WO2011089701A1 - リチウム二次電池 - Google Patents
リチウム二次電池 Download PDFInfo
- Publication number
- WO2011089701A1 WO2011089701A1 PCT/JP2010/050726 JP2010050726W WO2011089701A1 WO 2011089701 A1 WO2011089701 A1 WO 2011089701A1 JP 2010050726 W JP2010050726 W JP 2010050726W WO 2011089701 A1 WO2011089701 A1 WO 2011089701A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- pore
- pore diameter
- secondary battery
- lithium secondary
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 115
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 103
- 239000011148 porous material Substances 0.000 claims abstract description 316
- 239000004020 conductor Substances 0.000 claims abstract description 55
- 238000009826 distribution Methods 0.000 claims abstract description 49
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims description 108
- 239000007774 positive electrode material Substances 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 238000005259 measurement Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000006230 acetylene black Substances 0.000 claims description 4
- 239000006232 furnace black Substances 0.000 claims description 3
- 239000003273 ketjen black Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 28
- 239000013543 active substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 103
- 239000002245 particle Substances 0.000 description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 18
- 229910001416 lithium ion Inorganic materials 0.000 description 18
- 239000011230 binding agent Substances 0.000 description 16
- 239000011255 nonaqueous electrolyte Substances 0.000 description 16
- 239000003125 aqueous solvent Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- -1 nickel metal hydride Chemical class 0.000 description 13
- 239000002904 solvent Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 229910052723 transition metal Inorganic materials 0.000 description 11
- 239000002131 composite material Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 8
- 239000008151 electrolyte solution Substances 0.000 description 8
- 239000002905 metal composite material Substances 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 235000002639 sodium chloride Nutrition 0.000 description 8
- 239000011572 manganese Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000002800 charge carrier Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000002174 Styrene-butadiene Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 229910013716 LiNi Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 2
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002642 lithium compounds Chemical class 0.000 description 2
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910018584 Mn 2-x O 4 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- MZZUATUOLXMCEY-UHFFFAOYSA-N cobalt manganese Chemical compound [Mn].[Co] MZZUATUOLXMCEY-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000011254 layer-forming composition Substances 0.000 description 1
- 229910021439 lithium cobalt complex oxide Inorganic materials 0.000 description 1
- 229910021445 lithium manganese complex oxide Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 229910052596 spinel Chemical group 0.000 description 1
- 239000011029 spinel Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
Definitions
- the present invention relates to a lithium secondary battery and a method for producing the battery. Specifically, the present invention relates to the positive electrode of the battery.
- a lithium secondary battery (typically a lithium ion battery) that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle (for example, an automobile, particularly a hybrid automobile or an electric automobile). ing.
- a lithium secondary battery used in a mode in which rapid charging / discharging (so-called high-rate charging / discharging) is repeatedly performed as a high-output power source mounted on a vehicle a battery having good electrical performance over a long period of time, that is, A battery having excellent durability (cycle characteristics) is demanded.
- an electrode mixture layer (a positive electrode mixture layer and a negative electrode mixture layer) capable of reversibly occluding and releasing charge carriers (lithium ions) formed on the surface of the electrode current collector. Attempts have been made to improve the structure to have better high rate and cycle characteristics.
- Patent Document 1 can be cited as a prior art for examining the structure of the positive electrode mixture layer.
- the low temperature characteristics of the battery are improved by setting the pore diameter in the positive electrode mixture layer or the pore volume per unit weight of the positive electrode active material in the positive electrode mixture layer within a predetermined range.
- patent document 2 and patent document 3 the pore distribution of the positive electrode active material which comprises a positive electrode compound material layer, etc. are examined, respectively.
- Patent Literature 1 is still a sufficient technical examination regarding the structure of the positive electrode mixture layer having good conductivity, which can be said to be one of the study subjects required for a lithium secondary battery excellent in high rate characteristics or cycle characteristics. I can not say.
- the positive electrode composite layer takes into account the content of the conductive material in spite of the fact that a high conductive material powder (conductive material) is contained in the positive electrode composite layer for the purpose of supplementing the conductivity.
- the structure of the material layer that is, the state of pores (voids) in the positive electrode mixture layer formed with the material constituting the positive electrode mixture layer. Therefore, when a lithium secondary battery is used in such a manner that high-rate charge / discharge is repeated without forming a good conductive path (conductive path) in the positive electrode mixture layer, the internal resistance may be increased.
- an object is to provide a lithium secondary battery having excellent battery characteristics (high rate characteristics or cycle characteristics) as a high-output power source mounted on a vehicle.
- the present invention provides a lithium secondary battery including a positive electrode current collector and a positive electrode having a positive electrode mixture layer containing a positive electrode active material and a conductive material on the surface of the current collector.
- the positive electrode mixture layer of the lithium secondary battery according to the present invention has two large and small differential pore volume peaks in the pore diameter range of 0.01 ⁇ m to 10 ⁇ m in the pore distribution curve measured with a mercury porosimeter. Among the two large and small peaks, the pore diameter of peak B having the smaller differential pore volume is configured to be smaller than the pore diameter of peak A having the larger differential pore volume. .
- the “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by movement of lithium ions between the positive and negative electrodes.
- a secondary battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification.
- the “positive electrode active material” refers to a positive electrode capable of reversibly occluding and releasing (typically inserting and desorbing) chemical species (here, lithium ions) that serve as charge carriers in a secondary battery. The active material on the side.
- the present inventor prefers a large number of pores (especially, pores having a small pore diameter generated in a gap between conductive materials) in the positive electrode mixture layer in the positive electrode in a lithium secondary battery excellent in high rate characteristics or cycle characteristics.
- the nonaqueous electrolyte was impregnated (held) in the pores and a good conductive path (conductive path) was formed, and the present invention was completed.
- the lithium secondary battery according to the present invention includes a positive electrode having a positive electrode mixture layer containing a positive electrode active material and a conductive material, and the pore distribution curve of the positive electrode mixture layer measured by a mercury porosimeter is large or small.
- the pore diameter of the smaller peak B of the differential pore volume is smaller than the larger pore diameter peak A of the larger differential pore volume.
- the hole diameter is configured.
- the pore diameter P [ ⁇ m] at the minimum value between the two large and small peaks is between 0.1 ⁇ m and 0.7 ⁇ m.
- the large pore peak A generally indicates pores generated in the gap between the positive electrode active materials
- the small pore peak B generally indicates pores generated in the gap between the conductive materials. It is possible.
- the pores composed of such a large pore diameter peak A and small pore diameter peak B are formed in the positive electrode mixture layer, the holding power of the non-aqueous electrolyte in the pores is improved.
- the lithium ions are efficiently transferred through the electrolytic solution impregnated (held) therein. As a result, it is possible to provide a lithium secondary battery having excellent battery performance (cycle characteristics or high rate characteristics) even when used in a mode in which high rate charge / discharge is repeated.
- the total pore volume (cumulative pore volume) is, meets the 0.18cm 3 /g ⁇ 0.8cm 3 / g.
- the small pore diameter peak B generally indicates the pores formed by the gaps between the conductive materials. Accordingly, the unit of the conductive material in the pores having a pore diameter smaller than the pore diameter P [ ⁇ m] including the small pore diameter peak B (typically a pore diameter in the range of 0.01 ⁇ m to P [ ⁇ m]).
- the non-aqueous electrolyte suitable amount to the pores formed by the gaps between the conductive material Since the liquid is sufficiently retained, the conductivity of the positive electrode mixture layer is improved. As a result, a lithium secondary battery having excellent battery performance (cycle characteristics or high rate characteristics) can be provided.
- the fine pore distribution curve has a pore diameter smaller than the pore diameter P [ ⁇ m] including the small pore diameter peak B in the pore distribution curve.
- the total pore volume Sb [cm 3 / g] of the pore is the total pore volume Sa [cm 3 / g] of the pore having a pore diameter larger than the pore diameter P [ ⁇ m] including the large pore diameter peak A. ] Smaller than the above. More preferably, the ratio (Sb / Sa) of the total pore volume Sb [cm 3 / g] to the total pore volume Sa [cm 3 / g] is 0.4 ⁇ (Sb / Sa).
- the total pore volume Sb [cm 3 / g] including the small pore diameter peak B and the total pore volume Sa [cm 3 / g] including the large pore diameter peak A are formed so as to satisfy the above relationship.
- the number of pores having a small pore diameter is greater than or equal to the number of pores having a large pore diameter.
- the pores having such small pore diameters have a non-uniform salt concentration due to the electrolyte flowing out of the polar group system during charge / discharge once the nonaqueous electrolyte is impregnated (held) than the pores having the large pore diameter. Occurrence can be suppressed.
- lithium ions are efficiently transferred through the electrolyte solution impregnated in the pores in the positive electrode mixture layer, and an increase in internal resistance is suppressed even for high-rate charge / discharge.
- a lithium secondary battery can be provided.
- At least one selected from the group consisting of acetylene black, furnace black, ketjen black, and graphite powder is used as the conductive material contained in the positive electrode mixture layer.
- a seed is used.
- the material having a smaller particle size and better conductivity than the positive electrode active material suitably forms gaps (pores) having a small pore diameter in the positive electrode mixture layer.
- the positive electrode mixture layer has a layer density of 1.5 g / cm 3 to 2.8 g / cm 3 .
- the mass per unit volume (layer density) of the positive electrode mixture layer composed of the positive electrode active material and the solid material of the conductive material (including other additives such as a binder) is 1.5 g / cm 3 to
- pores each having a large pore diameter and a small pore diameter are present, and a favorable conductive path and liquid holding structure are formed. .
- this invention provides the method of manufacturing a lithium secondary battery as another aspect. That is, the manufacturing method provided by the present invention is a method for manufacturing a lithium secondary battery including a positive electrode current collector and a positive electrode having a positive electrode mixture layer containing a positive electrode active material and a conductive material on the surface of the current collector. Then, (1) the step of forming the positive electrode mixture layer on the surface of the positive electrode current collector, (2) the pore distribution of the positive electrode mixture layer is measured with a mercury porosimeter and obtained by the measurement.
- a positive electrode is selected in which the pore diameter P [ ⁇ m] at the minimum value between the two large and small peaks is between 0.1 ⁇ m and 0.7 ⁇ m in the pore distribution curve obtained by the above measurement.
- the pore size P [ total pore volume per unit mass of the conductive material in the pores having a smaller pore diameter than [mu] m] selects the positive electrode meets 0.18cm 3 /g ⁇ 0.8cm 3 / g.
- the small pore diameter peak B generally indicates the pores formed by the gaps between the conductive materials. Accordingly, the unit of the conductive material in the pores having a pore diameter smaller than the pore diameter P [ ⁇ m] including the small pore diameter peak B (typically a pore diameter in the range of 0.01 ⁇ m to P [ ⁇ m]).
- the non-aqueous electrolyte suitable amount to the pores formed by the gaps between the conductive material Since it is sufficiently retained, ion diffusibility and salt concentration uniformity within the polar group are improved. As a result, a lithium secondary battery having excellent battery performance (cycle characteristics or high rate characteristics) can be manufactured.
- a vehicle including any of the lithium secondary batteries disclosed herein is provided.
- the lithium secondary battery provided by the present invention may exhibit battery characteristics (cycle characteristics or high rate characteristics) suitable as a power source mounted on a vehicle. Therefore, such a lithium secondary battery can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.
- FIG. 1 is a diagram showing a pore distribution of a positive electrode mixture layer of a lithium secondary battery according to an embodiment.
- FIG. 2 is a perspective view schematically showing the outer shape of the lithium secondary battery according to one embodiment.
- 3 is a cross-sectional view taken along line III-III in FIG.
- FIG. 4 is a cross-sectional view showing positive and negative electrodes and a separator constituting a wound electrode body according to an embodiment.
- FIG. 5 is a side view schematically showing a vehicle (automobile) provided with the lithium secondary battery of the present invention.
- FIG. 6 is a diagram showing the relationship between the pore volume per unit mass of the conductive material in the pores including the small pore diameter peak B and the resistance increase rate after the high rate cycle.
- the lithium secondary battery (typically a lithium ion battery) disclosed herein includes a positive electrode in which a positive electrode mixture layer including a positive electrode active material and a conductive material is formed on the surface of the positive electrode current collector. ing.
- the positive electrode mixture layer includes a powdered positive electrode active material capable of inserting and extracting lithium ions serving as charge carriers and a conductive material.
- a typical positive electrode active material is a lithium transition metal composite oxide having a layered rock salt structure or a spinel structure.
- lithium nickel based composite oxide, lithium cobalt based composite oxide, lithium manganese based composite oxide, lithium nickel cobalt manganese based composite oxide, etc. containing lithium (Li) and at least one transition metal element are exemplified. .
- the lithium nickel-based composite oxide is an oxide having lithium (Li) and nickel (Ni) as constituent metal elements, and at least one other metal element (that is, Li and Ni) in addition to Li and Ni.
- a transition metal element other than Ni and / or a typical metal element is typically less than Ni (in terms of the number of atoms.
- the metal elements other than Li and Ni include calcium (Ca), cobalt (Co), aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), vanadium (V), and magnesium (Mg).
- Ti Titanium
- Zr zirconium
- Nb niobium
- Mo molybdenum
- Cu copper
- zinc (Zn) gallium
- Ga indium (In), tin (Sn)
- Lanthanum (La) and cerium (Ce) or one or more metal elements.
- the same meaning is applied to the lithium cobalt complex oxide and the lithium manganese complex oxide.
- a ternary lithium transition metal composite oxide typically LiNi 1/3 Co 1/3 Mn 1/3 O 2
- nickel, cobalt, and manganese may be used.
- olivine type lithium phosphate represented by the general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, Fe; for example, LiFePO 4 , LiMnPO 4 ) may be used as the positive electrode active material. Good.
- the tap density is about 0.5 g / cm 3 to 3 g / cm 3 , preferably about 1.0 g / cm 3 to 2.0 g / cm 3 , and the average particle size is typical. Specifically, 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 20 ⁇ m, for example, 3 ⁇ m to 8 ⁇ m can be preferably used.
- the “average particle diameter” refers to a median diameter (D50: 50% volume average particle diameter) that can be derived from a particle size distribution measured based on a particle size distribution measuring apparatus based on a laser scattering / diffraction method.
- the lithium transition metal composite oxide that can be used as the positive electrode active material for example, a lithium transition metal composite oxide powder prepared and provided by a conventionally known method can be used as it is.
- the oxide can be prepared by mixing several raw material compounds appropriately selected according to the atomic composition at a predetermined molar ratio and firing by an appropriate means.
- a granular lithium transition metal composite oxide powder substantially composed of particles having a tap density and / or an average particle diameter can be obtained. it can.
- conductive powder materials such as carbon powder and carbon fiber are preferably used.
- Various carbon blacks may be used as the carbon powder.
- conductive fibers such as carbon fiber and metal fiber can be contained alone or as a mixture thereof.
- only 1 type may be used among these, or 2 or more types may be used together.
- the average particle size of the conductive material is not limited, but typically a material having an average particle size of 1 ⁇ m or less, for example, 0.001 ⁇ m to 1 ⁇ m can be used more preferably.
- the positive electrode mixture layer disclosed herein may contain an optional component such as a binder as necessary.
- a binder the same binder as that used for the positive electrode of a general lithium secondary battery can be appropriately employed. It is preferable to select a polymer that is soluble or dispersible in the solvent used. For example, when a non-aqueous solvent is used, a polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene chloride (PVDC) can be preferably used.
- PVDF polyvinylidene fluoride
- PVDC polyvinylidene chloride
- Such a binder may be used individually by 1 type, and may be used in combination of 2 or more type.
- the polymer material illustrated above may be used for the purpose of exhibiting a function as a thickener and other additives in addition to the function as a binder.
- a polymer that can be dissolved or dispersed in an aqueous solvent can be used.
- Examples of the polymer that can be dissolved in an aqueous solvent include carboxymethyl cellulose (CMC; typically sodium salt), hydroxy Cellulose derivatives such as ethylcellulose (HEC), hydroxypropylcellulose (HPC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP), or polyvinyl alcohol (PVA) ) And the like.
- CMC carboxymethyl cellulose
- HEC hydroxy Cellulose derivatives
- HPC hydroxypropylcellulose
- MC methylcellulose
- CAP cellulose acetate phthalate
- HPMC hydroxypropylmethylcellulose
- HPMC hydroxypropylmethylcellulose phthalate
- PVA polyvinyl alcohol
- Polymers dispersed in an aqueous solvent include polyethylene oxide (PEO), polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer.
- Fluorine resin such as coalescence (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), vinyl acetate copolymer, styrene butadiene block copolymer (SBR), acrylic acid modified SBR resin (SBR latex), Arabic Examples thereof include rubbers such as rubber.
- the mass per unit volume (layer density) of the positive electrode mixture layer composed of the solid material such as the positive electrode active material, the conductive material, and the binder is not particularly limited, but is, for example, 1.0 g / cm 3 to It can range from 3.0 g / cm 3 , preferably approximately from 1.5 g / cm 3 to 2.8 g / cm 3 .
- both an aqueous solvent and a non-aqueous solvent can be used as the solvent.
- the aqueous solvent is typically water, but may be any water-based solvent as a whole, that is, water or a mixed solvent mainly composed of water can be preferably used.
- the solvent other than water constituting the mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
- a particularly preferred example is a solvent consisting essentially of water.
- preferable examples of the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), methyl ethyl ketone, toluene and the like.
- a conductive material made of a conductive powder material such as carbon powder is bulky and has a very small particle size (typically 1 ⁇ m or less, for example, 0.001 ⁇ m to 1 ⁇ m).
- the cathode active material in which a lithium transition metal composite oxide or the like is used has a particle size larger than that of the conductive material (typically 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 20 ⁇ m, for example 3 ⁇ m to Since a substance having 8 ⁇ m) is used, a large number of pores are formed in the positive electrode mixture layer by the gaps between these materials. Therefore, when the pore distribution of the positive electrode mixture layer is measured with a mercury porosimeter, a pore distribution curve as shown in FIG. 1 is obtained.
- FIG. 1 is a view showing a pore distribution state of a positive electrode mixture layer of a lithium secondary battery according to an embodiment.
- the positive electrode mixture layer of the lithium secondary battery disclosed here has a pore diameter of 0.01 ⁇ m to 10 ⁇ m. It has a structure having two large and small differential pore volume peaks in the range.
- the pore size P [ ⁇ m] at the minimum value between the two large and small peaks is 0.1 ⁇ m to 0.7 ⁇ m (approximately 0.2 ⁇ m to 0.7 ⁇ m, for example, 0.2 ⁇ m to 0.5 ⁇ m). Exists between.
- the pore diameter of peak B with the smaller differential pore volume is configured to be smaller than the pore diameter of peak A with the larger differential pore volume. That is, there are pores having a large pore diameter generated in a gap between positive electrode active materials having a large particle diameter and pores having a small pore diameter generated in a gap between conductive materials having a small particle diameter in the positive electrode mixture layer. It suggests that. Since the pores composed of such large pore diameter peak A and small pore diameter peak B are formed in the positive electrode mixture layer, the retention of the non-aqueous electrolyte in the pores is improved, so that the pores are impregnated ( The lithium ions are efficiently transferred through the retained electrolyte solution.
- a large pore diameter peak A having a pore diameter larger than the pore diameter P [ ⁇ m] is obtained.
- the former pore volume is divided into two, ie, the pore containing the small pore diameter peak B having a pore diameter smaller than the pore diameter P [ ⁇ m].
- the former integrated pore volume is the total pore volume Sa [cm 3 / g. ], If the integrated pore volume of the latter is the total pore volume Sb [cm 3 / g], the total pore volume Sb [cm 3 / g] is larger than the total pore volume Sa [cm 3 / g]. It is small.
- the ratio (Sb / Sa) of the total pore volume Sb [cm 3 / g] to the total pore volume Sa [cm 3 / g] is 0.4 ⁇ (Sb / Sa) ⁇ 1 is met.
- Lithium formed so that the total pore volume Sb [cm 3 / g] including the small pore peak B and the total pore volume Sa [cm 3 / g] including the large pore peak A satisfy the above relationship.
- the number of pores having a small pore diameter is greater than or equal to the number of pores having a larger pore diameter than the pore having a large pore diameter.
- the pores having such small pore diameters cause uneven salt concentration due to the electrolyte flowing out of the polar group system during charge / discharge once the nonaqueous electrolyte is impregnated (held) than the pores having the large pore diameter. Can be suppressed.
- the positive electrode mixture layer of the lithium secondary battery disclosed herein has a per-unit mass of the conductive material in pores having a pore diameter smaller than the pore diameter P [ ⁇ m] including the small pore diameter peak B.
- the total pore volume (hereinafter, also referred to as "pore volume per unit mass of the conductive material in the pores comprising small pore size peak B") is, 0.18cm 3 /g ⁇ 0.8cm 3 / g (more preferably is 0.18cm 3 /g ⁇ 0.78cm 3 / g, particularly preferably satisfies the 0.2cm 3 /g ⁇ 0.7cm 3 / g).
- the small pore diameter peak B generally indicates the pores formed by the gaps between the conductive materials. Therefore, in the lithium secondary battery in which the pore volume per unit mass of the conductive material in the pores including the small pore diameter peak B is set in the above range, a suitable amount for the pores formed by the gaps between the conductive materials The non-aqueous electrolyte is sufficiently retained. As a result, lithium ions can be efficiently transferred through the electrolyte held in the pores in the positive electrode mixture layer, and the lithium ion diffusibility and the salt concentration uniformity within the electrode group can be achieved. Will improve. As a result, it is possible to provide a lithium secondary battery having excellent battery performance (cycle characteristics or high rate characteristics) even when used in a mode in which high rate charge / discharge is repeated.
- the pore distribution in the positive electrode mixture layer can be measured as follows.
- a positive electrode having a positive electrode mixture layer formed on the surface of the positive electrode current collector is cut into a predetermined area to prepare a sample piece, and the pore size of the sample piece with an output in a pressure range of about 4 psi to 60000 psi using a commercially available mercury porosimeter. Measure the distribution.
- a pore distribution curve showing the relationship between the pore diameter and the pore volume (typically, a pore distribution curve in the range of 50 ⁇ m to 0.003 ⁇ m in the above pressure range) is obtained.
- the pore distribution state formed in is confirmed. However, 5 ⁇ m or more is considered as a gap between the sample pieces.
- the pore volume per unit mass of the conductive material in the pores including the small pore diameter peak B can be obtained using the obtained pore distribution curve. That is, from the pore distribution curve showing the pore diameter and the cumulative pore volume in FIG. 1, the cumulative pore volume of pores having a pore diameter smaller than the pore diameter P [ ⁇ m] including the small pore diameter peak B, ie, The total pore volume Sb [cm 3 / g] is calculated. Then, by dividing the total pore volume Sb [cm 3 / g] by the mass ratio of the conductive material contained in the positive electrode mixture layer, the unit mass of the conductive material in the pores including the small pore diameter peak B is obtained. A pore volume [cm 3 / g] is obtained.
- the electroconductive member which consists of metal with favorable electroconductivity is used preferably.
- aluminum or an alloy containing aluminum as a main component can be used.
- the shape of the positive electrode current collector can vary depending on the shape of the lithium secondary battery, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
- the manufacturing method disclosed herein is a method of manufacturing a lithium secondary battery including a positive electrode in which a positive electrode mixture layer including a positive electrode active material and a conductive material is formed on the surface of a positive electrode current collector, As long as the object can be realized, a technique similar to a conventionally used method for manufacturing a positive electrode can be appropriately employed. Specifically, (1) the step of forming the positive electrode mixture layer on the surface of the positive electrode current collector, (2) the pore distribution of the positive electrode mixture layer is measured with a mercury porosimeter, and the measurement is performed.
- a material for forming a positive electrode mixture layer such as a positive electrode active material, a conductive material, and a binder is added to an appropriate solvent (aqueous solvent or non-aqueous solvent) and kneaded to form a paste or slurry-like positive electrode composite.
- a material layer forming composition is prepared.
- the positive electrode active material is not particularly limited, but the tap density is about 0.5 g / cm 3 to 3 g / cm 3 , preferably about 1.0 g / cm 3 to 2.0 g / cm 3.
- the average particle diameter is typically 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 20 ⁇ m, for example 3 ⁇ m to 8 ⁇ m.
- the positive electrode mixture layer has a layer density of 1.0 g / cm 3 to 3.0 g / cm 3 , preferably about 1.5 g / cm 3 by compression (pressing).
- a positive electrode for a lithium secondary battery was manufactured by pressing so as to be in a range of cm 3 to 2.8 g / cm 3 .
- the paste can be suitably applied to the positive electrode current collector by using an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
- an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
- it can dry favorably by using natural drying, a hot air, low-humidity air, a vacuum, infrared rays, far-infrared rays, and an electron beam individually or in combination.
- a conventionally known compression method such as a roll press method or a flat plate press method can be employed. In adjusting the thickness, the thickness may be measured with a film thickness measuring instrument, and the press pressure may be adjusted to compress a plurality of times until a desired thickness is obtained.
- the positive electrode is cut into a predetermined area, the pore distribution of the positive electrode mixture layer is measured with a mercury porosimeter, and the pore distribution curve obtained by the measurement has a positive electrode having the following conditions: select.
- select include (a) having two large and small differential pore volume peaks in the pore diameter range of 0.01 ⁇ m to 10 ⁇ m, and (b) of the two large and small peaks having the smaller differential pore volume.
- the peak B has a smaller pore size than the peak A having a larger differential pore volume.
- the total fineness per unit mass of the conductive material in the pore having a pore diameter smaller than the pore diameter P [ ⁇ m] including the small pore diameter peak B is obtained.
- the positive electrode having the pores composed of the large pore diameter peak A and the small pore diameter peak B in the positive electrode mixture layer is impregnated (held) in the pores because the retention ability of the nonaqueous electrolytic solution in the pores is improved. Lithium ions can be efficiently transferred through the electrolytic solution. Therefore, by constructing a lithium secondary battery using the selected positive electrode, a lithium secondary battery having excellent battery performance (cycle characteristics or high rate characteristics) even when used in a mode in which high rate charge / discharge is repeated is provided. be able to.
- Such a negative electrode has a configuration in which a negative electrode mixture layer is formed on the surface of a negative electrode current collector.
- a negative electrode current collector serving as the base material of the negative electrode, a conductive member made of a highly conductive metal is preferably used.
- copper or an alloy containing copper as a main component can be used.
- the shape of the negative electrode current collector may vary depending on the shape of the lithium secondary battery and the like, and is not particularly limited.
- a copper foil having a thickness of about 5 to 100 ⁇ m is preferably used as the negative electrode current collector of the lithium secondary battery used as a high-output power source for mounting on vehicles.
- the negative electrode mixture layer formed on the surface of the negative electrode current collector contains a negative electrode active material capable of inserting and extracting lithium ions serving as charge carriers.
- a negative electrode active material one type or two or more types of materials conventionally used in lithium secondary batteries can be used without any particular limitation.
- An example is carbon particles.
- a particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. Any carbon material of a so-called graphitic material (graphite), a non-graphitizable carbonaceous material (hard carbon), a graphitizable carbonaceous material (soft carbon), or a combination of these materials is preferably used. obtain.
- graphite particles can be preferably used.
- Graphite particles are excellent in conductivity because they can suitably occlude lithium ions as charge carriers. Further, since the particle size is small and the surface area per unit volume is large, it can be a negative electrode active material more suitable for high-rate charge / discharge.
- the negative electrode mixture layer typically may contain an optional component such as a binder as necessary in addition to the negative electrode active material as a constituent component.
- a binder the same binder as that used for the negative electrode of a general lithium secondary battery can be adopted as appropriate, and functions as the binder listed in the components of the positive electrode described above.
- the various polymer materials obtained can be suitably used.
- the negative electrode active material is mixed with a binder or the like with an appropriate solvent (aqueous solvent or non-aqueous solvent) to obtain a paste or slurry
- an appropriate solvent aqueous solvent or non-aqueous solvent
- the ratio of the negative electrode active material in the negative electrode mixture layer is preferably about 50% by mass or more, and about 85 to 99% by mass (for example, 90 to 97% by mass). It is more preferable that Further, the ratio of the binder in the negative electrode composite material layer can be, for example, about 1 to 15% by mass, and preferably about 3 to 10% by mass.
- the composition prepared in this manner is applied to a negative electrode current collector, the solvent is evaporated and dried, and then compressed (pressed). Thereby, the negative electrode of the lithium secondary battery which has the negative electrode compound material layer formed using this paste on a negative electrode collector is obtained.
- coating, drying, and the compression method can use a conventionally well-known means similarly to the manufacturing method of the above-mentioned positive electrode.
- FIG. 2 is a perspective view schematically showing a rectangular lithium secondary battery according to one embodiment
- FIG. 3 is a cross-sectional view taken along line III-III in FIG.
- FIG. 4 is a perspective view schematically showing a state in which the electrode body is wound and manufactured.
- the lithium secondary battery 100 according to the present embodiment includes a rectangular parallelepiped battery case 10 and a lid 14 that closes the opening 12 of the case 10.
- a flat electrode body (wound electrode body 20) and an electrolyte can be accommodated in the battery case 10 through the opening 12.
- the lid 14 is provided with a positive terminal 38 and a negative terminal 48 for external connection, and a part of the terminals 38 and 48 protrudes to the surface side of the lid 14. Also, some of the external terminals 38 and 48 are connected to the internal positive terminal 37 or the internal negative terminal 47, respectively, inside the case.
- the wound electrode body 20 includes a sheet-like positive electrode sheet 30 having a positive electrode mixture layer 34 on the surface of a long positive electrode current collector 32, a long sheet-like separator 50, a long It is composed of a sheet-like negative electrode sheet 40 having a negative electrode mixture layer 44 on the surface of a long negative electrode current collector 42.
- the positive electrode sheet 30 and the negative electrode sheet 40 are laminated via two separators 50, and the positive electrode sheet 30, the separator 50, the negative electrode sheet 40, and the separator 50 are stacked. Are stacked in this order.
- the laminate is wound around a shaft core (not shown) in a cylindrical shape, and is formed into a flat shape by squashing the obtained wound electrode body 20 from the side surface direction.
- the wound electrode body 20 has a positive electrode mixture layer formed on the surface of the positive electrode current collector 32 at the center in the winding axis direction R. 34 and a negative electrode mixture layer 44 formed on the surface of the negative electrode current collector 42 are overlapped to form a densely stacked portion.
- the exposed portion of the positive electrode current collector 32 (positive electrode mixture layer) without forming the positive electrode mixture layer 34 at one end in the direction R.
- the non-forming part 36) is laminated in a state of protruding from the separator 50 and the negative electrode sheet 40 (or the dense laminated portion of the positive electrode mixture layer 34 and the negative electrode mixture layer 44).
- a positive electrode current collector laminated portion 35 formed by laminating the positive electrode mixture layer non-forming portion 36 in the positive electrode current collector 32 is formed at the end of the electrode body 20.
- the other end portion of the electrode body 20 has the same configuration as that of the positive electrode sheet 30, and the negative electrode mixture layer non-formation portion 46 in the negative electrode current collector 42 is laminated to form the negative electrode current collector lamination portion 45. ing.
- the separator 50 a separator having a width larger than the width of the stacked portion of the positive electrode mixture layer 34 and the negative electrode mixture layer 44 and smaller than the width of the electrode body 20 is used, and the positive electrode current collector 32 and the negative electrode The current collectors 42 are arranged so as to be sandwiched between the laminated portions of the positive electrode mixture layer 34 and the negative electrode mixture layer 44 so as not to contact each other and cause an internal short circuit.
- the separator 50 is a sheet interposed between the positive electrode sheet 30 and the negative electrode sheet 40, and is disposed so as to be in contact with the positive electrode mixture layer 34 of the positive electrode sheet 30 and the negative electrode mixture layer 44 of the negative electrode sheet 40. And the short circuit prevention accompanying the contact of both the composite material layers 34 and 44 in the positive electrode sheet 30 and the negative electrode sheet 40, or the conduction path between electrodes by impregnating the electrolyte (non-aqueous electrolyte) in the pores of the separator 50 It plays a role of forming (conductive path).
- a porous sheet microporous resin sheet
- Particularly preferred are porous polyolefin resins such as polypropylene, polyethylene, and polystyrene.
- the lithium secondary battery according to the present embodiment can be constructed as follows.
- the positive electrode typically positive electrode sheet 30
- the negative electrode typically negative electrode sheet 40
- the positive electrode typically positive electrode sheet 30
- the negative electrode typically negative electrode sheet 40
- the positive electrode typically positive electrode sheet 30
- the negative electrode typically negative electrode sheet 40
- the positive electrode typically positive electrode sheet 30
- the negative electrode typically negative electrode sheet 40
- the positive electrode typically positive electrode sheet 30
- the negative electrode typically negative electrode sheet 40
- the obtained wound electrode body 20 is viewed from the side. It is formed into a flat shape by crushing and ablating.
- the internal positive electrode terminal 37 is formed on the positive electrode mixture layer non-formation portion 36 of the positive electrode current collector 32
- the internal negative electrode terminal 47 is formed on the negative electrode mixture layer non-formation portion 46 of the negative electrode current collector 42 by ultrasonic welding and resistance. It joins by welding etc. and it electrically connects with the positive electrode sheet 30 or the negative electrode sheet 40 of the wound electrode body 20 formed in the said flat shape.
- the lithium secondary battery 100 of this embodiment can be constructed by injecting a non-aqueous electrolyte and sealing the inlet.
- the structure, size, material for example, can be made of metal or laminate film
- the structure of the electrode body for example, a wound structure or a laminated structure having the positive and negative electrodes as main components There is no limit.
- nonaqueous electrolyte can use the same thing as the nonaqueous electrolyte conventionally used for a lithium secondary battery without limitation.
- a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
- the non-aqueous solvent include one or two selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like. More than seeds can be used.
- the supporting salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3.
- Lithium compounds (lithium salts) such as LiI can be used.
- concentration of the support salt in a nonaqueous electrolyte solution may be the same as that of the nonaqueous electrolyte solution used with the conventional lithium secondary battery, and there is no restriction
- An electrolyte containing a suitable lithium compound (supporting salt) at a concentration of about 0.5 to 1.5 mol / L can be used.
- the lithium secondary battery 100 constructed in this way can exhibit excellent battery characteristics (high rate characteristics or cycle characteristics) as a vehicle-mounted high-output power supply. Therefore, the lithium secondary battery 100 according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as schematically shown in FIG. 5, a vehicle including such a lithium secondary battery 100 (which may be in the form of an assembled battery formed by connecting a plurality of lithium secondary batteries 100 in series) as a power source. (Typically automobiles, in particular automobiles equipped with electric motors such as hybrid cars, electric cars, fuel cell cars) 1 are provided.
- a positive electrode of a test lithium secondary battery was produced.
- Li 1.0 Ni 0 having an average particle diameter of 3 ⁇ m to 7 ⁇ m as a positive electrode active material and a tap density of approximately 1.0 g / cm 3 to 2.0 g / cm 3. .34 Co 0.33 Mn 0.33 O 2 , polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive material so that the mass% ratio of these materials can take various values.
- PVDF polyvinylidene fluoride
- acetylene black as a conductive material so that the mass% ratio of these materials can take various values.
- NMP N-methyl-2-pyrrolidone
- the paste-like composition was applied to both sides of an aluminum foil having a thickness of about 15 ⁇ m as a positive electrode current collector so that the application amount was 12 mg / cm 2 to 20 mg / cm 2 .
- the film is dried and pressed with a roller press to form a positive electrode mixture layer so that the layer density is about 1.5 to 2.8 g / cm 3 .
- a total of 16 positive electrode sheets of 1 to 16 were produced.
- Each of the prepared positive electrode sheets was cut into approximately 2 cm ⁇ 1 cm squares to prepare sample pieces, and the pore distribution in the positive electrode mixture layer was measured.
- the sample piece weight was about 0.5 g and the stem usage rate was 10 to 25%.
- a mercury porosimeter (“Autopore III 9410” manufactured by Shimadzu Corporation) was used. The sample piece was placed in a cell, and the pore distribution in the positive electrode mixture layer was measured at a pressure of 4 psi to 60000 psi.
- a negative electrode of a test lithium secondary battery was produced.
- graphite as a negative electrode active material
- SBR styrene butadiene block copolymer
- CMC carboxymethyl cellulose
- the paste composition was applied to both sides of the negative electrode current collector on a copper foil having a thickness of about 10 ⁇ m as the negative electrode current collector so that the coating amount per unit area was 6.4 to 11 mg / cm 2 . After the application, it was dried and pressed with a roller press to produce a negative electrode sheet.
- a test lithium secondary battery was constructed using each of the prepared positive electrode sheet and negative electrode sheet. That is, a positive electrode sheet and a negative electrode sheet were laminated together with two separators, and this laminated sheet was wound to produce a wound electrode body. And this electrode body was accommodated in the container with electrolyte, and the 18650 type battery (diameter 18mm, height 65mm) was constructed
- the non-aqueous electrolyte 1 mol / L LiPF 6 was dissolved in a 3: 4: 3 (volume ratio) mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). was used.
- each battery was adjusted again to SOC 60%, and a high rate cycle test was repeated by repeating the charge / discharge cycle consisting of the following (1) to (4) 2500 times at ⁇ 15 ° C. Meanwhile, an operation of adjusting the SOC to 60% was performed every 100 cycles.
- FIG. 6 shows the relationship between the pore volume per unit mass of the conductive material in the pores including the measured small pore diameter peak B and the resistance increase rate after the high rate cycle.
- Pore volume per unit mass of conductive material in pores including small pore diameter peak B [cm 3 / g] total pore volume including small pore diameter peak B (Sb) [cm 3 / g] ⁇ 1 / Conductive material weight [g] in the positive electrode mixture layer
- sample No. pore volume per unit mass of the conductive material in the pores comprising small pore size peak B showed a 0.183cm 3 /g ⁇ 0.782cm 3 / g 2 to Sample No. In No. 13, the resistance increase rate after the high-rate cycle was lower than 2.0. From this, a clear correlation was confirmed between the pore volume per unit mass of the conductive material in the pores including the small pore diameter peak B and the resistance increase rate after the high rate cycle. Further, as shown in Table 1, in the output characteristic evaluation, sample No. 2 to Sample No. In No. 13, it was confirmed that a high output was maintained after 10 seconds of discharge.
- the present invention has been described in detail above, the above embodiments and examples are merely examples, and the invention disclosed herein includes various modifications and changes of the above-described specific examples.
- the present invention is not limited to the above-described wound type battery, and can be applied to various shapes of lithium secondary batteries. Further, the size and other configurations of the battery can be appropriately changed depending on the application (typically for in-vehicle use).
- the lithium secondary battery 100 according to the present invention has excellent battery characteristics (high rate characteristics or cycle characteristics) by having a pore distribution taking into account the content of the conductive material in the positive electrode mixture layer. Due to such characteristics, the lithium secondary battery 100 according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as shown in FIG. 5, a vehicle 1 (as a power source) having such a lithium secondary battery 100 (may be in the form of an assembled battery formed by connecting a plurality of lithium secondary batteries 100 in series).
- An automobile typically an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle) is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
また、本明細書において「正極活物質」とは、二次電池において電荷担体となる化学種(ここではリチウムイオン)を可逆的に吸蔵および放出(典型的には挿入および脱離)可能な正極側の活物質をいう。
すなわち、本発明に係るリチウム二次電池は、正極活物質および導電材を含む正極合材層を有する正極を備えており、水銀ポロシメータで測定される正極合材層の細孔分布曲線において、大小2つの微分細孔容積のピークを有し、かかる大小2つのピークのうち、微分細孔容積の小さい方のピークBの細孔径は、微分細孔容積の大きい方の大孔径ピークAよりも小孔径に構成されている。
好ましくは、上記細孔分布曲線において、上記大小2つのピークの間の最小値における細孔径P[μm]が、0.1μm~0.7μmの間に存在する。
ここで、正極合材層の構成材料の一つである、カーボン粉末等の導電性粉末材料からなる導電材は、嵩高く非常に小さい粒径(典型的には1μm以下、例えば0.001μm~1μm)を有するのに対し、リチウム遷移金属複合酸化物などが用いられる正極活物質は、導電材の粒径よりも粒径が大きい物質(典型的には1μm~50μm、好ましくは2μm~20μm、例えば3μm~8μm)が用いられる。そのため、上述の細孔分布曲線において、大孔径ピークAは概ね正極活物質同士の間隙で生じる細孔を示し、小孔径ピークBは概ね導電材同士の間隙で生じる細孔をそれぞれ示すものであることが考えられる。本発明では、このような大孔径ピークAおよび小孔径ピークBからなる細孔が正極合材層に形成されることにより、当該細孔における非水電解液の保持力が向上するため、細孔中に含浸(保持)された電解液を介してリチウムイオンの移動が効率良く行われるようになる。その結果、ハイレート充放電を繰り返す態様で使用されても優れた電池性能(サイクル特性またはハイレート特性)を有するリチウム二次電池を提供することができる。
上記細孔分布曲線において示される大小2つのピークのうち、小孔径ピークBは、導電材同士の間隙によって形成された細孔を概ね示している。従って、上記小孔径ピークBを包含する上記細孔径P[μm]よりも小さい細孔径(典型的には、0.01μm~P[μm]範囲の細孔径)を有する細孔における導電材の単位質量あたりの全細孔容積が0.18cm3/g~0.8cm3/gに設定されたリチウム二次電池では、導電材間の間隙により形成された当該細孔に好適量の非水電解液が十分に保持されるため、正極合材層の導電性が向上する。その結果、優れた電池性能(サイクル特性またはハイレート特性)を有するリチウム二次電池を提供することができる。
また、より好ましくは、上記全細孔容積Sb[cm3/g]と、上記全細孔容積Sa[cm3/g]との比率(Sb/Sa)が、0.4<(Sb/Sa)<1を満たしている。
上記小孔径ピークBを包含する全細孔容積Sb[cm3/g]と上記大孔径ピークAを包含する全細孔容積Sa[cm3/g]とが、上記関係を満たすように形成されたリチウム二次電池の正極合材層には、小孔径からなる細孔が大孔径からなる細孔よりも細孔量の上では上回る数あるいは同程度存在する。そして、かかる小孔径からなる細孔は、大孔径からなる細孔よりも非水電解液が一旦含浸(保持)されると充放電時に電解液が極群系外に流出することによる塩濃度ムラ発生を抑制し得る。その結果、正極合材層内の細孔中に含浸された電解液を介して、リチウムイオンの移動が効率良く行われるようになり、ハイレート充放電に対しても内部抵抗の上昇が抑制されたリチウム二次電池を提供することができる。
正極活物質よりも粒径が小さく導電性が良好な上記材料は、正極合材層中において細孔径の小さい間隙(細孔)を好適に形成する。その結果、かかる細孔中に非水電解液が含浸され易く、導電効率の優れたリチウム二次電池を提供し得る。
上記正極活物質および導電材の固形材料(結着材等のその他の添加材を含む)によって構成される正極合材層の単位体積あたりの質量(層密度)が、1.5g/cm3~2.8g/cm3の範囲になるように形成された正極合材層内には、大孔径と小孔径のそれぞれからなる細孔が存在し、良好な導電パスおよび液保持構造が形成される。その結果、ハイレート充放電を繰り返す態様で使用されても優れた電池性能(サイクル特性またはハイレート特性)を有するリチウム二次電池を提供することができる。
(a)細孔径0.01μm~10μmの範囲に大小2つの微分細孔容積のピークを有すること、
(b)上記大小2つのピークのうち、微分細孔容積の小さい方のピークBの細孔径は、微分細孔容積の大きい方のピークAの細孔径よりも小孔径に構成されていること、
(3)上記選択した正極を用いてリチウム二次電池を構築する工程、を包含することを特徴とする。
かかる製造方法によると、上記大孔径ピークAおよび小孔径ピークBからなる細孔を正極合材層に形成することができる。これにより、当該細孔における非水電解液の保持力が向上するため、細孔中に含浸(保持)された電解液を介してリチウムイオンの移動が効率良く行われるようになる。その結果、ハイレート充放電を繰り返す態様で使用されても優れた電池性能(サイクル特性またはハイレート特性)を有するリチウム二次電池を製造することができる。
好ましくは、上記測定で得られる細孔分布曲線において、上記大小2つのピークの間の最小値における細孔径P[μm]が、0.1μm~0.7μmの間に存在する正極を選択する。
上記細孔分布曲線において示される大小2つのピークのうち、小孔径ピークBは、導電材同士の間隙によって形成された細孔を概ね示している。従って、上記小孔径ピークBを包含する上記細孔径P[μm]よりも小さい細孔径(典型的には、0.01μm~P[μm]範囲の細孔径)を有する細孔における導電材の単位質量あたりの全細孔容積が0.18cm3/g~0.8cm3/gを満たすリチウム二次電池では、導電材間の間隙により形成された当該細孔に好適量の非水電解液が十分に保持されるため、イオン拡散性および極群内での塩濃度均一性が向上する。その結果、優れた電池性能(サイクル特性またはハイレート特性)を有するリチウム二次電池を製造することができる。
例えば、非水系溶媒を用いる場合においては、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等のポリマーを好ましく採用することができる。このような結着材は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、上記で例示したポリマー材料は、結着材としての機能の他に、増粘材その他の添加材としての機能を発揮する目的で使用されることもあり得る。
また、水系溶媒を用いる場合においては、水系溶媒に溶解するポリマーまたは分散するポリマーを使用することができ、水系溶媒に溶解するポリマーとしては、カルボキシメチルセルロース(CMC;典型的にはナトリウム塩)、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)等のセルロース誘導体、または、ポリビニルアルコール(PVA)等が挙げられる。また、水系溶媒に分散するポリマーとしては、ポリエチレンオキサイド(PEO)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂、酢酸ビニル共重合体、スチレンブタジエンブロック共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類が挙げられる。
小孔径ピークBを包含する全細孔容積Sb[cm3/g]と大孔径ピークAを包含する全細孔容積Sa[cm3/g]とが、上記関係を満たすように形成されたリチウム二次電池の正極合材層には、小孔径からなる細孔が大孔径からなる細孔よりも細孔量の上では上回る数あるいは同程度存在する。かかる小孔径からなる細孔は、大孔径からなる細孔よりも非水電解液が一旦含浸(保持)されると充放電時に電解液が極群系外に流出することによる塩濃度ムラ発生を抑制し得る。
上述のとおり、細孔分布曲線において示される大小2つのピークのうち、小孔径ピークBは、導電材同士の間隙によって形成された細孔を概ね示している。従って、上記小孔径ピークBを包含する細孔における導電材の単位質量あたりの細孔容積が上記範囲に設定されたリチウム二次電池では、導電材間の間隙により形成された細孔に好適量の非水電解液が十分に保持される。これにより、正極合材層内の細孔中に保持された電解液を介して、リチウムイオンの移動が効率良く行われるようになり、リチウムイオンの拡散性および極群内での塩濃度均一性が向上する。その結果、ハイレート充放電を繰り返す態様で使用されても優れた電池性能(サイクル特性またはハイレート特性)を有するリチウム二次電池を提供することができる。
ここに開示される製造方法は、正極活物質および導電材を含む正極合材層が正極集電体の表面に形成された正極を備えるリチウム二次電池を製造する方法であって、本発明の目的を実現し得る限りにおいて、従来から用いられる正極の製造方法と同様の技法を適宜採用することができる。具体的には以下の工程、(1)上記正極集電体の表面に上記正極合材層を形成する工程、(2)上記正極合材層の細孔分布を水銀ポロシメータで測定し、該測定で得られる細孔分布曲線が以下の条件を具備する正極を選択する工程、
(a)細孔径0.01μm~10μmの範囲に大小2つの微分細孔容積のピークを有すること、
(b)上記大小2つのピークのうち、微分細孔容積の小さい方のピークBの細孔径は、微分細孔容積の大きい方のピークAの細孔径よりも小孔径に構成されていること、
(3)上記選択した正極を用いてリチウム二次電池を構築する工程、を包含する。
なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
図2および図3に示されるように、本実施形態に係るリチウム二次電池100は、直方体形状の角型の電池ケース10と、該ケース10の開口部12を塞ぐ蓋体14とを備える。この開口部12より電池ケース10内部に扁平形状の電極体(捲回電極体20)及び電解質を収容することができる。また、蓋体14には、外部接続用の正極端子38と負極端子48とが設けられており、それら端子38,48の一部は蓋体14の表面側に突出している。また、外部端子38,48の一部はケース内部で内部正極端子37または内部負極端子47にそれぞれ接続されている。
かかるセパレータ50の構成材料としては、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリプロピレン、ポリエチレン、ポリスチレン等の多孔質ポリオレフィン系樹脂が特に好ましい。
試験用リチウム二次電池の正極を作製した。まず、正極における正極合材層を形成するにあたり、正極活物質としての平均粒径が3μm~7μm、タップ密度が凡そ1.0g/cm3~2.0g/cm3のLi1.0Ni0.34Co0.33Mn0.33O2と、結着材としてのポリフッ化ビニリデン(PVDF)と、導電材としてのアセチレンブラックとを、これら材料の質量%比が様々な値をとり得るようにN-メチル-2-ピロリドン(NMP)を加えて混合し、ペースト状の正極合材層形成用組成物を調製した。
そして、正極集電体としての厚み約15μmのアルミニウム箔の両面に上記ペースト状組成物を塗布量が12mg/cm2~20mg/cm2になるように塗布した。塗布後、乾燥させてローラプレス機にてプレスを行い、層密度が凡そ1.5~2.8g/cm3となるように正極合材層を形成し、サンプルNo.1~16の計16通りの正極シートを作製した。
上記作製した各正極シートを約2cm×1cm角に切り分けて試料片を調製し、正極合材層内の細孔分布を測定した。試料片重量は凡そ0.5g、ステム使用率10~25%とした。測定には、水銀ポロシメータ(株式会社島津製作所製「オートポアIII9410」)を用いた。上記試料片をセルに入れ、圧力4psi~60000psiで、正極合材層内の細孔分布を測定した。そして、細孔径0.01μm~10μmの範囲の細孔分布曲線から、上述のとおり、小孔径ピークBを包含する細孔径P[μm]よりも小さい細孔径を有する細孔における導電材の単位質量あたりの全細孔容積を算出した(図1参照)。測定結果を表1に示す。
次に、試験用リチウム二次電池の負極を作製した。まず、負極における負極合材層を形成するにあたり、負極活物質としての黒鉛と、結着材としてのスチレンブタジエンブロック共重合体(SBR)と、カルボキシメチルセルロース(CMC)とを、これら材料の質量%比が98:1:1となるようにイオン交換水を加えて混合し、ペースト状の負極活物質層形成用組成物を調製した。
そして、負極集電体としての厚み約10μmの銅箔に単位面積あたりの塗布量が6.4~11mg/cm2になるように上記ペースト状組成物を負極集電体の両面に塗布した。塗布後、乾燥させてローラプレス機にてプレスを行い、負極シートを作製した。
上記作製した各正極シートと負極シートとを用いて試験用リチウム二次電池を構築した。すなわち、正極シート及び負極シートを2枚のセパレータとともに積層し、この積層シートを捲回して捲回電極体を作製した。そして、この電極体を電解質とともに容器に収容して、18650型電池(径18mm、高さ65mm)を構築した。非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との3:4:3(体積比)混合溶媒に1mol/LのLiPF6を溶解させた組成を用いた。
上記構築した各電池につき、測定温度25℃において、1Cの定電流でSOC60%に調整し、2.5時間定電圧で充電した。充電後、10分間休止し、次いでSOC60%の状態から5W~50Wの範囲の定ワット条件にて放電し、2.5Vまでの放電時間を測定した。測定後、各ワット条件で測定した2.5Vまでの時間[秒]を横軸に、その時の出力[W]を縦軸にそれぞれとり、近似曲線から10秒時点の出力を算出した。測定結果を表1に示す。
上記構築した各電池をSOC(State of Charge)60%に調整し、-15℃の温度下にて20Cの定電流で放電させ、その10秒後電圧降下から初期IV抵抗を求めた。
(1)20Cの定電流で10秒間放電させる。
(2)5秒間休止する。
(3)1Cの定電流で200秒間充電する。
(4)145秒間休止する。
また、表1に示されるように、上記出力特性評価において、サンプルNo.2~サンプルNo.13では、放電10秒時に高い出力を維持することが確認された。
Claims (11)
- 正極集電体および該集電体の表面に正極活物質および導電材を含む正極合材層を有する正極を備えるリチウム二次電池であって、
前記正極合材層は、水銀ポロシメータで測定される細孔分布曲線において、細孔径0.01μm~10μmの範囲に大小2つの微分細孔容積のピークを有し、
前記大小2つのピークのうち、微分細孔容積の小さい方のピークBの細孔径は、微分細孔容積の大きい方のピークAの細孔径よりも小孔径に構成されていることを特徴とする、リチウム二次電池。 - 前記細孔分布曲線において、前記大小2つのピークの間の最小値における細孔径P[μm]が、0.1μm~0.7μmの間に存在する、請求項1に記載のリチウム二次電池。
- 前記細孔分布曲線において、前記小孔径ピークBを包含する前記細孔径P[μm]よりも小さい細孔径を有する細孔における前記導電材の単位質量あたりの全細孔容積は、0.18cm3/g~0.8cm3/gを満たしている、請求項1または2に記載のリチウム二次電池。
- 前記細孔分布曲線において、前記小孔径ピークBを包含する前記細孔径P[μm]よりも小さい細孔径を有する細孔の全細孔容積Sb[cm3/g]は、前記大孔径ピークAを包含する前記細孔径P[μm]よりも大きい細孔径を有する細孔の全細孔容積Sa[cm3/g]よりも小さく構成されている、請求項1~3のいずれかに記載のリチウム二次電池。
- 前記細孔分布曲線において、前記全細孔容積Sb[cm3/g]と、前記全細孔容積Sa[cm3/g]との比率(Sb/Sa)が、0.4<(Sb/Sa)<1を満たしている、請求項1~4のいずれかに記載のリチウム二次電池。
- 前記正極合材層に含まれる導電材として、アセチレンブラック、ファーネスブラック、ケッチェンブラックおよびグラファイト粉末からなる群より選択される少なくとも1種が使用される、請求項1~5のいずれかに記載のリチウム二次電池。
- 前記正極合材層の層密度は、1.5g/cm3~2.8g/cm3である、請求項1~6のいずれかに記載のリチウム二次電池。
- 正極集電体および該集電体の表面に正極活物質および導電材を含む正極合材層を有する正極を備えるリチウム二次電池の製造方法であって、以下の工程:
前記正極集電体の表面に前記正極合材層を形成する工程;
前記正極合材層の細孔分布を水銀ポロシメータで測定し、該測定で得られる細孔分布曲線が以下の条件:
細孔径0.01μm~10μmの範囲に大小2つの微分細孔容積のピークを有すること:
前記大小2つのピークのうち、微分細孔容積の小さい方のピークBの細孔径は、微分細孔容積の大きい方のピークAの細孔径よりも小孔径に構成されていること:
を具備する正極を選択する工程;
前記選択した正極を用いてリチウム二次電池を構築する工程;
を包含することを特徴とする、製造方法。 - 前記測定で得られる細孔分布曲線において、前記大小2つのピークの間の最小値における細孔径P[μm]が、0.1μm~0.7μmの間に存在する正極を選択する、請求項8に記載の製造方法。
- 前記測定で得られる細孔分布曲線において、さらに条件として、前記小孔径ピークBを包含する前記細孔径P[μm]よりも小さい細孔径を有する細孔における前記導電材の単位質量あたりの全細孔容積が、0.18cm3/g~0.8cm3/gを満たしている正極を選択する、請求項8または9に記載の製造方法。
- 請求項1~7のいずれかに記載のリチウム二次電池を備える車両。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147035773A KR101767304B1 (ko) | 2010-01-21 | 2010-01-21 | 리튬 2차 전지, 리튬 2차 전지의 제조 방법, 및 리튬 2차 전지를 구비하는 차량 |
KR1020127021728A KR101627013B1 (ko) | 2010-01-21 | 2010-01-21 | 리튬 2차 전지, 리튬 2차 전지의 제조 방법, 및 리튬 2차 전지를 구비하는 차량 |
JP2011550753A JP5773208B2 (ja) | 2010-01-21 | 2010-01-21 | リチウム二次電池 |
US13/522,744 US20120288759A1 (en) | 2010-01-21 | 2010-01-21 | Lithium secondary battery |
CN201080061984.4A CN102763244B (zh) | 2010-01-21 | 2010-01-21 | 锂二次电池 |
PCT/JP2010/050726 WO2011089701A1 (ja) | 2010-01-21 | 2010-01-21 | リチウム二次電池 |
US15/960,083 US10522816B2 (en) | 2010-01-21 | 2018-04-23 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/050726 WO2011089701A1 (ja) | 2010-01-21 | 2010-01-21 | リチウム二次電池 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/522,744 A-371-Of-International US20120288759A1 (en) | 2010-01-21 | 2010-01-21 | Lithium secondary battery |
US15/960,083 Division US10522816B2 (en) | 2010-01-21 | 2018-04-23 | Lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011089701A1 true WO2011089701A1 (ja) | 2011-07-28 |
Family
ID=44306524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050726 WO2011089701A1 (ja) | 2010-01-21 | 2010-01-21 | リチウム二次電池 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20120288759A1 (ja) |
JP (1) | JP5773208B2 (ja) |
KR (2) | KR101627013B1 (ja) |
CN (1) | CN102763244B (ja) |
WO (1) | WO2011089701A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104272520A (zh) * | 2012-04-27 | 2015-01-07 | 丰田自动车株式会社 | 非水电解质二次电池及其制造方法 |
WO2018043375A1 (ja) * | 2016-08-29 | 2018-03-08 | 株式会社Gsユアサ | 蓄電素子およびその製造方法 |
KR20180085046A (ko) | 2016-01-22 | 2018-07-25 | 아사히 가세이 가부시키가이샤 | 비수계 리튬형 축전 소자 |
KR20180088914A (ko) | 2016-01-22 | 2018-08-07 | 아사히 가세이 가부시키가이샤 | 리튬 이온 2 차 전지 |
JP2023132913A (ja) * | 2022-03-11 | 2023-09-22 | プライムプラネットエナジー&ソリューションズ株式会社 | 二次電池 |
US12040486B2 (en) | 2019-04-09 | 2024-07-16 | Kabushiki Kaisha Toshiba | Electrode, electrode group, battery, and battery pack |
WO2024172154A1 (ja) * | 2023-02-16 | 2024-08-22 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8956760B2 (en) * | 2012-03-28 | 2015-02-17 | Sharp Laboratories Of America, Inc. | Electron transport in hexacyanometallate electrode for electrochemical applications |
PL2999759T3 (pl) | 2013-05-23 | 2024-06-03 | Hercules Llc | Kompozycja spoiwa do elektrody i sposoby jej wytwarzania |
JP6287651B2 (ja) * | 2014-07-10 | 2018-03-07 | トヨタ自動車株式会社 | 非水系二次電池 |
JP6287707B2 (ja) * | 2014-09-08 | 2018-03-07 | トヨタ自動車株式会社 | 非水電解質二次電池 |
US10319986B2 (en) * | 2014-11-28 | 2019-06-11 | Sanyo Electric Co., Ltd. | Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery |
WO2017074109A1 (ko) * | 2015-10-30 | 2017-05-04 | 주식회사 엘지화학 | 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 |
KR102100879B1 (ko) | 2015-10-30 | 2020-04-13 | 주식회사 엘지화학 | 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 |
CN110291665B (zh) * | 2017-02-21 | 2022-07-05 | 日本碍子株式会社 | 锂复合氧化物烧结体板 |
CN111095613B (zh) * | 2017-10-04 | 2023-06-30 | 株式会社东芝 | 电极、非水电解质电池及电池包 |
JP7327400B2 (ja) * | 2018-07-19 | 2023-08-16 | 株式会社Gsユアサ | 非水電解質蓄電素子、及び蓄電装置 |
JP7247064B2 (ja) * | 2019-09-13 | 2023-03-28 | 株式会社東芝 | 電極、二次電池、電池パック、及び車両 |
JP7330028B2 (ja) * | 2019-09-13 | 2023-08-21 | 株式会社東芝 | 電極、二次電池、電池パック、及び車両 |
KR20220043448A (ko) * | 2020-09-29 | 2022-04-05 | 주식회사 엘지에너지솔루션 | 전극 구조에 따른 이차전지 성능 추정 장치 및 그 방법 |
CN114864924B (zh) * | 2022-05-26 | 2023-04-28 | 上海瑞浦青创新能源有限公司 | 一种三元正极材料和应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09161772A (ja) * | 1995-12-11 | 1997-06-20 | Ricoh Co Ltd | リチウム二次電池用電極および該電極を使用したリチウム二次電池 |
JP2002083585A (ja) * | 2000-09-06 | 2002-03-22 | Toshiba Corp | 正極及び非水電解質二次電池 |
JP2002203603A (ja) * | 2000-12-27 | 2002-07-19 | Sony Corp | ゲル状電解質電池 |
JP2003249224A (ja) * | 2002-02-27 | 2003-09-05 | Hitachi Maxell Ltd | リチウムイオン電池用正極およびそれを用いたリチウムイオン電池 |
JP2005267953A (ja) * | 2004-03-17 | 2005-09-29 | Ngk Insulators Ltd | リチウム二次電池 |
WO2006129756A1 (ja) * | 2005-06-02 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | 非水電解質二次電池用電極、非水電解質二次電池、ならびに、これを搭載した自動車、電動工具もしくは定置型機器 |
JP2008108649A (ja) * | 2006-10-27 | 2008-05-08 | Toyota Motor Corp | 車両用リチウム二次電池正極の製造方法 |
JP2008282804A (ja) * | 2007-04-09 | 2008-11-20 | Kao Corp | 電池用正極活物質焼結体 |
JP2008305688A (ja) * | 2007-06-08 | 2008-12-18 | Panasonic Corp | 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池 |
JP2009158396A (ja) * | 2007-12-27 | 2009-07-16 | Toshiba Corp | 非水電解質電池 |
JP2009164140A (ja) * | 2006-12-26 | 2009-07-23 | Mitsubishi Chemicals Corp | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005123179A (ja) | 2003-09-26 | 2005-05-12 | Mitsubishi Chemicals Corp | リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
KR100727332B1 (ko) | 2003-09-26 | 2007-06-12 | 미쓰비시 가가꾸 가부시키가이샤 | 리튬 2차 전지의 포지티브 전극 재료용 리튬 복합 산화물입자, 및 이를 이용한 리튬 2차 전지용 포지티브 전극 및리튬 2차 전지 |
JP2006081130A (ja) | 2004-09-13 | 2006-03-23 | Susumu Nakatani | 携帯電話装置および携帯電話装置の携帯方法 |
JP2007049029A (ja) * | 2005-08-11 | 2007-02-22 | Tdk Corp | 電気化学デバイスの製造方法 |
JP5258228B2 (ja) * | 2007-08-21 | 2013-08-07 | 日立マクセル株式会社 | 非水二次電池 |
EP2466671A3 (en) * | 2007-09-04 | 2012-08-22 | Mitsubishi Chemical Corporation | Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same |
JP5428251B2 (ja) * | 2007-09-04 | 2014-02-26 | 三菱化学株式会社 | リチウム遷移金属系化合物粉体、それを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2009129756A (ja) * | 2007-11-26 | 2009-06-11 | Panasonic Electric Works Co Ltd | 照明装置 |
KR20130029041A (ko) * | 2010-01-08 | 2013-03-21 | 미쓰비시 가가꾸 가부시키가이샤 | 리튬 이차 전지 정극 재료용 분체 및 그 제조 방법, 그리고 그것을 사용한 리튬 이차 전지용 정극 및 리튬 이차 전지 |
-
2010
- 2010-01-21 CN CN201080061984.4A patent/CN102763244B/zh active Active
- 2010-01-21 JP JP2011550753A patent/JP5773208B2/ja active Active
- 2010-01-21 KR KR1020127021728A patent/KR101627013B1/ko active Active
- 2010-01-21 WO PCT/JP2010/050726 patent/WO2011089701A1/ja active Application Filing
- 2010-01-21 KR KR1020147035773A patent/KR101767304B1/ko active Active
- 2010-01-21 US US13/522,744 patent/US20120288759A1/en not_active Abandoned
-
2018
- 2018-04-23 US US15/960,083 patent/US10522816B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09161772A (ja) * | 1995-12-11 | 1997-06-20 | Ricoh Co Ltd | リチウム二次電池用電極および該電極を使用したリチウム二次電池 |
JP2002083585A (ja) * | 2000-09-06 | 2002-03-22 | Toshiba Corp | 正極及び非水電解質二次電池 |
JP2002203603A (ja) * | 2000-12-27 | 2002-07-19 | Sony Corp | ゲル状電解質電池 |
JP2003249224A (ja) * | 2002-02-27 | 2003-09-05 | Hitachi Maxell Ltd | リチウムイオン電池用正極およびそれを用いたリチウムイオン電池 |
JP2005267953A (ja) * | 2004-03-17 | 2005-09-29 | Ngk Insulators Ltd | リチウム二次電池 |
WO2006129756A1 (ja) * | 2005-06-02 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | 非水電解質二次電池用電極、非水電解質二次電池、ならびに、これを搭載した自動車、電動工具もしくは定置型機器 |
JP2008108649A (ja) * | 2006-10-27 | 2008-05-08 | Toyota Motor Corp | 車両用リチウム二次電池正極の製造方法 |
JP2009164140A (ja) * | 2006-12-26 | 2009-07-23 | Mitsubishi Chemicals Corp | リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2008282804A (ja) * | 2007-04-09 | 2008-11-20 | Kao Corp | 電池用正極活物質焼結体 |
JP2008305688A (ja) * | 2007-06-08 | 2008-12-18 | Panasonic Corp | 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池 |
JP2009158396A (ja) * | 2007-12-27 | 2009-07-16 | Toshiba Corp | 非水電解質電池 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104272520A (zh) * | 2012-04-27 | 2015-01-07 | 丰田自动车株式会社 | 非水电解质二次电池及其制造方法 |
KR20150016257A (ko) | 2012-04-27 | 2015-02-11 | 도요타지도샤가부시키가이샤 | 비수전해질 이차 전지 및 그 제조 방법 |
KR101670569B1 (ko) | 2012-04-27 | 2016-10-28 | 도요타지도샤가부시키가이샤 | 비수전해질 이차 전지 및 그 제조 방법 |
US9831525B2 (en) | 2012-04-27 | 2017-11-28 | Toyota Jidosha Kabushiki Kaisha | Non-aqueous electrolyte secondary battery and method of fabricating same |
KR20180088914A (ko) | 2016-01-22 | 2018-08-07 | 아사히 가세이 가부시키가이샤 | 리튬 이온 2 차 전지 |
KR20180085046A (ko) | 2016-01-22 | 2018-07-25 | 아사히 가세이 가부시키가이샤 | 비수계 리튬형 축전 소자 |
KR20180128985A (ko) | 2016-01-22 | 2018-12-04 | 아사히 가세이 가부시키가이샤 | 리튬 이온 2 차 전지 |
US10468199B2 (en) | 2016-01-22 | 2019-11-05 | Asahi Kasei Kabushiki Kaisha | Nonaqueous lithium power storage element |
US11038173B2 (en) | 2016-01-22 | 2021-06-15 | Asahi Kasei Kabushiki Kaisha | Lithium ion secondary battery |
WO2018043375A1 (ja) * | 2016-08-29 | 2018-03-08 | 株式会社Gsユアサ | 蓄電素子およびその製造方法 |
US11114665B2 (en) | 2016-08-29 | 2021-09-07 | Gs Yuasa International Ltd. | Energy storage device and method for producing same |
US12040486B2 (en) | 2019-04-09 | 2024-07-16 | Kabushiki Kaisha Toshiba | Electrode, electrode group, battery, and battery pack |
JP2023132913A (ja) * | 2022-03-11 | 2023-09-22 | プライムプラネットエナジー&ソリューションズ株式会社 | 二次電池 |
JP7475384B2 (ja) | 2022-03-11 | 2024-04-26 | プライムプラネットエナジー&ソリューションズ株式会社 | 二次電池 |
WO2024172154A1 (ja) * | 2023-02-16 | 2024-08-22 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
Also Published As
Publication number | Publication date |
---|---|
KR20150016581A (ko) | 2015-02-12 |
JP5773208B2 (ja) | 2015-09-02 |
US10522816B2 (en) | 2019-12-31 |
KR101627013B1 (ko) | 2016-06-03 |
US20180241029A1 (en) | 2018-08-23 |
JPWO2011089701A1 (ja) | 2013-05-20 |
KR101767304B1 (ko) | 2017-08-10 |
KR20120109636A (ko) | 2012-10-08 |
CN102763244B (zh) | 2015-07-29 |
US20120288759A1 (en) | 2012-11-15 |
CN102763244A (zh) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5773208B2 (ja) | リチウム二次電池 | |
JP5773209B2 (ja) | リチウム二次電池 | |
JP5229598B2 (ja) | リチウム二次電池及びその製造方法 | |
JP4487220B1 (ja) | リチウム二次電池用正極およびその製造方法 | |
JP5158452B2 (ja) | リチウム二次電池用正極とその利用 | |
JP5035650B2 (ja) | リチウム二次電池及びその製造方法 | |
WO2010041556A1 (ja) | リチウム二次電池およびその製造方法 | |
JP5696904B2 (ja) | リチウムイオン二次電池およびその製造方法 | |
JP2010282873A (ja) | リチウム二次電池およびその製造方法 | |
WO2011108119A1 (ja) | リチウム二次電池および該電池に用いられるセパレータ | |
JP5527597B2 (ja) | リチウム二次電池の製造方法 | |
JP5605614B2 (ja) | リチウム二次電池の製造方法 | |
JP2010251047A (ja) | 正極の製造方法 | |
JP5510704B2 (ja) | 二次電池および該電池の製造方法 | |
JP2011023146A (ja) | リチウム二次電池および該電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080061984.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10843867 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 13522744 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011550753 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127021728 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10843867 Country of ref document: EP Kind code of ref document: A1 |