WO2011074669A1 - Turbine - Google Patents
Turbine Download PDFInfo
- Publication number
- WO2011074669A1 WO2011074669A1 PCT/JP2010/072772 JP2010072772W WO2011074669A1 WO 2011074669 A1 WO2011074669 A1 WO 2011074669A1 JP 2010072772 W JP2010072772 W JP 2010072772W WO 2011074669 A1 WO2011074669 A1 WO 2011074669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- flow path
- fluid
- disk
- turbine
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/34—Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
- F01D1/36—Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes using fluid friction
Definitions
- the present invention relates to a turbine that rotates a rotor by the viscosity of a fluid.
- the turbine converts the flow of fluid such as steam in the casing into the rotation of the rotor, and uses the energy of the rotation of the rotor for power generation.
- those equipped with rotors on which disks are stacked include the Tesla turbine invented by Tesla in 1913 and its improved turbine.
- the rotor has a structure in which a plurality of planar disks are stacked with a gap therebetween. Then, a rotational force is applied to the disk by the viscous resistance of the fluid wound inside the casing, and the rotor rotates.
- An improved Tesla turbine is a combined viscous / impulsive solar pulse turbine (Patent Document 1).
- a protruding impulse element is provided on the disk surface.
- the rotational efficiency of the rotor is improved by utilizing the impulse and repulsive force generated when the fluid collides with the impulse element.
- the efficiency of converting the kinetic energy of the fluid flowing into the casing into the rotation of the rotor is still low.
- the protrusion-shaped impulse element exists on the disk surface of the rotor, which obstructs the fluid flow in the gap between the disks.
- an object of the present invention is to provide a turbine having high conversion efficiency from fluid kinetic energy to rotor rotational energy.
- the present inventors have intensively studied and as a result, have completed the present invention. That is, according to the present invention, the following turbine is provided.
- a casing having a housing space surrounded by a side wall portion that surrounds the outer periphery of the rotor on the outer side in the direction and two end wall portions that cover the rotor from both sides in the direction along the rotation axis.
- a space portion along the side wall portion between the side wall portion and the rotor in the accommodating space is a fluid flow path, and the fluid is transferred to the flow path in one circumferential direction around the rotation axis.
- a turbine provided with an inflow port for inflow, wherein a flow path cross-sectional area of the flow path decreases in the one circumferential direction from the inflow port.
- the plurality of disks have a substantially circular outer edge and an annular shape having a width in a direction from the outer edge to the center, and the length of the width is a length from the center to the outer edge.
- the turbine according to any one of [1] to [3], which is less than or equal to one half of the above.
- a plurality of the rotors are provided so as to be able to rotate at different rotational speeds with the same rotation axis, and the rotor having the largest disk from the center to the outer edge among the plurality of rotors.
- the annular rotor in which a plurality of annular disks are stacked, and the remaining rotor is provided in a ring of the disk of the annular rotor. Turbine.
- the annular disk has a substantially circular outer edge and an annular shape having a width in the direction from the outer edge to the center, and the length of the width is from the center to the outer edge.
- the turbine of the present invention has a high conversion efficiency from fluid kinetic energy to rotor rotational energy.
- FIG. 2 is a transverse sectional view taken along line A-A ′ in FIG. 1.
- FIG. 2 is a longitudinal sectional view taken along line B-B ′ in FIG. 1.
- FIG. 2 is a schematic diagram of a portion sandwiched between parentheses C-C ′ in FIG. 1.
- FIG. 6 is a transverse sectional view taken along line D-D ′ in FIG. 5.
- FIG. 8 is a transverse cross-sectional view of the turbine at E-E ′ in FIG. 7.
- FIG. 8 is a perspective view of two rotors shown in FIG. 7.
- FIG. 10 is an explanatory diagram in which one disk is extracted from each of the two rotors illustrated in FIG. 9.
- FIG. 2 is a diagram illustrating an overview of turbines of Examples 1 to 3 and Comparative Examples 1 to 4 and turbine efficiency. It is a figure showing the outline
- FIG. 1 is a perspective view of a turbine 1 belonging to the technical scope of the present invention.
- the turbine 1 of the present invention accommodates the rotor 3 in the accommodating space 20 of the casing 2.
- the detailed structure of the rotor 3 such as the disk 21 is omitted and the outline is represented by a broken line.
- FIG. 2 is a cross-sectional view of the turbine 1 at A-A ′ in FIG.
- FIG. 3 is a longitudinal sectional view of the turbine 1 taken along the line B-B ′ in FIG.
- the rotor 3 is accommodated in the accommodating space 20 of the casing 2 while being supported by the shaft portion 4 so as to be able to rotate with the axis on which the centers 26 of the plurality of disks 21 are arranged as the rotation shaft 10.
- the shaft portion 4 is formed along the rotation shaft 10.
- the accommodation space 20 is surrounded by the side wall portion 16 and two end wall portions 18 and 19 sandwiching the side wall portion 16.
- the side wall 16 is a wall that surrounds the outer periphery of the rotor 3 on the outer side in the radial direction R with respect to the rotation shaft 10 when the rotor 3 is accommodated in the accommodation space 20.
- the end wall portions 18 and 19 are wall portions that cover the rotor 3 so as to sandwich the rotor 3 from both sides in the direction along the rotation shaft 10 when the rotor 3 is accommodated in the accommodation space 20.
- the plurality of disks 21 are arranged with the centers 26 of the disks 21 on one axis, and the plurality of disks 21 are stacked with gaps 24 therebetween.
- the disk 21 has a disk shape or a shape having a circulation hole 22 at the center as shown in FIG.
- the outer edges 23 have the same shape.
- the shape of the outer edge 23 is more preferably a circle centered on the center 26 of the disk 21.
- the shape and size of the disk 21 can all be the same or different one by one depending on the manufacturing method, the shape of the side wall portion 16 and the like.
- FIG. 4 is a schematic diagram of the turbine 1 at a portion sandwiched between parentheses C-C ′ in FIG.
- the white arrow in FIG. 4 represents the flow of the fluid G.
- a space portion along the side wall portion 16 between the side wall portion 16 and the rotor 3 is used as a flow path 13 for the fluid G.
- the casing 2 is provided with an inlet 11 for allowing the fluid G to flow into the flow path 13.
- the inflow port 11 is formed so that the fluid G flows in one circumferential direction around the rotation shaft 10 in the flow path 13.
- the inflow port 11 is formed by opening the side wall portion 16. As long as the fluid G can flow in the direction of rotation of the rotor 3 in the flow path 13, the inlet 11 may be formed by opening one of the end walls 18 and 19 (not shown). .
- the inlet 11 is preferably formed so that the direction D of the fluid G entering the flow path 13 is substantially perpendicular to the radial direction R from the rotating shaft 10. As a result, the moment at which the fluid tries to rotate the disk 21 is substantially maximized, so that the disk 21 can be effectively rotated.
- the flow path cross-sectional area S decreases in one circumferential direction in which the fluid G flows from the inlet 11.
- the flow path cross-sectional area S of the flow path 13 is the area of the cross section of the flow path 13 on the surface from the rotating shaft 10 toward the radial direction R.
- the fluid G sequentially flows in the flow path 13 along the side wall portion 16 in one circumferential direction. Part of it flows into the gap 24 of the disk 21.
- the fluid G flows in the gap 24 so as to be wound toward the rotating shaft 10. Therefore, the friction between the fluid G flowing through the gap 24 and the surface 25 of the disk 21 and the viscosity of the fluid G cause a rotational force on the disk 21, and the rotor 3 and the shaft portion 4 that supports the rotor 3 rotate.
- the disk 21 has a plate shape without protrusions and blades (blades) on the front and back surfaces 25. In this disk 21, since the surface 25 does not have a protruding shape, the fluid G flows in the gap 24 without being obstructed.
- the end wall portions 18 and 19 on both sides in the direction along the rotary shaft 10 are rotors. 3 is preferably close to the disks 21 at both ends (see FIG. 3).
- the fluid G flows intensively in the gaps 24 between the flow path 13 and the disk 21, and most of the fluid G flowing in from the inflow port 11 can contribute to the application of the rotational force of the disk 21.
- the turbine 1 includes a rotor 3 in which an outlet 12 is provided in an end wall portion 18 and a disk 21 having a circulation hole 22 is laminated.
- the fluid G flows from the flow path 13 into the gap 24 of the disk 21, then passes through the circulation hole 22 and is discharged from the outlet 12.
- the casing 2 is preferably provided with a plurality of inflow ports 11 at different positions in one circumferential direction around the rotation shaft 10.
- the fluid G when the fluid G flows from a certain inlet 11, it is sufficient that the fluid G flows through a short distance to the adjacent inlet 11 in the flow path 13. During such a short distance, there is little deceleration of the fluid G. Therefore, the fluid G can reliably flow at a speed sufficient to rotate the disk 21 in a space portion along substantially the entire circumference of the side wall portion 16 of the accommodation space 20. Therefore, in the embodiment in which such a plurality of inlets 11 are provided, the fluid G flows into the gap 24 of the disc 21 at a speed equal to or higher than a certain direction from each direction uniformly in the radial direction R, and the fluid G over the entire surface 25 of the disc 21. The disk 21 can be effectively rotated using this friction.
- FIG. 6 is a cross-sectional view taken along the line D-D ′ in FIG.
- two inflow ports 11a and 11b are provided at positions symmetrical with respect to the rotation axis 10.
- the side wall 16 and the outer edge 23 of the disk 21 are close to each other immediately before the inflow port 11b. Therefore, in the flow path 13a, the flow path cross-sectional area S decreases from the position of the inflow port 11a, and becomes extremely small immediately before the adjacent inflow port 11b. Fluid G 1 flows from the inflow port 11a, a part of will flow into the gap 24 of the disk 21 gradually flows reliably into the gap 24 of the disc 21 before almost all reaches the position of the inlet port 11b Finish.
- the flow path 13a is short from the inflow port 11a to just before the inflow port 11b, which corresponds to a portion along the substantially half circumference of the side wall portion 16. Therefore, the fluid G 1 also flows immediately before the inlet port 11b along the side wall portion 16 corresponding to the flow path 13a end portion deceleration is small. Therefore, the fluid G1 can flow into the gap 24 of the disk 21 at a high speed even at a location immediately before the inflow port 11b at the end of the flow path 11a. The same applies to the flow path 13b starting from the inflow port 11b.
- the fluids G 1 and G 2 flow into the gap 24 of the disk 21 at high speed without fail while flowing through a short distance in the space portion along the side wall portion 16, that is, the flow path 13.
- the disk 21 receives a greater force and can rotate the rotor 3 efficiently.
- the channel cross-sectional area S of the channel 13 extending from one inlet 11 toward one circumferential direction is extremely small immediately before the adjacent inlet 11. It is more preferable.
- Embodiment in which the channel cross-sectional area of the channel gradually decreases at a constant ratio In the turbine 1 of the present invention, it is preferable that the flow path cross-sectional area S of the flow path 13 gradually decreases at a constant rate in one circumferential direction.
- the fluid G gradually flows into the gap 24 of the disk 21 in a certain amount while flowing in the circumferential direction of the flow path 13. Therefore, the fluid G flows almost uniformly into the gaps 24 of the disk 21 from all directions in the radial direction R, and the surface 25 of the disk 21 receives the force from the fluid G evenly over the entire surface without being biased.
- Embodiment comprising an annular shaped disc comprising an annular shaped disc:
- the plurality of disks 21 provided in the rotor 3 are preferably formed in an annular shape having a substantially circular outer edge 23 and a width W in the direction from the outer edge 23 to the center 26, as shown in FIG.
- the annular disk 21 has a width W that is less than or equal to one half of the length from the center 26 to the outer edge 23.
- the fluid G flows into the gap 24 from the flow path 13, first, the kinetic energy is transmitted to the disk 21 in a portion close to the outer edge 23 of the disk 21, and thereafter, without contributing to the increase in rotational energy of the disk 21. Then, it is discharged from the circulation hole 22. Therefore, it is desirable that the fluid G is discharged from the gap 24 of the disk 21 as soon as possible after the kinetic energy has been transmitted to the disk 21. This is because if the state in which the fluid G stays in the gap 24 continues, the rotation of the disk 21 may decrease due to the viscosity of the fluid G.
- the disk 21 is formed into an annular shape, and the edge of the flow hole 22 is brought close to the outer edge 23 of the disk 21, that is, the length W of the annular disk 21 is the length from the center 26 to the outer edge 23.
- Embodiments with multiple rotors can also be applied to the turbine 1 of the present invention. In an embodiment including a plurality of rotors 3, it is preferable that the plurality of rotors 3 be provided to be rotatable at different rotational speeds with the same rotation shaft 10.
- each rotor 3 does not leak from the fluid G, and the energy of the fluid G can be converted into the rotational force of the rotor.
- the shaft portions 4 provided in the respective rotors 3 may be connected to separate generators, or may be adjusted to the same number of revolutions by gears, and then the common power generation You may connect to the machine.
- FIG. 7 to 10 show an example of an embodiment including the above-described plurality of rotors.
- FIG. 7 is a longitudinal sectional view of a turbine 1 including two rotors 3a and 3b.
- FIG. 8 is a cross-sectional view taken along line E-E ′ in FIG. Note that F-F 'in FIG. 8 indicates the position of the longitudinal sectional view of FIG.
- FIG. 9 is a perspective view of the two rotors 3a and 3b shown in FIG.
- FIG. 10 shows one disk 21a and 21b extracted from the rotors 3a and 3b, respectively, and shows the relationship between these disks 21a and 21b and the shaft portions 4a and 4b.
- the embodiment of the rotor 3 shown in FIGS. 7 to 10 will be referred to as the embodiment of FIG. 7 for convenience of explanation.
- two rotors 3a and 3b are provided, and one rotor 3b is an annular rotor 50 on which an annular disk 21 is stacked.
- the rotor 3 a is disposed in the ring of the annular disk 21 b of the annular rotor 50.
- the annular disk 21b of the annular rotor 50 (rotor 3b) is fixed by a U-shaped connecting portion 28 and the gap 24 is held.
- the U-shaped connecting portion 28 includes two sides extending in parallel to the rotation shaft 10 and one side extending in a direction perpendicular to the rotation shaft 10 by connecting the two sides on one side. ing.
- two side portions extending in parallel to the rotation axis 10 pass through two symmetrical positions with respect to the center 26 of the annular disk 21.
- a portion of one side extending in a direction perpendicular to the rotation shaft 10 of the U-shaped connection portion 28 is connected to the shaft portion 4 b at a location intersecting the rotation shaft 10.
- the annular rotor 50 (rotor 3b) can obtain a large rotational force from the fluid G flowing on the surface 25b of the annular disk 21b at a high speed, as described above.
- the fluid G flowing in the ring is not affected by the decrease in the rotation of the annular disk 21b. Therefore, in this embodiment, the annular rotor 50 having the annular disk 21b can efficiently convert the kinetic energy of the fluid G into the rotational force of the rotor.
- the rotor 3 b having the longest disk 21 b from the center 26 to the outer edge 23 among the plurality of rotors 3 stacks the plurality of annular disks 21 b. More preferably, the remaining rotor 3a is provided to be rotatable at a rotational speed different from that of the annular rotor 50 in the ring of the disk 21b of the annular rotor 50.
- annular rotors 50 having an annular disk 21 having a small outer edge 23 are sequentially accommodated in a ring of the disk 21 of the annular rotor 50 having an annular disk 21 having a large outer edge 23.
- An embodiment in which the rotor 50 is arranged in a nested manner around the single rotation shaft 10 (not shown) may be employed.
- Example 1 The disc had a circular outer edge with a radius of 10 cm and a circular circulation hole with a radius of 1.5 cm in the center, and was set to a thickness of 300 ⁇ m.
- the rotor was set so that the 25 discs adjacent to each other were laminated with a gap of 200 ⁇ m.
- the casing it has one inflow port, the cross-sectional area at the inflow port is 45 mm 2, and the cross-sectional area at the flow path starting from the inflow port is centered on the rotation axis along the rotation direction of the rotor
- the rotation angle is set to decrease at a rate of 0.125 mm 2 per 1 degree.
- the fluid G was set to be continuously introduced at 12.6 g / sec in the tangential direction of the disk from the inlet.
- positioning of a flow path, explanatory drawing is shown in the right column of FIG.
- Example 2 The cross-sectional area of the flow path at the inlet is 90 mm 2, and the cross-sectional area of the flow path starting from the inlet is a ratio of 0.25 mm 2 per rotation angle around the rotation axis along the rotation direction of the rotor
- the setting was the same as in Example 1, except that the fluid G was continuously introduced from the inlet in the tangential direction of the disk at 25.3 g / sec.
- explanatory drawing is shown in the right column of FIG.
- Example 3 The disk had a circular outer edge with a radius of 10 cm, an annular shape with a width of 4 cm in the direction from the outer edge toward the center, and the inside of the ring was a flow hole, and the thickness was set to 300 ⁇ m.
- the rotor was set so that the 25 discs were laminated with a gap of 200 ⁇ m between adjacent ones.
- the casing had the same shape as in Example 2 and was set to continuously introduce the fluid G from the inflow port in the tangential direction of the disk at 25.3 g / sec.
- positioning of a flow path, explanatory drawing is shown in the right column of FIG.
- Example 4 The disc had a circular outer edge with a radius of 10 cm and a circular flow hole with a radius of 6.0 cm in the center, and was set to a thickness of 300 ⁇ m.
- the rotor was set so that the 25 discs adjacent to each other were laminated with a gap of 200 ⁇ m.
- the casing has one inlet, the flow path cross-sectional area at the inlet to about 180 mm 2, the rotary shaft the flow path cross-sectional area of the flow path that starts from the inlet along the rotational direction of the rotor It was set to decrease at a rate of about 0.5 mm 2 per one rotation angle of the center.
- the setting was such that the fluid G (water vapor at 300 ° C.) was continuously introduced from the inflow port in the tangential direction of the disk at 15.8 g / sec.
- the flow rate of the fluid at the inlet was set to 150 m / sec.
- explanatory drawing is shown in the right column of FIG.
- the disc had a circular outer edge with a radius of 10 cm and a circular flow hole with a radius of 6.0 cm in the center, and was set to a thickness of 300 ⁇ m.
- the rotor was set so that the 25 adjacent discs were laminated with a gap of 200 ⁇ m.
- the casing has one inlet, the flow path cross-sectional area at the inlet was about 90 mm 2, the rotary shaft the flow path cross-sectional area of the flow path that starts from the inlet along the rotational direction of the rotor It was set to decrease at a rate of 0.25 mm 2 per one rotation angle of the center.
- the setting was such that the fluid G (water vapor at 300 ° C.) was continuously introduced from the inflow port in the tangential direction of the disk at 15.8 g / sec.
- the flow rate of the fluid at the inlet was set to 300 m / sec.
- explanatory drawing is shown in the right column of FIG.
- Comparative Examples 1 to 3 In Comparative Examples 1 to 3, the same rotor as in Example 1 was set to blow fluid from a nozzle provided at a predetermined position of the casing.
- fluid was introduced from one nozzle in the tangential direction of the disk at 1.58 g / sec.
- fluid was introduced from each of four nozzles in the tangential direction of the disk to 1.58 g / sec (total of 6.32 g
- the fluid was introduced at a rate of 1.58 g / sec (total 12.6 g / sec) in the tangential direction of the disk from each of the eight nozzles.
- positioning of a flow path, explanatory drawing is shown in the right column of FIG.
- Comparative Example 4 fluid is blown into the rotor of Example 3 from the nozzles provided at 32 predetermined positions of the casing, and fluid is sent from each nozzle in the tangential direction of the disk to 1.58 g / sec (total of 50.5 g). / Sec).
- total of 50.5 g). / Sec total of 50.5 g). / Sec.
- the present invention can be used as a turbine that rotates a rotor by the viscosity of a fluid.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Hydraulic Turbines (AREA)
Abstract
A turbine which converts the kinetic energy of fluid to the rotational energy of the rotor at high efficiency. A turbine (1) is provided with: a rotor (3) which is formed by stacking disks (21) on each other with gaps (24) therebetween; and a casing (2) which has a containing space (20) for rotatably containing the rotor (3), the containing space (20) being surrounded by a side wall section (16) which surrounds the outer periphery of the rotor (3) from the outside in the radial direction (R) relative to the rotation axis (10), and the containing space (20) being surrounded also by two end wall sections which cover the rotor (3) from both sides in the direction of the rotation axis (10) so as to sandwich the rotor (3). In the casing (2), a space portion in the containing space (20), the space portion being located between the side wall section (16) and the rotor (3) and extending along the side wall section (16), is defined as a flow path (13) for fluid (G). The casing (2) is also provided with an inlet opening (11) which causes the fluid (G) flowing to the flow path (13) to flow in one circumferential direction centering on the rotation axis (10), and the cross-sectional area of the flow path (13) is reduced from the inlet opening (11) in said circumferential direction.
Description
本発明は、流体の粘性によってローターを回転させるタービンに関する。
The present invention relates to a turbine that rotates a rotor by the viscosity of a fluid.
タービンは、ケーシング内での蒸気など流体の流れをローターの回転に変換し、ローターの回転のエネルギーを発電などに利用する。
The turbine converts the flow of fluid such as steam in the casing into the rotation of the rotor, and uses the energy of the rotation of the rotor for power generation.
タービンのうち、ディスクが積層するローターを備えるものとしては、1913年にテスラが発明したテスラタービンおよびその改良型のタービンがある。テスラタービンでは、ローターは、複数の平面形状のディスクが互いに隙間を持って積層した構造を備えている。そして、ケーシング内部を巻回する流体の粘性抵抗によってディスクに回転力が加わり、ローターが回転する。
Among the turbines, those equipped with rotors on which disks are stacked include the Tesla turbine invented by Tesla in 1913 and its improved turbine. In a Tesla turbine, the rotor has a structure in which a plurality of planar disks are stacked with a gap therebetween. Then, a rotational force is applied to the disk by the viscous resistance of the fluid wound inside the casing, and the rotor rotates.
テスラタービンを改良したものには、粘性・衝動複合型ソーラーパルスタービンがある(特許文献1)。このタービンでは、ディスク表面に突起形状の衝動エレメントが設けられている。そして、このタービンでは、流体が衝動エレメントに衝突する際に生じる衝動力と反発力を利用することにより、ローターの回転効率の向上を図っている。
An improved Tesla turbine is a combined viscous / impulsive solar pulse turbine (Patent Document 1). In this turbine, a protruding impulse element is provided on the disk surface. In this turbine, the rotational efficiency of the rotor is improved by utilizing the impulse and repulsive force generated when the fluid collides with the impulse element.
しかしながら、従来のタービンでは、ケーシング内に流入した流体の運動エネルギーをローターの回転に変換する効率が依然として低い。また、従来の粘性・衝動複合型ソーラーパルスタービンでは、突起形状の衝動エレメントが、ローターのディスク表面に存在し、ディスクの隙間における流体の流れの障害となる。
However, in the conventional turbine, the efficiency of converting the kinetic energy of the fluid flowing into the casing into the rotation of the rotor is still low. Moreover, in the conventional viscous / impulsive composite type solar pulse turbine, the protrusion-shaped impulse element exists on the disk surface of the rotor, which obstructs the fluid flow in the gap between the disks.
上記の問題に鑑みて、本発明の課題は、流体の運動エネルギーからローターの回転エネルギーへの変換の効率が高いタービンを提供することにある。
In view of the above problems, an object of the present invention is to provide a turbine having high conversion efficiency from fluid kinetic energy to rotor rotational energy.
上記課題を解決するため、本発明者は、鋭意検討した結果、本発明を完成するに至った。すなわち、本発明によれば、以下に示すタービンが提供される。
In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, have completed the present invention. That is, according to the present invention, the following turbine is provided.
[1] 複数のディスクが中心を1つの軸の上に配して互いに隙間を有して積層するローターと、前記ローターを前記軸を回転軸として回転可能に収容すると共に前記回転軸に対し半径方向外側に前記ローターの外周を囲む側壁部と前記回転軸に沿った方向の両側から前記ローターを挟み込むように覆う2つの端壁部とに囲まれる収容空間を有するケーシングと、を備え、前記ケーシングにおいて、前記収容空間における前記側壁部と前記ローターとの間の前記側壁部に沿った空間部分を流体の流路とし、前記流路へ前記流体を前記回転軸を中心とする一方の周方向へ流入させる流入口が設けられ、前記流路の流路断面積が前記流入口から前記一方の周方向において減少するタービン。
[1] A rotor in which a plurality of discs are arranged on a single shaft and stacked with a gap between each other, and the rotor is rotatably accommodated with the shaft as a rotation shaft and has a radius with respect to the rotation shaft A casing having a housing space surrounded by a side wall portion that surrounds the outer periphery of the rotor on the outer side in the direction and two end wall portions that cover the rotor from both sides in the direction along the rotation axis. A space portion along the side wall portion between the side wall portion and the rotor in the accommodating space is a fluid flow path, and the fluid is transferred to the flow path in one circumferential direction around the rotation axis. A turbine provided with an inflow port for inflow, wherein a flow path cross-sectional area of the flow path decreases in the one circumferential direction from the inflow port.
[2] 前記ケーシングにおいて、前記一方の周方向における異なる位置に複数の前記流入口が設けられている前記[1]に記載のタービン。
[2] The turbine according to [1], wherein a plurality of the inlets are provided at different positions in the one circumferential direction in the casing.
[3] 前記流路断面積が、前記一方の周方向において一定の割合にて漸減する前記[1]または[2]に記載のタービン。
[3] The turbine according to [1] or [2], wherein the flow path cross-sectional area gradually decreases at a constant rate in the one circumferential direction.
[4] 前記複数のディスクは、略円形の外縁と前記外縁から前記中心への方向に幅を持つ円環状の形状を有し、前記幅の長さが、前記中心から前記外縁までの長さの2分の1以下である前記[1]~[3]のいずれかに記載のタービン。
[4] The plurality of disks have a substantially circular outer edge and an annular shape having a width in a direction from the outer edge to the center, and the length of the width is a length from the center to the outer edge. The turbine according to any one of [1] to [3], which is less than or equal to one half of the above.
[5] 前記ローターが、前記回転軸を同一として異なる回転速度で回転できるように複数備えられ、前記複数のローターのうち、前記中心から外縁までの長さの最も大きい前記ディスクを有する前記ローターが、複数の環状の前記ディスクを積層している環状ローターであり、前記環状ローターの前記ディスクの環の内に残余の前記ローターが設けられている前記[1]~[3]のいずれかに記載のタービン。
[5] A plurality of the rotors are provided so as to be able to rotate at different rotational speeds with the same rotation axis, and the rotor having the largest disk from the center to the outer edge among the plurality of rotors. The annular rotor in which a plurality of annular disks are stacked, and the remaining rotor is provided in a ring of the disk of the annular rotor. Turbine.
[6] 前記環状ローターにおいて、環状の前記ディスクが略円形の前記外縁と前記外縁から前記中心への方向に幅を持つ円環状の形状を有し、前記幅の長さが前記中心から前記外縁までの長さの2分の1以下である前記[5]に記載のタービン。
[6] In the annular rotor, the annular disk has a substantially circular outer edge and an annular shape having a width in the direction from the outer edge to the center, and the length of the width is from the center to the outer edge. The turbine according to [5], wherein the turbine is less than or equal to one half of the length up to.
本発明のタービンは、流体の運動エネルギーからローターの回転エネルギーへの変換の効率が高い。
The turbine of the present invention has a high conversion efficiency from fluid kinetic energy to rotor rotational energy.
以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the present invention.
1.本発明のタービン概要:
図1は、本発明の技術的範囲に属するタービン1の斜視図である。本発明のタービン1は、ケーシング2の収容空間20にローター3を収容する。図1では、ローター3については、ディスク21など詳細な構造の描写を省き輪郭を破線で表す。 1. Overview of the turbine of the present invention:
FIG. 1 is a perspective view of aturbine 1 belonging to the technical scope of the present invention. The turbine 1 of the present invention accommodates the rotor 3 in the accommodating space 20 of the casing 2. In FIG. 1, the detailed structure of the rotor 3 such as the disk 21 is omitted and the outline is represented by a broken line.
図1は、本発明の技術的範囲に属するタービン1の斜視図である。本発明のタービン1は、ケーシング2の収容空間20にローター3を収容する。図1では、ローター3については、ディスク21など詳細な構造の描写を省き輪郭を破線で表す。 1. Overview of the turbine of the present invention:
FIG. 1 is a perspective view of a
図2は、図1中のA-A’でのタービン1の横断面図である。図3は、図1中のB-B’でのタービン1の縦断面図である。
FIG. 2 is a cross-sectional view of the turbine 1 at A-A ′ in FIG. FIG. 3 is a longitudinal sectional view of the turbine 1 taken along the line B-B ′ in FIG.
ローター3は、複数のディスク21の中心26が並ぶ軸を回転軸10として回転できるように軸部4に支えられながら、ケーシング2の収容空間20に収容されている。軸部4は、回転軸10に沿って形成されている。
The rotor 3 is accommodated in the accommodating space 20 of the casing 2 while being supported by the shaft portion 4 so as to be able to rotate with the axis on which the centers 26 of the plurality of disks 21 are arranged as the rotation shaft 10. The shaft portion 4 is formed along the rotation shaft 10.
図3を参照し述べると、収容空間20は、側壁部16と、側壁部16を挟む2つの端壁部18、19とに囲まれている。
Referring to FIG. 3, the accommodation space 20 is surrounded by the side wall portion 16 and two end wall portions 18 and 19 sandwiching the side wall portion 16.
側壁部16は、収容空間20にローター3を収容した時、回転軸10に対して半径方向R外側にローター3の外周を囲む壁部である。
The side wall 16 is a wall that surrounds the outer periphery of the rotor 3 on the outer side in the radial direction R with respect to the rotation shaft 10 when the rotor 3 is accommodated in the accommodation space 20.
端壁部18、19は、収容空間20にローター3を収容した時、回転軸10に沿った方向の両側からローター3を挟み込むように覆う壁部である。
The end wall portions 18 and 19 are wall portions that cover the rotor 3 so as to sandwich the rotor 3 from both sides in the direction along the rotation shaft 10 when the rotor 3 is accommodated in the accommodation space 20.
図2、3を参照し述べると、ローター3では、複数のディスク21がディスク21の中心26を1つの軸上に並び、さらに、複数のディスク21が互いに隙間24を有して積み重なる。
2 and 3, in the rotor 3, in the rotor 3, the plurality of disks 21 are arranged with the centers 26 of the disks 21 on one axis, and the plurality of disks 21 are stacked with gaps 24 therebetween.
特に、ディスク21は、円盤形状、または図2に示すように中心部分に流通穴22のある形状であることが好ましい。
In particular, it is preferable that the disk 21 has a disk shape or a shape having a circulation hole 22 at the center as shown in FIG.
同じローター3に設けられる複数のディスク21は、流体Gのエネルギーの変換の効率性および生産性を向上できるため、外縁23の形状が全て同じあることが好ましい。このとき、外縁23の形状は、ディスク21の中心26を中心とする円となることがより好ましい。
Since the plurality of disks 21 provided in the same rotor 3 can improve the efficiency and productivity of energy conversion of the fluid G, it is preferable that the outer edges 23 have the same shape. At this time, the shape of the outer edge 23 is more preferably a circle centered on the center 26 of the disk 21.
もちろん、ディスク21の形状や大きさは、製造方法や側壁部16の形状等に応じて、全て同じにもできるし、あるいは1枚ずつ異なるようにもできる。
Of course, the shape and size of the disk 21 can all be the same or different one by one depending on the manufacturing method, the shape of the side wall portion 16 and the like.
図4は、図1中の括弧C-C’に挟まれる部分でのタービン1の模式図である。図4中の白抜き矢印は、流体Gの流れを表す。
FIG. 4 is a schematic diagram of the turbine 1 at a portion sandwiched between parentheses C-C ′ in FIG. The white arrow in FIG. 4 represents the flow of the fluid G.
収容空間20では、側壁部16とローター3との間の側壁部16に沿った空間部分を流体Gの流路13とする。
In the accommodating space 20, a space portion along the side wall portion 16 between the side wall portion 16 and the rotor 3 is used as a flow path 13 for the fluid G.
ケーシング2には、流路13に流体Gを流入させるための流入口11が設けられている。流入口11は、流路13において、流体Gが回転軸10を中心に一方の周方向に流れるように形成されている。
The casing 2 is provided with an inlet 11 for allowing the fluid G to flow into the flow path 13. The inflow port 11 is formed so that the fluid G flows in one circumferential direction around the rotation shaft 10 in the flow path 13.
図4では、流入口11は、側壁部16を開口させることにより形成されている。流体Gを流路13においてローター3の回転方向に流すことができる限りにおいては、端壁部18、19のいずれかを開口させることにより、流入口11を形成してもよい(図示せず)。
In FIG. 4, the inflow port 11 is formed by opening the side wall portion 16. As long as the fluid G can flow in the direction of rotation of the rotor 3 in the flow path 13, the inlet 11 may be formed by opening one of the end walls 18 and 19 (not shown). .
図2を参照し述べると、流入口11は、流体Gの流路13への進入方向Dが、回転軸10からの半径方向Rにほぼ垂直となるように形成されていることが好ましい。これによって、流体がディスク21を回転させようとするモーメントがほぼ最大となるため、ディスク21を効果的に回すことができる。
Referring to FIG. 2, the inlet 11 is preferably formed so that the direction D of the fluid G entering the flow path 13 is substantially perpendicular to the radial direction R from the rotating shaft 10. As a result, the moment at which the fluid tries to rotate the disk 21 is substantially maximized, so that the disk 21 can be effectively rotated.
図1を参照し述べると、流路13では、流路断面積Sが、流入口11から流体Gの流れる一方の周方向において減少する。
Referring to FIG. 1, in the flow path 13, the flow path cross-sectional area S decreases in one circumferential direction in which the fluid G flows from the inlet 11.
流路13の流路断面積Sとは、回転軸10から半径方向Rに向かう面における流路13の断面の面積である。
The flow path cross-sectional area S of the flow path 13 is the area of the cross section of the flow path 13 on the surface from the rotating shaft 10 toward the radial direction R.
図4を参照し述べると、流路13の流路断面積Sが上記のように減少するため、流体Gは、側壁部16に沿って一方の周方向に流路13内を流れながら、順次その一部がディスク21の隙間24流れ込む。流体Gは、隙間24内において、回転軸10に向かって巻き込むよう流れる。そのため、隙間24を流れる流体Gとディスク21の表面25との摩擦および流体Gの粘性によって、ディスク21に回転力が生じ、ローター3およびこれを支える軸部4が回転する。
Referring to FIG. 4, since the flow path cross-sectional area S of the flow path 13 decreases as described above, the fluid G sequentially flows in the flow path 13 along the side wall portion 16 in one circumferential direction. Part of it flows into the gap 24 of the disk 21. The fluid G flows in the gap 24 so as to be wound toward the rotating shaft 10. Therefore, the friction between the fluid G flowing through the gap 24 and the surface 25 of the disk 21 and the viscosity of the fluid G cause a rotational force on the disk 21, and the rotor 3 and the shaft portion 4 that supports the rotor 3 rotate.
ディスク21は、表裏の表面25に突起物や羽根(ブレード)のない板形状を有する。このディスク21では、表面25に突起形状が無いため、流体Gが邪魔されることなく隙間24内を流れる。
The disk 21 has a plate shape without protrusions and blades (blades) on the front and back surfaces 25. In this disk 21, since the surface 25 does not have a protruding shape, the fluid G flows in the gap 24 without being obstructed.
本発明のタービン1では、軸部4の回転から、動力を得ることや、発電することができる。
In the turbine 1 of the present invention, power can be obtained or electric power can be generated from the rotation of the shaft portion 4.
本発明のタービン1では、図1~4に示す実施形態(以下、「図1の実施形態」)のように、回転軸10に沿った方向の両側にある端壁部18、19が、ローター3の両端のディスク21に近接していることが好ましい(図3参照)。これによって、流体Gが流路13及びディスク21の隙間24に集中的に流れ、流入口11から流入した流体Gの大半をディスク21の回転力の付与に貢献させることができる。
In the turbine 1 of the present invention, as in the embodiment shown in FIGS. 1 to 4 (hereinafter, “embodiment of FIG. 1”), the end wall portions 18 and 19 on both sides in the direction along the rotary shaft 10 are rotors. 3 is preferably close to the disks 21 at both ends (see FIG. 3). Thereby, the fluid G flows intensively in the gaps 24 between the flow path 13 and the disk 21, and most of the fluid G flowing in from the inflow port 11 can contribute to the application of the rotational force of the disk 21.
図1の実施形態のタービン1では、端壁部18に流出口12が設けられ、流通穴22を有するディスク21を積層したローター3を備えている。図1の実施形態のタービン1では、流体Gが、流路13からディスク21の隙間24に流れ込み、続いて流通穴22を通過して流出口12から排出される。
1 includes a rotor 3 in which an outlet 12 is provided in an end wall portion 18 and a disk 21 having a circulation hole 22 is laminated. In the turbine 1 of the embodiment of FIG. 1, the fluid G flows from the flow path 13 into the gap 24 of the disk 21, then passes through the circulation hole 22 and is discharged from the outlet 12.
本発明のタービン1は、以下に述べる実施形態も適用できる。
The embodiment described below can also be applied to the turbine 1 of the present invention.
2.複数の流入口を有する実施形態:
ケーシング2には、複数の流入口11が、回転軸10を中心とする一方の周方向において異なる位置に設けられていることが好ましい。 2. Embodiments having multiple inlets:
Thecasing 2 is preferably provided with a plurality of inflow ports 11 at different positions in one circumferential direction around the rotation shaft 10.
ケーシング2には、複数の流入口11が、回転軸10を中心とする一方の周方向において異なる位置に設けられていることが好ましい。 2. Embodiments having multiple inlets:
The
上記のように複数の流入口11を設ける実施形態では、流体Gは、ある流入口11から流入すると、流路13において、その隣の流入口11までの短い距離を流れれば十分となる。このように短い距離を流れる間では、流体Gの減速も少ない。そのため、流体Gは、収容空間20の側壁部16の略全周に沿った空間部分において、ディスク21を回転させるのに十分な速度にて確実に流れることができる。したがって、このような複数の流入口11を設ける実施形態では、流体Gが半径方向Rの満遍なく各方位から一定以上の速度にてディスク21の隙間24に流れ込み、ディスク21の表面25全体において流体Gとの摩擦を生じ、この摩擦を利用してディスク21を効果的に回転させることができる。
In the embodiment in which the plurality of inlets 11 are provided as described above, when the fluid G flows from a certain inlet 11, it is sufficient that the fluid G flows through a short distance to the adjacent inlet 11 in the flow path 13. During such a short distance, there is little deceleration of the fluid G. Therefore, the fluid G can reliably flow at a speed sufficient to rotate the disk 21 in a space portion along substantially the entire circumference of the side wall portion 16 of the accommodation space 20. Therefore, in the embodiment in which such a plurality of inlets 11 are provided, the fluid G flows into the gap 24 of the disc 21 at a speed equal to or higher than a certain direction from each direction uniformly in the radial direction R, and the fluid G over the entire surface 25 of the disc 21. The disk 21 can be effectively rotated using this friction.
図5に示す本発明のタービン1の実施形態では、2個の流入口11a、11bを有する。図6は、図5中のD-D’の横断面図を示す。
In the embodiment of the turbine 1 according to the present invention shown in Fig. 5, there are two inflow ports 11a and 11b. FIG. 6 is a cross-sectional view taken along the line D-D ′ in FIG.
図5、6に示す実施形態では、回転軸10を中心として対称となる位置に2個の流入口11a、11bを設けている。
In the embodiment shown in FIGS. 5 and 6, two inflow ports 11a and 11b are provided at positions symmetrical with respect to the rotation axis 10.
図5,6の実施形態では、流入口11bの直前で側壁部16とディスク21の外縁23とが近接している。そのため、流路13aでは、その流路断面積Sが、流入口11aの位置から減少していき、隣の流入口11bの直前で極めて小さくなる。流体G1は、流入口11aから流入し、その一部が徐々にディスク21の隙間24に流れ込んでいき、殆ど全てが流入口11bの位置に至る前にはディスク21の隙間24に確実に流れ込み終える。
5 and 6, the side wall 16 and the outer edge 23 of the disk 21 are close to each other immediately before the inflow port 11b. Therefore, in the flow path 13a, the flow path cross-sectional area S decreases from the position of the inflow port 11a, and becomes extremely small immediately before the adjacent inflow port 11b. Fluid G 1 flows from the inflow port 11a, a part of will flow into the gap 24 of the disk 21 gradually flows reliably into the gap 24 of the disc 21 before almost all reaches the position of the inlet port 11b Finish.
以上のように、流路13aは、側壁部16の略半周に沿った部分に当たる、流入口11aから流入口11bの直前までと短い。そのため、流体G1は、側壁部16に沿って流路13a末部にあたる流入口11bの直前まで流れても減速が少ない。したがって、流体G1は、流路11a末部の流入口11bの直前の箇所においても、ディスク21の隙間24に高速にて流れ込むことができる。流入口11bから始まる流路13bについても同様である。
As described above, the flow path 13a is short from the inflow port 11a to just before the inflow port 11b, which corresponds to a portion along the substantially half circumference of the side wall portion 16. Therefore, the fluid G 1 also flows immediately before the inlet port 11b along the side wall portion 16 corresponding to the flow path 13a end portion deceleration is small. Therefore, the fluid G1 can flow into the gap 24 of the disk 21 at a high speed even at a location immediately before the inflow port 11b at the end of the flow path 11a. The same applies to the flow path 13b starting from the inflow port 11b.
よって、図5,6の実施形態では、流体G1、G2が側壁部16に沿った空間部分、すなわち流路13において短い距離を流れる間にもれなくディスク21の隙間24に高速で流れ込むため、ディスク21がより大きな力を受け、ローター3を効率的に回すことができる。
Therefore, in the embodiment of FIGS. 5 and 6, the fluids G 1 and G 2 flow into the gap 24 of the disk 21 at high speed without fail while flowing through a short distance in the space portion along the side wall portion 16, that is, the flow path 13. The disk 21 receives a greater force and can rotate the rotor 3 efficiently.
このように、複数の流入口11を有する実施形態では、ある1つの流入口11から一方の周方向に向かう流路13の流路断面積Sが、隣の流入口11の直前に極めて小さくなることがより好ましい。
As described above, in the embodiment having the plurality of inlets 11, the channel cross-sectional area S of the channel 13 extending from one inlet 11 toward one circumferential direction is extremely small immediately before the adjacent inlet 11. It is more preferable.
3.流路の流路断面積が一定の比率にて漸減する実施形態:
本発明のタービン1では、流路13の流路断面積Sが、一方の周方向において一定の割合で漸減することが好ましい。 3. Embodiment in which the channel cross-sectional area of the channel gradually decreases at a constant ratio:
In theturbine 1 of the present invention, it is preferable that the flow path cross-sectional area S of the flow path 13 gradually decreases at a constant rate in one circumferential direction.
本発明のタービン1では、流路13の流路断面積Sが、一方の周方向において一定の割合で漸減することが好ましい。 3. Embodiment in which the channel cross-sectional area of the channel gradually decreases at a constant ratio:
In the
この実施形態では、流体Gは、流路13を一方の周方向に流れつつ、その一部が一定量でディスク21の隙間24へ徐々に流れ込む。そのため、半径方向Rの全方位からディスク21の隙間24へ流体Gがほぼ均等に流入し、ディスク21の表面25は、部分ごとの偏りなく、全面均等に流体Gから力を受ける。
In this embodiment, the fluid G gradually flows into the gap 24 of the disk 21 in a certain amount while flowing in the circumferential direction of the flow path 13. Therefore, the fluid G flows almost uniformly into the gaps 24 of the disk 21 from all directions in the radial direction R, and the surface 25 of the disk 21 receives the force from the fluid G evenly over the entire surface without being biased.
4.円環状の形状のディスクを備える実施形態:
ローター3に設けられる複数のディスク21では、例えば図2に示すように、略円形の外縁23と外縁23から中心26への方向に幅Wを持つ円環状の形状にすることが好ましい。 4). Embodiment comprising an annular shaped disc:
The plurality ofdisks 21 provided in the rotor 3 are preferably formed in an annular shape having a substantially circular outer edge 23 and a width W in the direction from the outer edge 23 to the center 26, as shown in FIG.
ローター3に設けられる複数のディスク21では、例えば図2に示すように、略円形の外縁23と外縁23から中心26への方向に幅Wを持つ円環状の形状にすることが好ましい。 4). Embodiment comprising an annular shaped disc:
The plurality of
さらに、円環状の形状のディスク21は、幅Wの長さが中心26から外縁23までの長さの2分の1以下であることがより好ましい。
Furthermore, it is more preferable that the annular disk 21 has a width W that is less than or equal to one half of the length from the center 26 to the outer edge 23.
流体Gは、流路13から隙間24に流入すると、まず、ディスク21の外縁23に近い部位において、その運動エネルギーをディスク21に伝え、それ以降は、ディスク21の回転エネルギー増加に寄与することなく、流通穴22から排出される。したがって、流体Gが運動エネルギーをディスク21に伝え切った以降は、できるだけ早期にディスク21の隙間24から排出することが望ましい。なぜならば、流体Gが隙間24に滞留している状態が続くと、流体Gの粘性によってディスク21の回転が低下する可能性があるからである。このため、ディスク21を円環状にして、流通穴22の縁をディスク21の外縁23に近づける、すなわち円環状の形状のディスク21の幅Wの長さを中心26から外縁23までの長さの2分の1以下にすることにより、運動エネルギーをディスク21に伝え切った後の流体Gがディスク21の回転を低下させることを回避することができる。
When the fluid G flows into the gap 24 from the flow path 13, first, the kinetic energy is transmitted to the disk 21 in a portion close to the outer edge 23 of the disk 21, and thereafter, without contributing to the increase in rotational energy of the disk 21. Then, it is discharged from the circulation hole 22. Therefore, it is desirable that the fluid G is discharged from the gap 24 of the disk 21 as soon as possible after the kinetic energy has been transmitted to the disk 21. This is because if the state in which the fluid G stays in the gap 24 continues, the rotation of the disk 21 may decrease due to the viscosity of the fluid G. For this reason, the disk 21 is formed into an annular shape, and the edge of the flow hole 22 is brought close to the outer edge 23 of the disk 21, that is, the length W of the annular disk 21 is the length from the center 26 to the outer edge 23. By setting it to 1/2 or less, it is possible to prevent the fluid G after the kinetic energy has been transmitted to the disk 21 from decreasing the rotation of the disk 21.
5.複数のローターを備える実施形態:
本発明のタービン1は、複数のローター3を備える実施形態も適用できる。複数のローター3を備える実施形態では、複数のローター3が、回転軸10を同一として異なる回転速度にて回転可能に設けられていることが好ましい。 5. Embodiments with multiple rotors:
The embodiment including a plurality ofrotors 3 can also be applied to the turbine 1 of the present invention. In an embodiment including a plurality of rotors 3, it is preferable that the plurality of rotors 3 be provided to be rotatable at different rotational speeds with the same rotation shaft 10.
本発明のタービン1は、複数のローター3を備える実施形態も適用できる。複数のローター3を備える実施形態では、複数のローター3が、回転軸10を同一として異なる回転速度にて回転可能に設けられていることが好ましい。 5. Embodiments with multiple rotors:
The embodiment including a plurality of
上記複数のローター3を備える実施形態では、流体Gから各ローター3が個別にもれなく流体Gのエネルギーをローターの回転力に変換できる。
In the embodiment including the plurality of rotors 3, each rotor 3 does not leak from the fluid G, and the energy of the fluid G can be converted into the rotational force of the rotor.
複数のローター3を備える実施形態では、各ローター3に設けられている軸部4は、それぞれ別個の発電機に接続してもよいし、ギヤによって同一の回転数に調節した上で共通の発電機に接続してもよい。
In the embodiment including a plurality of rotors 3, the shaft portions 4 provided in the respective rotors 3 may be connected to separate generators, or may be adjusted to the same number of revolutions by gears, and then the common power generation You may connect to the machine.
図7~10は、上記の複数のローターを備える実施形態の一例を示す。図7は、2つのローター3a、3bを備えるタービン1の縦断面図である。図8は、図7中のE-E’での横断面図である。なお、図8中のF-F’は、図7の縦断面図の位置を示す。図9は、図7に示す2つのローター3a、3bの斜視図である。図10は、ローター3a、3bからそれぞれ1つのディスク21a、21bを抽出し、これらのディスク21a、21bと軸部4a、4bとの関係を表す。以下の本明細書中では、図7~10に示すローター3の実施形態については、説明の便宜上、図7の実施形態と称して述べることにする。
7 to 10 show an example of an embodiment including the above-described plurality of rotors. FIG. 7 is a longitudinal sectional view of a turbine 1 including two rotors 3a and 3b. FIG. 8 is a cross-sectional view taken along line E-E ′ in FIG. Note that F-F 'in FIG. 8 indicates the position of the longitudinal sectional view of FIG. FIG. 9 is a perspective view of the two rotors 3a and 3b shown in FIG. FIG. 10 shows one disk 21a and 21b extracted from the rotors 3a and 3b, respectively, and shows the relationship between these disks 21a and 21b and the shaft portions 4a and 4b. In the following description, the embodiment of the rotor 3 shown in FIGS. 7 to 10 will be referred to as the embodiment of FIG. 7 for convenience of explanation.
図7の実施形態では、2つのローター3a、3bを備え、そのうち1つのローター3bは、環状のディスク21が積層する環状ローター50である。ローター3aは、環状ローター50の環状のディスク21bの環の内に配置されている。
In the embodiment of FIG. 7, two rotors 3a and 3b are provided, and one rotor 3b is an annular rotor 50 on which an annular disk 21 is stacked. The rotor 3 a is disposed in the ring of the annular disk 21 b of the annular rotor 50.
図7の実施形態においては、環状ローター50(ローター3b)の環状のディスク21bは、U字形状の連結部28によって固定されて隙間24が保持されている。このU字状の連結部28は、回転軸10に対して平行に延びる2辺と、この2辺を一方の側においてつないで回転軸10に対して垂直な方向に延びる1辺とから構成されている。U字形状の連結部28は、回転軸10に対して平行に延びる2辺の部分が、環状のディスク21における中心26に対して対称な2か所を貫く。そして、U字形状の連結部28の回転軸10に対して垂直な方向に延びる1辺の部分が、回転軸10と交差する箇所で軸部4bに連結している。
In the embodiment of FIG. 7, the annular disk 21b of the annular rotor 50 (rotor 3b) is fixed by a U-shaped connecting portion 28 and the gap 24 is held. The U-shaped connecting portion 28 includes two sides extending in parallel to the rotation shaft 10 and one side extending in a direction perpendicular to the rotation shaft 10 by connecting the two sides on one side. ing. In the U-shaped connecting portion 28, two side portions extending in parallel to the rotation axis 10 pass through two symmetrical positions with respect to the center 26 of the annular disk 21. A portion of one side extending in a direction perpendicular to the rotation shaft 10 of the U-shaped connection portion 28 is connected to the shaft portion 4 b at a location intersecting the rotation shaft 10.
このようにして、2つのローター3a及び環状ローター50(ローター3b)は、それぞれ別個独立した軸部4a、4bに支えられているので、互いに異なる回転速度で回転できる(図9、10参照)。
In this way, the two rotors 3a and the annular rotor 50 (rotor 3b) are supported by the independent shaft portions 4a and 4b, respectively, so that they can rotate at different rotational speeds (see FIGS. 9 and 10).
図8を参照し述べると、環状のディスク21bでは、例えば、半径方向Rにおいて、回転軸10(中心26)から外縁23までの長さが20cmのときには、外縁23から回転軸10(中心26)に向かう幅Wが30mm程度あれば、その表面25bによって流体Gから十分な回転力を得られる。
Referring to FIG. 8, in the annular disk 21b, for example, in the radial direction R, when the length from the rotation axis 10 (center 26) to the outer edge 23 is 20 cm, the outer edge 23 to the rotation axis 10 (center 26). If the width W toward the surface is about 30 mm, a sufficient rotational force can be obtained from the fluid G by the surface 25b.
図7の実施形態では、環状ローター50(ローター3b)は、先に述べたとおり、環状のディスク21bの表面25bが高速で流れる流体Gから大きな回転力を得ることができ、環状のディスク21bの環の内を流れる流体Gからは環状のディスク21bの回転を低下させる影響を受けない。そのため、この実施形態では、環状のディスク21bを有する環状ローター50が、流体Gの運動エネルギーを効率的にローターの回転力に変換できる。
In the embodiment of FIG. 7, the annular rotor 50 (rotor 3b) can obtain a large rotational force from the fluid G flowing on the surface 25b of the annular disk 21b at a high speed, as described above. The fluid G flowing in the ring is not affected by the decrease in the rotation of the annular disk 21b. Therefore, in this embodiment, the annular rotor 50 having the annular disk 21b can efficiently convert the kinetic energy of the fluid G into the rotational force of the rotor.
しかしながら、流体Gは、環状のディスク21bの環の内において、運動エネルギーを当初のレベルから消費しても、依然として回転軸10に向かって渦を巻くように流れる。そこで、図7の実施形態では、環状のディスク21bの環の内において、別のローター3aがディスク21aによって流体Gから別途の回転力をもれなく得ている。
However, even if the fluid G consumes the kinetic energy from the initial level in the ring of the annular disk 21b, it still flows in a spiral toward the rotating shaft 10. Therefore, in the embodiment of FIG. 7, in the ring of the annular disk 21b, another rotor 3a can obtain a separate rotational force from the fluid G by the disk 21a.
このように、複数のローター3を備える実施形態では、複数のローター3のうち、中心26から外縁23までの長さの最も大きいディスク21bを有するローター3bが、複数の環状のディスク21bを積層している環状ローター50であり、環状ローター50のディスク21bの環の内において、残余のローター3aが、環状ローター50とは異なる回転速度で回転可能に設けられていることがより好ましい。
As described above, in the embodiment including the plurality of rotors 3, the rotor 3 b having the longest disk 21 b from the center 26 to the outer edge 23 among the plurality of rotors 3 stacks the plurality of annular disks 21 b. More preferably, the remaining rotor 3a is provided to be rotatable at a rotational speed different from that of the annular rotor 50 in the ring of the disk 21b of the annular rotor 50.
なお、大きい外縁23の環状のディスク21を有する環状ローター50のディスク21の環の中に、小さい外縁23の環状のディスク21を有する別の環状ローター50を順に収めていくことによって、複数の環状ローター50が1つの回転軸10を中心に入れ子状に配置される実施形態としてもよい(図示せず)。
It is to be noted that a plurality of annular rotors 50 having an annular disk 21 having a small outer edge 23 are sequentially accommodated in a ring of the disk 21 of the annular rotor 50 having an annular disk 21 having a large outer edge 23. An embodiment in which the rotor 50 is arranged in a nested manner around the single rotation shaft 10 (not shown) may be employed.
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
(1)タービン
プログラムFLUENT3によるコンピューターシミュレーションを用い、タービンおよび流体の導入の形態を以下のように設定した。 (1) Turbine The computer and the fluid introduction mode were set as follows using a computer simulation by the program FLUENT3.
プログラムFLUENT3によるコンピューターシミュレーションを用い、タービンおよび流体の導入の形態を以下のように設定した。 (1) Turbine The computer and the fluid introduction mode were set as follows using a computer simulation by the program FLUENT3.
(実施例1)
ディスクについては、半径10cmの円形の外縁、中心に半径1.5cmの円形の流通穴を有するものとし、厚さ300μmに設定した。ローターについては、このディスク25枚が隣接するもの同士で隙間200μmにて積層する設定にした。ケーシングについては、1個の流入口を有し、流入口での流路断面積を45mm2とし、流入口から始まる流路での流路断面積をローターの回転方向に沿って回転軸を中心とする回転角1度あたり0.125mm2の割合で減少する設定とした。流入口から流体Gをディスクの接線方向に12.6g/secにて連続導入する設定とした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 Example 1
The disc had a circular outer edge with a radius of 10 cm and a circular circulation hole with a radius of 1.5 cm in the center, and was set to a thickness of 300 μm. The rotor was set so that the 25 discs adjacent to each other were laminated with a gap of 200 μm. As for the casing, it has one inflow port, the cross-sectional area at the inflow port is 45 mm 2, and the cross-sectional area at the flow path starting from the inflow port is centered on the rotation axis along the rotation direction of the rotor The rotation angle is set to decrease at a rate of 0.125 mm 2 per 1 degree. The fluid G was set to be continuously introduced at 12.6 g / sec in the tangential direction of the disk from the inlet. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
ディスクについては、半径10cmの円形の外縁、中心に半径1.5cmの円形の流通穴を有するものとし、厚さ300μmに設定した。ローターについては、このディスク25枚が隣接するもの同士で隙間200μmにて積層する設定にした。ケーシングについては、1個の流入口を有し、流入口での流路断面積を45mm2とし、流入口から始まる流路での流路断面積をローターの回転方向に沿って回転軸を中心とする回転角1度あたり0.125mm2の割合で減少する設定とした。流入口から流体Gをディスクの接線方向に12.6g/secにて連続導入する設定とした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 Example 1
The disc had a circular outer edge with a radius of 10 cm and a circular circulation hole with a radius of 1.5 cm in the center, and was set to a thickness of 300 μm. The rotor was set so that the 25 discs adjacent to each other were laminated with a gap of 200 μm. As for the casing, it has one inflow port, the cross-sectional area at the inflow port is 45 mm 2, and the cross-sectional area at the flow path starting from the inflow port is centered on the rotation axis along the rotation direction of the rotor The rotation angle is set to decrease at a rate of 0.125 mm 2 per 1 degree. The fluid G was set to be continuously introduced at 12.6 g / sec in the tangential direction of the disk from the inlet. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
(実施例2)
流入口での流路断面積を90mm2とし、流入口から始まる流路での流路断面積をローターの回転方向に沿って回転軸を中心とする回転角1度あたり0.25mm2の割合で減少する設定とし、流入口から流体Gをディスクの接線方向に25.3g/secにて連続導入する設定とした以外、実施例1と同じ設定にした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 (Example 2)
The cross-sectional area of the flow path at the inlet is 90 mm 2, and the cross-sectional area of the flow path starting from the inlet is a ratio of 0.25 mm 2 per rotation angle around the rotation axis along the rotation direction of the rotor The setting was the same as in Example 1, except that the fluid G was continuously introduced from the inlet in the tangential direction of the disk at 25.3 g / sec. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
流入口での流路断面積を90mm2とし、流入口から始まる流路での流路断面積をローターの回転方向に沿って回転軸を中心とする回転角1度あたり0.25mm2の割合で減少する設定とし、流入口から流体Gをディスクの接線方向に25.3g/secにて連続導入する設定とした以外、実施例1と同じ設定にした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 (Example 2)
The cross-sectional area of the flow path at the inlet is 90 mm 2, and the cross-sectional area of the flow path starting from the inlet is a ratio of 0.25 mm 2 per rotation angle around the rotation axis along the rotation direction of the rotor The setting was the same as in Example 1, except that the fluid G was continuously introduced from the inlet in the tangential direction of the disk at 25.3 g / sec. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
(実施例3)
ディスクについては、半径10cmの円形の外縁、外縁から中心に向かう方向の幅4cmの円環状の形状を有すると共に、その環の内側を流通穴とし、厚さ300μmに設定した。ローターについては、このディスク25枚が、隣接するもの同士で隙間200μmにて積層する設定にした。ケーシングは実施例2と同じ形状のものとし、流入口から流体Gをディスクの接線方向に25.3g/secにて連続導入する設定とした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 (Example 3)
The disk had a circular outer edge with a radius of 10 cm, an annular shape with a width of 4 cm in the direction from the outer edge toward the center, and the inside of the ring was a flow hole, and the thickness was set to 300 μm. The rotor was set so that the 25 discs were laminated with a gap of 200 μm between adjacent ones. The casing had the same shape as in Example 2 and was set to continuously introduce the fluid G from the inflow port in the tangential direction of the disk at 25.3 g / sec. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
ディスクについては、半径10cmの円形の外縁、外縁から中心に向かう方向の幅4cmの円環状の形状を有すると共に、その環の内側を流通穴とし、厚さ300μmに設定した。ローターについては、このディスク25枚が、隣接するもの同士で隙間200μmにて積層する設定にした。ケーシングは実施例2と同じ形状のものとし、流入口から流体Gをディスクの接線方向に25.3g/secにて連続導入する設定とした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 (Example 3)
The disk had a circular outer edge with a radius of 10 cm, an annular shape with a width of 4 cm in the direction from the outer edge toward the center, and the inside of the ring was a flow hole, and the thickness was set to 300 μm. The rotor was set so that the 25 discs were laminated with a gap of 200 μm between adjacent ones. The casing had the same shape as in Example 2 and was set to continuously introduce the fluid G from the inflow port in the tangential direction of the disk at 25.3 g / sec. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
(実施例4)
ディスクについては、半径10cmの円形の外縁、中心に半径6.0cmの円形の流通穴を有するものとし、厚さ300μmに設定した。ローターについては、このディスク25枚が隣接するもの同士で隙間200μmにて積層する設定にした。ケーシングについては、1個の流入口を有し、流入口での流路断面積を約180mm2とし、流入口から始まる流路での流路断面積をローターの回転方向に沿って回転軸を中心とする回転角1度あたり約0.5mm2の割合で減少する設定とした。流入口から流体G(300℃の水蒸気)をディスクの接線方向に15.8g/secにて連続導入する設定とした。流入口における流体の流速は150m/secに設定した。なお、ディスクの形状と流路の配置については、図12の右欄に説明図を示す。 Example 4
The disc had a circular outer edge with a radius of 10 cm and a circular flow hole with a radius of 6.0 cm in the center, and was set to a thickness of 300 μm. The rotor was set so that the 25 discs adjacent to each other were laminated with a gap of 200 μm. The casing has one inlet, the flow path cross-sectional area at the inlet to about 180 mm 2, the rotary shaft the flow path cross-sectional area of the flow path that starts from the inlet along the rotational direction of the rotor It was set to decrease at a rate of about 0.5 mm 2 per one rotation angle of the center. The setting was such that the fluid G (water vapor at 300 ° C.) was continuously introduced from the inflow port in the tangential direction of the disk at 15.8 g / sec. The flow rate of the fluid at the inlet was set to 150 m / sec. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
ディスクについては、半径10cmの円形の外縁、中心に半径6.0cmの円形の流通穴を有するものとし、厚さ300μmに設定した。ローターについては、このディスク25枚が隣接するもの同士で隙間200μmにて積層する設定にした。ケーシングについては、1個の流入口を有し、流入口での流路断面積を約180mm2とし、流入口から始まる流路での流路断面積をローターの回転方向に沿って回転軸を中心とする回転角1度あたり約0.5mm2の割合で減少する設定とした。流入口から流体G(300℃の水蒸気)をディスクの接線方向に15.8g/secにて連続導入する設定とした。流入口における流体の流速は150m/secに設定した。なお、ディスクの形状と流路の配置については、図12の右欄に説明図を示す。 Example 4
The disc had a circular outer edge with a radius of 10 cm and a circular flow hole with a radius of 6.0 cm in the center, and was set to a thickness of 300 μm. The rotor was set so that the 25 discs adjacent to each other were laminated with a gap of 200 μm. The casing has one inlet, the flow path cross-sectional area at the inlet to about 180 mm 2, the rotary shaft the flow path cross-sectional area of the flow path that starts from the inlet along the rotational direction of the rotor It was set to decrease at a rate of about 0.5 mm 2 per one rotation angle of the center. The setting was such that the fluid G (water vapor at 300 ° C.) was continuously introduced from the inflow port in the tangential direction of the disk at 15.8 g / sec. The flow rate of the fluid at the inlet was set to 150 m / sec. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
(実施例5)
ディスクについては、半径10cmの円形の外縁、中心に半径6.0cmの円形の流通穴を有するものとし、厚さ300μmに設定した。ローターについては、このディスク25枚が隣接するもの同士で隙間200μmにて積層する設定にした。ケーシングについては、1個の流入口を有し、流入口での流路断面積を約90mm2とし、流入口から始まる流路での流路断面積をローターの回転方向に沿って回転軸を中心とする回転角1度あたり0.25mm2の割合で減少する設定とした。流入口から流体G(300℃の水蒸気)をディスクの接線方向に15.8g/secにて連続導入する設定とした。流入口における流体の流速は300m/secに設定した。なお、ディスクの形状と流路の配置については、図12の右欄に説明図を示す。 (Example 5)
The disc had a circular outer edge with a radius of 10 cm and a circular flow hole with a radius of 6.0 cm in the center, and was set to a thickness of 300 μm. The rotor was set so that the 25 adjacent discs were laminated with a gap of 200 μm. The casing has one inlet, the flow path cross-sectional area at the inlet was about 90 mm 2, the rotary shaft the flow path cross-sectional area of the flow path that starts from the inlet along the rotational direction of the rotor It was set to decrease at a rate of 0.25 mm 2 per one rotation angle of the center. The setting was such that the fluid G (water vapor at 300 ° C.) was continuously introduced from the inflow port in the tangential direction of the disk at 15.8 g / sec. The flow rate of the fluid at the inlet was set to 300 m / sec. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
ディスクについては、半径10cmの円形の外縁、中心に半径6.0cmの円形の流通穴を有するものとし、厚さ300μmに設定した。ローターについては、このディスク25枚が隣接するもの同士で隙間200μmにて積層する設定にした。ケーシングについては、1個の流入口を有し、流入口での流路断面積を約90mm2とし、流入口から始まる流路での流路断面積をローターの回転方向に沿って回転軸を中心とする回転角1度あたり0.25mm2の割合で減少する設定とした。流入口から流体G(300℃の水蒸気)をディスクの接線方向に15.8g/secにて連続導入する設定とした。流入口における流体の流速は300m/secに設定した。なお、ディスクの形状と流路の配置については、図12の右欄に説明図を示す。 (Example 5)
The disc had a circular outer edge with a radius of 10 cm and a circular flow hole with a radius of 6.0 cm in the center, and was set to a thickness of 300 μm. The rotor was set so that the 25 adjacent discs were laminated with a gap of 200 μm. The casing has one inlet, the flow path cross-sectional area at the inlet was about 90 mm 2, the rotary shaft the flow path cross-sectional area of the flow path that starts from the inlet along the rotational direction of the rotor It was set to decrease at a rate of 0.25 mm 2 per one rotation angle of the center. The setting was such that the fluid G (water vapor at 300 ° C.) was continuously introduced from the inflow port in the tangential direction of the disk at 15.8 g / sec. The flow rate of the fluid at the inlet was set to 300 m / sec. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
(比較例1~3)
比較例1~3では、実施例1と同じローターに対し、ケーシングの所定位置に設けたノズルから流体を吹き込む設定とした。比較例1はノズル1個からディスクの接線方向に流体を1.58g/secにて導入、比較例2はノズル4個それぞれからディスクの接線方向に流体を1.58g/sec(合計6.32g/sec)にて導入、比較例3はノズル8個それぞれからディスクの接線方向に流体を1.58g/sec(合計12.6g/sec)で導入する設定とした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 (Comparative Examples 1 to 3)
In Comparative Examples 1 to 3, the same rotor as in Example 1 was set to blow fluid from a nozzle provided at a predetermined position of the casing. In Comparative Example 1, fluid was introduced from one nozzle in the tangential direction of the disk at 1.58 g / sec. In Comparative Example 2, fluid was introduced from each of four nozzles in the tangential direction of the disk to 1.58 g / sec (total of 6.32 g In Comparative Example 3, the fluid was introduced at a rate of 1.58 g / sec (total 12.6 g / sec) in the tangential direction of the disk from each of the eight nozzles. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
比較例1~3では、実施例1と同じローターに対し、ケーシングの所定位置に設けたノズルから流体を吹き込む設定とした。比較例1はノズル1個からディスクの接線方向に流体を1.58g/secにて導入、比較例2はノズル4個それぞれからディスクの接線方向に流体を1.58g/sec(合計6.32g/sec)にて導入、比較例3はノズル8個それぞれからディスクの接線方向に流体を1.58g/sec(合計12.6g/sec)で導入する設定とした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 (Comparative Examples 1 to 3)
In Comparative Examples 1 to 3, the same rotor as in Example 1 was set to blow fluid from a nozzle provided at a predetermined position of the casing. In Comparative Example 1, fluid was introduced from one nozzle in the tangential direction of the disk at 1.58 g / sec. In Comparative Example 2, fluid was introduced from each of four nozzles in the tangential direction of the disk to 1.58 g / sec (total of 6.32 g In Comparative Example 3, the fluid was introduced at a rate of 1.58 g / sec (total 12.6 g / sec) in the tangential direction of the disk from each of the eight nozzles. In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
(比較例4)
比較例4では、実施例3のローターに対し、ケーシングの所定位置32ヶ所に設けたノズから流体を吹き込むものとし、各ノズルからディスクの接線方向に流体を1.58g/sec(合計50.5g/sec)にて導入する設定とした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 (Comparative Example 4)
In Comparative Example 4, fluid is blown into the rotor of Example 3 from the nozzles provided at 32 predetermined positions of the casing, and fluid is sent from each nozzle in the tangential direction of the disk to 1.58 g / sec (total of 50.5 g). / Sec). In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
比較例4では、実施例3のローターに対し、ケーシングの所定位置32ヶ所に設けたノズから流体を吹き込むものとし、各ノズルからディスクの接線方向に流体を1.58g/sec(合計50.5g/sec)にて導入する設定とした。なお、ディスクの形状と流路の配置については、図11の右欄に説明図を示す。 (Comparative Example 4)
In Comparative Example 4, fluid is blown into the rotor of Example 3 from the nozzles provided at 32 predetermined positions of the casing, and fluid is sent from each nozzle in the tangential direction of the disk to 1.58 g / sec (total of 50.5 g). / Sec). In addition, about the shape of a disc and arrangement | positioning of a flow path, explanatory drawing is shown in the right column of FIG.
(2)タービン効率
流体の全圧から換算した流入口又はノズルでの流体の運動エネルギーE1、ローターのトルク(ディスクが受けるせん断応力と面積の積)、及びローターの回転数から、下記のタービン効率を算出した。実施例1~3および比較例1~4についての結果を図11のグラフに示す。実施例4,5についての結果を図12のグラフに示す。
タービン効率=(ローターのトルク×ローターの回転数)/流体の運動エネルギー (2) Turbine efficiency From the kinetic energy E1 of the fluid at the inlet or nozzle converted from the total pressure of the fluid, the torque of the rotor (the product of the shear stress and the area received by the disk), and the rotational speed of the rotor, the following turbine efficiency Was calculated. The results for Examples 1 to 3 and Comparative Examples 1 to 4 are shown in the graph of FIG. The results for Examples 4 and 5 are shown in the graph of FIG.
Turbine efficiency = (rotor torque x rotor speed) / fluid kinetic energy
流体の全圧から換算した流入口又はノズルでの流体の運動エネルギーE1、ローターのトルク(ディスクが受けるせん断応力と面積の積)、及びローターの回転数から、下記のタービン効率を算出した。実施例1~3および比較例1~4についての結果を図11のグラフに示す。実施例4,5についての結果を図12のグラフに示す。
タービン効率=(ローターのトルク×ローターの回転数)/流体の運動エネルギー (2) Turbine efficiency From the kinetic energy E1 of the fluid at the inlet or nozzle converted from the total pressure of the fluid, the torque of the rotor (the product of the shear stress and the area received by the disk), and the rotational speed of the rotor, the following turbine efficiency Was calculated. The results for Examples 1 to 3 and Comparative Examples 1 to 4 are shown in the graph of FIG. The results for Examples 4 and 5 are shown in the graph of FIG.
Turbine efficiency = (rotor torque x rotor speed) / fluid kinetic energy
図11に示すデータから、実施例1~3では、同じ回転数において比較例1~4と比較したとき、タービン効率が高いことが判明した。また、実施例2と実施例3との比較から、円環状の形状を有するディスクの方が、単純な円盤状のディスクよりも、タービン効率が高くなることが判明した。図12に示すデータから、流体として水蒸気を使用した場合には、タービン効率が35~60%程度になることが判明した。また、実施例4のタービン効率と実施例5のタービン効率とを比較すると理解できるように、流速を低く設定することにより、タービン効率がより低回転で高くなることが判明した。
From the data shown in FIG. 11, it was found that in Examples 1 to 3, the turbine efficiency was high when compared with Comparative Examples 1 to 4 at the same rotational speed. Further, from comparison between Example 2 and Example 3, it was found that a disk having an annular shape has higher turbine efficiency than a simple disk-shaped disk. From the data shown in FIG. 12, it was found that when steam is used as the fluid, the turbine efficiency is about 35 to 60%. Further, as can be understood by comparing the turbine efficiency of the fourth embodiment and the turbine efficiency of the fifth embodiment, it has been found that the turbine efficiency is increased at a lower speed by setting the flow velocity low.
本発明は、流体の粘性によってローターを回転させるタービンとして利用できる。
The present invention can be used as a turbine that rotates a rotor by the viscosity of a fluid.
1:タービン、2:ケーシング、3,3a,3b:ローター、4,4a,4b:軸部、10:回転軸、11,11a,11b:流入口、12:流出口、13,13a,13b:流路、16:側壁部、18:端壁部、19:端壁部、20:収容空間、21,21a,21b:ディスク、22:流通穴、23:外縁、24:隙間、25,25a,25b:表面、26:中心、28:連結部、50:環状ローター。
1: Turbine, 2: Casing, 3, 3a, 3b: Rotor, 4, 4a, 4b: Shaft, 10: Rotating shaft, 11, 11a, 11b: Inlet, 12: Outlet, 13, 13a, 13b: Channel: 16: Side wall portion, 18: End wall portion, 19: End wall portion, 20: Storage space, 21, 21a, 21b: Disc, 22: Flow hole, 23: Outer edge, 24: Gap, 25, 25a, 25b: surface, 26: center, 28: connecting portion, 50: annular rotor.
Claims (6)
- 複数のディスクが中心を1つの軸の上に配して互いに隙間を有して積層するローターと、
前記ローターを前記軸を回転軸として回転可能に収容すると共に前記回転軸に対し半径方向外側に前記ローターの外周を囲む側壁部と前記回転軸に沿った方向の両側から前記ローターを挟み込むように覆う2つの端壁部とに囲まれる収容空間を有するケーシングと、を備え、
前記ケーシングにおいて、前記収容空間における前記側壁部と前記ローターとの間の前記側壁部に沿った空間部分を流体の流路とし、前記流路へ前記流体を前記回転軸を中心とする一方の周方向へ流入させる流入口が設けられ、前記流路の流路断面積が前記流入口から前記一方の周方向において減少するタービン。 A rotor in which a plurality of disks are stacked with a gap between each other with a center on one axis;
The rotor is rotatably accommodated with the shaft as a rotation shaft, and is covered so as to sandwich the rotor from both sides in a direction along the rotation shaft and a side wall portion that surrounds the outer periphery of the rotor radially outward with respect to the rotation shaft. A casing having a housing space surrounded by two end walls,
In the casing, a space portion along the side wall portion between the side wall portion and the rotor in the housing space is used as a fluid flow path, and the fluid is supplied to the flow path on one circumference around the rotation axis. A turbine in which an inflow port is provided to flow in a direction, and a flow path cross-sectional area of the flow path decreases from the inflow port in the one circumferential direction. - 前記ケーシングにおいて、前記一方の周方向における異なる位置に複数の前記流入口が設けられている請求項1に記載のタービン。 The turbine according to claim 1, wherein a plurality of the inlets are provided at different positions in the one circumferential direction in the casing.
- 前記流路断面積が、前記一方の周方向において一定の割合にて漸減する請求項1または2に記載のタービン。 The turbine according to claim 1 or 2, wherein the flow path cross-sectional area gradually decreases at a constant rate in the one circumferential direction.
- 前記複数のディスクは、略円形の外縁と前記外縁から前記中心への方向に幅を持つ円環状の形状を有し、
前記幅の長さが、前記中心から前記外縁までの長さの2分の1以下である請求項1~3のいずれか一項に記載のタービン。 The plurality of disks have a substantially circular outer edge and an annular shape having a width in the direction from the outer edge to the center;
The turbine according to any one of claims 1 to 3, wherein a length of the width is equal to or less than a half of a length from the center to the outer edge. - 前記ローターが、前記回転軸を同一として異なる回転速度で回転できるように複数備えられ、
前記複数のローターのうち、前記中心から外縁までの長さの最も大きい前記ディスクを有する前記ローターが、複数の環状の前記ディスクを積層している環状ローターであり、
前記環状ローターの前記ディスクの環の内に残余の前記ローターが設けられている請求項1~3のいずれか一項に記載のタービン。 A plurality of the rotors are provided so as to be able to rotate at different rotation speeds with the same rotation axis,
Of the plurality of rotors, the rotor having the largest disk from the center to the outer edge is an annular rotor in which a plurality of annular disks are stacked,
The turbine according to any one of claims 1 to 3, wherein the remaining rotor is provided in a ring of the disk of the annular rotor. - 前記環状ローターにおいて、環状の前記ディスクが略円形の前記外縁と前記外縁から前記中心への方向に幅を持つ円環状の形状を有し、前記幅の長さが前記中心から前記外縁までの長さの2分の1以下である請求項5に記載のタービン。 In the annular rotor, the annular disk has a substantially circular outer edge and an annular shape having a width in the direction from the outer edge to the center, and the length of the width is a length from the center to the outer edge. The turbine according to claim 5, wherein the turbine is less than or equal to one half.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009286266 | 2009-12-17 | ||
JP2009-286266 | 2009-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074669A1 true WO2011074669A1 (en) | 2011-06-23 |
Family
ID=44167419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072772 WO2011074669A1 (en) | 2009-12-17 | 2010-12-17 | Turbine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011074669A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5464203A (en) * | 1977-08-23 | 1979-05-23 | Cerla Nv | Drag turbine |
JPH08121101A (en) * | 1994-10-12 | 1996-05-14 | Macleod Malcolm | Turbine device |
JP2004514827A (en) * | 2000-11-27 | 2004-05-20 | パロンボ, ジョン エフ | Bladeless turbocharger |
-
2010
- 2010-12-17 WO PCT/JP2010/072772 patent/WO2011074669A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5464203A (en) * | 1977-08-23 | 1979-05-23 | Cerla Nv | Drag turbine |
JPH08121101A (en) * | 1994-10-12 | 1996-05-14 | Macleod Malcolm | Turbine device |
JP2004514827A (en) * | 2000-11-27 | 2004-05-20 | パロンボ, ジョン エフ | Bladeless turbocharger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4288051B2 (en) | Mixed flow turbine and mixed flow turbine blade | |
US9353640B2 (en) | Turbine | |
KR101557107B1 (en) | Multi-volute sirrocco fan | |
CN108457898A (en) | A kind of blade wheel structure for compressor | |
JP2018105298A (en) | High efficiency double suction impeller | |
KR102213998B1 (en) | Vacuum exhaust mechanism, compound vacuum pump, and rotating body component | |
CN103052808A (en) | Scroll structure of centrifugal compressor | |
JP2009541660A (en) | Axial impeller | |
CN111550440A (en) | Radial-flow type multistage counter-rotating centrifugal impeller and use method thereof | |
JP2578396B2 (en) | Fluid energy converter | |
CN104863643B (en) | Turbine is radially centrifuged | |
TWI306491B (en) | Multiple-motor blower and impeller thereof | |
TW201716687A (en) | Multi-layered blade type wind power generation device capable of enhancing operation smoothness and being not easily damaged and deformed | |
WO2011074669A1 (en) | Turbine | |
US10787908B2 (en) | Disk assembly for gas turbine compressor | |
KR101368408B1 (en) | Reaction type turbine | |
WO2021103050A1 (en) | Fan and motor | |
CN101416014A (en) | Method and apparatus for pumping in heat exchange applications | |
JP6485658B2 (en) | Rotating body cooling structure and rotor and turbomachine including the same | |
JP6393427B2 (en) | Steam turbine with improved axial force characteristics | |
JP7342782B2 (en) | centrifugal blower | |
WO2013136660A1 (en) | Vertical axis wind turbine | |
KR102587579B1 (en) | Rotor assembly and Motor having the same | |
KR102170237B1 (en) | Generator with Air Path | |
US11359641B1 (en) | Air moving device with blade tip of variable curvature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837693 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10837693 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |