WO2011074330A1 - 二次電池の制御装置及び二次電池の制御方法 - Google Patents
二次電池の制御装置及び二次電池の制御方法 Download PDFInfo
- Publication number
- WO2011074330A1 WO2011074330A1 PCT/JP2010/068919 JP2010068919W WO2011074330A1 WO 2011074330 A1 WO2011074330 A1 WO 2011074330A1 JP 2010068919 W JP2010068919 W JP 2010068919W WO 2011074330 A1 WO2011074330 A1 WO 2011074330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- supply
- secondary battery
- value
- discharge
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/657—Means for temperature control structurally associated with the cells by electric or electromagnetic means
- H01M10/6571—Resistive heaters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/14—District level solutions, i.e. local energy networks
Definitions
- the present invention relates to a secondary battery control device and a secondary battery control method.
- NaS batteries Sodium-sulfur batteries
- a NaS battery is used with the heater which heats the said NaS battery, and is operated in the state maintained at high temperature.
- Patent Document 1 relates to control of a heater that heats a NaS battery. Patent document 1 mentions the problem of the prior art that discharge
- Patent Document 1 assumes a case where the cycle of switching between charging and discharging is relatively long, and is not effective when the cycle of switching between charging and discharging is relatively short. For this reason, even if the technique of Patent Document 1 is applied to a power storage device including a NaS battery, the supply of power to the heater is controlled ignoring the request for the discharge / absorption of power, and desired discharge power and absorption power It may be difficult to realize. For example, when there is a request to release power that matches the maximum discharge power of the NaS battery, power may be supplied to the heater, and the discharge power may be lower than the maximum discharge power of the NaS battery. In addition, the upper limit value of the absorbed power must be the maximum charging power of the NaS battery, not the sum of the maximum charging power of the NaS battery and the rated power consumption of the heater.
- the present invention has been made to solve this problem, and it is an object of the present invention to provide a secondary battery control device and a secondary battery control method that make it easy to realize desired emitted power and absorbed power.
- a control device for a secondary battery includes a request acquisition unit that acquires a request for discharge / absorption of power and a request value for discharge / absorption power, and discharge / charge of the secondary battery.
- a restriction content determination unit that determines the content of the supply restriction
- a supply control unit that controls the supply of power to the power consumer according to the determination by the restriction content determination unit.
- the power supply restriction is relatively strengthened.
- the power supply restriction is relatively weakened.
- the charge power calculation unit calculates the discharge power by adding the power supplied to the power consumer to the required value of the emitted power acquired by the request acquisition unit, and the request for the absorbed power acquired by the request acquisition unit The charging power is calculated by subtracting the power supplied to the power consumer from the value.
- a control device for a secondary battery includes a request acquisition unit that acquires a request for discharge / absorption of power and a request value for discharge / absorption power, and discharge / charge of the secondary battery.
- a restriction content determination unit that determines the content of the supply restriction, and a supply control unit that controls the supply of power to the power consumer according to the determination by the restriction content determination unit.
- the power consuming body is a heater for heating the secondary battery, and the control of the secondary battery.
- the apparatus further includes a temperature sensor that measures the temperature of the secondary battery, and the restriction determination unit obtains the request when the measured value of the temperature measured by the temperature sensor is lower than a first lower limit value.
- the power supply to the heater is permitted, and when the measured value of the temperature measured by the temperature sensor exceeds the first lower limit value and falls below the second lower limit value, When a request for power absorption is acquired by the request acquisition unit, power supply to the heater is permitted, and when a request for discharge of power is acquired by the request acquisition unit, supply of power to the heater is prohibited. .
- the supply control unit when the supply control unit is allowed to supply power to the heater by the restriction content determination unit, The supply of electric power to the heater is controlled so that the measured value of the temperature measured by the temperature sensor becomes a set value.
- a plurality of the temperature sensors and the heater are provided, and the secondary battery control device comprises: A priority determining unit that determines the priority of power supply to each of the plurality of heaters, and the priority determining unit applies to the heater as the measured value of the temperature measured by the temperature sensor decreases.
- the priority of power supply is increased, and the restriction determination unit determines that the total power supplied to each of the plurality of heaters is equal to or less than the required value of absorbed power acquired by the request acquisition unit.
- the supply of power is permitted in order from the heater having the highest power supply priority determined by the priority determination unit to the heater having the lower priority.
- the restriction content determination unit is configured to supply power to the power consumer.
- the content of the restriction is repeatedly updated over time, and is applied when the first lower limit value and the second lower limit value applied when the measured value of the temperature measured by the temperature sensor increases. It is shifted to the higher one than the first lower limit value and the second lower limit value.
- the restriction content determination unit measures the temperature measured by the temperature sensor. When the value exceeds the upper limit value, the supply of power to the heater is prohibited regardless of the request acquired by the request acquisition unit.
- the power consuming body is a heater for heating the secondary battery, and the secondary battery is controlled.
- the apparatus includes a temperature sensor that measures the temperature of the secondary battery, a predicted value of the temperature of the secondary battery from a history of measured values of the temperature measured by the temperature sensor and a history of power supplied to the power consumer.
- a predicted value calculation unit that calculates the power, and when the predicted temperature value calculated by the predicted value calculation unit falls below a lower limit value, the restriction content determination unit is configured to absorb power by the request acquisition unit. When a request is acquired, power supply to the heater is permitted, and when a request for discharging power is acquired by the request acquisition unit, power supply to the heater is prohibited.
- the control apparatus for a secondary battery when the supply control unit is permitted to supply power to the heater by the restriction content determination unit, The supply of electric power to the heater is controlled so that the measured value of the temperature measured by the temperature sensor becomes a set value.
- the secondary battery control device includes a plurality of A priority determining unit that determines the priority of power supply to each of the heaters, and the priority determining unit is configured to reduce the power measured by the temperature sensor as the measured temperature value decreases.
- the priority of supply is increased, and the restriction content determination unit is configured so that the total supply power obtained by summing the power supplied to each of the plurality of heaters is equal to or less than the required value of the absorbed power acquired by the request acquisition unit.
- the supply of power is permitted in order from the heater having a higher priority of power supply determined by the priority determination unit to the heater having a lower priority.
- the restriction content determination unit is configured to restrict the supply of power to the power consumer.
- the content is repeatedly updated over time, and the lower limit value applied when the predicted temperature value calculated by the predicted value calculation unit rises is shifted to the higher one than the lower limit value applied when the predicted value decreases.
- the restriction content determination unit predicts the temperature calculated by the predicted value calculation unit. When the value exceeds the upper limit value, the supply of power to the heater is prohibited regardless of the request acquired by the request acquisition unit.
- a secondary battery control method comprising: (a) obtaining a request for discharging / absorbing power and a required value for discharging / absorbing power; and (b) the secondary battery.
- step (C) ⁇ outputting the calculated value of discharge / charge power calculated in step (b) as a command value of discharge / charge power; and (d) said step ( c) controlling the discharging / charging of the secondary battery so as to be the command value output in step c), (e) determining the content of restrictions on the supply of power to the power consumer, and (f) Controlling the supply of power to the power consumer according to the determination in the step (e), and the step (e) is performed when a request for the discharge of power is acquired in the step (a).
- step (c) the discharge power is calculated by adding the supply power to the power consumer to the required value of the emission power acquired in the step (a).
- the charging power is calculated by subtracting the power supplied to the power consumer from the required value of the absorbed power acquired by the request acquisition unit.
- a secondary battery control method comprising: (a) obtaining a request for emission / absorption of electric power and a required value of emission / absorption power; and (b) said secondary battery. (C) ⁇ outputting the calculated value of discharge / charge power calculated in step (b) as a command value of discharge / charge power; and (d) said step ( c) controlling the discharging / charging of the secondary battery so as to be the command value output in step c), (e) determining the content of restrictions on the supply of power to the power consumer, and (f) Controlling the supply of power to the power consumer according to the determination in the step (e), and the step (e) is performed when a request for the discharge of power is acquired in the step (a). Makes the power supply restriction relatively strong, and if a request for power absorption is obtained in step (a), It weakens the supply of limited relatively.
- the restriction on the supply of power to the power consumer is more relaxed than when power release is required.
- a decrease in the emitted power due to supplying power to the body is suppressed, a decrease in the absorbed power due to not supplying power to the power consuming body is suppressed, and desired emitted power and absorbed power are easily realized.
- the secondary battery by the heater when the necessity of heating the secondary battery increases, the secondary battery by the heater is used regardless of whether the discharge of power or the absorption of power is required. Heating is allowed.
- the necessity for heating the secondary battery is slightly reduced, the restriction on the heating of the secondary battery is eased when the absorption of power is required rather than when the discharge of power is required. As a result, a decrease in the emitted power due to supplying power to the power consumer is suppressed, and a decrease in the absorbed power due to not supplying power to the power consumer is suppressed. Maintained properly.
- the temperature of the secondary battery approaches the set value.
- the temperature of the secondary battery is appropriately maintained.
- the temperature of the secondary battery is suppressed from greatly exceeding the upper limit value.
- the restriction on the supply of power to the power consumer is more relaxed than when power release is required.
- a decrease in the emitted power due to supplying power to the body is suppressed, and a decrease in the absorbed power due to not supplying power to the power consumer is suppressed.
- FIGS. 1 and 2 are diagrams for explaining the supply of power to the power consumer 105 in the power storage device including the secondary battery 102 and the power consumer 105.
- FIG. 1 shows a command for the required value PE of the power storage device discharge power, the power supply PS supplied to the power consumer 105, and the discharge power of the secondary battery 102 when the power storage device is required to release power.
- the relationship with the value PD is shown.
- FIG. 2 shows the command of the required value PA of the absorbed power of the power storage device, the supplied power PS to the power consumer 105, and the charging power of the secondary battery 102 when the power storage device is required to absorb the power.
- the relationship with the value PC is shown.
- the discharge power command value PD is obtained by adding the supplied power PS to the discharge power request value PE according to the equation (1). Is calculated by
- the charge power command value PC is obtained by subtracting the supplied power PS from the absorbed power request value PA according to equation (2). Is calculated by
- the power supply to the power consumer 105 is relatively restricted, and the power storage device is required to absorb power.
- the restriction on the supply of power to the power consumer 105 is relatively weakened.
- restrictions on the supply of power to the power consumer 105 are relaxed compared to when power release is requested, so that by supplying power to the power consumer 105
- the decrease in the emitted power PE is suppressed, the decrease in the absorbed power PA due to not supplying power to the power consumer 105 is suppressed, and the desired emitted power PE and the absorbed power PA are easily realized.
- Factors other than the request for the discharge of power and the request for absorption of power may be reflected in the restriction on the supply of power to the power consumer 105.
- the power consumer 105 operates by consuming power.
- the power consumer 105 that is the target of the power supply restriction does not lose the function of the power storage device even if the power supply is temporarily restricted. Therefore, the power consumer 105 that is the target of the power supply restriction is allowed to operate intermittently.
- the power consumer 105 includes a temperature adjustment mechanism that adjusts the temperature of the secondary battery 102, a temperature adjustment mechanism that adjusts the temperature of components other than the secondary battery 102, and an electrolyte solution circulation mechanism that circulates the electrolyte solution of the redox flow battery. Etc. are exemplified.
- the temperature adjustment mechanism may be a heating device that heats the object, or may be a cooling device that cools the object. Examples of the temperature adjustment mechanism include air conditioning equipment, a cooling fan, and a cooling mechanism. A pump etc. are illustrated as an electrolyte solution circulation mechanism.
- Examples of strengthening of power supply restrictions include prohibition of power supply and lowering of the upper limit of power supply.
- Examples of weakening of power supply restrictions include permission of power supply and increase of upper limit of power supply. Is exemplified.
- the number of secondary batteries 102 and the number of power consumers 105 are not limited to one, and may be two or more.
- the distribution of the discharge / charge power to each of the secondary batteries 102 may be performed in any manner, but the factor indicating the state of the secondary battery 102 It is desirable to be performed according to an index including Thereby, the state of the secondary battery 102 is appropriately maintained. Examples of factors include SOC (charged state), DOD (discharge depth), temperature, number of discharges / charges, and the like.
- the distribution of the supply power to each of the power consumers 105 may be performed in any way, but the state of the object on which the power consumer 105 acts It is desirable to be performed according to an index including a factor indicating
- the temperature of the object is exemplified as the index.
- the power consumer 105 is an electrolyte solution circulation mechanism that circulates the electrolyte solution of the redox flow battery
- the index is the concentration of the oxidant or reductant contained in the electrolyte in the cell in which the oxidation-reduction reaction is performed. Illustrated.
- FIG. 3 is a diagram for explaining the utility of the restriction on the supply of power to the power consumer 105 described above.
- FIG. 3 shows a power storage device that prohibits the supply of power to the power consumer 105 when the release of power is requested and permits the supply of power to the power consumer 105 when the absorption of power is requested.
- the relationship between the required value P1 of the emission / absorption power, the power supply PS supplied to the power consumer 105, and the command value P2 of the discharge / charge power is shown.
- FIG. 3 shows changes over time in the required value P1 of the emission / absorption power, the supply power PS to the power consumer 105, and the command value P2 of the discharge / charge power, with time on the horizontal axis and power on the vertical axis.
- the power supply PS supplied to the power consumer 105 is 0, and the discharge / charge power command value (discharge power command value) P2 is The required value of the absorbed power (required value of the emitted power) P1 is made coincident.
- the power supply PS supplied to the power consumer 105 does not become zero, and the absolute value of the discharge / charge power command value P2 (command value of charge power)
- of the required value of released / absorbed power is reduced by the amount of power PS supplied to the power consumer 105.
- the first embodiment relates to a power storage device 1002.
- FIG. 4 is a block diagram of the power storage device 1002 of the first embodiment.
- the power storage device 1002 converts the electric power discharged from each of the battery unit 1005 and the battery unit 1005 from DC to AC and stores the electric power charged in each of the battery units 1005.
- Bidirectional converter 1008 for converting from alternating current to direct current, transformer 1011 for stepping up the power released from power storage device 1002 and stepping down the power absorbed by power storage device 1002, and power supplied to heater 1062
- the power storage device 1002 supplies a power meter 1032 that measures the emission / absorption power of the power storage device 1002, a power meter 1035 that measures the discharge / charge power of each of the battery units 1005, and a heater 1062.
- a wattmeter 1038 that measures the total power supplied (hereinafter referred to as “total heater power”) and the total power supplied to the overall control unit 1023 and the battery unit control unit 1056 (hereinafter referred to as “total power”).
- total power total power supplied
- total power total power supplied to the overall control unit 1023 and the battery unit control unit 1056
- the power transmission path 1020 includes a discharge / charge power transmission path 1044 that transmits power charged to and discharged from the battery unit 1005, and a heater power transmission path 1047 that transmits power supplied to the heater 1062. And a control power transmission path 1050 for transmitting power supplied to the overall control unit 1023 and the battery unit control unit 1056. Discharging / charging power transmission path 1044, heater power transmission path 1047, and control power transmission path 1050 are separated and transmit power independently of each other.
- Battery unit 1005 Each of the battery units 1005 is discharged / charged independently. Although four battery units 1005 are shown in FIG. 4, the number of battery units 1005 is increased or decreased according to the specifications of the power storage device 1002.
- each of the battery units 1005 includes a battery module 1053 that stores electric power, and a battery unit control unit 1056 that controls the battery unit 1005.
- Each battery module 1053 contains a cell assembly 1059, a heater 1062 for heating the cell assembly 1059, and a temperature sensor 1065 for measuring the temperature of the cell assembly 1059.
- the battery unit 1005 includes one or more battery modules 1053.
- the number of battery modules 1053 is increased or decreased according to the specifications of the battery unit 1005.
- FIG. 5 is a schematic diagram of the battery module 1053.
- FIG. 5 shows a cross section of the battery module 1053.
- the battery module 1053 heats the covered heat insulating container 1068 that maintains the temperature of the stored items, the cell assembly 1059 that stores electric power, the sand 1071 that blocks air, and the cell assembly 1059.
- a heater 1062 and a temperature sensor 1065 for measuring the temperature of the cell aggregate 1059 are provided.
- the cell aggregate 1059 is accommodated in the covered heat insulating container 1068.
- Sand 1071 is accommodated in a covered heat insulating container 1068 and filled in a gap between cells 1074.
- the heater 1062 has a panel shape and is attached to the inner surface of the covered heat insulating container 1068.
- the temperature sensor 1065 is embedded in the sand 1071.
- the cell 1074 is typically a NaS battery cell (single cell), but may be another type of secondary battery cell.
- FIG. 6 is a circuit diagram of the cell aggregate 1059.
- the cell aggregate 1059 is a series connection body in which blocks 1077 are connected in series
- the block 1077 is a parallel connection body in which strings 1080 are connected in parallel
- the string 1080 is connected in series with cells 1074. It is a serial connection body.
- the number of blocks 1077 connected in series, the number of strings 1080 connected in parallel, and the number of cells 1074 connected in series are increased or decreased according to the specifications of the battery module 1053.
- the connection form of the cells 1074 in the cell assembly 1059 is also changed according to the specifications of the battery module 1053.
- Bidirectional converter 1008 controls the discharge / charge of each of the plurality of battery units 1005 so that the discharge / charge power becomes the command value output by command value output unit 1107 described below.
- the bidirectional converter 1008 is also called “PCS (Power Conversion System)”, “AC / DC converter”, or the like.
- PCS Power Conversion System
- AC / DC converter AC / DC converter
- Mutual conversion between direct current and alternating current in bidirectional converter 1008 is performed by a PWM (Pulse Width Modulation) inverter or the like.
- FIG. 7 is a block diagram of a control system of the power storage device 1002 of the first embodiment.
- the functions of the overall control unit 1023 and the battery unit control unit 1056 shown in FIG. 7 may be realized by causing an embedded computer including a CPU and a memory to execute a control program, or may be realized by hardware. Part or all of the functions of the overall control unit 1023 may be transferred to the battery unit control unit 1056, or all or part of the functions of the battery unit control unit 1056 may be transferred to the overall control unit 1023. All or some of the functions of the overall control unit 1023 and the battery unit control unit 1056 may be executed by an operator of the power storage device 1002.
- the “calculation” described below includes processing for deriving information in accordance with rules such as conversion by a numerical table and calculation by an analog arithmetic circuit, as well as an arithmetic expression.
- the overall control unit 1023 calculates the discharge / charge power of each of the battery unit 1005 and the request acquisition unit 1101 that acquires the request for discharge / absorption of power and the required value P1 of the discharge / absorption power.
- Discharge / charge power calculation unit 1104 to perform, command value output unit 1107 for outputting command value P2 (i) of each discharge / charge power of battery unit 1005, and priority of discharge / charge to each of battery unit 1005
- each of the discharge / charge priority assignment unit 1110 for providing the discharge / charge priority, the restriction content determination unit 1113 for determining the content of the restriction on the supply of power to the heater 1062, and the heater 1062 will be described.
- a supply priority assigning unit 1116 for assigning power supply priority (hereinafter referred to as “supply priority”).
- supply priority for assigning power supply priority
- the battery unit control unit 1056 includes a temperature control unit 1119 that controls the temperature of the cell assembly 1059 (the temperature inside the battery module 1053).
- the heater 1062 is a power consumer 105 that is allowed to temporarily limit power supply, and is a target of power supply limitation.
- the overall control unit 1023 and the battery unit control unit 1056 are power consumers 105 that are not allowed to temporarily limit power supply, and are not subject to power supply limitation.
- the power consumer 105 that is the target of the power supply limitation other than the heater 1062 may receive the power supply via the heater power transmission path 1047.
- a power consumer other than the overall control unit 1023 and the battery unit control unit 1056 that is not subject to power supply limitation may receive power supply via the control power transmission path 1050. Therefore, the heater power transmission path 1047 is more generally a power supply path to the power consumer 105 that is the target of power supply restriction.
- control power transmission path 1050 is a path for supplying power to a power consumer that is not subject to power supply restriction. Although it is permissible not to limit the power supply to a part of the power consumer that is allowed to temporarily limit the power supply, it is not allowed to temporarily limit the power supply It is not permissible to restrict a part of the power consumer to the supply of power.
- the request for releasing / absorbing power and the request value P1 for releasing / absorbing power may be input from the operation unit 1026 or may be input from the outside via a communication line.
- the discharge / charge power calculation unit 1104 adds the total heater power TPS1 to the required value P1 of the discharge / charge power, and further adds the total control power TPS2 in accordance with the equation (4), so that all the discharge / charge power is obtained.
- the total discharge / charge power TP2 is obtained for the battery unit 1005.
- TP2 P1 + TPS1 + TPS2 (4)
- the total heater power TPS1 is reflected in the total discharge / charge power TP2, but the total heater power TPS1 may not be reflected in the total discharge / charge power TP2 depending on the application of the power storage device 1002.
- the power storage device 1002 is used for power supply and demand adjustment of a microgrid
- the power storage device 1002 is requested to release power due to excessive demand
- supply of power to the heater 1062 is suppressed, and excessive supply
- the power storage device 1002 is required to absorb power
- the total heater power TPS1 is reflected in the total discharge / charge power TP2. Even if not, the total heater power TPS1 contributes to power supply and demand adjustment.
- the discharge / charge power calculation unit 1104 distributes the discharge / charge power in order from the battery unit 1005 having a higher discharge / charge priority assigned by the discharge / charge priority assigning unit 1110 to the battery unit 1005 having a lower discharge / charge priority.
- the command value output unit 1107 outputs the calculated value P2 (i) of each discharge / charge power of the battery unit 1005 calculated by the discharge / charge power calculation unit 1104 as a command value.
- discharge / priority assignment unit 1110 The discharge / charge priority given by the discharge / priority assignment unit 1110 may be fixed, but may be regularly changed, or may be randomly changed.
- the discharging / charging priority order is given according to an index including a factor indicating the state of the battery unit 1005.
- the indicator may include a plurality of factors.
- the discharging priority is raised and the charging priority is lowered as the SOC increases.
- the battery unit 1005 having a large SOC is preferentially discharged, the battery unit 1005 having a small SOC is preferentially charged, and the SOC of the battery unit 1005 is appropriately maintained.
- the discharge priority is lowered as the temperature increases.
- the NaS battery When temperature is adopted as a factor, the discharge priority is lowered as the temperature increases.
- the NaS battery When the NaS battery is adopted, an exothermic reaction occurs when discharged, and an endothermic reaction occurs when charged. Accordingly, the battery unit 1005 having a lower temperature is discharged preferentially, and the temperature of the battery unit 1005 is increased. Is properly maintained.
- the discharging priority and the charging priority of the battery unit 1005 with a small number of discharging / charging are raised. Thereby, the battery unit 1005 with a small number of discharges / charges is preferentially discharged / charged, and the number of discharges / charges of the battery unit 1005 is made uniform.
- the restriction content determination unit 1113 is requested to absorb power.
- the power supply to the heater 1062 is permitted and the discharge of power is requested, the power supply to the heater 1062 is prohibited. Accordingly, when the necessity of heating the cell assembly 1059 is slightly reduced, the heating of the secondary battery 102 by the heater 1062 is more restricted when the absorption of power is required than when the discharge of power is required. Alleviated.
- the restriction content determination unit 1113 is concerned even when either discharge or absorption of power is requested. Supply of electric power to the heater 1062 for heating the cell assembly 1059 is prohibited. The same applies to the case where neither discharge nor absorption of power is required, that is, when stop is requested. Thereby, it is suppressed that the temperature of the cell aggregate 1059 largely exceeds the upper limit value U1.
- the restriction content determination unit 1113 determines that the supply priority determined by the supply priority assigning unit 1116 from the heater 1062 having a higher supply priority to the heater 1062 having a lower supply priority so that the total heater power TPS1 is equal to or less than the required value
- the power supply is allowed in order.
- the total heater power TPS1 is obtained by subtracting the total control power TPS2 from the absorption power required value -P1 as shown in the equation (5) -P1-TPS2 or less It is further desirable to permit the supply of power to the heater 1062 so that
- the total discharge / charge power TP2 of the battery unit 1005 does not become positive, and the discharge power of the battery unit 1005 is suppressed from being consumed as the supply power to the heater 1062.
- the discharge power of the battery unit 1005 is consumed as the supply power to the heater 1062 when the required value ⁇ P1 of the absorbed power is small. This contributes to satisfying the power absorption requirement while suppressing power loss that occurs in the battery unit 1005 and the bidirectional converter 1008 when the battery unit 1005 is charged / discharged.
- the cell aggregate 1059 is heated with the temperature measurement value T (j) exceeding the first lower limit value L1 and lower than the second lower limit value L2. In some cases, power is not supplied even though the heater 1062 is used. However, even in such a case, when the measured value T (j) of the temperature of the cell aggregate 1059 falls below the first lower limit L1, or the required value ⁇ P1 of the absorbed power is increased. In some cases, power is supplied to the heater 1062, so that the temperature of the cell assembly 1059 is maintained within an appropriate range.
- the content of the power supply restriction, that is, the heater 1062 that permits the power supply is repeatedly updated over time.
- the first lower limit value L1 and the upper limit value U1 are preferably set to values near the upper limit and the lower limit of the operating temperature range of the cell assembly 1059, respectively, and the second lower limit value L2 is the first lower limit value L2 It is desirable to set the temperature 5 to 20 ° C. higher than the value L1.
- the operating temperature range of the cell assembly 1059 is approximately 300 to 360 ° C.
- the first lower limit value L1, the second lower limit value L2, and the upper limit value U1 may always be constant, but the first lower limit value L1 applied when the temperature measurement value T (j) increases.
- the second lower limit value L2 and the upper limit value U1 are respectively higher than the first lower limit value L1, the second lower limit value L2, and the upper limit value U1 applied when the temperature measurement value T (j) decreases. It is desirable that the hysteresis control be performed by shifting in a higher direction.
- the contents of the power supply restriction that is, frequent changes of the heater 1062 that permits the power supply are suppressed, so that problems caused by the frequent changes are suppressed. For example, when the power supply to the heater is turned on / off by a mechanical relay, wear of the contact of the mechanical relay is suppressed. Moreover, the fluctuation
- the supply priority of the heater 1062 given by the supply priority assignment unit 1116 is the temperature of the cell assembly 1059 heated by the heater 1062 measured by the temperature sensor 1065 and acquired via the battery unit control unit 1056.
- the measured value T (j) increases as the value decreases. Thereby, since the cell aggregate 1059 having a low temperature is preferentially heated, the temperature of the cell aggregate 1059 is appropriately maintained.
- the temperature control unit 1119 controls power supply to the heater 1062 according to the determination by the restriction content determination unit 1113. That is, the temperature control unit 1119 measures the cell aggregate 1059 measured by the temperature sensor 1065 and acquired via the battery unit control unit 1056 when the restriction content determination unit 1113 permits the supply of power to the heater 1062. The supply of electric power to the heater 1062 is controlled so that the measured value T (j) of the temperature becomes the set value. On the other hand, when the restriction content determination unit 1113 prohibits the supply of power to the heater 1062, the temperature control unit 1119 does not supply power to the heater 1062 regardless of the temperature measurement value T (j).
- the control of the supply of power to the heater 1062 may be on / off control in which the supply power does not fluctuate while supplying power, or PI (the supply power fluctuates while supplying power).
- PI the supply power fluctuates while supplying power
- Proportion Integral control, PID (Proportion Integral Differential) control, or the like may be used.
- the supply power is kept constant between the updates of the content of the restriction on the supply of power to the heater 1062, and the supply power is the restriction on the supply of power to the heater 1062 by the restriction content determination unit 1113. Fluctuates in sync with content updates.
- pulse power may be supplied, and the supplied power may be adjusted by PAM (Pulse Amplitude Modulation) control or PWM (Pulse Width Modulation) control. Further, the supplied power may be adjusted by energization time ratio control (duty ratio control).
- PAM Pulse Amplitude Modulation
- PWM Pulse Width Modulation
- the total heater power TPS1 that is the basis for the calculation of the discharge / charge power is measured by the wattmeter 1038. .., PS1 (J) is provided to measure the power supply PS1 (1), PS1 (2),..., PS1 (J) supplied to each of the heaters 1062, and the power supply PS1 (1), PS1 ( 2),..., PS1 (J) is measured by the power meter group, and the supplied power PS1 (1), PS1 (2),.
- the total heater power TPS1 may be used.
- the discharge / charge power calculation unit 1104 obtains a signal indicating that power is being supplied to the heater 1062 from the temperature control unit 1119, and outputs the signal to the heater 1062 controlled by the temperature control unit 1119 that outputs the signal.
- the supply power PS1 (j) may be treated as a pre-registered value, and the supply power PS1 (j) to the heater 1062 controlled by the temperature control unit 1119 that does not output the signal may be treated as 0.
- the wattmeter 1038 may be omitted.
- the total discharge / charge power and the wattmeter 1041 are the sum of the measured value of the emission / absorption power measured by the wattmeter 1032 and the measured value of each discharge / charge power of the battery unit 1005 measured by the wattmeter 1035.
- the total heater power TPS1 is also specified from the measured total control power TPS2. Also in this case, the wattmeter 1038 may be omitted.
- All control power TPS2 The total control power TPS2 that is the basis for the calculation of the discharge / charge power is measured by the wattmeter 1041.
- a power meter for measuring the power supplied to the overall control unit 1023 and a power meter group for measuring the power supplied to each of the battery unit control unit 1056 are provided to supply power PS2 (1) to the overall control unit 1023 and battery unit control.
- PS2 (K) is measured by the power meter group to supply power PS2 (1) to the overall control unit 1023 and the battery unit.
- the supplied power PS2 (2), PS2 (3),..., PS2 (K) to each of the control units 1056 may be totaled to obtain the total control power TPS2.
- the total discharge / charge power TPS and the wattmeter 1038 obtained by adding the measured values of the emission / absorption power measured by the wattmeter 1032 and the measured values of the discharge / charge power of each of the battery units 1005 measured by the wattmeter 1035.
- the total control power TPS2 is also specified from the total heater power TPS1 measured by the above. In this case, the wattmeter 1041 may be omitted. Instead of measuring the total heater power TPS1 with the wattmeter 1038, it may be specified by another method described above.
- the mode of operation of the power storage device 1002 is broadly divided into pattern operation and power smoothing operation.
- the pattern operation is an operation for releasing / absorbing power according to fluctuations in the daily power demand.
- pattern operation is generally performed in which power is absorbed at night when power demand is low and power is absorbed during the day when power demand is low.
- the emission / absorption power for each time is often set in advance.
- the electric power smoothing operation is an operation in which discharging / charging is performed in response to fluctuations in power demand in a shorter period, for example, a period of several seconds to about 1 hour.
- the power storage device 1002 of the first embodiment is suitable for power smoothing operation. However, it is also permitted to cause the power storage device 1002 of the first embodiment to perform pattern operation.
- the permission to supply power to the heater 1062 may be manually performed.
- the power storage device 1002 causes the display unit 1029 to display the heater 1062 that permits the power supply determined by the restriction content determination unit 1113.
- the operation unit 1026 receives an input of the heater 1062 that actually permits the supply of power.
- the power supply permission received by the operation unit 1026 is sent to the temperature control unit 1119. It is allowed to further increase the manual operation.
- the second embodiment relates to determination of power supply priority to the heater 1062 instead of determination of power supply priority to the heater 1062 of the first embodiment.
- the lower the measured value T (j) of the temperature of the cell aggregate 1059 the higher the supply priority of the heater 1062 that heats the cell aggregate 1059, and the lower the priority of the heater 1062 that is higher in supply priority. Supply of power to the heater 1062 is allowed in order.
- the lower the measured value T (j) of the temperature of the cell assembly 1059 the higher the supply priority category to which the heater 1062 that heats the cell assembly 1059 belongs. Supply of power is permitted in order from the heater 1062 with the higher priority classification to the heater 1062 with the lower priority classification.
- FIG. 8 is a block diagram illustrating the determination of the priority of power supply to the heater 1062 of the second embodiment.
- a supply priority classification determining unit 2116 is provided instead of the supply priority order assigning unit 1116.
- the supply priority category determination unit 2116 stratifies the plurality of heaters 1062 and determines the supply priority category to which each of the plurality of heaters 1062 belongs.
- the supply priority category determination unit 2116 increases the supply priority category as the measured value T (j) of the temperature of the cell aggregate 1059 heated by the heater 1062 decreases.
- the plurality of supply priority categories are classified by the threshold value of the temperature measurement value T (j). Thereby, since the cell aggregate 1059 having a low temperature is preferentially heated, the temperature of the cell aggregate 1059 is appropriately maintained. In addition, even if the measured temperature value T (j) slightly changes, the supply priority category to which it belongs often does not change, so that the power supply is permitted by a slight change in the measured temperature value T (j).
- the heater 1062 is restrained from changing frequently.
- the restriction content determination unit 1113 is a heater having a high supply priority classification to which all heater power TPS1 falls below the required value of absorbed power ⁇ P1. Power supply is permitted in order from 1062 to the lower heater 1062.
- the total heater power TPS1 is made equal to or lower than the power ⁇ P1-TPS2. Therefore, if the power supply to all the heaters 1062 belonging to one supply priority category is permitted and the total heater power TPS1 exceeds the upper limit value ⁇ P1-TPS2, the restriction content determination unit 1113 determines that the total heater power TPS1 is It is desirable to select the heater 1062 to be supplied with electric power from the heaters 1062 belonging to one supply priority category so that the electric power is less than or equal to -P1-TPS2.
- the restriction content determination unit 1113 basically selects the heater 1062 that heats the cell aggregate 1059 having a relatively low temperature measurement value T (j), but if the power consumption of the heater 1062 is different, In order to set the heater power TPS1 to be equal to or lower than the power ⁇ P1 ⁇ TPS2, the heater 1062 that heats the cell aggregate 1059 having a relatively high temperature measurement value T (j) is selected. There is also.
- the third embodiment relates to the connection of the control power transmission path 1050 to the system 1092 that is employed instead of the connection of the control power transmission path 1050 to the system 1092 of the first embodiment.
- control power transmission path 1050 merges with the discharge / charge power transmission path 1044 and the heater power transmission path 1047 and is connected to the system 1092 via the wattmeter 1032.
- the control power transmission path 1050 does not merge with the discharge / charge power transmission path 1044 and the heater power transmission path 1047 and passes through the wattmeter 1032. Without being connected to the system 1092.
- the total control power TPS2 is not considered in the calculation of the discharge / charge power, that is, the term of the total control power TPS2 is deleted from the equation (4).
- the required value P1 of the emission / absorption power is determined in consideration of the total control power TPS2.
- the fourth embodiment relates to a microgrid 4012 including a power storage device 1002.
- FIG. 10 is a block diagram of the microgrid 4012 of the fourth embodiment.
- a “microgrid” is a small-scale power supply network in which a distributed power source is installed in a place where power is demanded, and is also called a “distributed energy system” or the like.
- a distributed power source 4015, a load 4018, and a power storage device 1002 are connected to the system 4021.
- the operation of the distributed power source 4015, the load 4018, and the power storage device 1002 is controlled by the microgrid control system 4024, and the power release / absorption requirement and the demand value P1 of the emission / supply power are supplied from the microgrid control system 4024. It is transmitted to the storage device 1002.
- the distributed power source 4015 is not particularly limited, but a generator using sunlight or other natural energy, for example, a solar power generator is used.
- a fuel cell or the like that uses, as a fuel, a gas produced using raw garbage, waste wood, waste plastic, or the like as a raw material may be used as the distributed power source 4015.
- All or part of the power generated by the distributed power source 4015 is transmitted to the power storage device 9002 via the system 4021 and accumulated in the power storage device 9002.
- the power storage device 1002 may be used to adjust power demand within the microgrid 4012. In this case, since power smoothing operation in which charging and discharging requests are frequently switched is performed, the control described in the first embodiment and the second embodiment is preferably employed.
- the fifth embodiment relates to determination of the content of restriction of power supply to the heater 1062 instead of determination of the content of restriction of power supply to the heater 1062 of the first embodiment.
- the content of the restriction on the supply of power to the heater 1062 is determined based on the temperature measurement value T (j) of the cell assembly 1059.
- the cell assembly is determined. Based on the future predicted value Tp (j) of the temperature of 1059, the content of restriction on the power supply to the heater 1062 is determined.
- FIG. 11 is a block diagram illustrating determination of the content of restriction on power supply to the heater 1062 of the fifth embodiment.
- a restriction content determination unit 5113 is provided in place of the restriction content determination unit 1113 in determining the content of restriction on the supply of power to the heater 1062 of the fifth embodiment. Further, a predicted value calculation unit 5200 that calculates a predicted value Tp (j) of the temperature of the cell aggregate 1059 is further provided.
- the predicted value calculation unit 5200 records the temperature measurement value T (j) of the cell aggregate 1059 measured by the temperature sensor 1065 and acquired via the temperature control unit 1119 and the power supply PS (j) supplied to the heater 1062.
- the predicted value Tp (j) of the temperature of the cell aggregate 1059 is calculated from the above history.
- the restriction content determination unit 5113 is requested to absorb power, When supply of power to the heater 1062 for heating the cell assembly 1059 is permitted and the discharge of power is requested, supply of power to the heater 1062 for heating the cell assembly 1059 is prohibited.
- the restriction content determination unit 5113 is required to release or supply power. Even when the power is being supplied, the supply of power to the heater 1062 for heating the cell assembly 1059 is prohibited. The same applies to the case where neither discharge nor absorption of power is required, that is, when stop is requested. Thereby, it is suppressed that the temperature of a cell aggregate greatly exceeds upper limit U1.
- Determination of the content of restriction on the supply of power to the heater 1062 of the fifth embodiment is suitable when the heat capacity of the cell assembly 1059 is large.
- the supply of electric power to the heater 1062 is based on the predicted temperature Tp (j) of the cell assembly 1059 rather than the measured value T (j) of the temperature of the cell assembly 1059. This is because the deviation from the set value of the temperature of the cell aggregate 1059 becomes smaller when the restriction content is determined.
- the second lower limit value L2 and the upper limit value U1 may be always constant, but the second lower limit value L2 and the upper limit value U1 applied when the predicted temperature value Tp (j) rises are respectively It is desirable that the hysteresis control is performed by shifting in a direction higher than the second lower limit value L2 and the upper limit value U1 applied when the predicted temperature value Tp decreases.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
図1及び図2は、二次電池102と電力消費体105とを備える電力貯蔵装置における電力消費体105への電力の供給を説明する図である。図1は、電力貯蔵装置が電力の放出を要求された場合における、電力貯蔵装置の放出電力の要求値PEと、電力消費体105への供給電力PSと、二次電池102の放電電力の指令値PDと、の関係を示す。図2は、電力貯蔵装置が電力の吸収を要求された場合における、電力貯蔵装置の吸収電力の要求値PAと、電力消費体105への供給電力PSと、二次電池102の充電電力の指令値PCと、の関係を示す。
第1実施形態は、電力貯蔵装置1002に関する。
図4は、第1実施形態の電力貯蔵装置1002のブロック図である。
電池ユニット1005の各々は、独立して放電/充電される。図4には、4個の電池ユニット1005が示されているが、電池ユニット1005の数は電力貯蔵装置1002の仕様に応じて増減される。
図5は、電池モジュール1053の模式図である。図5は、電池モジュール1053の断面を示す。
図6は、セル集合体1059の回路図である。
双方向変換器1008は、放電/充電電力が下述する指令値出力部1107により出力された指令値となるように複数の電池ユニット1005の各々の放電/充電を制御する。
図7は、第1実施形態の電力貯蔵装置1002の制御系のブロック図である。図7に示す全体制御部1023及び電池ユニット制御部1056の機能は、CPU及びメモリを備える組み込みコンピュータに制御プログラムを実行させることにより実現されてもよいし、ハードウエアにより実現されてもよい。全体制御部1023の機能の一部又は全部を電池ユニット制御部1056に移転してもよいし、電池ユニット制御部1056の機能の全部又は一部を全体制御部1023に移転してもよい。全体制御部1023及び電池ユニット制御部1056の機能の全部又は一部が電力貯蔵装置1002の操作者によって実行されてもよい。下述する「演算」には、演算式による演算だけでなく、数値テーブルによる変換、アナログ演算回路による演算等の規則にしたがって情報を導出する処理が含まれる。
ヒータ1062は、電力の供給を一時的に制限することが許容される電力消費体105であり、電力の供給の制限の対象となる。全体制御部1023及び電池ユニット制御部1056は、電力の供給を一時的に制限することが許容されない電力消費体105であり、電力の供給の制限の対象とならない。ヒータ1062以外の電力の供給の制限の対象となる電力消費体105がヒータ電力伝送路1047を経由して電力の供給を受けてもよい。全体制御部1023及び電池ユニット制御部1056以外の電力の供給の制限の対象とならない電力消費体が制御電力伝送路1050を経由して電力の供給を受けてもよい。したがって、ヒータ電力伝送路1047は、より一般的には、電力の供給の制限の対象となる電力消費体105への電力の供給の経路となる。制御電力伝送路1050は、より一般的には、電力の供給の制限の対象とならない電力消費体への電力の供給の経路となる。電力の供給を一時的に制限することが許容される電力消費体の一部を電力の供給の制限の対象としないことは許容されるが、電力の供給を一時的に制限することが許容されない電力消費体の一部を電力の供給の制限の対象とすることは許容されない。
電力の放出/吸収の要求及び放出/吸収電力の要求値P1は、操作部1026から入力される場合もあるし、外部から通信回線を経由して入力される場合もある。
放電/充電電力演算部1104は、式(4)にしたがって、放出/充電電力の要求値P1へ、全ヒータ電力TPS1を加算し、さらに、全制御電力TPS2を加算し、放電/充電電力を全部の電池ユニット1005について合計した全放電/充電電力TP2とする。
指令値出力部1107は、放電/充電電力演算部1104により演算された電池ユニット1005の各々の放電/充電電力の演算値P2(i)を指令値として出力する。
放電/優先順位付与部1110によって付与される放電/充電優先順位は、固定されていてもよいが、規則的に入れ替えられてもよいし、ランダムに入れ替えられてもよい。
制限内容決定部1113は、温度センサ1065により計測され温度制御部1119を経由して取得されたセル集合体1059の温度の計測値T(j)が第1の下限値L1を下回る場合は、電力の放出及び吸収のいずれが要求されているときであっても、当該セル集合体1059を加熱するヒータ1062への電力の供給を許可する。電力の放出及び吸収のいずれも要求されていない場合、すなわち、停止を要求されている場合も同様である。これにより、セル集合体1059を加熱する必要性が増すと、ヒータ1062によるセル集合体1059の加熱が許可される。温度の計測値T(j)に含まれる番号jは、電池モジュール1053を特定する。
第1の下限値L1及び上限値U1は、それぞれ、セル集合体1059の動作温度範囲の上限及び下限の付近の値に設定されることが望ましく、第2の下限値L2は、第1の下限値L1よりも5~20℃高い温度に設定されることが望ましい。NaS電池が採用される場合は、セル集合体1059の動作温度範囲は、概ね、300~360℃である。
供給優先順位付与部1116によって付与されるヒータ1062の供給優先順位は、温度センサ1065により計測され電池ユニット制御部1056を経由して取得される当該ヒータ1062により加熱されるセル集合体1059の温度の計測値T(j)が低くなるほど上げられる。これにより、温度が低いセル集合体1059が優先的に加熱されるので、セル集合体1059の温度が適切に維持される。
温度制御部1119は、制限内容決定部1113による決定にしたがってヒータ1062への電力の供給を制御する。すなわち、温度制御部1119は、制限内容決定部1113によりヒータ1062への電力の供給が許可された場合は、温度センサ1065により計測され電池ユニット制御部1056を経由して取得されるセル集合体1059の温度の計測値T(j)が設定値となるようにヒータ1062への電力の供給を制御する。一方、温度制御部1119は、制限内容決定部1113によりヒータ1062への電力の供給が禁止された場合は、温度の計測値T(j)にかかわらず、ヒータ1062へ電力を供給しない。
放電/充電電力の演算の基礎となる全ヒータ電力TPS1は、電力計1038により計測される。ヒータ1062の各々への供給電力PS1(1),PS1(2),・・・,PS1(J)を計測する電力計群を設け、ヒータ1062の各々への供給電力PS1(1),PS1(2),・・・,PS1(J)を当該電力計群により計測し、ヒータ1062の各々への供給電力PS1(1),PS1(2),・・・,PS1(J)を合計して全ヒータ電力TPS1としてもよい。
放電/充電電力の演算の基礎となる全制御電力TPS2は、電力計1041により計測される。全体制御部1023への供給電力を計測する電力計及び電池ユニット制御部1056の各々への供給電力を計測する電力計群を設け、全体制御部1023への供給電力PS2(1)及び電池ユニット制御部1056の各々への供給電力PS2(2),PS2(3),・・・,PS2(K)を当該電力計群により計測し、全体制御部1023への供給電力PS2(1)及び電池ユニット制御部1056の各々への供給電力PS2(2),PS2(3),・・・,PS2(K)を合計して全制御電力TPS2としてもよい。
電力貯蔵装置1002の運転の形態は、パターン運転と電力平滑運転とに大別される。
ヒータ1062への電力の供給の許可を手動で行ってもよい。
第2実施形態は、第1実施形態のヒータ1062への電力の供給の優先度の決定に代わるヒータ1062への電力の供給の優先度の決定に関する。
第3実施形態は、第1実施形態の制御電力伝送路1050の系統1092への接続に代えて採用される制御電力伝送路1050の系統1092への接続に関する。
第4実施形態は、電力貯蔵装置1002を含むマイクログリッド4012に関する。
第5実施形態は、第1実施形態のヒータ1062への電力の供給の制限の内容の決定に代わるヒータ1062への電力の供給の制限の内容の決定に関する。
この発明は詳細に説明されたが、上述の説明は全ての局面において例示であって、この発明は上述の説明に限定されない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定されうる。特に、説明した事項を組み合わせることは当然に予定されている。
Claims (14)
- 二次電池の制御装置であって、
電力の放出/吸収の要求及び放出/吸収電力の要求値を取得する要求取得部と、
前記二次電池の放電/充電電力を演算する放電/充電電力演算部と、
前記放電/充電電力演算部により演算された放電/充電電力の演算値を放電/充電電力の指令値として出力する指令値出力部と、
放電/充電電力が前記指令値出力部により出力された指令値となるように前記二次電池の放電/充電を制御する双方向変換器と、
電力を消費する電力消費体と、
前記電力消費体への電力の供給の制限の内容を決定する制限内容決定部と、
前記制限内容決定部による決定にしたがって前記電力消費体への電力の供給を制御する供給制御部と、
を備え、
前記制限内容決定部は、
前記要求取得部により電力の放出の要求が取得された場合は電力の供給の制限を相対的に強くし、
前記要求取得部により電力の吸収の要求が取得された場合は電力の供給の制限を相対的に弱くし、
前記放電/充電電力演算部は、
前記要求取得部により取得された放出電力の要求値へ前記電力消費体への供給電力を加算して放電電力を演算し、前記要求取得部により取得された吸収電力の要求値から前記電力消費体への供給電力を減算して充電電力を演算する、
二次電池の制御装置。 - 二次電池の制御装置であって、
電力の放出/吸収の要求及び放出/吸収電力の要求値を取得する要求取得部と、
前記二次電池の放電/充電電力を演算する放電/充電電力演算部と、
前記放電/充電電力演算部により演算された放電/充電電力の演算値を放電/充電電力の指令値として出力する指令値出力部と、
放電/充電電力が前記指令値出力部により出力された指令値となるように前記二次電池の放電/充電を制御する双方向変換器と、
電力を消費する電力消費体と、
前記電力消費体への電力の供給の制限の内容を決定する制限内容決定部と、
前記制限内容決定部による決定にしたがって前記電力消費体への電力の供給を制御する供給制御部と、
を備え、
前記制限内容決定部は、
前記要求取得部により電力の放出の要求が取得された場合は電力の供給の制限を相対的に強くし、
前記要求取得部により電力の吸収の要求が取得された場合は電力の供給の制限を相対的に弱くする、
二次電池の制御装置。 - 請求項1又は請求項2の二次電池の制御装置において、
前記電力消費体は、
前記二次電池を加熱するヒータであり、
前記二次電池の制御装置は、
前記二次電池の温度を計測する温度センサ、
をさらに備え、
前記制限内容決定部は、
前記温度センサにより計測された温度の計測値が第1の下限値を下回る場合は前記要求取得部により取得された要求にかかわらず前記ヒータへの電力の供給を許可し、
前記温度センサにより計測された温度の計測値が第1の下限値を上回り第2の下限値を下回る場合は、前記要求取得部により電力の吸収の要求が取得されると前記ヒータへの電力の供給を許可し、前記要求取得部により電力の放出の要求が取得されると前記ヒータへの電力の供給を禁止する、
二次電池の制御装置。 - 請求項3の二次電池の制御装置において、
前記供給制御部は、
前記制限内容決定部により前記ヒータへの電力の供給が許可された場合は、前記温度センサにより計測される温度の計測値が設定値となるように前記ヒータへの電力の供給を制御する、
二次電池の制御装置。 - 請求項3の二次電池の制御装置において、
複数の前記温度センサ及び前記ヒータが設けられ、
前記二次電池の制御装置は、
複数の前記ヒータの各々への電力の供給の優先度を決定する優先度決定部、
をさらに備え、
前記優先度決定部は、
前記温度センサにより計測された温度の計測値が低くなるほどヒータへの電力の供給の優先度を上げ、
前記制限内容決定部は、
複数の前記ヒータの各々へ供給される電力を合計した全供給電力が前記要求取得部により取得された吸収電力の要求値以下となるように、前記優先度決定部により決定された電力の供給の優先度が高い前記ヒータから低い前記ヒータへ順に電力の供給を許可する、
二次電池の制御装置。 - 請求項3の二次電池の制御装置において、
前記制限内容決定部は、
前記電力消費体への電力の供給の制限の内容を時間をおいて繰り返し更新し、
前記温度センサにより計測された温度の計測値が上昇するときに適用される第1の下限値及び第2の下限値が下降するときに適用される第1の下限値及び第2の下限値より高い方にずらされる、
二次電池の制御装置。 - 請求項3の二次電池の制御装置において、
前記制限内容決定部は、
前記温度センサにより計測された温度の計測値が上限値を上回る場合は、前記要求取得部により取得された要求にかかわらず前記ヒータへの電力の供給を禁止する、
二次電池の制御装置。 - 請求項1又は請求項2の二次電池の制御装置において、
前記電力消費体は、
前記二次電池を加熱するヒータであり、
前記二次電池の制御装置は、
前記二次電池の温度を計測する温度センサと、
前記温度センサにより計測された温度の計測値の履歴及び前記電力消費体への供給電力の履歴から前記二次電池の温度の予測値を算出する予測値算出部と、
をさらに備え、
前記制限内容決定部は、
前記予測値算出部により算出された温度の予測値が下限値を下回る場合は、前記要求取得部により電力の吸収の要求が取得されると前記ヒータへの電力の供給を許可し、前記要求取得部により電力の放出の要求が取得されると前記ヒータへの電力の供給を禁止する、
二次電池の制御装置。 - 請求項8の二次電池の制御装置において、
前記供給制御部は、
前記制限内容決定部により前記ヒータへの電力の供給が許可された場合は、前記温度センサにより計測される温度の計測値が設定値となるように前記ヒータへの電力の供給を制御する、
二次電池の制御装置。 - 請求項8の二次電池の制御装置において、
複数の前記温度センサ及び前記ヒータが設けられ、
前記二次電池の制御装置は、
複数の前記ヒータの各々への電力の供給の優先度を決定する優先度決定部、
をさらに備え、
前記優先度決定部は、
前記温度センサにより計測される温度の計測値が低くなるほどヒータへの電力の供給の優先度を上げ、
前記制限内容決定部は、
複数の前記ヒータの各々へ供給される電力を合計した全供給電力が前記要求取得部により取得された吸収電力の要求値以下となるように、前記優先度決定部により決定された電力の供給の優先度が高い前記ヒータから低い前記ヒータへ順に電力の供給を許可する、
二次電池の制御装置。 - 請求項8の二次電池の制御装置において、
前記制限内容決定部は、
前記電力消費体への電力の供給の制限の内容を時間をおいて繰り返し更新し、
前記予測値算出部により算出された温度の予測値が上昇するときに適用される下限値が下降するときに適用される下限値より高い方にずらされる、
二次電池の制御装置。 - 請求項8の二次電池の制御装置において、
前記制限内容決定部は、
前記予測値算出部により算出された温度の予測値が上限値を上回る場合は、前記要求取得部により取得された要求にかかわらず前記ヒータへの電力の供給を禁止する、
二次電池の制御装置。 - 二次電池の制御方法であって、
(a) 電力の放出/吸収の要求及び放出/吸収電力の要求値を取得する工程と、
(b) 前記二次電池の放電/充電電力を演算する工程と、
(c) 前記工程(b)において演算された放電/充電電力の演算値を放電/充電電力の指令値として出力する工程と、
(d) 前記工程(c)において出力された指令値となるように前記二次電池の放電/充電を制御する工程と、
(e) 電力消費体への電力の供給の制限の内容を決定する工程と、
(f) 前記工程(e)における決定にしたがって前記電力消費体への電力の供給を制御する工程と、
を備え、
前記工程(e)は、
前記工程(a)において電力の放出の要求が取得された場合は電力の供給の制限を相対的に強くし、
前記工程(a)において電力の吸収の要求が取得された場合は電力の供給の制限を相対的に弱くし、
前記工程(c)は、
前記工程(a)において取得された放出電力の要求値へ前記電力消費体への供給電力を加算して放電電力を演算し、前記要求取得部により取得された吸収電力の要求値から前記電力消費体への供給電力を減算して充電電力を演算する、
二次電池の制御方法。 - 二次電池の制御方法であって、
(a) 電力の放出/吸収の要求及び放出/吸収電力の要求値を取得する工程と、
(b) 前記二次電池の放電/充電電力を演算する工程と、
(c) 前記工程(b)において演算された放電/充電電力の演算値を放電/充電電力の指令値として出力する工程と、
(d) 前記工程(c)において出力された指令値となるように前記二次電池の放電/充電を制御する工程と、
(e) 電力消費体への電力の供給の制限の内容を決定する工程と、
(f) 前記工程(e)における決定にしたがって前記電力消費体への電力の供給を制御する工程と、
を備え、
前記工程(e)は、
前記工程(a)において電力の放出の要求が取得された場合は電力の供給の制限を相対的に強くし、
前記工程(a)において電力の吸収の要求が取得された場合は電力の供給の制限を相対的に弱くする、
二次電池の制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10837360.6A EP2515408B1 (en) | 2009-12-15 | 2010-10-26 | Control device for secondary battery, and control method for secondary battery |
JP2011546027A JP5597208B2 (ja) | 2009-12-15 | 2010-10-26 | 二次電池の制御装置及び二次電池の制御方法 |
CN201080051682.9A CN102612792B (zh) | 2009-12-15 | 2010-10-26 | 二次电池的控制装置和二次电池的控制方法 |
US13/462,207 US8796994B2 (en) | 2009-12-15 | 2012-05-02 | Control apparatus for secondary battery and control method for secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-284091 | 2009-12-15 | ||
JP2009284091 | 2009-12-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/462,207 Continuation US8796994B2 (en) | 2009-12-15 | 2012-05-02 | Control apparatus for secondary battery and control method for secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074330A1 true WO2011074330A1 (ja) | 2011-06-23 |
Family
ID=44167095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068919 WO2011074330A1 (ja) | 2009-12-15 | 2010-10-26 | 二次電池の制御装置及び二次電池の制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8796994B2 (ja) |
EP (1) | EP2515408B1 (ja) |
JP (1) | JP5597208B2 (ja) |
CN (1) | CN102612792B (ja) |
WO (1) | WO2011074330A1 (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130154364A1 (en) * | 2011-12-20 | 2013-06-20 | Jd Holding Inc | Vanadium redox battery energy storage system |
JP2013223423A (ja) * | 2012-04-18 | 2013-10-28 | Samsung Sdi Co Ltd | バッテリーパック及びこれを備える電力供給装置 |
JP2013251102A (ja) * | 2012-05-31 | 2013-12-12 | Nissan Motor Co Ltd | バッテリ制御装置 |
JP2014014212A (ja) * | 2012-07-03 | 2014-01-23 | Toshiba Corp | 監視制御装置 |
EP2738927A1 (en) * | 2011-07-29 | 2014-06-04 | Sanyo Electric Co., Ltd | Power conversion apparatus |
JPWO2013057821A1 (ja) * | 2011-10-20 | 2015-04-02 | 東芝三菱電機産業システム株式会社 | 蓄電装置管理システム |
JPWO2013141090A1 (ja) * | 2012-03-19 | 2015-08-03 | 日産自動車株式会社 | バッテリ温度調節装置 |
WO2016021270A1 (ja) * | 2014-08-08 | 2016-02-11 | 日本碍子株式会社 | 制御装置、制御装置の群及び電力貯蔵装置 |
US9853306B2 (en) | 2004-01-15 | 2017-12-26 | Jd Holding Inc. | System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system |
WO2017221377A1 (ja) * | 2016-06-23 | 2017-12-28 | 株式会社東芝 | 蓄電池システム |
US10141594B2 (en) | 2011-10-07 | 2018-11-27 | Vrb Energy Inc. | Systems and methods for assembling redox flow battery reactor cells |
JP2019536216A (ja) * | 2017-06-13 | 2019-12-12 | エルジー・ケム・リミテッド | バッテリーパックの温度制御方法及び装置 |
JP2020048318A (ja) * | 2018-09-19 | 2020-03-26 | 株式会社デンソー | 二次電池装置 |
KR20200066618A (ko) * | 2018-11-27 | 2020-06-10 | 라이즈선 멩굴리 뉴 에너지 사이언스 & 테크놀로지 컴퍼니 리미티드 | 가열 속도를 조절 가능한 배터리 시스템 및 이의 제어방법 |
JP2021191157A (ja) * | 2020-06-02 | 2021-12-13 | トヨタ自動車株式会社 | 蓄電システム、及び車両 |
WO2022004753A1 (ja) * | 2020-06-30 | 2022-01-06 | 本田技研工業株式会社 | 台座、蓄電装置組立体、蓄電装置収容システム、蓄電装置管理システム、蓄電装置管理方法、プログラム及びコンピュータ可読記録媒体 |
JP7598350B2 (ja) | 2022-07-12 | 2024-12-11 | 矢崎総業株式会社 | 蓄電池制御装置、及び蓄電システム |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013179729A (ja) * | 2012-02-28 | 2013-09-09 | Omron Corp | 蓄電池制御装置、蓄電池制御方法、プログラム、蓄電システム、および電源システム |
DE102013203196B4 (de) * | 2013-02-27 | 2017-05-24 | Robert Bosch Gmbh | Batterie und Kraftfahrzeug |
DE102013212931A1 (de) * | 2013-07-03 | 2015-01-08 | Robert Bosch Gmbh | Steuervorrichtung und Verfahren zum Betreiben einer Hochtemperaturbatterie |
CN105659431B (zh) * | 2013-10-17 | 2019-05-07 | 日本碍子株式会社 | 二次电池 |
US20160043580A1 (en) * | 2014-08-07 | 2016-02-11 | General Electric Company | System and method for reducing current variability between multiple energy storage devices |
DE102014216291A1 (de) * | 2014-08-15 | 2016-02-18 | TRUMPF Hüttinger GmbH + Co. KG | Verfahren zum Betrieb eines bidirektional betreibbaren Wechselrichters und Batteriemanagementsystem |
US9812863B2 (en) * | 2014-12-18 | 2017-11-07 | Solantro Semiconductor Corp. | Distributed electrical microgrid control |
KR101685130B1 (ko) * | 2014-12-19 | 2016-12-09 | 주식회사 엘지화학 | 이차전지의 전력 제어 장치 및 방법 |
US10126723B2 (en) * | 2015-01-30 | 2018-11-13 | General Electric Company | Performing passive maintenance on an energy storage farm |
EP3057172B1 (de) * | 2015-02-16 | 2019-07-31 | Samsung SDI Co., Ltd. | Heizvorrichtung für Batterie |
US9991716B2 (en) * | 2015-02-26 | 2018-06-05 | General Electric Company | Delivery of multiple grid services with energy storage system |
JP7010703B2 (ja) * | 2015-06-10 | 2022-01-26 | ブラウン ゲーエムベーハー | 二次電池の電池容量を制御するための方法、及び電池駆動式家庭用電気器具 |
EP3214724B1 (en) * | 2016-03-03 | 2020-04-29 | Lg Chem, Ltd. | Battery energy storage system |
US10272758B2 (en) * | 2016-11-02 | 2019-04-30 | Proterra Inc. | Battery system of an electric vehicle |
JP6624084B2 (ja) * | 2017-01-12 | 2019-12-25 | トヨタ自動車株式会社 | 電動車両 |
CN107919506B (zh) * | 2017-11-09 | 2023-12-19 | 北京长城华冠汽车技术开发有限公司 | 电动汽车电池温控系统、温控方法、电动汽车电池总成 |
CN110176656A (zh) * | 2018-04-11 | 2019-08-27 | 山东交通学院 | 一种电动汽车动力电池温度控制方法 |
US11095564B2 (en) | 2018-10-22 | 2021-08-17 | Sami Saleh ALWAKEEL | Multiple-attributes classifiers-based broadcast scheme for vehicular ad-hoc networks |
US12176501B2 (en) * | 2021-12-29 | 2024-12-24 | Rivian Ip Holdings, Llc | Control units, systems, and methods for preheating batteries |
US12184097B2 (en) | 2022-11-17 | 2024-12-31 | Thermo King Llc | Methods and systems for power sharing and charging coordination of self-contained climate controlled storage unit(s) |
CN116053660B (zh) * | 2022-12-07 | 2025-01-07 | 华为数字能源技术有限公司 | 一种储能加热控制方法、储能系统以及光储系统 |
US12166187B1 (en) * | 2024-04-08 | 2024-12-10 | Inlyte Energy, Inc. | Method for improving performance of metal conversion batteries and metal conversion batteries formed therefrom preliminary class |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116550A (en) * | 1981-01-13 | 1982-07-20 | Tokyo Shibaura Electric Co | Frequency improving system |
JPH0833240A (ja) * | 1994-07-20 | 1996-02-02 | Hitachi Ltd | 二次電池電力貯蔵システム |
JP2004111123A (ja) * | 2002-09-17 | 2004-04-08 | Ngk Insulators Ltd | ナトリウム−硫黄電池モジュール用ヒーターの制御方法 |
JP2008236821A (ja) * | 2007-03-16 | 2008-10-02 | Ngk Insulators Ltd | 二次電池の電力制御方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5687387A (en) * | 1994-08-26 | 1997-11-11 | Packard Bell Nec | Enhanced active port replicator having expansion and upgrade capabilities |
KR100265709B1 (ko) | 1996-10-15 | 2000-09-15 | 윤종용 | 2차 배터리 충전 장치 |
JP3539326B2 (ja) * | 1999-12-27 | 2004-07-07 | 日本電気株式会社 | 携帯機器の充電システム |
JP4622496B2 (ja) * | 2004-12-08 | 2011-02-02 | 株式会社デンソー | 電気系の電源制御装置 |
JP4538418B2 (ja) * | 2006-02-15 | 2010-09-08 | トヨタ自動車株式会社 | 二次電池の充放電制御装置 |
JP4337848B2 (ja) * | 2006-07-10 | 2009-09-30 | トヨタ自動車株式会社 | 電源システムおよびそれを備える車両、ならびに温度管理方法 |
US20090313034A1 (en) * | 2008-06-16 | 2009-12-17 | International Business Machines Corporation | Generating Dynamic Energy Transaction Plans |
JP5499540B2 (ja) * | 2008-08-01 | 2014-05-21 | 株式会社リコー | 画像形成装置および電力供給制御方法 |
-
2010
- 2010-10-26 JP JP2011546027A patent/JP5597208B2/ja active Active
- 2010-10-26 CN CN201080051682.9A patent/CN102612792B/zh active Active
- 2010-10-26 WO PCT/JP2010/068919 patent/WO2011074330A1/ja active Application Filing
- 2010-10-26 EP EP10837360.6A patent/EP2515408B1/en active Active
-
2012
- 2012-05-02 US US13/462,207 patent/US8796994B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116550A (en) * | 1981-01-13 | 1982-07-20 | Tokyo Shibaura Electric Co | Frequency improving system |
JPH0833240A (ja) * | 1994-07-20 | 1996-02-02 | Hitachi Ltd | 二次電池電力貯蔵システム |
JP2004111123A (ja) * | 2002-09-17 | 2004-04-08 | Ngk Insulators Ltd | ナトリウム−硫黄電池モジュール用ヒーターの制御方法 |
JP2008236821A (ja) * | 2007-03-16 | 2008-10-02 | Ngk Insulators Ltd | 二次電池の電力制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2515408A4 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9853306B2 (en) | 2004-01-15 | 2017-12-26 | Jd Holding Inc. | System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system |
EP2738927A1 (en) * | 2011-07-29 | 2014-06-04 | Sanyo Electric Co., Ltd | Power conversion apparatus |
EP2738927A4 (en) * | 2011-07-29 | 2014-12-31 | Sanyo Electric Co | POWER CONVERTING APPARATUS |
US10141594B2 (en) | 2011-10-07 | 2018-11-27 | Vrb Energy Inc. | Systems and methods for assembling redox flow battery reactor cells |
JPWO2013057821A1 (ja) * | 2011-10-20 | 2015-04-02 | 東芝三菱電機産業システム株式会社 | 蓄電装置管理システム |
US20130154364A1 (en) * | 2011-12-20 | 2013-06-20 | Jd Holding Inc | Vanadium redox battery energy storage system |
US9853454B2 (en) * | 2011-12-20 | 2017-12-26 | Jd Holding Inc. | Vanadium redox battery energy storage system |
JPWO2013141090A1 (ja) * | 2012-03-19 | 2015-08-03 | 日産自動車株式会社 | バッテリ温度調節装置 |
US9991568B2 (en) | 2012-03-19 | 2018-06-05 | Nissan Motor Co., Ltd. | Battery-temperature adjustment apparatus |
JP2013223423A (ja) * | 2012-04-18 | 2013-10-28 | Samsung Sdi Co Ltd | バッテリーパック及びこれを備える電力供給装置 |
JP2013251102A (ja) * | 2012-05-31 | 2013-12-12 | Nissan Motor Co Ltd | バッテリ制御装置 |
JP2014014212A (ja) * | 2012-07-03 | 2014-01-23 | Toshiba Corp | 監視制御装置 |
JPWO2016021270A1 (ja) * | 2014-08-08 | 2017-06-29 | 日本碍子株式会社 | 制御装置、制御装置の群及び電力貯蔵装置 |
WO2016021270A1 (ja) * | 2014-08-08 | 2016-02-11 | 日本碍子株式会社 | 制御装置、制御装置の群及び電力貯蔵装置 |
WO2017221377A1 (ja) * | 2016-06-23 | 2017-12-28 | 株式会社東芝 | 蓄電池システム |
JP2019536216A (ja) * | 2017-06-13 | 2019-12-12 | エルジー・ケム・リミテッド | バッテリーパックの温度制御方法及び装置 |
JP2020048318A (ja) * | 2018-09-19 | 2020-03-26 | 株式会社デンソー | 二次電池装置 |
JP7167581B2 (ja) | 2018-09-19 | 2022-11-09 | 株式会社デンソー | 二次電池装置 |
KR20200066618A (ko) * | 2018-11-27 | 2020-06-10 | 라이즈선 멩굴리 뉴 에너지 사이언스 & 테크놀로지 컴퍼니 리미티드 | 가열 속도를 조절 가능한 배터리 시스템 및 이의 제어방법 |
JP2021510289A (ja) * | 2018-11-27 | 2021-04-15 | ライズサン メングーリ ニュー エナジー サイエンス アンド テクノロジー カンパニー リミテッドRisesun Mengguli New Energy Science&Technology Co.,Ltd. | 加熱速度を調節可能なバッテリーシステム及びその制御方法 |
JP7130036B2 (ja) | 2018-11-27 | 2022-09-02 | ライズサン メングーリ ニュー エナジー サイエンス アンド テクノロジー カンパニー リミテッド | 加熱速度を調節可能なバッテリーシステム及びその制御方法 |
KR102457327B1 (ko) * | 2018-11-27 | 2022-10-20 | 라이즈선 멩굴리 뉴 에너지 사이언스 & 테크놀로지 컴퍼니 리미티드 | 가열 속도를 조절 가능한 배터리 시스템 및 이의 제어방법 |
JP2021191157A (ja) * | 2020-06-02 | 2021-12-13 | トヨタ自動車株式会社 | 蓄電システム、及び車両 |
JP7310722B2 (ja) | 2020-06-02 | 2023-07-19 | トヨタ自動車株式会社 | 蓄電システム、及び車両 |
US11955616B2 (en) | 2020-06-02 | 2024-04-09 | Toyota Jidosha Kabushiki Kaisha | Electric energy storage system and vehicle |
WO2022004753A1 (ja) * | 2020-06-30 | 2022-01-06 | 本田技研工業株式会社 | 台座、蓄電装置組立体、蓄電装置収容システム、蓄電装置管理システム、蓄電装置管理方法、プログラム及びコンピュータ可読記録媒体 |
JP7598350B2 (ja) | 2022-07-12 | 2024-12-11 | 矢崎総業株式会社 | 蓄電池制御装置、及び蓄電システム |
Also Published As
Publication number | Publication date |
---|---|
JP5597208B2 (ja) | 2014-10-01 |
EP2515408B1 (en) | 2017-08-16 |
EP2515408A1 (en) | 2012-10-24 |
EP2515408A4 (en) | 2015-11-11 |
CN102612792B (zh) | 2014-08-06 |
CN102612792A (zh) | 2012-07-25 |
US8796994B2 (en) | 2014-08-05 |
US20120217933A1 (en) | 2012-08-30 |
JPWO2011074330A1 (ja) | 2013-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5597208B2 (ja) | 二次電池の制御装置及び二次電池の制御方法 | |
JP5071545B2 (ja) | 電力需給システム | |
JP6757848B2 (ja) | Pcs効率を考慮したマイクログリッド運用装置および運用方法 | |
WO2010150667A1 (ja) | 電池制御装置及び電池制御方法 | |
US20170324246A1 (en) | Control apparatus, control system, control method, and program | |
JP5897899B2 (ja) | 電力制御システム、制御装置、及び電力制御方法 | |
JP2017500836A (ja) | 充電方法及び充電システム | |
KR20130057750A (ko) | 선박의 에너지 관리방법 | |
US20200329531A1 (en) | Heating apparatus comprising a battery and a power inverter for introducing energy from the battery to the electric supply device | |
JP4660422B2 (ja) | エネルギ供給システム | |
WO2015001767A1 (ja) | 制御装置、電力管理システム | |
JP6166512B2 (ja) | 制御装置、電力システム、及び制御方法 | |
JP2013074759A (ja) | エネルギー管理システム、エネルギー管理装置及び電力管理方法 | |
JP7386028B2 (ja) | 電力供給システム | |
JP6586281B2 (ja) | 制御方法、制御装置、および電力供給システム | |
JP5893319B2 (ja) | 電力管理システム及び電力管理装置 | |
US20190103756A1 (en) | Power storage system, apparatus and method for controlling charge and discharge, and program | |
JP2015162966A (ja) | コージェネレーションユニット、これを備えたコージェネレーションシステム、および電力エネルギ管理装置 | |
KR102029030B1 (ko) | 장주기 및 단주기 특성을 모두 고려하는 전력저장시스템 운전 제어 장치 및 방법 | |
US20150115872A1 (en) | Power Converter | |
KR102714838B1 (ko) | 전력망 안정화를 위한 전기차 충전 시스템 | |
WO2015145818A1 (ja) | 電力調整制御装置及び電力調整制御方法 | |
JP2019030161A (ja) | 分散型電源システム | |
JP6314603B2 (ja) | 電動車両の充電装置及び方法 | |
JP7428078B2 (ja) | エネルギーマネジメントシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080051682.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837360 Country of ref document: EP Kind code of ref document: A1 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837360 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011546027 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2010837360 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010837360 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |