input to the channel simulator to simulate the case where the base station signal passes through the spatial channel, the channel simulator outputs the N channel signal, and the N channel signal is output to the N test antennas in the dark room.
- the N-channel signal output by the channel simulator is mapped to the N test antennas in a certain mapping relationship.
- N should be not less than the number of paths (main diameters, clusters) of the channel model used, and the preferred number of test antennas is the number of paths of the channel model, when determining the number of paths used by the OTA
- the preferred value should be determined after the channel model.
- the number of paths of the channel model defined by SCM, SCME, Winner I & II is 6 or 8, so the number of preferred single-polarization test antennas is 6 or 8, for In the case of dual polarization, two antennas that are cross-polarized at the same antenna position are configured for V&H or oblique X-cross polarization.
- the preferred value of the number of test antennas N should be 6 x 2 or 8 x 2 That is, 12 or 16, the number of test antennas may be equal to, but not limited to, the preferred value.
- test antennas are located in a full-wave absorption darkroom (such as an anechoic chamber, an anechoic chamber). These test antennas are located at different positions in the full-wave absorption darkroom, and the test antenna transmits signals with certain time and space characteristics. , used to test multi-antenna devices (terminals). Specifically, the device under test (DUT) is generally located at the center of the all-wave absorption darkroom, and the test antenna is located on the circumference centered on the DUT. This is to ensure that the signals sent by the respective test antennas reach the DUT at the same time. The DUT receives the signal from the space and processes the received signal, or processes it through the cable and processes it to verify the received signal, thereby completing the OTA test.
- DUT device under test
- the DUT receives the signal from the space and processes the received signal, or processes it through the cable and processes it to verify the received signal, thereby completing the OTA test.
- Step 103 The branching device maps the path signal from the channel simulator to the test antenna according to the preset combined number of sub-paths and sub-path mapping rules.
- the number of test antennas in the darkroom should be no less than (equal to or greater than)
- the number of paths (the same main path, the same cluster) of the channel model used, the preferred number of test antennas is the number of paths of the channel model, that is, the number N of test antennas selected in normal use is selected.
- the number of paths of the channel model is also based on the mapping method of the present invention.
- the signal mapping mode of the present invention is exemplified by a single polarization case, and the dual polarization case is the same as the single polarization mapping mode.
- the mapped signals are assigned to the dual-polarized antennas at the same position.
- each path is generally composed of P sub-paths, and the usual value of W is 20. Since the number of sub-paths is too large, the operation of signal mapping is too complicated, so the processing of sub-path combining is required.
- the merging can be performed by sub-path channel matrix element addition or vector addition. After the merging process, each path contains K sub-paths, where the number of K needs to be less than N, and the preferred value of K is 3, that is, sub-path merging is performed. After that, there are still N paths, but there are K sub-paths in each path.
- the signal from the channel 1 (pathl) to the path N (pathN) output from the channel simulator is output to the all-wave absorption darkroom through the cable, and the number of test antennas in the full-wave absorption darkroom is N, corresponding to 6 diameters, that is, each The antennas are in one-to-one correspondence with each of the paths.
- Each of the signals includes K sub-paths, and K sub-paths are respectively mapped to K antennas in the dark room.
- the K antennas include antennas corresponding to the paths.
- the test antenna transmits a spatial signal in a dark room.
- the present invention needs to pre-set the merged sub-path number and sub-path mapping rules.
- the mapping of the path signal from the channel emulator to the test antenna is: merging the sub-paths of the path signal according to the set number of merged sub-paths Then, the merged subpaths are mapped to the test antenna according to the set subpath mapping rules. For example, if the corresponding relationship between the diameter and the test antenna is set, and the number of sub-paths K after the combination is 3, each path after the sub-path merge is composed of 3 sub-paths, and the one with the strongest signal power among the three sub-paths The subpath is mapped to the antenna corresponding to the path, and the signals of the other two subpaths are mapped to the other two antennas in the darkroom. In general, the signals of the two subpaths are mapped to the antenna corresponding to the path. The two antennas on the side are shown in Figure 2.
- the sub-path mapping rule can have multiple selection manners, as in the above embodiment.
- One sub-path with the strongest signal power is mapped to the antenna corresponding to the path, and the signals of the other two sub-paths are mapped to the two antennas on both sides of the antenna corresponding to the path, and the order is determined, etc. the way.
- Step 104 The test antenna transmits a spatial signal according to the path signal from the branching device.
- Step 105 The device under test receives a spatial signal.
- Step 106 The spatial RF performance analysis and display module analyzes and displays the spatial RF performance of the device under test according to the spatial signal received by the device under test.
- the signal from the space can be received by the DUT, and the received signal can be analyzed and sent to other devices for display.
- the DUT can also transmit the received signal through the cable and analyze and display it by other devices.
- OTA test In other words, the spatial RF performance analysis and display module sometimes needs to perform performance index analysis, sometimes only as a performance display. In practical applications, the spatial RF performance analysis and display module can be directly implemented by using the corresponding functional modules in the test instrument/instrument, ie: direct utilization Test instrument/instrument for performance analysis and performance display.
- FIG. 3 is a schematic structural diagram of a spatial RF performance test system based on a multi-antenna system according to the present invention.
- the system includes: a base station signal simulator 301, a channel simulator 302, a branching device 303, and a full-wave absorption darkroom 304. a test antenna 305, a device under test 306, and a spatial RF performance analysis and display module 307;
- a base station signal simulator 301 configured to simulate a base station transmit signal and output to a channel simulator
- the channel simulator 302 is configured to output a path signal to the branching device 303 according to a signal input by the base station signal simulator;
- the branching device 303 is configured to map the path signal from the channel simulator to the test antenna 305 according to the preset number of merged sub-paths and sub-path mapping rules. Specifically, a mapping relationship similar to that shown in FIG. 2 may be adopted. Mapping the path signal to the corresponding test antenna;
- the test antenna 305 is located in the full electromagnetic wave absorption dark room 304 for use according to the device from the branching device
- the path signal sends a spatial signal
- the device under test 306 is configured to receive a spatial signal sent by the test antenna.
- the spatial RF performance analysis and display module 307 is configured to analyze and display the spatial RF performance of the device under test according to the spatial signal received by the device under test 306.
- the number of test antennas 305 is equal to the number of output paths of the channel simulator 302.
- the branching device 303 maps the path signal from the channel simulator 302 to the test antenna 305 by: combining the sub-paths of the path signal according to the set number of combined sub-paths, and then arranging the combined sub-paths according to the set The subpath mapping rules are mapped to the test antenna.
- the device under test 306 is located at the center of the all-wave absorption darkroom 304, and the test antenna is located on a circumference centered on the device to be tested.
- the space RF performance analysis and display module 307 can be directly implemented using the corresponding functional modules in the test instrument/instrument, or it can be used as a separate device in the space RF performance test system.
- FIG. 1 A spatial RF performance test system based on a multi-antenna system according to an embodiment of the present invention is shown in FIG.
- the present invention provides a spatial RF performance test method and system based on a channel RF simulator (channel simulator) and a full-wave absorption darkroom, and how to establish a test environment to implement an OTA for a MIMO system (MIMO terminal)
- the test and channel simulators regulate the signal processing, the relationship between the antenna and the signal in the full-wave absorption darkroom, and can effectively meet the requirements of the MIMO OTA.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Mobile Radio Communication Systems (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radio Transmission System (AREA)
Description
基于多天线系统的空间射频性能测试方法及系统 技术领域
本发明涉及射频测试技术, 尤其涉及一种基于多天线系统的空间射频 性能测试方法及系统。 背景技术
随着现代工业的发展, 各类无线通讯产品只有具备良好的发射和接收 性能才能保证通讯质量, 即总辐射功率(Total Radiated Power, TRP )要高 于一定值、 总辐射灵敏度(Total Radiated Sensitivity, TRS )要低于一定值, 也就是说空间射频性能(Over The Air, OTA )测试指标要良好。
蜂窝通讯标准化协会(CTIA ) 为了保障移动终端设备在网络中正常使 用, 制定了移动终端空间射频性能的测试标准即 《The test plan for mobile station OTA performance)), 目前, 很多运营商都要求进入其网络的移动终端 空间射频性能要按照 CTIA标准要求进行测试, TRP、 TRS要满足一定的限 值要求。
对于传统的单天线系统和终端, 一般在传统暗室中进行 TRP、 TRS等 指标的测试, 随着目前 LTE等系统即将产业化, 传统单天线系统和设备将 会逐渐过度为带有多输入多输出(MIMO )多天线技术的通信设备和通信终 端, 而传统暗室无法对多天线终端的空间射频性能进行性能评估, 所以, 需要在传统暗室的基础上添加新设备组成新型暗室的测试解决方案, 来评 估 MIMO系统和终端天线的空间射频性能, 而目前的国际标准中尚未对多 天线系统下的射频指标的测试方法和测试过程进行规定, 为此,本发明旨在 提供一种用于多天线系统下的空间射频性能测试方法及系统。
发明内容
有鉴于此, 本发明的主要目的在于提供一种基于多天线系统的空间射 频性能测试方法及系统, 能够实现对多天线终端空间射频性能的测试。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种基于多天线系统的空间射频性能测试方法, 设置合 并后的子径数及子径映射规则, 该方法包括:
信道模拟器根据基站信号模拟器输入的信号输出径信号至分路装置; 分路装置根据预先设置的合并后的子径数及子径映射规则, 将来自信 道模拟器的径信号映射到测试天线;
测试天线根据来自分路装置的径信号发送空间信号;
待测设备接收所述空间信号, 之后由空间射频性能分析与显示模块根 据所述待测设备接收的空间信号对所述待测设备的空间射频性能进行分析 及显示。
其中, 所述测试天线的数目等于信道模拟器所使用的信道模型的径的 数目。
上述方案中, 所述将来自信道模拟器的径信号映射到测试天线为: 根 据所述设置的合并后的子径数对径信号的子径进行合并, 再将合并后的子 径按照设置的子径映射规则映射到测试天线。
上述方案中, 待测设备位于全电波吸收暗室的中心位置、 测试天线位 于以待测设备为中心的圆周上。
上述方案中, 所述空间射频性能分析与显示模块通过测试仪器 /仪表中 相应功能模块实现; 或者, 所述空间射频性能分析与显示模块为一单独的 装置。
上述方案中,设置径与测试天线的对应关系 ,所述合并后的子径数为 3 , 所述子径映射规则为: 径的子径中信号功率最强的子径信号映射至与所述
径所对应的天线, 其他两条子径的信号映射至所述径所对应的天线两侧的 两根天线。
本发明还提供了一种基于多天线系统的空间射频性能测试系统, 包括: 基站信号模拟器、 信道模拟器、 分路装置、 全电波吸收暗室、 测试天线、 待测设备和空间射频性能分析与显示模块; 其中,
所述基站信号模拟器, 用于模拟基站的发射信号并输出至信道模拟器; 所述信道模拟器, 用于根据基站信号模拟器输入的信号输出径信号至 分路装置;
所述分路装置, 用于根据预先设置的合并后的子径数及子径映射规则, 将来自信道模拟器的径信号映射到测试天线;
所述测试天线, 位于全电波吸收暗室中, 用于根据来自分路装置的径 信号发送空间信号;
所述待测设备, 用于接收所述测试天线发送的空间信号;
所述空间射频性能分析与显示模块, 用于根据所述待测设备接收的空 间信号对所述待测设备的空间射频性能进行分析及显示。
上述方案中, 所述测试天线的数目等于信道模拟器所使用的信道模型 的输出径的数目。
上述方案中, 所述分路装置将来自信道模拟器的径信号映射到测试天 线为: 根据所述设置的合并后的子径数对径信号的子径进行合并, 再将合 并后的子径按照设置的子径映射规则映射到测试天线。
上述方案中, 待测设备位于全电波吸收暗室的中心位置、 测试天线位 于以待测设备为中心的圆周上。
上述方案中, 所述空间射频性能分析与显示模块通过测试仪器 /仪表中 相应功能模块实现; 或者,
所述空间射频性能分析与显示模块为一单独的装置。
本发明基于多天线系统的空间射频性能测试方法及系统, 根据预先设 置的合并后的子径数及子径映射规则将信道模拟器输出的径信号映射到测 试天线, 由测试天线根据映射后的径信号发送空间信号, 之后根据待测设 备接收的空间信号对所述待测设备的空间射频性能进行分析及显示, 从而 实现对多天线终端空间射频性能的测试。 附图说明
图 1为本发明基于多天线系统的空间射频性能测试方法流程示意图; 图 2为本发明一实施例的径与测试天线间信号映射情况示意图; 图 3为本发明基于多天线系统的空间射频性能测试系统结构示意图; 图 4为本发明一实施例的基于多天线系统的空间射频性能测试系统结 构示意图。 具体实施方式
本发明的基本思想是: 根据预先设置的合并后的子径数及子径映射规 则将信道模拟器输出的径信号映射到测试天线, 由测试天线根据映射后的 径信号发送空间信号, 之后根据待测设备接收的空间信号对所述待测设备 的空间射频性能进行分析及显示, 从而实现对多天线终端空间射频性能的 测试。
图 1 为本发明基于多天线系统的空间射频性能测试方法流程示意图, 如图 1 所示, 本发明基于多天线系统的空间射频性能测试方法一般包括以 下步驟:
步驟 101 : 基站信号模拟器(BS emulator )模拟基站的发射信号并输出 至信道模拟器。
例如,基站信号模拟器模拟基站的发射信号,输出 M路基站发射信号, 即 M根基站天线的发射信号。
步驟 102:信道模拟器根据基站信号模拟器输入的信号输出径信号至分 路装置。
这里, 基站模拟器的 M路输出信号输入至信道模拟器, 以模拟基站信 号通过空间信道的情况, 信道模拟器输出 N路信号, N路信号被输出至暗 室中的 N根测试天线。信道模拟器输出的 N路信号与 N根测试天线之间以 一定的映射关系进行映射。
设暗室中测试天线的数目为 N, N应该不小于所使用的信道模型的径 (主径, 簇) 的数目, 测试天线数目的优选值为信道模型的径的数目, 当 确定 OTA 所使用的信道模型后应该确定其优选值, 例如, 基于 SCM、 SCME、 Winner I & II定义的信道模型的径的数目为 6或 8, 所以, 优选的 单极化测试天线数目 N为 6或 8, 对于双极化情况, 在同一天线位置配置 有相互交叉极化的 2根天线, 为 V&H或倾斜的 X交叉极化, 所需要的测 试天线数 N的优选值应为 6 x 2或 8 x 2根, 即 12或 16根, 测试天线数目 可以等于但不限于此优选值。
需要说明的是, 所有测试天线均位于全电波吸收暗室 (如消声暗室、 吸波暗室) 中, 这些测试天线位于全电波吸收暗室中的不同位置, 测试天 线以一定的时间和空间特性发送信号, 用以测试多天线设备(终端)。 具体 的, 待测设备 ( device under test, DUT )一般位于全电波吸收暗室的中心位 置, 测试天线位于以 DUT为中心的圆周上, 这是为了保证各个测试天线所 发送的信号同时到达 DUT, 这样, DUT接收来自空间的信号, 并对接收信 号进行处理, 或者, 通过电缆线传出后进行处理, 对接收到的信号进行验 证, 从而完成 OTA测试。
步驟 103: 分路装置根据预先设置的合并后的子径数及子径映射规则, 将来自信道模拟器的径信号映射到测试天线。
根据前面所述, 暗室中测试天线的数目应该不小于 (等于或大于) 所
使用的信道模型的径(同主径, 同簇) 的数目, 测试天线数目的优选值为 信道模型的径的数目, 也就是说, 在通常使用中所选取的测试天线数目 N 即为所选用的信道模型的径的数目, 本发明后续的映射方法也是基于这一 点的, 并且, 本发明给出的信号映射方式以单极化情况进行举例, 双极化情 况与单极化的映射方式相同, 映射的信号分配给处于相同位置的双极化天 线即可。
本发明多天线系统中, 每条径一般由 P条子径组成, W通常的取值是 20, 由于子径数目过多, 信号映射的操作过于复杂, 所以需要进行子径合 并的处理。 合并可以通过子径信道矩阵元素相加或矢量相加等方式进行, 合并处理后每条径中含有 K条子径, 其中 K的数目需要小于 N, K的优选 值为 3 , 即进行子径合并后, 仍共有 N条径, 但每条径中有 K条子径。
从信道模拟器输出的径 1 ( pathl )〜径 N ( pathN ) 的信号通过电缆线 输出至全电波吸收暗室, 全电波吸收暗室中的测试天线数为 N, 分别对应 6 条径, 即每根天线均与每条径是一一对应的, 每条径的信号中又包括 K条 子径, K条子径分别映射至暗室中的 K根天线, 这 K根天线中包括这条径 所对应的天线, 测试天线在暗室中进行空间信号发送。
本发明需要预先设置合并后的子径数及子径映射规则, 所述将来自信 道模拟器的径信号映射到测试天线为: 根据设置的合并后的子径数对径信 号的子径进行合并, 再将合并后的子径按照设置的子径映射规则映射到测 试天线。 例如, 设置径与测试天线的对应关系, 且合并后的子径数 K为 3 的情况下, 经过子径合并后的每条径由 3条子径组成, 3条子径中信号功率 最强的一条子径映射至与这条径所对应的天线, 另 2条子径的信号映射至 暗室中的其它 2根天线, 一般情况下, 这 2条子径的信号会映射至这条径 所对应的天线两侧的两 ^天线, 如图 2所示。
需要说明的是, 子径映射规则可以有多种选择方式, 如上述实施例中
所述信号功率最强的一条子径映射至与这条径所对应的天线, 另 2条子径 的信号映射至这条径所对应的天线两侧的两根天线的方式, 以及按序确定 等方式。
步驟 104: 测试天线根据来自分路装置的径信号发送空间信号。
步驟 105: 待测设备接收空间信号。
步驟 106:空间射频性能分析与显示模块根据所述待测设备接收的空间 信号对所述待测设备的空间射频性能进行分析及显示。
这里, 可以由 DUT接收来自空间的信号, 对接收信号进行分析后将分 析结果发送至其他设备进行显示, 也可以由 DUT通过电缆线将接收信号传 出后由其他设备进行分析及显示, 从而完成 OTA测试。 换言之, 空间射频 性能分析与显示模块有时需要进行性能指标分析, 有时仅仅作为性能显示; 实际应用中, 空间射频性能分析与显示模块可以直接采用测试仪器 /仪表中 相应功能模块完成, 即: 直接利用测试仪器 /仪表进行性能分析及性能显示。
图 3 为本发明基于多天线系统的空间射频性能测试系统结构示意图, 如图 3所示, 该系统包括: 基站信号模拟器 301、 信道模拟器 302、 分路装 置 303、 全电波吸收暗室 304、 测试天线 305、 待测设备 306和空间射频性 能分析与显示模块 307; 其中,
基站信号模拟器 301 , 用于模拟基站的发射信号并输出至信道模拟器
302;
信道模拟器 302,用于根据基站信号模拟器输入的信号输出径信号至分 路装置 303;
分路装置 303 , 用于根据预先设置的合并后的子径数及子径映射规则, 将来自信道模拟器的径信号映射到测试天线 305; 具体的, 可以采用类似图 2所示的映射关系将径信号映射到相应的测试天线上;
测试天线 305 ,位于全电波吸收暗室 304中, 用于根据来自分路装置的
径信号发送空间信号;
待测设备 306 , 用于接收所述测试天线发送的空间信号;
空间射频性能分析与显示模块 307,用于根据待测设备 306接收的空间 信号对所述待测设备的空间射频性能进行分析及显示。
测试天线 305的数目等于信道模拟器 302输出径的数目。
分路装置 303将来自信道模拟器 302的径信号映射到测试天线 305为: 根据所述设置的合并后的子径数对径信号的子径进行合并, 再将合并后的 子径按照设置的子径映射规则映射到测试天线。
待测设备 306位于全电波吸收暗室 304的中心位置、 测试天线位于以 待测设备为中心的圆周上。
空间射频性能分析与显示模块 307可以直接采用测试仪器 /仪表中相应 功能模块完成, 也可以作为一个单独的装置位于空间射频性能测试系统中。
本发明一实施例的基于多天线系统的空间射频性能测试系统如图 4所 示。
可以看出, 本发明提供了一种基于信道射频模拟器 (信道模拟器) 与 全电波吸收暗室的空间射频性能测试方法及系统,对于如何建立测试环境, 实现对于 MIMO系统( MIMO终端 )的 OTA测试、信道模拟器对于信号的 处理、 全电波吸收暗室中天线与信号的关系等问题进行了规定, 能够有效 地满足 MIMO OTA的需求。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。
Claims
1、 一种基于多天线系统的空间射频性能测试方法, 其特征在于, 设置 合并后的子径数及子径映射规则, 该方法包括:
信道模拟器根据基站信号模拟器输入的信号输出径信号至分路装置; 分路装置根据预先设置的合并后的子径数及子径映射规则, 将来自信 道模拟器的径信号映射到测试天线;
测试天线根据来自分路装置的径信号发送空间信号;
待测设备接收所述空间信号, 之后由空间射频性能分析与显示模块根 据所述待测设备接收的空间信号对所述待测设备的空间射频性能进行分析 及显示。
2、 根据权利要求 1所述的方法, 其特征在于, 所述测试天线的数目等 于信道模拟器所使用的信道模型的径的数目。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述将来自信道模 拟器的径信号映射到测试天线为: 根据所述设置的合并后的子径数对径信 号的子径进行合并, 再将合并后的子径按照设置的子径映射规则映射到测 试天线。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 待测设备位于全电 波吸收暗室的中心位置、 测试天线位于以待测设备为中心的圆周上。
5、 根据权利要求 1或 2所述的方法, 其特征在于, 所述空间射频性能 分析与显示模块通过测试仪器 /仪表中相应功能模块实现; 或者,
所述空间射频性能分析与显示模块为一单独的装置。
6、 根据权利要求 3所述的方法, 其特征在于, 设置径与测试天线的对 应关系, 所述合并后的子径数为 3 , 所述子径映射规则为: 径的子径中信号 功率最强的子径信号映射至与所述径所对应的天线, 其他两条子径的信号 映射至所述径所对应的天线两侧的两根天线。
7、 一种基于多天线系统的空间射频性能测试系统, 其特征在于, 该系 统包括: 基站信号模拟器、 信道模拟器、 分路装置、 全电波吸收暗室、 测 试天线、 待测设备和空间射频性能分析与显示模块; 其中,
所述基站信号模拟器, 用于模拟基站的发射信号并输出至信道模拟器; 所述信道模拟器, 用于根据基站信号模拟器输入的信号输出径信号至 分路装置;
所述分路装置, 用于根据预先设置的合并后的子径数及子径映射规则, 将来自信道模拟器的径信号映射到测试天线;
所述测试天线, 位于全电波吸收暗室中, 用于根据来自分路装置的径 信号发送空间信号;
所述待测设备, 用于接收所述测试天线发送的空间信号;
所述空间射频性能分析与显示模块, 用于根据所述待测设备接收的空 间信号对所述待测设备的空间射频性能进行分析及显示。
8、 根据权利要求 7所述的系统, 其特征在于, 所述测试天线的数目等 于信道模拟器所使用的信道模型的径的数目。
9、 根据权利要求 7或 8所述的系统, 其特征在于, 所述分路装置将来 自信道模拟器的径信号映射到测试天线为: 根据所述设置的合并后的子径 数对径信号的子径进行合并, 再将合并后的子径按照设置的子径映射规则 映射到测试天线。
10、 根据权利要求 7或 8所述的系统, 其特征在于, 待测设备位于全 电波吸收暗室的中心位置、 测试天线位于以待测设备为中心的圆周上。
11、 根据权利要求 7或 8所述的系统, 其特征在于, 所述空间射频性 能分析与显示模块通过测试仪器 /仪表中相应功能模块实现; 或者,
所述空间射频性能分析与显示模块为一单独的装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/578,206 US8805290B2 (en) | 2010-02-12 | 2010-06-12 | Method and system for spatial radio-frequency performance testing based on multiple-antenna system |
EP10845526.2A EP2521282B1 (en) | 2010-02-12 | 2010-06-12 | Method and system for spatial radio-frequency performance testing based on multiple-antenna system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010109491.5 | 2010-02-12 | ||
CN2010101094915A CN102158873A (zh) | 2010-02-12 | 2010-02-12 | 基于多天线系统的空间射频性能测试方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011097854A1 true WO2011097854A1 (zh) | 2011-08-18 |
Family
ID=44367187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/073908 WO2011097854A1 (zh) | 2010-02-12 | 2010-06-12 | 基于多天线系统的空间射频性能测试方法及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8805290B2 (zh) |
EP (1) | EP2521282B1 (zh) |
CN (1) | CN102158873A (zh) |
WO (1) | WO2011097854A1 (zh) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8938201B2 (en) | 2010-04-16 | 2015-01-20 | Spirent Communications, Inc. | WiFi positioning bench test method and instrument |
US9125068B2 (en) | 2010-06-04 | 2015-09-01 | Ixia | Methods, systems, and computer readable media for simulating realistic movement of user equipment in a long term evolution (LTE) network |
US9698920B2 (en) * | 2012-02-13 | 2017-07-04 | Keysight Technologies Singapore (Holdings) Pte. Ltd. | Radio channel data and the use thereof |
CN102830298B (zh) * | 2012-07-27 | 2017-04-12 | 中兴通讯股份有限公司 | 一种有源天线系统射频指标及无线指标的测试方法与装置 |
US9519063B2 (en) | 2013-03-05 | 2016-12-13 | Spirent Communications, Inc. | System and method for testing real world A-GNSS performance of a device |
US9596166B2 (en) | 2013-04-26 | 2017-03-14 | Ixia | Methods, systems, and computer readable media for testing inter-cell interference coordination capabilities of wireless access access nodes |
US9351186B2 (en) | 2013-05-16 | 2016-05-24 | Ixia | Methods, systems, and computer readable media for frequency selective channel modeling |
US10243628B2 (en) * | 2015-07-16 | 2019-03-26 | Spirent Communications, Inc. | Massive MIMO array emulation |
CN105656569B (zh) * | 2016-03-15 | 2018-12-21 | 深圳市共进电子股份有限公司 | 无线信号测量系统 |
US10244411B2 (en) | 2016-06-14 | 2019-03-26 | Spirent Communications, Inc. | Over the air testing for massive MIMO arrays |
US10601695B2 (en) * | 2016-09-01 | 2020-03-24 | Keysight Technologies, Inc. | Systems and methods for radio channel emulation of a multiple input multiple output (MIMO) wireless link |
CN108988960B (zh) * | 2017-05-31 | 2021-06-29 | 川升股份有限公司 | 多输入多输出天线吞吐量量测系统 |
US10103823B1 (en) | 2017-09-30 | 2018-10-16 | Keysight Technologies, Inc. | Radio channel emulator having a dynamically-variable channel model for use in testing base stations and user equipment (UE) that perform analog beam forming |
US10110326B1 (en) * | 2017-09-30 | 2018-10-23 | Keysight Technologies, Inc. | Multi-probe anechoic chamber (MPAC) over-the-air (OTA) test system having a radio channel (RC) emulator that has a dynamically-variable channel model, and methods |
US10313034B2 (en) | 2017-10-12 | 2019-06-04 | Spirent Communications, Inc. | Massive MIMO array testing using a programmable phase matrix and channel emulator |
US10587350B2 (en) | 2017-10-12 | 2020-03-10 | Spirent Communications, Inc. | Calibrating a programmable phase matrix and channel emulator and performing massive MIMO array testing using the calibrated phase matrix and channel emulator |
US10542443B2 (en) | 2017-10-27 | 2020-01-21 | Keysight Technologies, Inc. | Methods, systems, and computer readable media for testing long term evolution (LTE) air interface device using emulated noise in unassigned resource blocks (RBs) |
US10505646B2 (en) | 2017-12-15 | 2019-12-10 | Keysight Technologies, Inc. | Systems and methods for testing a wireless device having a beamforming circuit |
CN108134636B (zh) * | 2018-03-01 | 2023-05-26 | 上海鸿洛通信电子有限公司 | Ota测试暗室及测试系统 |
JP6836565B2 (ja) * | 2018-10-12 | 2021-03-03 | アンリツ株式会社 | アンテナ装置及び測定方法 |
US10684318B1 (en) * | 2018-10-30 | 2020-06-16 | Keysight Technologies, Inc. | System and method for testing analog beamforming device |
KR102659215B1 (ko) * | 2018-11-19 | 2024-04-22 | 삼성전자주식회사 | 복수의 방향을 갖는 빔포밍 신호를 측정하는 전자 장치 및 이의 동작 방법 |
CN111224696B (zh) * | 2018-11-26 | 2021-04-20 | 深圳市通用测试系统有限公司 | 无线终端的无线性能测试方法及系统 |
US10735110B2 (en) | 2018-12-07 | 2020-08-04 | Keysight Technologies, Inc. | Methods, systems, and computer readable media for testing and modeling beamforming capabilities of a device under test |
US11089495B2 (en) | 2019-07-11 | 2021-08-10 | Keysight Technologies, Inc. | Methods, systems, and computer readable media for testing radio access network nodes by emulating band-limited radio frequency (RF) and numerology-capable UEs in a wideband 5G network |
US11088744B1 (en) | 2020-02-07 | 2021-08-10 | Keysight Technologies, Inc. | Methods, systems, and computer readable media for 5G digital beamforming testing |
US12292515B2 (en) | 2020-07-14 | 2025-05-06 | Spirent Communications Plc | Generating and distributing GNSS risk analysis data for facilitating safe routing of autonomous drones |
US12298409B2 (en) | 2020-07-14 | 2025-05-13 | Spirent Communications Plc | GNSS forecast and background obscuration prediction |
US11536855B2 (en) | 2020-07-14 | 2022-12-27 | Spirent Communications Plc | Path planning using forecasts of obscuration and multipath |
US11789161B2 (en) | 2020-07-14 | 2023-10-17 | Spirent Communications Plc | Accuracy of a GNSS receiver that has a non-directional antenna |
US12282101B2 (en) | 2020-07-14 | 2025-04-22 | Spirent Communications Plc | GNSS forecast and line of sight detection |
US12265159B2 (en) | 2020-07-14 | 2025-04-01 | Spirent Communications Plc | GNSS forecast impacting receiver startup |
US11287531B2 (en) | 2020-07-14 | 2022-03-29 | Spirent Communications, Plc | Architecture for providing forecasts of GNSS obscuration and multipath |
US12316390B2 (en) * | 2023-03-14 | 2025-05-27 | Plume Design, Inc. | Systems and methods for selecting reference units for calibration of OTA testing stations |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080056340A1 (en) * | 2006-07-24 | 2008-03-06 | Michael Foegelle | Systems and methods for over the air performance testing of wireless devices with multiple antennas |
CN101262284A (zh) * | 2007-03-05 | 2008-09-10 | 大唐移动通信设备有限公司 | 一种无线信道模拟和测试的方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7349670B2 (en) * | 2005-04-12 | 2008-03-25 | Azimuth Systems Inc. | Modular wireless test architecture and method |
CN101170333B (zh) * | 2007-11-16 | 2011-05-11 | 山东大学 | 分布式多输入多输出无线通信系统真实环境测试平台 |
US8098590B2 (en) * | 2008-06-13 | 2012-01-17 | Qualcomm Incorporated | Apparatus and method for generating performance measurements in wireless networks |
CN101610106B (zh) * | 2008-06-16 | 2013-03-20 | 中兴通讯股份有限公司 | 准确模拟无线移动终端接收信号时的多天线效应的方法 |
US7995968B2 (en) * | 2009-02-11 | 2011-08-09 | Sony Ericsson Mobile Communications Ab | Measuring absolute total isotropic sensitivity of wireless communication devices in scattered field chambers |
-
2010
- 2010-02-12 CN CN2010101094915A patent/CN102158873A/zh active Pending
- 2010-06-12 WO PCT/CN2010/073908 patent/WO2011097854A1/zh active Application Filing
- 2010-06-12 EP EP10845526.2A patent/EP2521282B1/en not_active Not-in-force
- 2010-06-12 US US13/578,206 patent/US8805290B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080056340A1 (en) * | 2006-07-24 | 2008-03-06 | Michael Foegelle | Systems and methods for over the air performance testing of wireless devices with multiple antennas |
CN101262284A (zh) * | 2007-03-05 | 2008-09-10 | 大唐移动通信设备有限公司 | 一种无线信道模拟和测试的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102158873A (zh) | 2011-08-17 |
EP2521282B1 (en) | 2015-09-09 |
US20120309323A1 (en) | 2012-12-06 |
EP2521282A4 (en) | 2013-12-18 |
EP2521282A1 (en) | 2012-11-07 |
US8805290B2 (en) | 2014-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011097854A1 (zh) | 基于多天线系统的空间射频性能测试方法及系统 | |
CN102136873B (zh) | 天线测试系统及天线测试方法 | |
EP2533572B1 (en) | Method and system for testing over the air performances in multi-antenna system | |
US8793093B2 (en) | Tools for design and analysis of over-the-air test systems with channel model emulation capabilities | |
WO2011088696A1 (zh) | 一种天线系统空间射频性能的测试方法及系统 | |
CN104283623B (zh) | 一种支持多小区干扰的mimo-ota测试方法 | |
CN103188022B (zh) | 一种天线相关性的测试方法和系统 | |
EP2512173A1 (en) | Method and apparatus for testing total isotropic sensitivity in multi-antenna mimo system | |
CN102148649B (zh) | 实现多天线设备空间射频性能测试的方法及系统 | |
CN106788791B (zh) | 暗室多波面控制器测试系统、方法及装置 | |
CN105813124A (zh) | Wifi和/或lte终端设备的性能测试方法及系统 | |
EP3890199A1 (en) | Method and system for testing wireless performance of wireless terminal | |
WO2017215020A1 (zh) | 用于大规模mimo系统基站的测试方法及装置 | |
CN105182370A (zh) | 一种北斗设备的模组间电磁干扰测试方法 | |
CN106559149A (zh) | 一种多终端的吞吐量测试方法及装置 | |
WO2011097900A1 (zh) | 基于多天线系统的空间射频性能测试方法及系统 | |
CN103441785B (zh) | 基于全消声暗室的多天线信道环境模拟系统及方法 | |
WO2011094988A1 (zh) | 一种多天线终端的测试方法和系统 | |
WO2011020268A1 (zh) | 一种多天线系统空间射频性能的测试方法和测试系统 | |
Shen et al. | A throughput fast measurement method for two-antenna equipped wireless MIMO terminals | |
Gao et al. | Over-the-air testing for carrier aggregation enabled MIMO terminals using radiated two-stage method | |
CN102325336A (zh) | 一种同频邻小区干扰抑制性能测试系统及方法 | |
Fan et al. | MIMO device performance testing with the wireless cable method | |
Liu et al. | Challenges on wireless performance testing for 5G massive MIMO | |
Buris | MIMO Antenna System Throughput Simulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10845526 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010845526 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13578206 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |