WO2011081166A1 - Structure for disposing device and method for disposing device - Google Patents
Structure for disposing device and method for disposing device Download PDFInfo
- Publication number
- WO2011081166A1 WO2011081166A1 PCT/JP2010/073657 JP2010073657W WO2011081166A1 WO 2011081166 A1 WO2011081166 A1 WO 2011081166A1 JP 2010073657 W JP2010073657 W JP 2010073657W WO 2011081166 A1 WO2011081166 A1 WO 2011081166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- shield
- potential
- temperature part
- thermoelectric cooling
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/38—Cooling arrangements using the Peltier effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02407—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
- H01S5/02415—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
Definitions
- the present invention relates to an installation structure and installation method of a device in a device, and in particular, a structure in which a sensitive device whose performance is easily affected by temperature or electromagnetic field is installed in a device such as a thermoelectric cooler (TEC) and the like. Regarding the method.
- TEC thermoelectric cooler
- Devices such as electronic chips and semiconductor lasers have a problem that their performance is easily affected by temperature. For example, in an electronic chip, thermal fatigue accumulates due to temperature fluctuations and the product life is shortened. For this reason, there is a problem that the size and use environment of the electronic chip are limited. Further, an optical device such as a semiconductor laser generates heat during operation, and has a characteristic that the emission wavelength varies depending on the temperature. Therefore, in order to supply a stable emission wavelength regardless of the use environment, it is necessary to reduce the fluctuation range of the temperature of the optical device. In order to reduce the size of the entire apparatus and increase the processing speed, in such an apparatus, a plurality of devices and electric devices are arranged close to each other. Therefore, active temperature management is necessary to ensure an appropriate temperature environment for the device.
- Sensitive devices in the related art are installed with cooling equipment in contact with the device.
- the cooling device absorbs heat generated from the device by heat conduction.
- such a sensitive device has a problem that its performance is easily affected by an electromagnetic field.
- the device receives radiation of electromagnetic waves from other nearby devices or electrical equipment.
- electric devices that operate with driving power having a large current value, such as cooling devices generate strong electromagnetic waves. For this reason, the device needs to be configured to shield electromagnetic waves.
- Patent Document 1 discloses a multilayer printed circuit board in which a ground solid pattern is formed on an outer layer. The solid pattern absorbs radio interference waves.
- Patent Document 2 discloses a printed wiring board in which a solid pattern made of a metal vapor deposition layer is formed on the outermost layer. The solid pattern shields electromagnetic noise.
- Patent Document 3 discloses a thermoelectric cooling device (TEC) in which a low-temperature surface is thermally fixed to an electronic chip mounted on a substrate and a heat sink is attached to the high-temperature surface. The TEC device controls the temperature of the electronic chip.
- Patent Document 4 discloses an optical device in which an optical element is mounted on a stem via a thermo module (TEC). The thermo module controls the temperature of the optical element.
- TEC thermoelectric cooling device
- the solid pattern of the printed circuit boards described in Patent Document 1 and Patent Document 2 requires grounding. That is, the solid pattern is electrically connected to a conductor such as a housing. For this reason, the configuration is limited. Further, when the solid pattern is not grounded, charges are accumulated in the solid pattern. Sensitive devices placed in close proximity to such a printed circuit board are affected by the variation of the electric field due to such charges. Further, when a sensitive device is installed in the thermoelectric cooling device (TEC) described in Patent Literature 3 and Patent Literature 4, the influence on the device from the drive current applied to the thermoelectric cooling device cannot be ignored. That is, the drive current generally has a current value of 1 to 2 amperes. This current value is much larger than the current value of the signal that controls the sensitive device.
- TEC thermoelectric cooling device
- the present invention has been made in view of the above-described problems of the related art, and relates to a sensitive device installed in a thermoelectric cooling device (TEC) or the like, and to variations in an electromagnetic field due to a driving current of the thermoelectric cooling device. Provided are a device installation structure and a method of installation which are resistant to the above.
- TEC thermoelectric cooling device
- the device installation structure has a device that operates by electric power and a substrate attached to the device, and the substrate is mounted on the surface opposite to the surface to be attached to the device, and is electrically conductive.
- a shield made of a material having a property is provided between the device and the apparatus.
- a device installation method is a device installation method in which a device is installed in an apparatus that operates with electric power, and a step of providing a shield made of a conductive material on a substrate; And mounting a device on a surface of the substrate opposite to the surface on which the device is mounted, and setting a potential of the shield.
- a shield is provided between the device and the thermoelectric cooler to prevent potential fluctuations to the device due to the drive current of the thermoelectric cooler.
- the shield prevents the sensitive device on the substrate from being affected by fluctuations in the electromagnetic field generated by the drive current of the thermoelectric cooler. This improves the resistance of the device to fluctuations in the electromagnetic field.
- thermoelectric cooling apparatus It is sectional drawing of the processing apparatus with which the device which concerns on the 1st Embodiment of this invention was installed. It is sectional drawing which shows the state before attaching the board
- FIG. 1 shows a processing apparatus 1 according to a first embodiment of the present invention.
- the processing apparatus 1 includes a thermoelectric cooler (TEC) 2, a substrate 11 attached to the thermoelectric cooler 2, and a device 12 mounted on the substrate 11.
- FIG. 2 shows a state before the substrate 11 on which the device 12 is mounted is attached to the thermoelectric cooling device 2.
- TEC thermoelectric cooling device
- TEC thermoelectric cooling device
- the thermoelectric element 2 utilizes the Peltier effect that converts electric energy into heat energy.
- the Peltier effect is a phenomenon in which two different substances are joined at two locations to form a ring, and when a current is passed through the ring, heat is absorbed at one joint and released at the other joint.
- Thermoelectric elements utilize the temperature difference between these joints for cooling according to this phenomenon. 1 and 2, the upper end of the thermoelectric element 2 in the drawings is the low temperature part 4 and the lower end is the high temperature part 5.
- materials for the thermoelectric element 3 but here, for example, a combination of bismuth and tellurium (BiTe) is used.
- thermoelectric cooling device 2 the surfaces of the low temperature portion 4 and the high temperature portion 5 of the thermoelectric cooling device 2 are metallized with metal thin film layers 6 and 7 in order to improve the adhesion.
- a substrate 11 is attached to the low temperature portion 4 of the thermoelectric cooling device 2 via a conductive adhesive layer 10.
- a sensitive device 12 that is easily affected by an electromagnetic field is mounted on the upper surface of the substrate 11.
- a shield 13 is provided between the device 12 and the thermoelectric cooling device 2 on the substrate 11. The shield 13 shields electromagnetic waves from the thermoelectric cooling device 2. As a result, generation of an induced current in the device 12 due to the drive current of the thermoelectric cooling device 2 is suppressed.
- the shield 13 is provided on the surface of the substrate 11 on the thermoelectric cooling device 2 side, that is, on the bottom surface of the substrate 11 in FIGS.
- the shield 13 is made of a conductive material.
- the shield 13 is a ground (GND) solid pattern or a solid pattern having a potential that is relatively free from potential variation with respect to the sensitive signal portion of the device 12.
- the GND solid pattern is connected to the ground side.
- a solid pattern having a potential relatively free from potential fluctuation with respect to the sensitive signal portion is electrically connected to a signal portion (not shown) of the device 12 through a through hole (not shown) formed in the substrate 11, for example. .
- the potential of the shield 13 is set.
- a sensitive signal in the device 12 is transmitted by the shield 13 without being affected by noise included in the electromagnetic field due to the drive current of the thermoelectric cooler 2.
- the solid pattern forming the shield 13 may be formed in a vacant region in the substrate 11 and in the entire region that does not affect the wiring, or may be formed in a part of the region to protect the device 12. good.
- step S3 the surfaces of the low temperature part 4 and the high temperature part 5 of the thermoelectric cooling device 2 are metallized to form the metal thin film layers 6 and 7 (step S3).
- a conductive adhesive is applied to the surface of the low temperature part 4 of the thermoelectric cooling device 2 (step S4).
- a normal insulating adhesive may be applied as described below.
- step S5 the substrate 11 on which the device 12 is mounted and the thermoelectric cooling device 2 so that the shield 13 formed on the substrate 11 is connected to the surface of the low temperature portion 4 of the thermoelectric cooling device 2 through the conductive adhesive layer 10. Adhere (step S5).
- the shield 13 is grounded or electrically connected to a signal portion (not shown) of the device 12 through a through hole (not shown) formed in the substrate 11 to set the potential of the shield 13 (step S6).
- the processing apparatus 1 shown in FIG. 1 is provided.
- the substrate 11 on which the sensitive device 12 that is easily affected by the electromagnetic field is provided on the upper surface is installed on the upper surface of the thermoelectric cooling device 2.
- a shield 13 is provided on the lower surface of the substrate 11 to suppress potential fluctuations in the device 12 due to the drive current of the thermoelectric cooling device 2.
- the shield 13 suppresses the influence on the sensitive device 12 on the substrate 11 from the fluctuation of the electromagnetic field due to the driving current of the thermoelectric cooling device 2.
- the conductive adhesive is used for the connection between the substrate 11 and the thermoelectric cooling device 2, but the present invention is not limited to this. If it is not necessary to conduct through the conductive adhesive layer 10, a normal adhesive having insulating properties may be used.
- the surface of the low temperature part 4 and the high temperature part 5 of the thermoelectric cooling device 2 was metallized by the metal thin film layers 6 and 7, it is not limited to this. The surface of the low temperature part 4 and the high temperature part 5 does not need to be surface-treated. Further, only the low temperature surface 4 to which the substrate 11 is bonded may be metallized by the metal thin film layer 6.
- FIG. 4 shows a state before the substrate 31 on which the device 12 is mounted is attached to the thermoelectric cooling device 2.
- FIG. 5 shows a state where the substrate shown in FIG. 4 is attached to the thermoelectric cooling device 2. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted.
- the shield 33 is disposed on the inner layer of the substrate 11.
- the shield 33 is formed inside the substrate 31 as a solid pattern having a potential relatively free from a potential variation relative to the GND solid pattern or the sensitive signal portion of the device 12.
- the shield 33 is made of a conductive material. This solid pattern may be formed in the vacant region in the substrate 31 and in the entire region that does not affect the wiring, or may be formed in a part of the region in order to protect the device 12.
- the substrate 31 shown in FIG. 4 is attached to the thermoelectric cooling device 2 via the non-conductive adhesive layer 30 to obtain the processing device 21 shown in FIG.
- the sensitive signal in the device 12 positioned on the upper surface of the substrate 31 is transmitted by the shield 33 without being affected by noise due to the driving current of the thermoelectric cooling device 2.
- the substrate 31 on which the sensitive device 12 that is easily affected by the electromagnetic field is provided on the upper surface is installed on the upper surface of the thermoelectric cooling device 2.
- a shield 33 is provided in the inner layer of the substrate 31 to suppress potential fluctuations in the device 12 due to the drive current of the thermoelectric cooling device 2.
- the shield 33 suppresses the influence on the sensitive device 12 on the substrate 31 from the fluctuation of the electromagnetic field due to the driving current of the thermoelectric cooling device 2. Thereby, the tolerance with respect to the fluctuation
- the surfaces of the low temperature part 4 and the high temperature part 5 of the thermoelectric cooling device 2 are not metallized by the metal thin film layers 6 and 7 as shown in FIG. .
- the surfaces of the low temperature part 4 and the high temperature part 5 of the thermoelectric cooling device 2 may be metallized in the same manner as in the first embodiment, and the metal thin film layers 6 and 7 may be provided on the surfaces.
- an electromagnetic field is shielded at a position farther from the thermoelectric cooling device 2 than in the first embodiment by providing a shield 33 in the inner layer of the substrate 31.
- the electromagnetic field is far from the source, the strength of the electromagnetic field in the shield 33 is reduced, and the effect of suppressing the electromagnetic field by the shield 33 is improved. Moreover, since it is not restrict
- a non-conductive adhesive is used to fix the substrate 31 to the low temperature part 4 of the thermoelectric cooling device 2, but the present invention is not limited to this. As in the first embodiment, a conductive adhesive may be used.
- the shield 33 that suppresses potential fluctuations in the device 12 due to an external electromagnetic field is provided in the inner layer of the substrate 11.
- the shield is provided on the lower surface of the substrate 31 as in the first embodiment. May be added. This effectively shields the external electromagnetic field.
- the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2009-297179 for which it applied on December 28, 2009, and takes in those the indications of each individually.
- the present invention is suitable for a structure and method for installing a device such as a low noise sensor or a low noise amplifier circuit for detecting a weak signal in a device that operates with a drive current having a large current value such as a thermoelectric cooling device (TEC). Applies to
- Processing Equipment Thermoelectric Cooling Equipment (TEC) DESCRIPTION OF SYMBOLS 3 Thermoelectric element 4 Low temperature part 5 High temperature part 6 Metal thin film layer 7 Metal thin film layer 10 Conductive adhesive layer 11 Substrate 12 Device 13 Shield 21 Processing apparatus 30 Nonconductive adhesive layer 31 Substrate 33 Shield
Landscapes
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Semiconductor Lasers (AREA)
Abstract
Disclosed is a structure for disposing a device, which makes it possible to dispose sensitive devices on apparatuses, such as a thermoelectric cooler (TEC), and which has resistance characteristics against an electromagnetic field change due to the drive current of the thermoelectric cooler.
The structure has the apparatus that operates with electrical power, and a substrate attached to the apparatus. The device is mounted on the substrate surface, which is on the reverse side of the surface attached to the apparatus, and a shield composed of a conductive material is provided between the device and the apparatus.
Description
本発明はデバイスの機器への設置構造及び設置方法に係り、特に性能が温度或は電磁場の影響を受けやすいセンシティブなデバイスを熱電気冷却装置(Thermoelectric Cooler:TEC)等の機器に設置する構造及び方法に関する。
The present invention relates to an installation structure and installation method of a device in a device, and in particular, a structure in which a sensitive device whose performance is easily affected by temperature or electromagnetic field is installed in a device such as a thermoelectric cooler (TEC) and the like. Regarding the method.
電子チップや半導体レーザなどのデバイスはその性能が温度の影響を受けやすいという問題点を有する。例えば電子チップにおいては温度の変動により熱疲労が蓄積し製品の寿命が短縮する。このため電子チップのサイズと使用環境が制限されるという問題があった。また、半導体レーザなどの光デバイスは動作時に発熱する一方、温度により発光波長が変動するという特性がある。このため使用環境によらずに安定した発光波長を供給するためには光デバイスの温度の変動幅を低減する必要があった。
装置全体の小型化および処理の高速化のためにこのような装置においては複数のデバイスや電気機器が近接して配設される。このためデバイスの適正な温度環境を確保するためには積極的な温度管理が必要である。関連技術においてセンシティブなデバイスには冷却機器が該デバイスに接触するように設置される。該冷却機器はデバイスから発生した熱を熱伝導により吸収する。
一方、このようなセンシティブなデバイスにはその性能が電磁場の影響を受けやすいという問題点がある。近接して複数のデバイスや電気機器が配設される装置においては該デバイスは近接する他のデバイス或は電気機器からの電磁波の放射を受ける。特に冷却機器などの大きな電流値を有する駆動電力により動作する電気機器は発生する電磁波が強い。このため該デバイスには電磁波を遮蔽する構成が必要である。
特許文献1は外層にグランド用のベタパタンを形成した多層プリント基板を開示する。該ベタパタンは電波障害波を吸収する。
特許文献2は最外層に金属蒸着層からなるベタパタンを形成したプリント配線板を開示する。該ベタパタンは電磁ノイズを遮蔽する。
特許文献3は低温面が基板に搭載された電子チップに熱的に固定され高温面にヒートシンクが取り付けられた熱電気冷却装置(TEC)を開示する。TEC装置は電子チップの温度を制御する。
特許文献4は光素子をサーモモジュール(TEC)を介してステムに実装した光デバイスを開示する。サーモモジュールは光素子の温度を制御する。 Devices such as electronic chips and semiconductor lasers have a problem that their performance is easily affected by temperature. For example, in an electronic chip, thermal fatigue accumulates due to temperature fluctuations and the product life is shortened. For this reason, there is a problem that the size and use environment of the electronic chip are limited. Further, an optical device such as a semiconductor laser generates heat during operation, and has a characteristic that the emission wavelength varies depending on the temperature. Therefore, in order to supply a stable emission wavelength regardless of the use environment, it is necessary to reduce the fluctuation range of the temperature of the optical device.
In order to reduce the size of the entire apparatus and increase the processing speed, in such an apparatus, a plurality of devices and electric devices are arranged close to each other. Therefore, active temperature management is necessary to ensure an appropriate temperature environment for the device. Sensitive devices in the related art are installed with cooling equipment in contact with the device. The cooling device absorbs heat generated from the device by heat conduction.
On the other hand, such a sensitive device has a problem that its performance is easily affected by an electromagnetic field. In an apparatus in which a plurality of devices and electrical equipment are disposed in close proximity, the device receives radiation of electromagnetic waves from other nearby devices or electrical equipment. In particular, electric devices that operate with driving power having a large current value, such as cooling devices, generate strong electromagnetic waves. For this reason, the device needs to be configured to shield electromagnetic waves.
Patent Document 1 discloses a multilayer printed circuit board in which a ground solid pattern is formed on an outer layer. The solid pattern absorbs radio interference waves.
Patent Document 2 discloses a printed wiring board in which a solid pattern made of a metal vapor deposition layer is formed on the outermost layer. The solid pattern shields electromagnetic noise.
Patent Document 3 discloses a thermoelectric cooling device (TEC) in which a low-temperature surface is thermally fixed to an electronic chip mounted on a substrate and a heat sink is attached to the high-temperature surface. The TEC device controls the temperature of the electronic chip.
Patent Document 4 discloses an optical device in which an optical element is mounted on a stem via a thermo module (TEC). The thermo module controls the temperature of the optical element.
装置全体の小型化および処理の高速化のためにこのような装置においては複数のデバイスや電気機器が近接して配設される。このためデバイスの適正な温度環境を確保するためには積極的な温度管理が必要である。関連技術においてセンシティブなデバイスには冷却機器が該デバイスに接触するように設置される。該冷却機器はデバイスから発生した熱を熱伝導により吸収する。
一方、このようなセンシティブなデバイスにはその性能が電磁場の影響を受けやすいという問題点がある。近接して複数のデバイスや電気機器が配設される装置においては該デバイスは近接する他のデバイス或は電気機器からの電磁波の放射を受ける。特に冷却機器などの大きな電流値を有する駆動電力により動作する電気機器は発生する電磁波が強い。このため該デバイスには電磁波を遮蔽する構成が必要である。
特許文献1は外層にグランド用のベタパタンを形成した多層プリント基板を開示する。該ベタパタンは電波障害波を吸収する。
特許文献2は最外層に金属蒸着層からなるベタパタンを形成したプリント配線板を開示する。該ベタパタンは電磁ノイズを遮蔽する。
特許文献3は低温面が基板に搭載された電子チップに熱的に固定され高温面にヒートシンクが取り付けられた熱電気冷却装置(TEC)を開示する。TEC装置は電子チップの温度を制御する。
特許文献4は光素子をサーモモジュール(TEC)を介してステムに実装した光デバイスを開示する。サーモモジュールは光素子の温度を制御する。 Devices such as electronic chips and semiconductor lasers have a problem that their performance is easily affected by temperature. For example, in an electronic chip, thermal fatigue accumulates due to temperature fluctuations and the product life is shortened. For this reason, there is a problem that the size and use environment of the electronic chip are limited. Further, an optical device such as a semiconductor laser generates heat during operation, and has a characteristic that the emission wavelength varies depending on the temperature. Therefore, in order to supply a stable emission wavelength regardless of the use environment, it is necessary to reduce the fluctuation range of the temperature of the optical device.
In order to reduce the size of the entire apparatus and increase the processing speed, in such an apparatus, a plurality of devices and electric devices are arranged close to each other. Therefore, active temperature management is necessary to ensure an appropriate temperature environment for the device. Sensitive devices in the related art are installed with cooling equipment in contact with the device. The cooling device absorbs heat generated from the device by heat conduction.
On the other hand, such a sensitive device has a problem that its performance is easily affected by an electromagnetic field. In an apparatus in which a plurality of devices and electrical equipment are disposed in close proximity, the device receives radiation of electromagnetic waves from other nearby devices or electrical equipment. In particular, electric devices that operate with driving power having a large current value, such as cooling devices, generate strong electromagnetic waves. For this reason, the device needs to be configured to shield electromagnetic waves.
しかしながら特許文献1及び特許文献2に記載のプリント基板が有するベタパタンは接地を必要とする。すなわち該ベタパタンは筐体などの導体に電気的に接続される。このため構成様態が限定される。また、ベタパタンが接地されない場合は電荷がベタパタンに蓄積される。このようなプリント基板に近接して配置されるセンシティブなデバイスはこのような電荷による電場の変動の影響を受ける。
また、特許文献3及び特許文献4に記載される熱電気冷却装置(TEC)にセンシティブなデバイスを設置する場合、該熱電気冷却装置に印加される駆動電流からのデバイスへの影響が無視できない。すなわち該駆動電流は一般に1乃至2アンペアの電流値を有する。この電流値はセンシティブなデバイスを制御する信号の電流値と比較すると格段に大きい。従って該駆動電流にノイズが重畳されると該ノイズは電磁波を介して該デバイスの制御信号に混入し該デバイスの誤動作を惹起するおそれがある。
本発明は上記の関連する技術の問題点に鑑みてなされたものであって熱電気冷却装置(TEC)等に設置されるセンシティブなデバイスに係り該熱電気冷却装置の駆動電流による電磁場の変動に対して耐性を有するデバイスの設置構造および設置の方法を提供する。 However, the solid pattern of the printed circuit boards described inPatent Document 1 and Patent Document 2 requires grounding. That is, the solid pattern is electrically connected to a conductor such as a housing. For this reason, the configuration is limited. Further, when the solid pattern is not grounded, charges are accumulated in the solid pattern. Sensitive devices placed in close proximity to such a printed circuit board are affected by the variation of the electric field due to such charges.
Further, when a sensitive device is installed in the thermoelectric cooling device (TEC) described inPatent Literature 3 and Patent Literature 4, the influence on the device from the drive current applied to the thermoelectric cooling device cannot be ignored. That is, the drive current generally has a current value of 1 to 2 amperes. This current value is much larger than the current value of the signal that controls the sensitive device. Therefore, when noise is superimposed on the drive current, the noise may be mixed into the control signal of the device via electromagnetic waves and cause malfunction of the device.
The present invention has been made in view of the above-described problems of the related art, and relates to a sensitive device installed in a thermoelectric cooling device (TEC) or the like, and to variations in an electromagnetic field due to a driving current of the thermoelectric cooling device. Provided are a device installation structure and a method of installation which are resistant to the above.
また、特許文献3及び特許文献4に記載される熱電気冷却装置(TEC)にセンシティブなデバイスを設置する場合、該熱電気冷却装置に印加される駆動電流からのデバイスへの影響が無視できない。すなわち該駆動電流は一般に1乃至2アンペアの電流値を有する。この電流値はセンシティブなデバイスを制御する信号の電流値と比較すると格段に大きい。従って該駆動電流にノイズが重畳されると該ノイズは電磁波を介して該デバイスの制御信号に混入し該デバイスの誤動作を惹起するおそれがある。
本発明は上記の関連する技術の問題点に鑑みてなされたものであって熱電気冷却装置(TEC)等に設置されるセンシティブなデバイスに係り該熱電気冷却装置の駆動電流による電磁場の変動に対して耐性を有するデバイスの設置構造および設置の方法を提供する。 However, the solid pattern of the printed circuit boards described in
Further, when a sensitive device is installed in the thermoelectric cooling device (TEC) described in
The present invention has been made in view of the above-described problems of the related art, and relates to a sensitive device installed in a thermoelectric cooling device (TEC) or the like, and to variations in an electromagnetic field due to a driving current of the thermoelectric cooling device. Provided are a device installation structure and a method of installation which are resistant to the above.
上記の課題を解決するために本発明によるデバイスの設置構造は電力により動作する装置と装置に取り付けられる基板を有し、基板には装置に取り付けられる面の反対側の面にデバイスが搭載され導電性を有する材質からできるシールドがデバイスと装置との間に設けられることを特徴とする。
上記課題を解決するために本発明によるデバイスの設置方法はデバイスを電力により動作する装置に設置するデバイス設置方法であって基板に導電性を有する材質からできるシールドを設けるステップと、デバイスを基板に搭載するステップと、基板のデバイスが搭載された面の反対側の面に装置を取り付けるステップと、シールドの電位を設定するステップを有することを特徴とする。 In order to solve the above problems, the device installation structure according to the present invention has a device that operates by electric power and a substrate attached to the device, and the substrate is mounted on the surface opposite to the surface to be attached to the device, and is electrically conductive. A shield made of a material having a property is provided between the device and the apparatus.
In order to solve the above problems, a device installation method according to the present invention is a device installation method in which a device is installed in an apparatus that operates with electric power, and a step of providing a shield made of a conductive material on a substrate; And mounting a device on a surface of the substrate opposite to the surface on which the device is mounted, and setting a potential of the shield.
上記課題を解決するために本発明によるデバイスの設置方法はデバイスを電力により動作する装置に設置するデバイス設置方法であって基板に導電性を有する材質からできるシールドを設けるステップと、デバイスを基板に搭載するステップと、基板のデバイスが搭載された面の反対側の面に装置を取り付けるステップと、シールドの電位を設定するステップを有することを特徴とする。 In order to solve the above problems, the device installation structure according to the present invention has a device that operates by electric power and a substrate attached to the device, and the substrate is mounted on the surface opposite to the surface to be attached to the device, and is electrically conductive. A shield made of a material having a property is provided between the device and the apparatus.
In order to solve the above problems, a device installation method according to the present invention is a device installation method in which a device is installed in an apparatus that operates with electric power, and a step of providing a shield made of a conductive material on a substrate; And mounting a device on a surface of the substrate opposite to the surface on which the device is mounted, and setting a potential of the shield.
本発明によればデバイスと熱電気冷却装置との間に該熱電気冷却装置の駆動電流によるデバイスへの電位変動を防止するシールドを設けた。該シールドにより該熱電気冷却装置の駆動電流により発生する電磁場の変動から基板上のセンシティブなデバイスへの影響が防止される。これによりデバイスの電磁場の変動に対する耐性が向上する。
According to the present invention, a shield is provided between the device and the thermoelectric cooler to prevent potential fluctuations to the device due to the drive current of the thermoelectric cooler. The shield prevents the sensitive device on the substrate from being affected by fluctuations in the electromagnetic field generated by the drive current of the thermoelectric cooler. This improves the resistance of the device to fluctuations in the electromagnetic field.
[第1の実施形態]
本発明の第1の実施形態に係るデバイス設置構造について図1及び図2を参照して説明する。
図1は本発明の第1の実施形態に係る処理装置1を示す。処理装置1は熱電気冷却装置(TEC)2、該熱電気冷却装置2に取り付けられる基板11、基板11に実装されるデバイス12を有する。
図2はデバイス12が実装された基板11が熱電気冷却装置2に取り付けられる前の状態を示す。
図1及び図2において熱電気冷却装置(TEC)1は熱電素子2、低温部3及び高温部4を含む。熱電素子2は電気エネルギを熱エネルギに変換するペルチェ効果を利用する。ペルチェ効果とは2つの異なる物質を2箇所で接合して環状にし該環に電流を流すと一方の接合部で吸熱し他方の接合部で放熱する現象である。熱電素子はこの現象に従ってこれらの接合部の間で生じる温度差を冷却に利用する。図1及び図2において図面中の熱電素子2の上端を低温部4とし下端を高温部5とする。熱電素子3の材質として金属や半導体を含むさまざまな材料の組み合わせが知られているがここでは例えばビスマスとテルルの組み合わせ(BiTe)が用いられる。
また、熱電気冷却装置2の低温部4及び高温部5の表面は接着性向上を図るために金属薄膜層6及び7によりメタライズされている。
また、熱電気冷却装置2の低温部4には導電性接着層10を介して基板11が取り付けられる。基板11の上面に電磁場の影響を受けやすいセンシティブなデバイス12が実装される。
基板11におけるデバイス12と熱電気冷却装置2との間にシールド13が設けられる。該シールド13は該熱電気冷却装置2からの電磁波を遮蔽する。これにより該熱電気冷却装置2の駆動電流によるデバイス12での誘導電流の発生を抑制する。
本実施形態においてシールド13は基板11の熱電気冷却装置2の側の面すなわち図1及び図2において基板11の底面に設けられる。シールド13は導電性を有する材質で作られる。シールド13はグランド(GND)ベタパタン又はデバイス12のセンシティブな信号部に対して相対的に電位変動のない電位を有するベタパタンである。GNDベタパタンは接地側に接続される。また、センシティブな信号部に対して相対的に電位変動のない電位を有するベタパタンは例えば基板11に形成される図示しないスルーホールを介して該デバイス12の図示しない信号部に電気的に接続される。以上のようにシールド13の電位が設定される。シールド13によりデバイス12内のセンシティブな信号は熱電気冷却装置2の駆動電流による電磁場に含まれるノイズの影響を受けずに伝送される。
なお、シールド13を形成するベタパタンは基板11内の空いている領域でかつ配線に影響を与えない全領域に形成されても良いしデバイス12を保護するために一部の領域に形成されても良い。
次に、図2及び図3を参照して本発明の第1の実施形態に係るデバイスの設置方法を説明する。
まず、基板11の一つの面にシールド13を形成する(ステップS1)。
次に、基板11のシールド13が形成された面の反対側の面にデバイス12を実装する(ステップS2)。
次に、熱電気冷却装置2の低温部4と高温部5のそれぞれの表面をメタライズして金属薄膜層6及び7を形成する(ステップS3)。なお、この工程は下記に述べるように省略してもよい。熱電気冷却装置2の低温部4の表面に導電性接着剤を塗布する(ステップS4)。なお、この工程では下記に述べるように通常の絶縁性の接着剤を塗布してもよい。
次に、基板11に形成されたシールド13が導電性接着層10を介して熱電気冷却装置2の低温部4の表面に接続されるようデバイス12を実装した基板11と熱電気冷却装置2を接着する(ステップS5)。
最後に、シールド13を接地する或は基板11に形成される図示しないスルーホールを介してデバイス12の図示しない信号部と電気的に接続してシールド13の電位を設定する(ステップS6)。
以上により図1に示される処理装置1が提供される。
以上説明したように第1の実施形態に示されるデバイス設置構造によれば電磁場の影響を受けやすいセンシティブなデバイス12が上面に設けられた基板11が熱電気冷却装置2の上面に設置される。該基板11の下面に該熱電気冷却装置2の駆動電流によるデバイス12での電位変動を抑制するシールド13が設けられる。該シールド13によって該熱電気冷却装置2の駆動電流による電磁場の変動からの基板11上のセンシティブなデバイス12への影響が抑制される。これにより該デバイス12の電磁場の変動に対する耐性が向上する。
なお、本実施形態では基板11と熱電気冷却装置2との接続に導電性接着剤を用いたがこれに限定されない。導電性接着層10を介して導通する必要がなければ絶縁性を有する通常の接着剤が用いられても良い。また、本実施形態では熱電気冷却装置2の低温部4及び高温部5の表面が金属薄膜層6及び7によりメタライズされたがこれに限定されない。低温部4及び高温部5の表面は表面処理されていなくても良い。また、基板11が接着される低温面4のみが金属薄膜層6によりメタライズされても良い。
[第2の実施形態]
本発明の第2の実施形態に係るデバイス設置構造について図4及び図5を参照して説明する。本発明の第2の実施形態は基板31に設けられるシールド33の位置について上記の第1の実施形態と構成を異にする。
図4はデバイス12が実装された基板31が熱電気冷却装置2に取り付けられる前の状態を示す。図5は図4に示される基板を熱電気冷却装置2に取り付けた状態を示す。この他の構成は第1の実施形態と同一であるので詳細な説明を省略する。
図4においてシールド33は基板11の内層に配置される。すなわちシールド33は基板31の内部においてGNDベタパタン又はデバイス12のセンシティブな信号部に対して相対的に電位変動のない電位を有するベタパタンとして形成される。シールド33は導電性を有する材質で作られる。このベタパタンは基板31内の空いている領域でかつ配線に影響を与えない全領域に形成されても良いしデバイス12を保護するために一部の領域に形成されても良い。
第1の実施形態と同様にして図4に示される基板31は非伝導性の接着層30を介して熱電気冷却装置2に取り付けられ図5に示される処理装置21が得られる。
図5において該シールド33により基板31の上面に位置するデバイス12内のセンシティブな信号は熱電気冷却装置2の駆動電流によるノイズによる影響を受けずに伝送される。
以上詳細に説明したように第2の実施形態に係るデバイス設置構造によれば電磁場の影響を受けやすいセンシティブなデバイス12が上面に設けられた基板31が熱電気冷却装置2の上面に設置される。該基板31の内層に該熱電気冷却装置2の駆動電流によるデバイス12での電位変動を抑制するシールド33が設けられる。該シールド33によって該熱電気冷却装置2の駆動電流による電磁場の変動からの基板31上のセンシティブなデバイス12への影響が抑制される。これにより該デバイス12の電磁場の変動に対する耐性が向上する。
なお、第2の実施形態に係るデバイス設置構造では熱電気冷却装置2の低温部4及び高温部5の表面は図1に示されるような金属薄膜層6及び7によりメタライズされないがこれに限定されない。接着性の向上のために第1の実施形態1と同様に熱電気冷却装置2の低温部4及び高温部5の表面をメタライズして該表面に金属薄膜層6及び7を設けても良い。
第2の実施形態ではシールド33を基板31の内層に設けることにより第1の実施形態に比べて熱電気冷却装置2から遠い位置で電磁場を遮蔽する。第1の実施形態に比べて電磁場の発生源から遠いのでシールド33における電磁場の強度は小さくなりシールド33による電磁場の抑制の効果が向上する。
また、基板31の表面に設けられるこの他の部材やパタンに制約されないのでシールド33の配置の自由度が高くなる。
本実施形態に係るデバイス設置構造では基板31を熱電気冷却装置2の低温部4に固定するために非導電性の接着剤が使用されたがこれに限定されない。第1の実施形態と同様に導電性接着剤が使用されても良い。
また、本実施形態に係るデバイス設置構造では基板11の内層に外部の電磁場によるデバイス12での電位変動を抑制するシールド33を設けたが、第1の実施形態のように基板31の下面にシールドを追加しても良い。これにより効果的に外部の電磁場が遮蔽される。
以上、実施形態を参照して本発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得るさまざまな変更をすることができる。
この出願は2009年12月28日に出願された日本出願特願2009−297179を基礎とする優先権を主張し、その開示の全てを個々に取り込む。 [First Embodiment]
A device installation structure according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows aprocessing apparatus 1 according to a first embodiment of the present invention. The processing apparatus 1 includes a thermoelectric cooler (TEC) 2, a substrate 11 attached to the thermoelectric cooler 2, and a device 12 mounted on the substrate 11.
FIG. 2 shows a state before thesubstrate 11 on which the device 12 is mounted is attached to the thermoelectric cooling device 2.
1 and 2, a thermoelectric cooling device (TEC) 1 includes athermoelectric element 2, a low temperature part 3, and a high temperature part 4. The thermoelectric element 2 utilizes the Peltier effect that converts electric energy into heat energy. The Peltier effect is a phenomenon in which two different substances are joined at two locations to form a ring, and when a current is passed through the ring, heat is absorbed at one joint and released at the other joint. Thermoelectric elements utilize the temperature difference between these joints for cooling according to this phenomenon. 1 and 2, the upper end of the thermoelectric element 2 in the drawings is the low temperature part 4 and the lower end is the high temperature part 5. Various combinations of materials including metals and semiconductors are known as materials for the thermoelectric element 3, but here, for example, a combination of bismuth and tellurium (BiTe) is used.
Further, the surfaces of thelow temperature portion 4 and the high temperature portion 5 of the thermoelectric cooling device 2 are metallized with metal thin film layers 6 and 7 in order to improve the adhesion.
Asubstrate 11 is attached to the low temperature portion 4 of the thermoelectric cooling device 2 via a conductive adhesive layer 10. A sensitive device 12 that is easily affected by an electromagnetic field is mounted on the upper surface of the substrate 11.
Ashield 13 is provided between the device 12 and the thermoelectric cooling device 2 on the substrate 11. The shield 13 shields electromagnetic waves from the thermoelectric cooling device 2. As a result, generation of an induced current in the device 12 due to the drive current of the thermoelectric cooling device 2 is suppressed.
In the present embodiment, theshield 13 is provided on the surface of the substrate 11 on the thermoelectric cooling device 2 side, that is, on the bottom surface of the substrate 11 in FIGS. The shield 13 is made of a conductive material. The shield 13 is a ground (GND) solid pattern or a solid pattern having a potential that is relatively free from potential variation with respect to the sensitive signal portion of the device 12. The GND solid pattern is connected to the ground side. Further, a solid pattern having a potential relatively free from potential fluctuation with respect to the sensitive signal portion is electrically connected to a signal portion (not shown) of the device 12 through a through hole (not shown) formed in the substrate 11, for example. . As described above, the potential of the shield 13 is set. A sensitive signal in the device 12 is transmitted by the shield 13 without being affected by noise included in the electromagnetic field due to the drive current of the thermoelectric cooler 2.
It should be noted that the solid pattern forming theshield 13 may be formed in a vacant region in the substrate 11 and in the entire region that does not affect the wiring, or may be formed in a part of the region to protect the device 12. good.
Next, a device installation method according to the first embodiment of the present invention will be described with reference to FIGS.
First, theshield 13 is formed on one surface of the substrate 11 (step S1).
Next, thedevice 12 is mounted on the surface of the substrate 11 opposite to the surface on which the shield 13 is formed (step S2).
Next, the surfaces of thelow temperature part 4 and the high temperature part 5 of the thermoelectric cooling device 2 are metallized to form the metal thin film layers 6 and 7 (step S3). This step may be omitted as described below. A conductive adhesive is applied to the surface of the low temperature part 4 of the thermoelectric cooling device 2 (step S4). In this step, a normal insulating adhesive may be applied as described below.
Next, thesubstrate 11 on which the device 12 is mounted and the thermoelectric cooling device 2 so that the shield 13 formed on the substrate 11 is connected to the surface of the low temperature portion 4 of the thermoelectric cooling device 2 through the conductive adhesive layer 10. Adhere (step S5).
Finally, theshield 13 is grounded or electrically connected to a signal portion (not shown) of the device 12 through a through hole (not shown) formed in the substrate 11 to set the potential of the shield 13 (step S6).
Thus, theprocessing apparatus 1 shown in FIG. 1 is provided.
As described above, according to the device installation structure shown in the first embodiment, thesubstrate 11 on which the sensitive device 12 that is easily affected by the electromagnetic field is provided on the upper surface is installed on the upper surface of the thermoelectric cooling device 2. A shield 13 is provided on the lower surface of the substrate 11 to suppress potential fluctuations in the device 12 due to the drive current of the thermoelectric cooling device 2. The shield 13 suppresses the influence on the sensitive device 12 on the substrate 11 from the fluctuation of the electromagnetic field due to the driving current of the thermoelectric cooling device 2. Thereby, the tolerance with respect to the fluctuation | variation of the electromagnetic field of this device 12 improves.
In this embodiment, the conductive adhesive is used for the connection between thesubstrate 11 and the thermoelectric cooling device 2, but the present invention is not limited to this. If it is not necessary to conduct through the conductive adhesive layer 10, a normal adhesive having insulating properties may be used. Moreover, in this embodiment, although the surface of the low temperature part 4 and the high temperature part 5 of the thermoelectric cooling device 2 was metallized by the metal thin film layers 6 and 7, it is not limited to this. The surface of the low temperature part 4 and the high temperature part 5 does not need to be surface-treated. Further, only the low temperature surface 4 to which the substrate 11 is bonded may be metallized by the metal thin film layer 6.
[Second Embodiment]
A device installation structure according to a second embodiment of the present invention will be described with reference to FIGS. The second embodiment of the present invention differs from the first embodiment in terms of the position of theshield 33 provided on the substrate 31.
FIG. 4 shows a state before thesubstrate 31 on which the device 12 is mounted is attached to the thermoelectric cooling device 2. FIG. 5 shows a state where the substrate shown in FIG. 4 is attached to the thermoelectric cooling device 2. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted.
In FIG. 4, theshield 33 is disposed on the inner layer of the substrate 11. That is, the shield 33 is formed inside the substrate 31 as a solid pattern having a potential relatively free from a potential variation relative to the GND solid pattern or the sensitive signal portion of the device 12. The shield 33 is made of a conductive material. This solid pattern may be formed in the vacant region in the substrate 31 and in the entire region that does not affect the wiring, or may be formed in a part of the region in order to protect the device 12.
Similar to the first embodiment, thesubstrate 31 shown in FIG. 4 is attached to the thermoelectric cooling device 2 via the non-conductive adhesive layer 30 to obtain the processing device 21 shown in FIG.
In FIG. 5, the sensitive signal in thedevice 12 positioned on the upper surface of the substrate 31 is transmitted by the shield 33 without being affected by noise due to the driving current of the thermoelectric cooling device 2.
As described in detail above, according to the device installation structure according to the second embodiment, thesubstrate 31 on which the sensitive device 12 that is easily affected by the electromagnetic field is provided on the upper surface is installed on the upper surface of the thermoelectric cooling device 2. . A shield 33 is provided in the inner layer of the substrate 31 to suppress potential fluctuations in the device 12 due to the drive current of the thermoelectric cooling device 2. The shield 33 suppresses the influence on the sensitive device 12 on the substrate 31 from the fluctuation of the electromagnetic field due to the driving current of the thermoelectric cooling device 2. Thereby, the tolerance with respect to the fluctuation | variation of the electromagnetic field of this device 12 improves.
In the device installation structure according to the second embodiment, the surfaces of thelow temperature part 4 and the high temperature part 5 of the thermoelectric cooling device 2 are not metallized by the metal thin film layers 6 and 7 as shown in FIG. . In order to improve the adhesiveness, the surfaces of the low temperature part 4 and the high temperature part 5 of the thermoelectric cooling device 2 may be metallized in the same manner as in the first embodiment, and the metal thin film layers 6 and 7 may be provided on the surfaces.
In the second embodiment, an electromagnetic field is shielded at a position farther from thethermoelectric cooling device 2 than in the first embodiment by providing a shield 33 in the inner layer of the substrate 31. Compared to the first embodiment, since the electromagnetic field is far from the source, the strength of the electromagnetic field in the shield 33 is reduced, and the effect of suppressing the electromagnetic field by the shield 33 is improved.
Moreover, since it is not restrict | limited by the other member and pattern provided in the surface of the board |substrate 31, the freedom degree of arrangement | positioning of the shield 33 becomes high.
In the device installation structure according to the present embodiment, a non-conductive adhesive is used to fix thesubstrate 31 to the low temperature part 4 of the thermoelectric cooling device 2, but the present invention is not limited to this. As in the first embodiment, a conductive adhesive may be used.
In the device installation structure according to the present embodiment, theshield 33 that suppresses potential fluctuations in the device 12 due to an external electromagnetic field is provided in the inner layer of the substrate 11. However, the shield is provided on the lower surface of the substrate 31 as in the first embodiment. May be added. This effectively shields the external electromagnetic field.
Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2009-297179 for which it applied on December 28, 2009, and takes in those the indications of each individually.
本発明の第1の実施形態に係るデバイス設置構造について図1及び図2を参照して説明する。
図1は本発明の第1の実施形態に係る処理装置1を示す。処理装置1は熱電気冷却装置(TEC)2、該熱電気冷却装置2に取り付けられる基板11、基板11に実装されるデバイス12を有する。
図2はデバイス12が実装された基板11が熱電気冷却装置2に取り付けられる前の状態を示す。
図1及び図2において熱電気冷却装置(TEC)1は熱電素子2、低温部3及び高温部4を含む。熱電素子2は電気エネルギを熱エネルギに変換するペルチェ効果を利用する。ペルチェ効果とは2つの異なる物質を2箇所で接合して環状にし該環に電流を流すと一方の接合部で吸熱し他方の接合部で放熱する現象である。熱電素子はこの現象に従ってこれらの接合部の間で生じる温度差を冷却に利用する。図1及び図2において図面中の熱電素子2の上端を低温部4とし下端を高温部5とする。熱電素子3の材質として金属や半導体を含むさまざまな材料の組み合わせが知られているがここでは例えばビスマスとテルルの組み合わせ(BiTe)が用いられる。
また、熱電気冷却装置2の低温部4及び高温部5の表面は接着性向上を図るために金属薄膜層6及び7によりメタライズされている。
また、熱電気冷却装置2の低温部4には導電性接着層10を介して基板11が取り付けられる。基板11の上面に電磁場の影響を受けやすいセンシティブなデバイス12が実装される。
基板11におけるデバイス12と熱電気冷却装置2との間にシールド13が設けられる。該シールド13は該熱電気冷却装置2からの電磁波を遮蔽する。これにより該熱電気冷却装置2の駆動電流によるデバイス12での誘導電流の発生を抑制する。
本実施形態においてシールド13は基板11の熱電気冷却装置2の側の面すなわち図1及び図2において基板11の底面に設けられる。シールド13は導電性を有する材質で作られる。シールド13はグランド(GND)ベタパタン又はデバイス12のセンシティブな信号部に対して相対的に電位変動のない電位を有するベタパタンである。GNDベタパタンは接地側に接続される。また、センシティブな信号部に対して相対的に電位変動のない電位を有するベタパタンは例えば基板11に形成される図示しないスルーホールを介して該デバイス12の図示しない信号部に電気的に接続される。以上のようにシールド13の電位が設定される。シールド13によりデバイス12内のセンシティブな信号は熱電気冷却装置2の駆動電流による電磁場に含まれるノイズの影響を受けずに伝送される。
なお、シールド13を形成するベタパタンは基板11内の空いている領域でかつ配線に影響を与えない全領域に形成されても良いしデバイス12を保護するために一部の領域に形成されても良い。
次に、図2及び図3を参照して本発明の第1の実施形態に係るデバイスの設置方法を説明する。
まず、基板11の一つの面にシールド13を形成する(ステップS1)。
次に、基板11のシールド13が形成された面の反対側の面にデバイス12を実装する(ステップS2)。
次に、熱電気冷却装置2の低温部4と高温部5のそれぞれの表面をメタライズして金属薄膜層6及び7を形成する(ステップS3)。なお、この工程は下記に述べるように省略してもよい。熱電気冷却装置2の低温部4の表面に導電性接着剤を塗布する(ステップS4)。なお、この工程では下記に述べるように通常の絶縁性の接着剤を塗布してもよい。
次に、基板11に形成されたシールド13が導電性接着層10を介して熱電気冷却装置2の低温部4の表面に接続されるようデバイス12を実装した基板11と熱電気冷却装置2を接着する(ステップS5)。
最後に、シールド13を接地する或は基板11に形成される図示しないスルーホールを介してデバイス12の図示しない信号部と電気的に接続してシールド13の電位を設定する(ステップS6)。
以上により図1に示される処理装置1が提供される。
以上説明したように第1の実施形態に示されるデバイス設置構造によれば電磁場の影響を受けやすいセンシティブなデバイス12が上面に設けられた基板11が熱電気冷却装置2の上面に設置される。該基板11の下面に該熱電気冷却装置2の駆動電流によるデバイス12での電位変動を抑制するシールド13が設けられる。該シールド13によって該熱電気冷却装置2の駆動電流による電磁場の変動からの基板11上のセンシティブなデバイス12への影響が抑制される。これにより該デバイス12の電磁場の変動に対する耐性が向上する。
なお、本実施形態では基板11と熱電気冷却装置2との接続に導電性接着剤を用いたがこれに限定されない。導電性接着層10を介して導通する必要がなければ絶縁性を有する通常の接着剤が用いられても良い。また、本実施形態では熱電気冷却装置2の低温部4及び高温部5の表面が金属薄膜層6及び7によりメタライズされたがこれに限定されない。低温部4及び高温部5の表面は表面処理されていなくても良い。また、基板11が接着される低温面4のみが金属薄膜層6によりメタライズされても良い。
[第2の実施形態]
本発明の第2の実施形態に係るデバイス設置構造について図4及び図5を参照して説明する。本発明の第2の実施形態は基板31に設けられるシールド33の位置について上記の第1の実施形態と構成を異にする。
図4はデバイス12が実装された基板31が熱電気冷却装置2に取り付けられる前の状態を示す。図5は図4に示される基板を熱電気冷却装置2に取り付けた状態を示す。この他の構成は第1の実施形態と同一であるので詳細な説明を省略する。
図4においてシールド33は基板11の内層に配置される。すなわちシールド33は基板31の内部においてGNDベタパタン又はデバイス12のセンシティブな信号部に対して相対的に電位変動のない電位を有するベタパタンとして形成される。シールド33は導電性を有する材質で作られる。このベタパタンは基板31内の空いている領域でかつ配線に影響を与えない全領域に形成されても良いしデバイス12を保護するために一部の領域に形成されても良い。
第1の実施形態と同様にして図4に示される基板31は非伝導性の接着層30を介して熱電気冷却装置2に取り付けられ図5に示される処理装置21が得られる。
図5において該シールド33により基板31の上面に位置するデバイス12内のセンシティブな信号は熱電気冷却装置2の駆動電流によるノイズによる影響を受けずに伝送される。
以上詳細に説明したように第2の実施形態に係るデバイス設置構造によれば電磁場の影響を受けやすいセンシティブなデバイス12が上面に設けられた基板31が熱電気冷却装置2の上面に設置される。該基板31の内層に該熱電気冷却装置2の駆動電流によるデバイス12での電位変動を抑制するシールド33が設けられる。該シールド33によって該熱電気冷却装置2の駆動電流による電磁場の変動からの基板31上のセンシティブなデバイス12への影響が抑制される。これにより該デバイス12の電磁場の変動に対する耐性が向上する。
なお、第2の実施形態に係るデバイス設置構造では熱電気冷却装置2の低温部4及び高温部5の表面は図1に示されるような金属薄膜層6及び7によりメタライズされないがこれに限定されない。接着性の向上のために第1の実施形態1と同様に熱電気冷却装置2の低温部4及び高温部5の表面をメタライズして該表面に金属薄膜層6及び7を設けても良い。
第2の実施形態ではシールド33を基板31の内層に設けることにより第1の実施形態に比べて熱電気冷却装置2から遠い位置で電磁場を遮蔽する。第1の実施形態に比べて電磁場の発生源から遠いのでシールド33における電磁場の強度は小さくなりシールド33による電磁場の抑制の効果が向上する。
また、基板31の表面に設けられるこの他の部材やパタンに制約されないのでシールド33の配置の自由度が高くなる。
本実施形態に係るデバイス設置構造では基板31を熱電気冷却装置2の低温部4に固定するために非導電性の接着剤が使用されたがこれに限定されない。第1の実施形態と同様に導電性接着剤が使用されても良い。
また、本実施形態に係るデバイス設置構造では基板11の内層に外部の電磁場によるデバイス12での電位変動を抑制するシールド33を設けたが、第1の実施形態のように基板31の下面にシールドを追加しても良い。これにより効果的に外部の電磁場が遮蔽される。
以上、実施形態を参照して本発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得るさまざまな変更をすることができる。
この出願は2009年12月28日に出願された日本出願特願2009−297179を基礎とする優先権を主張し、その開示の全てを個々に取り込む。 [First Embodiment]
A device installation structure according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows a
FIG. 2 shows a state before the
1 and 2, a thermoelectric cooling device (TEC) 1 includes a
Further, the surfaces of the
A
A
In the present embodiment, the
It should be noted that the solid pattern forming the
Next, a device installation method according to the first embodiment of the present invention will be described with reference to FIGS.
First, the
Next, the
Next, the surfaces of the
Next, the
Finally, the
Thus, the
As described above, according to the device installation structure shown in the first embodiment, the
In this embodiment, the conductive adhesive is used for the connection between the
[Second Embodiment]
A device installation structure according to a second embodiment of the present invention will be described with reference to FIGS. The second embodiment of the present invention differs from the first embodiment in terms of the position of the
FIG. 4 shows a state before the
In FIG. 4, the
Similar to the first embodiment, the
In FIG. 5, the sensitive signal in the
As described in detail above, according to the device installation structure according to the second embodiment, the
In the device installation structure according to the second embodiment, the surfaces of the
In the second embodiment, an electromagnetic field is shielded at a position farther from the
Moreover, since it is not restrict | limited by the other member and pattern provided in the surface of the board |
In the device installation structure according to the present embodiment, a non-conductive adhesive is used to fix the
In the device installation structure according to the present embodiment, the
Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2009-297179 for which it applied on December 28, 2009, and takes in those the indications of each individually.
本発明は熱電気冷却装置(TEC)などの大きな電流値を有する駆動電流により動作する機器に微弱な信号を検出する低ノイズセンサや低ノイズアンプ回路などのデバイスを設置する構造及びその方法に好適に適用される。
The present invention is suitable for a structure and method for installing a device such as a low noise sensor or a low noise amplifier circuit for detecting a weak signal in a device that operates with a drive current having a large current value such as a thermoelectric cooling device (TEC). Applies to
1 処理装置
2 熱電気冷却装置(TEC)
3 熱電素子
4 低温部
5 高温部
6 金属薄膜層
7 金属薄膜層
10 導電性接着層
11 基板
12 デバイス
13 シールド
21 処理装置
30 非導電性接着層
31 基板
33 シールド 1Processing Equipment 2 Thermoelectric Cooling Equipment (TEC)
DESCRIPTION OFSYMBOLS 3 Thermoelectric element 4 Low temperature part 5 High temperature part 6 Metal thin film layer 7 Metal thin film layer 10 Conductive adhesive layer 11 Substrate 12 Device 13 Shield 21 Processing apparatus 30 Nonconductive adhesive layer 31 Substrate 33 Shield
2 熱電気冷却装置(TEC)
3 熱電素子
4 低温部
5 高温部
6 金属薄膜層
7 金属薄膜層
10 導電性接着層
11 基板
12 デバイス
13 シールド
21 処理装置
30 非導電性接着層
31 基板
33 シールド 1
DESCRIPTION OF
Claims (10)
- 電力により動作する装置と、
前記装置に取り付けられ、前記装置に取り付けられる面の反対側の面にデバイスを搭載し、導電性を有する材質からできるシールドを前記デバイスと前記装置との間に設ける基板を有することを特徴とするデバイス設置構造。 A device that operates on electricity,
The device is mounted on the device, the device is mounted on a surface opposite to the surface to be mounted on the device, and a substrate made of a conductive material is provided between the device and the device. Device installation structure. - 前記シールドの電位は前記デバイスが伝送する信号の電位変動よりも小さな電位変動を有する電位に設定されることを特徴とする請求項1に記載のデバイス接地構造。 2. The device grounding structure according to claim 1, wherein the potential of the shield is set to a potential having a potential fluctuation smaller than a potential fluctuation of a signal transmitted by the device.
- 前記装置は熱電気冷却装置であって、
駆動電流により駆動される熱電素子と、該熱電素子に熱的に接続される高温部と低温部を有し、
前記基板が前記低温部に取り付けられることを特徴とする請求項1または2に記載のデバイス設置構造。 The device is a thermoelectric cooling device,
A thermoelectric element driven by a driving current, and a high temperature part and a low temperature part thermally connected to the thermoelectric element,
The device installation structure according to claim 1, wherein the substrate is attached to the low temperature part. - 前記シールドは前記基板の表面及び内部の少なくとも1つに形成されることを特徴とする請求項1乃至3に記載のデバイス設置構造。 4. The device installation structure according to claim 1, wherein the shield is formed on at least one of a surface and an inside of the substrate.
- 前記基板は導電性を有する接着層を介して前記装置に取り付けられることを特徴とする請求項1乃至4に記載のデバイス設置構造。 5. The device installation structure according to claim 1, wherein the substrate is attached to the apparatus through an adhesive layer having conductivity.
- 前記低温部の表面と前記高温部の表面の少なくとも1つは金属膜によりメタライズされることを特徴とする請求項3に記載のデバイス設置構造。 4. The device installation structure according to claim 3, wherein at least one of the surface of the low temperature part and the surface of the high temperature part is metallized with a metal film.
- デバイスを電力により動作する装置に設置するデバイス設置方法であって、
前記基板に導電性を有する材質からできるシールドを設けるステップと、
前記デバイスを基板に搭載するステップと、
前記基板の前記デバイスが搭載された面の反対側の面に前記装置を取り付けるステップと、
前記シールドの電位を設定するステップを有することを特徴とするデバイス設置方法。 A device installation method for installing a device in an apparatus that operates on electric power,
Providing a shield made of a conductive material on the substrate;
Mounting the device on a substrate;
Attaching the apparatus to a surface of the substrate opposite to the surface on which the device is mounted;
A device installation method comprising the step of setting a potential of the shield. - 前記シールドの電位は前記デバイスが伝送する信号の電位変動よりも小さな電位変動を有する電位であることを特徴とする請求項7に記載のデバイス設置方法。 The device installation method according to claim 7, wherein the potential of the shield is a potential having a potential variation smaller than a potential variation of a signal transmitted by the device.
- 前記シールドは前記基板の表面及び内部の少なくとも1つに形成されることを特徴とする請求項7または8に記載のデバイス設置方法。 The device installation method according to claim 7 or 8, wherein the shield is formed on at least one of a surface and an inside of the substrate.
- 前記装置は熱電気冷却装置であって、
駆動電流により駆動される熱電素子と、該熱電素子に熱的に接続される高温部と低温部を有し、
前記基板は前記低温部に取り付けられることを特徴とする請求項7乃至9に記載のデバイス設置方法。 The device is a thermoelectric cooling device,
A thermoelectric element driven by a driving current, and a high temperature part and a low temperature part thermally connected to the thermoelectric element,
The device installation method according to claim 7, wherein the substrate is attached to the low temperature part.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-297179 | 2009-12-28 | ||
JP2009297179A JP2011138879A (en) | 2009-12-28 | 2009-12-28 | Structure for disposing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011081166A1 true WO2011081166A1 (en) | 2011-07-07 |
Family
ID=44226570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/073657 WO2011081166A1 (en) | 2009-12-28 | 2010-12-21 | Structure for disposing device and method for disposing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011138879A (en) |
WO (1) | WO2011081166A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109698173A (en) * | 2019-02-14 | 2019-04-30 | 江苏亨通光网科技有限公司 | It is accurately positioned the optical module structure and its assembling mode of light, electrical chip bonding |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01295449A (en) * | 1988-05-24 | 1989-11-29 | Toshiba Corp | Cooled solid-state imaging device |
JP2002100714A (en) * | 2000-09-21 | 2002-04-05 | Ibiden Co Ltd | Semiconductor device |
JP2004111656A (en) * | 2002-09-18 | 2004-04-08 | Nec Electronics Corp | Semiconductor device and manufacturing method of semiconductor device |
JP2007507909A (en) * | 2003-10-08 | 2007-03-29 | インテル コーポレイション | Microelectronic assembly having a thermoelectric element for cooling a die and method of manufacturing the same |
JP2007214316A (en) * | 2006-02-09 | 2007-08-23 | Seiko Epson Corp | Semiconductor device and manufacturing method of semiconductor device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08191169A (en) * | 1995-01-12 | 1996-07-23 | Hitachi Ltd | ATC circuit |
JP4777636B2 (en) * | 2004-11-08 | 2011-09-21 | セイコーインスツル株式会社 | Thermoelectric element, circuit board and electronic device |
JP2008282971A (en) * | 2007-05-10 | 2008-11-20 | Yamaha Corp | Semiconductor device, and mounting structure of semiconductor device |
CN102047144B (en) * | 2008-03-25 | 2014-05-07 | 株式会社岛津制作所 | Radiation image pickup device |
-
2009
- 2009-12-28 JP JP2009297179A patent/JP2011138879A/en active Pending
-
2010
- 2010-12-21 WO PCT/JP2010/073657 patent/WO2011081166A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01295449A (en) * | 1988-05-24 | 1989-11-29 | Toshiba Corp | Cooled solid-state imaging device |
JP2002100714A (en) * | 2000-09-21 | 2002-04-05 | Ibiden Co Ltd | Semiconductor device |
JP2004111656A (en) * | 2002-09-18 | 2004-04-08 | Nec Electronics Corp | Semiconductor device and manufacturing method of semiconductor device |
JP2007507909A (en) * | 2003-10-08 | 2007-03-29 | インテル コーポレイション | Microelectronic assembly having a thermoelectric element for cooling a die and method of manufacturing the same |
JP2007214316A (en) * | 2006-02-09 | 2007-08-23 | Seiko Epson Corp | Semiconductor device and manufacturing method of semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109698173A (en) * | 2019-02-14 | 2019-04-30 | 江苏亨通光网科技有限公司 | It is accurately positioned the optical module structure and its assembling mode of light, electrical chip bonding |
CN109698173B (en) * | 2019-02-14 | 2024-03-12 | 亨通洛克利科技有限公司 | Optical module structure for precisely positioning optical and electric chip bonding and assembling mode thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2011138879A (en) | 2011-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8198543B2 (en) | Rigid-flexible circuit board and method of manufacturing the same | |
JP4300371B2 (en) | Semiconductor device | |
JP4014591B2 (en) | Semiconductor device and electronic equipment | |
JP5692056B2 (en) | Multilayer printed circuit board | |
JP5236178B2 (en) | Electronic circuit equipment | |
CN111771276A (en) | High frequency module | |
US20200006172A1 (en) | Module | |
WO2018159453A1 (en) | Module | |
US20190215948A1 (en) | Systems and methods for thermal dissipation | |
JP4978265B2 (en) | High frequency module | |
US20100271785A1 (en) | Heat-dissipating and fixing mechanism of electronic component and process for assembling same | |
WO2017022221A1 (en) | Heat dissipating structure and electronic apparatus | |
JP6139585B2 (en) | High frequency module and microwave transceiver | |
JPH11233904A (en) | Printed board having heat radiating structure | |
JP6108957B2 (en) | Electronic equipment | |
KR20050073571A (en) | Thermal-conductive substrate package | |
WO2011081166A1 (en) | Structure for disposing device and method for disposing device | |
JP6602132B2 (en) | Printed circuit board | |
JP2006054318A (en) | Electric component module and its manufacturing method | |
JP2005057149A (en) | Electric component module and its manufacturing method | |
JP5088939B2 (en) | Laminated board | |
JP2011086737A (en) | Thermoelectric conversion module | |
JP5929568B2 (en) | Electronic equipment | |
TW201532507A (en) | Electronic device | |
JP2002299866A (en) | Heat radiation structure of substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10841021 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10841021 Country of ref document: EP Kind code of ref document: A1 |