WO2011083842A1 - 燃料電池用触媒層の製造装置、燃料電池用触媒層の製造方法、高分子電解質溶液及び高分子電解質溶液の製造方法 - Google Patents
燃料電池用触媒層の製造装置、燃料電池用触媒層の製造方法、高分子電解質溶液及び高分子電解質溶液の製造方法 Download PDFInfo
- Publication number
- WO2011083842A1 WO2011083842A1 PCT/JP2011/050169 JP2011050169W WO2011083842A1 WO 2011083842 A1 WO2011083842 A1 WO 2011083842A1 JP 2011050169 W JP2011050169 W JP 2011050169W WO 2011083842 A1 WO2011083842 A1 WO 2011083842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer electrolyte
- catalyst layer
- water
- electrolyte solution
- paste
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8817—Treatment of supports before application of the catalytic active composition
- H01M4/8821—Wet proofing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
- H01M4/8832—Ink jet printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
- H01M4/8835—Screen printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell catalyst layer manufacturing apparatus, a fuel cell catalyst layer manufacturing method, a polymer electrolyte solution, and a polymer electrolyte solution manufacturing method.
- a fuel cell system using a membrane electrode assembly (MEA) 90 as disclosed in Patent Document 1 is known.
- this MEA 90 is joined to an electrolyte membrane 91 made of a solid polymer membrane such as Nafion (registered trademark, Nafion (manufactured by Du Pont)) and one surface of the electrolyte membrane 91 to supply air.
- Cathode electrode 93 and an anode electrode 92 joined to the other surface of the electrolyte membrane 91 and supplied with fuel such as hydrogen.
- the cathode electrode 93 includes a gas permeable base material 93b such as carbon cloth, carbon paper, carbon felt, and the like, and a cathode catalyst layer 93a formed on one surface of the base material 93b.
- the portion other than the cathode catalyst layer 93a in the cathode electrode 93 is a base material 93b, which is a cathode diffusion layer that diffuses air to the cathode catalyst layer 93a on the non-electrolyte side.
- the anode electrode 92 is also composed of the base material 92b as described above and an anode catalyst layer 92a formed on one surface of the base material.
- the portion other than the anode catalyst layer 92a in the anode electrode 92 is also a base material 92b, which is an anode diffusion layer that diffuses fuel into the anode catalyst layer 92a on the non-electrolyte side.
- the cathode catalyst layer 93 a and the anode catalyst layer 92 a are composed of a myriad of catalysts 81 in which catalyst metal fine particles 81 b such as platinum (Pt) are supported on a carrier 81 a made of carbon black, and each catalyst 81. And a polymer electrolyte 82 bonded to a base material (not shown). As the polymer electrolyte 82, the same one as the electrolyte membrane 91 is used.
- a fuel cell as a minimum power generation unit is configured, and a large number of these cells are stacked to form a fuel cell stack.
- Air is supplied to the cathode catalyst layer 93a by air supply means, and hydrogen or the like is supplied to the anode catalyst layer 92a by hydrogen supply means or the like.
- the fuel cell system is configured.
- H + hydrogen ions
- protons electrons
- the electrons flow through the load connected to the fuel cell system and flow into the cathode catalyst layer 93a.
- water is generated from oxygen, protons and electrons contained in the air.
- the fuel cell system can continuously generate an electromotive force by continuously performing such an electrochemical reaction.
- the above-described conventional MEA 90 suffers from performance degradation due to drying of the electrolyte membrane and the polymer electrolyte of each catalyst layer in a low humidified state. Further, in the MEA 90, in an excessively humid state, performance deterioration caused by gas supply inhibition (flooding) due to water retention occurs. For this reason, in the fuel cell provided with this MEA 90, there is a problem that the power generation capacity is lowered under each of the above environments.
- the present invention has been made in view of the above-described conventional situation, and an object to be solved is to obtain a fuel cell catalyst layer that allows an electrochemical reaction to proceed smoothly. Moreover, this invention makes it the subject which should be solved to provide the polymer electrolyte solution for obtaining the catalyst layer for fuel cells, and the manufacturing method of this polymer electrolyte solution.
- the fuel cell catalyst layer production apparatus of the present invention is a fuel cell catalyst layer production apparatus that forms a catalyst layer with a catalyst paste.
- Water removing means for reducing the concentration of water in the pre-solution in which the polymer electrolyte having a side chain having a hydrophilic functional group is dissolved in a solvent to a predetermined value or less, and obtaining a polymer electrolyte solution;
- a pre-paste obtained by mixing a catalyst and water and a stirring means for mixing the polymer electrolyte solution to obtain the catalyst paste are provided (claim 1).
- a hydrophilic functional group at the end of the side chain 101 of the polymer electrolyte 82 is interposed between the catalyst 81 and the polymer electrolyte 82 layer. It is presumed that the formation of the layer 83 facilitates the movement of protons and entrained water and the reverse diffusion and discharge of produced water.
- the generated water generated in the cathode electrode 93 is held in the hydrophilic layer 83 even in a low humidified state, and the anode electrode 92 is retained. Can be despread.
- the inventor has found the following knowledge by paying attention to the state of the polymer electrolyte 82 in the polymer electrolyte solution so that the hydrophilic layer 83 is formed without any spots. That is, as shown in FIGS. 8A and 8B, the polymer electrolyte 82 has a hydrophobic main chain 100 and a side chain 101 having a hydrophilic functional group.
- the hydrophilic functional group is composed of, for example, a sulfone group (SO 3 ⁇ ).
- the hydrophilic functional group is attracted to the water adsorbed on the catalyst 81, and the cathode catalyst A hydrophilic layer 83 is formed on the layer 93a and the anode catalyst layer 92a.
- the inventor has found that when the concentration of water in the polymer electrolyte solution is reduced, the viscosity of the polymer electrolyte solution increases even when the concentration of the polymer electrolyte 82 in the polymer electrolyte solution is the same. .
- the inventors have also found that the viscosity of the polymer electrolyte solution decreases when the concentration of water in the polymer electrolyte solution is increased.
- the inventor adsorbs water on the side chain 101 of the polymer electrolyte 82 when the concentration of water in the polymer electrolyte solution is high, and as shown in FIG.
- the polymer electrolyte 82 was agglomerated, and it was assumed that the viscosity of the polymer electrolyte solution decreased. Further, when the concentration of water in the polymer electrolyte solution is slightly lowered, the action of the organic solvent contained in the polymer electrolyte solution causes a high concentration in the polymer electrolyte solution as shown in FIG. It was estimated that the molecular electrolyte 82 was dissolved and the viscosity of the polymer electrolyte solution increased.
- the cathode catalyst layer 93a is manufactured by mixing the polymer electrolyte solution containing the polymer electrolyte 82 in which the aggregation has progressed, it is considered that the cathode catalyst layer 93a is in a state as shown in FIG. . That is, in the cathode catalyst layer 93a, since the polymer electrolyte 82 is agglomerated, the side chain 101 extends in multiple directions. Then, the side chains 101 and the water in the cathode catalyst layer 93a are adsorbed, whereby the hydrophilic layer 83 is dispersed and formed in the cathode catalyst layer 93a.
- the cathode catalyst layer 93a the proton and water hardly move in the cathode catalyst layer 93a due to the ionic resistance in the cathode catalyst layer 93a where the polymer electrolyte 82 is aggregated. For this reason, in the low humidification state, the performance degradation due to drying of the electrolyte membrane 11 and the polymer electrolyte 82 in each catalyst layer is caused. In the excessive humidification state, the performance degradation due to flooding is caused.
- the inventor has intensively studied to solve the above-mentioned problems, and has invented the battery catalyst layer production apparatus of the present invention. That is, in the polymer electrolyte solution obtained by the water removing means provided in the manufacturing apparatus, the concentration of water is not more than a predetermined value, so that the viscosity is high and the polymer electrolyte 82 of the polymer electrolyte 82 is contained in the polymer electrolyte solution.
- the side chain 101 is difficult to adsorb with water. For this reason, it is considered that the polymer electrolyte solution is in a state as shown in FIG. 1, that is, a state in which the polymer electrolyte 82 is unraveled in the polymer electrolyte solution.
- the hydrophilic functional group of the polymer electrolyte 82 for example, the sulfone group is pre-paste. It will adsorb with the water inside. For this reason, as shown in FIG. 6, in this fuel cell catalyst layer, a hydrophilic layer 83 of the polymer electrolyte 82 is formed in a state of being oriented on the surface of the catalyst 81.
- the sulfone group is adsorbed with the water in the pre-paste, so that in the fuel cell catalyst layer, the hydrophilic layer 83 is formed on the catalyst 81 so that the side chain 101 of the polymer electrolyte 82 is formed.
- the hydrophilic functional group is oriented to the catalyst 81 side (PFF structure).
- the fuel cell catalyst layer manufacturing apparatus of the present invention it is possible to obtain a fuel cell catalyst layer in which an electrochemical reaction is smoothly performed.
- the water removing means is a hot water bath (claim 2).
- the concentration of water in the pre-solution can be easily reduced to a predetermined value or less, and the polymer electrolyte solution of the present invention can be easily obtained.
- the polymer electrolyte solution of the present invention is characterized in that a polymer electrolyte having a side chain having a hydrophilic functional group is dissolved in a solvent, and the concentration of water is 10% or less (claim 3).
- the polymer electrolyte solution of the present invention is in a state as shown in FIG. 1, that is, a state in which the polymer electrolyte 82 is unwound in the polymer electrolyte solution. it is conceivable that.
- the main chain 100 extends in one direction in the polymer electrolyte 82 in a state of being unraveled in this way. Therefore, in the fuel cell catalyst layer mixed with the polymer electrolyte solution, the hydrophilic functional group and water are adsorbed in one direction, and the hydrophilic layer 83 is aligned in one direction in the fuel cell catalyst layer, and It is considered to be a continuous state. For this reason, in such a fuel cell catalyst layer, protons and water easily move, and the electrochemical reaction proceeds smoothly.
- the polymer electrolyte solution of the present invention is suitable as a polymer electrolyte solution constituting the fuel cell catalyst layer.
- the polymer electrolyte solution preferably has a water concentration of 5% or less (claim 4).
- the concentration of water in the polymer electrolyte solution becomes lower, the polymer electrolyte 82 in the polymer electrolyte solution becomes more undissolved and tends to be in the state shown in FIG.
- the solvent preferably contains at least one of a secondary alcohol and a tertiary alcohol (Claim 5).
- a secondary alcohol such as isopropyl alcohol (IPA) or a tertiary alcohol such as tertiary butyl alcohol (TBA)
- IPA isopropyl alcohol
- TSA tertiary butyl alcohol
- the polymer electrolyte 82 in the polymer electrolyte solution becomes more open.
- the solvent includes a secondary alcohol and a tertiary alcohol, the polymer electrolyte 82 in the polymer electrolyte solution is further unraveled.
- the method for producing a polymer electrolyte solution of the present invention comprises a pre-solution preparation step of preparing a pre-solution in which a polymer electrolyte having a side chain having a hydrophilic functional group is dissolved in a solvent; It comprises a solution preparation step in which at least water is reduced to a concentration of 10% or less from the pre-solution to obtain a polymer electrolyte solution (claim 6).
- a polymer electrolyte solution having the above characteristics can be produced stably.
- the method for producing a catalyst layer for a fuel cell according to the present invention is a method for producing a catalyst layer for a fuel cell in which the catalyst layer is formed with a catalyst paste.
- the concentration of water in the polymer electrolyte solution is 10% or less in the water removal step.
- this polymer electrolyte solution has the characteristics as described above.
- the catalyst layer for fuel cells formed by the catalyst paste obtained through the stirring step has the above characteristics.
- FIG. 6 is a schematic diagram showing a process for producing a polymer electrolyte solution of Experimental Example 1.
- FIG. It is a schematic diagram which shows the manufacturing process of the catalyst paste in Example 1,2.
- FIG. 3 is a schematic structural diagram showing a MEA according to the related art and Examples 1 and 2. It is a model expanded sectional view of MEA of the past and Examples 1 and 2. It is a model expanded sectional view of VI part in MEA of Example 1,2. It is a graph which shows the change of the voltage of a cell and current density in example 2 of an experiment. It is a schematic diagram which shows the state of the polymer electrolyte in the conventional polymer electrolyte solution. It is a model expanded sectional view which shows the conventional cathode catalyst layer.
- Example 1 In manufacturing the MEA 90 having the cathode catalyst layer 93a, the anode catalyst layer 92a, and the catalyst layers 93a and 92a of Examples 1 and 2 shown in FIG. 4, first, the following experiment was performed. In Experimental Example 1, six types of polymer electrolyte solutions having different configurations and manufacturing processes were prepared, and the viscosity of each polymer electrolyte solution was measured. The polymer electrolyte solutions used in Examples 1 and 2 and Experimental Example 1 are all ionomer solutions.
- the content of water in DE2020 is an amount equivalent to about 9% in terms of the concentration in the polymer electrolyte solution of sample C.
- the content of NPA in DE2020 is equivalent to about 11% in terms of the concentration in the polymer electrolyte solution of Sample C.
- Table 1 the viscosity ratio of each of the samples B to G to the sample A is shown on the basis of the viscosity of the sample A.
- Table 1 also shows the composition ratios of the polymer electrolyte, IPA, NPA, H 2 O, and TBA in the polymer electrolyte solutions of the samples A to G and the order of addition of the solvent.
- the polymer electrolyte solutions of Samples A to C differed in viscosity even though they had the same composition ratio.
- the order of the solvent mixed with DE2020 is related to the change in viscosity. More specifically, a comparison between the polymer electrolyte solution of sample A and the polymer electrolyte solutions of samples B and C revealed that the viscosity is lowered by first mixing water with DE2020. Further, by comparing the polymer electrolyte solution of sample B and the polymer electrolyte solution of sample C, before the IPA is mixed, that is, as the proportion of water and NPA in the pre-solution DE2020 is larger, the polymer electrolyte solution It became clear that the viscosity decreased.
- IPA, IPA and TBA have the effect of unraveling the polymer electrolyte 82 in the polymer electrolyte solution
- water and NPA have the effect of aggregating the polymer electrolyte 82 in the polymer electrolyte solution.
- primary alcohols such as NPA and ethanol and water have the effect of aggregating the polymer electrolyte
- secondary alcohols such as IPA and tertiary alcohols such as TBA are effective for polymer electrolytes. It can be inferred that there is an effect to understand.
- the effects of the secondary alcohol and the tertiary alcohol are considered to be derived from the dielectric constant, and it can be inferred that a solvent having a dielectric constant of 20 or less has a high effect of deaggregating the polymer electrolyte.
- Example 1 Manufacture of cathode catalyst layer 93a and anode catalyst layer 92a> Based on the above experimental results, the MEA 90 of Example 1 shown in FIG. 4 was manufactured. As described above, the cathode electrode 93 of the MEA 90 includes the cathode catalyst layer 93a as a fuel cell catalyst layer and the cathode diffusion layer 93b formed of a gas diffusion layer base material.
- the catalyst paste 42 constituting the cathode catalyst layer 93a is manufactured.
- a catalyst 81 was prepared in which Pt fine particles as catalyst metal fine particles 82 were supported at a support density of 50 wt% on a carrier 81a made of carbon black. Then, the catalyst 81 and water were mixed in an amount of 5 g with respect to 1 g of the catalyst 81, and stirred by the hybrid mixer 35 to obtain a pre-paste 40 (see FIG. 3A).
- a polymer electrolyte solution 41 to be mixed with the pre-paste 40 was prepared.
- the configuration of the polymer electrolyte solution 41 is the same as that of the polymer electrolyte solution manufactured as Sample B in Experimental Example 1 described above. That is, in this polymer electrolyte solution 41, the concentration of water is 22%.
- the hot water bath performed in obtaining the polymer electrolyte solution 41 that is, the hot water bath in the production of the polymer electrolyte solution of Sample B is the water removing means in the fuel cell catalyst layer manufacturing apparatus of the present invention and the present invention. This corresponds to the water removal step in the method for producing a fuel cell catalyst layer.
- the hybrid mixer 35 corresponds to the stirring means in the fuel cell catalyst layer production apparatus of the present invention. Further, the stirring by the hybrid mixer 35 corresponds to the stirring step in the method for manufacturing the fuel cell catalyst layer of the present invention.
- the above catalyst paste 42 was applied to the base material 93b to form the cathode catalyst layer 93a.
- the base material 93b is obtained by laminating carbon black subjected to water repellent treatment with PTFE and a carbon cloth as a base material having electron conductivity.
- the base material 93b may be employed by providing a water repellent layer made of a mixture of carbon black and PTFE on carbon paper or the like.
- a method of applying the catalyst paste 41 to the base material 93b means such as screen printing, a spray method, an ink jet method and the like can be employed.
- the cathode electrode 93 is obtained by drying the cathode catalyst layer 93a on the base material 93b.
- the anode catalyst layer 92a and the anode electrode 92 are also obtained by the same process.
- the polymer electrolyte solution 41 having a water concentration of 5% in the polymer electrolyte solution 41 and the pre-paste 40 are mixed. ing.
- the polymer electrolyte solution 41 it is considered that the polymer electrolyte 82 has been unwound. Further, it is considered that the main chain 100 extends in one direction in the polymer electrolyte 82 in such a state of being unwound. For this reason, as shown to (C) of FIG.
- a sulfone group will adsorb
- FIG. Therefore, in the cathode catalyst layer 93a and the anode catalyst layer 92a obtained by this catalyst paste 42, a layer of the polymer electrolyte 82 is formed in a state of being oriented on the surface of the catalyst 81 as shown in FIG.
- a hydrophilic layer 83 is formed on the catalyst 81 in the cathode catalyst layer 93a and the anode catalyst layer 92a as shown in FIG.
- the hydrophilic functional group of the side chain 101 of the polymer electrolyte 82 is oriented to the catalyst 81 side (PFF structure).
- PFF structure catalyst 81 side
- Example 1 it is possible to obtain the cathode catalyst layer 93a and the anode catalyst layer 92a in which the electrochemical reaction is smoothly performed, and thus the electrochemical reaction is smoothly performed.
- MEA 90 can be obtained.
- Example 2 The MEA 90 of Example 2 is composed of a cathode catalyst layer and an anode by a catalyst paste obtained by mixing the pre-paste 40 and the polymer electrolyte solution of sample E in the above Experimental Example 1 (water concentration is 5%). A catalyst layer is formed.
- Other configurations and manufacturing methods are the same as those in the first embodiment.
- the MEA of the comparative example is composed of a cathode catalyst layer and an anode catalyst by a catalyst paste obtained by mixing the pre-paste 40 and the polymer electrolyte solution of sample A in the above experimental example 1 (water concentration is 22%). Layers are configured. Other configurations and manufacturing methods are the same as those in the first and second embodiments.
- the cell temperature of each of the cell including the MEA 90 of Examples 1 and 2 and the cell including the MEA of the comparative example was set to 50 ° C., and the humidity was 100%.
- the change in current and voltage of each cell was measured when hydrogen was passed through the cathode electrode 93 and air was passed through the cathode electrode 93. The measurement results are shown in FIG.
- the horizontal axis represents the cell current density (A / cm 2 ), and the vertical axis represents the cell voltage (V).
- the cell having the MEA 90 of Example 2 has the smallest decrease in current density when the voltage decreases. That is, it can be said that the MEA 90 of Example 2 has the highest power generation capacity.
- the present invention can be used for a moving power source for an electric vehicle or the like, or a stationary power source.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
親水性官能基をもつ側鎖を有する高分子電解質が溶媒に溶解されたプレ溶液の水の濃度を所定値以下まで減らし、高分子電解質溶液を得る水除去手段と、
触媒と水とが混合されて得られたプレペーストと、該高分子電解質溶液とを混合して、前記触媒ペーストを得る撹拌手段とを備えたことを特徴とする(請求項1)。
該プレ溶液から少なくとも水を10%以下の濃度まで減らし、高分子電解質溶液を得る溶液調製工程とからなることを特徴とする(請求項6)。
親水性官能基をもつ側鎖を有する高分子電解質が溶媒に溶解されたプレ溶液の水の濃度を10%以下まで減らし、高分子電解質溶液を得る水除去工程と、
触媒と水とを混合し、プレペーストを製造するプレペースト調製工程と、
前記プレペーストに前記高分子電解質溶液を混合し、触媒ペーストを得る撹拌工程とを備えていることを特徴とする(請求項7)。
図4に示す実施例1、2のカソード触媒層93a、アノード触媒層92a及びこれらの各触媒層93a、92aを有するMEA90を製造するに当たって、まず、以下の実験を行った。実験例1では、構成及び製造工程の異なる6種類の高分子電解質溶液を用意し、各高分子電解質溶液の粘度を測定した。なお、実施例1、2及び実験例1で用いた高分子電解質溶液はいずれもアイオノマー溶液である。
サンプルAの高分子電解質溶液の製造に当たっては、まず、プレ溶液としてDE2020(Du pont社製)を用意した。そして、10gのDE2020を容器に取り、図2の(A)に示すように、85°Cで湯煎し、DE2020中の溶媒である水及びノルマルプロピルアルコール(NPA)を蒸発させた。この湯煎により、DE2020中における水及びNPAの含有量をいずれも2gまで低減させた。これにより、DE2020中の水及びNPAの含有量は、サンプルAの高分子電解質溶液中の濃度に換算して5%に相当する量となる。
サンプルBの高分子電解質溶液の製造に当たっては、サンプルAの高分子電解質溶液の製造の場合と同様、10gのDE2020を85°Cで湯煎し、DE2020中における水及びNPAの含有量をいずれも2gまで低減させた。これにより、DE2020中の水及びNPAの含有量は、サンプルBの高分子電解質溶液中の濃度に換算して5%に相当する量となる。
サンプルCの高分子電解質溶液の製造に当たっては、10gのDE2020に20gのIPAを混合し、自転//公転式遠心攪拌機35によって3分間攪拌した。その後、このDE2020とIPAとの混合物に対し、4.7gのNPAを混合し、自転/公転式遠心攪拌機35によって攪拌した。こうして得られたDE2020とIPAとNPAとの混合物に対し5.3gの水を混合した。そして、自転/公転式遠心攪拌機35によって攪拌を行い、サンプルCの高分子電解質溶液を得た。サンプルCの高分子電解質溶液の製造においては、湯煎を行っていないため、DE2020中の水の含有量は、サンプルCの高分子電解質溶液中の濃度に換算して約9%に相当する量となる。また、DE2020中のNPAの含有量は、サンプルCの高分子電解質溶液中の濃度に換算して約11%に相当する量となる。
サンプルDの高分子電解質溶液の製造においても、10gのDE2020を85°Cで湯煎し、DE2020中における水及びNPAの含有量をいずれも2gまで低減させた。これにより、DE2020中の水及びNPAの含有量は、サンプルDの高分子電解質溶液中の濃度に換算して5%に相当する量となる。次に、このDE2020に34gのNPAを混合し、自転/公転式遠心攪拌機35によって3分間攪拌を行った。こうして、サンプルDの高分子電解質溶液を得た。
サンプルEの高分子電解質溶液の製造においても、10gのDE2020を85°Cで湯煎し、DE2020中における水及びNPAの含有量をいずれも2gまで低減させた。これにより、DE2020中の水及びNPAの含有量は、サンプルEの高分子電解質溶液中の濃度に換算して5%に相当する量となる。次に、このDE2020に34gのIPAを混合し、自転/公転式遠心攪拌機35によって3分間攪拌を行った。こうして、サンプルEの高分子電解質溶液を得た。
サンプルFの高分子電解質溶液の製造においても、10gのDE2020を85°Cで湯煎し、DE2020中における水及びNPAの含有量をいずれも2gまで低減させた。これにより、DE2020中の水及びNPAの含有量は、サンプルEの高分子電解質溶液中の濃度に換算して5%に相当する量となる。次に、このDE2020に34gのIPA:TBA=1:1溶液を混合し、自転/公転式遠心攪拌機35によって3分間攪拌を行った。こうして、サンプルFの高分子電解質溶液を得た。
サンプルGの高分子電解質溶液の製造においても、10gのDE2020を85°Cで湯煎した。但し、DE2020中における水、NPA及び高分子電解質82の含有量をそれぞれ約33%とした。次に、湯煎後のDE2020に対し、7.2gのNPAを添加し、自転/公転式遠心攪拌機35によって3分間の攪拌を行った。その後、6.8gの水を加えて更に撹拌を行ない、最後に20gのIPAを加えて撹拌を行うことでサンプルGを得た。
〈カソード触媒層93a及びアノード触媒層92aの製造〉
上記の実験結果に基づき、図4に示す実施例1のMEA90を製造した。このMEA90のカソード極93は、上記のとおり、燃料電池用触媒層としてのカソード触媒層93aと、ガス拡散層基材で構成されたカソード拡散層93bとで構成されている。
そして、アノード極92、電解質膜(ナフィオン膜:NR211)91及びカソード極93の順でこれらを積層し、140°C、加圧力40kgf/cm2でホットプレスして接合した。こうしてMEA90を製造した。
実施例2のMEA90は、プレペースト40と、上記の実験例1におけるサンプルEの高分子電解質溶液(水の濃度が5%)とを混合して得られた触媒ペーストによって、カソード触媒層及びアノード触媒層が構成されている。他の構成及び製造方法は実施例1と同様である。
比較例のMEAは、プレペースト40と、上記の実験例1におけるサンプルAの高分子電解質溶液(水の濃度が22%)とを混合して得られた触媒ペーストによって、カソード触媒層及びアノード触媒層が構成されている。他の構成及び製造方法は実施例1、2と同様である。
92a、93a…触媒層(92a…アノード触媒層、93a…カソード触媒層)
101…側鎖
82…高分子電解質
41…高分子電解質溶液
81…触媒
40…プレペースト
Claims (7)
- 触媒ペーストによって触媒層を形成する燃料電池用触媒層の製造装置において、
親水性官能基をもつ側鎖を有する高分子電解質が溶媒に溶解されたプレ溶液の水の濃度を所定値以下まで減らし、高分子電解質溶液を得る水除去手段と、
触媒と水とが混合されて得られたプレペーストと、該高分子電解質溶液とを混合して、前記触媒ペーストを得る撹拌手段とを備えていることを特徴とする燃料電池用触媒層の製造装置。 - 前記水除去手段は湯煎である請求項1記載の燃料電池用触媒層の製造装置。
- 親水性官能基をもつ側鎖を有する高分子電解質が溶媒に溶解され、水の濃度が10%以下であることを特徴とする高分子電解質溶液。
- 水の濃度が5%以下である請求項3記載の高分子電解質溶液。
- 前記溶媒は、第2級アルコール及び第3級アルコールの少なくとも1種を含む請求項3又は4記載の高分子電解質溶液。
- 親水性官能基をもつ側鎖を有する高分子電解質が溶媒に溶解されたプレ溶液を準備するプレ溶液準備工程と、
該プレ溶液から少なくとも水を10%以下の濃度まで減らし、高分子電解質溶液を得る溶液調製工程とからなることを特徴とする高分子電解質溶液の製造方法。 - 触媒ペーストによって触媒層を形成する燃料電池用触媒層の製造方法において、
親水性官能基をもつ側鎖を有する高分子電解質が溶媒に溶解されたプレ溶液の水の濃度を10%以下まで減らし、高分子電解質溶液を得る水除去工程と、
触媒と水とを混合し、プレペーストを製造するプレペースト調製工程と、
前記プレペーストに前記高分子電解質溶液を混合し、触媒ペーストを得る撹拌工程とを備えていることを特徴とする燃料電池用触媒層の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112011100210T DE112011100210T5 (de) | 2010-01-07 | 2011-01-07 | Vorrichtung für die herstellung einer brennstoffzellenkatalysatorschicht, verfahren für die herstellung einer brennstoffzellenkatalysatorschicht, polyelektrolytlösung und verfahren für die herstellung einer polyelektrolytlösung |
CN201180003972.0A CN102598377B (zh) | 2010-01-07 | 2011-01-07 | 燃料电池用催化剂层的制造装置、燃料电池用催化剂层的制造方法、高分子电解质溶液以及高分子电解质溶液的制造方法 |
US13/498,190 US8889584B2 (en) | 2010-01-07 | 2011-01-07 | Apparatus for production of fuel cell catalyst layer, method for production of fuel cell catalyst layer, polyelectrolyte solution, and process for production of polyelectrolyte solution |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-002362 | 2010-01-07 | ||
JP2010002362 | 2010-01-07 | ||
JP2010288034 | 2010-12-24 | ||
JP2010-288034 | 2010-12-24 | ||
JP2010291730A JP5565305B2 (ja) | 2010-01-07 | 2010-12-28 | 燃料電池用触媒層の製造装置、燃料電池用触媒層の製造方法、高分子電解質溶液及び高分子電解質溶液の製造方法 |
JP2010-291730 | 2010-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011083842A1 true WO2011083842A1 (ja) | 2011-07-14 |
Family
ID=44305578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050169 WO2011083842A1 (ja) | 2010-01-07 | 2011-01-07 | 燃料電池用触媒層の製造装置、燃料電池用触媒層の製造方法、高分子電解質溶液及び高分子電解質溶液の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8889584B2 (ja) |
DE (1) | DE112011100210T5 (ja) |
WO (1) | WO2011083842A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031060A1 (ja) * | 2011-08-31 | 2013-03-07 | トヨタ自動車株式会社 | 触媒インクの製造方法、および、燃料電池の製造方法、燃料電池 |
WO2014155901A1 (ja) * | 2013-03-28 | 2014-10-02 | トヨタ自動車株式会社 | 燃料電池用の触媒インクの製造方法、燃料電池用の触媒層の製造方法、燃料電池用の膜電極接合体の製造方法 |
JPWO2013031060A1 (ja) * | 2011-08-31 | 2015-03-23 | トヨタ自動車株式会社 | 触媒インクの製造方法、および、燃料電池の製造方法、燃料電池 |
KR101510402B1 (ko) * | 2014-07-24 | 2015-04-13 | 한국에너지기술연구원 | 평관형 세그먼트 고체산화물 연료전지 및 그 제조방법 |
EP3018746A1 (en) | 2014-11-10 | 2016-05-11 | Toyota Jidosha Kabushiki Kaisha | Method of producing dispersion liquid of gelatinous electrolyte |
JP2016115455A (ja) * | 2014-12-12 | 2016-06-23 | トヨタ自動車株式会社 | 触媒インクの製造方法 |
JP2019087306A (ja) * | 2017-11-01 | 2019-06-06 | 凸版印刷株式会社 | 触媒インク及びその製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0272009A (ja) * | 1988-06-20 | 1990-03-12 | Hayssen Mfg Co | 包装体封止装置の制御システムと包装体封止方法の制御方法 |
JPH06260170A (ja) * | 1993-03-01 | 1994-09-16 | Agency Of Ind Science & Technol | 電極触媒組成物及び高分子膜型電極 |
JPH103929A (ja) * | 1996-03-23 | 1998-01-06 | Degussa Ag | 膜燃料電池用のガス拡散電極およびその製造法 |
JP2000285932A (ja) * | 1999-03-31 | 2000-10-13 | Asahi Glass Co Ltd | 固体高分子型燃料電池用電極・膜接合体の製造方法 |
JP2006066309A (ja) * | 2004-08-30 | 2006-03-09 | Gs Yuasa Corporation:Kk | 固体高分子形燃料電池用触媒の製造方法 |
JP2008300160A (ja) * | 2007-05-31 | 2008-12-11 | Hitachi Maxell Ltd | 塗膜の製造方法、燃料電池の製造方法および塗布装置 |
JP2009021234A (ja) * | 2007-06-15 | 2009-01-29 | Sumitomo Chemical Co Ltd | 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池 |
JP2009146889A (ja) * | 2007-11-19 | 2009-07-02 | Sumitomo Chemical Co Ltd | 触媒インク、その製造方法及び保管方法、並びに燃料電池 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06260179A (ja) | 1993-03-01 | 1994-09-16 | Asahi Chem Ind Co Ltd | 燃料電池用膜とガス拡散電極との接合体の製造方法 |
JP2009104905A (ja) | 2007-10-24 | 2009-05-14 | Equos Research Co Ltd | 燃料電池の電極用ペースト、電極及び膜電極接合体並びに燃料電池システムの製造方法。 |
-
2011
- 2011-01-07 US US13/498,190 patent/US8889584B2/en not_active Expired - Fee Related
- 2011-01-07 WO PCT/JP2011/050169 patent/WO2011083842A1/ja active Application Filing
- 2011-01-07 DE DE112011100210T patent/DE112011100210T5/de not_active Ceased
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0272009A (ja) * | 1988-06-20 | 1990-03-12 | Hayssen Mfg Co | 包装体封止装置の制御システムと包装体封止方法の制御方法 |
JPH06260170A (ja) * | 1993-03-01 | 1994-09-16 | Agency Of Ind Science & Technol | 電極触媒組成物及び高分子膜型電極 |
JPH103929A (ja) * | 1996-03-23 | 1998-01-06 | Degussa Ag | 膜燃料電池用のガス拡散電極およびその製造法 |
JP2000285932A (ja) * | 1999-03-31 | 2000-10-13 | Asahi Glass Co Ltd | 固体高分子型燃料電池用電極・膜接合体の製造方法 |
JP2006066309A (ja) * | 2004-08-30 | 2006-03-09 | Gs Yuasa Corporation:Kk | 固体高分子形燃料電池用触媒の製造方法 |
JP2008300160A (ja) * | 2007-05-31 | 2008-12-11 | Hitachi Maxell Ltd | 塗膜の製造方法、燃料電池の製造方法および塗布装置 |
JP2009021234A (ja) * | 2007-06-15 | 2009-01-29 | Sumitomo Chemical Co Ltd | 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池 |
JP2009146889A (ja) * | 2007-11-19 | 2009-07-02 | Sumitomo Chemical Co Ltd | 触媒インク、その製造方法及び保管方法、並びに燃料電池 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9865885B2 (en) | 2011-08-31 | 2018-01-09 | Toyota Jidosha Kabushiki Kaisha | Manufacturing method of catalyst ink, manufacturing method of fuel cell, and fuel cell |
CN103782429A (zh) * | 2011-08-31 | 2014-05-07 | 丰田自动车株式会社 | 催化剂油墨的制造方法、以及燃料电池的制造方法、燃料电池 |
JPWO2013031060A1 (ja) * | 2011-08-31 | 2015-03-23 | トヨタ自動車株式会社 | 触媒インクの製造方法、および、燃料電池の製造方法、燃料電池 |
CN103782429B (zh) * | 2011-08-31 | 2017-04-26 | 丰田自动车株式会社 | 催化剂油墨的制造方法、以及燃料电池的制造方法、燃料电池 |
WO2013031060A1 (ja) * | 2011-08-31 | 2013-03-07 | トヨタ自動車株式会社 | 触媒インクの製造方法、および、燃料電池の製造方法、燃料電池 |
WO2014155901A1 (ja) * | 2013-03-28 | 2014-10-02 | トヨタ自動車株式会社 | 燃料電池用の触媒インクの製造方法、燃料電池用の触媒層の製造方法、燃料電池用の膜電極接合体の製造方法 |
KR101510402B1 (ko) * | 2014-07-24 | 2015-04-13 | 한국에너지기술연구원 | 평관형 세그먼트 고체산화물 연료전지 및 그 제조방법 |
EP3018746A1 (en) | 2014-11-10 | 2016-05-11 | Toyota Jidosha Kabushiki Kaisha | Method of producing dispersion liquid of gelatinous electrolyte |
JP2016091933A (ja) * | 2014-11-10 | 2016-05-23 | トヨタ自動車株式会社 | ゲル状電解質の分散液の製造方法 |
US10122039B2 (en) | 2014-11-10 | 2018-11-06 | Toyota Jidosha Kabushiki Kaisha | Method of producing dispersion liquid of gelatinous electrolyte |
JP2016115455A (ja) * | 2014-12-12 | 2016-06-23 | トヨタ自動車株式会社 | 触媒インクの製造方法 |
JP2019087306A (ja) * | 2017-11-01 | 2019-06-06 | 凸版印刷株式会社 | 触媒インク及びその製造方法 |
JP7020061B2 (ja) | 2017-11-01 | 2022-02-16 | 凸版印刷株式会社 | 触媒インク |
Also Published As
Publication number | Publication date |
---|---|
US20130045864A1 (en) | 2013-02-21 |
DE112011100210T5 (de) | 2012-11-08 |
US8889584B2 (en) | 2014-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9947934B2 (en) | Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst | |
WO2011083842A1 (ja) | 燃料電池用触媒層の製造装置、燃料電池用触媒層の製造方法、高分子電解質溶液及び高分子電解質溶液の製造方法 | |
JP5458503B2 (ja) | 電解質膜−電極接合体の製造方法 | |
CN101682044B (zh) | 固体高分子型燃料电池用高分子电解质膜的制造方法、固体高分子型燃料电池用膜电极组装体及固体高分子型燃料电池 | |
CN1913206A (zh) | 膜电极组件及其制备方法以及包含它的燃料电池系统 | |
WO2011013206A1 (ja) | ダイレクトメタノール型燃料電池およびこれに用いるアノード | |
CA2561942C (en) | Powder catalyst material, method for producing same and electrode for solid polymer fuel cell using same | |
JP2021093259A (ja) | 電極触媒層、膜電極接合体及び固体高分子形燃料電池 | |
JP2010205466A (ja) | 膜電極接合体及びその製造方法並びに固体高分子形燃料電池 | |
JP2008204664A (ja) | 燃料電池用膜電極接合体、およびこれを用いた燃料電池 | |
JP4896393B2 (ja) | 燃料電池の電極用ペーストの製造方法、燃料電池の電極の製造方法、燃料電池の膜電極接合体の製造方法及び燃料電池システムの製造方法 | |
JP4165154B2 (ja) | 燃料電池用電極の製造方法および製造装置 | |
JP2005235706A (ja) | 固体高分子型燃料電池用電極 | |
JP5565305B2 (ja) | 燃料電池用触媒層の製造装置、燃料電池用触媒層の製造方法、高分子電解質溶液及び高分子電解質溶液の製造方法 | |
WO2017154475A1 (ja) | 触媒組成物、高分子電解質膜電極接合体の製造方法、および高分子電解質膜電極接合体 | |
JP2009104905A (ja) | 燃料電池の電極用ペースト、電極及び膜電極接合体並びに燃料電池システムの製造方法。 | |
JP5262156B2 (ja) | 固体高分子型燃料電池およびその製造方法 | |
JP2016081624A (ja) | 燃料電池用電極触媒層の製造方法、および、燃料電池用電極触媒層 | |
JP2009218184A (ja) | 燃料電池用触媒電極、その製造方法、膜電極接合体および固体高分子型燃料電池 | |
JP5458774B2 (ja) | 電解質膜−電極接合体 | |
JP4665536B2 (ja) | 燃料電池用電極触媒層の製造方法及び該電極触媒層を有する燃料電池 | |
JP5505330B2 (ja) | 高分子電解質溶液の製造方法 | |
JP5167858B2 (ja) | 燃料電池 | |
JP6988143B2 (ja) | 燃料電池用触媒層の製造方法および電極触媒混合物 | |
JP2010027295A (ja) | 膜電極接合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180003972.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11731840 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112011100210 Country of ref document: DE Ref document number: 1120111002106 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13498190 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11731840 Country of ref document: EP Kind code of ref document: A1 |