[go: up one dir, main page]

WO2011085639A1 - 传输上行信息和处理上行信息的方法、系统及装置 - Google Patents

传输上行信息和处理上行信息的方法、系统及装置 Download PDF

Info

Publication number
WO2011085639A1
WO2011085639A1 PCT/CN2011/000056 CN2011000056W WO2011085639A1 WO 2011085639 A1 WO2011085639 A1 WO 2011085639A1 CN 2011000056 W CN2011000056 W CN 2011000056W WO 2011085639 A1 WO2011085639 A1 WO 2011085639A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit sequence
set value
adjustment bit
length
uplink information
Prior art date
Application number
PCT/CN2011/000056
Other languages
English (en)
French (fr)
Inventor
杨宇
徐伟杰
邢艳萍
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2011085639A1 publication Critical patent/WO2011085639A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a method, system and apparatus for transmitting uplink information and processing uplink information. Background technique
  • the HS-SICH Shared Information Channel for HS-DSCH
  • the HS-PDSCH High Speed Physical channel and is responsible for the HS-PDSCH (High Speed).
  • Confirmation information (ACK/NACK), channel shield indication information (CQI), TPC (Transmit Power Control) of HARQ (Hybrid Automatic Repeat ReQuest) on the Physical Downlink Shared Channel , Transmit Power Control) Information and SS (Synchronisation Shift) information.
  • the HS-DSCH High Speed Downlink Shared Channel
  • the HS-SCCH Shared Control Channel for HS-DSCH, HS-DSCH shared control channel
  • the HS-SICH are allocated in pairs on the same carrier, and the HS-DSCH of the same UE (user terminal) is controlled.
  • MIMO Multiple Input Multiple Output
  • the HS-SICH type 1 uses the slot structure 5
  • the HS-SICH type 2 uses the slot structure 20, as shown in Table 1:
  • the TPC setting mode is specified in the HS-SICH typel.
  • the TPC is increased from 2 bits to 4 bits, so that the sender cannot transmit the TPC;
  • the setting method specified in the HS-SICH typel cannot be used, so that the sender cannot transmit the SS;
  • the embodiment of the invention provides a method and a device for transmitting uplink information, which are used to solve the problem that the TPC and the SS are respectively increased from 2 bits to 4 bits in the prior art, and the setting manner specified in the HS-SICH type1 cannot be used, so that the sender The problem of TPC and SS in HS-SICH type2 cannot be transmitted.
  • the embodiment of the present invention provides a method, a system, and a device for processing uplink information, which are used to solve the problem that the TPC and the SS are respectively increased from 2 bits to 4 bits in the prior art, and the setting manner specified in the HS-SICH type1 cannot be used.
  • the receiver cannot receive and parse the TPC and SS in HS-SICH type 2.
  • the embodiment of the present invention provides another method and apparatus for transmitting uplink information, which is used to solve the problem that the setting method specified in the HS-SICH type1 cannot be used because the TPC is increased from 2 bits to 4 bits in the prior art, so that the sender cannot transmit.
  • the embodiment of the present invention provides a method, a system, and a device for processing uplink information, which are used to solve the problem that the TPC cannot be used in the HS-SICH type1 because the TPC is increased from 2 bits to 4 bits in the prior art, so that the receiver cannot Receive and resolve the problem of TPC in HS-SICH type 2.
  • a method for transmitting uplink information by using an HS-SICH according to an embodiment of the present invention includes:
  • a power adjustment bit sequence indicating an adjustment state of a transmission power of the base station and having a length not greater than a first set value, and determining an adjustment state for indicating a transmission time of the base station and having a length not greater than a second set value Time adjustment bit sequence;
  • the user terminal encodes power adjustment bit information and time adjustment bit information into a length Uplink information of three set values
  • the user terminal sends the uplink information by using an HS-SICH.
  • the base station receives the uplink information whose length is the third set value by using the shared information channel HS-SICH of the high speed downlink shared channel, where the uplink information whose length is the third set value is used by the user terminal to indicate the transmit power of the base station.
  • a power adjustment bit sequence whose state is adjusted and whose length is not greater than the first set value, and a time adjustment bit sequence coded to indicate an adjustment state of the transmission time of the base station and whose length is not greater than the second set value;
  • the user terminal encodes the power adjustment bit information into uplink information whose length is a third set value
  • the user terminal sends the uplink information by using an HS-SICH.
  • Another method for processing uplink information includes: receiving, by a base station, uplink information whose length is a third set value by using a shared information channel HS-SICH of a high speed downlink shared channel, where the length is The uplink information of the three set values t is obtained by encoding the power adjustment bit sequence used by the user terminal to indicate the adjustment state of the transmit power of the base station and the length is not greater than the third set value;
  • a user terminal configured to determine a power adjustment bit sequence for indicating an adjustment state of a transmission power of the base station and having a length not greater than a first set value, and determining an adjustment state for indicating a transmission time of the base station, and the length is not greater than the second setting a fixed time adjustment bit sequence, encoding the power adjustment bit information and the time adjustment bit information into uplink information whose length is a third set value,
  • the HS-SICH sends the uplink information
  • a base station configured to receive uplink information whose length is a third set value by using an HS-SICH, and decode the uplink information into the power adjustment bit sequence and the time adjustment bit sequence, according to the power adjustment bit sequence Determining an adjustment state of the transmission power of the user terminal by itself, and determining an adjustment state of the transmission time of the user terminal according to the time adjustment bit sequence.
  • the system includes: a user terminal, configured to determine a power adjustment bit sequence for indicating an adjustment state of a transmit power of a base station and a length not greater than a third set value, And encoding the power adjustment bit information into uplink information whose length is a third set value, and transmitting the uplink information by using a shared information channel HS-SICH of the high speed downlink shared channel;
  • a base station configured to receive, by using an HS-SICH, uplink information whose length is a third set value, decode the uplink information into the power adjustment bit sequence, and determine, according to the power adjustment bit sequence, the user to the user terminal.
  • the adjustment state of the transmission power configured to receive, by using an HS-SICH, uplink information whose length is a third set value, decode the uplink information into the power adjustment bit sequence, and determine, according to the power adjustment bit sequence, the user to the user terminal. The adjustment state of the transmission power.
  • a first parameter determining module configured to determine a power adjustment bit sequence for indicating an adjustment state of a transmit power of the base station and having a length not greater than the first set value, and determining an adjustment state for indicating a transmission time of the base station, and the length is not greater than a time adjustment bit sequence of the second set value;
  • a first information determining module configured to encode the power adjustment bit information and the time adjustment bit information into uplink information whose length is a third set value
  • the first sending module is configured to send the uplink information by using a shared information channel HS-SICH of the high speed downlink shared channel.
  • a base station provided by an embodiment of the present invention includes:
  • a first receiving module configured to receive uplink information whose length is a third set value by using a shared information channel HS-SICH of the high speed downlink shared channel, where the uplink information whose length is the third set value is used by the user terminal a time adjustment bit sequence indicating that the adjustment state of the transmission power of the base station is not greater than the first set value and the adjustment period for indicating the transmission time of the base station and the length is not greater than the second set value of;
  • a first processing module configured to decode the uplink information into the power adjustment bit sequence and the time adjustment bit sequence
  • a first state determining module configured to determine, according to the power adjustment bit sequence, an adjustment state of its own transmit power to the user terminal, and determine, according to the time adjustment bit sequence, an adjustment of a transmission time of the user terminal by itself status.
  • a second parameter determining module configured to determine a power adjustment bit sequence for indicating an adjustment state of a transmit power of the base station and having a length not greater than a third set value
  • a second information determining module configured to encode the power adjustment bit information into uplink information whose length is a third set value
  • a second sending module configured to send the uplink information by using an HS-SICH.
  • a second receiving module configured to receive uplink information whose length is a third set value by using a shared information channel HS-SICH of the high speed downlink shared channel, where the uplink information whose length is the third set value is used by the user terminal Obtained after the power adjustment bit sequence indicating the adjustment state of the transmission power of the base station and the length is not greater than the third set value;
  • a second processing module configured to decode the uplink information into the power adjustment bit sequence; and a second state determining module, configured to determine, according to the power adjustment bit sequence, an adjustment state of its own transmit power to the user terminal .
  • the user terminal performs coding according to the power adjustment bit sequence and the time adjustment bit sequence, determines uplink information whose length is the third set value, and sends the uplink information by using the HS-SICH.
  • the base station determines the power adjustment bit sequence and the time adjustment bit sequence according to the uplink information whose reception length is the third set value through the HS-SICH, and determines the adjustment state of the transmission power of the user terminal by the power adjustment bit sequence, and
  • the time adjustment bit sequence determines the adjustment state of its own transmission time to the user terminal.
  • the base station determines the power adjustment bit sequence and the time adjustment bit sequence according to the uplink information, so that the sender can transmit the TPC and the SS in the HS-SICH type 2, the receiver can receive and parse the TPC and the SS in the HS-SICH type 2, thereby Improve system performance.
  • the user equipment performs coding according to the power adjustment bit sequence, determines uplink information whose length is the third set value, and sends uplink information by using the HS-SICH, and the base station receives the uplink set value according to the HS-SICH.
  • the uplink information determines the power adjustment bit sequence, and determines the adjustment state of the transmission power of the user terminal according to the power adjustment bit sequence. Since the base station determines the power adjustment bit sequence according to the uplink information, so that the sender can transmit the TPC in the HS-SICH type 2, the receiver can receive and parse the TPC in the HS-SICH type 2, thereby improving system performance.
  • FIG. 1A is a schematic diagram of coding of an HS-SICH type 1 according to an embodiment of the present invention
  • FIG. 1B is a schematic diagram of coding of an HS-SICH type 2 according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a first uplink information processing system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a first user terminal according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for transmitting uplink information by using an HS-SICH according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a method for processing uplink information according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a second uplink information processing system according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a second user terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a second base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a second method for transmitting uplink information by using an HS-SICH according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a method for processing uplink information according to an embodiment of the present invention. detailed description
  • the HS-SICH type1 is used for uplink signaling feedback of a single stream in the non-MIMO mode and the MIMO mode.
  • the channel includes: 1-bit HARQ acknowledgment information, 6-bit RTBS (Recommended Transport Block Size, recommended transport block format), 1-bit RMF (Recommended Modulation Format Recommended Modulation Format), 2-bit TPC, 2-bit SS. among them:
  • the 1-bit HARQ acknowledgment information takes 1 for ACK, and 0 for NACK, the bit is first encoded as 36 bits;
  • the 6-bit RTBS is used to recommend the TBS of the HS-PDSCH, which is encoded by the first-order Reed-Muller (Reed and Muller, RM) of (32, 6), and the encoded output is 32 bits;
  • R F is used to recommend the modulation mode of the HS-PDSCH, the bit is first coded to 16 bits;
  • the signalling encoded output bits are multiplexed, a total of 84 bits, and are subjected to physical channel mapping after interleaving.
  • the 84-bit and 4-bit TPC+SS are arranged in accordance with the slot structure 5, as shown in Fig. 1A.
  • the HS-SICH type 2 channel is used for uplink signaling feedback of dual streams in MIMO mode.
  • the channel contains: 2-bit HARQ acknowledgment information, 12-bit RTBS, 2-bit RMF, 4-bit TPC, 4-bit ss. among them
  • Each bit in the 2-bit HARQ acknowledgment information is used for HARQ acknowledgment information of one downlink data stream, that is, each bit takes 1 for ACK, 0 for NACK, and each bit is first coded (repetitive coded) to 36 bits. , the code output is a total of 72 bits;
  • every 6 bits are used for the TBS of the recommended HS-PDSCH of one downlink data stream, and the first-order Reed-Muller coding of (32, 6) is used for every 6 bits, and the coded output is 64 bits;
  • each bit is used for the modulation scheme of the recommended HS-PDSCH of one downlink data stream, each bit is first coded (repetitive coded) to 16 bits, and the coded output is 32 bits; after the above signaling is encoded
  • the output bits are multiplexed, a total of 168 bits, after interleaving Do physical channel mapping.
  • the 168-bit and 8-bit TPC+SS are arranged in accordance with the slot structure 20, as shown in FIG. 1B.
  • 8-bit uplink information may be arranged with 168 bits according to the slot structure 20, and then transmitted through the HS-SICH.
  • the processing system of the first uplink information in the embodiment of the present invention includes: a user terminal
  • the user terminal 10 is configured to indicate an adjustment state of the transmit power of the base station, and the length is not greater than the first set value (here and the following are all described by taking the first set value as 4 bits as an example, and of course, other a power adjustment bit sequence of the set value), and an adjustment state for determining a transmission time of the base station, and the length is not greater than a second set value (herein and the following are all described by taking the second set value as 4 bits as an example) , of course, it is also possible to adjust the bit sequence for other set values), and encode the power adjustment bit information and the time adjustment bit information into a second set value (here and the following are all set to 8 bit by the third set value)
  • the uplink information of the other setting values may be used to send uplink information through the HS-SICH.
  • the base station 20 is configured to receive uplink information of length 8 bits through the HS-SICH, decode the uplink information into a power adjustment bit sequence and a time adjustment bit sequence, and determine a adjustment state of the transmission power of the user terminal by using the power adjustment bit sequence. And determining an adjustment state of the transmission time of the user terminal according to the time adjustment bit sequence.
  • the length of the power adjustment bit sequence in the embodiment of the present invention may be 1, 2, 3 or 4 bits, and the length of the time adjustment bit sequence may be 2, 3 or 4 bits.
  • the TPC is used to indicate the adjustment state of the transmit power; the SS is used to perform synchronization adjustment on the base station and the user terminal, and indicates the adjustment state of the transmission time.
  • the specific meanings of TPC and SS can be seen in Table 2 and Table 3. If necessary, the meanings in Table 2 and Table 3 can be added and modified.
  • the length of the power adjustment bit sequence in the embodiment of the present invention may be 1 bit.
  • 0 means to reduce the transmission power
  • 1 means to increase the transmission power
  • 2 bits for example, 00 means to reduce the transmission power
  • 11 means to increase the transmission power
  • 3bit such as 000 means to reduce the transmission power
  • 111 means to increase the transmission power
  • 4bit for example, 0000 means to reduce the transmission power
  • 1111 means to increase the transmission power.
  • the length of the time adjustment bit sequence in the embodiment of the present invention may be 2 bits, for example, 00 means lag transmission time, 11 means advance transmission time, 01 means transmission time is unchanged, and may be 3 bits, for example, 000 means lag transmission time, 111
  • the table advances the transmission time, 010 indicates that the transmission time does not change; it can also be 4 bits, for example, 0000 indicates the lag transmission time, 1111 indicates the advance transmission time, and 0100 indicates the transmission time does not change.
  • the meanings of the power adjustment bit sequence and the time adjustment bit sequence may be specified in the protocol, or may be determined by the upper layer and notified to the user terminal and the base station, or may be determined by negotiation between the user terminal and the base station. However, it is necessary to ensure that the power adjustment bit sequence and the time adjustment bit sequence determined by the user terminal and the base station have the same meaning.
  • the TPC and the SS are respectively extended to 4 bits, the TPC and the SS require a total of 8 bits, that is, the uplink information of the embodiment of the present invention requires 8 bits.
  • the power adjustment bit sequence and the time adjustment bit sequence are both 4 bits, the sum of the power adjustment bit sequence and the time adjustment bit sequence is only required. If it is less than 8 bits, the power adjustment bit sequence and/or the time adjustment bit sequence need to be encoded to generate 8-bit uplink information.
  • the length of the power adjustment bit sequence is less than 4 bits
  • the length of the time adjustment bit sequence is less than 4 bits.
  • the embodiment of the present invention is not limited to the following manners, and other manners for obtaining 8 bits of uplink information are also applicable to the embodiment of the present invention.
  • the user terminal 10 respectively encodes the power adjustment bit sequence and the time adjustment bit sequence into a bit sequence having a length of 4 bits, and combines the encoded power adjustment bit sequence and the time adjustment bit sequence into uplink information having a length of 8 bits;
  • the base station 20 respectively determines a power adjustment bit sequence encoded in the uplink information of length 8 bits and a time adjustment bit sequence after coding, wherein the length of the coded power adjustment bit sequence is 4 bits, and the coded The length of the time adjustment bit sequence is 4 bits, and the coded power adjustment bit sequence is decoded into a power adjustment bit sequence for determining the adjustment state of the transmission power, and the encoded time adjustment bit sequence is decoded to determine the transmission time.
  • the time adjustment bit sequence used by the state.
  • the decoding of the base station in the first manner is the decoding corresponding to the encoding of the user terminal in the first manner, for example, the encoding of the user terminal is repeated coding, and the decoding of the base station is repeated decoding.
  • the coding in the first mode of the embodiment of the present invention is not limited to repeated coding, and other methods capable of encoding less than 4 bit parameters into 4 bits are applicable to the embodiments of the present invention, such as block coding, RM (Reed-Muller) coding, and the like.
  • the user terminal and the base station may be determined and notified by the upper layer, or may be determined by the user terminal and the base station.
  • the power adjustment bit sequence and the time adjustment bit sequence are both 2 bits, that is, the power adjustment bit sequence is TPC1 and TPC2, and the time adjustment bit sequence is SS1 and SS2.
  • 8 bits of information are obtained, and then 8 bits of information are combined to obtain 8 bits of uplink information.
  • the manner of combining may be determined according to the protocol or determined by the upper layer and notified to the user terminal and the base station, or may be determined by the user terminal and the base station.
  • TPC1, TPC2, TPC3, TPC4, SS1, SS2, SS3, and SS4 may be specified, and then the base station 20 performs corresponding decoding to obtain TPC1 and TPC3.
  • TPC1 and TPC3 are the same, TPC1 is used as the power adjustment bit sequence.
  • the first value in the case; if not the same, it can be considered that the decoding fails, the failure notification is returned to the user interrupt, and the user terminal can resend; if not, the TPC1 can be directly used as the first one in the power adjustment bit sequence. value.
  • base station 20 can also obtain a second value in the power adjustment bit sequence, as well as the first and second values in the time adjustment bit sequence. Since the base station 20 knows that both the power adjustment bit sequence and the time adjustment bit sequence are 2 bits, the specific meaning can be known from the determined values.
  • the combination can also allow the SS to be in the pre-TPC and the TPC and the SS to cross.
  • the user terminal and the base station need to be consistent.
  • the base station can accurately obtain the power adjustment bit sequence and the time adjustment bit sequence.
  • the user terminal 10 expands the length of the power adjustment bit sequence and the time adjustment bit sequence to 4 bits by using invalid bits, and combines the extended power adjustment bit sequence and the extended time adjustment bit sequence into an uplink of 8 bits in length.
  • the base station 20 determines the power adjustment bit sequence extended by the invalid bit in the uplink information of the length of 8 bits and the time adjustment bit sequence after the extension of the invalid bit, removes the invalid bit in the power adjustment bit sequence, and obtains the determined transmission power.
  • the power adjustment bit sequence used to adjust the state, and the invalid bits in the time adjustment bit sequence are removed, to obtain a time adjustment bit sequence for determining the adjustment state of the transmission time.
  • the power adjustment bit sequence and the time adjustment bit sequence are both 2 bits, that is, the power adjustment bit sequence is TPC1 and TPC2, and the time adjustment bit sequence is SS1 and SS2.
  • the base station 20 can remove the invalid bit sequences TPC3 and TPC4, as well as the invalid bit sequences SS3 and SS4, and use TPC1 and TPC2 as the values of the power adjustment bit sequence, SS1 and SS2 as the values of the time adjustment bit sequence.
  • the user terminal 10 combines the power adjustment bit sequence and the time adjustment bit sequence into a special bit sequence, and determines a mapping bit sequence corresponding to the special bit sequence, wherein the length of the mapping bit sequence is not more than 8 bits, and is not less than the fourth set value. (This is described below with the fourth set value of 3bit as an example, and of course other settings.)
  • the mapping bit sequence is encoded into uplink information having a length of 8 bits.
  • the base station 20 decodes the uplink information of the length of 8 bits into a mapping bit sequence, wherein the length of the mapping bit sequence is not more than 8 bits, and is not less than 3 bits, determining a special bit sequence corresponding to the mapping bit sequence, and determining the power in the special bit sequence. Adjust the bit sequence and time adjustment bit sequence.
  • the decoding of the base station in the third manner is the decoding corresponding to the encoding of the user terminal in the third manner, for example, the encoding of the user terminal is repeated coding, and the decoding of the base station is repeated decoding.
  • the coding in the third mode of the embodiment of the present invention is not limited to the repetition coding, and other methods capable of encoding less than 4 bit parameters into 4 bits are applicable to the embodiments of the present invention, such as block coding, RM coding, and the like.
  • the user terminal and the base station may be determined and notified by the upper layer, or may be determined by the user terminal and the base station.
  • the power adjustment bit sequence and the time adjustment bit sequence are both 2 bits, that is, the power adjustment bit sequence is TPC1 and TPC2, and the time adjustment bit sequence is SS1 and SS2.
  • the power adjustment bit sequence is 00 and 11
  • the time adjustment bit sequence is 00, 11 and 01.
  • Power adjustment bit sequence and time adjustment bit sequence combination 1100, 1111
  • the special bit sequence has six expressions.
  • Six ways of expression At least 3 bits are required to establish a mapping relationship. Assuming that the mapping bit sequence length is 3 bits, the correspondence between the established special bit sequence and the mapped bit sequence may be 000 corresponding to 1100, 001 corresponding to 1111, and so on.
  • the user terminal and the base station are determined or notified by the upper layer, and may also be determined by the user terminal and the base station, but it is necessary to ensure that the user terminal 10 and the base station 20 use the same correspondence.
  • the length of the special bit sequence is also different.
  • the power adjustment bit sequence is 00, 01, and 11
  • the time adjustment bit sequence is 00, 11 and 01.
  • the length of the mapping bit sequence is 4 bits.
  • the combination of the power adjustment bit sequence and the time adjustment bit sequence in the third mode in FIG. 2 is similar to the combination of the power adjustment bit sequence and the time adjustment bit sequence in the mode 1 in FIG. 2, and details are not described herein.
  • mapping bit sequence is directly used as the uplink information. If the length of the mapping bit sequence is less than 8 bits, the mapping bit sequence is encoded into 8 bits of uplink information, and the specific coding mode may be repeated by referring to mode 1. For encoding, you can also fill invalid bits with reference to mode two, or you can use other encoding methods.
  • mapping bit sequence is directly used as the uplink information, the base station 20 performs decoding to obtain a mapping bit sequence of 8 bits in length;
  • mapping bit sequence is encoded to have 8 bits of uplink information
  • the base station 20 will also obtain the original length mapping bit sequence after decoding.
  • the base station 20 After obtaining the mapping bit sequence, the base station 20 determines a special bit sequence corresponding to the obtained mapping bit sequence according to the correspondence between the special bit sequence and the mapping bit sequence, and then obtains the power adjustment bit sequence and the time adjustment bit sequence according to the special bit sequence. .
  • the combination mode adopts the power adjustment bit sequence + time adjustment bit sequence.
  • the special bit sequence is 1100, it can be determined that the power adjustment bit sequence is 11 and the time adjustment bit sequence is 00.
  • the first user terminal of the embodiment of the present invention includes: a first parameter determining module 100, The first information determining module 110 and the first sending module 120.
  • the first parameter determining module 100 is configured to determine a power adjustment bit sequence for indicating an adjustment state of a transmission power of the base station and having a length of not more than 4 bits, and determining an adjustment state for indicating a transmission time of the base station and a length of not more than 4 bits. Adjust the bit sequence.
  • the first information determining module 110 is configured to encode the power adjustment bit information and the time adjustment bit information determined by the first parameter determining module 100 into uplink information having a length of 8 bits.
  • the first sending module 120 is configured to send, by using the HS-SICH, the uplink information determined by the first information determining module 110.
  • the first information determining module 100 may encode the power adjustment bit sequence and the time adjustment bit sequence into a bit sequence having a length of 4 bits when the length of the power adjustment bit sequence is less than 4 bits and the length of the time adjustment bit sequence is less than 4 bits.
  • the encoded power adjustment bit sequence and the time adjustment bit sequence are combined into an uplink information having a length of 8 bits.
  • the first information determining module 100 may expand the length of the power adjustment bit sequence and the time adjustment bit sequence to 4 bits by using invalid bits when the length of the power adjustment bit sequence is less than 4 bits and the length of the time adjustment bit sequence is less than 4 bits.
  • the expanded power adjustment bit sequence and the extended time adjustment bit sequence are combined into uplink information having a length of 8 bits.
  • the first information determining module 100 may combine the power adjustment bit sequence and the time adjustment bit sequence into a special bit sequence when the length of the power adjustment bit sequence is less than 4 bits, and the length of the time adjustment bit sequence is less than 4 bits, and determine the correspondence of the special bit sequence.
  • the mapping bit sequence wherein the length of the mapping bit sequence is not more than 8 bits, and is not less than 3 bits. When the length of the mapping bit sequence is equal to 8 bits, the mapping bit sequence is used as uplink information, and when the length of the mapping bit sequence is less than 8 bits, the mapping is performed.
  • the bit sequence is encoded as uplink information of length 8 bits.
  • the first type of base station in the embodiment of the present invention includes: a first receiving module 200, a first processing module 210, and a first state determining module 220.
  • the first receiving module 200 is configured to receive uplink information of length 8 bits through the HS-SICH, where the uplink information of length 8 bits is a power adjustment bit that the user terminal will use to indicate the adjustment state of the transmit power of the base station and the length is not more than 4 bits. Sequence and adjustment for indicating the transmission time of the base station The time-adjusted bit sequence encoded in the state and having a length of no more than 4 bits is obtained.
  • the first processing module 210 is configured to decode the uplink information received by the first receiving module 200 into a power adjustment bit sequence and a time adjustment bit sequence.
  • the first state determining module 220 is configured to determine, according to the power adjustment bit sequence determined by the first processing module 210, an adjustment state of the transmit power of the user terminal, and determine the bit sequence determined according to the first processing module 210.
  • the adjustment state of the transmission time of the user terminal itself.
  • the first processing module 210 may determine, after the length of the power adjustment bit sequence is less than 4 bits, and the length of the time adjustment bit sequence is less than 4 bits, respectively determine the power adjustment bit sequence encoded in the uplink information of length 8 bits and perform coding.
  • the time adjustment bit sequence wherein the length of the coded power adjustment bit sequence is 4 bits, and the length of the coded time adjustment bit sequence is 4 bits, and the coded power adjustment bit sequence is decoded to determine the adjustment state of the transmission power.
  • the power adjustment bit sequence and the time adjustment bit sequence used to decode the encoded time adjustment bit sequence into an adjustment state for determining the transmission time.
  • the first processing module 210 may determine, when the length of the power adjustment bit sequence is less than 4 bits, and the length of the time adjustment bit sequence is less than 4 bits, determine the power adjustment bit sequence after the invalid bit is extended in the uplink information whose length is 8 bits, and use the invalid bit.
  • the extended time adjustment bit sequence is removed, the invalid bits in the power adjustment bit sequence are removed, the power adjustment bit sequence used to determine the adjustment state of the transmission power is obtained, and the invalid bits in the time adjustment bit sequence are removed, and the adjustment state of determining the transmission time is obtained.
  • the time used to adjust the bit sequence is used to adjust the bit sequence.
  • the first processing module 210 may decode the uplink information of length 8 bits into a mapping bit sequence, where the length of the time adjustment bit sequence is less than 4 bits, and the length of the mapping bit sequence is not more than 8 bits. And not less than 3 bits, determining a special bit sequence corresponding to the mapped bit sequence, and determining a power adjustment bit sequence and a time adjustment bit sequence in the special bit sequence.
  • the first method for transmitting uplink information by using the HS-SICH in the embodiment of the present invention includes the following steps:
  • Step 501 The user terminal determines an adjustment state for indicating a transmit power of the base station, and the length is not A power adjustment bit sequence larger than 4 bits, and a time adjustment bit sequence for determining an adjustment state for indicating a transmission time of the base station and having a length of not more than 4 bits.
  • Step 502 The user terminal encodes the power adjustment bit information and the time adjustment bit information into uplink information whose length is 8 bits.
  • Step 503 The user terminal sends the uplink information by using the HS-SICH.
  • the length of the power adjustment bit sequence in the embodiment of the present invention may be 1, 2, 3 or 4 bits, and the length of the time adjustment bit sequence may be 2, 3 or 4 bits.
  • the TPC is used to indicate the adjustment state of the transmission power; the SS is used to perform synchronization adjustment on the base station and the user terminal, and indicates the adjustment state of the transmission time.
  • the specific meanings of TPC and SS can be seen in Table 2 and Table 3. If necessary, the meanings in Table 2 and Table 3 can be added and modified.
  • the meanings of the power adjustment bit sequence and the time adjustment bit sequence may be specified in the protocol, or may be determined by the upper layer and notified to the user terminal and the base station, or may be determined by negotiation between the user terminal and the base station. However, it is necessary to ensure that the power adjustment bit sequence and the time adjustment bit sequence determined by the user terminal and the base station have the same meaning.
  • the TPC and the SS are respectively extended to 4 bits, the TPC and the SS require a total of 8 bits, that is, the uplink information of the embodiment of the present invention requires 8 bits.
  • the power adjustment bit sequence and the time adjustment bit sequence in the embodiment of the present invention are both 4 bits, only the 8-bit uplink information needs to be combined. If the sum of the power adjustment bit sequence and the time adjustment bit sequence is less than 8 bits, the power adjustment bit sequence and the power adjustment bit sequence are required. / or time adjustment bit sequence encoding, generating 8bit uplink information.
  • the length of the power adjustment bit sequence is less than 4 bits
  • the length of the time adjustment bit sequence is less than 4 bits.
  • the embodiments of the present invention are not limited to the following manners, and other manners in which 8 bits of uplink information can be obtained are also applicable to the embodiments of the present invention.
  • step 502 the user terminal separately encodes the power adjustment bit sequence and the time adjustment bit sequence into a bit sequence of length 4 bits, and combines the encoded power adjustment bit sequence and the time adjustment bit sequence into uplink information of length 8 bits.
  • the coding in the first mode of the embodiment of the present invention is not limited to repeated coding, and other methods capable of encoding less than 4 bit parameters into 4 bits are applicable to the embodiments of the present invention, such as block coding, RM coding, and the like.
  • the coding of the specific user terminal may be set in the protocol, or may be determined and notified by the upper layer to the user terminal and the base station, or may be determined by the user terminal and the base station.
  • the power adjustment bit sequence and the time adjustment bit sequence are both 2 bits, that is, the power adjustment bit sequence is TPC1 and TPC2, and the time adjustment bit sequence is SS1 and SS2.
  • SS1 and SS2 are obtained.
  • SS3 and SS4, which can make SS1 SS3, SS2 - SS4.
  • 8 bits of information are obtained, and then 8 bits of information are combined to obtain 8 bits of uplink information.
  • the combined manner may be determined according to the protocol or determined by the upper layer and notified to the user terminal and the base station, or may be negotiated by the user terminal and the base station. Ok.
  • the combination can also allow the SS to be in the pre-TPC and the TPC and the SS to cross.
  • the user terminal and the base station need to be consistent.
  • the base station can accurately obtain the power adjustment bit sequence and the time adjustment bit sequence.
  • step 502 the user terminal uses the invalid bit to expand the length of the power adjustment bit sequence and the time adjustment bit sequence to 4 bits, and combines the extended power adjustment bit sequence and the extended time adjustment bit sequence into a length. 8bit uplink information.
  • the power adjustment bit sequence and the time adjustment bit sequence are both 2 bits, that is, the power adjustment bit sequence is TPC1 and TPC2, and the time adjustment bit sequence is SS 1 and SS2.
  • step 502 the user terminal combines the power adjustment bit sequence and the time adjustment bit sequence into a special bit sequence, and determines a mapping bit sequence corresponding to the special bit sequence, wherein the length of the mapping bit sequence is not more than 8 bits, and is not less than 3 bits.
  • the mapping bit sequence is used as uplink information, and when the length of the mapping bit sequence is less than 8 bits, the mapping bit sequence is encoded into uplink information having a length of 8 bits.
  • the coding in the third mode of the embodiment of the present invention is not limited to the repetition coding, and other methods capable of encoding less than 4 bit parameters into 4 bits are applicable to the embodiments of the present invention, such as block coding, RM coding, and the like.
  • the encoding of the specific user terminal may be set in the protocol, or may be determined and notified by the upper layer to the user terminal and the base station, or may be determined by the user terminal and the base station.
  • the power adjustment bit sequence and the time adjustment bit sequence are both 2 bits, that is, the power adjustment bit sequence is TPC1 and TPC2, and the time adjustment bit sequence is SS1 and SS2.
  • the power adjustment bit sequence is 00 and 11, and the time adjustment bit sequence is 00, 11 and 01.
  • the six representations require at least 3 bits to establish a mapping relationship. Assuming that the mapping bit sequence length is 3 bits, the correspondence between the established special bit sequence and the mapped bit sequence may be 000 corresponding to 1100, 001 corresponding to 1111, and so on.
  • the correspondence between the specific special bit sequence and the mapping bit sequence may be determined in the protocol as required or determined by the upper layer and notified to the user terminal and the base station, or may be determined by the user terminal and the base station, but the user terminal and the base station need to ensure the same correspondence. relationship.
  • the length of the special bit sequence is also different.
  • the power adjustment bit sequence is 00, 01, and 11
  • the time adjustment bit sequence is 00, 11 and 01.
  • the length of the mapping bit sequence is 4 bits.
  • the combination of the power adjustment bit sequence and the time adjustment bit sequence in the third mode in FIG. 5 is similar to the combination of the power adjustment bit sequence and the time adjustment bit sequence in the mode 1 in FIG. 5 , and details are not described herein again.
  • the mapping bit sequence is 8 bits, the mapping bit sequence is directly used as the uplink information; if the length of the mapping bit sequence is less than 8 bits, the mapping bit sequence is encoded into 8 bits of uplink information, and the specific coding mode can be performed by referring to mode 1 Repeat coding, or refer to mode 2 to fill invalid bits, or other coding methods.
  • the method for processing the first uplink information in the embodiment of the present invention includes the following steps: Step 601: The base station receives uplink information of length 8 bits through the HS-SICH, where the length is
  • the 8 bit uplink information is a time adjustment bit sequence code that the user terminal will use to indicate an adjustment state of the base station's transmit power and a power adjustment bit sequence of not more than 4 bits in length and an adjustment state for indicating the transmission time of the base station and a length of not more than 4 bits. After getting it.
  • Step 602 The base station decodes the uplink information into a power adjustment bit sequence and a time adjustment bit sequence.
  • Step 603 The base station determines, according to the power adjustment bit sequence, an adjustment state of the transmission power of the user terminal, and determines an adjustment state of the transmission time of the user terminal according to the time adjustment bit sequence.
  • the base station determines the power adjustment bit sequence and the time adjustment bit sequence according to the uplink information.
  • the specific method is determined according to the user terminal to determine the uplink information, and several types are listed below.
  • Method 1 The user terminal determines the uplink information by using the method 1 in FIG.
  • the base station determines a power adjustment bit sequence encoded in the uplink information of length 8 bits and a time adjustment bit sequence after coding, wherein the length of the coded power adjustment bit sequence is 4 bits, and the coded The length of the time adjustment bit sequence is 4 bits, the bit sequence is adjusted, and the time adjustment bit sequence after encoding is decoded into a time adjustment bit sequence for determining the adjustment state of the transmission time.
  • the decoding of the base station is the decoding corresponding to the coding of the user terminal. For example, if the coding of the user terminal is repeated coding, the decoding of the base station is repeated decoding.
  • the specific base station decoding method can be set in the protocol, or can be determined by the upper layer and The user terminal and the base station are notified, and may also be determined by the user terminal and the base station.
  • the user terminal When the user terminal combines the 8 bits of information, it obtains 8 bits of uplink information.
  • the manner of combining may be determined according to the protocol or determined by the upper layer and notified to the user terminal and the base station, or may be determined by the user terminal and the base station through negotiation. For example, the combination of TPC1, TPC2, TPC3, TPC4, SS1, SS2, SS3, and SS4 may be specified.
  • the base station 20 performs the first decoding to obtain TPC1 and TPC3.
  • TPC1 is used as The first value in the power adjustment bit sequence; if not the same, it can be considered that the decoding fails, the failure notification is returned to the user interrupt, and the user terminal can resend; if not, the TPC1 can be directly used as the power adjustment bit sequence.
  • the first value can be obtained in a similar manner, base station 20 can also obtain a second value in the power adjustment bit sequence, as well as the first and second values in the time adjustment bit sequence. Since the base station 20 knows that both the power adjustment bit sequence and the time adjustment bit sequence are 2 bits, the specific meaning can be known from the determined values.
  • Method 2 The user terminal determines the uplink information by using the second method in FIG.
  • the base station determines a power adjustment bit sequence that is extended by the invalid bit in the uplink information of the length of 8 bits, and a time adjustment bit sequence that is extended by the invalid bit, removes the invalid bit in the power adjustment bit sequence, and obtains the determined transmit power.
  • the power adjustment bit sequence used to adjust the state, and the invalid bits in the time adjustment bit sequence are removed, to obtain a time adjustment bit sequence for determining the adjustment state of the transmission time.
  • the user terminal fills the invalid bit sequence TPC3 TPC4 (such as 00), and the invalid bit sequence SS3 SS4 (such as 00), and sets TPC3 TPC4, and SS3 SS4 is invalid.
  • the base station can remove TPC3 TPC4, and SS3 SS4, using TPC 1 TPC2 as the value of the power adjustment bit sequence, and SS 1 SS2 as the value of the time adjustment bit sequence.
  • Manner 3 The user terminal determines the uplink information by using mode 3 in Figure 5.
  • the base station decodes the uplink information of the length of 8 bits into a mapping bit sequence, wherein the length of the mapping bit sequence is not more than 8 bits, and is not less than 3 bits, determining a special bit sequence corresponding to the mapping bit sequence, and determining the power in the special bit sequence. Adjust the bit sequence and time adjustment bit sequence.
  • the decoding of the base station in the third manner is decoding corresponding to the encoding of the user terminal, such as a user.
  • the coding of the terminal is repeated coding, and the decoding of the base station is repeated decoding.
  • the manner in which the decoding of the specific base station can be set in the protocol may be determined by the upper layer and notified to the user terminal and the base station, or may be determined by the user terminal and the base station.
  • the base station may determine a special bit sequence corresponding to the mapping bit sequence according to the correspondence between the special ratio sequence and the mapping bit sequence.
  • the correspondence between the special bit sequence and the mapping bit sequence may be determined in the protocol as needed or determined by the upper layer and notified to the user terminal and the base station, or may be determined by the user terminal and the base station, but the user terminal and the base station need to ensure the same correspondence. .
  • the base station 20 performs decoding to obtain a mapping bit sequence having a length of 8 bits.
  • mapping bit sequence is encoded to have 8 bits of uplink information
  • the base station 20 will also obtain the original length mapping bit sequence after decoding.
  • the base station After obtaining the mapping bit sequence, the base station determines a special bit sequence corresponding to the obtained mapping bit sequence according to the correspondence between the special bit sequence and the mapping bit sequence, and then obtains the power adjustment bit sequence and the time adjustment bit sequence according to the special bit sequence.
  • the combination mode adopts the power adjustment bit sequence + time adjustment bit sequence.
  • the special bit sequence is 1100, it can be determined that the power adjustment bit sequence is 11 and the time adjustment bit sequence is 00.
  • the base station Since the downlink transmission is always synchronized in practical applications, although the user terminal transmits the SS, the base station does not adjust the transmission time according to this, and based on this, the transmission time adjustment bit sequence can be omitted.
  • the steps 601 to 603 of the embodiment of the present invention may be used as the subsequent steps of steps 501 to 503 of the embodiment of the present invention.
  • the processing system of the second uplink information in the embodiment of the present invention includes: a user terminal 30 and a base station 40.
  • the user terminal 30 is configured to determine a power adjustment bit sequence for indicating an adjustment state of the transmit power of the base station and having a length of not more than 8 bits, and encode the power adjustment bit information into uplink information of length 8 bits, and send the uplink information by using the HS-SICH.
  • the base station 40 is configured to receive uplink information with a length of 8 bits through the HS-SICH, and solve the uplink information.
  • the code is a power adjustment bit sequence, and the adjustment state of the transmission power of the user terminal is determined according to the power adjustment bit sequence.
  • the length of the power adjustment bit sequence in the embodiment of the present invention may be any one of lbit to 8 bits.
  • the meanings of the power adjustment bit sequence and the time adjustment bit sequence may be specified in the protocol, or may be determined by the upper layer and notified to the user terminal and the base station, or may be determined by the user terminal and the base station through negotiation. However, it is necessary to ensure that the power adjustment bit sequence and the time adjustment bit sequence determined by the user terminal and the base station have the same meaning.
  • the TPC and the SS are respectively extended to 4 bits, the TPC and the SS require a total of 8 bits, that is, the uplink information of the embodiment of the present invention requires 8 bits.
  • the power adjustment bit sequence of the embodiment of the present invention is 8 bits, only the power adjustment bit sequence needs to be used as the 8-bit uplink information. If the power adjustment bit sequence is less than 8 bits, the power adjustment bit sequence needs to be encoded to generate 8-bit uplink information.
  • the length of the power adjustment bit sequence is less than 8 bits, and several methods for obtaining 8 bits of uplink information are listed.
  • the embodiments of the present invention are not limited to the following manners, and other manners for obtaining 8-bit uplink information are also applicable to the embodiments of the present invention.
  • Method 1 The user terminal 30 encodes the power adjustment bit sequence into uplink information of length 8 bits; correspondingly, the base station 40 decodes the 8-bit uplink information into a power adjustment bit sequence used for determining the adjustment state of the transmission power.
  • the decoding of the base station in the first manner is the decoding corresponding to the encoding of the user terminal in the first manner, for example, the encoding of the user terminal is repeated coding, and the decoding of the base station is repeated decoding.
  • the coding in the first mode of the embodiment of the present invention is not limited to repeated coding, and other methods capable of encoding less than 4 bit parameters into 4 bits are applicable to the embodiments of the present invention, such as block coding, RM coding, and the like.
  • the user terminal and the base station may be determined and notified by the upper layer, or may be determined by the user terminal and the base station.
  • the power adjustment bit sequence is 2 bits, that is, the power adjustment bit sequence is TPC1 and TPC2
  • SS2 SS4, this will get 8bit information, and then combine the 8bit information to get 8bit uplink information.
  • the specific combination is similar to the combination of mode 1 in Figure 2, and will not be mentioned here.
  • the failure notification is returned to the user interrupt, and the user terminal can resend; if not, and if there are 3 of the 4 bits
  • the bits are the same, and the values of the three bits of the same value can be used as the first value in the power adjustment bit sequence; if they are not the same, and if every two bits of the four bits are the same, any one of the same bits can be used.
  • the value of the bit of the value is taken as the first value in the power adjustment bit sequence.
  • base station 40 can also obtain a second value in the power adjustment bit sequence. Since the base station 40 knows that the power adjustment bit sequence is 2 bits, the specific meaning can be known based on the determined value.
  • the power adjustment bit sequence is 2 bits
  • 2 bits can be encoded as 8 bits, for example, 11 is encoded to become 11111111, and 00 is encoded to be 00000000.
  • the base station 40 decodes the uplink information to obtain a 2-bit power adjustment bit sequence. Since the base station 40 knows that the power adjustment bit sequence is 2 bits, the specific meaning can be known based on the determined value.
  • lbit can be encoded as 8 bits, for example, 1 is encoded and becomes 11111111, and 0 is encoded as 00000000. Since the base station 40 knows that the power adjustment bit sequence is lbit, the specific meaning can be known based on the determined value.
  • the base station 40 decodes the uplink information to obtain a lbit power adjustment bit sequence.
  • the user terminal 30 expands the length of the power adjustment bit sequence to 8 bits by using the invalid bit, and uses the expanded power adjustment bit sequence as the uplink information.
  • the base station 40 removes the invalid bit in the uplink information whose length is 8 bits, and obtains the determined transmission.
  • the functions of the user terminal 10 and the user terminal 30 can be applied to one user terminal; the functions of the base station 20 and the base station 30 can be applied to one base station.
  • Which processing method is used for the specific uplink information may be set in the protocol, may be notified by the upper layer, or may be determined by the user terminal and the base station through negotiation.
  • the second user terminal of the embodiment of the present invention includes: a second parameter determining module 300, a second information determining module 310, and a second sending module 320.
  • the second parameter determining module 300 is configured to determine a power adjustment bit sequence for indicating an adjustment state of the transmit power of the base station and having a length of not more than 8 bits;
  • the second information determining module 310 is configured to encode the power adjustment bit sequence determined by the second parameter determining module 300 into uplink information having a length of 8 bits.
  • the second sending module 320 is configured to send, by using the HS-SICH, the uplink information determined by the second information determining module 310.
  • the second information determining module 310 may encode the power adjustment bit sequence into uplink information of length 8 bits when the length of the power adjustment bit sequence is less than 8 bits.
  • the second information determining module 310 may expand the length of the power adjustment bit sequence to 8 bits by using invalid bits when the length of the power adjustment bit sequence is less than 8 bits, and use the expanded power adjustment bit sequence as uplink information.
  • the second base station of the embodiment of the present invention includes: a second receiving module 400, a second processing module 410, and a second state determining module 420.
  • the second receiving module 400 is configured to receive uplink information of length 8 bits through the HS-SICH, where the uplink information of length 8 bits is a power adjustment bit that the user terminal will use to indicate the adjustment state of the transmit power of the base station and the length is not more than 8 bits. The result obtained after the sequence is encoded.
  • the second state determining module 420 is configured to determine an adjustment state of the transmit power of the user terminal according to the power adjustment bit sequence determined by the second processing module 410.
  • the second processing module 410 may decode the 8-bit uplink information into a power adjustment bit sequence used to determine an adjustment state of the transmit power when the length of the power adjustment bit sequence is less than 8 bits.
  • the second processing module 410 may remove the invalid bits in the uplink information of the length of 8 bits when the length of the power adjustment bit sequence is less than 8 bits, and obtain a power adjustment bit sequence used for determining the adjustment state of the transmission power.
  • the method for transmitting uplink information by the second HS-SICH in the embodiment of the present invention includes the following steps:
  • Step 1001 The user terminal determines a power adjustment bit sequence for indicating an adjustment state of the transmission power of the base station and having a length of not more than 8 bits.
  • Step 1002 The user terminal encodes the power adjustment bit information into uplink information of length 8 bits.
  • Step 1003 The user terminal sends the uplink information by using the HS-SICH.
  • the length of the power adjustment bit sequence in the embodiment of the present invention may be any one of lbit to 8 bits.
  • the meanings of the power adjustment bit sequence and the time adjustment bit sequence may be specified in the protocol, or may be determined by the upper layer and notified to the user terminal and the base station, or may be determined by the user terminal and the base station through negotiation. However, it is necessary to ensure that the power adjustment bit sequence and the time adjustment bit sequence determined by the user terminal and the base station have the same meaning.
  • the TPC and the SS are respectively extended to 4 bits, the TPC and the SS require a total of 8 bits, that is, the uplink information of the embodiment of the present invention requires 8 bits.
  • the power adjustment bit sequence of the embodiment of the present invention is 8 bits, only the power adjustment bit sequence needs to be used as the 8-bit uplink information. If the power adjustment bit sequence is less than 8 bits, the power adjustment bit sequence needs to be encoded to generate 8-bit uplink information.
  • the user terminal encodes the power adjustment bit sequence into uplink information of length 8 bits.
  • the coding in the first mode of the embodiment of the present invention is not limited to repeated coding, and other methods capable of encoding less than 4 bit parameters into 4 bits are applicable to the embodiments of the present invention, such as block coding, RM coding, and the like.
  • the coding of the specific user terminal can be set in the protocol, and the user terminal and the base station can be determined and notified by the upper layer, or can be determined by the user terminal and the base station.
  • the specific combination is similar to the combination of mode 1 in Figure 2, and no longer like this. Said.
  • the power adjustment bit sequence is 2 bits
  • 2 bits can be encoded as 8 bits, for example, 11 is encoded to become 11111111, and 00 is encoded to be 00000000.
  • step 1002 the user terminal uses the invalid bit to expand the length of the power adjustment bit sequence to 8 bits, and uses the extended power adjustment bit sequence as the uplink information.
  • the method for processing the second uplink information in the embodiment of the present invention includes the following steps: Step 1101: The base station receives uplink information of length 8 bits through the HS-SICH, where the length is
  • a power adjustment bit sequence of not more than 8 bits is encoded.
  • Step 1102 The base station decodes the uplink information into a power adjustment bit sequence.
  • Step 1103 The base station determines, according to the power adjustment bit sequence, an adjustment state of the transmission power of the user terminal.
  • the base station may determine the power adjustment bit sequence and the time adjustment bit sequence according to the uplink information.
  • the specific method used to determine the uplink information according to the user terminal is as follows.
  • Method 1 The user terminal determines the uplink information by using the method 1 in FIG. 7.
  • the base station decodes the 8-bit uplink information into a power adjustment bit sequence used to determine the adjustment state of the transmit power.
  • the decoding of the base station is the decoding corresponding to the coding of the user terminal. For example, if the coding of the user terminal is repeated coding, the decoding of the base station is repeated decoding.
  • the manner in which the decoding of the specific base station can be set in the protocol may be determined by the upper layer and notified to the user terminal and the base station, or may be determined by the user terminal and the base station.
  • the user terminal When the user terminal combines the 8 bits of information, it obtains 8 bits of uplink information.
  • the first value in the bit sequence if not the same, it can be considered that the decoding fails, the failure notification is returned to the user interrupt, and the user terminal can resend; if not, and if 3 of the 4 bits are the same, The values of the three identical value bits may be used as the first value in the power adjustment bit sequence; if not the same, and if every two of the four bits are the same, any two bits of the same value may be used. The value is used as the first value in the power adjustment bit sequence.
  • the base station can also obtain a second value in the power adjustment bit sequence. Since the base station knows that the power adjustment bit sequence is 2 bits, the specific meaning can be known based on the determined value.
  • the power adjustment bit sequence is 2 bits
  • 2 bits can be encoded as 8 bits, for example, 11 is encoded to become 11111111, and 00 is encoded to be 00000000.
  • the base station decodes the uplink information to obtain a 2-bit power adjustment bit sequence. Since the base station knows that the power adjustment bit sequence is 2 bits, the specific meaning can be known based on the determined value.
  • lbit can be encoded as 8 bits, for example, 1 is encoded to become 11111111, and 0 is encoded to be 00000000. Since the base station knows that the power adjustment bit sequence is lbit, it can be known according to the determined value. The specific meaning is. Correspondingly, the base station decodes the uplink information to obtain a 1-bit power adjustment bit sequence. Manner 2: The user terminal determines the uplink information by using mode 2 in Figure 7.
  • the base station removes the invalid bits in the uplink information of length 8 bits, and obtains a power adjustment bit sequence used for determining the adjustment state of the transmission power.
  • the steps 1101 to 1103 of the embodiment of the present invention may be used as the subsequent steps of the steps 1001 to 1003 of the embodiment of the present invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • the user terminal performs coding according to the power adjustment bit sequence and the time adjustment bit sequence, determines uplink information with a length of 8 bits, and sends uplink information through the HS-SICH, and the base station passes the
  • the HS-SICH receives 8 bits of uplink information, determines a power adjustment bit sequence and a time adjustment bit sequence, determines an adjustment state of the transmission power of the user terminal according to the power adjustment bit sequence, and determines the user to the user according to the time adjustment bit sequence.
  • the adjustment status of the transmission time of the terminal is coding according to the power adjustment bit sequence and the time adjustment bit sequence, determines uplink information with a length of 8 bits, and sends uplink information through the HS-SICH, and the base station passes the
  • the HS-SICH receives 8 bits of uplink information, determines a power adjustment bit sequence and a time adjustment bit sequence, determines an adjustment state of the transmission power of the user terminal according to the power adjustment bit sequence, and determines the user to the user according to the time adjustment bit
  • the base station determines the power adjustment bit sequence and the time adjustment bit sequence according to the uplink information, so that the sender can transmit the TPC and the SS in the HS-SICH type 2, the receiver can receive and parse the TPC and the SS in the HS-SICH type 2, thereby Improve system performance.
  • the user terminal performs coding according to the power adjustment bit sequence, determines uplink information of length 8 bits, and transmits uplink information by using the HS-SICH, and the base station determines the power adjustment bit sequence according to the uplink information of the 8-bit receiving length by the HS-SICH. , > According to the power adjustment bit sequence, determine the adjustment state of its own transmission power to the user terminal. Since the base station determines the power adjustment bit sequence according to the uplink information, so that the sender can transmit the TPC in the HS-SICH type 2, the receiver can receive and parse the TPC in the HS-SICH type 2, thereby improving system performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

传输上行信息和处理上行信息的方法、 系统及装置 技术领域
本发明涉及无线通信技术, 特别涉及一种传输上行信息和处理上行信息 的方法、 系统及装置。 背景技术
在 TDD ( Time division duplex, 时分双工) 系统中, HS-SICH ( Shared Information Channel for HS-DSCH, 高速下行共享信道的共享信息信道)是上 行物理信道, 负责承栽对 HS-PDSCH ( High Speed Physical Downlink Shared Channel, 高速下行物理共享信道)上数据的 HARQ ( Hybrid Automatic Repeat reQuest, 混合自动重传请求)的确认信息(ACK/NACK )、 信道盾量指示信息 ( CQI )、 TPC ( Transmit Power Control , 发射功率控制) 信息和 SS ( Synchronisation Shift, 同步偏移)信息。 对于多栽波 HS-PDSCH接收, 在 每个栽波上 HS-DSCH( High Speed Downlink Shared Channel, 高速下行共享信 道)都有相应的 HS-SICH。 HS-SCCH ( Shared Control Channel for HS-DSCH, HS-DSCH的共享控制信道)和 HS-SICH是成对地分配在同一个栽波上, 控 制着同一个 UE (用户终端)的 HS-DSCH。
HS-SICH分为两个 type (类型), 其中 type 1占用 1个扩频因子 SF=16的 上行码道。 当 MIMO ( Multiple Input Multiple Output, 多入多出)模式启动后, 双流 HS-PDSCH的反馈信道 HS-SICH使用 type2, 占用一个扩频因子为 SF=8 的上行码道。 HS-SICH typel使用时隙结构 5, HS-SICH type2使用时隙结构 20, 具体如表 1所示:
Slot Spreading Midamble NJFCI NSS & Bits/slot Noata Slot Ndata/data Ndata/data
Format Factori扩 length code word NTPC (每时 (bits) field(l) field(2)
(时隙 频因子) ( Midamble (bits) (bits) 隙比特 (bits) (bits) 格式) 长度) 数)
# (chips)
5 16 144 0 2 & 2 88 84 44 40
20 8 144 0 4 & 4 176 168 88 80 表 1
目前在 HS-SICH typel中规定了 TPC的设置方式,但是在 HS-SICH type2 中由于 TPC从 2bit增加到 4bit, 无法沿用 HS-SICH typel中规定的设置方式, 使得发送方无法传输 TPC;
进一步的, 由于 SS从 2bit增加到 4bit, 无法沿用 HS-SICH typel中规定 的设置方式, 使得发送方无法传输 SS; . 发明内容
本发明实施例提供一种传输上行信息的方法和装置, 用以解决现有技术 中存在的由于 TPC和 SS分别从 2bit增加到 4bit,无法沿用 HS-SICH typel中 规定的设置方式,使得发送方无法传输 HS-SICH type2中的 TPC和 SS的问题。
本发明实施例提供一种上行信息的处理方法、 系统及装置, 用以解决现 有技术中存在的由于 TPC和 SS分别从 2bit增加到 4bit, 无法沿用 HS-SICH typel中规定的设置方式, 使得接收方无法接收并解析出 HS-SICH type2中的 TPC和 SS的问题。
本发明实施例提供另一种传输上行信息的方法和装置, 用以解决现有技 术中存在的由于 TPC从 2bit增加到 4bit, 无法沿用 HS-SICH typel中规定的 设置方式, 使得发送方无法传输 HS-SICH type2中 TPC的问题。
本发明实施例提供一种上行信息的处理方法、 系统及装置, 用以解决现 有技术中存在的由于 TPC从 2bit增加到 4bit, 无法沿用 HS-SICH typel中规 定的设置方式, 使得接收方无法接收并解析 HS-SICH type2中 TPC的问题。
本发明实施例提供的一种通过 HS-SICH传输上行信息的方法, 该方法包 括 ··
用户终端确定用于表示基站的发射功率的调整状态并且长度不大于第一 设定值的功率调整比特序列, 以及确定用于表示基站的发送时间的调整状态 并且长度不大于第二设定值的时间调整比特序列;
所述用户终端将功率调整比特信息和时间调整比特信息编码为长度是第 三设定值的上行信息;
所述用户终端通过 HS-SICH发送所述上行信息。
本发明实施例提供的一种上行信息的处理方法, 该方法包括:
基站通过高速下行共享信道的共享信息信道 HS-SICH接收长度是第三设 定值的上行信息, 其中所述长度是第三设定值的上行信息是用户终端将用于 表示基站的发射功率的调整状态并且长度不大于第一设定值的功率调整比特 序列和用于表示基站的发送时间的调整状态并且长度不大于第二设定值的时 间调整比特序列编码后得到的;
所述基站将所述上行信息解码为所迷功率调整比特序列和所述时间调整 比特序列;
所述基站才艮据所述功率调整比特序列, 确定自身对所述用户终端的发射 功率的调整状态, 以及 »据所述时间调整比特序列确定自身对所述用户终端 的发送时间的调整状态。
本发明实施例提供的另一种通过 HS-SICH传输上行信息的方法, 该方法 包括:
用户终端确定用于表示基站的发射功率的调整状态并且长度不大于第三 设定值的功率调整比特序列;
所述用户终端将所述功率调整比特信息编码为长度是第三设定值的上行 信息;
所述用户终端通过 HS-SICH发送所述上行信息。
本发明实施例提供的另一种上行信息的处理方法, 该方法包括: 基站通过高速下行共享信道的共享信息信道 HS-SICH接收长度是第三设 定值的上行信息,其中所述长度是第三设定值 t的上行信息是用户终端将用于 表示基站的发射功率的调整状态并且长度不大于第三设定值的功率调整比特 序列编码后得到的;
所述基站将所述上行信息解码为所述功率调整比特序列;
所述基站根据所述功率调整比特序列, 确定自身对所迷用户终端的发射 功率的调整状态。
本发明实施例提供的一种上行信息的处理系统, 该系统包括:
用户终端, 用于确定用于表示基站的发射功率的调整状态并且长度不大 于第一设定值的功率调整比特序列, 以及确定用于表示基站的发送时间的调 整状态并且长度不大于第二设定值的时间调整比特序列, 将所述功率调整比 特信息和时间调整比特信息编码为长度是第三设定值的上行信息, 通过
HS-SICH发送所述上行信息;
基站, 用于通过 HS-SICH接收长度是第三设定值的上行信息, 将所述上 行信息解码为所述功率调整比特序列和所迷时间调整比特序列, 才艮据所述功 率调整比特序列, 确定自身对所述用户终端的发射功率的调整状态, 以及才艮 据所述时间调整比特序列确定自身对所述用户终端的发送时间的调整状态。
本发明实施例提供的另一种上行信息的处理系统, 该系统包括: 用户终端, 用于确定用于表示基站的发射功率的调整状态并且长度不大 于第三设定值的功率调整比特序列, 将所述功率调整比特信息编码为长度是 第三设定值的上行信息, 通过高速下行共享信道的共享信息信道 HS-SICH发 送所述上行信息;
基站, 用于通过 HS-SICH接收长度是第三设定值的上行信息, 将所述上 行信息解码为所述功率调整比特序列, 根据所述功率调整比特序列, 确定自 身对所述用户终端的发射功率的调整状态。
本发明实施例提供的一种用户终端, 该用户终端包括:
第一参数确定模块, 用于确定用于表示基站的发射功率的调整状态并且 长度不大于第一设定值的功率调整比特序列, 以及确定用于表示基站的发送 时间的调整状态并且长度不大于第二设定值的时间调整比特序列;
第一信息确定模块, 用于将所述功率调整比特信息和时间调整比特信息 编码为长度是第三设定值的上行信息;
第一发送模块, 用于通过高速下行共享信道的共享信息信道 HS-SICH发 送所述上行信息。 本发明实施例提供的一种基站, 该基站包括:
第一接收模块, 用于通过高速下行共享信道的共享信息信道 HS-SICH接 收长度是第三设定值的上行信息, 其中所述长度是第三设定值的上行信息是 用户终端将用于表示基站的发射功率的调整状态并且长度不大于第一设定值 的功率调整比特序列和用于表示基站的发送时间的调整状态并且长度不大于 第二设定值的时间调整比特序列编码后得到的;
第一处理模块, 用于将所述上行信息解码为所迷功率调整比特序列和所 述时间调整比特序列;
第一状态确定模块, 用于根据所述功率调整比特序列, 确定自身对所述 用户终端的发射功率的调整状态, 以及根据所述时间调整比特序列确定自身 对所述用户终端的发送时间的调整状态。
本发明实施例提供的另一种用户终端, 该用户终端包括:
第二参数确定模块, 用于确定用于表示基站的发射功率的调整状态并且 长度不大于第三设定值的功率调整比特序列;
第二信息确定模块, 用于将所述功率调整比特信息编码为长度是第三设 定值的上行信息;
第二发送模块, 用于通过 HS-SICH发送所述上行信息。
本发明实施例提供的另一种基站, 该基站包括:
第二接收模块, 用于通过高速下行共享信道的共享信息信道 HS-SICH接 收长度是第三设定值的上行信息, 其中所述长度是第三设定值的上行信息是 用户终端将用于表示基站的发射功率的调整状态并且长度不大于第三设定值 的功率调整比特序列编码后得到的;
第二处理模块, 用于将所述上行信息解码为所述功率调整比特序列; 第二状态确定模块, 用于根据所述功率调整比特序列, 确定自身对所述 用户终端的发射功率的调整状态。
本发明实施例用户终端根据功率调整比特序列和时间调整比特序列进行 编码, 确定长度是第三设定值的上行信息, 并通过 HS-SICH发送上行信息, 基站根据通过 HS-SICH接收长度是第三设定值的上行信息, 确定功率调整比 特序列和时间调整比特序列, «据功率调整比特序列, 确定自身对用户终端 的发射功率的调整状态, 以及才艮据时间调整比特序列确定自身对用户终端的 发送时间的调整状态。 由于基站根据上行信息, 确定功率调整比特序列和时 间调整比特序列, 使得发送方能够传输 HS-SICH type2中的 TPC和 SS, 接收 方能够接收并解析出 HS-SICH type2中的 TPC和 SS, 从而提高了系统性能。
本发明实施例用户终端根据功率调整比特序列进行编码, 确定长度是第 三设定值的上行信息,并通过 HS-SICH发送上行信息,基站根据通过 HS-SICH 接收长度是第三设定值的上行信息, 确定功率调整比特序列, 才 据功率调整 比特序列, 确定自身对用户终端的发射功率的调整状态。 由于基站根据上行 信息,确定功率调整比特序列,使得发送方能够传输 HS-SICH type2中的 TPC, 接收方能够接收并解析出 HS-SICH type2中的 TPC, 从而提高了系统性能。 附图说明
图 1A为本发明实施例 HS-SICH typel的编码示意图;
图 1B为本发明实施例 HS-SICH type 2的编码示意图;
图 2为本发明实施例第一种上行信息的处理系统结构示意图;
图 3为本发明实施例第一种用户终端的结构示意图;
图 4为本发明实施例第一种基站的结构示意图;
图 5为本发明实施例第一种通过 HS-SICH传输上行信息的方法流程示意 图;
图 6为本发明实施例第一种上行信息的处理方法的结构示意图; 图 Ί为本发明实施例第二种上行信息的处理系统结构示意图;
图 8为本发明实施例第二种用户终端的结构示意图;
图 9为本发明实施例第二种基站的结构示意图;
图 10为本发明实施例第二种过 HS-SICH传输上行信息的方法流程示意 图; 图 11为本发明实施例第二种上行信息的处理方法的结构示意图。 具体实施方式
其中 , HS-SICH typel用于非 MIMO模式和 MIMO模式下单流的上行信 令反馈.该信道上含有: 1比特 HARQ确认信息、 6比特 RTBS ( Recommended Transport Block Size , 推荐的传输块格式)、 1 比特 RMF ( Recommended Modulation Format推荐的调制格式)、 2比特 TPC、 2比特 SS。 其中:
1比特 HARQ确认信息取 1表示 ACK, 取 0表示 NACK, 该比特被第一 编码为 36比特;
6比特 RTBS用于推荐 HS-PDSCH的 TBS, 该 6比特采用 (32, 6 )的一 阶 Reed-Muller ( Reed和 Muller, RM )编码, 编码输出为 32比特;
1比特 R F用于推荐 HS-PDSCH的调制方式, 该比特被第一编码为 16 比特;
将上述信令编码后的输出比特进行复用, 一共是 84比特, 经过交织后做 物理信道映射。 该 84比特与 4比特的 TPC+SS按照时隙结构 5排列, 具体如 图 1A所示。
HS-SICH type2信道用于 MIMO模式下双流的上行信令反馈。 该信道上 含有: 2比特 HARQ确认信息、 12比特 RTBS、 2比特 RMF、 4比特 TPC、 4 比特 ss。 其中
2比特 HARQ确认信息中的每个比特用于一个下行数据流的 HARQ确认 信息, 即每个比特取 1表示 ACK, 取 0表示 NACK, 每个比特均被第一编码 (重复编码)为 36比特, 编码输出一共为 72比特;
12比特 RTBS中, 每 6个比特用于一个下行数据流的推荐 HS-PDSCH的 TBS, 每 6比特采用(32, 6 )的一阶 Reed-Muller编码, 编码输出为 64比特;
2比特 RMF中,每个比特用于一个下行数据流的推荐 HS-PDSCH的调制 方式, 每个比特被第一编码(重复编码)为 16比特, 编码输出为 32比特; 将上述信令编码后的输出比特进行复用, 一共是 168比特, 经过交织后 做物理信道映射。 该 168比特与 8比特的 TPC+SS按照时隙结构 20排列, 具 体如图 1B所示。
本发明实施例 8bit上行信息可以与 168比特按照时隙结构 20排列, 然后 通过 HS-SICH发送。
下面结合说明书附图对本发明实施例作进一步详细描述。
如图 2所示, 本发明实施例第一种上行信息的处理系统包括: 用户终端
10和基站 20。
用户终端 10, 用于用于表示基站的发射功率的调整状态并且长度不大于 第一设定值(这里以及下述均以第一设定值为 4bit为例来进行介绍, 当然还 可以为其他设定值)的功率调整比特序列, 以及确定用于表示基站的发送时 间的调整状态并且长度不大于第二设定值(这里以及下述均以第二设定值为 4bit为例来进行介绍, 当然还可以为其他设定值)的时间调整比特序列,将功 率调整比特信息和时间调整比特信息编码为长度是第二设定值(这里以及下 述均以第三设定值为 8bit为例来进行介绍, 当然还可以为其他设定值)的上 行信息, 通过 HS-SICH发送上行信息。
基站 20, 用于通过 HS-SICH接收长度是 8bit的上行信息, 将上行信息解 码为功率调整比特序列和时间调整比特序列, «据功率调整比特序列, 确定 自身对用户终端的发射功率的调整状态, 以及根据时间调整比特序列确定自 身对用户终端的发送时间的调整状态。
其中, 本发明实施例功率调整比特序列的长度可以是 1、 2、 3或 4bit, 时 间调整比特序列的长度可以是 2、 3或 4bit。
目前 HS-SICH typel中, TPC用于指示发射功率的调整状态; SS用于对 基站和用户终端进行同步调整,指示发送时间的调整状态。 TPC和 SS具体的 含义可以参见表 2和表 3, 如果需要还可以增加、 修改表 2和表 3中的含义。 TPC比特 TPC命令 意义
00 Down 减小发射功率
11 Up 增加发射功率
表 2
Figure imgf000011_0001
表 3
本发明实施例功率调整比特序列的长度可以是 lbit,比如 0表示减小发射 功率, 1表示增加发射功率; 也可以是 2bit, 比如 00表示减小发射功率, 11 表示增加发射功率; 也可以是 3bit, 比如 000表示减小发射功率, 111表示增 加发射功率; 也可以是 4bit, 比如 0000表示减小发射功率, 1111表示增加发 射功率。
相应的, 本发明实施例时间调整比特序列的长度可以是 2bit, 比如 00表 示滞后发送时间, 11表示提前发送时间, 01表示发送时间不变;也可以是 3bit, 比如 000表示滞后发送时间, 111表提前发送时间, 010表示发送时间不变; 也可以是 4bit, 比如 0000表示滞后发送时间, 1111表示提前发送时间, 0100 表示发送时间不变。
在具体实施过程中, 功率调整比特序列和时间调整比特序列的含义可以 在协议中规定, 也可以由高层确定并通知用户终端和基站, 也可以由用户终 端和基站之间协商确定。 但是需要保证用户终端和基站确定的功率调整比特 序列和时间调整比特序列的含义相同。
由于目前 TPC和 SS分别扩展到 4bit, 所以 TPC和 SS—共需要 8bit, 也 就是说本发明实施例的上行信息需要 8bit。
如果本发明实施例功率调整比特序列和时间调整比特序列都是 4bit,则只 需要组合成 8bit上行信息, 如果功率调整比特序列和时间调整比特序列之和 小于 8bit,则需要对功率调整比特序列和 /或时间调整比特序列进行编码,生 成 8bit上行信息。
下面以功率调整比特序列的长度小于 4bit,并且时间调整比特序列的长度 小于 4bit为例, 列举几种得到 8bit上行信息的方式对本发明实施例的方案进 行说明。 当然, 本发明实施例并不局限于下面几种方式, 其他能够得到 8bit 上行信息的方式同样适用本发明实施例
方式一、 用户终端 10分别将功率调整比特序列和时间调整比特序列编码 为长度是 4bit的比特序列, 将编码后的功率调整比特序列和时间调整比特序 列组合成长度是 8bit的上行信息;
相应的,基站 20分别确定长度是 8bit的上行信息中进行编码后的功率调 整比特序列和进行编码后的时间调整比特序列, 其中进行编码后的功率调整 比特序列的长度是 4bit, 进行编码后的时间调整比特序列的长度是 4bit, 将进 行编码后的功率调整比特序列解码为确定发射功率的调整状态所用的功率调 整比特序列, 以及将进行编码后的时间调整比特序列解码为确定发送时间的 调整状态所用的时间调整比特序列。
具体的, 方式一中基站的解码是方式一中用户终端的编码对应的解码, 比如用户终端的编码是重复编码, 则基站的解码是重复解码。
本发明实施例方式一中的编码并不局限于重复编码,其他能够将小于 4bit 参数编码成 4bit 的方式都适用本发明实施例, 比如分组编码、 RM ( Reed-Muller )编码等。 可以由高层确定并通知用户终端和基站, 也可以由用户终端和基站协商确定。
比如功率调整比特序列和时间调整比特序列都是 2bit,即功率调整比特序 列是 TPC1和 TPC2, 时间调整比特序列是 SS1和 SS2。
可以对功率调整比特序列进行编码后,得到 TPC1、 TPC2、 TPC3和 TPC4, 其中可以让 TPC1= TPC3, TPC2 = TPC4; 同理对时间调整比特序列进行编码 后, 得到 SS1、 SS2、 SS3和 SS4, 其中可以让 SS1=SS3, SS2 = SS4. 这样就得到 8bit的信息, 然后将 8bit的信息进行组合, 就得到 8bit的上 行信息。 组合的方式可以根据在协议中确定或由高层确定并通知用户终端和 基站,也可以由用户终端和基站协商确定。比如可以规定 TPC1、 TPC2、 TPC3、 TPC4、 SS1、 SS2、 SS3和 SS4这种组合方式, 则基站 20进行相应的解码, 得到 TPC1和 TPC3 , 如果 TPC1和 TPC3相同, 则将 TPC1作为功率调整比 特序列中的第一个值; 如果不相同, 可以认为本次解码失败, 向用户中断返 回失败通知, 用户终端可以重新发送; 如果不相同,还可以直接将 TPC1作为 功率调整比特序列中的第一个值。 按照类似的方式, 基站 20还可以得到功率 调整比特序列中的第二个值, 以及时间调整比特序列中第一和第二个值。 由 于基站 20知道功率调整比特序列和时间调整比特序列都是 2bit, 所以可以根 据确定的值就知道具体的含义了。
组合的方式除了上面说的 TPC在前 SS在后的方式外,还可以让 SS在前 TPC在后, 还可以 TPC和 SS交叉, 不管哪种组合方式, 都需要用户终端和 基站保持一致, 这样基站才能够准确得到功率调整比特序列和时间调整比特 序列。
方式二、 用户终端 10利用无效比特, 分别将功率调整比特序列和时间调 整比特序列的长度扩展成 4bit,将扩展后的功率调整比特序列和扩展后的时间 调整比特序列组合成长度是 8bit的上行信息;
相应的,基站 20确定长度是 8bit的上行信息中利用无效比特扩展后的功 率调整比特序列和利用无效比特扩展后的时间调整比特序列, 去除功率调整 比特序列中的无效比特, 得到确定发射功率的调整状态所用的功率调整比特 序列, 以及去除时间调整比特序列中的无效比特, 得到确定发送时间的调整 状态所用的时间调整比特序列。
比如功率调整比特序列和时间调整比特序列都是 2bit,即功率调整比特序 列是 TPC1和 TPC2, 时间调整比特序列是 SS1和 SS2。
可以填充无效比特序列 TPC3 TPC4(比如 00 ),以及无效比特序列 SS3 SS4 (比如 00 ), 并设置 TPC3 TPC4, 以及 SS3 SS4无效。 这样就得到 8bit的信息, 然后将 8bit的信息进行组合, 就得到 8bit的上 行信息。
相应的, 基站 20可以去除无效比特序列 TPC3和 TPC4, 以及无效比特 序列 SS3和 SS4, 将 TPC1和 TPC2作为功率调整比特序列的值, SS1和 SS2 作为时间调整比特序列的值。
其中, 图 2中方式二进行组合的方式与图 2中方式一进行组合的方式类 似, 在此不再赘述。
方式三、 用户终端 10将功率调整比特序列和时间调整比特序列组合成特 殊比特序列, 确定特殊比特序列对应的映射比特序列, 其中映射比特序列的 长度不大于 8bit, 且不小于第四设定值(这里以及下述均以第四设定值为 3bit 为例来进行介绍,当然还可以为其他设定值),在映射比特序列的长度等于 8bit 时, 将映射比特序列作为上行信息, 在映射比特序列的长度小于 8bit时, 将 映射比特序列编码为长度是 8bit的上行信息。
相应的, 基站 20将长度是 8bit的上行信息解码为映射比特序列, 其中映 射比特序列的长度不大于 8bit, 且不小于 3bit, 确定映射比特序列对应的特殊 比特序列, 确定特殊比特序列中的功率调整比特序列和时间调整比特序列。
具体的, 方式三中基站的解码是方式三中用户终端的编码对应的解码, 比如用户终端的编码是重复编码, 则基站的解码是重复解码。
本发明实施例方式三中的编码并不局限于重复编码,其他能够将小于 4bit 参数编码成 4bit的方式都适用本发明实施例, 比如分组编码、 RM编码等。 可以由高层确定并通知用户终端和基站, 也可以由用户终端和基站协商确定。
比如功率调整比特序列和时间调整比特序列都是 2bit,即功率调整比特序 列是 TPC1和 TPC2, 时间调整比特序列是 SS1和 SS2。
按照表 2和表 3的方式, 功率调整比特序列是 00和 11 , 时间调整比特序 列是 00、 11和 01。功率调整比特序列和时间调整比特序列组合: 1100、 1111、
1101、 0000、 0011、 0001 , 则特殊比特序列有六种表述方式。 六种表述方式 需要至少 3bit才能建立映射关系,假设映射比特序列长度是 3bit,建立的特殊 比特序列和映射比特序列的对应关系可以是 000对应 1100、 001对应 1111, 依次类推。 定或由高层确定并通知用户终端和基站, 也可以由用户终端和基站协商确定, 但需要保证用户终端 10和基站 20使用相同的对应关系。
当然, 功率调整比特序列和时间调整比特序列的含义数量不同, 则特殊 比特序列的长度也会不同, 比如功率调整比特序列是 00、 01和 11, 时间调整 比特序列是 00、 11和 01, 则功率调整比特序列和时间调整比特序列组合在一 起会有 9种, 则映射比特序列的长度就是 4bit。
图 2中方式三中功率调整比特序列和时间调整比特序列的组合方式与图 2 中方式一中功率调整比特序列和时间调整比特序列的组合方式类似, 在此不 再赘述。
如果映射比特序列的长度是 8bit, 则直接将映射比特序列作为上行信息; 如果映射比特序列的长度小于 8bit,则将映射比特序列编码成长度是 8bit 上行信息, 具体编码方式可以参照方式一进行重复编码, 也可以参照方式二 填充无效比特, 也可以是其它的编码方法。
如果直接将映射比特序列作为上行信息, 则基站 20进行解码后也会得到 长度是 8bit的映射比特序列;
如果将映射比特序列编码成长度是 8bit上行信息, 则基站 20进行解码后 也会得到原始长度的映射比特序列。
基站 20在得到映射比特序列后, 根据特殊比特序列和映射比特序列的对 应关系, 确定得到的映射比特序列对应的特殊比特序列, 然后 据特殊比特 序列就可以得到功率调整比特序列和时间调整比特序列。
比如组合方式采用功率调整比特序列 +时间调整比特序列的方式, 特殊比 特序列是 1100,则可以确定功率调整比特序列是 11 ,时间调整比特序列是 00。
如图 3所示,本发明实施例第一种用户终端包括:第一参数确定模块 100、 第一信息确定模块 110和第一发送模块 120。
第一参数确定模块 100,用于确定用于表示基站的发射功率的调整状态并 且长度不大于 4bit的功率调整比特序列, 以及确定用于表示基站的发送时间 的调整状态并且长度不大于 4bit的时间调整比特序列。
第一信息确定模块 110,用于将第一参数确定模块 100确定的功率调整比 特信息和时间调整比特信息编码为长度是 8bit的上行信息。
第一发送模块 120, 用于通过 HS-SICH发送第一信息确定模块 110确定 的上行信息。
其中, 第一信息确定模块 100可以在功率调整比特序列的长度小于 4bit, 时间调整比特序列的长度小于 4bit时, 分别将功率调整比特序列和时间调整 比特序列编码为长度是 4bit的比特序列, 将编码后的功率调整比特序列和时 间调整比特序列组合成长度是 8bit的上行信息
其中, 第一信息确定模块 100可以在功率调整比特序列的长度小于 4bit, 时间调整比特序列的长度小于 4bit时, 利用无效比特, 分别将功率调整比特 序列和时间调整比特序列的长度扩展成 4bit,将扩展后的功率调整比特序列和 扩展后的时间调整比特序列组合成长度是 8bit的上行信息。
其中, 第一信息确定模块 100可以在功率调整比特序列的长度小于 4bit, 时间调整比特序列的长度小于 4bit时, 将功率调整比特序列和时间调整比特 序列组合成特殊比特序列, 确定特殊比特序列对应的映射比特序列, 其中映 射比特序列的长度不大于 8bit,且不小于 3bit,在映射比特序列的长度等于 8bit 时, 将映射比特序列作为上行信息, 在映射比特序列的长度小于 8bit时, 将 映射比特序列编码为长度是 8bit的上行信息。
如图 4所示, 本发明实施例第一种基站包括: 第一接收模块 200、 第一处 理模块 210和第一状态确定模块 220。
第一接收模块 200, 用于通过 HS-SICH接收长度是 8bit的上行信息, 其 中长度是 8bit的上行信息是用户终端将用于表示基站的发射功率的调整状态 并且长度不大于 4bit的功率调整比特序列和用于表示基站的发送时间的调整 状态并且长度不大于 4bit的时间调整比特序列编码后得到的。
第一处理模块 210,用于将第一接收模块 200接收的上行信息解码为功率 调整比特序列和时间调整比特序列。
第一状态确定模块 220,用于根据第一处理模块 210确定的功率调整比特 序列, 确定自身对用户终端的发射功率的调整状态, 以及才艮据第一处理模块 210确定的时间调整比特序列确定自身对用户终端的发送时间的调整状态。
其中,第一处理模块 210可以在功率调整比特序列的长度小于 4bit, 时间 调整比特序列的长度小于 4bit时, 分别确定长度是 8bit的上行信息中进行编 码后的功率调整比特序列和进行编码后的时间调整比特序列, 其中进行编码 后的功率调整比特序列的长度是 4bit,进行编码后的时间调整比特序列的长度 是 4bit,将进行编码后的功率调整比特序列解码为确定发射功率的调整状态所 用的功率调整比特序列, 以及将进行编码后的时间调整比特序列解码为确定 发送时间的调整状态所用的时间调整比特序列。
其中,第一处理模块 210可以在功率调整比特序列的长度小于 4bit, 时间 调整比特序列的长度小于 4bit时, 确定长度是 8bit的上行信息中利用无效比 特扩展后的功率调整比特序列和利用无效比特扩展后的时间调整比特序列, 去除功率调整比特序列中的无效比特, 得到确定发射功率的调整状态所用的 功率调整比特序列, 以及去除时间调整比特序列中的无效比特, 得到确定发 送时间的调整状态所用的时间调整比特序列。
其中, 第一处理模块 210可以在功率调整比特序列的长度小于 4bit, 时间 调整比特序列的长度小于 4bit时, 将长度是 8bit的上行信息解码为映射比特 序列, 其中映射比特序列的长度不大于 8bit, 且不小于 3bit, 确定映射比特序 列对应的特殊比特序列 , 确定特殊比特序列中的功率调整比特序列和时间调 整比特序列。
如图 5所示, 本发明实施例第一种通过 HS-SICH传输上行信息的方法包 括下列步骤:
步骤 501、用户终端确定用于表示基站的发射功率的调整状态并且长度不 大于 4bit的功率调整比特序列, 以及确定用于表示基站的发送时间的调整状 态并且长度不大于 4bit的时间调整比特序列。
步骤 502、用户终端将功率调整比特信息和时间调整比特信息编码为长度 是 8bit的上行信息。
步骤 503、 用户终端通过 HS-SICH发送上行信息。
其中, 本发明实施例功率调整比特序列的长度可以是 1、 2、 3或 4bit, 时 间调整比特序列的长度可以是 2、 3或 4bit。
目前 HS-SICH typel中, TPC用于指示发射功率的调整状态; SS用于对 基站和用户终端进行同步调整, 指示发送时间的调整状态。 TPC和 SS具体的 含义可以参见表 2和表 3, 如杲需要还可以增加、 修改表 2和表 3中的含义。
在具体实施过程中, 功率调整比特序列和时间调整比特序列的含义可以 在协议中规定, 也可以由高层确定并通知用户终端和基站, 也可以由用户终 端和基站之间协商确定。 但是需要保证用户终端和基站确定的功率调整比特 序列和时间调整比特序列的含义相同。
由于目前 TPC和 SS分别扩展到 4bit, 所以 TPC和 SS—共需要 8bit, 也 就是说本发明实施例的上行信息需要 8bit。
如果本发明实施例功率调整比特序列和时间调整比特序列都是 4bit,则只 需要组合成 8bit上行信息, 如果功率调整比特序列和时间调整比特序列之和 小于 8bit,则需要对功率调整比特序列和 /或时间调整比特序列进行编码,生 成 8bit上行信息。
下面以功率调整比特序列的长度小于 4bit,并且时间调整比特序列的长度 小于 4bit为例, 列举几种得到 8bit上行信息的方式对本发明实施例的方案进 行说明。 当然, 本发明实施例并不局限于下面几种方式, 其他能够得到 8bit 上行信息的方式同样适用本发明实施例。
方式一、 步骤 502 中, 用户终端分别将功率调整比特序列和时间调整比 特序列编码为长度是 4bit的比特序列, 将编码后的功率调整比特序列和时间 调整比特序列组合成长度是 8bit的上行信息。 本发明实施例方式一中的编码并不局限于重复编码,其他能够将小于 4bit 参数编码成 4bit的方式都适用本发明实施例, 比如分组编码、 RM编码等。
具体用户终端的编码釆用什么方式可以在协议中设定, 也可以由高层确 定并通知用户终端和基站, 也可以由用户终端和基站协商确定,
比如功率调整比特序列和时间调整比特序列都是 2bit,即功率调整比特序 列是 TPC1和 TPC2, 时间调整比特序列是 SS1和 SS2„
可以对功率调整比特序列进行第一编码后, 得到 TPC1、 TPC2、 TPC3和 TPC4, 其中可以让 TPC1= TPC3, TPC2 = TPC4; 同理对时间调整比特序列进 行第一编码后,得到 SS1、 SS2、 SS3和 SS4,其中可以让 SS1=SS3, SS2 - SS4。
这样就得到 8bit的信息, 然后将 8bit的信息进行组合, 就得到 8bit的上 行信息„ 组合的方式可以根据在协议中确定或由高层确定并通知用户终端和 基站, 也可以由用户终端和基站协商确定。
组合的方式除了上面说的 TPC在前 SS在后的方式外,还可以让 SS在前 TPC在后, 还可以 TPC和 SS交叉, 不管哪种组合方式, 都需要用户终端和 基站保持一致, 这样基站才能够准确得到功率调整比特序列和时间调整比特 序列。
方式二、 步骤 502 中, 用户终端利用无效比特, 分别将功率调整比特序 列和时间调整比特序列的长度扩展成 4bit,将扩展后的功率调整比特序列和扩 展后的时间调整比特序列组合成长度是 8bit的上行信息。
比如功率调整比特序列和时间调整比特序列都是 2bit,即功率调整比特序 列是 TPC1和 TPC2 , 时间调整比特序列是 SS 1和 SS2。
可以填充无效比特序列 TPC3 TPC4(比如 00 ),以及无效比特序列 SS3 SS4 (比如 00 ), 并设置 TPC3 TPC4, 以及 SS3 SS4无效。
这样就得到 8bit的信息, 然后将 8bit的信息进行组合, 就得到 8bit的上 行信息。
其中, 图 5中方式二进行组合的方式与图 5中方式一进行组合的方式类 似, 在此不再赘述, 方式三、 步骤 502 中, 用户终端将功率调整比特序列和时间调整比特序 列组合成特殊比特序列, 确定特殊比特序列对应的映射比特序列, 其中映射 比特序列的长度不大于 8bit, 且不小于 3bit, 在映射比特序列的长度等于 8bit 时, 将映射比特序列作为上行信息, 在映射比特序列的长度小于 8bit时, 将 映射比特序列编码为长度是 8bit的上行信息。
本发明实施例方式三中的编码并不局限于重复编码,其他能够将小于 4bit 参数编码成 4bit的方式都适用本发明实施例, 比如分组编码、 RM编码等。
具体用户终端的编码采用什么方式可以在协议中设定, 也可以由高层确 定并通知用户终端和基站, 也可以由用户终端和基站协商确定
比如功率调整比特序列和时间调整比特序列都是 2bit,即功率调整比特序 列是 TPC1和 TPC2, 时间调整比特序列是 SS1和 SS2。
按照表 2和表 3的方式, 功率调整比特序列是 00和 11, 时间调整比特序 列是 00、 11和 01。功率调整比特序列和时间调整比特序列组合: 1100、 1111、 1101、 0000, 0011、 0001 , 则特殊比特序列有六种表述方式。 六种表述方式 需要至少 3bit才能建立映射关系,假设映射比特序列长度是 3bit,建立的特殊 比特序列和映射比特序列的对应关系可以是 000对应 1100、 001对应 1111 , 依次类推。
具体特殊比特序列和映射比特序列的对应关系可以根据需要在协议中确 定或由高层确定并通知用户终端和基站, 也可以由用户终端和基站协商确定, 但需要保证用户终端和基站使用相同的对应关系。
当然, 功率调整比特序列和时间调整比特序列的含义数量不同, 则特殊 比特序列的长度也会不同, 比如功率调整比特序列是 00、 01和 11, 时间调整 比特序列是 00、 11和 01 , 则功率调整比特序列和时间调整比特序列组合在一 起会有 9种, 则映射比特序列的长度就是 4bit,
图 5中方式三中功率调整比特序列和时间调整比特序列的组合方式与图 5 中方式一中功率调整比特序列和时间调整比特序列的组合方式类似, 在此不 再赘述。 如果映射比特序列的长度是 8bit, 则直接将映射比特序列作为上行信息; 如杲映射比特序列的长度小于 8bit,则将映射比特序列编码成长度是 8bit 上行信息, 具体编码方式可以参照方式一进行重复编码, 也可以参照方式二 填充无效比特, 也可以是其它的编码方法。
如图 6所示, 本发明实施例第一种上行信息的处理方法包括下列步骤: 步骤 601、 基站通过 HS-SICH接收长度是 8bit的上行信息, 其中长度是
8bit 的上行信息是用户终端将用于表示基站的发射功率的调整状态并且长度 不大于 4bit的功率调整比特序列和用于表示基站的发送时间的调整状态并且 长度不大于 4bit的时间调整比特序列编码后得到的。
步骤 602、 基站将上行信息解码为功率调整比特序列和时间调整比特序 列。
步骤 603、基站根据功率调整比特序列,确定自身对用户终端的发射功率 的调整状态, 以及根据时间调整比特序列确定自身对用户终端的发送时间的 调整状态。
其中, 基站根据上行信息, 确定功率调整比特序列和时间调整比特序列 的方式有多种, 具体采用哪种方式需要根据用户终端确定上行信息确定, 下 面列举几种。
方式一、 用户终端采用图 5中方式一确定上行信息。
步骤 602中, 基站分别确定长度是 8bit的上行信息中进行编码后的功率 调整比特序列和进行编码后的时间调整比特序列, 其中进行编码后的功率调 整比特序列的长度是 4bit, 进行编码后的时间调整比特序列的长度是 4bit, 将 调整比特序列, 以及将进行编码后的时间调整比特序列解码为确定发送时间 的调整状态所用的时间调整比特序列。
具体的, 方式一中基站的解码是用户终端的编码对应的解码, 比如用户 终端的编码是重复编码, 则基站的解码是重复解码。
具体基站的解码采用什么方式可以在协议中设定, 也可以由高层确定并 通知用户终端和基站, 也可以由用户终端和基站协商确定。
用户终端对 8bit的信息进行組合, 就得到 8bit的上行信息。 组合的方式 可以根据在协议中确定或由高层确定并通知用户终端和基站, 也可以由用户 终端和基站协商确定。 比如可以规定 TPC1、 TPC2、 TPC3、 TPC4、 SS1、 SS2、 SS3和 SS4这种组合方式,则步骤 602中,基站 20进行第一解码,得到 TPC1 和 TPC3, 如果 TPC1和 TPC3相同, 则将 TPC1作为功率调整比特序列中的 第一个值; 如果不相同, 可以认为本次解码失败, 向用户中断返回失败通知, 用户终端可以重新发送; 如果不相同,还可以直接将 TPC1作为功率调整比特 序列中的第一个值。 按照类似的方式, 基站 20还可以得到功率调整比特序列 中的第二个值, 以及时间调整比特序列中第一和第二个值。 由于基站 20知道 功率调整比特序列和时间调整比特序列都是 2bit,所以可以 4艮据确定的值就知 道具体的含义了。
方式二、 用户终端釆用图 5中方式二确定上行信息。
步骤 602中, 基站确定长度是 8bit的上行信息中利用无效比特扩展后的 功率调整比特序列和利用无效比特扩展后的时间调整比特序列, 去除功率调 整比特序列中的无效比特, 得到确定发射功率的调整状态所用的功率调整比 特序列, 以及去除时间调整比特序列中的无效比特, 得到确定发送时间的调 整状态所用的时间调整比特序列。
比如用户终端填充无效比特序列 TPC3 TPC4 (比如 00 ),以及无效比特序 列 SS3 SS4 (比如 00 ), 并设置 TPC3 TPC4, 以及 SS3 SS4无效。 相应的, 基 站可以去除 TPC3 TPC4, 以及 SS3 SS4, 将 TPC 1 TPC2作为功率调整比特序 列的值, SS 1 SS2作为时间调整比特序列的值。
方式三、 用户终端采用图 5中方式三确定上行信息。
步骤 602中, 基站将长度是 8bit的上行信息解码为映射比特序列, 其中 映射比特序列的长度不大于 8bit, 且不小于 3bit, 确定映射比特序列对应的特 殊比特序列, 确定特殊比特序列中的功率调整比特序列和时间调整比特序列。
具体的, 方式三中基站的解码是用户终端的编码对应的解码, 比如用户 终端的编码是重复编码, 则基站的解码是重复解码。
具体基站的解码采用什么方式可以在协议中设定, 也可以由高层确定并 通知用户终端和基站, 也可以由用户终端和基站协商确定。
在具体实施过程中, 基站可以根据特殊比持序列和映射比特序列的对应 关系, 确定映射比特序列对应的特殊比特序列。 特殊比特序列和映射比特序 列的对应关系可以根据需要在协议中确定或由高层确定并通知用户终端和基 站, 也可以由用户终端和基站协商确定, 但需要保证用户终端和基站使用相 同的对应关系。
如杲直接将映射比特序列作为上行信息, 则基站 20进行解码后也会得到 长度是 8bit的映射比特序列;
如果将映射比特序列编码成长度是 8bit上行信息, 则基站 20进行解码后 也会得到原始长度的映射比特序列。
基站在得到映射比特序列后, 根据特殊比特序列和映射比特序列的对应 关系, 确定得到的映射比特序列对应的特殊比特序列, 然后根据特殊比特序 列就可以得到功率调整比特序列和时间调整比特序列。
比如组合方式采用功率调整比特序列 +时间调整比特序列的方式,特殊比 特序列是 1100,则可以确定功率调整比特序列是 11 ,时间调整比特序列是 00。
由于在实际应用中, 下行发射总是同步的, 所以虽然用户终端发送 SS, 但是基站不会依此来调整发送时间, 基于此可以不用发送时间调整比特序列。
其中, 本发明实施例步骤 601 ~步骤 603 可以作为本发明实施例步骤 501〜步骤 503的后续步骤。
如图 7所示, 本发明实施例第二种上行信息的处理系统包括: 用户终端 30和基站 40。
用户终端 30, 用于确定用于表示基站的发射功率的调整状态并且长度不 大于 8bit的功率调整比特序列, 将功率调整比特信息编码为长度是 8bit的上 行信息, 通过 HS-SICH发送上行信息。
基站 40, 用于通过 HS-SICH接收长度是 8bit的上行信息, 将上行信息解 码为功率调整比特序列, 根据功率调整比特序列, 确定自身对用户终端的发 射功率的调整状态。
其中,本发明实施例功率调整比特序列的长度可以是 lbit ~ 8bit中的任意 一种。
本发明实施例功率调整比特序列具体的含义可以参见表 2,如果需要还可 以增力口、 修改表 2中的含义.
在具体实施过程中, 功率调整比特序列和时间调整比特序列的含义可以 在协议中规定, 也可以由高层确定并通知用户终端和基站, 也可以由用户终 端和基站协商确定。 但是需要保证用户终端和基站确定的功率调整比特序列 和时间调整比特序列的含义相同。
由于目前 TPC和 SS分别扩展到 4bit, 所以 TPC和 SS—共需要 8bit, 也 就是说本发明实施例的上行信息需要 8bit。
如果本发明实施例功率调整比特序列是 8bit,则只需要将功率调整比特序 列作为 8bit上行信息,如果功率调整比特序列小于 8bit,则需要对功率调整比 特序列进行编码, 生成 8bit上行信息。
下面以功率调整比特序列的长度小于 8bit为例, 列举几种得到 8bit上行 信息的方式对本发明实施例的方案进行说明。 当然, 本发明实施例并不局限 于下面几种方式, 其他能够得到 8bit上行信息的方式同样适用本发明实施例。
方式一、用户终端 30将功率调整比特序列编码为长度是 8bit的上行信息; 相应的,基站 40将 8bit的上行信息解码为确定发射功率的调整状态所用 的功率调整比特序列。
具体的, 方式一中基站的解码是方式一中用户终端的编码对应的解码, 比如用户终端的编码是重复编码, 则基站的解码是重复解码。
本发明实施例方式一中的编码并不局限于重复编码,其他能够将小于 4bit 参数编码成 4bit的方式都适用本发明实施例, 比如分组编码、 RM编码等。 可以由高层确定并通知用户终端和基站, 也可以由用户终端和基站协商确定。 假设功率调整比特序列是 2bit, 即功率调整比特序列是 TPC1和 TPC2, 可以对功率调整比特序列进行编码, 得到 TPC1、 TPC2、 TPC3和 TPC4, 其 中可以让 TPC1= TPC3 = SSI = SS3, TPC2 = TPC4 = SS2 = SS4, 这样就得到 8bit的信息, 然后将 8bit的信息进行组合, 就得到 8bit的上行信息, 具体的 组合方式与图 2中方式一的组合方式类似, 在此不再赞述。
比如可以规定 TPC1、 TPC2、 TPC3、 TPC4、 SS1、 SS2、 SS3和 SS4这种 组合方式,则基站 20进行解码,得到 TPC1、 TPC3、 SSI和 SS3,如果 TPC1= TPC3 = SS1 = SS3 , 则将 TPC1作为功率调整比特序列中的第一个值; 如果不 相同, 可以认为本次解码失败, 向用户中断返回失败通知, 用户终端可以重 新发送; 如果不相同, 而且如果这 4个比特中有 3个比特相同, 可以将这 3 个相同值的比特的值作为功率调整比特序列中的第一个值; 如果不相同, 而 且如杲这 4个比特中每两个比特相同, 可以将任意 1个相同值的比特的值作 为功率调整比特序列中的第一个值。 按照类似的方式, 基站 40还可以得到功 率调整比特序列中的第二个值。 由于基站 40知道功率调整比特序列是 2bit, 所以可以根据确定的值就知道具体的含义了。
假设功率调整比特序列是 2bit, 可以将 2bit编码为 8bit, 比如将 11编码 后变为 11111111, 将 00编码后变为 00000000。
相应的, 基站 40对上行信息进行解码, 得到 2bit的功率调整比特序列。 由于基站 40知道功率调整比特序列是 2bit, 所以可以根据确定的值就知道具 体的含义了。
假设功率调整比特序列是 lbit, 可以将 lbit编码为 8bit, 比如将 1编码后 变为 11111111,将 0编码后变为 00000000。 由于基站 40知道功率调整比特序 列是 lbit, 所以可以根据确定的值就知道具体的含义了。
相应的, 基站 40对上行信息进行解码, 得到 lbit的功率调整比特序列。 方式二、 用户终端 30利用无效比特, 将功率调整比特序列的长度扩展成 8bit, 并将扩展后的功率调整比特序列作为上行信息。
相应的, 基站 40去除长度是 8bit的上行信息中的无效比特, 得到确定发 射功率的调整状态所用的功率调整比特序列。
其中, 填充无效比特和去除无效比特的方式与图 2 中方式二类似, 在此 不再赘述。
在具体实施过程中, 用户终端 10和用户终端 30的功能可以应用在一个 用户终端中; 基站 20和基站 30的功能可以应用在一个基站中。 具体上行信 息采用哪种处理方式可以在协议中设定, 也可以由高层通知, 也可以由用户 终端和基站协商确定。
如图 8所示,本发明实施例第二种用户终端包括:第二参数确定模块 300、 第二信息确定模块 310和第二发送模块 320。
第二参数确定模块 300,用于确定用于表示基站的发射功率的调整状态并 且长度不大于 8bit的功率调整比特序列;
第二信息确定模块 310,用于将第二参数确定模块 300确定的功率调整比 特序列编码为长度是 8bit的上行信息。
第二发送模块 320, 用于通过 HS-SICH发送第二信息确定模块 310确定 的上行信息。
其中, 第二信息确定模块 310可以在功率调整比特序列的长度小于 8bit 时,, 将功率调整比特序列编码为长度是 8bit的上行信息。
其中, 第二信息确定模块 310可以在功率调整比特序列的长度小于 8bit 时, 利用无效比特,将功率调整比特序列的长度扩展成 8bit, 并将扩展后的功 率调整比特序列作为上行信息。
如图 9所示, 本发明实施例第二种基站包括: 第二接收模块 400、 第二处 理模块 410和第二状态确定模块 420。
第二接收模块 400, 用于通过 HS-SICH接收长度是 8bit的上行信息, 其 中长度是 8bit的上行信息是用户终端将用于表示基站的发射功率的调整状态 并且长度不大于 8bit的功率调整比特序列编码后得到的。
第二状态确定模块 420,用于根据第二处理模块 410确定的功率调整比特 序列, 确定自身对用户终端的发射功率的调整状态。 其中, 第二处理模块 410可以在功率调整比特序列的长度小于 8bit时, 将 8bit的上行信息解码为确定发射功率的调整状态所用的功率调整比特序列。
其中, 第二处理模块 410可以在功率调整比特序列的长度小于 8bit时, 去除长度是 8bit的上行信息中的无效比特, 得到确定发射功率的调整状态所 用的功率调整比特序列。
如图 10所示,本发明实施例第二种 HS-SICH传输上行信息的方法包括下 列步骤:
步骤 1001、 用户终端确定用于表示基站的发射功率的调整状态并且长度 不大于 8bit的功率调整比特序列。
步骤 1002、用户终端将功率调整比特信息编码为长度是 8bit的上行信息。 步骤 1003、 用户终端通过 HS-SICH发送上行信息。
其中,本发明实施例功率调整比特序列的长度可以是 lbit ~ 8bit中的任意 一种。
本发明实施例功率调整比特序列具体的含义可以参见表 2,如果需要还可 以增加、 修改表 2中的含义。
在具体实施过程中, 功率调整比特序列和时间调整比特序列的含义可以 在协议中规定, 也可以由高层确定并通知用户终端和基站, 也可以由用户终 端和基站协商确定。 但是需要保证用户终端和基站确定的功率调整比特序列 和时间调整比特序列的含义相同。
由于目前 TPC和 SS分别扩展到 4bit, 所以 TPC和 SS—共需要 8bit, 也 就是说本发明实施例的上行信息需要 8bit。
如果本发明实施例功率调整比特序列是 8bit,则只需要将功率调整比特序 列作为 8bit上行信息,如果功率调整比特序列小于 8bit,则需要对功率调整比 特序列进行编码, 生成 8bit上行信息。
下面以功率调整比特序列的长度小于 8bit为例, 列举几种得到 8bit上行 信息的方式对本发明实施例的方案进行说明。 当然, 本发明实施例并不局限 于下面几种方式, 其他能够得到 8bit上行信息的方式同样适用本发明实施例。 方式一、 步骤 1002中, 用户终端将功率调整比特序列编码为长度是 8bit 的上行信息。
本发明实施例方式一中的编码并不局限于重复编码,其他能够将小于 4bit 参数编码成 4bit的方式都适用本发明实施例, 比如分组编码、 RM编码等。
具体用户终端的编码采用什么方式可以在协议中设定, 也可以由高层确 定并通知用户终端和基站, 也可以由用户终端和基站协商确定。
假设功率调整比特序列是 2bit, 即功率调整比特序列是 TPC1和 TPC2, 可以对功率调整比特序列进行第三编码后,得到 TPC1、 TPC2、 TPC3和 TPC4, 其中可以让 TPC1- TPC3 = SSI = SS3, TPC2 = TPC4 = SS2 = SS4,这样就得到 8bit的信息, 然后将 8bit的信息进行组合, 就得到 8bit的上行信息, 具体的 组合方式与图 2中方式一的组合方式类似, 在此不再赞述。
假设功率调整比特序列是 2bit, 可以将 2bit编码为 8bit, 比如将 11编码 后变为 11111111, 将 00编码后变为 00000000。
方式二、 步骤 1002中, 用户终端利用无效比特, 将功率调整比特序列的 长度扩展成 8bit, 并将扩展后的功率调整比特序列作为上行信息。
其中, 填充无效比特的方式与图 2中方式二类似, 在此不再赘述。
如图 11所示, 本发明实施例第二种上行信息的处理方法包括下列步骤: 步骤 1101、基站通过 HS-SICH接收长度是 8bit的上行信息, 其中长度是
8bit
不大于 8bit的功率调整比特序列编码后得到的。
步骤 1102、 基站将上行信息解码为功率调整比特序列。
步骤 1103、 基站根据功率调整比特序列, 确定自身对用户终端的发射功 率的调整状态。
其中, 基站 ·据上行信息, 确定功率调整比特序列和时间调整比特序列 的方式有多种, 具体采用哪种方式需要根据用户终端确定上行信息确定, 下 面列举几种。
方式一、 用户终端采用图 7中方式一确定上行信息。 步骤 1102中, 基站将 8bit的上行信息解码为确定发射功率的调整状态所 用的功率调整比特序列。
具体的, 方式一中基站的解码是用户终端的编码对应的解码, 比如用户 终端的编码是重复编码, 则基站的解码是重复解码。
具体基站的解码采用什么方式可以在协议中设定, 也可以由高层确定并 通知用户终端和基站, 也可以由用户终端和基站协商确定。
用户终端对 8bit的信息进行组合, 就得到 8bit的上行信息。 组合的方式 可以根据在协议中确定或由高层确定并通知用户终端和基站, 也可以由用户 终端和基站协商确定。 比如用户终端按照 TPC1、 TPC2、 TPC3、 TPC4、 SS1、 SS2、 SS3和 SS4組合组合,则基站进行解码,得到 TPC1、 TPC3、 SSI和 SS3, 如果 TPC1= TPC3 = SS1 SS3,则将 TPC1作为功率调整比特序列中的第一个 值; 如果不相同, 可以认为本次解码失败, 向用户中断返回失败通知, 用户 终端可以重新发送; 如果不相同, 而且如果这 4个比特中有 3个比特相同, 可以将这 3个相同值的比特的值作为功率调整比特序列中的第一个值; 如果 不相同, 而且如果这 4个比特中每两个比特相同, 可以将任意 2个相同值的 比特的值作为功率调整比特序列中的第一个值。 按照类似的方式, 基站还可 以得到功率调整比特序列中的第二个值。 由于基站知道功率调整比特序列是 2bit, 所以可以根据确定的值就知道具体的含义了。
假设功率调整比特序列是 2bit, 可以将 2bit编码为 8bit, 比如将 11编码 后变为 11111111, 将 00编码后变为 00000000。
相应的, 基站对上行信息进行解码, 得到 2bit的功率调整比特序列。 由 于基站知道功率调整比特序列是 2bit,所以可以根据确定的值就知道具体的含 义了
假设功率调整比特序列是 lbit, 可以将 lbit编码为 8bit, 比如将 1编码后 变为 11111111, 将 0编码后变为 00000000, 由于基站知道功率调整比特序列 是 lbit, 所以可以根据确定的值就知道具体的含义了。相应的,基站对上行信 息进行解码, 得到 lbit的功率调整比特序列。 方式二、 用户终端采用图 7中方式二确定上行信息。
步骤 1102中, 基站去除长度是 8bit的上行信息中的无效比特, 得到确定 发射功率的调整状态所用的功率调整比特序列。
其中, 去除无效比特的方式与图 2中方式二类似, 在此不再赘述。
其中, 本发明实施例步骤 1101 ~步骤 1103 可以作为本发明实施例步骤 1001 ~步骤 1003的后续步骤。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介盾 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装栽到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描迷了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
从上述实施例中可以看出: 本发明实施例用户终端才艮据功率调整比特序 列和时间调整比特序列进行编码, 确定长度是 8bit 的上行信息, 并通过 HS-SICH发送上行信息,基站根据通过 HS-SICH接收长度是 8bit的上行信息, 确定功率调整比特序列和时间调整比特序列, 根据功率调整比特序列, 确定 自身对用户终端的发射功率的调整状态, 以及根据时间调整比特序列确定自 身对用户终端的发送时间的调整状态。 由于基站根据上行信息, 确定功率调 整比特序列和时间调整比特序列, 使得发送方能够传输 HS-SICH type2中的 TPC和 SS, 接收方能够接收并解析出 HS-SICH type2中的 TPC和 SS, 从而 提高了系统性能。
本发明实施例用户终端根据功率调整比特序列进行编码,确定长度是 8bit 的上行信息,并通过 HS-SICH发送上行信息,基站根据通过 HS-SICH接收长 度是 8bit的上行信息, 确定功率调整比特序列, >据功率调整比特序列, 确 定自身对用户终端的发射功率的调整状态。 由于基站根据上行信息, 确定功 率调整比特序列, 使得发送方能够传输 HS-SICH type2中的 TPC, 接收方能 够接收并解析出 HS-SICH type2中的 TPC, 从而提高了系统性能。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、一种通过高速下行共享信道的共享信息信道 HS-SICH传输上行信息的 方法, 其特征在于, 该方法包括:
确定用于表示基站的发射功率的调整状态并且长度不大于第一设定值的 功率调整比特序列, 以及确定用于表示基站的发送时间的调整状态并且长度 不大于第二设定值的时间调整比特序列; 以及
将功率调整比特信息和时间调整比特信息编码为长度是第三设定值的上 行信息;
通过 HS-SICH发送所述上行信息。
2、 如权利要求 1所述的方法, 其特征在于, 所述功率调整比特序列的长 度小于第一设定值, 所述时间调整比特序列的长度小于第二设定值时, 将所 述功率调整比特信息和时间调整比特信息编码为长度是第三设定值的上行信 息, 具体包括: 一设定值、 第二设定值的比特序列; 以及
将编码后的功率调整比特序列和时间调整比特序列组合成长度是第三设 定值的上行信息。
3、 如权利要求 1所述的方法, 其特征在于, 所述功率调整比特序列的长 度小于第一设定值, 所述时间调整比特序列的长度小于第二设定值时, 将所 迷功率调整比特信息和时间调整比特信息编码为长度是第三设定值的上行信 息, 具体包括:
利用无效比特, 分别将所述功率调整比特序列和所迷时间调整比特序列 的长度扩展成第一设定值、 第二设定值; 以及
调 比 厗 w加广展
Figure imgf000032_0001
是第三设定值的上行信息。
4、 如权利要求 1所述的方法, 其特征在于, 所述功率调整比特序列的长 度小于第一设定值, 所述时间调整比特序列的长度小于第二设定值时, 将所 述功率调整比特信息和时间调整比特信息编码为长度是第三设定值的上行信 息, 具体包括:
将所述功率调整比特序列和所述时间调整比特序列组合成特殊比特序 列; 以及
确定所述特殊比特序列对应的映射比特序列, 其中所述映射比特序列的 长度不大于第三设定值, 且不小于第四设定值;
在映射比特序列的长度等于第三设定值时, 将所述映射比特序列作为上 行信息, 在映射比特序列的长度小于第三设定值时, 将所迷映射比特序列编 码为长度是第三设定值的上行信息。
5、 如权利要求 1~4任一权利要求所述的方法, 其特征在于, 所述第一设 定值为 4bit, 第二设定值为 4bit, 第三设定值为 8bit。
6、 如权利要求 4所述的方法, 其特征在于, 所述第四设定值为 3bit。
7、 一种上行信息的处理方法, 其特征在于, 该方法包括:
通过高速下行共享信道的共享信息信道 HS-SICH接收长度是第三设定值 的上行信息; 以及
将所述上行信息解码为用于表示基站的发射功率的调整状态并且长度不 大于第一设定值的功率调整比特序列, 和用于表示基站的发送时间的调整状 态并且长度不大于第二设定值的时间调整比特序列;
根据所述功率调整比特序列, 确定对用户终端的发射功率的调整状态, 以及根据所述时间调整比特序列确定对用户终端的发送时间的调整状态,
8、 如权利要求 7所述的方法, 其特征在于, 将所述上行信息解码为所述 功率调整比特序列和所述时间调整比特序列具体包括:
分别确定长度是第三设定值的上行信息中进行编码后的功率调整比特序 列和进行编码后的时间调整比特序列, 其中进行编码后的所迷功率调整比特 序列的长度是第一设定值, 进行编码后的所述时间调整比特序列的长度是第 二设定值; 将进行编码后的功率调整比特序列解码为确定发射功率的调整状态所用 的功率调整比特序列, 以及将进行编码后的时间调整比特序列解码为确定发 送时间的调整状态所用的时间调整比特序列。
9、 如权利要求 7所述的方法, 其特征在于, 将所述上行信息解码为所述 功率调整比特序列和所迷时间调整比特序列具体包括:
确定长度是第三设定值的上行信息中利用无效比特扩展后的功率调整比 特序列和利用无效比特扩展后的时间调整比特序列;
去除功率调整比特序列中的无效比特, 得到确定发射功率的调整状态所 用的功率调整比特序列, 以及
去除时间调整比特序列中的无效比特, 得到确定发送时间的调整状态所 用的时间调整比特序列。
10、 如权利要求 7所述的方法, 其特征在于, 将所述上行信息解码为所 述功率调整比特序列和所述时间调整比特序列具体包括:
将长度是第三设定值的上行信息解码为映射比特序列, 其中所述映射比 特序列的长度不大于第三设定值, 且不小于第四设定值;
确定所述映射比特序列对应的特殊比特序列;
确定特殊比特序列中的功率调整比特序列和时间调整比特序列。
11、 如权利要求 7~10任一权利要求所述的方法, 其特征在于, 所述第一 设定值为 4bit, 第二设定值为 4bit, 第三设定值为 8bit。
12、 如权利要求 10所述的方法, 其特征在于, 所述第四设定值为 3bit。
13、 一种通过高速下行共享信道的共享信息信道 HS-SICH传输上行信息 的方法, 其特征在于, 该方法包括:
确定用于表示基站的发射功率的调整状态并且长度不大于第三设定值的 功率调整比特序列;
将所述功率调整比特序列编码为长度是第三设定值的上行信息; 通过 HS-SICH发送所述上行信息。
14、 如权利要求 13所述的方法, 其特征在于, 所述功率调整比特序列的 长度小于第三设定值时, 将所述功率调整比特序列编码为长度是第三设定值 的上行信息。
15、 如权利要求 13所述的方法, 其特征在于, 所述功率调整比特序列的 长度小于第三设定值时, 将所述功率调整比特序列编码为长度是第三设定值 的上行信息, 具体包括:
利用无效比特, 将所述功率调整比特序列的长度扩展成第三设定值, 并 将扩展后的功率调整比特序列作为上行信息。
16、 如权利要求 13、 14或 15所述的方法, 其特征在于, 所述第三设定 值为 8bit。
17、 一种上行信息的处理方法, 其特征在于, 该方法包括:
通过高速下行共享信道的共享信息信道 HS,SICH接收长度是第三设定值 的上行信息;
将所述上行信息解码为表示基站的发射功率的调整状态并且长度不大于 第三设定值的功率调整比特序列;
根据所述功率调整比特序列, 确定对用户终端的发射功率的调整状态。
18、 如权利要求 17所述的方法, 其特征在于, 所述功率调整比特序列的 长度小于第三设定值时, 将所述上行信息解码为所述功率调整比特序列具体 包括:
将长度是第三设定值的上行信息解码为确定发射功率的调整状态所用的 功率调整比特序列。
19、 如权利要求 17所述的方法, 其特征在于, 所述功率调整比特序列的 长度小于第三设定值时, 将所述上行信息解码为所述功率调整比特序列具体 包括:
去除长度是第三设定值的上行信息中的无效比特, 得到确定发射功率的 调整状态所用的功率调整比特序列。
20、 如权利要求 17、 18或 19所述的方法, 其特征在于, 所述第三设定 值为 8bit。
21、 一种上行信息的处理系统, 其特征在于, 该系统包括: 用户终端, 用于确定用于表示基站的发射功率的调整状态并且长度不大 于第一设定值的功率调整比特序列, 以及确定用于表示基站的发送时间的调 整状态并且长度不大于第二设定值的时间调整比特序列, 将所述功率调整比 特信息和时间调整比特信息编码为长度是第三设定值的上行信息, 通过 HS-SICH发送所述上行信息;
基站, 用于通过 HS-SICH接收长度是第三设定值的上行信息, 将所述上 行信息解码为所述功率调整比特序列和所述时间调整比特序列, 才艮据所述功 率调整比特序列, 确定自身对所述用户终端的发射功率的调整状态, 以及才艮
22、 如权利要求 21所述的系统, 其特征在于, 所述第一设定值为 4bit, 第二设定值为 4bit, 第三设定值为 8bit。
23、 一种上行信息的处理系统, 其特征在于, 该系统包括:
用户终端, 用于确定用于表示基站的发射功率的调整状态并且长度不大 于第三设定值的功率调整比特序列, 将所迷功率调整比特信息编码为长度是 第三设定值的上行信息, 通过高速下行共享信道的共享信息信道 HS-SICH发 送所述上行信息;
基站, 用于通过 HS-SICH接收长度是第三设定值的上行信息, 将所述上 行信息解码为所述功率调整比特序列, 根据所迷功率调整比特序列, 确定自 身对所迷用户终端的发射功率的调整状态。
24、 如权利要求 23所迷的系统, 其特征在于, 所述第三设定值为 8bit。
25、 一种用户终端, 其特征在于, 该用户终端包括:
第一参数确定模块, 用于确定用于表示基站的发射功率的调整状态并且 长度不大于第一设定值的功率调整比特序列, 以及确定用于表示基站的发送 时间的调整状态并且长度不大于第二设定值的时间调整比特序列;
第一信息确定模块, 用于将所述功率调整比特信息和时间调整比特信息 编码为长度是第三设定值的上行信息; 第一发送模块, 用于通过高速下行共享信道的共享信息信道 HS-SICH发 送所述上行信息。
26、 如权利要求 25所述的用户终端, 其特征在于, 所述第一信息确定模 块具体用于:
在所述功率调整比特序列的长度小于第一设定值, 所述时间调整比特序 列的长度小于第二设定值时, 分别将所述功率调整比特序列和所述时间调整 比特序列编码为长度是第一设定值、 第二设定值的比特序列, 将编码后的功 率调整比特序列和时间调整比特序列组合成长庋是第三设定值的上行信息。
27、 如权利要求 25所述的用户终端, 其特征在于, 所迷第一信息确定模 块具体用于:
在所述功率调整比特序列的长度小于第一设定值, 所述时间调整比特序 列的长度小于第二设定值时, 利用无效比特, 分别将所迷功率调整比特序列 和所述时间调整比特序列的长度扩展成第一设定值、 第二设定值, 将扩展后 的功率调整比特序列和扩展后的时间调整比特序列组合成长度是第三设定值 的上行信息。
28、 如权利要求 25所述的用户终端, 其特征在于, 所迷第一信息确定模 块具体用于:
在所述功率调整比特序列的长度小于第一设定值, 所述时间调整比特序 列的长度小于第二设定值时, 将所述功率调整比特序列和所述时间调整比特 序列组合成特殊比特序列, 确定所述特殊比特序列对应的映射比特序列, 其 中所述映射比特序列的长度不大于第三设定值, 且不小于第四设定值, 在映 射比特序列的长度等于第三设定值时, 将所述映射比特序列作为上行信息, 在映射比特序列的长度小于第三设定值时, 将所述映射比特序列编码为长度 是第三设定值的上行信息。
29、 如权利要求 25~28任一权利要求所述的用户终端, 其特征在于, 所 述第一设定值为 4bit, 第二设定值为 4bit, 第三设定值为 8bit。
30、如权利要求 28所述的用户终端,其特征在于,所述第四设定值为 3bit。
31、 一种基站, 其特征在于, 该基站包括:
第一接收模块, 用于通过高速下行共享信道的共享信息信道 HS-SICH接 收长度是第三设定值的上行信息, 其中所迷长度是第三设定值的上行信息是 用户终端将用于表示基站的发射功率的调整状态并且长度不大于第一设定值 的功率调整比特序列和用于表示基站的发送时间的调整状态并且长度不大于 第二设定值的时间调整比特序列编码后得到的;
第一处理模块, 用于将所述上行信息解码为所迷功率调整比特序列和所 述时间调整比特序列;
第一状态确定模块, 用于 据所述功率调整比特序列, 确定自身对所述 用户终端的发射功率的调整状态, 以及 据所迷时间调整比特序列确定自身 对所迷用户终端的发送时间的调整状态。
32、 如权利要求 31所迷的基站, 其特征在于, 所述第一处理模块具体用 于:
在所述功率调整比特序列的长度小于第一设定值, 所述时间调整比特序 列的长度小于第二设定值时, 分别确定长度是第三设定值的上行信息中进行 编码后的功率调整比特序列和进行编码后的时间调整比特序列, 其中进行编 码后的所述功率调整比特序列的长度是第一设定值, 进行编码后的所述时间 调整比特序列的长度是第二设定值, 将进行编码后的功率调整比特序列解码 为确定发射功率的调整状态所用的功率调整比特序列, 以及将进行编码后的 时间调整比特序列解码为确定发送时间的调整状态所用的时间调整比特序 列。
33、 如权利要求 31所述的基站, 其特征在于, 所述第一处理模块具体用 于:
在所述功率调整比特序列的长度小于第一设定值, 所述时间调整比特序 列的长度小于第二设定值时, 确定长度是第三设定值的上行信息中利用无效 比特扩展后的功率调整比特序列和利用无效比特扩展后的时间调整比特序 列, 去除功率调整比特序列中的无效比特, 得到确定发射功率的调整状态所 用的功率调整比特序列, 以及去除时间调整比特序列中的无效比特, 得到确 定发送时间的调整状态所用的时间调整比特序列。
34、 如权利要求 31所述的基站, 其特征在于, 所述第一处理模块具体用 于:
在所述功率调整比特序列的长度小于第一设定值, 所述时间调整比特序 列的长度小于第二设定值时, 将长度是第三设定值的上行信息解码为映射比 特序列, 其中所述映射比特序列的长度不大于第三设定值, 且不小于第四设 定值, 确定所述映射比特序列对应的特殊比特序列, 确定特殊比特序列中的 功率调整比特序列和时间调整比特序列。
35、 如权利要求 31~34任一权利要求所述的基站, 其特征在于, 所述第 一设定值为 4bit, 第二设定值为 4bit, 第三设定值为 8bit。
36、 如权利要求 34所述的基站, 其特征在于, 所述第四设定值为 3bit。
37、 一种用户终端, 其特征在于, 该用户终端包括:
第二参数确定模块, 用于确定用于表示基站的发射功率的调整状态并且 长度不大于第三设定值的功率调整比特序列;
第二信息确定模块, 用于将所述功率调整比特信息编码为长度是第三设 定值的上行信息;
第二发送模块, 用于通过 HS-SICH发送所述上行信息。
38、 如权利要求 37所述的用户终端, 其特征在于, 所述第二信息确定模 块具体用于:
在所述功率调整比特序列的长度小于第三设定值时, 将所述功率调整比 特序列编码为长度是第三设定值的上行信息。
39、 如权利要求 37所述的用户终端, 其特征在于, 所述第二信息确定模 块具体用于:
在所述功率调整比特序列的长度小于第三设定值时, 利用无效比特, 将 所述功率调整比特序列的长度扩展成第三设定值, 并将扩展后的功率调整比 特序列作为上行信息。
40、 如权利要求 37、 38或 39所述的用户终端, 其特征在于, 所述第三 设定值为 8bit。
41、 一种基站, 其特征在于, 该基站包括:
第二接收模块, 用于通过高速下行共享信道的共享信息信道 HS-SICH接 收长度是第三设定值的上行信息, 其中所述长度是第三设定值的上行信息是 用户终端将用于表示基站的发射功率的调整状态并且长度不大于第三设定值 的功率调整比特序列编码后得到的;
第二处理模块, 用于将所述上行信息解码为所述功率调整比特序列; 第二状态确定模块, 用于 据所述功率调整比特序列, 确定自身对所述 用户终端的发射功率的调整状态。
42、 如权利要求 41所述的基站, 其特征在于, 所述第二处理模块具体用 于:
在所述功率调整比特序列的长度小于第三设定值时, 将第三设定值的上 行信息解码为确定发射功率的调整状态所用的功率调整比特序列。
43、 如权利要求 41所述的基站, 其特征在于, 所迷第二处理模块具体用 于:
在所述功率调整比特序列的长度小于第三设定值时, 去除长度是第三设 定值的上行信息中的无效比特, 得到确定发射功率的调整状态所用的功率调 整比特序列.
44、 如权利要求 41~43任一权利要求所迷的基站, 其特征在于, 所述第 三设定值为 8bit。
PCT/CN2011/000056 2010-01-15 2011-01-13 传输上行信息和处理上行信息的方法、系统及装置 WO2011085639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010033898 CN102083187B (zh) 2010-01-15 2010-01-15 传输上行信息和处理上行信息的方法、系统及装置
CN201010033898.4 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011085639A1 true WO2011085639A1 (zh) 2011-07-21

Family

ID=44088888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000056 WO2011085639A1 (zh) 2010-01-15 2011-01-13 传输上行信息和处理上行信息的方法、系统及装置

Country Status (2)

Country Link
CN (1) CN102083187B (zh)
WO (1) WO2011085639A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114065A (ko) 2014-01-28 2016-10-04 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 제어 채널 전송 방법 및 장치
US11166274B2 (en) * 2017-08-24 2021-11-02 Qualcomm Incorporated User equipment-specific hybrid automatic repeat request timeline offset
CN111654297B (zh) 2017-08-30 2021-10-15 华为技术有限公司 一种动态时间调整方法、装置和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741680A (zh) * 2005-09-20 2006-03-01 中兴通讯股份有限公司 最佳小区标识反馈方法及节点b内快速小区选择方法
WO2008084927A1 (en) * 2007-01-12 2008-07-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving ack/nack signal in mobile communication system
CN101394206A (zh) * 2007-09-17 2009-03-25 中兴通讯股份有限公司 传输下行功控同步信令的方法
CN101453309A (zh) * 2007-12-03 2009-06-10 大唐移动通信设备有限公司 支持双流传输的方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741680A (zh) * 2005-09-20 2006-03-01 中兴通讯股份有限公司 最佳小区标识反馈方法及节点b内快速小区选择方法
WO2008084927A1 (en) * 2007-01-12 2008-07-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving ack/nack signal in mobile communication system
CN101394206A (zh) * 2007-09-17 2009-03-25 中兴通讯股份有限公司 传输下行功控同步信令的方法
CN101453309A (zh) * 2007-12-03 2009-06-10 大唐移动通信设备有限公司 支持双流传输的方法及其装置

Also Published As

Publication number Publication date
CN102083187A (zh) 2011-06-01
CN102083187B (zh) 2013-02-20

Similar Documents

Publication Publication Date Title
CN108289015B (zh) 发送harq-ack/nack的方法和设备及下行传输方法和设备
EP3590214B1 (en) Methods and apparatus for enhanced spectral efficiency and reliability of transmissions without grant
JP6144787B2 (ja) Mimoをサポートする無線通信システムにおけるアップリンクでの再伝送制御方法及び装置
AU2013297131B2 (en) Power control for simultaneous transmission of ack/nack and channel-state information in carrier agregation systems
KR101274663B1 (ko) 일반 및 가상 듀얼 계층 ack/nack 사이의 선택
WO2019093499A1 (ja) 端末装置、基地局装置、および、通信方法
WO2016161910A1 (zh) 一种信息传输的方法及装置
WO2019093390A1 (ja) 端末装置、基地局装置、および、通信方法
WO2012057122A1 (ja) 移動局装置、無線通信方法、および集積回路
CN110692211B (zh) 基站装置和终端装置
WO2011069436A1 (zh) 传输上行控制信息的方法和装置
WO2015169013A1 (zh) 高阶编码的调制处理方法及装置、基站、终端
WO2014110931A1 (zh) 调制处理方法及装置
WO2011098047A1 (zh) 实现半持续调度业务或类似半持续调度业务的方法及设备
WO2011082646A1 (zh) 一种反馈多载波信道信息的方法及装置
CN102263617A (zh) 上行控制信息在物理上行共享信道上的发送方法及装置
WO2013097687A1 (zh) 编码上行控制信息的方法及装置
CN100574168C (zh) E-dch中调度信息传输方法
EP2103000A1 (en) Power for uplink acknowledgment transmission
WO2014177000A1 (zh) 一种上行控制信息的传输方法及用户设备
WO2009074096A1 (fr) Procédé et dispositif de prise en charge de transmission bidirectionnelle
WO2012016516A1 (zh) 基于多输入多输出系统的上行控制信息处理方法和装置及其传输方法
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
WO2011038677A1 (zh) 一种空间复用模式中退秩的方法、基站及通信系统
WO2011041957A1 (zh) 一种利用上行子帧反馈确认/非确认信息的方法及终端

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732629

Country of ref document: EP

Kind code of ref document: A1