[go: up one dir, main page]

WO2011065391A1 - Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery Download PDF

Info

Publication number
WO2011065391A1
WO2011065391A1 PCT/JP2010/070962 JP2010070962W WO2011065391A1 WO 2011065391 A1 WO2011065391 A1 WO 2011065391A1 JP 2010070962 W JP2010070962 W JP 2010070962W WO 2011065391 A1 WO2011065391 A1 WO 2011065391A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
positive electrode
lithium secondary
active material
Prior art date
Application number
PCT/JP2010/070962
Other languages
French (fr)
Japanese (ja)
Inventor
政博 菊池
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to CN2010800527700A priority Critical patent/CN102668187A/en
Publication of WO2011065391A1 publication Critical patent/WO2011065391A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery and a lithium secondary battery using the positive electrode active material for a lithium secondary battery, particularly excellent in cycle characteristics, load characteristics, and safety.
  • lithium cobaltate has been used as a positive electrode active material for lithium secondary batteries.
  • cobalt is a rare metal
  • lithium nickel manganese cobalt-based composite oxides having a low cobalt content see, for example, Patent Documents 1 to 3 have been developed.
  • Lithium secondary batteries that use this lithium nickel manganese cobalt based composite oxide as the positive electrode active material can be manufactured at low cost by adjusting the atomic ratio of nickel, manganese, and cobalt contained in the composite oxide.
  • Patent Documents 4 and 5 it is proposed to use a carbonated Li-excess layered lithium nickel composite oxide having a defined carbonate ion concentration as a positive electrode active material. There is no description or suggestion about using a lithium nickel manganese cobalt composite oxide having a composition.
  • the present inventors have obtained a lithium composite oxide containing a specific metal atom in a specific range in a lithium nickel manganese cobalt composite oxide having a specific composition as a positive electrode active material.
  • the lithium secondary battery shall be excellent in safety. Furthermore, it has been found that by adjusting the amount of Li 2 CO 3 present on the particle surface of the lithium composite oxide within a specific range, the capacity retention rate of lithium secondary batteries, particularly at high temperatures, can be dramatically improved. Completed the invention.
  • an object of the present invention is to provide a positive electrode active for a lithium secondary battery using a lithium nickel manganese cobalt based composite oxide capable of imparting particularly excellent cycle characteristics, load characteristics, and safety to a lithium secondary battery.
  • An object of the present invention is to provide a lithium secondary battery excellent in cycle characteristics, load characteristics, and safety, using a positive electrode active material, and a material, a method for producing the positive electrode active material in an industrially advantageous manner.
  • the first invention to be provided by the present invention is the following general formula (1): Li x Ni y Mn z Co 1-yz O 1 + x (1) (Wherein x represents 1.02 ⁇ x ⁇ 1.25, y represents 0.30 ⁇ y ⁇ 0.40, and z represents 0.30 ⁇ z ⁇ 0.40).
  • a positive electrode active material for a lithium secondary battery characterized in that the amount of Li 2 CO 3 present on the particle surface is 0.05 to 0.20% by weight.
  • the second invention to be provided by the present invention is: (A) a lithium compound and (b) a general formula; Ni y Mn z Co 1-yz (OH) 2 (Wherein y represents 0.30 ⁇ y ⁇ 0.40, z represents 0.30 ⁇ z ⁇ 0.40), and (c) Mg, Al, Ti,
  • One or more metal atom (Me) -containing compounds selected from Cu and Zr have an atomic ratio of Li / (Ni + Mn + Co + Me) of 1.02 to 1.25 and an atomic ratio of Me / (Ni + Mn + Co)
  • a lithium secondary battery comprising: a first step of mixing at 0.001 to less than 0.05; and then a second step of firing the obtained mixture at 800 to 1000 ° C. to obtain a lithium composite oxide It is a manufacturing method of the positive electrode active material.
  • the third invention to be provided by the present invention is a lithium secondary battery using the positive electrode active material for lithium secondary battery according to the first invention.
  • security can be provided using the positive electrode active material which consists of lithium nickel manganese cobalt type complex oxide.
  • the present invention can provide a lithium secondary battery having excellent cycle characteristics even at high temperatures.
  • this positive electrode active material can be manufactured by an industrially advantageous method.
  • the X-ray diffraction pattern of the composite hydroxide sample A X-ray diffraction diagram of composite hydroxide sample B.
  • FIG. FIG. 4 is an X-ray diffraction pattern of the lithium composite oxide obtained in Example 3.
  • the DSC chart of this lithium composite oxide sample when the lithium composite oxide sample of Example 3 is used as a positive electrode active material and safety is evaluated.
  • the DSC chart of this lithium composite oxide sample when the lithium composite oxide sample of the comparative example 1 is used as a positive electrode active material and safety is evaluated.
  • the DSC chart of this lithium composite oxide sample when the lithium composite oxide sample of the comparative example 3 is used as a positive electrode active material, and safety is evaluated.
  • the positive electrode active material for a lithium secondary battery according to the present invention (hereinafter simply referred to as “positive electrode active material” unless otherwise specified) is represented by the following general formula (1): Li x Ni y Mn z Co 1-yz O 1 + x (1) (Wherein x represents 1.02 ⁇ x ⁇ 1.25, y represents 0.30 ⁇ y ⁇ 0.40, and z represents 0.30 ⁇ z ⁇ 0.40).
  • Lithium in which a specific metal atom (Me) is contained in an amount of 0.1 mol% to less than 5 mol% in a cobalt-based composite oxide (hereinafter sometimes simply referred to as “lithium nickel manganese cobalt-based composite oxide”) It is a composite oxide (hereinafter sometimes simply referred to as “lithium composite oxide”).
  • X in the formula of the lithium composite oxide represented by the general formula (1) is 1.02 or more and 1.25 or less, and particularly x in the formula is in the range of 1.05 or more and 1.20 or less. This is preferable from the viewpoint of improving the capacity retention rate of the lithium secondary battery.
  • Y and Z in the formula are 0.30 or more and 0.40 or less, and when y and z in the formula are in the range of 0.33 or more and 0.34 or less, the target product can be produced at low cost. Moreover, it is preferable from the viewpoint of improving the safety of the lithium secondary battery.
  • the metal atom (Me) contained in the lithium nickel manganese cobalt composite oxide represented by the general formula (1) is one or more metal atoms selected from Mg, Al, Ti, Cu and Zr ( Me) (hereinafter sometimes simply referred to as “metal atom (Me)”), among which Mg, Ti, and Cu are particularly preferable from the viewpoint of further improving the safety of the lithium secondary battery. Further, the amount of metal atom (Me) contained in the lithium nickel manganese cobalt based composite oxide is 0.1 mol% or more and less than 5 mol%.
  • the content of the metal atom (Me) is preferably 0.2 mol% or more and 1 mol% or less from the viewpoint of obtaining a lithium secondary battery having high discharge capacity and further improved safety.
  • the reason why the content of the metal atom (Me) is within the above range is that when the content of the metal atom (Me) is smaller than 0.1 mol%, the safety improvement effect of the lithium secondary battery is improved.
  • the content of the metal atom (Me) is 5 mol% or more, the discharge capacity of the lithium secondary battery is lowered.
  • the metal atom (Me) may be contained as a solid solution in the lithium nickel manganese cobalt-based composite oxide. It may exist on the particle surface of the composite oxide.
  • the amount of Li 2 CO 3 present on the particle surface of the lithium composite oxide is 0.05 to 0.20% by weight, preferably 0.07 to 0. 20% by weight.
  • the reason for this is that when the amount of Li 2 CO 3 present on the particle surface of the lithium composite oxide is less than 0.05% by weight, the formation of a film by the decomposition of the electrolyte solution on the electrode surface is promoted, and the capacity retention rate is increased.
  • it exceeds 0.20% by weight the amount of CO 2 gas generated during high-temperature storage increases and the safety of the lithium secondary battery decreases.
  • the amount of Li 2 CO 3 present on the particle surface of the lithium composite oxide is 1.5 to 10 mg / m 2 , preferably the amount of Li 2 CO 3 present on the particle surface per unit area determined from the BET specific surface area. Is preferably from 2.5 to 7.0 mg / m 2 from the viewpoint of further improving the capacity retention rate at high temperatures of a lithium secondary battery using the positive electrode active material.
  • the lithium composite oxide according to the positive electrode active material of the present invention is such that the remaining LiOH is 0.15% by weight or less, preferably 0.11% by weight or less and substantially free of LiOH. Is preferable from the viewpoint of facilitating electrode preparation because the coating property is stable and coating properties are improved.
  • the lithium composite oxide has an average particle size of 1 to 30 ⁇ m, preferably 3 to 20 ⁇ m, determined by a laser particle size distribution measurement method.
  • the reason for this is that when the average particle size of the lithium composite oxide is smaller than 1 ⁇ m, the number of highly active fine particles tends to increase, and the effect of improving the safety of the lithium secondary battery tends to be difficult to obtain. This is because applicability to the electrodes tends to be a problem when the size is increased.
  • the lithium composite oxide has a BET specific surface area of 0.1 to 1 m 2 / g, preferably 0.2 to 0.8 m 2 / g.
  • the reason for this is that when the BET specific surface area of the lithium composite oxide is smaller than 0.1 m 2 / g, the load characteristics of the lithium secondary battery tend to deteriorate, whereas when the lithium composite oxide is larger than 1 m 2 / g, the lithium secondary battery This is because the discharge capacity tends to decrease.
  • the lithium composite oxide has a tap density of 1.5 g / ml or more. This is because when the tap density of the lithium composite oxide is less than 1.5 g / ml, the electrode density tends to decrease and the discharge capacity of the lithium secondary battery tends to decrease. In particular, when the tap density of the lithium composite oxide is in the range of 1.7 to 2.8 g / ml, it is particularly preferable from the viewpoint of increasing the discharge capacity of the lithium secondary battery.
  • the positive electrode active material of the present invention includes, for example, (a) a lithium compound, (b) a general formula; Ni y Mn z Co 1-yz (OH) 2 (wherein y is 0.30 ⁇ y ⁇ 0. 40, z represents 0.30 ⁇ z ⁇ 0.40), and (c) the metal atom (Me) -containing compound has an atomic ratio of Li / (Ni + Mn + Co + Me) of 1.
  • Examples of the (a) lithium compound according to the first step include lithium oxide, hydroxide, carbonate, nitrate, and organic acid salt.
  • lithium carbonate is easy to handle as a powder, It is particularly preferably used from the viewpoint of being inexpensive.
  • this lithium compound has an average particle size determined by a laser light scattering method of 1 to 100 ⁇ m, and preferably 5 to 80 ⁇ m, because of good reactivity.
  • composite hydroxide represented by the general formula (b) Ni y Mn z Co 1-yz (OH) 2 according to the first step.
  • y and z correspond to y and z in the formula of the general formula (1), respectively, and y and Z are 0.30 or more and 0.40 or less, and particularly y and z in the formula are 0.
  • the target lithium composite oxide can be produced at low cost, and the obtained lithium composite oxide further improves the safety of the lithium secondary battery. From the viewpoint of being able to do so.
  • the composite hydroxide has an average particle size determined by a laser particle size distribution measurement method of 1 to 30 ⁇ m, preferably 3 to 20 ⁇ m.
  • the reason for this is that when the average particle size of the composite hydroxide is smaller than 1 ⁇ m, in the lithium secondary battery using the obtained lithium composite oxide as a positive electrode active material, the safety improvement effect tends to be small.
  • the average particle size is larger than 30 ⁇ m, the reactivity is deteriorated, and in the lithium secondary battery using the obtained lithium composite oxide as a positive electrode active material, the discharge capacity tends to decrease.
  • the composite hydroxide has a BET specific surface area of 2 to 10 m 2 / g, preferably 2 to 8 m 2 / g.
  • the reason for this is that when the BET specific surface area of the composite hydroxide is smaller than 2 m 2 / g, the reactivity becomes worse, and in the lithium secondary battery using the obtained lithium composite oxide as a positive electrode active material, On the other hand, when the BET specific surface area is larger than 10 m 2 / g, in the lithium secondary battery using the obtained lithium composite oxide as the positive electrode active material, the safety improvement effect tends to be small. Because there is.
  • the composite hydroxide has a tap density of 1 g / ml or more, preferably 1.5 to 2.5 g / ml.
  • the reason for this is that if the tap density of the composite hydroxide is less than 1 g / ml, the tap density and electrode density of the obtained lithium composite oxide are reduced, and thus the obtained lithium composite oxide is used as a positive electrode active material. This is because the discharge capacity tends to decrease in the lithium secondary battery.
  • the composite hydroxide having such various physical properties can be prepared, for example, by a coprecipitation method.
  • the composite hydroxide can be coprecipitated by mixing an aqueous solution containing a predetermined amount of nickel atom, cobalt atom and manganese atom, an aqueous solution of a complexing agent, and an alkaline aqueous solution ( (See JP-A-10-81521, JP-A-10-81520, JP-A-10-29820, 2002-201028, etc.).
  • the composite hydroxide may be a commercial product.
  • metal atom (Me) containing compound chosen from Mg, Al, Ti, Cu, and Zr which concerns on 1st process is an oxide containing these metal atoms (Me), water Oxides, halides, carbonates, nitrates, organic acid salts and the like can be used.
  • this metal atom (Me) -containing compound has an average particle size determined by a laser particle size distribution measuring method of 0.1 to 20 ⁇ m, preferably 0.1 to 10 ⁇ m, since it has good reactivity and is particularly preferable.
  • the raw material (a) lithium compound, (b) composite hydroxide, and (c) metal atom (Me) -containing compound contain as much impurities as possible in order to produce a high-purity positive electrode active material. Those with less are preferred.
  • the compounding ratio of (a) lithium compound, (b) composite hydroxide and (c) metal atom (Me) -containing compound is the atomic ratio of lithium atom to nickel atom, cobalt atom, manganese atom and metal atom (Me) ( Li / (Ni + Co + Mn + Me)) is 1.02 to 1.25, preferably 1.05 to 1.20, in order to obtain a positive electrode active material having excellent cycle characteristics, load characteristics and safety. An important requirement.
  • the reason for this is that when the atomic ratio of lithium atoms to nickel atoms, cobalt atoms, manganese atoms, and metal atoms (Me) is smaller than 1.02, the amount of Li 2 CO 3 present on the particle surface of the resulting lithium composite oxide This is because it is difficult to enter the range of 0.05 to 0.20% by weight. On the other hand, when the atomic ratio of lithium atoms to nickel atoms, cobalt atoms, manganese atoms, and metal atoms (Me) is greater than 1.25, the discharge capacity of the lithium secondary battery is greatly reduced.
  • the compounding ratio of (b) the composite hydroxide and (c) the metal atom (Me) -containing compound is the atomic ratio of the metal atom (Me) to the nickel atom, cobalt atom and manganese atom (Me / ⁇ Ni + Mn + Co ⁇ ). Viewpoint of obtaining a lithium secondary battery that has a high capacity retention rate and is excellent in safety, particularly when the capacity is 0.001 or more and less than 0.05, and particularly 0.002 or more and 0.01 or less. To preferred.
  • the reason why the atomic ratio of the metal atom (Me) to the nickel atom, cobalt atom, and manganese atom is within the above range is that when the atomic ratio of Me / (Ni + Mn + Co) is smaller than 0.01, the safety of the lithium secondary battery is reduced. This is because the improvement effect is not observed, and on the other hand, when the atomic ratio of Me / (Ni + Mn + Co) is 0.05 or more, the discharge capacity of the lithium secondary battery decreases.
  • the mixing may be either a dry method or a wet method, but a dry method is preferable because of easy production. In the case of dry mixing, it is preferable to use a blender or the like that uniformly mixes the raw materials.
  • the mixture obtained by uniformly mixing the raw materials obtained in the first step is then subjected to a second step to obtain a positive electrode active material made of a lithium composite oxide.
  • the second step according to the present invention is a step of obtaining a positive electrode active material made of a lithium composite oxide by firing the mixture obtained by uniformly mixing the raw materials obtained in the first step in a specific temperature range.
  • the firing temperature in the second step is 800 to 1000 ° C., preferably 850 to 950 ° C. This is because when the firing temperature is lower than 800 ° C., the solid solution reaction between (a) the lithium compound, (b) the composite hydroxide, and (c) the metal atom (Me) -containing compound is not completed.
  • Lithium secondary batteries having a lithium composite oxide as a positive electrode active material have a low discharge capacity, and it is difficult to obtain a battery with excellent load characteristics and safety.
  • the firing temperature is higher than 1000 ° C., the obtained lithium This is because it is difficult to obtain a lithium secondary battery using a composite oxide as a positive electrode active material with good load characteristics.
  • the firing atmosphere may be an air atmosphere or an oxygen atmosphere, and the firing time is 5 hours or longer, preferably 7 to 15 hours. Moreover, in this invention, you may perform baking as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the fired material may be pulverized and then refired. After firing, the lithium composite oxide of the present invention is obtained by appropriately cooling and pulverizing as necessary.
  • the pulverization is appropriately performed when the obtained lithium composite oxide is brittle and in a block shape, and the lithium composite oxide has specific powder characteristics. That is, the average particle size determined by the laser particle size distribution measurement method is 1 to 30 ⁇ m, preferably 3 to 20 ⁇ m, and the BET specific surface area is 0.1 to 1 m 2 / g, preferably 0.2 to 0.8 m 2 /. g, the tap density is 1.5 g / ml or more, preferably 1.7 to 2.8 g / ml.
  • Li 2 CO 3 is present in an amount of 0.05 to 0.15 wt%
  • LiOH is also present in an amount of 0.02 to 0.15 wt%.
  • the lithium secondary battery using the positive electrode active material obtained by applying the third step further improves battery performance such as cycle characteristics, load characteristics and safety.
  • the lithium composite oxide obtained in the second step is brought into contact with carbon dioxide.
  • the contact between the lithium composite oxide and carbon dioxide is performed in an atmosphere containing a carbon dioxide concentration of 50% by volume or more, preferably 90 to 100% by volume. This is because if the carbon dioxide concentration is smaller than 50% by volume, the conversion to Li 2 CO 3 tends to be insufficient.
  • the contact between the lithium nickel manganese cobalt composite oxide and carbon dioxide can be efficiently converted to Li 2 CO 3 by performing stirring or moderate vibration.
  • the contact temperature is 5 to 90 ° C., preferably 10 to 80 ° C., for 5 minutes or more, preferably 0.1 to 10 hours.
  • the product After completion of the third step, the product is dried, crushed or crushed as necessary, and then classified to obtain a product.
  • the drying treatment temperature is preferably from 100 to 300 ° C., preferably from 150 to 250 ° C., from the viewpoint that moisture can be quickly removed.
  • the drying time is 30 minutes or longer, preferably 1 to 2 hours.
  • a lithium secondary battery according to the present invention uses the above-described positive electrode active material for a lithium secondary battery, and includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte containing a lithium salt.
  • the positive electrode is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture includes a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of.
  • the positive electrode active material made of the lithium composite oxide of the present invention is uniformly applied to the positive electrode. For this reason, the lithium secondary battery according to the present invention is particularly excellent in load characteristics, capacity retention at high temperatures, and safety.
  • the content of the positive electrode active material contained in the positive electrode mixture is 70 to 100% by weight, preferably 90 to 98% by weight.
  • the positive electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery.
  • the surface include carbon, nickel, titanium, and silver surface-treated. The surface of these materials may be oxidized and used, or the current collector surface may be provided with irregularities by surface treatment.
  • the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in a configured battery.
  • graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, carbon black such as thermal black
  • conductive fibers such as carbon fiber and metal fiber
  • Examples include metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive materials such as polyphenylene derivatives.
  • graphite include scaly graphite, scaly graphite, and earthy graphite. These can be used alone or in combination of two or more.
  • the blending ratio of the conductive agent is 1 to 50% by weight, preferably 2 to 30% by weight in the positive electrode mixture.
  • binder examples include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, fluorinated Vinylidene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetraf Oroethylene copolymer, polychlorotrifluoroethylene
  • the compound containing a functional group which reacts with lithium like a polysaccharide it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example.
  • the blending ratio of the binder is 1 to 50% by weight, preferably 5 to 15% by weight in the positive electrode mixture.
  • the filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added if necessary.
  • any fibrous material can be used as long as it does not cause a chemical change in the constructed battery.
  • olefinic polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used.
  • the addition amount of the filler is not particularly limited, but is preferably 0 to 30% by weight in the positive electrode mixture.
  • the negative electrode is formed by applying and drying a negative electrode material on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in a configured battery.
  • stainless steel, nickel, copper, titanium, aluminum, calcined carbon, copper or stainless steel examples include carbon, nickel, titanium, silver surface-treated, and an aluminum-cadmium alloy. Further, the surface of these materials may be used after being oxidized, or the surface of the current collector may be provided with irregularities by surface treatment.
  • Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the negative electrode material is not particularly limited, and examples thereof include carbonaceous materials, metal composite oxides, lithium metals, lithium alloys, silicon-based alloys, tin-based alloys, metal oxides, conductive polymers, and chalcogen compounds. And Li—Co—Ni-based materials.
  • Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials.
  • Examples of the metal composite oxide include Sn P (M 1 ) 1-p (M 2 ) q Or (wherein M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, M 2 represents one or more elements selected from Al, B, P, Si, Group 1, Group 2, Group 3 and a halogen element in the periodic table, and 0 ⁇ p ⁇ 1, 1 ⁇ q ⁇ 3 ,. showing a 1 ⁇ r ⁇ 8), Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), include compounds of lithium titanate.
  • the metal oxide GeO, GeO 2, SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, Bi 2 O 3 Bi 2 O 4 , Bi 2 O 5 and the like.
  • the conductive polymer include polyacetylene and poly-p-phenylene.
  • an insulating thin film having a large ion permeability and a predetermined mechanical strength is used.
  • Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity.
  • the pore diameter of the separator may be in a range generally useful for batteries, for example, 0.01 to 10 ⁇ m.
  • the thickness of the separator may be in a range for a general battery, for example, 5 to 300 ⁇ m.
  • the solid electrolyte such as a polymer is used as the electrolyte described later, the solid electrolyte may also serve as a separator.
  • the non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt.
  • a non-aqueous electrolyte a non-aqueous electrolyte, an organic solid electrolyte, or an inorganic solid electrolyte is used.
  • Non-aqueous electrolytes include, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyl Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3- Ropansaruton, methyl propionate, and a solvent
  • organic solid electrolyte examples include a polyethylene derivative, a polyethylene oxide derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphate ester polymer, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, Examples thereof include a polymer containing an ionic dissociation group such as polyhexafluoropropylene, and a mixture of a polymer containing an ionic dissociation group and the above non-aqueous electrolyte.
  • Li nitride, halide, oxyacid salt, sulfide and the like can be used, for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N—LiI—LiOH, LiSiO 4.
  • the inorganic solid electrolyte is amorphous (glass), lithium phosphate (Li 3 PO 4 ), lithium oxide (Li 2 O), lithium sulfate (Li 2 SO 4 ), phosphorus oxide (P 2 O 5) ), Compounds containing oxygen such as lithium borate (Li 3 BO 3 ), Li 3 PO 4-x N 2x / 3 (x is 0 ⁇ x ⁇ 4), Li 4 SiO 4-x N 2x / 3 (x is Nitrogen such as 0 ⁇ x ⁇ 4), Li 4 GeO 4-x N 2x / 3 (x is 0 ⁇ x ⁇ 4), Li 3 BO 3-x N 2x / 3 (x is 0 ⁇ x ⁇ 3)
  • the compound to be contained can be contained in the inorganic solid electrolyte.
  • lithium salt those dissolved in the non-aqueous electrolyte are used.
  • the following compounds can be added to the non-aqueous electrolyte for the purpose of improving discharge, charge characteristics, and flame retardancy.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compound with carbonyl group, hexamethylphosphine
  • Examples include hollic triamide and 4-alkylmorpholine, bicyclic tertiary amines, oils, phosphonium salts and
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be included in the electrolyte.
  • carbon dioxide gas can be included in the electrolytic solution in order to make it suitable for high-temperature storage.
  • the lithium secondary battery according to the present invention is a lithium secondary battery excellent in battery performance, particularly in cycle characteristics, and the shape of the battery may be any shape such as a button, a sheet, a cylinder, a corner, or a coin type.
  • the use of the lithium secondary battery according to the present invention is not particularly limited.
  • electronic devices such as memory cards and video movies, and consumer electronic devices such as automobiles, electric vehicles, and game machines.
  • Tap density is based on the method of apparent density or apparent specific volume described in JIS-K-5101, 50 g of sample is put into a 50 ml measuring cylinder, made by Yuasa Ionics, DUAL It set to the AUTOTAP apparatus, tapped 500 times, the capacity was read, the apparent density was calculated, and it was set as the tap density.
  • the average particle size was determined by a laser particle size distribution measurement method.
  • Examples 1 to 5, Comparative Examples 1 to 3 The composite hydroxide sample A (Ni 0.334 Mn 0.333 Co 0.333 (OH) 2 ), lithium carbonate (average particle size 4.5 ⁇ m) and magnesium fluoride (average particle size 5.9 ⁇ m), Nickel atoms, manganese atoms, cobalt atoms, and magnesium atoms were weighed so as to have the blending ratios shown in Table 1, and sufficiently mixed with a mixer. This mixture was fired at 900 ° C. for 10 hours in the air, and the fired product obtained by cooling after firing was pulverized and classified to obtain a lithium composite oxide sample comprising a magnesium-containing lithium nickel manganese cobalt composite oxide. It was.
  • Example 6 The composite hydroxide sample A (Ni 0.334 Mn 0.333 Co 0.333 (OH) 2 ), lithium carbonate (average particle size 4.5 ⁇ m) and magnesium oxide (average particle size 2.9 ⁇ m) were mixed with nickel. Atoms, manganese atoms, cobalt atoms, and magnesium atoms were weighed so as to have the blending ratios shown in Table 1, and sufficiently mixed with a mixer. This mixture was fired at 900 ° C. for 10 hours in the air, and the fired product obtained by cooling after firing was pulverized and classified to obtain a lithium composite oxide sample comprising a magnesium-containing lithium nickel manganese cobalt composite oxide. It was.
  • Example 7 A lithium composite oxide sample comprising a magnesium-containing lithium nickel manganese cobalt based composite oxide was obtained under the same conditions and operating method as in Example 3 except that the composite hydroxide sample B was used instead of the composite hydroxide sample A. It was.
  • Example 8 The composite hydroxide sample A (Ni 0.334 Mn 0.333 Co 0.333 (OH) 2 ), lithium carbonate (average particle size 4.5 ⁇ m) and copper oxide (average particle size 5.3 ⁇ m) were mixed with nickel. Atoms, manganese atoms, cobalt atoms, and copper atoms were weighed so as to have a blending ratio shown in Table 1, and sufficiently mixed with a mixer. The mixture was fired at 900 ° C. for 10 hours in the air, and the fired product obtained by cooling after firing was pulverized and classified to obtain a lithium composite oxide sample comprising a copper-containing lithium nickel manganese cobalt composite oxide. It was.
  • Example 9 The composite hydroxide sample A (Ni 0.334 Mn 0.333 Co 0.333 (OH) 2 ), lithium carbonate (average particle size 4.5 ⁇ m) and titanium dioxide (average particle size 0.4 ⁇ m) were mixed with nickel. Atoms, manganese atoms, cobalt atoms, and titanium atoms were weighed so as to have the blending ratio shown in Table 1, and sufficiently mixed with a mixer. The mixture was fired at 900 ° C. for 10 hours in the air, and the fired product obtained by cooling after firing was pulverized and classified to obtain a lithium composite oxide sample comprising a titanium-containing lithium nickel manganese cobalt composite oxide. It was.
  • Example 4 A lithium composite oxide sample made of a magnesium-containing lithium nickel manganese cobalt composite oxide was obtained under the same conditions and operating method as in Example 3 except that the firing temperature was 750 ° C. for 10 hours.
  • Example 5 A lithium composite oxide sample made of a magnesium-containing lithium nickel manganese cobalt composite oxide was obtained under the same conditions and operating method as in Example 3 except that the firing temperature was 1050 ° C. for 10 hours.
  • the molar ratio A is the molar ratio of ⁇ Li / (Ni + Mn + Co + Me) ⁇
  • the molar B is the molar ratio of ⁇ Me / (Ni + Mn + Co) ⁇ .
  • Example 10 100 g of each of the lithium composite oxide samples obtained in Example 3 were put into a 500 ml container that can be sealed, and CO 2 gas was sealed and sealed as an atmosphere having a carbon dioxide concentration of 95% by volume.
  • the container was attached to a vibration device (paint shaker), and was vibrated at room temperature (25 ° C.) for the treatment times shown in Table 2.
  • the lithium composite oxide treated with CO 2 gas was dried at 200 ° C. for 2 hours to obtain a lithium composite oxide sample with an increased Li 2 CO 3 content.
  • the amount of Li 2 CO 3 per unit area was obtained from the following calculation formula (2).
  • a coin-type lithium secondary battery was manufactured using each member such as a negative electrode, a separator, a current collector plate, an electrolyte, a case for CR2032, a mounting bracket, an external terminal, and the like.
  • a lithium metal foil was used for the negative electrode, and 1 mol of LiPF 6 was dissolved in 1 liter of a mixed solvent of 25:60:15 (v / v / v) of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate in the electrolyte. We used what we did.
  • the charging and discharging method of the coin-type lithium secondary battery is as follows. First, the battery is charged to 4.3 V at a current amount of 0.5 C (2 hour rate), and then held at 4.3 V for about 3 hours for a total constant current of 5 hours. Charging was performed by voltage (CCCV) charging, and subsequently, constant current (CC) discharging was performed to discharge to 2.7 V at a current amount of 0.2 C (5-hour rate). With these operations as one cycle, the capacity was measured every cycle. This cycle was repeated 20 times, and the capacity retention rate was calculated from the discharge capacity of the first cycle and the 20th cycle according to the following formula. The discharge capacity at the first cycle was defined as the initial discharge capacity. The results are shown in Table 5.
  • the charging and discharging method of the coin-type lithium secondary battery is as follows. First, the battery is charged to 4.3 V at a current amount of 0.5 C (2 hour rate), and then held at 4.3 V for about 3 hours for a total constant current of 5 hours. Charging was performed by voltage (CCCV) charging, and then, constant current (CC) discharging was performed for 2 cycles at a current amount of 0.2 C (5 hour rate) to 2.7 V. In the subsequent cycles, only the current amount at the time of discharge is changed, the third cycle is 2C (1/2 hour rate), the fifth cycle is 1C (one hour rate), and the seventh cycle is 0.5C (two hour rate). Was discharged.
  • CCCV voltage
  • CC constant current
  • Safety evaluation was performed by performing differential scanning calorimetry (DSC) on the lithium composite oxide samples of Example 3, Example 6, Example 8, Example 9, Example 11, Comparative Example 1, and Comparative Example 3. evaluated.
  • the coin battery prepared above was charged to 4.4 V, recovered from the measuring machine in a charged state, disassembled in the glove box, and the positive electrode was taken out.
  • the positive electrode was cut out so that the amount of the active material was 5 mg, and placed in a pressure-resistant pan for DSC together with 10 mg of the electrolyte.
  • the pressure pan was heated to 350 ° C. at a rate of 2 ° C./min to obtain a DSC chart. From this chart, the maximum value of the exothermic peak seen up to around 240 ° C.
  • FIG. 4 is a DSC chart when the lithium composite oxide sample of Example 3 is used as a positive electrode active material
  • FIG. 5 is a DSC chart when the lithium composite oxide sample of Comparative Example 1 is used as a positive electrode active material.
  • FIG. 6 shows a DSC chart when the lithium composite oxide sample of Comparative Example 3 is used as the positive electrode active material.
  • a lithium secondary battery having excellent cycle characteristics, load characteristics, and safety is provided using a positive electrode active material made of a lithium nickel manganese cobalt based composite oxide. can do.
  • the present invention can provide a lithium secondary battery having excellent cycle characteristics even at high temperatures.
  • this positive electrode active material can be manufactured by an industrially advantageous method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Disclosed is a positive electrode active material for a lithium secondary battery, which uses a lithium nickel manganese cobalt complex oxide that is capable of providing a lithium secondary battery with particularly excellent cycle characteristics, load characteristics and safety. Specifically disclosed is a positive electrode active material for a lithium secondary battery, which is characterized by being composed of a lithium complex oxide that is obtained by having a lithium nickel manganese cobalt complex oxide represented by the following general formula (1): LixNiyMnzCo1-y-zO1+x (wherein, x satisfies 1.02 ≤ x ≤ 1.25, y satisfies 0.30 ≤ y ≤ 0.40, and z satisfies 0.30 ≤ z ≤ 0.40) contain one or more kinds of metal atoms (Me) selected from among Mg, Al, Ti, Cu and Zr in an amount of 0.1% by mole or more but less than 5% by mole. The positive electrode active material for a lithium secondary battery is also characterized in that the amount of Li2CO3 present on the particle surfaces is 0.05-0.20% by weight.

Description

リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
 本発明はリチウム二次電池用正極活物質及び該リチウム二次電池用正極活物質を用いた、特にサイクル特性、負荷特性及び安全性に優れたリチウム二次電池に関するものである。 The present invention relates to a positive electrode active material for a lithium secondary battery and a lithium secondary battery using the positive electrode active material for a lithium secondary battery, particularly excellent in cycle characteristics, load characteristics, and safety.
 従来、リチウム二次電池の正極活物質として、コバルト酸リチウムが用いられてきた。しかし、コバルトは希少金属であるため、コバルトの含有率が低いリチウムニッケルマンガンコバルト系複合酸化物(例えば、特許文献1~3参照)が開発されている。 Conventionally, lithium cobaltate has been used as a positive electrode active material for lithium secondary batteries. However, since cobalt is a rare metal, lithium nickel manganese cobalt-based composite oxides having a low cobalt content (see, for example, Patent Documents 1 to 3) have been developed.
 このリチウムニッケルマンガンコバルト系複合酸化物を正極活物質とするリチウム二次電池は、複合酸化物中に含まれるニッケル、マンガン、コバルトの原子比を調製することで、低コスト化が可能で、安全性の要求に対しても優れたものになることが知られているが、更に、サイクル特性、負荷特性及び安全性が向上したものが要望されている。 Lithium secondary batteries that use this lithium nickel manganese cobalt based composite oxide as the positive electrode active material can be manufactured at low cost by adjusting the atomic ratio of nickel, manganese, and cobalt contained in the composite oxide. However, there is a demand for improved cycle characteristics, load characteristics, and safety.
 また、下記特許文献4、5には、炭酸化したLi過剰層状リチウムニッケル複合酸化物で、炭酸イオン濃度を規定したものを正極活物質として用いることが提案されているが、本発明にかかる特定組成からなるリチウムニッケルマンガンコバルト系複合酸化物を用いる点については、何ら記載はなく、示唆もない。 Further, in Patent Documents 4 and 5 below, it is proposed to use a carbonated Li-excess layered lithium nickel composite oxide having a defined carbonate ion concentration as a positive electrode active material. There is no description or suggestion about using a lithium nickel manganese cobalt composite oxide having a composition.
特開平04-106875号公報Japanese Patent Laid-Open No. 04-106875 国際公開第2004/092073号パンフレットInternational Publication No. 2004/092073 Pamphlet 特開2005-25975号公報JP 2005-25975 A 特開2004-335345号公報JP 2004-335345 A 特開2009-4311号公報JP 2009-4311 A
 本発明者らは、上記実情を鑑み鋭意研究を重ねた結果、特定の組成を有するリチウムニッケルマンガンコバルト系複合酸化物に特定の金属原子を特定範囲で含有させたリチウム複合酸化物を正極活物質とするリチウム二次電池は、安全性が優れたものになること。更に、該リチウム複合酸化物の粒子表面に存在するLiCO量を特定範囲に調製することで、特にリチウム二次電池の高温時の容量維持率が飛躍的に向上することを見出し、本発明を完成させた。 As a result of intensive studies in view of the above circumstances, the present inventors have obtained a lithium composite oxide containing a specific metal atom in a specific range in a lithium nickel manganese cobalt composite oxide having a specific composition as a positive electrode active material. The lithium secondary battery shall be excellent in safety. Furthermore, it has been found that by adjusting the amount of Li 2 CO 3 present on the particle surface of the lithium composite oxide within a specific range, the capacity retention rate of lithium secondary batteries, particularly at high temperatures, can be dramatically improved. Completed the invention.
 即ち、本発明の目的は、リチウム二次電池に、特に優れたサイクル特性、負荷特性、更に安全性を付与することができるリチウムニッケルマンガンコバルト系複合酸化物を用いたリチウム二次電池用正極活物質、該正極活物質を工業的に有利に製造する方法及び該正極活物質を用いた、特にサイクル特性、負荷特性及び安全性に優れたリチウム二次電池を提供することにある。 That is, an object of the present invention is to provide a positive electrode active for a lithium secondary battery using a lithium nickel manganese cobalt based composite oxide capable of imparting particularly excellent cycle characteristics, load characteristics, and safety to a lithium secondary battery. An object of the present invention is to provide a lithium secondary battery excellent in cycle characteristics, load characteristics, and safety, using a positive electrode active material, and a material, a method for producing the positive electrode active material in an industrially advantageous manner.
 本発明が提供しようとする第1の発明は、下記一般式(1):
  LiNiMnCo1-y-z1+x    (1)
(式中、xは1.02≦x≦1.25、yは0.30≦y≦0.40、zは0.30≦z≦0.40を示す。)で表されるリチウムニッケルマンガンコバルト系複合酸化物に、Mg、Al、Ti、Cu及びZrから選ばれる1種または2種以上の金属原子(Me)を0.1モル%以上5モル%未満含有させたリチウム複合酸化物であって、粒子表面に存在するLiCO量が0.05~0.20重量%であることを特徴とするリチウム二次電池用正極活物質である。
The first invention to be provided by the present invention is the following general formula (1):
Li x Ni y Mn z Co 1-yz O 1 + x (1)
(Wherein x represents 1.02 ≦ x ≦ 1.25, y represents 0.30 ≦ y ≦ 0.40, and z represents 0.30 ≦ z ≦ 0.40). A lithium composite oxide in which one or more metal atoms (Me) selected from Mg, Al, Ti, Cu and Zr are contained in a cobalt-based composite oxide in an amount of 0.1 mol% or more and less than 5 mol%. A positive electrode active material for a lithium secondary battery, characterized in that the amount of Li 2 CO 3 present on the particle surface is 0.05 to 0.20% by weight.
 また、本発明が提供しようとする第2の発明は、
(a)リチウム化合物と、(b)一般式;NiMnCo1-y-z(OH)
(式中、yは0.30≦y≦0.40、zは0.30≦z≦0.40を示す。)で表される複合水酸化物と、(c)Mg、Al、Ti、Cu及びZrから選ばれる1種または2種以上の金属原子(Me)含有化合物とを、Li/(Ni+Mn+Co+Me)の原子比が1.02~1.25で、且つMe/(Ni+Mn+Co)の原子比で0.001以上0.05未満で混合する第1工程、次いで得られた混合物を800~1000℃で焼成してリチウム複合酸化物を得る第2工程を有することを特徴とするリチウム二次電池用正極活物質の製造方法である。
The second invention to be provided by the present invention is:
(A) a lithium compound and (b) a general formula; Ni y Mn z Co 1-yz (OH) 2
(Wherein y represents 0.30 ≦ y ≦ 0.40, z represents 0.30 ≦ z ≦ 0.40), and (c) Mg, Al, Ti, One or more metal atom (Me) -containing compounds selected from Cu and Zr have an atomic ratio of Li / (Ni + Mn + Co + Me) of 1.02 to 1.25 and an atomic ratio of Me / (Ni + Mn + Co) A lithium secondary battery comprising: a first step of mixing at 0.001 to less than 0.05; and then a second step of firing the obtained mixture at 800 to 1000 ° C. to obtain a lithium composite oxide It is a manufacturing method of the positive electrode active material.
 また、本発明が提供しようとする第3の発明は、前記第1の発明のリチウム二次電池用正極活物質を用いたことを特徴とするリチウム二次電池である。 The third invention to be provided by the present invention is a lithium secondary battery using the positive electrode active material for lithium secondary battery according to the first invention.
 本発明によれば、リチウムニッケルマンガンコバルト系複合酸化物からなる正極活物質を用いて、優れたサイクル特性、負荷特性及び安全性を有するリチウム二次電池を提供することができる。特に、本発明においては、高温下においてもサイクル特性に優れたリチウム二次電池を提供することができる。
 また、該リチウム二次電池用正極活物質の製造方法によれば、該正極活物質を工業的に有利な方法で製造することができる。
ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery which has the outstanding cycling characteristics, load characteristics, and safety | security can be provided using the positive electrode active material which consists of lithium nickel manganese cobalt type complex oxide. In particular, the present invention can provide a lithium secondary battery having excellent cycle characteristics even at high temperatures.
Moreover, according to the manufacturing method of this positive electrode active material for lithium secondary batteries, this positive electrode active material can be manufactured by an industrially advantageous method.
複合水酸化物試料AのX線回折図。The X-ray diffraction pattern of the composite hydroxide sample A. 複合水酸化物試料BのX線回折図。X-ray diffraction diagram of composite hydroxide sample B. FIG. 実施例3で得られたリチウム複合酸化物のX線回折図。FIG. 4 is an X-ray diffraction pattern of the lithium composite oxide obtained in Example 3. 実施例3のリチウム複合酸化物試料を正極活物質としてもちい、安全性を評価したときの該リチウム複合酸化物試料のDSCチャート。The DSC chart of this lithium composite oxide sample when the lithium composite oxide sample of Example 3 is used as a positive electrode active material and safety is evaluated. 比較例1のリチウム複合酸化物試料を正極活物質としてもちい、安全性を評価したときの該リチウム複合酸化物試料のDSCチャート。The DSC chart of this lithium composite oxide sample when the lithium composite oxide sample of the comparative example 1 is used as a positive electrode active material and safety is evaluated. 比較例3のリチウム複合酸化物試料を正極活物質としてもちい、安全性を評価したときの該リチウム複合酸化物試料のDSCチャート。The DSC chart of this lithium composite oxide sample when the lithium composite oxide sample of the comparative example 3 is used as a positive electrode active material, and safety is evaluated.
 以下、本発明をその好ましい実施形態に基づき説明する。
 本発明に係るリチウム二次電池用正極活物質(以下、特に断らない限りは単に「正極活物質」と呼ぶ。)は、下記一般式(1):
  LiNiMnCo1-y-z1+x   (1)
(式中、xは1.02≦x≦1.25、yは0.30≦y≦0.40、zは0.30≦z≦0.40を示す。)で表されるリチウムニッケルマンガンコバルト系複合酸化物(以下、単に「リチウムニッケルマンガンコバルト系複合酸化物」と呼ぶこともある。)に、特定の金属原子(Me)を0.1モル%以上5モル%未満含有させたリチウム複合酸化物(以下、単に「リチウム複合酸化物」と呼ぶこともある。)である。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The positive electrode active material for a lithium secondary battery according to the present invention (hereinafter simply referred to as “positive electrode active material” unless otherwise specified) is represented by the following general formula (1):
Li x Ni y Mn z Co 1-yz O 1 + x (1)
(Wherein x represents 1.02 ≦ x ≦ 1.25, y represents 0.30 ≦ y ≦ 0.40, and z represents 0.30 ≦ z ≦ 0.40). Lithium in which a specific metal atom (Me) is contained in an amount of 0.1 mol% to less than 5 mol% in a cobalt-based composite oxide (hereinafter sometimes simply referred to as “lithium nickel manganese cobalt-based composite oxide”) It is a composite oxide (hereinafter sometimes simply referred to as “lithium composite oxide”).
 前記一般式(1)で表されるリチウム複合酸化物の式中のxは1.02以上1.25以下であり、特に式中のxが1.05以上1.20以下の範囲であるとリチウム二次電池の容量維持率が向上する点から好ましい。式中のy及びZは0.30以上0.40以下であり、特に式中のy及びzが0.33以上0.34以下の範囲であると、目的物を安価に製造することができ、また、リチウム二次電池の安全性が向上する観点から好ましい。 X in the formula of the lithium composite oxide represented by the general formula (1) is 1.02 or more and 1.25 or less, and particularly x in the formula is in the range of 1.05 or more and 1.20 or less. This is preferable from the viewpoint of improving the capacity retention rate of the lithium secondary battery. Y and Z in the formula are 0.30 or more and 0.40 or less, and when y and z in the formula are in the range of 0.33 or more and 0.34 or less, the target product can be produced at low cost. Moreover, it is preferable from the viewpoint of improving the safety of the lithium secondary battery.
 前記一般式(1)で表されるリチウムニッケルマンガンコバルト系複合酸化物に含有させる金属原子(Me)は、Mg、Al、Ti、Cu及びZrから選ばれる1種または2種以上の金属原子(Me)(以下、単に「金属原子(Me)」と呼ぶこともある。)であり、この中、特にMg、Ti及びCuがリチウム二次電池の安全性をより向上させる観点から好ましい。また、該リチウムニッケルマンガンコバルト系複合酸化物に含有させる金属原子(Me)の量は0.1モル%以上5モル%未満である。特に金属原子(Me)の含有量が0.2モル%以上1モル%以下であると放電容量が高く、また安全性が更に向上したリチウム二次電池が得られる観点から好ましい。なお、本発明において、金属原子(Me)の含有量を前記範囲にする理由は、金属原子(Me)の含有量が0.1モル%より小さくなると、リチウム二次電池の安全性の向上効果が見られず、一方、金属原子(Me)の含有量が5モル%以上になるとリチウム二次電池の放電容量が低下するからである。
 本発明において、金属原子(Me)はリチウムニッケルマンガンコバルト系複合酸化物に固溶して含有されていてもよく、製造法に由来して、その一部が金属酸化物として、リチウムニッケルマンガンコバルト系複合酸化物の粒子表面に存在していてもよい。
The metal atom (Me) contained in the lithium nickel manganese cobalt composite oxide represented by the general formula (1) is one or more metal atoms selected from Mg, Al, Ti, Cu and Zr ( Me) (hereinafter sometimes simply referred to as “metal atom (Me)”), among which Mg, Ti, and Cu are particularly preferable from the viewpoint of further improving the safety of the lithium secondary battery. Further, the amount of metal atom (Me) contained in the lithium nickel manganese cobalt based composite oxide is 0.1 mol% or more and less than 5 mol%. In particular, the content of the metal atom (Me) is preferably 0.2 mol% or more and 1 mol% or less from the viewpoint of obtaining a lithium secondary battery having high discharge capacity and further improved safety. In the present invention, the reason why the content of the metal atom (Me) is within the above range is that when the content of the metal atom (Me) is smaller than 0.1 mol%, the safety improvement effect of the lithium secondary battery is improved. On the other hand, when the content of the metal atom (Me) is 5 mol% or more, the discharge capacity of the lithium secondary battery is lowered.
In the present invention, the metal atom (Me) may be contained as a solid solution in the lithium nickel manganese cobalt-based composite oxide. It may exist on the particle surface of the composite oxide.
 また、本発明の正極活物質に係るリチウム複合酸化物は、該リチウム複合酸化物の粒子表面に存在するLiCO量が0.05~0.20重量%、好ましくは0.07~0.20重量%である。この理由は、該リチウム複合酸化物の粒子表面に存在するLiCO量が0.05重量%より小さくなると、電極表面での電解液の分解による皮膜の生成が促進され、容量維持率が低下し、一方、0.20重量%より大きくなると、高温保存時に発生するCOガスの発生量が多くなり、リチウム二次電池の安全性の低下になるからである。 In the lithium composite oxide according to the positive electrode active material of the present invention, the amount of Li 2 CO 3 present on the particle surface of the lithium composite oxide is 0.05 to 0.20% by weight, preferably 0.07 to 0. 20% by weight. The reason for this is that when the amount of Li 2 CO 3 present on the particle surface of the lithium composite oxide is less than 0.05% by weight, the formation of a film by the decomposition of the electrolyte solution on the electrode surface is promoted, and the capacity retention rate is increased. On the other hand, if it exceeds 0.20% by weight, the amount of CO 2 gas generated during high-temperature storage increases and the safety of the lithium secondary battery decreases.
 また、リチウム複合酸化物の粒子表面に存在するLiCO量は、BET比表面積からもとまる単位面積あたりの粒子表面に存在するLiCO量が1.5~10mg/m、好ましくは2.5~7.0mg/mあると、該正極活物質を用いたリチウム二次電池の高温時の容量維持率を更に向上させることができる観点から好ましい。 The amount of Li 2 CO 3 present on the particle surface of the lithium composite oxide is 1.5 to 10 mg / m 2 , preferably the amount of Li 2 CO 3 present on the particle surface per unit area determined from the BET specific surface area. Is preferably from 2.5 to 7.0 mg / m 2 from the viewpoint of further improving the capacity retention rate at high temperatures of a lithium secondary battery using the positive electrode active material.
 また、本発明の正極活物質に係るリチウム複合酸化物は、残存するLiOHが0.15重量%以下、好ましくは0.11重量%以下で実質的にLiOHを含有しないものであると、電極ペーストが安定し、塗布性が向上するため電極作成が容易になる観点から好ましい。 Further, the lithium composite oxide according to the positive electrode active material of the present invention is such that the remaining LiOH is 0.15% by weight or less, preferably 0.11% by weight or less and substantially free of LiOH. Is preferable from the viewpoint of facilitating electrode preparation because the coating property is stable and coating properties are improved.
 本発明に係る正極活物質において、前記リチウム複合酸化物は、レーザー法粒度分布測定法により求められる平均粒子が1~30μm、好ましくは3~20μmである。この理由は、該リチウム複合酸化物の平均粒径が1μmより小さくなると、活性が高い微粒子が多くなり、リチウム二次電池の安全性の向上効果が得られにくくなる傾向があり、一方、30μmより大きくなると電極へ塗布性が問題になる傾向があるからである。 In the positive electrode active material according to the present invention, the lithium composite oxide has an average particle size of 1 to 30 μm, preferably 3 to 20 μm, determined by a laser particle size distribution measurement method. The reason for this is that when the average particle size of the lithium composite oxide is smaller than 1 μm, the number of highly active fine particles tends to increase, and the effect of improving the safety of the lithium secondary battery tends to be difficult to obtain. This is because applicability to the electrodes tends to be a problem when the size is increased.
 また、前記リチウム複合酸化物は、BET比表面積が0.1~1m/g、好ましくは0.2~0.8m/gである。この理由は、該リチウム複合酸化物のBET比表面積が0.1m/gより小さくなるとリチウム二次電池の負荷特性が悪くなる傾向があり、一方、1m/gより大きくなるとリチウム二次電池の放電容量が低下する傾向があるからである。 The lithium composite oxide has a BET specific surface area of 0.1 to 1 m 2 / g, preferably 0.2 to 0.8 m 2 / g. The reason for this is that when the BET specific surface area of the lithium composite oxide is smaller than 0.1 m 2 / g, the load characteristics of the lithium secondary battery tend to deteriorate, whereas when the lithium composite oxide is larger than 1 m 2 / g, the lithium secondary battery This is because the discharge capacity tends to decrease.
 また、前記リチウム複合酸化物は、タップ密度が1.5g/ml以上である。この理由は、該リチウム複合酸化物のタップ密度が1.5g/mlより小さくなると、電極密度が低下し、リチウム二次電池の放電容量が低下する傾向があるからである。特に、該リチウム複合酸化物のタップ密度が1.7~2.8g/mlの範囲にあると、特にリチウム二次電池の放電容量が高くなる観点から好ましい。 The lithium composite oxide has a tap density of 1.5 g / ml or more. This is because when the tap density of the lithium composite oxide is less than 1.5 g / ml, the electrode density tends to decrease and the discharge capacity of the lithium secondary battery tends to decrease. In particular, when the tap density of the lithium composite oxide is in the range of 1.7 to 2.8 g / ml, it is particularly preferable from the viewpoint of increasing the discharge capacity of the lithium secondary battery.
 本発明の正極活物質は、例えば
(a)リチウム化合物と、(b)一般式;NiMnCo1-y-z(OH)(式中、yは0.30≦y≦0.40、zは0.30≦z≦0.40を示す。)で表される複合水酸化物と、(c)金属原子(Me)含有化合物とを、Li/(Ni+Mn+Co+Me)の原子比が1.02~1.25で、且つMe/(Ni+Mn+Co)の原子比で0.001以上0.05未満で混合する第1工程、次いで得られた混合物を800~1000℃で焼成してリチウム複合酸化物を得る第2工程を有することにより、製造することができる。
The positive electrode active material of the present invention includes, for example, (a) a lithium compound, (b) a general formula; Ni y Mn z Co 1-yz (OH) 2 (wherein y is 0.30 ≦ y ≦ 0. 40, z represents 0.30 ≦ z ≦ 0.40), and (c) the metal atom (Me) -containing compound has an atomic ratio of Li / (Ni + Mn + Co + Me) of 1. The first step of mixing at 0.002 to 1.25 and the atomic ratio of Me / (Ni + Mn + Co) not less than 0.001 and less than 0.05, and then the resulting mixture is calcined at 800 to 1000 ° C. to oxidize lithium composite By having the 2nd process of obtaining a thing, it can manufacture.
 第1工程に係る(a)リチウム化合物は、例えば、リチウムの酸化物、水酸化物、炭酸塩、硝酸塩及び有機酸塩等が挙げられ、この中、炭酸リチウムが粉体として取り扱いが容易で、安価である観点から特に好ましく用いられる。また、このリチウム化合物はレーザー光散乱法から求められる平均粒径が1~100μm、好ましくは5~80μmであると反応性が良好であるため特に好ましい。 Examples of the (a) lithium compound according to the first step include lithium oxide, hydroxide, carbonate, nitrate, and organic acid salt. Among these, lithium carbonate is easy to handle as a powder, It is particularly preferably used from the viewpoint of being inexpensive. Further, this lithium compound has an average particle size determined by a laser light scattering method of 1 to 100 μm, and preferably 5 to 80 μm, because of good reactivity.
 第1工程に係る(b)一般式;NiMnCo1-y-z(OH)で表される複合水酸化物(以下、「複合水酸化物」と呼ぶ。)の式中のy、zは、前記一般式(1)の式中のy、zにそれぞれ相当し、式中のy及びZは0.30以上0.40以下であり、特に式中のy及びzが0.33以上0.34以下の範囲であると、目的物とするリチウム複合酸化物を安価に製造することができ、また、得られるリチウム複合酸化物はリチウム二次電池の安全性をさらに向上させることができる観点から好ましい。 In the formula of the composite hydroxide (hereinafter referred to as “composite hydroxide”) represented by the general formula (b) Ni y Mn z Co 1-yz (OH) 2 according to the first step. y and z correspond to y and z in the formula of the general formula (1), respectively, and y and Z are 0.30 or more and 0.40 or less, and particularly y and z in the formula are 0. In the range of 0.33 or more and 0.34 or less, the target lithium composite oxide can be produced at low cost, and the obtained lithium composite oxide further improves the safety of the lithium secondary battery. From the viewpoint of being able to do so.
 また、該複合水酸化物は、レーザー法粒度分布測定法により求められる平均粒径が1~30μm、好ましくは3~20μmである。この理由は、該複合水酸化物の平均粒径が1μmより小さくなると、得られるリチウム複合酸化物を正極活物質として用いたリチウム二次電池において、安全性の向上効果が小さくなる傾向があり、一方、平均粒径が30μmより大きくなると反応性が悪くなり、また、得られるリチウム複合酸化物を正極活物質として用いたリチウム二次電池において、放電容量が低下する傾向があるからである。 The composite hydroxide has an average particle size determined by a laser particle size distribution measurement method of 1 to 30 μm, preferably 3 to 20 μm. The reason for this is that when the average particle size of the composite hydroxide is smaller than 1 μm, in the lithium secondary battery using the obtained lithium composite oxide as a positive electrode active material, the safety improvement effect tends to be small. On the other hand, when the average particle size is larger than 30 μm, the reactivity is deteriorated, and in the lithium secondary battery using the obtained lithium composite oxide as a positive electrode active material, the discharge capacity tends to decrease.
 また、該複合水酸化物はBET比表面積が2~10m/g、好ましくは2~8m/gである。この理由は、該複合水酸物のBET比表面積が2m/gより小さくなると、反応性が悪くなり、また、得られるリチウム複合酸化物を正極活物質として用いたリチウム二次電池において、放電容量が低下する傾向があり、一方、BET比表面積が10m/gより大きくなると、得られるリチウム複合酸化物を正極活物質として用いたリチウム二次電池において、安全性の向上効果が小さくなる傾向があるからである。 The composite hydroxide has a BET specific surface area of 2 to 10 m 2 / g, preferably 2 to 8 m 2 / g. The reason for this is that when the BET specific surface area of the composite hydroxide is smaller than 2 m 2 / g, the reactivity becomes worse, and in the lithium secondary battery using the obtained lithium composite oxide as a positive electrode active material, On the other hand, when the BET specific surface area is larger than 10 m 2 / g, in the lithium secondary battery using the obtained lithium composite oxide as the positive electrode active material, the safety improvement effect tends to be small. Because there is.
 また、該複合水酸化物は、タップ密度が1g/ml以上、好ましくは1.5~2.5g/mlである。この理由は、該複合水酸物のタップ密度が1g/mlより小さくなると、得られるリチウム複合酸化物のタップ密度と電極密度が低下し、このため得られるリチウム複合酸化物を正極活物質として用いたリチウム二次電池において、放電容量が低下する傾向があるからである。 The composite hydroxide has a tap density of 1 g / ml or more, preferably 1.5 to 2.5 g / ml. The reason for this is that if the tap density of the composite hydroxide is less than 1 g / ml, the tap density and electrode density of the obtained lithium composite oxide are reduced, and thus the obtained lithium composite oxide is used as a positive electrode active material. This is because the discharge capacity tends to decrease in the lithium secondary battery.
 このような諸物性を有する複合水酸化物は、例えば共沈法によって調製することができる。具体的には、所定量のニッケル原子、コバルト原子及びマンガン原子を含む水溶液と、錯化剤の水溶液と、アルカリの水溶液とを混合することで、複合水酸化物を共沈させることができる(特開平10-81521号公報、特開平10-81520号公報、特開平10-29820号公報、2002-201028号公報等参照。)。また、該複合水酸化物は、市販品であってもよい。 The composite hydroxide having such various physical properties can be prepared, for example, by a coprecipitation method. Specifically, the composite hydroxide can be coprecipitated by mixing an aqueous solution containing a predetermined amount of nickel atom, cobalt atom and manganese atom, an aqueous solution of a complexing agent, and an alkaline aqueous solution ( (See JP-A-10-81521, JP-A-10-81520, JP-A-10-29820, 2002-201028, etc.). The composite hydroxide may be a commercial product.
 また、本発明者は、該複合水酸化物として、X線回折分析において回折ピークに特徴のあるものを選別して用い、これを用いて得られるものを正極活物質とするリチウム二次電池は、高温時の放電容量と、負荷特性が向上することを見出した。即ち、用いる複合水酸化物は、CuKα線によるX線回折分析において、2θ=38°付近の回折ピーク(A)と2θ=19°付近の回折ピーク(B)との強度比(A/B)が0.4以下、好ましくは0.2以下であるものを選別して用いることが特に好ましい。なお、2θ=38°付近の回折ピーク(A)とは、38±0.5°における回折ピークを示す。また、2θ=19°付近の回折ピークとは、19±0.5°における回折ピークを示す。 Further, the present inventor selects and uses a composite hydroxide characterized by a diffraction peak in X-ray diffraction analysis, and uses the resulting lithium secondary battery as a positive electrode active material. It has been found that the discharge capacity at high temperature and the load characteristics are improved. That is, the composite hydroxide used has an intensity ratio (A 1 ) between a diffraction peak (A 1 ) near 2θ = 38 ° and a diffraction peak (B 1 ) near 2θ = 19 ° in an X-ray diffraction analysis using CuKα rays. It is particularly preferred to select and use those having a / B 1 ) of 0.4 or less, preferably 0.2 or less. The diffraction peak (A 1 ) near 2θ = 38 ° indicates a diffraction peak at 38 ± 0.5 °. The diffraction peak around 2θ = 19 ° indicates a diffraction peak at 19 ± 0.5 °.
 第1工程に係る(c)Mg、Al、Ti、Cu及びZrから選ばれる1種または2種以上の金属原子(Me)含有化合物は、これらの金属原子(Me)を含有する酸化物、水酸化物、ハロゲン化物、炭酸塩、硝酸塩、有機酸塩等を用いることが出来る。また、この金属原子(Me)含有化合物はレーザー法粒度分布測定法から求められる平均粒径が0.1~20μm、好ましくは0.1~10μmであると反応性が良好であるため特に好ましい。 (C) 1 type, or 2 or more types of metal atom (Me) containing compound chosen from Mg, Al, Ti, Cu, and Zr which concerns on 1st process is an oxide containing these metal atoms (Me), water Oxides, halides, carbonates, nitrates, organic acid salts and the like can be used. In addition, this metal atom (Me) -containing compound has an average particle size determined by a laser particle size distribution measuring method of 0.1 to 20 μm, preferably 0.1 to 10 μm, since it has good reactivity and is particularly preferable.
 なお、前記原料の(a)リチウム化合物、(b)複合水酸化物及び(c)金属原子(Me)含有化合物は、高純度の正極活物質を製造するために、可及的に不純物含有量が少ないものが好ましい。 The raw material (a) lithium compound, (b) composite hydroxide, and (c) metal atom (Me) -containing compound contain as much impurities as possible in order to produce a high-purity positive electrode active material. Those with less are preferred.
 第1工程に係る反応操作は、まず、(a)リチウム化合物、(b)複合水酸化物及び(c)金属原子(Me)含有化合物を所定量混合し、均一混合物を得る。 In the reaction operation according to the first step, first, (a) a lithium compound, (b) a composite hydroxide, and (c) a metal atom (Me) -containing compound are mixed in a predetermined amount to obtain a uniform mixture.
 (a)リチウム化合物、(b)複合水酸化物及び(c)金属原子(Me)含有化合物の配合割合は、ニッケル原子、コバルト原子、マンガン原子及び金属原子(Me)に対するリチウム原子の原子比(Li/(Ni+Co+Mn+Me))で1.02~1.25、好ましくは1.05~1.20であることが、サイクル特性、負荷特性及び安全性に優れた正極活物質を得る上で、1つの重要な要件となる。この理由は、ニッケル原子、コバルト原子、マンガン原子及び金属原子(Me)に対するリチウム原子の原子比が1.02より小さくなると、得られるリチウム複合酸化物の粒子表面上に存在するLiCO量が前記した0.05~0.20重量%の範囲に入りにくくなるからである。一方、ニッケル原子、コバルト原子、マンガン原子及び金属原子(Me)に対するリチウム原子の原子比が1.25より大きくなると、リチウム二次電池の放電容量が大きく低下するからである。 The compounding ratio of (a) lithium compound, (b) composite hydroxide and (c) metal atom (Me) -containing compound is the atomic ratio of lithium atom to nickel atom, cobalt atom, manganese atom and metal atom (Me) ( Li / (Ni + Co + Mn + Me)) is 1.02 to 1.25, preferably 1.05 to 1.20, in order to obtain a positive electrode active material having excellent cycle characteristics, load characteristics and safety. An important requirement. The reason for this is that when the atomic ratio of lithium atoms to nickel atoms, cobalt atoms, manganese atoms, and metal atoms (Me) is smaller than 1.02, the amount of Li 2 CO 3 present on the particle surface of the resulting lithium composite oxide This is because it is difficult to enter the range of 0.05 to 0.20% by weight. On the other hand, when the atomic ratio of lithium atoms to nickel atoms, cobalt atoms, manganese atoms, and metal atoms (Me) is greater than 1.25, the discharge capacity of the lithium secondary battery is greatly reduced.
 また、(b)複合水酸化物及び(c)金属原子(Me)含有化合物の配合割合は、ニッケル原子、コバルト原子及びマンガン原子に対する金属原子(Me)の原子比(Me/{Ni+Mn+Co})で0.001以上0.05未満であり、特に0.002以上0.01以下であると、特にリチウム二次電池の容量維持率が高く、安全性にも優れたリチウム二次電池が得られる観点から好ましい。なお、ニッケル原子、コバルト原子及びマンガン原子に対する金属原子(Me)の原子比を前記範囲にする理由は、Me/(Ni+Mn+Co)の原子比で0.01より小さくなるとリチウム二次電池の安全性の向上効果が見られず、一方、Me/(Ni+Mn+Co)の原子比で0.05以上になるとリチウム二次電池の放電容量が低下するからである。 The compounding ratio of (b) the composite hydroxide and (c) the metal atom (Me) -containing compound is the atomic ratio of the metal atom (Me) to the nickel atom, cobalt atom and manganese atom (Me / {Ni + Mn + Co}). Viewpoint of obtaining a lithium secondary battery that has a high capacity retention rate and is excellent in safety, particularly when the capacity is 0.001 or more and less than 0.05, and particularly 0.002 or more and 0.01 or less. To preferred. The reason why the atomic ratio of the metal atom (Me) to the nickel atom, cobalt atom, and manganese atom is within the above range is that when the atomic ratio of Me / (Ni + Mn + Co) is smaller than 0.01, the safety of the lithium secondary battery is reduced. This is because the improvement effect is not observed, and on the other hand, when the atomic ratio of Me / (Ni + Mn + Co) is 0.05 or more, the discharge capacity of the lithium secondary battery decreases.
 混合は、乾式又は湿式のいずれの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するようなブレンダー等を用いることが好ましい。 The mixing may be either a dry method or a wet method, but a dry method is preferable because of easy production. In the case of dry mixing, it is preferable to use a blender or the like that uniformly mixes the raw materials.
 第1工程で得られた原料が均一混合された混合物は、次いで第2工程に付して、リチウム複合酸化物からなる正極活物質を得る。 The mixture obtained by uniformly mixing the raw materials obtained in the first step is then subjected to a second step to obtain a positive electrode active material made of a lithium composite oxide.
 本発明にかかる第2工程は、第1工程で得られた原料が均一混合された混合物を特定の温度範囲で焼成しリチウム複合酸化物からなる正極活物質を得る工程である。 The second step according to the present invention is a step of obtaining a positive electrode active material made of a lithium composite oxide by firing the mixture obtained by uniformly mixing the raw materials obtained in the first step in a specific temperature range.
 第2工程のおける焼成温度は800~1000℃、好ましくは850~950℃である。この理由は、焼成温度が800℃より小さくなると、(a)リチウム化合物、(b)複合水酸化物及び(c)金属原子(Me)含有化合物との固溶反応が完結しなく、また、得られるリチウム複合酸化物を正極活物質とするリチウム二次電池は、放電容量が低く、負荷特性及び安全性に優れたものが得られ難く、一方、焼成温度が1000℃より大きくなると、得られるリチウム複合酸化物を正極活物質とするリチウム二次電池は、負荷特性が良好なものが得られ難くなるからである。 The firing temperature in the second step is 800 to 1000 ° C., preferably 850 to 950 ° C. This is because when the firing temperature is lower than 800 ° C., the solid solution reaction between (a) the lithium compound, (b) the composite hydroxide, and (c) the metal atom (Me) -containing compound is not completed. Lithium secondary batteries having a lithium composite oxide as a positive electrode active material have a low discharge capacity, and it is difficult to obtain a battery with excellent load characteristics and safety. On the other hand, when the firing temperature is higher than 1000 ° C., the obtained lithium This is because it is difficult to obtain a lithium secondary battery using a composite oxide as a positive electrode active material with good load characteristics.
 焼成雰囲気は大気雰囲気中或いは酸素雰囲気中であってもよく、また、焼成時間は5時間以上、好ましくは7~15時間である。
 また、本発明において、焼成は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成を行ってもよい。
 焼成後、適宜冷却し、必要に応じ粉砕すると、本発明のリチウム複合酸化物が得られる。
The firing atmosphere may be an air atmosphere or an oxygen atmosphere, and the firing time is 5 hours or longer, preferably 7 to 15 hours.
Moreover, in this invention, you may perform baking as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the fired material may be pulverized and then refired.
After firing, the lithium composite oxide of the present invention is obtained by appropriately cooling and pulverizing as necessary.
 なお、粉砕は得られるリチウム複合酸化物が脆くブロック状である場合に適宜行われるが、該リチウム複合酸化物は、特定の粉体特性を有するものである。即ち、レーザー法粒度分布測定法により求められる平均粒径が1~30μm、好ましくは3~20μmで、BET比表面積が0.1~1m/g、好ましくは0.2~0.8m/g、タップ密度が1.5g/ml以上、好ましくは1.7~2.8g/mlである。
 かくして得られるリチウム複合酸化物の粒子表面には、LiCO量が0.05~0.15重量%存在し、更にLiOHも0.02~0.15重量%存在する。
The pulverization is appropriately performed when the obtained lithium composite oxide is brittle and in a block shape, and the lithium composite oxide has specific powder characteristics. That is, the average particle size determined by the laser particle size distribution measurement method is 1 to 30 μm, preferably 3 to 20 μm, and the BET specific surface area is 0.1 to 1 m 2 / g, preferably 0.2 to 0.8 m 2 /. g, the tap density is 1.5 g / ml or more, preferably 1.7 to 2.8 g / ml.
On the particle surface of the lithium composite oxide thus obtained, Li 2 CO 3 is present in an amount of 0.05 to 0.15 wt%, and LiOH is also present in an amount of 0.02 to 0.15 wt%.
 本発明では、第3工程に付して、LiOHをLiCOに転換し、LiCO量を0.07~0.20重量%まで高め、且つLiOHを0.11重量%以下まで低減することが出来る。この第3工程を付して得られる正極活物質を用いたリチウム二次電池は、更にサイクル特性、負荷特性及び安全性等の電池性能が向上する。 In the present invention, subjected to the third step, converted to LiOH to Li 2 CO 3, enhance the Li 2 CO 3 amount up to 0.07 to 0.20 wt%, and up to 0.11 wt% or less LiOH It can be reduced. The lithium secondary battery using the positive electrode active material obtained by applying the third step further improves battery performance such as cycle characteristics, load characteristics and safety.
 第3工程は、第2工程で得られたリチウム複合酸化物と二酸化炭素とを接触させる。 In the third step, the lithium composite oxide obtained in the second step is brought into contact with carbon dioxide.
 該リチウム複合酸化物と二酸化炭素との接触は二酸化炭素濃度が50容量%以上、好ましくは90~100容量%含有する雰囲気中で行われる。この理由は、二酸化炭素濃度が50容量%より小さくなるとLiCOへの転換が不十分になる傾向があるためである。なお、該リチウムニッケルマンガンコバルト系複合酸化物と二酸化炭素との接触は、攪拌もしくは適度に振動させながら行うと、効率的にLiOHをLiCOへ転換することができる。 The contact between the lithium composite oxide and carbon dioxide is performed in an atmosphere containing a carbon dioxide concentration of 50% by volume or more, preferably 90 to 100% by volume. This is because if the carbon dioxide concentration is smaller than 50% by volume, the conversion to Li 2 CO 3 tends to be insufficient. The contact between the lithium nickel manganese cobalt composite oxide and carbon dioxide can be efficiently converted to Li 2 CO 3 by performing stirring or moderate vibration.
 接触温度は5~90℃、好ましくは10~80℃で、5分以上、好ましくは0.1~10時間行うことが好ましい。 The contact temperature is 5 to 90 ° C., preferably 10 to 80 ° C., for 5 minutes or more, preferably 0.1 to 10 hours.
 第3工程終了後、必要により乾燥、解砕或いは粉砕を行い、次いで分級を行って製品とする。 After completion of the third step, the product is dried, crushed or crushed as necessary, and then classified to obtain a product.
 なお、前記乾燥処理を行うことによりLiOHからLiCOへ転換したときに発生する水分を除去することができ、また、このように水分を除去したリチウム複合酸化物を正極活物質とするリチウム二次電池は、更に放電容量、負荷特性及び安全性が向上したものになる。乾燥処理温度は100~300℃、好ましくは150~250℃であると、速やかに水分を除去することができる観点から好ましい。乾燥時間は30分以上、好ましくは1~2時間である。 In addition, it is possible to remove the water generated when the LiOH is converted to Li 2 CO 3 by performing the drying treatment, and the lithium composite oxide from which the water is removed in this way is used as a positive electrode active material. The secondary battery is further improved in discharge capacity, load characteristics and safety. The drying treatment temperature is preferably from 100 to 300 ° C., preferably from 150 to 250 ° C., from the viewpoint that moisture can be quickly removed. The drying time is 30 minutes or longer, preferably 1 to 2 hours.
 本発明に係るリチウム二次電池は、上記リチウム二次電池用正極活物質を用いるものであり、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなる。正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものであり、正極合剤は正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。本発明に係るリチウム二次電池は、正極に本発明のリチウム複合酸化物からなる正極活物質が均一に塗布されている。このため本発明に係るリチウム二次電池は、特に負荷特性、高温時の容量維持率、安全性にも優れる。 A lithium secondary battery according to the present invention uses the above-described positive electrode active material for a lithium secondary battery, and includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte containing a lithium salt. The positive electrode is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture includes a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of. In the lithium secondary battery according to the present invention, the positive electrode active material made of the lithium composite oxide of the present invention is uniformly applied to the positive electrode. For this reason, the lithium secondary battery according to the present invention is particularly excellent in load characteristics, capacity retention at high temperatures, and safety.
 正極合剤に含有される正極活物質の含有量は、70~100重量%、好ましくは90~98重量%が望ましい。 The content of the positive electrode active material contained in the positive electrode mixture is 70 to 100% by weight, preferably 90 to 98% by weight.
 正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1~500μmとすることが好ましい。 The positive electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery. For example, stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum, and stainless steel Examples of the surface include carbon, nickel, titanium, and silver surface-treated. The surface of these materials may be oxidized and used, or the current collector surface may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.
 導電剤としては、構成された電池において化学変化を起こさない電子伝導材料であれば特に限定はない。例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、或いはポリフェニレン誘導体等の導電性材料が挙げられ、天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられる。これらは、1種又は2種以上組み合わせて用いることができる。導電剤の配合比率は、正極合剤中、1~50重量%、好ましくは2~30重量%である。 The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in a configured battery. For example, graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, carbon black such as thermal black, conductive fibers such as carbon fiber and metal fiber, Examples include metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive materials such as polyphenylene derivatives. Examples of graphite include scaly graphite, scaly graphite, and earthy graphite. These can be used alone or in combination of two or more. The blending ratio of the conductive agent is 1 to 50% by weight, preferably 2 to 30% by weight in the positive electrode mixture.
 結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体またはその(Na+)イオン架橋体、エチレン-メタクリル酸共重合体またはその(Na+)イオン架橋体、エチレン-アクリル酸メチル共重合体またはその(Na+)イオン架橋体、エチレン-メタクリル酸メチル共重合体またはその(Na+)イオン架橋体、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種または2種以上組み合わせて用いることができる。なお、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。結着剤の配合比率は、正極合剤中、1~50重量%、好ましくは5~15重量%である。 Examples of the binder include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, fluorinated Vinylidene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetraf Oroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra Fluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or its (Na + ) ion cross-linked product, ethylene-methacrylic acid copolymer or its (Na + ) Ionic cross-linked product, ethylene-methyl acrylate copolymer or its (Na + ) ionic cross-linked product, ethylene-methyl methacrylate copolymer or its (Na + ) ionic cross-linked product, polysaccharides such as polyethylene oxide, heat Plastic tree , Polymers having rubber elasticity, and these may be used individually or in combination. In addition, when using the compound containing a functional group which reacts with lithium like a polysaccharide, it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example. The blending ratio of the binder is 1 to 50% by weight, preferably 5 to 15% by weight in the positive electrode mixture.
 フィラーは正極合剤において正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば何でも用いることができるが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤中、0~30重量%が好ましい。 The filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added if necessary. As the filler, any fibrous material can be used as long as it does not cause a chemical change in the constructed battery. For example, olefinic polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used. The addition amount of the filler is not particularly limited, but is preferably 0 to 30% by weight in the positive electrode mixture.
 負極は、負極集電体上に負極材料を塗布乾燥等して形成される。負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素、銅やステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの及びアルミニウム-カドミウム合金等が挙げられる。また、これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1~500μmとすることが好ましい。 The negative electrode is formed by applying and drying a negative electrode material on the negative electrode current collector. The negative electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in a configured battery. For example, stainless steel, nickel, copper, titanium, aluminum, calcined carbon, copper or stainless steel Examples of the steel surface include carbon, nickel, titanium, silver surface-treated, and an aluminum-cadmium alloy. Further, the surface of these materials may be used after being oxidized, or the surface of the current collector may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.
 負極材料としては、特に制限されるものではないが、例えば、炭素質材料、金属複合酸化物、リチウム金属、リチウム合金、ケイ素系合金、錫系合金、金属酸化物、導電性高分子、カルコゲン化合物、Li-Co-Ni系材料等が挙げられる。炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。金属複合酸化物としては、例えば、SnP(M11-p(M2qr(式中、M1はMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、M2はAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8を示す。)、LixFe23(0≦x≦1)、LixWO2(0≦x≦1)、チタン酸リチウム等の化合物が挙げられる。金属酸化物としては、GeO、GeO2、SnO、SnO2、PbO、PbO2、Pb23、Pb34、Sb23、Sb24、Sb25、Bi23、Bi24、Bi25等が挙げられる。導電性高分子としては、ポリアセチレン、ポリ-p-フェニレン等が挙げられる。 The negative electrode material is not particularly limited, and examples thereof include carbonaceous materials, metal composite oxides, lithium metals, lithium alloys, silicon-based alloys, tin-based alloys, metal oxides, conductive polymers, and chalcogen compounds. And Li—Co—Ni-based materials. Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include Sn P (M 1 ) 1-p (M 2 ) q Or (wherein M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, M 2 represents one or more elements selected from Al, B, P, Si, Group 1, Group 2, Group 3 and a halogen element in the periodic table, and 0 <p ≦ 1, 1 ≦ q ≦ 3 ,. showing a 1 ≦ r ≦ 8), Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), include compounds of lithium titanate. As the metal oxide, GeO, GeO 2, SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, Bi 2 O 3 Bi 2 O 4 , Bi 2 O 5 and the like. Examples of the conductive polymer include polyacetylene and poly-p-phenylene.
 セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプロピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレーターの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01~10μmである。セパレターの厚みとしては、一般的な電池用の範囲であればよく、例えば5~300μmである。なお、後述する電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレーターを兼ねるようなものであってもよい。 As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator may be in a range generally useful for batteries, for example, 0.01 to 10 μm. The thickness of the separator may be in a range for a general battery, for example, 5 to 300 μm. When a solid electrolyte such as a polymer is used as the electrolyte described later, the solid electrolyte may also serve as a separator.
 リチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなるものである。非水電解質としては、非水電解液、有機固体電解質、無機固体電解質が用いられる。非水電解液としては、例えば、N-メチル-2-ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロキシフラン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3-プロパンサルトン、プロピオン酸メチル、プロピオン酸エチル等の非プロトン性有機溶媒の1種または2種以上を混合した溶媒が挙げられる。 The non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte, an organic solid electrolyte, or an inorganic solid electrolyte is used. Non-aqueous electrolytes include, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyl Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3- Ropansaruton, methyl propionate, and a solvent obtained by mixing one or more aprotic organic solvents such as ethyl propionate.
 有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキサイド誘導体又はこれを含むポリマー、ポリプロピレンオキサイド誘導体又はこれを含むポリマー、リン酸エステルポリマー、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のイオン性解離基を含むポリマー、イオン性解離基を含むポリマーと上記非水電解液の混合物等が挙げられる。 Examples of the organic solid electrolyte include a polyethylene derivative, a polyethylene oxide derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphate ester polymer, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, Examples thereof include a polymer containing an ionic dissociation group such as polyhexafluoropropylene, and a mixture of a polymer containing an ionic dissociation group and the above non-aqueous electrolyte.
 無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩、硫化物等を用いることができ、例えば、Li3N、LiI、Li5NI2、Li3N-LiI-LiOH、LiSiO4、LiSiO4-LiI-LiOH、Li2SiS3、Li4SiO4、Li4SiO4-LiI-LiOH、P25、Li2S又はLi2S-P25、Li2S-SiS2、Li2S-GeS2、Li2S-Ga23、Li2S-B23、Li2S-P25-X、Li2S-SiS2-X、Li2S-GeS2-X、Li2S-Ga23-X、Li2S-B23-X、(式中、XはLiI、B23、又はAl23から選ばれる少なくとも1種以上)等が挙げられる。 As the inorganic solid electrolyte, Li nitride, halide, oxyacid salt, sulfide and the like can be used, for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N—LiI—LiOH, LiSiO 4. LiSiO 4 —LiI—LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 —LiI—LiOH, P 2 S 5 , Li 2 S or Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—Ga 2 S 3 , Li 2 S—B 2 S 3 , Li 2 S—P 2 S 5 —X, Li 2 S—SiS 2 —X, Li 2 S —GeS 2 —X, Li 2 S—Ga 2 S 3 —X, Li 2 S—B 2 S 3 —X, wherein X is at least selected from LiI, B 2 S 3 , or Al 2 S 3 One or more).
 更に、無機固体電解質が非晶質(ガラス)の場合は、リン酸リチウム(Li3PO4)、酸化リチウム(Li2O)、硫酸リチウム(Li2SO4)、酸化リン(P25)、硼酸リチウム(Li3BO3)等の酸素を含む化合物、Li3PO4-x2x/3(xは0<x<4)、Li4SiO4-x2x/3(xは0<x<4)、Li4GeO4-x2x/3(xは0<x<4)、Li3BO3-x2x/3(xは0<x<3)等の窒素を含む化合物を無機固体電解質に含有させることができる。この酸素を含む化合物又は窒素を含む化合物の添加により、形成される非晶質骨格の隙間を広げ、リチウムイオンが移動する妨げを軽減し、更にイオン伝導性を向上させることができる。 Further, when the inorganic solid electrolyte is amorphous (glass), lithium phosphate (Li 3 PO 4 ), lithium oxide (Li 2 O), lithium sulfate (Li 2 SO 4 ), phosphorus oxide (P 2 O 5) ), Compounds containing oxygen such as lithium borate (Li 3 BO 3 ), Li 3 PO 4-x N 2x / 3 (x is 0 <x <4), Li 4 SiO 4-x N 2x / 3 (x is Nitrogen such as 0 <x <4), Li 4 GeO 4-x N 2x / 3 (x is 0 <x <4), Li 3 BO 3-x N 2x / 3 (x is 0 <x <3) The compound to be contained can be contained in the inorganic solid electrolyte. By adding the compound containing oxygen or the compound containing nitrogen, the gap between the formed amorphous skeletons can be widened, the hindrance to movement of lithium ions can be reduced, and ion conductivity can be further improved.
 リチウム塩としては、上記非水電解質に溶解するものが用いられ、例えば、LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO22NLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等の1種または2種以上を混合した塩が挙げられる。 As the lithium salt, those dissolved in the non-aqueous electrolyte are used. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium tetraphenylborate, Examples thereof include salts in which one kind or two or more kinds such as imides are mixed.
 また、非水電解質には、放電、充電特性、難燃性を改良する目的で、以下に示す化合物を添加することができる。例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n-グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N-置換オキサゾリジノンとN,N-置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ポリエチレングルコール、ピロール、2-メトキシエタノール、三塩化アルミニウム、導電性ポリマー電極活物質のモノマー、トリエチレンホスホンアミド、トリアルキルホスフィン、モルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4-アルキルモルフォリン、二環性の三級アミン、オイル、ホスホニウム塩及び三級スルホニウム塩、ホスファゼン、炭酸エステル等が挙げられる。また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化エチレンを電解液に含ませることができる。また、高温保存に適性を持たせるために電解液に炭酸ガスを含ませることができる。 Also, the following compounds can be added to the non-aqueous electrolyte for the purpose of improving discharge, charge characteristics, and flame retardancy. For example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compound with carbonyl group, hexamethylphosphine Examples include hollic triamide and 4-alkylmorpholine, bicyclic tertiary amines, oils, phosphonium salts and tertiary sulfonium salts, phosphazenes, carbonates, etc. That. In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be included in the electrolyte. In addition, carbon dioxide gas can be included in the electrolytic solution in order to make it suitable for high-temperature storage.
 本発明に係るリチウム二次電池は、電池性能、特にサイクル特性に優れたリチウム二次電池であり、電池の形状はボタン、シート、シリンダー、角、コイン型等いずれの形状であってもよい。 The lithium secondary battery according to the present invention is a lithium secondary battery excellent in battery performance, particularly in cycle characteristics, and the shape of the battery may be any shape such as a button, a sheet, a cylinder, a corner, or a coin type.
 本発明に係るリチウム二次電池の用途は、特に限定されないが、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス子機、ポータブルCDプレーヤー、ラジオ、液晶テレビ、バックアップ電源、電気シェーバー、メモリーカード、ビデオムービー等の電子機器、自動車、電動車両、ゲーム機器等の民生用電子機器が挙げられる。 The use of the lithium secondary battery according to the present invention is not particularly limited. For example, a laptop computer, a laptop computer, a pocket word processor, a mobile phone, a cordless cordless handset, a portable CD player, a radio, an LCD TV, a backup power source, and an electric shaver. And electronic devices such as memory cards and video movies, and consumer electronic devices such as automobiles, electric vehicles, and game machines.
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these examples.
<タップ密度の測定>
 タップ密度は、JIS-K-5101に記載された見掛密度又は見掛比容の方法に基づいて、50mlのメスシリンダーにサンプル50gを入れ、ユアサアイオニクス社製、DUAL
AUTOTAP装置にセットし、500回タップし容量を読み取り見かけ密度を算出し、タップ密度とした。
<Measurement of tap density>
Tap density is based on the method of apparent density or apparent specific volume described in JIS-K-5101, 50 g of sample is put into a 50 ml measuring cylinder, made by Yuasa Ionics, DUAL
It set to the AUTOTAP apparatus, tapped 500 times, the capacity was read, the apparent density was calculated, and it was set as the tap density.
<平均粒径の測定>
 平均粒径はレーザー法粒度分布測定法により求めた。
<Measurement of average particle size>
The average particle size was determined by a laser particle size distribution measurement method.
<複合水酸化物>
 本発明の実施例においては、下記諸物性を有する市販のニッケル原子、コバルト原子及びマンガン原子を含む凝集状複合水酸化物(OMG社製)を用いた。なお、下記複合水酸化試料Aと複合水酸化物試料BのX線回折図を図1及び図2にそれぞれ示す。
 複合水酸化物試料Aの物性
  (1)複合水酸化物中のNi:Co:Mnのモル比
              =0.334:0.333:0.333
  (2)複合水酸化物の平均粒径;10.7μm
  (3)BET比表面積;5.0m/g
  (4)タップ密度;2.3g/ml
  (5)線源としてCuKα線を用いてX線回折分析したときの2θ=38°付近の回折ピーク(A)と2θ=19°付近の回折ピーク(B)との強度比(A/B);0.15
<Composite hydroxide>
In the examples of the present invention, a commercially available aggregated hydroxide (manufactured by OMG) containing nickel, cobalt and manganese atoms having the following physical properties was used. In addition, the X-ray-diffraction figure of the following composite hydroxide sample A and composite hydroxide sample B is shown in FIG.1 and FIG.2, respectively.
Physical properties of composite hydroxide sample A (1) Ni: Co: Mn molar ratio in composite hydroxide = 0.334: 0.333: 0.333
(2) Average particle size of composite hydroxide; 10.7 μm
(3) BET specific surface area; 5.0 m 2 / g
(4) Tap density; 2.3 g / ml
(5) The intensity ratio (A 1 ) between the diffraction peak (A 1 ) near 2θ = 38 ° and the diffraction peak (B 1 ) near 2θ = 19 ° when X-ray diffraction analysis is performed using CuKα rays as a radiation source. / B 1 ); 0.15
 複合水酸化物試料Bの物性
  (1)複合水酸化物中のNi:Co:Mnのモル比
              =0.334:0.333:0.333
  (2)複合水酸化物の平均粒径;12.0μm
  (3)BET比表面積;3.1m/g
  (4)タップ密度;2.2g/ml
  (5)線源としてCuKα線を用いてX線回折分析したときの2θ=38°付近の回折ピーク(A)と2θ=19°付近の回折ピーク(B)との強度比(A/B);0.45
Physical Properties of Composite Hydroxide Sample B (1) Ni: Co: Mn molar ratio in composite hydroxide = 0.334: 0.333: 0.333
(2) Average particle size of composite hydroxide; 12.0 μm
(3) BET specific surface area; 3.1 m 2 / g
(4) Tap density: 2.2 g / ml
(5) The intensity ratio (A 1 ) between the diffraction peak (A 1 ) near 2θ = 38 ° and the diffraction peak (B 1 ) near 2θ = 19 ° when X-ray diffraction analysis is performed using CuKα rays as a radiation source. / B 1 ); 0.45
 (実施例1~5、比較例1~3)
 前記複合水酸化物試料A(Ni0.334Mn0.333Co0.333(OH))、炭酸リチウム(平均粒径4.5μm)及びフッ化マグネシウム(平均粒径5.9μm)を、ニッケル原子、マンガン原子、コバルト原子およびマグネシウム原子を表1に示す配合割合となるように秤量し、ミキサーで十分混合した。この混合物を900℃で10時間、大気中で焼成し、焼成後冷却して得られた焼成物を粉砕、分級してマグネシウム含有リチウムニッケルマンガンコバルト系複合酸化物からなるリチウム複合酸化物試料を得た。
(Examples 1 to 5, Comparative Examples 1 to 3)
The composite hydroxide sample A (Ni 0.334 Mn 0.333 Co 0.333 (OH) 2 ), lithium carbonate (average particle size 4.5 μm) and magnesium fluoride (average particle size 5.9 μm), Nickel atoms, manganese atoms, cobalt atoms, and magnesium atoms were weighed so as to have the blending ratios shown in Table 1, and sufficiently mixed with a mixer. This mixture was fired at 900 ° C. for 10 hours in the air, and the fired product obtained by cooling after firing was pulverized and classified to obtain a lithium composite oxide sample comprising a magnesium-containing lithium nickel manganese cobalt composite oxide. It was.
 (実施例6)
 前記複合水酸化物試料A(Ni0.334Mn0.333Co0.333(OH))、炭酸リチウム(平均粒径4.5μm)及び酸化マグネシウム(平均粒径2.9μm)を、ニッケル原子、マンガン原子、コバルト原子およびマグネシウム原子を表1に示す配合割合となるように秤量し、ミキサーで十分混合した。この混合物を900℃で10時間、大気中で焼成し、焼成後冷却して得られた焼成物を粉砕、分級してマグネシウム含有リチウムニッケルマンガンコバルト系複合酸化物からなるリチウム複合酸化物試料を得た。
(Example 6)
The composite hydroxide sample A (Ni 0.334 Mn 0.333 Co 0.333 (OH) 2 ), lithium carbonate (average particle size 4.5 μm) and magnesium oxide (average particle size 2.9 μm) were mixed with nickel. Atoms, manganese atoms, cobalt atoms, and magnesium atoms were weighed so as to have the blending ratios shown in Table 1, and sufficiently mixed with a mixer. This mixture was fired at 900 ° C. for 10 hours in the air, and the fired product obtained by cooling after firing was pulverized and classified to obtain a lithium composite oxide sample comprising a magnesium-containing lithium nickel manganese cobalt composite oxide. It was.
 (実施例7)
 複合水酸化試料Aの代わりに複合水酸化物試料Bを用いた以外は、実施例3と同様な条件及び操作方法でマグネシウム含有リチウムニッケルマンガンコバルト系複合酸化物からなるリチウム複合酸化物試料を得た。
(Example 7)
A lithium composite oxide sample comprising a magnesium-containing lithium nickel manganese cobalt based composite oxide was obtained under the same conditions and operating method as in Example 3 except that the composite hydroxide sample B was used instead of the composite hydroxide sample A. It was.
 (実施例8)
 前記複合水酸化物試料A(Ni0.334Mn0.333Co0.333(OH))、炭酸リチウム(平均粒径4.5μm)及び酸化銅(平均粒径5.3μm)を、ニッケル原子、マンガン原子、コバルト原子および銅原子を表1に示す配合割合となるように秤量し、ミキサーで十分混合した。この混合物を900℃で10時間、大気中で焼成し、焼成後冷却して得られた焼成物を粉砕、分級して銅含有リチウムニッケルマンガンコバルト系複合酸化物からなるリチウム複合酸化物試料を得た。
(Example 8)
The composite hydroxide sample A (Ni 0.334 Mn 0.333 Co 0.333 (OH) 2 ), lithium carbonate (average particle size 4.5 μm) and copper oxide (average particle size 5.3 μm) were mixed with nickel. Atoms, manganese atoms, cobalt atoms, and copper atoms were weighed so as to have a blending ratio shown in Table 1, and sufficiently mixed with a mixer. The mixture was fired at 900 ° C. for 10 hours in the air, and the fired product obtained by cooling after firing was pulverized and classified to obtain a lithium composite oxide sample comprising a copper-containing lithium nickel manganese cobalt composite oxide. It was.
 (実施例9)
 前記複合水酸化物試料A(Ni0.334Mn0.333Co0.333(OH))、炭酸リチウム(平均粒径4.5μm)及び二酸化チタン(平均粒径0.4μm)を、ニッケル原子、マンガン原子、コバルト原子およびチタン原子を表1に示す配合割合となるように秤量し、ミキサーで十分混合した。この混合物を900℃で10時間、大気中で焼成し、焼成後冷却して得られた焼成物を粉砕、分級してチタン含有リチウムニッケルマンガンコバルト系複合酸化物からなるリチウム複合酸化物試料を得た。
Example 9
The composite hydroxide sample A (Ni 0.334 Mn 0.333 Co 0.333 (OH) 2 ), lithium carbonate (average particle size 4.5 μm) and titanium dioxide (average particle size 0.4 μm) were mixed with nickel. Atoms, manganese atoms, cobalt atoms, and titanium atoms were weighed so as to have the blending ratio shown in Table 1, and sufficiently mixed with a mixer. The mixture was fired at 900 ° C. for 10 hours in the air, and the fired product obtained by cooling after firing was pulverized and classified to obtain a lithium composite oxide sample comprising a titanium-containing lithium nickel manganese cobalt composite oxide. It was.
 (比較例4)
 焼成温度を750℃で10時間とした以外は実施例3と同様な条件及び操作方法でマグネシウム含有リチウムニッケルマンガンコバルト系複合酸化物からなるリチウム複合酸化物試料を得た。
(Comparative Example 4)
A lithium composite oxide sample made of a magnesium-containing lithium nickel manganese cobalt composite oxide was obtained under the same conditions and operating method as in Example 3 except that the firing temperature was 750 ° C. for 10 hours.
 (比較例5)
 焼成温度を1050℃で10時間とした以外は実施例3と同様な条件及び操作方法でマグネシウム含有リチウムニッケルマンガンコバルト系複合酸化物からなるリチウム複合酸化物試料を得た。
(Comparative Example 5)
A lithium composite oxide sample made of a magnesium-containing lithium nickel manganese cobalt composite oxide was obtained under the same conditions and operating method as in Example 3 except that the firing temperature was 1050 ° C. for 10 hours.
Figure JPOXMLDOC01-appb-T000001
注)モル比Aは{Li/(Ni+Mn+Co+Me)}のモル比、モルBは{Me/(Ni+Mn+Co)}のモル比を示す。
Figure JPOXMLDOC01-appb-T000001
Note) The molar ratio A is the molar ratio of {Li / (Ni + Mn + Co + Me)}, and the molar B is the molar ratio of {Me / (Ni + Mn + Co)}.
 (実施例10及び11)
 実施例3で得られたリチウム複合酸化物試料各100gを密閉できる500ml容器に投入し、COガスを封入し二酸化炭素濃度が95容量%の雰囲気として密閉した。次いで、この容器を振動装置(ペイントシェーカー)に取り付け、表2に示す処理時間室温下(25℃)で振動させた。
 次いで、COガス処理されたリチウム複合酸化物を200℃で2時間乾燥して、LiCO含有量を増加させたリチウム複合酸化物試料を得た。
Figure JPOXMLDOC01-appb-T000002
(Examples 10 and 11)
100 g of each of the lithium composite oxide samples obtained in Example 3 were put into a 500 ml container that can be sealed, and CO 2 gas was sealed and sealed as an atmosphere having a carbon dioxide concentration of 95% by volume. Next, the container was attached to a vibration device (paint shaker), and was vibrated at room temperature (25 ° C.) for the treatment times shown in Table 2.
Next, the lithium composite oxide treated with CO 2 gas was dried at 200 ° C. for 2 hours to obtain a lithium composite oxide sample with an increased Li 2 CO 3 content.
Figure JPOXMLDOC01-appb-T000002
<物性評価>
 実施例1~11及び比較例1~5で得られたリチウム複合酸化物試料について、平均粒径、BET比表面積、タップ密度、粒子表面に存在するLiCO量及び単位体積当たりのLiCO含有量、LiOH含有量を測定した。
 なお、実施例3で得られるリチウム複合酸化物のX線回折図を図3に示す。
<Physical property evaluation>
For the lithium composite oxide samples obtained in Examples 1 to 11 and Comparative Examples 1 to 5, the average particle size, the BET specific surface area, the tap density, the amount of Li 2 CO 3 present on the particle surface, and the Li 2 per unit volume The CO 3 content and LiOH content were measured.
An X-ray diffraction pattern of the lithium composite oxide obtained in Example 3 is shown in FIG.
(LiCO含有量の評価)
 粒子表面に存在するLiCO量は、得られたリチウム複合酸化物試料10gをはかりとり、マグネチックスターラーを用いて、純水100g中で5分間分散させる。次いで、分散スラリーを濾過し、ろ液を回収した後、ろ液50gをはかりとり、0.1N-HClを用い、自動滴定装置にて、中和滴定を行ってLiCO含有量を求めた。
 第1終点(pH8付近)までの滴定量をa(ml)とし、第1終点から第2終点(pH4付近)までの滴定量をb(ml)とし、LiCO含有量は下記計算式(1)より求めた。
(Evaluation of Li 2 CO 3 content)
For the amount of Li 2 CO 3 present on the particle surface, 10 g of the obtained lithium composite oxide sample is weighed and dispersed in 100 g of pure water for 5 minutes using a magnetic stirrer. Next, the dispersion slurry is filtered, and the filtrate is recovered. Then, 50 g of the filtrate is weighed and neutralized with an automatic titrator using 0.1 N HCl to determine the Li 2 CO 3 content. It was.
The titer from the first end point (near pH 8) is a (ml), the titer from the first end point to the second end point (near pH 4) is b (ml), and the Li 2 CO 3 content is Obtained from (1).
Figure JPOXMLDOC01-appb-M000003
 b;第1終点~第2終点(pH4付近)までの滴定量(ml)
Figure JPOXMLDOC01-appb-M000003
b: Titration volume from the first end point to the second end point (around pH 4) (ml)
 単位面積当たりのLiCO量は、下記計算式(2)より求めた。 The amount of Li 2 CO 3 per unit area was obtained from the following calculation formula (2).
Figure JPOXMLDOC01-appb-M000004
 C;リチウムニッケルマンガンコバルト系複合酸化物試料に含有されるLiCO含有量(%)
 d;リチウムニッケルマンガンコバルト系複合酸化物試料のBET比表面積(m/g)
Figure JPOXMLDOC01-appb-M000004
C: Li 2 CO 3 content (%) contained in the lithium nickel manganese cobalt based composite oxide sample
d: BET specific surface area (m 2 / g) of lithium nickel manganese cobalt based composite oxide sample
(LiOH含有量の評価)
 LiCO含有量の評価と同様に滴定法にて中和滴定をおこなった後、下記計算式(3)より求めた。
Figure JPOXMLDOC01-appb-M000005
 a;第1終点(pH8付近)までの滴定量(ml)
 b;第1終点~第2終点(pH4付近)までの滴定量(ml)
(Evaluation of LiOH content)
The neutralization titration was performed by the titration method in the same manner as the evaluation of the Li 2 CO 3 content, and then obtained from the following calculation formula (3).
Figure JPOXMLDOC01-appb-M000005
a: Titration volume to the first end point (around pH 8) (ml)
b: Titration volume from the first end point to the second end point (around pH 4) (ml)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<リチウム二次電池の評価>
(1)リチウム二次電池の作成
 実施例1~11及び比較例1~5で得られたリチウム複合酸化物試料90重量%、アセチレンブラック5重量%、ポリフッ化ビニリデン5重量%を混合し、これをN-メチル-2-ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。この正極板に加え、負極、セパレーター、集電板、電解液、CR2032用ケース、取り付け金具、外部端子等の各部材を使用してコイン型リチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートが25:60:15(v/v/v)の混合溶媒1リットルに対しLiPF61モルを溶解したものを使用した。
<Evaluation of lithium secondary battery>
(1) Preparation of lithium secondary battery 90% by weight of the lithium composite oxide sample obtained in Examples 1 to 11 and Comparative Examples 1 to 5, 5% by weight of acetylene black, and 5% by weight of polyvinylidene fluoride were mixed. Was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate. In addition to this positive electrode plate, a coin-type lithium secondary battery was manufactured using each member such as a negative electrode, a separator, a current collector plate, an electrolyte, a case for CR2032, a mounting bracket, an external terminal, and the like. Of these, a lithium metal foil was used for the negative electrode, and 1 mol of LiPF 6 was dissolved in 1 liter of a mixed solvent of 25:60:15 (v / v / v) of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate in the electrolyte. We used what we did.
(2)電池の性能評価
 作製したコイン型リチウム二次電池を25℃、場合により60℃の環境下で作動させ、下記の電池性能を評価した。
(2) Battery performance evaluation The produced coin-type lithium secondary battery was operated in an environment of 25 ° C and optionally 60 ° C, and the following battery performance was evaluated.
(充放電容量および容量維持率の評価方法)
 作成したコイン型リチウム二次電池の充放電方法は、まず電流量0.5C(2時間率)で4.3Vまで充電した後、4.3Vで約3時間保持させる計5時間の定電流定電圧(CCCV)充電により充電をおこない、引き続いて、電流量0.2C(5時間率)で2.7Vまで放電させる定電流(CC)放電をおこなった。これらの操作を1サイクルとして1サイクル毎に容量を測定した。このサイクルを20サイクル繰り返し、1サイクル目と20サイクル目のそれぞれの放電容量から、下記式により容量維持率を算出した。なお、1サイクル目の放電容量を初期放電容量とした。結果を表5に示す。
Figure JPOXMLDOC01-appb-M000008
(Evaluation method of charge / discharge capacity and capacity maintenance rate)
The charging and discharging method of the coin-type lithium secondary battery is as follows. First, the battery is charged to 4.3 V at a current amount of 0.5 C (2 hour rate), and then held at 4.3 V for about 3 hours for a total constant current of 5 hours. Charging was performed by voltage (CCCV) charging, and subsequently, constant current (CC) discharging was performed to discharge to 2.7 V at a current amount of 0.2 C (5-hour rate). With these operations as one cycle, the capacity was measured every cycle. This cycle was repeated 20 times, and the capacity retention rate was calculated from the discharge capacity of the first cycle and the 20th cycle according to the following formula. The discharge capacity at the first cycle was defined as the initial discharge capacity. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(負荷特性の評価方法)
 作成したコイン型リチウム二次電池の充放電方法は、まず電流量0.5C(2時間率)で4.3Vまで充電した後、4.3Vで約3時間保持させる計5時間の定電流定電圧(CCCV)充電により充電をおこない、引き続いて、電流量0.2C(5時間率)で2.7Vまで放電させる定電流(CC)放電を2サイクルおこなった。それ以降のサイクルは放電時の電流量のみ変動させ、3サイクル目は2C(1/2時間率)、5サイクル目は1C(1時間率)、7サイクル目は0.5C(2時間率)で放電させた。その他のサイクル(4、6、8、9サイクル目)は0.2Cにて放電させ、9サイクル目の0.2Cでの放電容量に対する2C、1Cおよび0.5Cの放電容量比を計算した。結果を表6に示す。
(Evaluation method of load characteristics)
The charging and discharging method of the coin-type lithium secondary battery is as follows. First, the battery is charged to 4.3 V at a current amount of 0.5 C (2 hour rate), and then held at 4.3 V for about 3 hours for a total constant current of 5 hours. Charging was performed by voltage (CCCV) charging, and then, constant current (CC) discharging was performed for 2 cycles at a current amount of 0.2 C (5 hour rate) to 2.7 V. In the subsequent cycles, only the current amount at the time of discharge is changed, the third cycle is 2C (1/2 hour rate), the fifth cycle is 1C (one hour rate), and the seventh cycle is 0.5C (two hour rate). Was discharged. The other cycles (4th, 6th, 8th and 9th cycles) were discharged at 0.2C, and the discharge capacity ratios of 2C, 1C and 0.5C with respect to the discharge capacity at 0.2C in the 9th cycle were calculated. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(安全性の評価方法)
 安全性の評価は、実施例3、実施例6、実施例8、実施例9、実施例11、比較例1、比較例3のリチウム複合酸化物試料について示差走査熱量測定(DSC)を行って評価した。
 まず、前記で作成したコイン電池を4.4Vまで充電させ、充電状態で測定機から回収し、グローブボックス内で電池を分解し、正極を取り出した。次いで正極中の活物質量が5mgになるように切り出し、DSC用の耐圧パンに10mgの電解液と共に投入した。耐圧パンを、2℃/分の昇温速度にて、350℃まで昇温させ、DSCチャートを得た。このチャートから240℃付近までにみられる発熱ピークの最大値をP1、270℃付近以降にみられるピークの最大値をP2とし、その結果を表7に示した。
 このP1と、P2の値が低い方が熱暴走を抑制する効果が高いことを示し、リチウム二次電池の安全性が優れていることを示す。
 また、図4に実施例3のリチウム複合酸化物試料を正極活物質としてもちいたときのDSCチャートを、図5に比較例1のリチウム複合酸化物試料を正極活物質としてもちいたときのDSCチャートを、図6に比較例3のリチウム複合酸化物試料を正極活物質としてもちいたときのDSCチャートを示す。
(Safety evaluation method)
Safety evaluation was performed by performing differential scanning calorimetry (DSC) on the lithium composite oxide samples of Example 3, Example 6, Example 8, Example 9, Example 11, Comparative Example 1, and Comparative Example 3. evaluated.
First, the coin battery prepared above was charged to 4.4 V, recovered from the measuring machine in a charged state, disassembled in the glove box, and the positive electrode was taken out. Next, the positive electrode was cut out so that the amount of the active material was 5 mg, and placed in a pressure-resistant pan for DSC together with 10 mg of the electrolyte. The pressure pan was heated to 350 ° C. at a rate of 2 ° C./min to obtain a DSC chart. From this chart, the maximum value of the exothermic peak seen up to around 240 ° C. is P2, and the maximum value of the peak seen after around 270 ° C. is P2, and the results are shown in Table 7.
The lower values of P1 and P2 indicate that the effect of suppressing thermal runaway is higher, indicating that the safety of the lithium secondary battery is superior.
4 is a DSC chart when the lithium composite oxide sample of Example 3 is used as a positive electrode active material, and FIG. 5 is a DSC chart when the lithium composite oxide sample of Comparative Example 1 is used as a positive electrode active material. FIG. 6 shows a DSC chart when the lithium composite oxide sample of Comparative Example 3 is used as the positive electrode active material.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明のリチウム二次電池用正極活物質によれば、リチウムニッケルマンガンコバルト系複合酸化物からなる正極活物質を用いて、優れたサイクル特性、負荷特性及び安全性を有するリチウム二次電池を提供することができる。特に、本発明においては、高温下においてもサイクル特性に優れたリチウム二次電池を提供することができる。
 また、該リチウム二次電池用正極活物質の製造方法によれば、該正極活物質を工業的に有利な方法で製造することができる。
According to the positive electrode active material for a lithium secondary battery of the present invention, a lithium secondary battery having excellent cycle characteristics, load characteristics, and safety is provided using a positive electrode active material made of a lithium nickel manganese cobalt based composite oxide. can do. In particular, the present invention can provide a lithium secondary battery having excellent cycle characteristics even at high temperatures.
Moreover, according to the manufacturing method of this positive electrode active material for lithium secondary batteries, this positive electrode active material can be manufactured by an industrially advantageous method.

Claims (11)

  1.  下記一般式(1):
      LiNiMnCo1-y-z1+x   (1)
    (式中、xは1.02≦x≦1.25、yは0.30≦y≦0.40、zは0.30≦z≦0.40を示す。)で表されるリチウムニッケルマンガンコバルト系複合酸化物に、Mg、Al、Ti、Cu及びZrから選ばれる1種または2種以上の金属原子(Me)を0.1モル%以上5モル%未満含有させたリチウム複合酸化物であって、粒子表面に存在するLiCO量が0.05~0.20重量%であることを特徴とするリチウム二次電池用正極活物質。
    The following general formula (1):
    Li x Ni y Mn z Co 1-yz O 1 + x (1)
    (Wherein x represents 1.02 ≦ x ≦ 1.25, y represents 0.30 ≦ y ≦ 0.40, and z represents 0.30 ≦ z ≦ 0.40). A lithium composite oxide in which one or more metal atoms (Me) selected from Mg, Al, Ti, Cu and Zr are contained in a cobalt-based composite oxide in an amount of 0.1 mol% or more and less than 5 mol%. A positive electrode active material for a lithium secondary battery, wherein the amount of Li 2 CO 3 present on the particle surface is 0.05 to 0.20 wt%.
  2.  前記リチウム複合酸化物は平均粒径が1~30μm、BET比表面積が0.1~1m/gで、且つタップ密度が1.5g/ml以上であることを特徴とする請求項1記載のリチウム二次電池用正極活物質。 2. The lithium composite oxide according to claim 1, wherein the average particle diameter is 1 to 30 μm, the BET specific surface area is 0.1 to 1 m 2 / g, and the tap density is 1.5 g / ml or more. Positive electrode active material for lithium secondary battery.
  3.  前記リチウム複合酸化物は、粒子表面に存在する単位面積あたりのLiCO量が1.5~10mg/mであることを特徴とする請求項1又は2記載のリチウム二次電池用正極活物質。 3. The positive electrode for a lithium secondary battery according to claim 1, wherein the lithium composite oxide has an amount of Li 2 CO 3 per unit area existing on the particle surface of 1.5 to 10 mg / m 2. Active material.
  4.  残存するLiOHが0.15重量%以下であることを特徴とする請求項1乃至3記載のリチウム二次電池用正極活物質。 4. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the remaining LiOH is 0.15% by weight or less.
  5.  (a)リチウム化合物と、(b)一般式;NiMnCo1-y-z(OH)
    (式中、yは0.30≦y≦0.40、zは0.30≦z≦0.40を示す。)で表される複合水酸化物と、(c)金属原子(Me)含有化合物を混合し、得られる混合物を焼成して生成されるものであることを特徴とする請求項1乃至4記載のリチウム二次電池用正極活物質。
    (A) a lithium compound and (b) a general formula; Ni y Mn z Co 1-yz (OH) 2
    (Wherein y represents 0.30 ≦ y ≦ 0.40, z represents 0.30 ≦ z ≦ 0.40), and (c) a metal atom (Me) is contained. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the positive electrode active material is produced by mixing a compound and firing the resulting mixture.
  6.  前記(b)の複合酸化物が、CuKα線によるX線回折分析において、2θ=38°付近の回折ピーク(A)と2θ=19°付近の回折ピーク(B)との強度比(A/B)が0.4以下のものを用いたものであることを特徴とする請求項5記載のリチウム二次電池用正極活物質。 In the X-ray diffraction analysis by CuKα ray, the composite oxide (b) has an intensity ratio (A 1 ) between a diffraction peak (A 1 ) near 2θ = 38 ° and a diffraction peak (B 1 ) near 2θ = 19 ° (A 1 ). 1 / B 1) a positive active material for a lithium secondary battery according to claim 5, characterized in that with one of 0.4 or less.
  7.  (a)リチウム化合物と、(b)一般式;NiMnCo1-y-z(OH)
    (式中、yは0.30≦y≦0.40、zは0.30≦z≦0.40を示す。)で表される複合水酸化物と、(c)Mg、Al、Ti、Cu及びZrから選ばれる1種または2種以上の金属原子(Me)含有化合物とを、Li/(Ni+Mn+Co+Me)の原子比が1.02~1.25で、且つMe/(Ni+Mn+Co)の原子比で0.001以上0.05未満で混合する第1工程、次いで得られた混合物を800~1000℃で焼成してリチウム複合酸化物を得る第2工程を有することを特徴とするリチウム二次電池用正極活物質の製造方法。
    (A) a lithium compound and (b) a general formula; Ni y Mn z Co 1-yz (OH) 2
    (Wherein y represents 0.30 ≦ y ≦ 0.40, z represents 0.30 ≦ z ≦ 0.40), and (c) Mg, Al, Ti, One or more metal atom (Me) -containing compounds selected from Cu and Zr have an atomic ratio of Li / (Ni + Mn + Co + Me) of 1.02 to 1.25 and an atomic ratio of Me / (Ni + Mn + Co) A lithium secondary battery comprising: a first step of mixing at 0.001 to less than 0.05; and then a second step of firing the obtained mixture at 800 to 1000 ° C. to obtain a lithium composite oxide For producing a positive electrode active material for use.
  8.  更に、得られたリチウム複合酸化物と二酸化炭素とを二酸化炭素濃度が50容量%以上の雰囲気中で接触させる第3工程を設けることを特徴とする請求項7記載のリチウム二次電池用正極活物質の製造方法。 The positive electrode active for lithium secondary batteries according to claim 7, further comprising a third step of contacting the obtained lithium composite oxide and carbon dioxide in an atmosphere having a carbon dioxide concentration of 50% by volume or more. A method for producing a substance.
  9.  前記(b)複合水酸化物は、平均粒径が1~30μm、BET比表面積が2~10m/g、タップ密度が1g/ml以上であるものを用いることを特徴とする請求項7又は8記載のリチウム二次電池用正極活物質の製造方法。 The composite hydroxide (b) is characterized in that it has an average particle diameter of 1 to 30 μm, a BET specific surface area of 2 to 10 m 2 / g, and a tap density of 1 g / ml or more. 8. A method for producing a positive electrode active material for a lithium secondary battery according to 8.
  10.  前記(b)複合水酸化物がCuKα線によるX線回折分析において、2θ=38°付近の回折ピーク(A)と2θ=19°付近の回折ピーク(B)との強度比(A/B)が0.4以下のものを用いることを特徴とする請求項7乃至9記載のリチウム二次電池用正極活物質の製造方法。 In the X-ray diffraction analysis of the composite hydroxide (b) by CuKα ray, the intensity ratio (A 1 ) between the diffraction peak (A 1 ) near 2θ = 38 ° and the diffraction peak (B 1 ) near 2θ = 19 ° The method for producing a positive electrode active material for a lithium secondary battery according to claim 7, wherein / B 1 ) is 0.4 or less.
  11.  請求項1乃至6の何れか1項に記載のリチウム二次電池用正極活物質を用いたことを特徴とするリチウム二次電池。 A lithium secondary battery using the positive electrode active material for a lithium secondary battery according to any one of claims 1 to 6.
PCT/JP2010/070962 2009-11-26 2010-11-25 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery WO2011065391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800527700A CN102668187A (en) 2009-11-26 2010-11-25 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009268752A JP2011113792A (en) 2009-11-26 2009-11-26 Positive electrode active material for lithium secondary battery, method of manufacturing the same, and the lithium secondary battery
JP2009-268752 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065391A1 true WO2011065391A1 (en) 2011-06-03

Family

ID=44066496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070962 WO2011065391A1 (en) 2009-11-26 2010-11-25 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery

Country Status (4)

Country Link
JP (1) JP2011113792A (en)
KR (1) KR20120114232A (en)
CN (1) CN102668187A (en)
WO (1) WO2011065391A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683671A (en) * 2012-05-07 2012-09-19 宁德新能源科技有限公司 Lamellar lithium-nickel composite oxide anode material
WO2012133434A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
WO2012133436A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell
US20130189584A1 (en) * 2012-01-19 2013-07-25 Hiroki Inagaki Active material, active material production method, nonaqueous electrolyte battery, and battery pack
CN103326011A (en) * 2013-06-06 2013-09-25 南通瑞翔新材料有限公司 Positive electrode active substance used in lithium secondary battery, and manufacturing method thereof
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US20140087270A1 (en) * 2011-05-26 2014-03-27 Toyota Jidosha Kabushiki Kaisha Coated active material and lithium solid state battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
WO2017057311A1 (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
JP2017228413A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
JP2017228412A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856530B (en) * 2011-06-30 2015-01-21 清华大学 Lithium ion battery
KR101414955B1 (en) * 2011-09-26 2014-07-07 주식회사 엘지화학 positive-electrode active material with improved safety and Lithium secondary battery including them
JP5682796B2 (en) * 2012-01-12 2015-03-11 トヨタ自動車株式会社 Lithium secondary battery
JP5966387B2 (en) * 2012-01-27 2016-08-10 トヨタ自動車株式会社 Lithium secondary battery, method for producing the same, and method for producing the positive electrode
JP6044839B2 (en) * 2013-04-22 2016-12-14 トヨタ自動車株式会社 Lithium ion secondary battery
EP2824074B1 (en) 2013-07-11 2019-02-20 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery including the same
JP6374226B2 (en) * 2013-12-16 2018-08-15 住友化学株式会社 Method for producing positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN104201366B (en) * 2014-01-10 2017-01-04 兰州金里能源科技有限公司 A kind of preparation method of high security high compacted density nickle cobalt lithium manganate NCM523 ternary material
KR101590441B1 (en) * 2014-06-17 2016-02-02 전자부품연구원 Positive composition for lithium secondary battery using spherical nickel-cobalt-manganese-hydroxides, lithium secondary battery having the same and manufacturing method thereof
JP5831772B2 (en) * 2014-10-14 2015-12-09 トヨタ自動車株式会社 Lithium secondary battery
CN113394392A (en) * 2014-12-23 2021-09-14 昆腾斯科普电池公司 Lithium-rich nickel manganese cobalt oxide (LR-NMC)
JP7135269B2 (en) * 2016-03-24 2022-09-13 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN109565045B (en) * 2016-07-13 2021-12-03 株式会社杰士汤浅国际 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
PL3281915T3 (en) * 2016-08-10 2019-09-30 Umicore Precursors for lithium transition metal oxide cathode materials for rechargeable batteries
JP6337360B2 (en) * 2016-08-31 2018-06-06 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR20180025028A (en) * 2016-08-31 2018-03-08 동아대학교 산학협력단 Manufacturing method of nickel rich cathod active material and nickel rich cathod active material made by the same
JP6519575B2 (en) * 2016-12-07 2019-05-29 トヨタ自動車株式会社 Lithium ion secondary battery
JP6368022B1 (en) * 2017-05-31 2018-08-01 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR102395236B1 (en) * 2017-09-26 2022-05-09 주식회사 엘지에너지솔루션 Method for preparing positive electrode active material of lithium secondary battery
JP7137769B2 (en) 2017-12-15 2022-09-15 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
EP3734718B1 (en) * 2017-12-27 2023-05-31 Proterial, Ltd. Positive electrode active material for lithium ion secondary batteries, method for producing positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP6966959B2 (en) * 2018-03-01 2021-11-17 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery
JP7147478B2 (en) 2018-06-21 2022-10-05 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
KR102141059B1 (en) * 2018-09-28 2020-08-04 주식회사 포스코 Positive active material for rechareable lithium battery, method of preparing same, and rechargeable lithium battery including same
KR102304739B1 (en) * 2018-11-30 2021-09-28 주식회사 엘지화학 Method for preparing positive electrode active material precursor for lithium secondary battery
CN110031498A (en) * 2019-04-23 2019-07-19 蜂巢能源科技有限公司 The test method of positive electrode thermal stability
US11621419B2 (en) 2020-11-24 2023-04-04 Samsung Sdi Co., Ltd. Composite positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode
JP7286687B2 (en) * 2021-02-05 2023-06-05 プライムプラネットエナジー&ソリューションズ株式会社 Method for measuring amount of Li on particle surface of active material powder and method for producing coating-containing active material powder
JP2023015591A (en) * 2021-07-20 2023-02-01 日産自動車株式会社 Positive electrode for lithium ion secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245105A (en) * 1994-03-04 1995-09-19 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and its positive electrode active material
JPH10302779A (en) * 1997-04-25 1998-11-13 Sony Corp Production of positive electrode active material
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2005025975A (en) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp Lithium nickel manganese cobalt based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP2005093248A (en) * 2003-09-17 2005-04-07 Sony Corp Electrolyte, and battery using the same
JP2006093067A (en) * 2004-09-27 2006-04-06 Kusaka Rare Metal Products Co Ltd Lithium secondary battery positive pole material and method for manufacturing it
JP2007091573A (en) * 2005-06-10 2007-04-12 Tosoh Corp Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof
WO2007102407A1 (en) * 2006-03-02 2007-09-13 Agc Seimi Chemical Co., Ltd. Positive electrode active material for rechargeable battery with nonaqueous electrolyte and method for manufacturing the same
JP2008013405A (en) * 2006-07-06 2008-01-24 Tosoh Corp Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof
JP2008078146A (en) * 2001-03-22 2008-04-03 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery including the same
WO2008155989A1 (en) * 2007-06-21 2008-12-24 Agc Seimi Chemical Co., Ltd. Lithium containing composite oxide powder and process for production of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489509B1 (en) * 2001-03-22 2005-05-16 마쯔시다덴기산교 가부시키가이샤 Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245105A (en) * 1994-03-04 1995-09-19 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and its positive electrode active material
JPH10302779A (en) * 1997-04-25 1998-11-13 Sony Corp Production of positive electrode active material
JP2008078146A (en) * 2001-03-22 2008-04-03 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP2003017052A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2005025975A (en) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp Lithium nickel manganese cobalt based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP2005093248A (en) * 2003-09-17 2005-04-07 Sony Corp Electrolyte, and battery using the same
JP2006093067A (en) * 2004-09-27 2006-04-06 Kusaka Rare Metal Products Co Ltd Lithium secondary battery positive pole material and method for manufacturing it
JP2007091573A (en) * 2005-06-10 2007-04-12 Tosoh Corp Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof
WO2007102407A1 (en) * 2006-03-02 2007-09-13 Agc Seimi Chemical Co., Ltd. Positive electrode active material for rechargeable battery with nonaqueous electrolyte and method for manufacturing the same
JP2008013405A (en) * 2006-07-06 2008-01-24 Tosoh Corp Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof
WO2008155989A1 (en) * 2007-06-21 2008-12-24 Agc Seimi Chemical Co., Ltd. Lithium containing composite oxide powder and process for production of the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
JPWO2012133436A1 (en) * 2011-03-31 2014-07-28 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JPWO2012133434A1 (en) * 2011-03-31 2014-07-28 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2012133436A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell
WO2012133434A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
US9214674B2 (en) * 2011-05-26 2015-12-15 Toyota Jidosha Kabushiki Kaisha Coated active material and lithium solid state battery
US20140087270A1 (en) * 2011-05-26 2014-03-27 Toyota Jidosha Kabushiki Kaisha Coated active material and lithium solid state battery
US20130189584A1 (en) * 2012-01-19 2013-07-25 Hiroki Inagaki Active material, active material production method, nonaqueous electrolyte battery, and battery pack
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
CN102683671A (en) * 2012-05-07 2012-09-19 宁德新能源科技有限公司 Lamellar lithium-nickel composite oxide anode material
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
CN103326011A (en) * 2013-06-06 2013-09-25 南通瑞翔新材料有限公司 Positive electrode active substance used in lithium secondary battery, and manufacturing method thereof
WO2017057311A1 (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
JP2017065975A (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese-containing composite hydroxide and manufacturing method therefor
KR20180059753A (en) * 2015-09-30 2018-06-05 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxides and methods for their preparation
KR102553596B1 (en) 2015-09-30 2023-07-11 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese-containing composite hydroxide and method for producing the same
JP2017228413A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
JP2017228412A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode

Also Published As

Publication number Publication date
KR20120114232A (en) 2012-10-16
JP2011113792A (en) 2011-06-09
CN102668187A (en) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2011065391A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP5490458B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5225708B2 (en) Lithium nickel manganese cobalt composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery
JP5584456B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5732351B2 (en) Method for producing lithium cobalt oxide
JP5341325B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5749650B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4187523B2 (en) Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5897356B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5172231B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5490457B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2012113823A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery
JP4968872B2 (en) Lithium secondary battery positive electrode active material, method for producing the same, and lithium secondary battery
JP2015099722A (en) Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery
JP3959333B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5897357B2 (en) Lithium secondary battery positive electrode active material manufacturing method, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2014041710A (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5134292B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4754209B2 (en) Method for producing lithium cobalt composite oxide powder
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5508322B2 (en) Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
WO2021246215A1 (en) Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery
JP4748706B2 (en) Lithium manganese based composite oxide powder, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052770.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127013522

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833237

Country of ref document: EP

Kind code of ref document: A1