[go: up one dir, main page]

WO2011078008A1 - Vehicle headlight - Google Patents

Vehicle headlight Download PDF

Info

Publication number
WO2011078008A1
WO2011078008A1 PCT/JP2010/072449 JP2010072449W WO2011078008A1 WO 2011078008 A1 WO2011078008 A1 WO 2011078008A1 JP 2010072449 W JP2010072449 W JP 2010072449W WO 2011078008 A1 WO2011078008 A1 WO 2011078008A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
light source
reflecting mirror
lens
light
Prior art date
Application number
PCT/JP2010/072449
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 棚橋
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011547486A priority Critical patent/JPWO2011078008A1/en
Publication of WO2011078008A1 publication Critical patent/WO2011078008A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/155Surface emitters, e.g. organic light emitting diodes [OLED]

Definitions

  • the present invention relates to a vehicle headlamp.
  • Sufficient brightness is one of the performance requirements for headlights. This is an essential requirement for the basic performance of headlights. In order to achieve sufficient luminance, an approach from two directions is required to increase the efficiency of the optical system and increase the amount of light of the light source itself.
  • the former approach is to improve the light utilization efficiency by devising the configuration of the optical system.
  • the optical system is downsized, it becomes difficult to maintain the efficiency of the optical system, and therefore it is essential to increase the light quantity of the light source. Therefore, it is necessary to increase the amount of light of the latter approach, that is, the light source itself, but there is a limit to increasing the amount of light with a single LED chip, and it is difficult to secure necessary power.
  • the form of using is generally used.
  • an optical system for a headlight an optical system composed of an elliptical reflecting mirror and a projection lens is known (see, for example, Patent Documents 1 to 3).
  • the light is condensed on the ellipsoidal surface of the ellipsoidal reflector, and light that is substantially parallel to the front of the vehicle is emitted by the projection lens.
  • the light source is a point light source
  • perfect parallel light can be emitted by adjusting the parameters of the ellipsoid and the projection lens.
  • the area of the light source becomes relatively large with respect to the size of the optical system, all the light cannot be emitted as parallel light, and the length in the depth direction (vehicle traveling direction) is long. There is a problem that shortening is difficult.
  • a configuration using an elliptical reflecting mirror and a parabolic reflecting mirror in combination is known (for example, see Patent Document 4).
  • a light source is arranged at the first focal point of the elliptical surface of the elliptical reflector, basically the second focal point of the elliptical surface and the focal point of the paraboloid are approximately matched, and the light is condensed by the elliptical surface of the elliptical reflective mirror.
  • parallel light is emitted on a parabolic surface. According to such a structure, when a point light source is used, the light reflected by the ellipsoid can be made into parallel light.
  • the paraboloid is divided to make each region an optimal shape.
  • it is set as the structure which can make all the emitted light into a substantially parallel light.
  • the configuration of the conventional example is a configuration that provides the best performance when the light source can be regarded as a point light source. Therefore, when the optical system is downsized and the light source is relatively large, or when the light source has a certain size, there is a problem that sufficient performance cannot be obtained with the conventional configuration described above. It was. Specifically, the influence of the spread of the light emission position differs depending on the horizontal direction (left-right direction and front-back direction) with respect to the ground, so that sufficient performance can be obtained when the light source area becomes larger than the optical system. It was difficult.
  • the present invention has been made in view of the above circumstances, and in a headlight optical system using a white LED as a light source, it is possible to reduce the size, particularly the front and rear sizes, even though the reflecting surface is smooth and not divided.
  • the purpose of the present invention is to provide a vehicular headlamp that can be made compact with high efficiency and excellent cut-off characteristics.
  • a surface emitting light source A first reflector; A lens, and Taking the z-axis toward the vehicle traveling direction, the horizontal direction orthogonal to the x-axis and the vertical direction as the y-axis, the vertex position of the first reflecting mirror having the curvature is taken as the origin of coordinates, In the yz plane,
  • the light source is provided on the curvature center side of the first reflecting mirror;
  • the focal point closest to the vertex on the light source side of the first reflecting mirror from the origin position of the coordinates is the first focal point, and the other focal point is the second focal point,
  • the distance from the origin position of the coordinates to the position of the first focus is F1
  • the distance from the origin position of the coordinates to the position of the second focus is F2
  • a vehicular headlamp that satisfies the following expression (1), where F is the distance from the coordinate origin position to the focal position on the rear side in the Z-axis direction of the lens.
  • FIG. 1 It is a schematic side view when the vehicle headlamp in the present embodiment is viewed from the side. It is a schematic diagram of the vehicle headlamp shown in FIG. It is the perspective view which showed the specific example of the lens.
  • (A) is the side view which showed the light ray at the time of arrange
  • (b) is the front view at the time of seeing from the front.
  • (A) is the figure which showed the light ray when not arrange
  • (b) is the figure which showed the light ray when the auxiliary reflecting mirror is arrange
  • FIG. It is an illumination intensity distribution of the emitted light of Example 2. It is an illumination intensity distribution of the emitted light of Example 3. It is an illumination intensity distribution of the emitted light of Example 4. It is an illuminance distribution of the emitted light of Example 5. It is an illumination intensity distribution of the emitted light of Example 6. 10 is an illuminance distribution of emitted light in Example 7.
  • FIG. 1 is a schematic side view of the vehicle headlamp according to the present embodiment as viewed from the side
  • FIG. 2 is a schematic diagram of the vehicle headlamp shown in FIG.
  • the x-axis direction is perpendicular to the traveling direction of the vehicle and horizontal to the ground (left-right direction)
  • the y-axis direction is perpendicular to the ground (up-down direction)
  • the z-axis direction is the traveling direction of the vehicle.
  • the horizontal direction is perpendicular to the traveling direction of the vehicle and horizontal to the ground (left-right direction)
  • the y-axis direction is perpendicular to the ground (up-down direction)
  • the z-axis direction is the traveling direction of the vehicle.
  • the horizontal direction is perpendicular to the traveling direction of the vehicle and horizontal to the ground (left-right direction)
  • the vehicle headlamp 100 includes a light source 2, a first reflecting mirror 1, and a lens 3.
  • the light source 2 emits light and is formed in a flat plate shape, for example.
  • the surface emission means that the area of the light emitting surface is 0.25 mm 2 or more.
  • the area of the light emitting surface is a rectangular area formed by a line parallel to the x axis and a line parallel to the z axis so as to surround the light emitting area of the light source 2.
  • the area of the light emitting surface in the case of having a plurality of light sources 2 is a rectangular shape formed by a line parallel to the x axis and a line parallel to the z axis that is in contact with the light emitting region located at the outermost part so as to surround the plurality of light sources.
  • Examples of such a light source 2 include a semiconductor light emitting device such as a white LED or an organic EL device.
  • the light emitting surface of the light source 2 faces the positive direction of the y-axis
  • the area S of the light emitting surface of the light source 2 is the vehicle traveling direction (z
  • S M ⁇ L
  • the above expression (4) is a conditional expression in which the size of the light source 2 in the vehicle traveling direction is limited. By using the surface-emitting light source 2 that fits within the conditional expression (4), high efficiency, compactness and cut can be achieved. This is effective for obtaining an illuminance distribution with excellent off characteristics.
  • the light emitting surface of the light source 2 is arranged so as to be parallel to the x-axis and the z-axis, but if it is within a range of 20 ° or less with respect to the plane composed of the x-axis and the z-axis. It may be tilted.
  • L is the length in the z-axis direction of the light emitting surface viewed from the y-axis direction.
  • the light source 2 is specifically composed of a plurality of LED chips and a phosphor layer formed on the LED chips (not shown).
  • the LED chip emits light having a first predetermined wavelength. In the present embodiment, the LED chip emits blue light.
  • the wavelength of the LED chip of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip and the wavelength of the emitted light from the phosphor are in a complementary color relationship and the synthesized light is white. Any combination that provides light can be used.
  • an LED chip a well-known blue LED chip can be used.
  • the blue LED chip any existing one including In x Ga 1-x N system can be used.
  • the emission peak wavelength of the blue LED chip is preferably 440 to 480 nm.
  • the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof. Any form of LED chip, such as a so-called flip chip connection type, in which it is formed and turned over and connected to an electrode on a substrate, can be applied.
  • the phosphor layer has a phosphor that converts light having a first predetermined wavelength emitted from the LED chip into a second predetermined wavelength.
  • blue light emitted from the LED chip is converted into yellow light.
  • the phosphor used for such a phosphor layer uses an oxide or a compound that easily becomes an oxide at a high temperature as a raw material of Y, Gd, Ce, Sm, Al, La and Ga, and converts them into a stoichiometric amount.
  • the raw material is obtained by thoroughly mixing in a theoretical ratio.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide. Mix to obtain a mixed raw material.
  • the compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
  • the first reflecting mirror 1 has a substantially semi-elliptical shape having a curvature obtained by vertically cutting an elliptical sphere having a hollow inside along a plane including the short axis 1b.
  • a reflecting mirror may be formed by forming a reflective surface by forming a metal reflective layer on the surface by vapor deposition or the like after molding glass or a resin substrate.
  • the reflecting surface of the inner surface 13 (the surface facing the light source 2) of the first reflecting mirror 1 can be made of a metal such as Al or Ag or a metal film, which can easily obtain a high reflectance in a wide wavelength range. Preferably it is.
  • the reflecting surface is preferably made of a material that hardly deteriorates against heat or light from the LED chip.
  • the cut surface 11 having a shape obtained by cutting an elliptical sphere along the short axis 1b direction faces the front in the vehicle traveling direction.
  • the first reflector may have an anamorphic surface.
  • the lens 3 is an anamorphic optical system that is provided in front of the first reflecting mirror 1 with respect to the vehicle traveling direction and has different power in the horizontal direction (x-axis direction) and the vertical direction (y-axis direction). Is desirable. As a result, it is possible to obtain an illuminance distribution having an angular distribution that is wide in the x-axis direction and narrow in the y-axis direction.
  • the lens may be a free-form surface such as an xy polynomial, or may have a surface shape that is asymmetric left and right (x-axis direction) across the optical axis (z-axis direction). Further, it may have a surface shape that is asymmetric in the vertical direction (y-axis direction), and is more preferably an optical system having an asymmetric surface shape in all directions. An example of such an anamorphic optical system is shown in FIGS.
  • the lens 3 is preferably decentered such as shifting in the y-axis direction or tilting around the x-axis with respect to the z-axis. By decentering in this way, the amount of light can be used effectively, and parallel light can be obtained.
  • the first reflecting mirror 1 or the light source 2 is not limited to the lens 3 and may be decentered.
  • the vertex position of the first reflecting mirror 1 is taken as the origin P of the coordinates, and the light source 2 is arranged on the curvature center side of the first reflecting mirror 1 in the yz plane.
  • the focal point closest to the vertex on the light source 2 side of the first reflecting mirror 1 from the coordinate origin position P is the first focal point (Mf1), the other focal point is the second focal point (Mf2), and from the coordinate origin position P.
  • the distance to the first focal position is F1
  • the distance from the coordinate origin position P to the second focal position is F2
  • the rear position (light source side) focal position of the lens 3 from the coordinate origin position P in the vehicle traveling direction z (Lf) ) The following formula (1) is satisfied.
  • the vertex of the first reflecting mirror is a point where a perpendicular line drawn from an end point closest to the light source of the first reflecting mirror to a plane including the light emitting surface of the light source 2 intersects.
  • the first focus and the second focus are present when the first reflecting mirror is a surface or hyperboloid surface based on an ellipse.
  • the second focus does not exist.
  • Second focus first focus.
  • the above equation (2) is an equation that defines the positional relationship between the first reflecting mirror (position of the light source 2) 1 and the lens 3. If this condition is satisfied, the optical system is efficient, compact, and excellent in cutoff characteristics. It can be set as this structure. If this conditional expression (2) is deviated, the light flux entering the lens 3 decreases, and even if light enters the lens, the light flux does not exit forward, or total reflection occurs inside the lens and exits backward. The efficiency of the optical system is reduced. By satisfying the above formulas (1) and (2) at the same time, a synergistic effect can be expected.
  • F and F2 satisfy the following formula (3).
  • the above formula (5) is a relational expression between the center position of the light emitting surface and the focal position of the first reflecting mirror 1 in the z-axis direction.
  • the center of the light emitting surface is the center position of the surface emitting light source 2. For example, when there are a plurality of surface emitting light sources 2, the entire surface emitting light sources 2 are parallel to the x axis and the z axis, respectively. The center of the rectangle enclosed by.
  • FIG. 4 shows a case where a light shielding member is arranged in order to obtain better cut-off characteristics.
  • the light shielding member 4 shields one side in the left-right direction (x-axis direction) across the z axis inside the first reflecting mirror 1. (See FIG. 4B) It is preferable to arrange.
  • the cut-off characteristic in the left-right direction can be changed, and a good cut-off characteristic can be obtained.
  • FIG. 5A shows a case where no auxiliary reflecting mirror is arranged
  • FIG. 5B shows a case where an auxiliary reflecting mirror is arranged.
  • the auxiliary reflecting mirror 5 it is preferable to dispose the auxiliary reflecting mirror 5 between the first reflecting mirror 1 and the lens 3 in the vehicle traveling direction and below the first reflecting mirror 1 in the vertical direction.
  • the auxiliary reflecting mirror 5 has a substantially planar shape and is inclined with respect to the vehicle traveling direction so that the rear end portion is downward with respect to the front end portion.
  • Such an auxiliary reflecting mirror 5 makes it possible to obtain a desired illuminance distribution.
  • the auxiliary reflecting mirror 5 may be a plane mirror or a mirror such as a cylinder pipe.
  • the light source 2, the first reflecting mirror 1, and the lens 3 are configured, and by satisfying the above formula (1), the distance between the first reflecting mirror 1 and the lens 3 can be reduced.
  • the light source 2 is a surface light source instead of a point light source, the light source 2 can be made compact as compared with the conventional optical system, and an illuminance distribution with high efficiency and excellent cut-off characteristics can be obtained.
  • the angle difference between the maximum luminous intensity region and the luminous intensity 0 region is small, that is, the gradient angle of the luminous intensity distribution from the maximum luminous intensity to the luminous intensity 0 is excellent.
  • a headlight optical system having cut-off characteristics can be provided.
  • the value of F2 takes the range of F2 ⁇ F (absolute value
  • a biconic surface having a different curvature and shape in the x direction may be used, or an asymmetric xy polynomial surface may be used.
  • a light source is irradiated using vehicle headlamps (Examples 1 to 14 and Comparative Examples 1 to 4) designed so that each parameter has a predetermined value.
  • Table 3 shows the results of simulation of performance in the case of the above. At this time, the following design performance was evaluated in each example and comparative example.
  • d represents the axial thickness of the projection lens.
  • a rotationally symmetric polynomial aspherical expression about the optical axis z can be expressed as follows.
  • Z is the sag amount of curvature
  • y is the height from the optical axis
  • R is the radius of curvature in the yz plane
  • is the conic coefficient
  • the descriptive formula of the biconic surface can be expressed as follows.
  • Rx radius of curvature in x direction
  • Ry radius of curvature in y direction
  • ⁇ x conic coefficient in x direction
  • ⁇ y conic coefficient in y direction.
  • Xy polynomial surface equation can be expressed as follows.
  • N is the number of polynomial coefficients
  • a i is the coefficient of the i-th term.
  • Examples 3 and 5 are polynomial aspheric surfaces, Examples 4, 7, and 11 to 14 are biconic surfaces, and Example 6 is an xy polynomial surface. Further, Example 5 uses the light shielding plate shown in FIG.
  • R V / S [mm]
  • S Area of light emitting surface [mm 2 ]
  • V volume of the optical system [mm 3 ] (the volume of the optical system is the maximum horizontal length of the light passage region in the optical system through which the light emitted from the light source passes before exiting the optical system ⁇ vertical direction Maximum length x maximum length in the vehicle traveling direction)
  • S 3 [mm 2 ]
  • V 12,000,000 [mm 3 ] (maximum horizontal length: 200 [mm], vertical maximum length: 60 [Mm], the maximum length in the vehicle traveling direction: 100 [mm]) is typical
  • R 400000 [mm].
  • R ⁇ 62500 which is 1 / 6.4
  • S 4 [mm 2 ]
  • V 250,000 [mm 3 ] (horizontal maximum length: 100 [mm], vertical maximum length: 50 [mm], vehicle traveling direction maximum) It corresponds to the length [50 mm].
  • optical system efficiency / R
  • Optical system efficiency forward outgoing light [Lumen] / outgoing light from the light source [Lumen] Forward: Within ⁇ 25 ° in the horizontal direction from the vehicle traveling direction and within ⁇ 10 ° to 10 ° in the vertical direction (see FIG. 6).
  • FIGS. 7 (a) and 7 (b) in a position 10m away from the vehicle headlamps of Examples 1 to 14 and Comparative Examples 1 to 4, the road surface is perpendicular to the road surface.
  • a virtual screen was provided so that the simulation was performed when the vehicle headlight was used for irradiation.
  • the simulation was performed assuming a Lambertian LED as the light source.
  • Illuminance distribution [lx] of the emitted light at this time is shown in FIGS. 8 to 24, the horizontal axis represents the horizontal distance [mm], and the vertical axis represents the vertical distance [mm]. Note that the illuminance distribution in the figure is a case where one vehicle headlamp is used.
  • Conditions with good illuminance distribution are (i) a 400 lumin light source, (ii) the strongest central illuminance of 100 lx or more on the screen 10 m ahead from the light source position, and (iii) no multiple hot spots (There are no two or more places with the strongest illuminance), and (iv) it does not spread out in the y-axis direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Disclosed is a vehicle headlight that can be made more compact and that is also highly efficient and has excellent cutoff properties. The vehicle headlight (100) is provided with a surface-emitting light source (2), a first reflecting mirror (1), and a lens (3); uses the z-axis facing the direction of vehicle progression; uses the position of the vertex of the first reflecting mirror (1) that has curvature as the coordinate origin (P) and has the light source (2) disposed within the yz plane on the center of curvature of the first reflecting mirror (1) when the horizontal direction intersecting the z-axis is the x-axis and the vertical direction is the y-axis; and fulfills formula (1) when the focal point on the light source (2) side of the first reflecting mirror (1) that is closest to the vertex from the position of the origin (P) is a first focal point, another focal point is a second focal point, the distance from the position of the origin (P) to the position of the first focal point is F1, the distance from the position of the origin (P) to the position of the second focal point is F2, and the distance from the position of the origin (P) to the position of a focal point on the reverse side of the lens (3) in the z-axis direction is F. Formula (1) |F-F1| ≦ |F2|(mm)

Description

車両用前照灯Vehicle headlamp
 本発明は、車両用前照灯に関する。 The present invention relates to a vehicle headlamp.
 近年、環境面への配慮などから小型・軽量なヘッドライトが望まれており、ヘッドライトの光源として白色LEDを使用することが期待されている。 In recent years, small and lightweight headlights have been desired from the viewpoint of environmental considerations, and white LEDs are expected to be used as the light source of the headlights.
 ヘッドライトに要求される性能の一つに十分な輝度が挙げられる。これはヘッドライトの基本的な性能として欠かすことのできない要件である。十分な輝度を達成するためには、光学系の効率を上げること、光源自体の光量を増加させることの2方向からのアプローチが必要である。 Sufficient brightness is one of the performance requirements for headlights. This is an essential requirement for the basic performance of headlights. In order to achieve sufficient luminance, an approach from two directions is required to increase the efficiency of the optical system and increase the amount of light of the light source itself.
 前者のアプローチでは、光学系の構成を工夫して光利用効率の向上を図ることである。ただし、光学系を小型化すると光学系の効率を保つのは困難となるため、光源の光量増加が必須となる。従って後者のアプローチ、すなわち光源自体の光量を増加させる必要があるが、LEDチップ単体で光量を増加させるには限界があり必要なパワーを確保することが困難であることから、複数個のチップを使用するという形態が一般的に用いられている。 The former approach is to improve the light utilization efficiency by devising the configuration of the optical system. However, if the optical system is downsized, it becomes difficult to maintain the efficiency of the optical system, and therefore it is essential to increase the light quantity of the light source. Therefore, it is necessary to increase the amount of light of the latter approach, that is, the light source itself, but there is a limit to increasing the amount of light with a single LED chip, and it is difficult to secure necessary power. The form of using is generally used.
 以上のように、LEDを光源としたヘッドライト光学系では、光学系の小型化が要望されるとともに、複数個のLEDチップを使用する必要があることから、光学系の大きさに対する発光面の面積が相対的に大きくならざるを得ない。このことは、光源が点光源としてみなせないということであり光学系の構成を考える上で、発光位置の空間的な広がりを考慮する必要があることを意味している。 As described above, in a headlight optical system using LEDs as a light source, it is required to reduce the size of the optical system, and it is necessary to use a plurality of LED chips. The area must be relatively large. This means that the light source cannot be regarded as a point light source, and in considering the configuration of the optical system, it is necessary to consider the spatial expansion of the light emission position.
 従来より、ヘッドライト用の光学系としては、楕円反射鏡と投影レンズからなる構成のものが知られている(例えば、特許文献1~3参照)。この場合、楕円反射鏡の楕円面で集光し、投影レンズで車両前方にほぼ平行な光を出射する。光源が点光源の場合には、楕円面、投影レンズのパラメータを調整することで、完全な平行光を出射することができる。しかしながら、このような光学系では、光源の面積が光学系の大きさに対して相対的に大きくなった場合に全ての光を平行光として出射できないことや、奥行き方向(車両進行方向)の長さの短縮が難しいといった課題がある。 Conventionally, as an optical system for a headlight, an optical system composed of an elliptical reflecting mirror and a projection lens is known (see, for example, Patent Documents 1 to 3). In this case, the light is condensed on the ellipsoidal surface of the ellipsoidal reflector, and light that is substantially parallel to the front of the vehicle is emitted by the projection lens. When the light source is a point light source, perfect parallel light can be emitted by adjusting the parameters of the ellipsoid and the projection lens. However, in such an optical system, when the area of the light source becomes relatively large with respect to the size of the optical system, all the light cannot be emitted as parallel light, and the length in the depth direction (vehicle traveling direction) is long. There is a problem that shortening is difficult.
 その他、ヘッドライト用の光学系として、楕円反射鏡と放物面反射鏡とを組み合わせて用いた構成のものが知られている(例えば、特許文献4参照)。この場合、楕円反射鏡の楕円面の第1焦点に光源を配置し、基本的には楕円面の第2焦点と放物面の焦点を概略一致させ、楕円反射鏡の楕円面で集光し、投影レンズの代わりに放物面で平行光を出射する。このような構成によれば、点光源を使用した場合には楕円面で反射された光を平行光とすることができる。また、特許文献4では、楕円面で反射してから放物面で反射する光路、直接放物面に入射する光路などの光路に応じて、放物面を分割し各領域を最適な形状に設定することで、全ての出射光を略平行光にすることができる構成としている。これらの構成は、楕円反射鏡と投影レンズからなる光学系と比較して、光路を折り曲げているため車両進行方向のサイズを短縮することができるという利点がある。 In addition, as an optical system for headlights, a configuration using an elliptical reflecting mirror and a parabolic reflecting mirror in combination is known (for example, see Patent Document 4). In this case, a light source is arranged at the first focal point of the elliptical surface of the elliptical reflector, basically the second focal point of the elliptical surface and the focal point of the paraboloid are approximately matched, and the light is condensed by the elliptical surface of the elliptical reflective mirror. Instead of a projection lens, parallel light is emitted on a parabolic surface. According to such a structure, when a point light source is used, the light reflected by the ellipsoid can be made into parallel light. Moreover, in patent document 4, according to optical paths, such as an optical path reflected from an ellipsoid and then reflected by a paraboloid, or an optical path directly incident on a paraboloid, the paraboloid is divided to make each region an optimal shape. By setting, it is set as the structure which can make all the emitted light into a substantially parallel light. These configurations have an advantage that the size in the vehicle traveling direction can be shortened because the optical path is bent compared to an optical system including an elliptical reflecting mirror and a projection lens.
特開2005-209604号公報JP 2005-209604 A 特開2008-77890号公報JP 2008-77890 A 特開2009-199938号公報JP 2009-199938 A 特開2007-123027号公報JP 2007-123027 A
 しかしながら、従来例の構成は光源が点光源とみなせる場合に、最良の性能が得られる構成である。そのため、光学系が小型化し相対的に光源が大きくなった場合や光源がある大きさを有している場合には、上述したような従来の構成では十分な性能が得られないという課題があった。具体的には、発光位置の広がりの影響は、地面に対して水平な方向(左右方向と前後方向)によって異なるため、光源面積が光学系に対して大きくなった場合に十分な性能を得ることが難しかった。 However, the configuration of the conventional example is a configuration that provides the best performance when the light source can be regarded as a point light source. Therefore, when the optical system is downsized and the light source is relatively large, or when the light source has a certain size, there is a problem that sufficient performance cannot be obtained with the conventional configuration described above. It was. Specifically, the influence of the spread of the light emission position differs depending on the horizontal direction (left-right direction and front-back direction) with respect to the ground, so that sufficient performance can be obtained when the light source area becomes larger than the optical system. It was difficult.
 本発明は、上記事情に鑑みてなされたもので、白色LEDを光源としてヘッドライト光学系において、反射面が滑らかで分割されていないにも関わらず、小型化、特に前後サイズの薄型化が可能でコンパクト化でき、また、高効率でかつカットオフ特性に優れた車両用前照灯を提供することを目的としている。 The present invention has been made in view of the above circumstances, and in a headlight optical system using a white LED as a light source, it is possible to reduce the size, particularly the front and rear sizes, even though the reflecting surface is smooth and not divided. The purpose of the present invention is to provide a vehicular headlamp that can be made compact with high efficiency and excellent cut-off characteristics.
 本発明の一態様によれば、面発光の光源と、
 第1反射鏡と、
 レンズと、を有し、
 車両進行方向に向かってz軸を取り、それに直交する水平方向をx軸、鉛直方向をy軸とした際に、曲率を有する前記第1反射鏡の頂点位置を座標の原点に取り、
 yz平面内において、
 前記第1反射鏡の曲率中心側に前記光源が設けられ、
 座標の原点位置から前記第1反射鏡の光源側の最も頂点に近い焦点を第1焦点、もう一方の焦点を第2焦点とし、
 座標の原点位置から前記第1焦点の位置までの距離をF1、
 座標の原点位置から前記第2焦点の位置までの距離をF2、
 座標の原点位置から前記レンズのZ軸方向後ろ側の焦点位置までの距離をFとすると、下記式(1)を満たすことを特徴とする車両用前照灯が提供される。
According to one aspect of the invention, a surface emitting light source;
A first reflector;
A lens, and
Taking the z-axis toward the vehicle traveling direction, the horizontal direction orthogonal to the x-axis and the vertical direction as the y-axis, the vertex position of the first reflecting mirror having the curvature is taken as the origin of coordinates,
In the yz plane,
The light source is provided on the curvature center side of the first reflecting mirror;
The focal point closest to the vertex on the light source side of the first reflecting mirror from the origin position of the coordinates is the first focal point, and the other focal point is the second focal point,
The distance from the origin position of the coordinates to the position of the first focus is F1,
The distance from the origin position of the coordinates to the position of the second focus is F2,
Provided is a vehicular headlamp that satisfies the following expression (1), where F is the distance from the coordinate origin position to the focal position on the rear side in the Z-axis direction of the lens.
 |F-F1|≦|F2|(mm)・・・式(1) | F-F1 | ≦ | F2 | (mm) ... Formula (1)
 本発明によれば、高効率でコンパクトかつカットオフ特性に優れた照度分布を得ることができる。 According to the present invention, it is possible to obtain an illumination distribution with high efficiency, compactness, and excellent cut-off characteristics.
本実施形態における車両用前照灯を側方から見た場合における概略側面図である。It is a schematic side view when the vehicle headlamp in the present embodiment is viewed from the side. 図1に示した車両用前照灯の模式図である。It is a schematic diagram of the vehicle headlamp shown in FIG. レンズの具体例を示した斜視図である。It is the perspective view which showed the specific example of the lens. (a)は、遮光部材を配置した場合の光線を示した側面図、(b)は前方から見た際の前面図である。(A) is the side view which showed the light ray at the time of arrange | positioning the light-shielding member, (b) is the front view at the time of seeing from the front. (a)は、補助反射鏡を配置しない場合の光線を示した図であり、(b)は、補助反射鏡を配置した場合の光線を示した図である。(A) is the figure which showed the light ray when not arrange | positioning an auxiliary reflecting mirror, (b) is the figure which showed the light ray when the auxiliary reflecting mirror is arrange | positioned. 光学系の効率を規定する際の用語を説明するための模式図である。It is a schematic diagram for demonstrating the term at the time of prescribing | regulating the efficiency of an optical system. 出射光の照度分布を得る際の車両用前照灯とスクリーンとの配置関係を示した模式図であり、(a)は上面図、(b)は車両進行方向から見た際の前面図である。It is the schematic diagram which showed the arrangement | positioning relationship between the vehicle headlamp and screen at the time of obtaining the illumination intensity distribution of emitted light, (a) is a top view, (b) is a front view when it sees from a vehicle advancing direction. is there. 実施例1の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of Example 1. FIG. 実施例2の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of Example 2. 実施例3の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of Example 3. 実施例4の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of Example 4. 実施例5の出射光の照度分布である。It is an illuminance distribution of the emitted light of Example 5. 実施例6の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of Example 6. 実施例7の出射光の照度分布である。10 is an illuminance distribution of emitted light in Example 7. 実施例8の出射光の照度分布である。It is an illuminance distribution of the emitted light of Example 8. 実施例9の出射光の照度分布である。It is an illuminance distribution of the emitted light of Example 9. 実施例10の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of Example 10. 実施例11の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of Example 11. 実施例12の出射光の照度分布である。It is an illuminance distribution of the emitted light of Example 12. 実施例13の出射光の照度分布である。It is an illuminance distribution of the emitted light of Example 13. 実施例14の出射光の照度分布である。It is an illuminance distribution of the emitted light of Example 14. 比較例1の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of the comparative example 1. 比較例2の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of the comparative example 2. 比較例3の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of the comparative example 3. 比較例4の出射光の照度分布である。It is an illumination intensity distribution of the emitted light of the comparative example 4.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施形態における車両用前照灯を側方から見た場合における概略側面図、図2は、図1に示した車両用前照灯の模式図である。 FIG. 1 is a schematic side view of the vehicle headlamp according to the present embodiment as viewed from the side, and FIG. 2 is a schematic diagram of the vehicle headlamp shown in FIG.
 なお、図中、x軸方向は車両の進行方向と垂直で地面と水平な方向(左右方向)、y軸方向は地面と鉛直な方向(上下方向)、z軸方向は車両進行方向で地面と水平な方向とする。 In the figure, the x-axis direction is perpendicular to the traveling direction of the vehicle and horizontal to the ground (left-right direction), the y-axis direction is perpendicular to the ground (up-down direction), and the z-axis direction is the traveling direction of the vehicle. The horizontal direction.
 図1、図2に示すように、車両用前照灯100は、光源2と、第1反射鏡1と、レンズ3と、を備える。 As shown in FIGS. 1 and 2, the vehicle headlamp 100 includes a light source 2, a first reflecting mirror 1, and a lens 3.
 光源2は、面発光をし、例えば平板状に形成されている。ここで、面発光とは、発光面の面積が0.25mm以上のものを示す。なお、発光面の面積は、光源2の発光領域を囲むように発光領域に接するx軸に平行な線とz軸に平行な線で形成される長方形の面積とする。また、光源2を複数有する場合の発光面の面積は、複数の光源を囲むように最外部に位置する発光領域に接するx軸に平行な線とz軸に平行な線で形成される長方形の面積とする。このような光源2としては、白色LEDなどの半導体発光素子又は有機EL素子が挙げられる。 The light source 2 emits light and is formed in a flat plate shape, for example. Here, the surface emission means that the area of the light emitting surface is 0.25 mm 2 or more. The area of the light emitting surface is a rectangular area formed by a line parallel to the x axis and a line parallel to the z axis so as to surround the light emitting area of the light source 2. The area of the light emitting surface in the case of having a plurality of light sources 2 is a rectangular shape formed by a line parallel to the x axis and a line parallel to the z axis that is in contact with the light emitting region located at the outermost part so as to surround the plurality of light sources. The area. Examples of such a light source 2 include a semiconductor light emitting device such as a white LED or an organic EL device.
 光源2の発光面(図2では上の面)はy軸の正の方向を向いており、また、光源2の発光面(図2では上の面)の面積Sは、車両進行方向(z軸方向)の長さをLとし、それと直交する水平な方向(x軸方向)の長さをMとすると、S=M×Lと表せ、下記式(4)を満たすことが好ましい。 The light emitting surface of the light source 2 (upper surface in FIG. 2) faces the positive direction of the y-axis, and the area S of the light emitting surface of the light source 2 (upper surface in FIG. 2) is the vehicle traveling direction (z When the length in the axial direction) is L and the length in the horizontal direction (x-axis direction) orthogonal to the length is M, it can be expressed as S = M × L, and it is preferable to satisfy the following formula (4).
 L≦3(mm)・・・式(4)
 上記式(4)は、光源2の車両進行方向の大きさを制限した条件式であって、この条件式(4)内に収まる面発光の光源2とすることにより、高効率でコンパクトかつカットオフ特性に優れた照度分布を得るのに有効となる。
L ≦ 3 (mm) Expression (4)
The above expression (4) is a conditional expression in which the size of the light source 2 in the vehicle traveling direction is limited. By using the surface-emitting light source 2 that fits within the conditional expression (4), high efficiency, compactness and cut can be achieved. This is effective for obtaining an illuminance distribution with excellent off characteristics.
 なお、図2においては、光源2の発光面は、x軸とz軸に平行となるように配置されているが、x軸とz軸よりなる平面に対して20°以下の範囲であれば傾けて配置してもよい。この場合Lはy軸方向から見た発光面のz軸方向の長さとする。 In FIG. 2, the light emitting surface of the light source 2 is arranged so as to be parallel to the x-axis and the z-axis, but if it is within a range of 20 ° or less with respect to the plane composed of the x-axis and the z-axis. It may be tilted. In this case, L is the length in the z-axis direction of the light emitting surface viewed from the y-axis direction.
 光源2は、具体的には、図示しないが複数個のLEDチップとLEDチップ上に形成された蛍光体層から構成されている。LEDチップは、第1の所定波長の光を出射するものであり、本実施形態においては青色光を出射するようになっている。ただし、本発明のLEDチップの波長及び蛍光体の出射光の波長は限定されず、LEDチップによる出射光の波長と、蛍光体による出射光の波長とが補色関係にあり合成された光が白色光となる組み合わせであるものであれば、使用可能である。 The light source 2 is specifically composed of a plurality of LED chips and a phosphor layer formed on the LED chips (not shown). The LED chip emits light having a first predetermined wavelength. In the present embodiment, the LED chip emits blue light. However, the wavelength of the LED chip of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip and the wavelength of the emitted light from the phosphor are in a complementary color relationship and the synthesized light is white. Any combination that provides light can be used.
 なお、このようなLEDチップとしては、公知の青色LEDチップを用いることができる。青色LEDチップとしては、InGa1-xN系をはじめ既存のあらゆるものを使用することができる。青色LEDチップの発光ピーク波長は440~480nmのものが好ましい。また、LEDチップの形態としては、基板上にLEDチップを実装し、そのまま上方または側方に放射させるタイプ、又は、サファイア基板などの透明基板上に青色LEDチップを実装し、その表面にバンプを形成した後、裏返して基板上の電極と接続する、いわゆるフリップチップ接続タイプなど、どのような形態のLEDチップでも適用することが可能である。 In addition, as such an LED chip, a well-known blue LED chip can be used. As the blue LED chip, any existing one including In x Ga 1-x N system can be used. The emission peak wavelength of the blue LED chip is preferably 440 to 480 nm. In addition, as a form of the LED chip, the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof. Any form of LED chip, such as a so-called flip chip connection type, in which it is formed and turned over and connected to an electrode on a substrate, can be applied.
 蛍光体層は、LEDチップから出射される第1の所定波長の光を第2の所定波長に変換する蛍光体を有している。本実施の形態では、LEDチップから出射される青色光を黄色光に変換するようになっている。 The phosphor layer has a phosphor that converts light having a first predetermined wavelength emitted from the LED chip into a second predetermined wavelength. In the present embodiment, blue light emitted from the LED chip is converted into yellow light.
 このような蛍光体層に用いられる蛍光体は、Y、Gd、Ce、Sm、Al、La及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し成形体を得る。成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成して、蛍光体の発光特性を持った焼結体を得ることができる。 The phosphor used for such a phosphor layer uses an oxide or a compound that easily becomes an oxide at a high temperature as a raw material of Y, Gd, Ce, Sm, Al, La and Ga, and converts them into a stoichiometric amount. The raw material is obtained by thoroughly mixing in a theoretical ratio. Alternatively, a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide. Mix to obtain a mixed raw material. An appropriate amount of fluoride such as ammonium fluoride is mixed with this as a flux and pressed to obtain a molded body. The compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
 以下の説明では、第1反射鏡が楕円を基調とした面で構成されている場合を例として説明する。 In the following description, a case where the first reflecting mirror is configured with an ellipse-based surface will be described as an example.
 第1反射鏡1は、内部が空洞の楕円球を、短軸1bを含む平面に沿って垂直に切断された曲率を有する略半楕円形状をなしている。但し、第1反射鏡1を形成する際に上記のように切断して成形する必要はなく、表面形状が第1反射鏡1で必要とされる略半楕円球状となるように金属を直接成形してもよいし、ガラスや樹脂基板等を成形した後に表面に蒸着などにより金属反射層を形成して反射面を構成することで反射鏡としてもよい。第1反射鏡1の内面13(光源2に対向する面)の反射面は広い波長域で高い反射率を容易にえることが可能な、例えばAl、Ag等の金属あるいは金属膜で構成されていることが好ましい。また、反射面は、熱あるいはLEDチップからの光に対して劣化しにくい材料で構成することが好ましい。 The first reflecting mirror 1 has a substantially semi-elliptical shape having a curvature obtained by vertically cutting an elliptical sphere having a hollow inside along a plane including the short axis 1b. However, when forming the first reflecting mirror 1, it is not necessary to cut and shape as described above, and the metal is directly shaped so that the surface shape is substantially a semi-elliptical sphere required by the first reflecting mirror 1. Alternatively, a reflecting mirror may be formed by forming a reflective surface by forming a metal reflective layer on the surface by vapor deposition or the like after molding glass or a resin substrate. The reflecting surface of the inner surface 13 (the surface facing the light source 2) of the first reflecting mirror 1 can be made of a metal such as Al or Ag or a metal film, which can easily obtain a high reflectance in a wide wavelength range. Preferably it is. The reflecting surface is preferably made of a material that hardly deteriorates against heat or light from the LED chip.
 このような第1反射鏡1は、楕円球を短軸1b方向に沿って切断した形状である切断面11が車両進行方向の前方を向いている。 In such a first reflecting mirror 1, the cut surface 11 having a shape obtained by cutting an elliptical sphere along the short axis 1b direction faces the front in the vehicle traveling direction.
 なお、第1反射鏡はアナモフィックな面でも良い。 The first reflector may have an anamorphic surface.
 レンズ3は、第1反射鏡1よりも車両進行方向に対して前方に設けられて、水平方向(x軸方向)及び鉛直方向(y軸方向)とでパワーが異なるアナモフィックな光学系であることが望ましい。これにより、x軸方向には広く、y軸方向には狭い角度分布を持った照度分布を得ることが可能となる。レンズは、xy多項式のような自由曲面でも良いし、また、光軸(z軸方向)を挟んで左右(x軸方向)に非対称な面形状でも良い。また、上下(y軸方向)に非対称な面形状でも良いし、左右上下全てに非対称な面形状を持った光学系であるとより望ましい。このようなアナモフィックな光学系の例として図3(a),(b)に示した。 The lens 3 is an anamorphic optical system that is provided in front of the first reflecting mirror 1 with respect to the vehicle traveling direction and has different power in the horizontal direction (x-axis direction) and the vertical direction (y-axis direction). Is desirable. As a result, it is possible to obtain an illuminance distribution having an angular distribution that is wide in the x-axis direction and narrow in the y-axis direction. The lens may be a free-form surface such as an xy polynomial, or may have a surface shape that is asymmetric left and right (x-axis direction) across the optical axis (z-axis direction). Further, it may have a surface shape that is asymmetric in the vertical direction (y-axis direction), and is more preferably an optical system having an asymmetric surface shape in all directions. An example of such an anamorphic optical system is shown in FIGS.
 また、第1反射鏡1の頂点位置を座標の原点Pとしたとき、レンズ3はz軸に対してy軸方向にシフト又はx軸周りのチルトなどの偏心をしていることが好ましい。このように偏心することで、光量を有効に活用することができ、また平行光を得ることができる。なお、レンズ3に限らず、第1反射鏡1又は光源2を偏心させても良い。 Further, when the apex position of the first reflecting mirror 1 is the origin P of the coordinates, the lens 3 is preferably decentered such as shifting in the y-axis direction or tilting around the x-axis with respect to the z-axis. By decentering in this way, the amount of light can be used effectively, and parallel light can be obtained. The first reflecting mirror 1 or the light source 2 is not limited to the lens 3 and may be decentered.
 図2に示すように、第1反射鏡1の頂点位置を座標の原点Pに取り、yz平面内において、第1反射鏡1の曲率中心側に光源2が配置されている。また、座標の原点位置Pから第1反射鏡1の光源2側の最も頂点に近い焦点を第1焦点(Mf1)とし、もう一方の焦点を第2焦点(Mf2)、座標の原点位置Pから第1焦点位置までの距離をF1、座標の原点位置Pから第2焦点位置までの距離をF2、座標の原点位置Pからレンズ3の車両進行方向zの後ろ側(光源側)焦点位置(Lf)までの距離をFとすると、下記式(1)を満たす。 As shown in FIG. 2, the vertex position of the first reflecting mirror 1 is taken as the origin P of the coordinates, and the light source 2 is arranged on the curvature center side of the first reflecting mirror 1 in the yz plane. The focal point closest to the vertex on the light source 2 side of the first reflecting mirror 1 from the coordinate origin position P is the first focal point (Mf1), the other focal point is the second focal point (Mf2), and from the coordinate origin position P. The distance to the first focal position is F1, the distance from the coordinate origin position P to the second focal position is F2, the rear position (light source side) focal position of the lens 3 from the coordinate origin position P in the vehicle traveling direction z (Lf) ), The following formula (1) is satisfied.
 |F-F1|≦|F2|(mm)・・・式(1)
 なお、下記F,F1,F2,Fbの値は全てyz断面における値である。また、第1反射鏡が頂点を含まない場合、第1反射鏡の最も光源に近い側の端点から上記光源2の発光面を含む平面に下ろした垂線とが交わる点を第1反射鏡の頂点とする。
| F−F1 | ≦ | F2 | (mm) (1)
The values of F, F1, F2, and Fb below are all values in the yz section. Further, when the first reflecting mirror does not include a vertex, the vertex of the first reflecting mirror is a point where a perpendicular line drawn from an end point closest to the light source of the first reflecting mirror to a plane including the light emitting surface of the light source 2 intersects. And
 なお、第1焦点、第2焦点は第1反射鏡が楕円を基調とする面または双曲面などの場合に存在するものであり、例えば球面や放物面などの場合第2焦点は存在せず、第2焦点=第1焦点となる。 The first focus and the second focus are present when the first reflecting mirror is a surface or hyperboloid surface based on an ellipse. For example, in the case of a spherical surface or a paraboloid, the second focus does not exist. , Second focus = first focus.
 このように式(1)を満たすことによって高効率でコンパクトかつカットオフ特性に優れた照度分布を得ることができる。より望ましくは、|F-F1|≦|(F1+F2)/2|である。そして、上記式(1)の条件式を外れると光学系の効率が低下してしまう。なお、従来技術のように|F|=|F2|の条件とすると、光源2が有限の場合にレンズ3に入る光量が低下してしまい、結果として光学系の効率は低くなってしまう。 Thus, by satisfying the formula (1), it is possible to obtain a highly efficient, compact and illuminance distribution with excellent cut-off characteristics. More desirably, | F−F1 | ≦ | (F1 + F2) / 2 |. If the conditional expression (1) is not satisfied, the efficiency of the optical system is lowered. If the condition | F | = | F2 | as in the prior art, the amount of light entering the lens 3 is reduced when the light source 2 is finite, and as a result, the efficiency of the optical system is lowered.
 また、レンズ3の車両進行方向zの後ろ側(光源側)の焦点位置Lfからレンズ3の第1面S2(車両進行方向の前側の面)までの長さをFbとすると、下記式(2)を満たすことが好ましい。 Further, when the length from the focal position Lf on the rear side (light source side) of the lens 3 in the vehicle traveling direction z to the first surface S2 (front surface in the vehicle traveling direction) of the lens 3 is Fb, the following formula (2 ) Is preferably satisfied.
 |F-F1|≦|Fb|(mm)・・・式(2)
 上記式(2)は、第1反射鏡(光源2の位置)1とレンズ3との位置関係について規定した式であり、この条件を満たすと効率が良くコンパクトかつカットオフ特性に優れた光学系の構成とすることができる。この条件式(2)を外れると、レンズ3に入る光束が少なくなってしまい、レンズに光が入射してもその光束が前方に出射しなかったり、レンズ内部で全反射が起きて後方に出射してしまうなどの光学系の効率が低下してしまう。上記式(1)と式(2)を同時に満たすことでより相乗効果を期待することができる。
| F−F1 | ≦ | Fb | (mm) (2)
The above equation (2) is an equation that defines the positional relationship between the first reflecting mirror (position of the light source 2) 1 and the lens 3. If this condition is satisfied, the optical system is efficient, compact, and excellent in cutoff characteristics. It can be set as this structure. If this conditional expression (2) is deviated, the light flux entering the lens 3 decreases, and even if light enters the lens, the light flux does not exit forward, or total reflection occurs inside the lens and exits backward. The efficiency of the optical system is reduced. By satisfying the above formulas (1) and (2) at the same time, a synergistic effect can be expected.
 さらに、FとF2とは下記式(3)を満たすことが好ましい。 Furthermore, it is preferable that F and F2 satisfy the following formula (3).
 |F|<|F2|・・・式(3)
 上記式(3)は、レンズ3の焦点位置と第1反射鏡1の第2焦点位置との関係式であって、この式(3)を満たすことによってコンパクトな光学系とすることができる。
| F | <| F2 | ... Formula (3)
The above expression (3) is a relational expression between the focal position of the lens 3 and the second focal position of the first reflecting mirror 1, and a compact optical system can be obtained by satisfying this expression (3).
 また、下記式(5)を満たすことが好ましい。
(光源の発光面の中心と第1反射鏡の第1焦点との間の最短距離)<発光面積・・・式(5)
 上記式(5)は、z軸方向における、発光面の中心位置と第1反射鏡1の焦点位置の関係式であって、この関係式を満たすことによって、照度分布をより任意に制御することが可能となる。なお、発光面の中心とは、面発光光源2の中心位置であり、例えば、面発光光源2が複数ある場合はその複数ある面発光光源2の全体をx軸とz軸にそれぞれ平行な線で囲まれる長方形の中心のことを指す。
Moreover, it is preferable to satisfy | fill following formula (5).
(Shortest distance between the center of the light emitting surface of the light source and the first focal point of the first reflecting mirror) 2 <Light emitting area: Formula (5)
The above formula (5) is a relational expression between the center position of the light emitting surface and the focal position of the first reflecting mirror 1 in the z-axis direction. By satisfying this relational expression, the illuminance distribution can be controlled more arbitrarily. Is possible. The center of the light emitting surface is the center position of the surface emitting light source 2. For example, when there are a plurality of surface emitting light sources 2, the entire surface emitting light sources 2 are parallel to the x axis and the z axis, respectively. The center of the rectangle enclosed by.
 また、座標の原点位置Pからレンズ3の第1面S2までの距離をLsとすると、下記式(6)を満たすことが好ましい。 Further, when the distance from the coordinate origin position P to the first surface S2 of the lens 3 is Ls, it is preferable to satisfy the following formula (6).
 Ls≧F2・・・式(6)
 上記式(6)を満たすことによって、コンパクトかつ効率用の良い光学系を得ることができる。
Ls ≧ F2 Formula (6)
By satisfying the above formula (6), a compact and efficient optical system can be obtained.
 図4は、より良いカットオフ特性を得るために遮光部材を配置した場合である。 FIG. 4 shows a case where a light shielding member is arranged in order to obtain better cut-off characteristics.
 一般的に、対向車側にはすれ違い用のビームとして好適なカットオフラインを持つ配光が要求されており、また、歩行者側には歩行者や標識確認のために、カットオフラインの無い配光が必要とされる。これを満たすために、図4に示すように遮光部材を設けることが好ましい。遮光部材4は第1反射鏡1の頂点位置を座標の原点としたとき、第1反射鏡1の内側で、z軸を挟んで左右方向(x軸方向)における一方の側を遮光するように(図4(b)参照)配置することが好ましい。図4(b)のように遮光部材4を用いることによって左右方向のカットオフ特性を変化させて、良好なカットオフ特性を得ることができる。 Generally, light distribution with a suitable cut-off line is required on the oncoming vehicle side, and light distribution without a cut-off line is required on the pedestrian side to check pedestrians and signs. Is needed. In order to satisfy this, it is preferable to provide a light shielding member as shown in FIG. When the vertex position of the first reflecting mirror 1 is the origin of coordinates, the light shielding member 4 shields one side in the left-right direction (x-axis direction) across the z axis inside the first reflecting mirror 1. (See FIG. 4B) It is preferable to arrange. By using the light shielding member 4 as shown in FIG. 4B, the cut-off characteristic in the left-right direction can be changed, and a good cut-off characteristic can be obtained.
 図5(a)は、補助反射鏡を配置しない場合であり、図5(b)は、補助反射鏡を配置した場合である。 FIG. 5A shows a case where no auxiliary reflecting mirror is arranged, and FIG. 5B shows a case where an auxiliary reflecting mirror is arranged.
 図5(b)に示すように、車両進行方向において第1反射鏡1とレンズ3との間で、かつ、鉛直方向において第1反射鏡1の下方に補助反射鏡5を配置することが好ましい。補助反射鏡5は、例えば、略平面形状をなし、車両進行方向に対して後方の端部を前方の端部よりも下向きとなるように傾斜して配置することが好ましい。このような補助反射鏡5により、所望の照度分布を得ることが可能となる。補助反射鏡5は、平面ミラーでも良いし、シリンダパイプのようなミラーでも良い。 As shown in FIG. 5B, it is preferable to dispose the auxiliary reflecting mirror 5 between the first reflecting mirror 1 and the lens 3 in the vehicle traveling direction and below the first reflecting mirror 1 in the vertical direction. . For example, it is preferable that the auxiliary reflecting mirror 5 has a substantially planar shape and is inclined with respect to the vehicle traveling direction so that the rear end portion is downward with respect to the front end portion. Such an auxiliary reflecting mirror 5 makes it possible to obtain a desired illuminance distribution. The auxiliary reflecting mirror 5 may be a plane mirror or a mirror such as a cylinder pipe.
 以上のように、光源2と、第1反射鏡1と、レンズ3とから構成され、上記式(1)を満たすことによって、第1反射鏡1とレンズ3との距離を近づけることができ、その結果、点光源ではなく、光源2が面発光の場合において、従来の光学系と比較してコンパクト化することができ、高効率でかつカットオフ特性に優れた照度分布を得ることができる。 As described above, the light source 2, the first reflecting mirror 1, and the lens 3 are configured, and by satisfying the above formula (1), the distance between the first reflecting mirror 1 and the lens 3 can be reduced. As a result, when the light source 2 is a surface light source instead of a point light source, the light source 2 can be made compact as compared with the conventional optical system, and an illuminance distribution with high efficiency and excellent cut-off characteristics can be obtained.
 なお、第1反射鏡に双曲面形状を用いることで、最大光度領域と光度0の領域との角度差が小さい、つまり、最大光度から光度0への、光度分布の勾配角度が急な優れたカットオフ特性を有するヘッドライト光学系を提供することができる。 In addition, by using the hyperboloid shape for the first reflecting mirror, the angle difference between the maximum luminous intensity region and the luminous intensity 0 region is small, that is, the gradient angle of the luminous intensity distribution from the maximum luminous intensity to the luminous intensity 0 is excellent. A headlight optical system having cut-off characteristics can be provided.
 つまり、F1<|S0-P|かつF<0である。 That is, F1 <| S0-P | and F <0.
 またこのとき、F2の値はF2<F(絶対値では|F|<|F2|)の範囲を取る。 At this time, the value of F2 takes the range of F2 <F (absolute value | F | <| F2 |).
 なお、ここで言う双曲面形状とはX=0におけるy方向の形状についてである。つまり、x方向には曲率や形状が異なるバイコーニック面でもよいし、左右非対称なxy多項式面でもよい。 Note that the hyperboloid shape referred to here is the shape in the y direction when X = 0. In other words, a biconic surface having a different curvature and shape in the x direction may be used, or an asymmetric xy polynomial surface may be used.
 以下、本発明について実施例及び比較例を用いて具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
 下記表1、表2に示すように、各パラメータを所定値となるように設計した車両用前照灯(実施例1~実施例14、比較例1~比較例4)を用いて光源を照射した場合の性能をシミュレーションした結果を、下記表3に示す。このとき、各実施例及び比較例において以下に示す設計性能の評価を行った。なお、表1、表2中、dは投影レンズの軸上厚を表している。 As shown in Tables 1 and 2 below, a light source is irradiated using vehicle headlamps (Examples 1 to 14 and Comparative Examples 1 to 4) designed so that each parameter has a predetermined value. Table 3 below shows the results of simulation of performance in the case of the above. At this time, the following design performance was evaluated in each example and comparative example. In Tables 1 and 2, d represents the axial thickness of the projection lens.
 一般に光軸zを中心とした回転対称な多項式非球面の式は以下のように表せる。 In general, a rotationally symmetric polynomial aspherical expression about the optical axis z can be expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 zは曲率のサグ量、yは光軸からの高さ、Rはyz平面内での曲率半径、κはコーニック係数を表す。 Z is the sag amount of curvature, y is the height from the optical axis, R is the radius of curvature in the yz plane, and κ is the conic coefficient.
 また、一般に光軸zに対してそれに直交する方向をx,yとすると、バイコーニック面の記述式は下記の如く表せる。 Further, generally, if the directions orthogonal to the optical axis z are x and y, the descriptive formula of the biconic surface can be expressed as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 但し、Rx:x方向曲率半径、Ry:y方向曲率半径、κ:x方向のコーニック係数、κ:y方向のコーニック係数である。 Here, Rx: radius of curvature in x direction, Ry: radius of curvature in y direction, κ x : conic coefficient in x direction, and κ y : conic coefficient in y direction.
 xy多項式面の式は下記の如く表せる。 Xy polynomial surface equation can be expressed as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 但し、N:多項式係数の個数、A:i番目の項の係数である。 Here, N is the number of polynomial coefficients, and A i is the coefficient of the i-th term.
 なおそれぞれの実施例に使用されているレンズについては実施例3、5は多項式非球面、実施例4,7、11~14はバイコーニック面、実施例6はxy多項式面である。また、実施例5は図4(b)に示す遮光板を用いている。 For the lenses used in the respective examples, Examples 3 and 5 are polynomial aspheric surfaces, Examples 4, 7, and 11 to 14 are biconic surfaces, and Example 6 is an xy polynomial surface. Further, Example 5 uses the light shielding plate shown in FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 [小型化]
 小型化の尺度として、発光面の面積に対する光学系が占める体積の比Rを用い、各実施例及び比較例についてRの値を求めた。Rは以下のようにして算出し、その結果を表4に示した。
[Miniaturization]
As a measure for miniaturization, the ratio R of the volume occupied by the optical system to the area of the light emitting surface was used, and the value of R was obtained for each of the examples and comparative examples. R was calculated as follows, and the results are shown in Table 4.
 R=V/S[mm]
 S:発光面の面積[mm
 V:光学系の体積[mm](光学系の体積は、光源から出射された光が光学系から出射するまでに通過する光学系内の光通過領域の水平方向の最大長さ×鉛直方向の最大長さ×車両進行方向の最大長さ)
 現行の白色LEDを用いた車両用前照灯では、S=3[mm]、V=1200000[mm](水平方向の最大長さ:200[mm]、鉛直方向の最大長さ:60[mm]、車両進行方向の最大長さ:100[mm])程度が一般的であり、R=400000[mm]となる。本発明では、この6.4分の1であるR<62500の場合を小型の光学系と定義する。これは、S=4[mm]に対し、V<250000[mm](水平方向の最大長さ:100[mm]、鉛直方向の最大長さ:50[mm]、車両進行方向の最大長さ[50mm]に相当する。
R = V / S [mm]
S: Area of light emitting surface [mm 2 ]
V: volume of the optical system [mm 3 ] (the volume of the optical system is the maximum horizontal length of the light passage region in the optical system through which the light emitted from the light source passes before exiting the optical system × vertical direction Maximum length x maximum length in the vehicle traveling direction)
In the vehicle headlamp using the current white LED, S = 3 [mm 2 ], V = 12,000,000 [mm 3 ] (maximum horizontal length: 200 [mm], vertical maximum length: 60 [Mm], the maximum length in the vehicle traveling direction: 100 [mm]) is typical, and R = 400000 [mm]. In the present invention, the case of R <62500, which is 1 / 6.4, is defined as a small optical system. For S = 4 [mm 2 ], V <250,000 [mm 3 ] (horizontal maximum length: 100 [mm], vertical maximum length: 50 [mm], vehicle traveling direction maximum) It corresponds to the length [50 mm].
 [高性能]
 白色LED光源の発光面積に対して小型な光学系でありながら高性能であるという点については、下記の尺度ηを用い、各実施例及び比較例についてηの値を求めた。ηは以下のようにして算出し、その結果を表3に示した。ここで一般的に要求される性能を満たすためにはη>1.0E-5(E-5は10-5を表す)であることが好ましい。
[High performance]
About the point that it is high performance, although it is a small optical system with respect to the light emission area of a white LED light source, the value of (eta) was calculated | required about each Example and the comparative example using the following scale (eta). η was calculated as follows, and the results are shown in Table 3. In order to satisfy the generally required performance, it is preferable that η> 1.0E −5 (E −5 represents 10 −5 ).
 η=光学系の効率/R
 光学系の効率=前方への出射光[Lumen]/光源からの出射光[Lumen]
 前方:車両進行方向から水平方向に±25°以内、鉛直方向で-10°~10°以内とする(図6参照)。
η = optical system efficiency / R
Optical system efficiency = forward outgoing light [Lumen] / outgoing light from the light source [Lumen]
Forward: Within ± 25 ° in the horizontal direction from the vehicle traveling direction and within −10 ° to 10 ° in the vertical direction (see FIG. 6).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表4の結果より、実施例1~実施例14は、比較例1~比較例4に比べて小型化及び高性能の両立を図れることがわかる。 From the results of Table 4, it can be seen that Examples 1 to 14 can achieve both miniaturization and high performance as compared with Comparative Examples 1 to 4.
 さらに、図7(a),(b)に示すように、実施例1~実施例14及び比較例1~比較例4の車両用前照灯から前方に10m離れた位置に、路面に垂直となるように仮想的なスクリーンを設け、車両用前照灯で照射した場合のシミュレーションを行った。光源にはランバート分布のLEDを想定してシミュレーションを行った。このときの出射光の照度分布[lx]を図8~図24に示した。図8~図24の図において、横軸は水平方向距離[mm]、縦軸は鉛直方向距離[mm]を表す。なお、図の照度分布は1つの車両用前照灯を使用した場合である。 Further, as shown in FIGS. 7 (a) and 7 (b), in a position 10m away from the vehicle headlamps of Examples 1 to 14 and Comparative Examples 1 to 4, the road surface is perpendicular to the road surface. A virtual screen was provided so that the simulation was performed when the vehicle headlight was used for irradiation. The simulation was performed assuming a Lambertian LED as the light source. Illuminance distribution [lx] of the emitted light at this time is shown in FIGS. 8 to 24, the horizontal axis represents the horizontal distance [mm], and the vertical axis represents the vertical distance [mm]. Note that the illuminance distribution in the figure is a case where one vehicle headlamp is used.
 照度分布が良好な条件(実施例の条件)とは、(i)400lumenの光源で、(ii)光源位置から10m先のスクリーン上において最も強い中心照度100lx以上、(iii)ホットスポットが複数無い(最も照度の強い箇所が2つ以上無い)、(iv)y軸方向にダラダラと広がっていないことである。 Conditions with good illuminance distribution (conditions of the embodiment) are (i) a 400 lumin light source, (ii) the strongest central illuminance of 100 lx or more on the screen 10 m ahead from the light source position, and (iii) no multiple hot spots (There are no two or more places with the strongest illuminance), and (iv) it does not spread out in the y-axis direction.
 図8~図24の結果より、実施例1~実施例14は、比較例1~比較例4に比べて明らかに照度分布が優れ、高性能であることが認められる。 8 to 24, it can be seen that Examples 1 to 14 clearly have superior illuminance distribution and higher performance than Comparative Examples 1 to 4.
 1 第1反射鏡
 2 光源
 3 レンズ
 4 遮光部材
 5 反射板
 100 車両用前照灯
 Mf1 第1反射鏡の第1焦点
 Mf2 第1反射鏡の第2焦点
 Lf レンズの焦点
DESCRIPTION OF SYMBOLS 1 1st reflective mirror 2 Light source 3 Lens 4 Light-shielding member 5 Reflector 100 Vehicle headlamp Mf1 1st focus of 1st reflective mirror Mf2 2nd focus of 1st reflective mirror Lf Focus of lens

Claims (11)

  1.  面発光の光源と、
     第1反射鏡と、
     レンズと、を有し、
     車両進行方向に向かってz軸を取り、それに直交する水平方向をx軸、鉛直方向をy軸とした際に、曲率を有する前記第1反射鏡の頂点位置を座標の原点に取り、
     yz平面内において、
     前記第1反射鏡の曲率中心側に前記光源が設けられ、
     座標の原点位置から前記第1反射鏡の光源側の最も頂点に近い焦点を第1焦点、もう一方の焦点を第2焦点とし、
     座標の原点位置から前記第1焦点の位置までの距離をF1、
     座標の原点位置から前記第2焦点の位置までの距離をF2、
     座標の原点位置から前記レンズのz軸方向後ろ側の焦点位置までの距離をFとすると、下記式(1)を満たすことを特徴とする車両用前照灯。
     |F-F1|≦|F2|(mm)・・・式(1)
    A surface emitting light source;
    A first reflector;
    A lens, and
    Taking the z-axis toward the vehicle traveling direction, the horizontal direction orthogonal to the x-axis and the vertical direction as the y-axis, the vertex position of the first reflecting mirror having the curvature is taken as the origin of coordinates,
    In the yz plane,
    The light source is provided on the curvature center side of the first reflecting mirror;
    The focal point closest to the vertex on the light source side of the first reflecting mirror from the origin position of the coordinates is the first focal point, and the other focal point is the second focal point,
    The distance from the origin position of the coordinates to the position of the first focus is F1,
    The distance from the origin position of the coordinates to the position of the second focus is F2,
    A vehicle headlamp characterized by satisfying the following formula (1), where F is a distance from a coordinate origin position to a focal position on the rear side in the z-axis direction of the lens.
    | F−F1 | ≦ | F2 | (mm) (1)
  2.  前記レンズの焦点位置から前記レンズの車両進行方向における前側の第1面までの長さをFbとすると、下記式(2)を満たすことを特徴とする請求項1に記載の車両用前照灯。
     |F-F1|≦|Fb|(mm)・・・式(2)
    2. The vehicle headlamp according to claim 1, wherein the length from the focal position of the lens to the first front surface of the lens in the vehicle traveling direction is Fb, and the following formula (2) is satisfied. .
    | F−F1 | ≦ | Fb | (mm) (2)
  3.  下記式(3)を満たすことを特徴とする請求項1又は2に記載の車両用前照灯。
     |F|<|F2|・・・式(3)
    The vehicle headlamp according to claim 1 or 2, wherein the following formula (3) is satisfied.
    | F | <| F2 | ... Formula (3)
  4.  前記第1反射鏡及びレンズのいずれか一方又は両方はx軸方向とy軸方向とでパワーが異なることを特徴とする請求項1~3のいずれか一項に記載の車両用前照灯。 4. The vehicle headlamp according to claim 1, wherein one or both of the first reflecting mirror and the lens have different powers in the x-axis direction and the y-axis direction.
  5.  前記光源の発光面のz軸方向の長さをLとすると、下記式(4)を満たすことを特徴とする請求項1~4のいずれか一項に記載の車両用前照灯。
     L≦3(mm)・・・式(4)
    The vehicle headlamp according to any one of claims 1 to 4, wherein when a length of the light emitting surface of the light source in the z-axis direction is L, the following formula (4) is satisfied.
    L ≦ 3 (mm) Expression (4)
  6.  車両進行方向における前記第1反射鏡と前記レンズとの間に、遮光部材が配置されていることを特徴とする請求項1~5のいずれか一項に記載の車両用前照灯。 The vehicle headlamp according to any one of claims 1 to 5, wherein a light-shielding member is disposed between the first reflecting mirror and the lens in the vehicle traveling direction.
  7.  車両進行方向における前記第1反射鏡と前記レンズとの間に、反射板が配置されていることを特徴とする請求項1~6のいずれか一項に記載の車両用前照灯。 The vehicle headlamp according to any one of claims 1 to 6, wherein a reflector is disposed between the first reflector and the lens in the vehicle traveling direction.
  8.  下記式(5)を満たすことを特徴とする請求項1~7のいずれか一項に記載の車両用前照灯。
     (光源の発光面の中心と第1反射鏡の第1焦点との間の最短距離)<発光面積・・・式(5)
    The vehicle headlamp according to any one of claims 1 to 7, wherein the following formula (5) is satisfied.
    (Shortest distance between the center of the light emitting surface of the light source and the first focal point of the first reflecting mirror) 2 <Light emitting area: Formula (5)
  9.  前記光源は半導体発光素子又は有機EL素子であることを特徴とする請求項1~8のいずれか一項に記載の車両用前照灯。 The vehicle headlamp according to any one of claims 1 to 8, wherein the light source is a semiconductor light emitting element or an organic EL element.
  10.  座標の原点位置から前記レンズの第1面までの距離をLsとすると、下記式(6)を満たすことを特徴とする請求項1~9のいずれか一項に記載の車両用前照灯。
     Ls≧F2・・・式(6)
    The vehicle headlamp according to any one of claims 1 to 9, wherein the following expression (6) is satisfied, where Ls is a distance from a coordinate origin position to the first surface of the lens.
    Ls ≧ F2 Formula (6)
  11.  前記レンズはz軸に対してy軸の発光面側(y軸の正の方向)にシフト偏心していることを特徴とする請求項1~10のいずれか一項に記載の車両用前照灯。 The vehicle headlamp according to any one of claims 1 to 10, wherein the lens is shifted and decentered toward the light emitting surface side of the y axis (positive direction of the y axis) with respect to the z axis. .
PCT/JP2010/072449 2009-12-24 2010-12-14 Vehicle headlight WO2011078008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547486A JPWO2011078008A1 (en) 2009-12-24 2010-12-14 Vehicle headlamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009292170 2009-12-24
JP2009-292170 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011078008A1 true WO2011078008A1 (en) 2011-06-30

Family

ID=44195538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072449 WO2011078008A1 (en) 2009-12-24 2010-12-14 Vehicle headlight

Country Status (2)

Country Link
JP (1) JPWO2011078008A1 (en)
WO (1) WO2011078008A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176653A1 (en) * 2011-06-21 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 Vehicle headlight
JP2015103367A (en) * 2013-11-25 2015-06-04 株式会社小糸製作所 Vehicle lighting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034279A (en) * 2006-07-31 2008-02-14 Koito Mfg Co Ltd Vehicular headlamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034279A (en) * 2006-07-31 2008-02-14 Koito Mfg Co Ltd Vehicular headlamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176653A1 (en) * 2011-06-21 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 Vehicle headlight
JP2015103367A (en) * 2013-11-25 2015-06-04 株式会社小糸製作所 Vehicle lighting

Also Published As

Publication number Publication date
JPWO2011078008A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
US8733993B2 (en) Light emitting device, illumination device, vehicle headlamp, and vehicle
JP4806025B2 (en) Multifunctional automotive floodlight module, especially for the automotive front area
JP4138586B2 (en) LED lamp for light source and vehicle headlamp using the same
US8439536B2 (en) Vehicle headlight
JP5989429B2 (en) Lighting device and vehicle headlamp
US8258527B2 (en) Lighting device and semiconductor light source device
US20150251587A1 (en) Light-emitting device and vehicle headlight
EP2484964B1 (en) Lamp unit
US20100315829A1 (en) Light emitting module and automotive headlamp
JP2012238569A (en) Light projecting unit and light projecting device
US20160218260A1 (en) A light emitting device
US20110075438A1 (en) Led light source and vehicle light
CN104296044A (en) RGB (red, green and blue) automotive laser lamp based on diffractive elements
US8801234B2 (en) Light emitting module and optical wavelength converting member
US7178959B2 (en) Illumination arrangement with reduced depth for a vehicle headlight
JP2014010917A (en) Luminaire and vehicle headlight
JP5352686B2 (en) Light projecting device, light projecting unit and light collecting member
JP2011065946A (en) Led illumination device
CN104279481B (en) Lamp for vehicle and vehicle having same
EP3489083B1 (en) Vehicle headlight
JP2011134548A (en) Vehicular headlight
WO2011077947A1 (en) Vehicle headlight
Dross et al. LED headlight architecture that creates a high quality beam pattern independent of LED shortcomings
WO2011078008A1 (en) Vehicle headlight
JP2013161552A (en) Light projection device, and laser irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547486

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839241

Country of ref document: EP

Kind code of ref document: A1