WO2011061888A1 - Video signal processing device and video display apparatus - Google Patents
Video signal processing device and video display apparatus Download PDFInfo
- Publication number
- WO2011061888A1 WO2011061888A1 PCT/JP2010/006049 JP2010006049W WO2011061888A1 WO 2011061888 A1 WO2011061888 A1 WO 2011061888A1 JP 2010006049 W JP2010006049 W JP 2010006049W WO 2011061888 A1 WO2011061888 A1 WO 2011061888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- video signal
- unit
- error diffusion
- noise shaping
- contrast gain
- Prior art date
Links
- 230000000694 effects Effects 0.000 claims abstract description 140
- 238000009792 diffusion process Methods 0.000 claims abstract description 127
- 238000007493 shaping process Methods 0.000 claims description 177
- 238000001514 detection method Methods 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 24
- 239000004973 liquid crystal related substance Substances 0.000 description 53
- 238000000034 method Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000003111 delayed effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000001934 delay Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2059—Display of intermediate tones using error diffusion
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0242—Compensation of deficiencies in the appearance of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0271—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
- G09G2320/0276—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/066—Adjustment of display parameters for control of contrast
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/10—Mixing of images, i.e. displayed pixel being the result of an operation, e.g. adding, on the corresponding input pixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/16—Calculation or use of calculated indices related to luminance levels in display data
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2003—Display of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
Definitions
- the present invention relates to a video signal processing apparatus that performs signal processing for improving image quality on a video signal, and a video display apparatus including the same.
- Patent Document 1 discloses edge enhancement processing for emphasizing a contour portion of an image and displaying it as an image with a high apparent resolution, and dither processing for smoothing the gradation of the image as video signal processing. .
- a feature amount (average brightness, maximum brightness, minimum brightness, etc.) is detected from a video signal to discriminate a video scene, and a contrast gain is adjusted according to the video scene.
- a feature amount average brightness, maximum brightness, minimum brightness, etc.
- a strong gain is applied to a specific gradation area (luminance area) of an image.
- a gain of 2 is applied to the luminance i 1 to i 2 region of the input video signal as shown in FIG.
- the gradation correction for expanding the dynamic range of the video signal is performed.
- the portion to which the gain is strongly applied dotted line portion in FIG. 4
- the gradation difference becomes larger than that in the other portions, and a pseudo contour is generated, which causes a reduction in video quality. Arise.
- the present invention has been made to solve the above problem, and an object thereof is to provide a video signal processing device and a video display device capable of improving video quality by suppressing the occurrence of pseudo contours. To do.
- a video signal processing apparatus includes a contrast gain adjusting unit that adjusts a contrast gain of a video signal, and error diffusion that performs error diffusion on the video signal whose contrast gain is adjusted by the contrast gain adjusting unit. And an error diffusion effect switching unit that switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the contrast gain of the video signal.
- the contrast gain of the video signal is adjusted by the contrast gain adjustment unit.
- the larger the gain applied to the video signal the larger the gradation difference and the more likely the pseudo contour is generated. Therefore, in the present invention, error diffusion processing is performed by the error diffusion unit on the video signal whose contrast gain has been adjusted.
- the error diffusion effect switching unit switches the error diffusion effect by changing the number of bits for error diffusion according to the contrast gain of the video signal.
- the generation of the pseudo contour can be controlled by adaptively switching the error diffusion effect (changing the number of bits for error diffusion) according to the contrast gain. This is because as the error diffusion effect is increased (the number of bits for error diffusion is increased), the video is blurred and the pseudo contour is reduced. According to the configuration of the present invention, it is possible to enhance the error diffusion effect for a video signal having a large contrast gain. Therefore, it is possible to improve the video quality by suppressing the generation of pseudo contours.
- a video signal processing apparatus includes a color gamut detection unit that detects a color gamut of a video signal, an error diffusion unit that performs error diffusion on the video signal, and the color gamut detection unit detects And an error diffusion effect switching unit that switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the color gamut.
- the error diffusion effect is adaptively switched according to the color gamut of the video signal (the number of bits for error diffusion is changed).
- the color gamut even if the gradation is the same (that is, the number of bits of the video signal is the same), there are a color gamut in which false contours are conspicuous and a color gamut in which it is not so (for example, The blue color gamut is relatively more prominent in pseudo contour than the green color gamut).
- the error diffusion effect is increased (the number of bits for error diffusion is increased), the video is blurred and the pseudo contour can be reduced. Therefore, according to the configuration of the present invention, if the error diffusion effect is enhanced in a color gamut in which pseudo contour is more conspicuous, generation of pseudo contour can be suppressed and image quality can be improved.
- a video display device includes the video signal processing device described above and a display unit that displays a video signal that has been subjected to signal processing by the video signal processing device.
- FIG. 1 is a schematic configuration diagram of a liquid crystal display device 10 (video display device) to which the video signal processing device according to the present embodiment is applied.
- a liquid crystal display device 10 includes a feature amount detection unit 1, a contrast gain calculation unit 2 (error diffusion effect switching unit), a contrast gain adjustment unit 3, and a signal selection unit 4 (error diffusion effect) as a video signal processing device.
- a switching unit a first noise shaping unit 11 (error diffusion unit), a second noise shaping unit 12 (error diffusion unit), a third noise shaping unit 13 (error diffusion unit), and bit number conversion units 14 to 16.
- the liquid crystal display device 10 includes a drive circuit 17 and a liquid crystal panel 18 (display unit).
- the number of bits (number of gradations) of the video signal VS input to the liquid crystal display device 10 is described as 10 bits.
- the number of bits of the video signal VS is not limited to this. For example, it may be 8 bits, 12 bits, or other number of bits.
- the feature amount detection unit 1 receives a video signal VS and a synchronization signal such as a vertical synchronization signal and a horizontal synchronization signal.
- the feature amount detection unit 1 detects the feature amount (average luminance (APL), maximum luminance, minimum luminance, luminance distribution, etc.) of the video signal VS for each frame (or for each field), and the detection result is obtained.
- the feature amount detection unit 1 can detect the feature amount of the video signal VS for each frame of the progressive scanning video signal VS and for each field of the interlace video signal VS. In the following description, it is assumed that the feature quantity detection unit 1 detects a feature quantity for each frame.
- the contrast gain calculation unit 2 calculates the contrast gain (gain of each gradation) of the video signal VS for each frame based on the feature amount of the video signal VS detected by the feature amount detection unit 1. That is, the contrast gain calculation unit 2 determines a gamma curve (gamma characteristic) suitable for the video scene based on the feature amount representing the feature of the video scene. The contrast gain calculation unit 2 then outputs the contrast gain calculation result to the contrast gain adjustment unit 3. Further, the contrast gain calculation unit 2 outputs a 2-bit selection control signal SC for selecting the output of the signal selection unit 4 to the signal selection unit 4. Details of the selection control signal SC will be described later.
- the contrast gain adjusting unit 3 receives the video signal VS and the calculation result of the contrast gain.
- the contrast gain adjustment unit 3 includes a delay circuit (not shown) that delays the input video signal VS by one frame period during which the feature amount detection process is executed. Then, the contrast gain adjusting unit 3 adjusts the contrast gain of the video signal VS based on the calculation result of the contrast gain. In other words, the contrast gain adjustment unit 3 corrects the gamma curve in real time so as to realize the gradation appropriate for the detected feature of the video scene, and performs the gradation correction of the video signal VS.
- the above-described feature amount detection unit 1, contrast gain calculation unit 2, and contrast gain adjustment unit 3 realize scene-adaptive contrast / gamma correction.
- the contrast can be improved by applying a gain that expands the output signal level of the video signal VS to the maximum value based on the APL and maximum / minimum luminance of the video signal VS in one frame (one screen).
- gamma correction is performed so that more gradations are assigned to the luminance region with the largest video component, so that a contrast feeling in a dark scene, for example, can be obtained. Can be improved.
- the contrast gain adjusting unit 3 adjusts the contrast gain of the video signal VS (10 bits) as described above, and then converts the video signal VS (10 bits) into the signal selection unit 4, the first noise shaping unit 11, and the second It outputs to the noise shaping part 12 and the 3rd noise shaping part 13, respectively.
- the first noise shaping unit 11 performs error diffusion on the lower 2 bits of the input video signal VS composed of 10 bits by noise shaping (NS) processing, converts it into a video signal VS composed of 8 bits, and outputs it.
- NS noise shaping
- the second noise shaping unit 12 performs error diffusion on the lower 4 bits of the input video signal VS composed of 10 bits by noise shaping processing, converts it into a video signal VS composed of 6 bits, and outputs it.
- the third noise shaping unit 13 performs error diffusion on the lower 6 bits of the input video signal VS composed of 10 bits by noise shaping processing, converts it into a video signal VS composed of 4 bits, and outputs it.
- the first to third noise shaping units 11, 12, and 13 include, for example, an adder and a delay unit (not shown), and components of lower n bits (n is 2, 4, or 6) of the input video signal VS. It is also possible to adopt a configuration in which the lower n bits of information are diffused by the integration effect and pseudo gradation is reproduced by converting the signal into PWM (Pulse Width Modulation) and adding it to the upper bits.
- PWM Pulse Width Modulation
- the image becomes blurred and contributes to the reduction of the occurrence of pseudo contours. It leads to improvement effect.
- the 8-bit video signal VS output from the first noise shaping unit 11 is converted into a 10-bit video signal VS by adding “00” to the lower 2 bits in the bit number conversion unit 14, and then the signal selection unit 4 is input.
- the 6-bit video signal VS output from the second noise shaping unit 12 is converted into a 10-bit video signal VS by adding “0000” to the lower 4 bits in the bit number conversion unit 15, and then The signal is input to the signal selector 4.
- the 4-bit video signal VS output from the third noise shaping unit 13 is converted into a 10-bit video signal VS by adding “000000” to the lower 6 bits in the bit number conversion unit 16, and then the signal Input to the selector 4.
- the signal selection unit 4 is a multiplexer that has four input streams and one output stream, and selects and outputs any one of the four input streams based on the 2-bit selection control signal SC.
- the video signal VS output from the contrast gain adjustment unit 3 (not subjected to noise shaping processing), the video signal VS subjected to noise shaping processing by the first noise shaping unit 11, The video signal VS subjected to the noise shaping process by the second noise shaping unit 12 and the video signal VS subjected to the noise shaping process by the third noise shaping unit 13 are respectively input.
- the signal selection unit 4 also receives a 2-bit selection control signal SC from the contrast gain calculation unit 2.
- the contrast gain calculation unit 2 sets the selection control signal SC so that a video signal VS having a larger noise shaping effect (that is, a larger number of lower bits diffused by the noise shaping) is selected in a luminance region having a higher contrast gain. Output to the signal selector 4.
- noise shaping effect is small (10 ⁇ 8 bits)
- noise shaping effect is in effect (10 ⁇ 6 bits)
- noise shaping effect is large (10 ⁇ 4 bits).
- the contrast gain adjustment unit 3 can adjust the contrast gain from 1.00 times to 2.00 times, the gain range is set to the following four regions G 0 , G 1 , G 2 , G 3. Can be divided equally.
- the signal selection unit 4 selects that there is no noise shaping effect (the selection output from the contrast gain calculation unit 2 at this time).
- Control signal SC "00"
- the contrast gain calculation unit 2 also receives a synchronization signal (vertical synchronization signal or horizontal synchronization signal) of the video signal VS. Therefore, the contrast gain calculation unit 2 switches the selection control signal SC according to the magnitude of the gain applied to the video signal VS in synchronization with the video signal VS.
- a synchronization signal vertical synchronization signal or horizontal synchronization signal
- the possible gain range is 1.00 to 2.00 times, but the present invention is not limited to this.
- the boundary (reference gains G 0 to G 3 ) for switching the degree of the noise shaping effect by equally dividing the possible gain range is set, but the present invention is not limited to this. That is, within the framework of increasing the noise shaping effect as the luminance region has a higher contrast gain, the gain range that can be taken is not divided equally but the reference gain can be arbitrarily set.
- the drive circuit 17 drives the liquid crystal panel 18 using the video signal VS selected by the signal selection unit 4 as described above. Then, the liquid crystal panel 18 displays a video corresponding to the video signal VS.
- the video signal VS input to the liquid crystal display device 10 is input to the feature amount detection unit 1 and the contrast gain adjustment unit 3. Then, the feature amount detection unit 1 detects the feature amount of the video signal VS for each frame, and outputs the detection result to the contrast gain calculation unit 2.
- the contrast gain calculation unit 2 calculates the contrast gain (gain of each gradation) of the video signal VS for each frame based on the detected feature amount of the video signal VS, and the calculation result is the contrast gain adjustment unit 3. Output to.
- the contrast gain adjustment unit 3 adjusts the contrast gain of the input video signal VS based on the calculation result of the contrast gain.
- the contrast gain is adjusted with the gamma curve as shown in FIG. 3 for the input video signal VS having the dynamic range as shown in FIG. 2 by the above processing. That is, with respect to the input video signal VS, in the luminance region from 0 (black level) to the luminance i 1 and from the luminance i 2 to the luminance i 3 (white level), the gain is 1 times, from the luminance i 1 to the luminance i 2. It is assumed that a double gain is applied in the luminance region. As a result, the video signal VS output from the contrast gain adjusting unit 3 is subjected to gradation correction as shown in FIG. Note that the dotted line portion in FIG. 4 is a luminance region to which a double gain is applied.
- the contrast gain calculation unit 2 sets the selection control signal SC to “11” during the period in which the video signal VS in the luminance region multiplied by the double gain is output from the contrast gain adjustment unit 3,
- the video signal VS subjected to the noise shaping process in the noise shaping unit 13 is selectively output from the signal selection unit 4.
- the contrast gain calculation unit 2 sets the selection control signal SC to “00” during the period when the video signal VS in the 1 ⁇ gain luminance region is output from the contrast gain adjustment unit 3, and the video signal VS without the noise shaping effect. Are selectively output from the signal selector 4.
- the contrast gain calculation unit 2 switches the selection control signal SC according to the magnitude of the contrast gain applied to the video signal VS, and the video signal VS without the noise shaping effect or the first to third noise shaping units 11,
- the video signal VS subjected to the noise shaping process in any one of 12 and 13 is selectively output from the signal selection unit 4.
- the contrast gain calculation unit 2 switches the noise shaping effect in synchronization with the video signal VS according to the magnitude of the contrast gain applied to the video signal VS.
- a pseudo contour is more likely to occur in a luminance region having a larger contrast gain applied to the video signal VS.
- the noise shaping effect is enhanced (the number of low-order bits diffused by noise shaping is increased), the image becomes blurred and contributes to the reduction of the occurrence of pseudo contour, leading to a substantial improvement in gradation. Therefore, the generation of pseudo contours can be effectively reduced by increasing the noise shaping effect in a luminance region having a larger contrast gain as in the present embodiment.
- the video signal VS in which the generation of the pseudo contour is effectively reduced as described above is input to the drive circuit 17 that drives the liquid crystal panel 18, and a high-quality video corresponding to the video signal VS is displayed on the liquid crystal panel 18.
- the liquid crystal display device 10 has a configuration in which a plurality of noise shaping units (first to third noise shaping units 11, 12, 13) are connected in parallel. As shown in FIG. It can also be set as the structure connected in series.
- the liquid crystal display device 20 shown in FIG. 5 includes first to third noise shaping units 21, 22, and 23 (error diffusion units) instead of the first to third noise shaping units 11, 12, and 13 of FIG. ing.
- Other basic configurations of the liquid crystal display device 20 are the same as those of the liquid crystal display device 10 of FIG.
- the video signal VS output from the contrast gain adjustment unit 3 is input to the first noise shaping unit 21 and the signal selection unit 4.
- the first noise shaping unit 21 performs error diffusion on the lower 2 bits of the 10-bit video signal VS input from the contrast gain adjustment unit 3 by noise shaping processing, converts the error signal into an 8-bit video signal, and outputs the video signal. To do.
- the video signal output from the first noise shaping unit 21 is input to the second noise shaping unit 22 and is converted into a 10-bit video signal by adding “00” to the lower 2 bits in the bit number conversion unit 14. Then, the signal is input to the signal selector 4.
- the second noise shaping unit 22 performs error diffusion on the lower 2 bits of the 8-bit video signal input from the first noise shaping unit 21 by noise shaping processing, and converts it to a 6-bit video signal. Output.
- the lower 4 bits of the input video signal VS are substantially diffused by two-stage noise shaping.
- the video signal output from the second noise shaping unit 22 is input to the third noise shaping unit 23 and is converted into a 10-bit video signal by adding “0000” to the lower 4 bits in the bit number conversion unit 15. Then, the signal is input to the signal selector 4.
- the third noise shaping unit 23 performs error diffusion on the lower 2 bits of the 6-bit video signal input from the second noise shaping unit 22 by noise shaping processing, and converts it into a 4-bit video signal. Output.
- the lower 6 bits of the input video signal VS are substantially diffused in the 4-bit video signal output from the third noise shaping unit 23 by the three-stage noise shaping.
- the video signal output from the third noise shaping unit 23 is converted to a 10-bit video signal by adding “000000” to the lower 6 bits in the bit number conversion unit 16 and then input to the signal selection unit 4.
- the signal selection unit 4 has no noise shaping effect, the noise shaping effect is small (low-order 2 bits of the video signal are diffused), and noise. It is possible to switch between four levels during the shaping effect (diffusion of the lower 4 bits of the video signal) and the large noise shaping effect (diffusion of the lower 6 bits of the video signal).
- the switching operation of the noise shaping effect is the same as that of the liquid crystal display device 10 shown in FIG. 1, and the description thereof is omitted here.
- the generation of pseudo contours can be effectively reduced as in the liquid crystal display device 10 shown in FIG. 1.
- the liquid crystal display device 20 in which a plurality of noise shaping units are connected in series can have a smaller circuit configuration of the noise shaping unit than the liquid crystal display device 10 in which a plurality of noise shaping units are connected in parallel. That is, in the liquid crystal display device 10 of FIG. 1, each of the first to third noise shaping units 11, 12, and 13 has a 10-bit input video signal VS as a processing target. On the other hand, in the liquid crystal display device 20 of FIG. 5, only the first noise shaping unit 21 processes the 10-bit input video signal VS, and the second and third noise shaping units 22 and 23 are 8 bits smaller than 10 bits. Since the 6-bit input video signal VS is a processing target, the circuit configuration can be reduced in size.
- the liquid crystal display devices 10 and 20 of the present embodiment shown in FIGS. 1 and 5 are configured to diffuse the lower 2 bits, lower 4 bits and lower 6 bits of the video signal by the first to third noise shaping units.
- the present invention is not limited to this, and the number of error diffusion bits for determining the degree of the noise shaping effect can be arbitrarily set.
- the first to third noise shaping units diffuse the lower 2 bits of the video signal (noise shaping 10 ⁇ 8 bits), diffuse the lower 3 bits (noise shaping 10 ⁇ 7 bits), and diffuse the lower 4 bits, respectively.
- the configuration may be (noise shaping 10 ⁇ 6 bits).
- the liquid crystal display devices 10 and 20 of the present embodiment shown in FIGS. 1 and 5 are configured to be able to switch the noise shaping effect in four stages with respect to four contrast gain ranges. It is not limited. That is, in the present embodiment, the generation of pseudo contours can be effectively reduced if the configuration can switch the noise shaping effect in n stages for n (n is an integer of 2 or more) contrast gain ranges. Has an effect. More specifically, (n ⁇ 1) noise shaping units having different noise shaping effects are connected in parallel or in series, and the contrast gain calculation unit 2 divides the region into n regions according to the contrast gain applied to the video signal VS. Any configuration that switches the noise shaping effect (depending on which of the contrast gain ranges has been assigned) provides the effects of the present embodiment.
- FIG. 6 is a schematic configuration diagram in which the ⁇ blend process is applied to the liquid crystal display device 10 of FIG.
- the liquid crystal display device 10 further includes a delay unit 5, a signal selection unit 6, a change detection unit 7, a coefficient switching unit 8, and an ⁇ blend unit 9 in addition to the configuration of FIG. 1.
- the selection control signal SC from the contrast gain calculation unit 2 is input to the delay unit 5.
- the delay unit 5 delays the selection control signal SC for a period corresponding to horizontal N pixels (N is a natural number) and outputs the delayed selection control signal SC to the signal selection unit 6. That is, when the period of the horizontal synchronizing signal of the video signal VS is T [seconds], the delay unit 5 delays the selection control signal SC by N ⁇ T [seconds].
- the “horizontal N pixels” to be delayed corresponds to a boundary pixel region Ndot where the noise shaping effect is gradually switched by the ⁇ blending process, as shown in FIG.
- the configuration of the signal selection unit 6 is a four-input multiplexer similar to that of the signal selection unit 4, and is output from the contrast gain adjustment unit 3 to each input terminal of the signal selection unit 6 (no noise shaping process is performed).
- the video signal VS and the video signal VS that has been subjected to the noise shaping processing by the first to third noise shaping units 11, 12, and 13 are input. Since the selection control signal SC delayed by horizontal N pixels is input to the signal selection unit 6 as described above, the output of the signal selection unit 6 (see (e) in FIG. 7) is the signal selection unit 4. (See (d) in FIG. 7) is delayed by the horizontal N pixels.
- the change control unit 7 receives the selection control signal SC from the contrast gain calculation unit 2. Then, the change detecting unit 7 detects the boundary at which the noise shaping effect is switched by detecting the timing at which the selection control signal SC changes, and outputs the detection signal to the coefficient switching unit 8.
- the coefficient switching unit 8 When the detection signal is input from the change detection unit 7, the coefficient switching unit 8 gradually increases the value of the coefficient ⁇ of the ⁇ blending process from 0 to 1 over a period corresponding to the boundary pixel region Ndot where the noise shaping effect is switched. , And output to the ⁇ blend unit 9 (see (f) in FIG. 7).
- the coefficient switching unit 8 sets the coefficient ⁇ to 0 except during a period corresponding to horizontal N pixels.
- the coefficient switching unit 8 increments the counter value from 0 to 1 for each period T of the horizontal synchronization signal of the video signal VS, In conjunction with a counter that resets to 0 when the value reaches N, the value of the coefficient ⁇ can be increased by (1 / N) every period T.
- the ⁇ blend unit 9 includes a video signal VS (referred to as a video signal A) output from the signal selection unit 4, a video signal VS (referred to as a video signal B) output from the signal selection unit 6, and a coefficient switching unit 8.
- the value of the coefficient ⁇ to be output is input.
- the ⁇ blend unit 9 semi-transparently combines the above two image signals A and B using the coefficient ⁇ as shown in the following expression (1) to generate a video signal OUT.
- the video signal output from the ⁇ blend unit 9 is input to the drive circuit 17 in FIG. 1, and an image corresponding to the video signal is displayed on the liquid crystal panel 18.
- the video signal B output from the signal selection unit 6 is video for a period corresponding to the boundary pixel region Ndot as shown in FIG. 7E due to the delay processing of the selection control signal SC by the delay unit 5. Delayed to signal A, the noise shaping effect is switched.
- the value of the coefficient ⁇ output from the coefficient switching unit 8 indicates that the change detection unit 7 indicates that the selection control signal SC has been switched from “01” to “10” as shown in (f) in FIG. After the detection, it gradually increases from 0 to 1 over a period corresponding to the boundary pixel region Ndot.
- the “NS6 bit area” of the video signal A gradually increases as shown in (g) of FIG. 7, while the video signal B as shown in (h) of FIG.
- the “NS8-bit area” of the area gradually decreases.
- the “NS8 bit region” and the “NS6 bit region” are gradually ⁇ -blended, and the video signal OUT in which the noise shaping effect is gradually switched is output.
- a fixed value may be used for the number N of pixels in the boundary pixel region Ndot, but it may be changed as appropriate according to the video signal. For example, a fast-moving image is relatively less blurred than an image that does not move much, so that the pseudo contour is not noticeable. Therefore, it is possible to adjust to reduce the number N of pixels in the boundary pixel region Ndot as the image moves faster. Further, for example, in consideration of human visual characteristics such that the false contour is conspicuous for the skin color and the pseudo contour is not conspicuous for the green color, the number N of pixels in the boundary pixel region Ndot can be adjusted according to the color gamut of the video signal.
- FIG. 6 shows an example in which the ⁇ blend process is applied to a configuration in which a plurality of noise shaping units (first to third noise shaping units 11, 12, 13) are connected in parallel.
- the ⁇ blend process can also be applied to the configuration shown in FIG. 5 in which a plurality of noise shaping units are connected in series.
- FIG. 8 is a schematic configuration diagram of a liquid crystal display device 40 (video display device) to which the video signal processing device according to the present embodiment is applied.
- the same member number is attached to the member which has the structure similar to the said Embodiment 1, and the description is abbreviate
- a liquid crystal display device 40 includes a color gamut detection unit 30 (error diffusion effect switching unit), a signal selection unit 4 (error diffusion effect switching unit), and a first noise shaping unit 11 (error) as video signal processing devices.
- a diffusion unit a second noise shaping unit 12 (error diffusion unit), a third noise shaping unit 13 (error diffusion unit), and bit number conversion units 14-16.
- the liquid crystal display device 40 includes a drive circuit 17 and a liquid crystal panel 18 (display unit).
- the color gamut detection unit 30 detects a color gamut based on the hue of the video signal VS, and outputs a selection control signal SC to the signal selection unit 4 according to the detection result.
- the processing of the color gamut detection unit 30 is performed in real time in synchronization with the video signal VS.
- the color gamut can be classified into, for example, green, red, gray (achromatic), and blue. In addition, color gamut classifications such as yellow to green, magenta to red, and cyan to blue are possible.
- the video signal subjected to is selected by the signal selection unit 4.
- the video signal subjected to is selected by the signal selection unit 4.
- the noise shaping effect becomes higher in the order of green system ⁇ red system ⁇ gray system ⁇ blue system (see FIG. 9).
- the color gamut detection unit 30 detects the color gamut of the video signal VS, and adaptively controls the noise shaping effect according to the color gamut. As a result, for example, in a sky or water surface video signal (a video signal in a blue or cyan to blue color region), a process that enhances the noise shaping effect (increases the number of lower bits diffused by noise shaping) is performed. . In addition, noise shaping processing is not performed on a video signal such as a mountain (video signal in a green color region) (or processing with a very weak noise shaping effect can be performed).
- the noise shaping effect is increased (the number of lower bits diffused by noise shaping is increased), the image is blurred and the generation of pseudo contour can be reduced.
- the noise shaping effect for a color gamut that is more conspicuous the occurrence of pseudo contour can be effectively reduced.
- the liquid crystal display device 40 has a configuration in which a plurality of noise shaping units (first to third noise shaping units 11, 12, 13) are connected in parallel. As shown in FIG. It can also be configured as a liquid crystal display device 50 connected in series. Since the configuration in which a plurality of noise shaping units are connected in series has already been described in detail with reference to FIG. 5, the description thereof is omitted here.
- the liquid crystal display devices 40 and 50 of the present embodiment shown in FIGS. 8 and 10 are configured to diffuse the lower 2 bits, lower 4 bits and lower 6 bits of the video signal by the first to third noise shaping units.
- the present invention is not limited to this, and the number of error diffusion bits for determining the degree of the noise shaping effect can be arbitrarily set.
- liquid crystal display devices 40 and 50 according to the present embodiment shown in FIGS. 8 and 10 are configured to be able to switch the noise shaping effect in four stages for four color gamuts, but this is not limitative. Is not to be done. That is, if the configuration can switch the noise shaping effect in n stages for n (n is an integer of 2 or more) color gamuts, the operation of this embodiment can effectively reduce the occurrence of pseudo contours. There is an effect.
- noise shaping units having different noise shaping effects are connected in parallel or in series, and the color gamut detection unit 30 has a color gamut corresponding to the hue of the video signal VS (n Any configuration may be used as long as it detects an area-divided color gamut and switches the noise shaping effect according to the color gamut.
- the ⁇ blend process shown in FIG. 6 can be applied to the liquid crystal display devices 40 and 50 of the present embodiment shown in FIGS.
- the noise shaping effect can be gradually switched using the ⁇ blend process in the pixel region at the boundary where the noise shaping effect is switched according to the color gamut of the video signal VS, and the pseudo contour can be further reduced. I can plan.
- a liquid crystal display device 60 shown in FIG. 11 includes the color gamut detection unit 30 that detects the color gamut of the video signal VS in addition to the configuration of the liquid crystal display device 10 of FIG.
- the liquid crystal display device 60 switches the noise shaping effect according to the contrast gain and color gamut of the video signal VS. The switching operation of the noise shaping effect will be described below.
- the contrast gain calculation unit 2 generates the selection control signal SC that switches the noise shaping effect in four stages according to the contrast gain applied to the video signal VS. At this time, the selection control signal SC is corrected based on the color gamut information from the color gamut detection unit 30.
- the contrast gain calculation unit 2 selects the selection control signal so that the noise shaping effect becomes the highest during the period in which the video signal VS in the luminance region multiplied by the double gain is output from the contrast gain adjustment unit 3.
- the SC is set to “11” in the first embodiment. For example, when the color gamut of the luminance region is green, the noise shaping effect is reduced by two steps by incorporating the elements of the second embodiment.
- the control signal SC is set to “01”.
- the noise shaping effect that can be selected reaches the upper limit or the lower limit, and the step correction of the effect cannot be further performed, the upper limit or the lower limit of the noise shaping effect is selected. Will be.
- the contrast gain calculation unit 2 corrects the selection control signal SC based on the color gamut information from the color gamut detection unit 30, the contrast gain value when selecting the noise shaping effect is set to the color gamut. It is conceivable to multiply the corresponding correction coefficient ⁇ .
- ⁇ Green ⁇ Red ⁇ 1 ⁇ Gray ⁇ It can be set like Blue .
- a plurality of noise shaping units may be connected in series as shown in FIG. 5, or the ⁇ blend process shown in FIG. 6 may be applied.
- the present invention is not limited to this.
- the error diffusion unit may perform error diffusion other than noise shaping such as dithering.
- a liquid crystal display device has been described as an example of a video display device.
- the video display device to which the present invention is applied is not limited to this.
- the present invention can be similarly applied to other video display devices such as a plasma display and an organic EL (electroluminescence) display.
- a video signal processing apparatus includes a contrast gain adjusting unit that adjusts a contrast gain of a video signal, and error diffusion that performs error diffusion on the video signal whose contrast gain is adjusted by the contrast gain adjusting unit. And an error diffusion effect switching unit that switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the contrast gain of the video signal.
- the contrast gain of the video signal is adjusted by the contrast gain adjustment unit.
- the larger the gain applied to the video signal the larger the gradation difference and the more likely the pseudo contour is generated. Therefore, in the present invention, error diffusion processing is performed by the error diffusion unit on the video signal whose contrast gain has been adjusted.
- the error diffusion effect switching unit switches the error diffusion effect by changing the number of bits for error diffusion according to the contrast gain of the video signal.
- the generation of the pseudo contour can be controlled by adaptively switching the error diffusion effect (changing the number of bits for error diffusion) according to the contrast gain. This is because as the error diffusion effect is increased (the number of bits for error diffusion is increased), the video is blurred and the pseudo contour is reduced. According to the configuration of the present invention, it is possible to enhance the error diffusion effect for a video signal having a large contrast gain. Therefore, it is possible to improve the video quality by suppressing the generation of pseudo contours.
- the error diffusion unit includes a noise shaping unit that diffuses noise shaping using lower bits of the video signal as errors, and the error diffusion effect switching unit has a contrast gain of the video signal. It is preferable to increase the number of lower bits diffused by the noise shaping unit as the value increases.
- the noise shaping unit is used for error diffusion processing, and as the contrast gain of the video signal increases, the number of lower bits to be diffused increases, thereby effectively reducing the occurrence of pseudo contours with a simple configuration. it can.
- an ⁇ blend processing unit that gradually switches the error diffusion effect by ⁇ blend processing of video signals having different error diffusion effects with respect to the video signal of the boundary pixel region where the error diffusion effect switches.
- the error diffusion effect is not switched all at once, but the error diffusion effect is gradually switched while ⁇ -blending video signals having different error diffusion effects. Become. Thereby, the gradation in the boundary pixel region is improved, and the effect of reducing the pseudo contour is further improved.
- the video signal processing apparatus further includes a color gamut detection unit that detects a color gamut of the video signal, and the error diffusion effect switching unit is configured to detect the error according to a contrast gain and a color gamut of the video signal. It is preferable to switch the error diffusion effect by changing the number of bits that the diffusion unit diffuses as an error.
- a video signal processing apparatus includes a color gamut detection unit that detects a color gamut of a video signal, an error diffusion unit that performs error diffusion on the video signal, and the color gamut detection unit detects And an error diffusion effect switching unit that switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the color gamut.
- the error diffusion effect is adaptively switched according to the color gamut of the video signal (the number of bits for error diffusion is changed).
- the color gamut even if the gradation is the same (that is, the number of bits of the video signal is the same), there are a color gamut in which false contours are conspicuous and a color gamut in which it is not so (for example, The blue color gamut is relatively more prominent in pseudo contour than the green color gamut).
- the error diffusion effect is increased (the number of bits for error diffusion is increased), the video is blurred and the pseudo contour can be reduced. Therefore, according to the configuration of the present invention, if the error diffusion effect is enhanced in a color gamut in which pseudo contour is more conspicuous, generation of pseudo contour can be suppressed and image quality can be improved.
- the error diffusion unit includes a noise shaping unit that diffuses the low-order bits of the video signal as an error by noise shaping, and the error diffusion effect switching unit has a color gamut in which pseudo contour is conspicuous. It is preferable to increase the number of lower bits diffused by the noise shaping unit.
- the noise shaping unit is used for error diffusion processing, and as the contrast gain of the video signal increases, the number of lower bits to be diffused increases, thereby effectively reducing the occurrence of pseudo contours with a simple configuration. it can.
- the video signal processing apparatus further includes an ⁇ blend processing unit that gradually switches the error diffusion effect by ⁇ blend processing on the video signal in the boundary pixel region where the error diffusion effect is switched.
- the error diffusion effect is not switched all at once, but the error diffusion effect is gradually switched while ⁇ -blending video signals having different error diffusion effects. Become. Thereby, the gradation in the boundary pixel region is improved, and the effect of reducing the pseudo contour is further improved.
- a video display device includes the video signal processing device described above and a display unit that displays a video signal that has been subjected to signal processing by the video signal processing device.
- the video signal processing device and the video display device according to the present invention can be suitably used for video equipment such as a television receiver, a display device, and a projector device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
A video display apparatus (10) is provided with a contrast gain adjustment unit (3) which adjusts the contrast gain of a video signal, an error diffusion unit (11, 12, 13) which performs error diffusion on the video signal the contrast gain of which is adjusted by the contrast gain adjustment unit (3), and an error diffusion effect switching unit (4) which switches the error diffusion effect by changing the number of bits to be diffused as errors by the error diffusion unit (11, 12, 13) according to the contrast gain of the video signal.
Description
本発明は、映像信号に対して画質向上のための信号処理を行う映像信号処理装置及びそれを備えた映像表示装置に関するものである。
The present invention relates to a video signal processing apparatus that performs signal processing for improving image quality on a video signal, and a video display apparatus including the same.
映像表示装置においては、映像の高画質化を目的とする様々な映像信号処理が行われている。例えば、特許文献1では、映像信号処理として、画像の輪郭部分を強調し、見かけ上解像度の高い画像として表示するエッジ強調処理と、画像の階調を滑らかにするディザ処理とが開示されている。
In video display devices, various video signal processing is performed for the purpose of improving the quality of video. For example, Patent Document 1 discloses edge enhancement processing for emphasizing a contour portion of an image and displaying it as an image with a high apparent resolution, and dither processing for smoothing the gradation of the image as video signal processing. .
また、テレビジョン受像機などの映像機器においては、映像信号から特徴量(平均輝度、最大輝度、最小輝度など)を検出して映像シーンを判別し、当該映像シーンに応じてコントラストゲインを調整することで映像の高画質化を実現する技術もある。
Also, in video equipment such as a television receiver, a feature amount (average brightness, maximum brightness, minimum brightness, etc.) is detected from a video signal to discriminate a video scene, and a contrast gain is adjusted according to the video scene. There is also a technology that realizes higher image quality.
上記のようなコントラストゲイン調整処理においては、映像の特定の階調域(輝度領域)に強くゲインがかかることになる。例えば、図2に示すようなダイナミックレンジを有する映像信号に対して、図3に示すように入力映像信号の輝度i1~i2の領域に2倍のゲインをかけることによって、図4に示すように映像信号のダイナミックレンジを拡大する階調補正を行ったとする。この場合、強くゲインがかけられた部分(図4中の点線部分)では、その他の部分よりも階調差が大きくなって擬輪郭が発生してしまい、映像品質の低下を招くというという問題が生じる。
In the contrast gain adjustment process as described above, a strong gain is applied to a specific gradation area (luminance area) of an image. For example, for a video signal having a dynamic range as shown in FIG. 2, a gain of 2 is applied to the luminance i 1 to i 2 region of the input video signal as shown in FIG. As described above, it is assumed that the gradation correction for expanding the dynamic range of the video signal is performed. In this case, there is a problem that in the portion to which the gain is strongly applied (dotted line portion in FIG. 4), the gradation difference becomes larger than that in the other portions, and a pseudo contour is generated, which causes a reduction in video quality. Arise.
また、同じ階調(すなわち、映像信号のビット数が同じ)であっても、人間の視覚特性上、擬輪郭が目立ち易い色域がある。この点、従来の映像信号処理技術では、映像の色域に応じた信号処理はなされておらず、映像の色域によっては擬輪郭が目立ち、映像品質の低下を招いていた。
Also, even in the same gradation (that is, the number of bits of the video signal is the same), there is a color gamut in which pseudo contours are easily noticeable due to human visual characteristics. In this regard, in the conventional video signal processing technique, signal processing according to the color gamut of the video is not performed, and depending on the color gamut of the video, the pseudo contour is conspicuous and the video quality is deteriorated.
本発明は、上記の問題を解決するためになされたものであり、擬輪郭の発生を抑制することによって映像品質を向上させることができる映像信号処理装置及び映像表示装置を提供することを目的とするものである。
The present invention has been made to solve the above problem, and an object thereof is to provide a video signal processing device and a video display device capable of improving video quality by suppressing the occurrence of pseudo contours. To do.
本発明の一局面に係る映像信号処理装置は、映像信号のコントラストゲインを調整するコントラストゲイン調整部と、前記コントラストゲイン調整部によりコントラストゲインが調整された映像信号に対して誤差拡散を行う誤差拡散部と、前記映像信号のコントラストゲインに応じて、前記誤差拡散部が誤差として拡散するビット数を変更することにより誤差拡散効果を切り替える誤差拡散効果切替部とを備える。
A video signal processing apparatus according to an aspect of the present invention includes a contrast gain adjusting unit that adjusts a contrast gain of a video signal, and error diffusion that performs error diffusion on the video signal whose contrast gain is adjusted by the contrast gain adjusting unit. And an error diffusion effect switching unit that switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the contrast gain of the video signal.
上記の構成によれば、コントラストゲイン調整部により映像信号のコントラストゲインが調整される。このとき、映像信号にかけられるゲインが大きいほど階調差が大きくなって擬輪郭が発生し易くなる。そこで、本発明では、コントラストゲインが調整された映像信号に対して、誤差拡散部により誤差拡散処理を行う。そして、この誤差拡散処理において、誤差拡散効果切替部が、映像信号のコントラストゲインに応じて誤差拡散するビット数を変更することにより、誤差拡散効果を切り替える。このように、コントラストゲインによって適応的に誤差拡散効果を切り替える(誤差拡散するビット数を変更する)ことにより、擬輪郭の発生を制御できる。なぜならば、誤差拡散効果を高める(誤差拡散するビット数を増加させる)ほど、映像がぼやけて擬輪郭の低減につながるからである。本発明の構成により、コントラストゲインが大きい映像信号に対して誤差拡散効果を高めることが可能となるので、擬輪郭の発生を抑制して映像品質の向上を図ることができる。
According to the above configuration, the contrast gain of the video signal is adjusted by the contrast gain adjustment unit. At this time, the larger the gain applied to the video signal, the larger the gradation difference and the more likely the pseudo contour is generated. Therefore, in the present invention, error diffusion processing is performed by the error diffusion unit on the video signal whose contrast gain has been adjusted. In this error diffusion process, the error diffusion effect switching unit switches the error diffusion effect by changing the number of bits for error diffusion according to the contrast gain of the video signal. As described above, the generation of the pseudo contour can be controlled by adaptively switching the error diffusion effect (changing the number of bits for error diffusion) according to the contrast gain. This is because as the error diffusion effect is increased (the number of bits for error diffusion is increased), the video is blurred and the pseudo contour is reduced. According to the configuration of the present invention, it is possible to enhance the error diffusion effect for a video signal having a large contrast gain. Therefore, it is possible to improve the video quality by suppressing the generation of pseudo contours.
本発明の他の局面に係る映像信号処理装置は、映像信号の色域を検出する色域検出部と、前記映像信号に対して誤差拡散を行う誤差拡散部と、前記色域検出部が検出した色域に応じて、前記誤差拡散部が誤差として拡散するビット数を変更することにより誤差拡散効果を切り替える誤差拡散効果切替部とを備える。
A video signal processing apparatus according to another aspect of the present invention includes a color gamut detection unit that detects a color gamut of a video signal, an error diffusion unit that performs error diffusion on the video signal, and the color gamut detection unit detects And an error diffusion effect switching unit that switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the color gamut.
上記の構成によれば、映像信号の色域によって適応的に誤差拡散効果を切り替える(誤差拡散するビット数を変更する)。ここで、色域に関し、同じ階調(すなわち、映像信号のビット数が同じ)であっても、人間の視覚特性上、擬輪郭が目立ち易い色域とそうでない色域とがある(例えば、青色系の色域は、緑色系の色域よりも相対的に擬輪郭が目立ち易い)。また、前述のように、誤差拡散効果を高める(誤差拡散するビット数を増加させる)ほど、映像がぼやけて擬輪郭の低減が可能である。よって、本発明の構成により、擬輪郭の目立ち易い色域ほど誤差拡散効果を高めれば、擬輪郭の発生を抑制して映像品質の向上を図れる。
According to the above configuration, the error diffusion effect is adaptively switched according to the color gamut of the video signal (the number of bits for error diffusion is changed). Here, regarding the color gamut, even if the gradation is the same (that is, the number of bits of the video signal is the same), there are a color gamut in which false contours are conspicuous and a color gamut in which it is not so (for example, The blue color gamut is relatively more prominent in pseudo contour than the green color gamut). Further, as described above, as the error diffusion effect is increased (the number of bits for error diffusion is increased), the video is blurred and the pseudo contour can be reduced. Therefore, according to the configuration of the present invention, if the error diffusion effect is enhanced in a color gamut in which pseudo contour is more conspicuous, generation of pseudo contour can be suppressed and image quality can be improved.
本発明のさらに他の局面に係る映像表示装置は、上記の映像信号処理装置と、前記映像信号処理装置によって信号処理がなされた映像信号を表示する表示部とを備えている。
A video display device according to still another aspect of the present invention includes the video signal processing device described above and a display unit that displays a video signal that has been subjected to signal processing by the video signal processing device.
上記の構成により、擬輪郭の発生を効果的に抑制し、映像品質の向上を図ることができる映像表示装置を実現できる。
With the above configuration, it is possible to realize a video display device capable of effectively suppressing the occurrence of pseudo contours and improving the video quality.
以下、本発明の実施の形態に係る映像信号処理装置及び映像表示装置について、添付図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
Hereinafter, a video signal processing device and a video display device according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the following embodiment is an example which actualized this invention, Comprising: The thing of the character which limits the technical scope of this invention is not.
(実施の形態1)
図1は、本実施の形態に係る映像信号処理装置を適用した液晶表示装置10(映像表示装置)の概略構成図である。図1において、液晶表示装置10は、映像信号処理装置としての、特徴量検出部1、コントラストゲイン算出部2(誤差拡散効果切替部)、コントラストゲイン調整部3、信号選択部4(誤差拡散効果切替部)、第1ノイズシェーピング部11(誤差拡散部)、第2ノイズシェーピング部12(誤差拡散部)、第3ノイズシェーピング部13(誤差拡散部)及びビット数変換部14~16を備える。さらに、液晶表示装置10は、駆動回路17及び液晶パネル18(表示部)を備える。 (Embodiment 1)
FIG. 1 is a schematic configuration diagram of a liquid crystal display device 10 (video display device) to which the video signal processing device according to the present embodiment is applied. In FIG. 1, a liquidcrystal display device 10 includes a feature amount detection unit 1, a contrast gain calculation unit 2 (error diffusion effect switching unit), a contrast gain adjustment unit 3, and a signal selection unit 4 (error diffusion effect) as a video signal processing device. A switching unit), a first noise shaping unit 11 (error diffusion unit), a second noise shaping unit 12 (error diffusion unit), a third noise shaping unit 13 (error diffusion unit), and bit number conversion units 14 to 16. Furthermore, the liquid crystal display device 10 includes a drive circuit 17 and a liquid crystal panel 18 (display unit).
図1は、本実施の形態に係る映像信号処理装置を適用した液晶表示装置10(映像表示装置)の概略構成図である。図1において、液晶表示装置10は、映像信号処理装置としての、特徴量検出部1、コントラストゲイン算出部2(誤差拡散効果切替部)、コントラストゲイン調整部3、信号選択部4(誤差拡散効果切替部)、第1ノイズシェーピング部11(誤差拡散部)、第2ノイズシェーピング部12(誤差拡散部)、第3ノイズシェーピング部13(誤差拡散部)及びビット数変換部14~16を備える。さらに、液晶表示装置10は、駆動回路17及び液晶パネル18(表示部)を備える。 (Embodiment 1)
FIG. 1 is a schematic configuration diagram of a liquid crystal display device 10 (video display device) to which the video signal processing device according to the present embodiment is applied. In FIG. 1, a liquid
なお、本実施の形態では、液晶表示装置10に入力される映像信号VSのビット数(階調数)を10ビットとして説明するが、映像信号VSのビット数はこれに限定されるものではなく、例えば8ビットや12ビット、或いはそれ以外のビット数であってもよい。
In the present embodiment, the number of bits (number of gradations) of the video signal VS input to the liquid crystal display device 10 is described as 10 bits. However, the number of bits of the video signal VS is not limited to this. For example, it may be 8 bits, 12 bits, or other number of bits.
特徴量検出部1には、映像信号VS及び垂直同期信号や水平同期信号等の同期信号が入力される。そして、特徴量検出部1は、1フレーム毎(又は1フィールド毎)に、映像信号VSの特徴量(平均輝度(APL)、最大輝度、最小輝度、輝度分布など)を検出し、検出結果をコントラストゲイン算出部2へ出力する。すなわち、特徴量検出部1は、画面全体の映像情報を高速演算し、1フレーム毎に映像シーンの特徴をリアルタイムに検出する。なお、特徴量検出部1は、プログレッシブ走査方式の映像信号VSでは1フレーム毎に、インターレース方式の映像信号VSでは1フィールド毎に、映像信号VSの特徴量を検出することができる。以下では、特徴量検出部1が1フレーム毎に特徴量を検出するものとして説明する。
The feature amount detection unit 1 receives a video signal VS and a synchronization signal such as a vertical synchronization signal and a horizontal synchronization signal. The feature amount detection unit 1 detects the feature amount (average luminance (APL), maximum luminance, minimum luminance, luminance distribution, etc.) of the video signal VS for each frame (or for each field), and the detection result is obtained. Output to the contrast gain calculator 2. That is, the feature amount detection unit 1 calculates the video information of the entire screen at high speed, and detects the features of the video scene in real time for each frame. The feature amount detection unit 1 can detect the feature amount of the video signal VS for each frame of the progressive scanning video signal VS and for each field of the interlace video signal VS. In the following description, it is assumed that the feature quantity detection unit 1 detects a feature quantity for each frame.
コントラストゲイン算出部2は、特徴量検出部1で検出された映像信号VSの特徴量に基づいて、1フレーム毎に、映像信号VSのコントラストゲイン(各階調のゲイン)を算出する。すなわち、コントラストゲイン算出部2は、映像シーンの特徴を表す前記特徴量に基づいて、映像シーンに適したガンマカーブ(ガンマ特性)を決定する。そして、コントラストゲイン算出部2は、コントラストゲインの算出結果をコントラストゲイン調整部3へ出力する。さらに、コントラストゲイン算出部2は、信号選択部4の出力を選択するための2ビットの選択制御信号SCを、信号選択部4へ出力する。この選択制御信号SCの詳細については、後述する。
The contrast gain calculation unit 2 calculates the contrast gain (gain of each gradation) of the video signal VS for each frame based on the feature amount of the video signal VS detected by the feature amount detection unit 1. That is, the contrast gain calculation unit 2 determines a gamma curve (gamma characteristic) suitable for the video scene based on the feature amount representing the feature of the video scene. The contrast gain calculation unit 2 then outputs the contrast gain calculation result to the contrast gain adjustment unit 3. Further, the contrast gain calculation unit 2 outputs a 2-bit selection control signal SC for selecting the output of the signal selection unit 4 to the signal selection unit 4. Details of the selection control signal SC will be described later.
コントラストゲイン調整部3には、映像信号VS及び前記コントラストゲインの算出結果が入力される。コントラストゲイン調整部3は、前記の特徴量の検出処理が実行される1フレーム期間分だけ、入力される映像信号VSを遅延する図示しない遅延回路を具備する。そして、コントラストゲイン調整部3は、前記コントラストゲインの算出結果に基づいて、映像信号VSのコントラストゲインを調整する。換言すれば、コントラストゲイン調整部3は、検出された映像シーンの特徴に適した階調性が実現されるように、リアルタイムにガンマカーブを補正し、映像信号VSの階調補正を行う。
The contrast gain adjusting unit 3 receives the video signal VS and the calculation result of the contrast gain. The contrast gain adjustment unit 3 includes a delay circuit (not shown) that delays the input video signal VS by one frame period during which the feature amount detection process is executed. Then, the contrast gain adjusting unit 3 adjusts the contrast gain of the video signal VS based on the calculation result of the contrast gain. In other words, the contrast gain adjustment unit 3 corrects the gamma curve in real time so as to realize the gradation appropriate for the detected feature of the video scene, and performs the gradation correction of the video signal VS.
上記の特徴量検出部1、コントラストゲイン算出部2及びコントラストゲイン調整部3により、シーン適応型のコントラスト・ガンマ補正を実現している。例えば、1フレーム中(1画面中)の映像信号VSのAPL及び最大・最小輝度に基づいて、映像信号VSの出力信号レベルを最大値にまで伸張するゲインをかけてコントラストを向上させることができる。また、1フレーム中(1画面中)の画素の輝度分布に基づいて、最も映像成分の多い輝度領域により多くの階調を割り当てるようにガンマ補正をかけることによって、例えば暗いシーンでのコントラスト感を向上させることができる。
The above-described feature amount detection unit 1, contrast gain calculation unit 2, and contrast gain adjustment unit 3 realize scene-adaptive contrast / gamma correction. For example, the contrast can be improved by applying a gain that expands the output signal level of the video signal VS to the maximum value based on the APL and maximum / minimum luminance of the video signal VS in one frame (one screen). . Also, based on the luminance distribution of the pixels in one frame (in one screen), gamma correction is performed so that more gradations are assigned to the luminance region with the largest video component, so that a contrast feeling in a dark scene, for example, can be obtained. Can be improved.
コントラストゲイン調整部3は、上記のように映像信号VS(10ビット)のコントラストゲインの調整処理をした後、映像信号VS(10ビット)を信号選択部4、第1ノイズシェーピング部11、第2ノイズシェーピング部12及び第3ノイズシェーピング部13にそれぞれ出力する。
The contrast gain adjusting unit 3 adjusts the contrast gain of the video signal VS (10 bits) as described above, and then converts the video signal VS (10 bits) into the signal selection unit 4, the first noise shaping unit 11, and the second It outputs to the noise shaping part 12 and the 3rd noise shaping part 13, respectively.
第1ノイズシェーピング部11は、10ビットで構成された入力映像信号VSの下位2ビットをノイズシェーピング(NS)処理により誤差拡散し、8ビットで構成された映像信号VSに変換して出力する。
The first noise shaping unit 11 performs error diffusion on the lower 2 bits of the input video signal VS composed of 10 bits by noise shaping (NS) processing, converts it into a video signal VS composed of 8 bits, and outputs it.
また、第2ノイズシェーピング部12は、10ビットで構成された入力映像信号VSの下位4ビットをノイズシェーピング処理により誤差拡散し、6ビットで構成された映像信号VSに変換して出力する。
Also, the second noise shaping unit 12 performs error diffusion on the lower 4 bits of the input video signal VS composed of 10 bits by noise shaping processing, converts it into a video signal VS composed of 6 bits, and outputs it.
また、第3ノイズシェーピング部13は、10ビットで構成された入力映像信号VSの下位6ビットをノイズシェーピング処理により誤差拡散し、4ビットで構成された映像信号VSに変換して出力する。
Also, the third noise shaping unit 13 performs error diffusion on the lower 6 bits of the input video signal VS composed of 10 bits by noise shaping processing, converts it into a video signal VS composed of 4 bits, and outputs it.
上記の第1~第3ノイズシェーピング部11、12、13は、例えば、図示しない加算器や遅延器などを具備し、入力映像信号VSの下位nビット(nは2、4又は6)の成分をPWM(Pulse Width Modulation)化し、それを上位ビットに加算することで、積分効果により下位nビットの情報を拡散し、擬似的に階調性を再現する構成としてもよい。
The first to third noise shaping units 11, 12, and 13 include, for example, an adder and a delay unit (not shown), and components of lower n bits (n is 2, 4, or 6) of the input video signal VS. It is also possible to adopt a configuration in which the lower n bits of information are diffused by the integration effect and pseudo gradation is reproduced by converting the signal into PWM (Pulse Width Modulation) and adding it to the upper bits.
第1~第3ノイズシェーピング部11、12、13においては、ノイズシェーピング処理により拡散する下位ビット数が増加するほど、映像がぼやけて擬輪郭の発生の低減に寄与し、実質的に階調性の向上効果につながる。
In the first to third noise shaping units 11, 12, and 13, as the number of lower-order bits diffused by the noise shaping process increases, the image becomes blurred and contributes to the reduction of the occurrence of pseudo contours. It leads to improvement effect.
第1ノイズシェーピング部11から出力される8ビットの映像信号VSは、ビット数変換部14において下位2ビットに「00」が付加されて10ビットの映像信号VSに変換され、その後、信号選択部4に入力される。
The 8-bit video signal VS output from the first noise shaping unit 11 is converted into a 10-bit video signal VS by adding “00” to the lower 2 bits in the bit number conversion unit 14, and then the signal selection unit 4 is input.
同様に、第2ノイズシェーピング部12から出力される6ビットの映像信号VSは、ビット数変換部15において下位4ビットに「0000」が付加されて10ビットの映像信号VSに変換され、その後、信号選択部4に入力される。また、第3ノイズシェーピング部13から出力される4ビットの映像信号VSは、ビット数変換部16において下位6ビットに「000000」が付加されて10ビットの映像信号VSに変換され、その後、信号選択部4に入力される。
Similarly, the 6-bit video signal VS output from the second noise shaping unit 12 is converted into a 10-bit video signal VS by adding “0000” to the lower 4 bits in the bit number conversion unit 15, and then The signal is input to the signal selector 4. The 4-bit video signal VS output from the third noise shaping unit 13 is converted into a 10-bit video signal VS by adding “000000” to the lower 6 bits in the bit number conversion unit 16, and then the signal Input to the selector 4.
信号選択部4は、4つの入力ストリームと1つの出力ストリームを有し、2ビットの選択制御信号SCに基づいて、4つの入力ストリームから何れか1つを選択して出力するマルチプレクサである。信号選択部4の各入力端子には、コントラストゲイン調整部3から出力された(ノイズシェーピング処理がなされていない)映像信号VS、第1ノイズシェーピング部11でノイズシェーピング処理がなされた映像信号VS、第2ノイズシェーピング部12でノイズシェーピング処理がなされた映像信号VS、第3ノイズシェーピング部13でノイズシェーピング処理がなされた映像信号VSが、それぞれ入力される。
The signal selection unit 4 is a multiplexer that has four input streams and one output stream, and selects and outputs any one of the four input streams based on the 2-bit selection control signal SC. At each input terminal of the signal selection unit 4, the video signal VS output from the contrast gain adjustment unit 3 (not subjected to noise shaping processing), the video signal VS subjected to noise shaping processing by the first noise shaping unit 11, The video signal VS subjected to the noise shaping process by the second noise shaping unit 12 and the video signal VS subjected to the noise shaping process by the third noise shaping unit 13 are respectively input.
そして、信号選択部4には、コントラストゲイン算出部2から2ビットの選択制御信号SCも入力されている。コントラストゲイン算出部2は、コントラストゲインが大きい輝度領域ほど、ノイズシェーピング効果の大きな(すなわち、ノイズシェーピングで拡散される下位ビット数が多い)映像信号VSが選択されるように、選択制御信号SCを信号選択部4へ出力する。
The signal selection unit 4 also receives a 2-bit selection control signal SC from the contrast gain calculation unit 2. The contrast gain calculation unit 2 sets the selection control signal SC so that a video signal VS having a larger noise shaping effect (that is, a larger number of lower bits diffused by the noise shaping) is selected in a luminance region having a higher contrast gain. Output to the signal selector 4.
本実施の形態においては、図9に示すように、ノイズシェーピング効果なし、ノイズシェーピング効果小(10→8ビット)、ノイズシェーピング効果中(10→6ビット)、ノイズシェーピング効果大(10→4ビット)の4段階切り替えが、信号選択部4での選択により可能である。例えば、コントラストゲイン調整部3において、1.00倍~2.00倍のコントラストゲイン調整が可能であったとしたならば、当該ゲイン範囲を下記4つの領域G0、G1、G2、G3に均等分割することができる。
In the present embodiment, as shown in FIG. 9, there is no noise shaping effect, noise shaping effect is small (10 → 8 bits), noise shaping effect is in effect (10 → 6 bits), and noise shaping effect is large (10 → 4 bits). ) Can be switched by selection in the signal selection unit 4. For example, if the contrast gain adjustment unit 3 can adjust the contrast gain from 1.00 times to 2.00 times, the gain range is set to the following four regions G 0 , G 1 , G 2 , G 3. Can be divided equally.
1.00≦G0<1.25
1.25≦G1<1.50
1.50≦G2<1.75
1.75≦G3<2.00 1.00 ≦ G 0 <1.25
1.25 ≦ G 1 <1.50
1.50 ≦ G 2 <1.75
1.75 ≦ G 3 <2.00
1.25≦G1<1.50
1.50≦G2<1.75
1.75≦G3<2.00 1.00 ≦ G 0 <1.25
1.25 ≦ G 1 <1.50
1.50 ≦ G 2 <1.75
1.75 ≦ G 3 <2.00
そして、コントラストゲイン調整部3においてゲインG0がかけられる輝度領域の映像信号VSについては、信号選択部4によりノイズシェーピング効果なしが選択される(このとき、コントラストゲイン算出部2から出力される選択制御信号SC=“00”)。同様に、ゲインG1がかけられる輝度領域の映像信号VSについては、ノイズシェーピング効果小が選択される(このとき、SC=“01”)。また、ゲインG2がかけられる輝度領域の映像信号VSについては、ノイズシェーピング効果中が選択される(このとき、SC=“10”)。また、ゲインG3がかけられる輝度領域の映像信号VSについては、ノイズシェーピング効果大が選択される(このとき、SC=“11”)。
For the video signal VS in the luminance region to which the gain G 0 is applied in the contrast gain adjustment unit 3, the signal selection unit 4 selects that there is no noise shaping effect (the selection output from the contrast gain calculation unit 2 at this time). Control signal SC = "00"). Similarly, the video signal VS of the luminance regions where the gain G 1 is applied, the noise shaping effect small is selected (this time, SC = "01"). Further, the video signal VS of the luminance regions where the gain G 2 is applied during the noise shaping effect is selected (this time, SC = "10"). Further, the video signal VS of the luminance regions where the gain G 3 applied, the noise shaping effect size is selected (this time, SC = "11").
もちろん、コントラストゲイン算出部2にも、映像信号VSの同期信号(垂直同期信号や水平同期信号)が入力されている。よって、コントラストゲイン算出部2は、映像信号VSに同期して、当該映像信号VSにかけられているゲインの大きさに応じて選択制御信号SCを切り換える。
Of course, the contrast gain calculation unit 2 also receives a synchronization signal (vertical synchronization signal or horizontal synchronization signal) of the video signal VS. Therefore, the contrast gain calculation unit 2 switches the selection control signal SC according to the magnitude of the gain applied to the video signal VS in synchronization with the video signal VS.
なお、上記の説明では、取り得るゲイン範囲を1.00倍~2.00倍としたが、これに限定されるものではない。また、取り得るゲイン範囲を均等分割してノイズシェーピング効果の程度を切り替える境界(基準ゲインG0~G3)を設定したが、これに限定されるものではない。すなわち、コントラストゲインが大きい輝度領域ほどノイズシェーピング効果も大きくするという枠組みの中で、取り得るゲイン範囲を均等分割するのではなく、基準ゲインを任意に設定可能である。
In the above description, the possible gain range is 1.00 to 2.00 times, but the present invention is not limited to this. Further, the boundary (reference gains G 0 to G 3 ) for switching the degree of the noise shaping effect by equally dividing the possible gain range is set, but the present invention is not limited to this. That is, within the framework of increasing the noise shaping effect as the luminance region has a higher contrast gain, the gain range that can be taken is not divided equally but the reference gain can be arbitrarily set.
駆動回路17は、上記のようにして信号選択部4にて選択された映像信号VSを用いて液晶パネル18を駆動する。そして、液晶パネル18は、映像信号VSに対応する映像を表示する。
The drive circuit 17 drives the liquid crystal panel 18 using the video signal VS selected by the signal selection unit 4 as described above. Then, the liquid crystal panel 18 displays a video corresponding to the video signal VS.
上記構成の液晶表示装置10の動作について、以下に説明する。
The operation of the liquid crystal display device 10 having the above configuration will be described below.
液晶表示装置10に入力された映像信号VSは、特徴量検出部1及びコントラストゲイン調整部3へ入力される。そして、特徴量検出部1は、1フレーム毎に、映像信号VSの特徴量を検出し、検出結果をコントラストゲイン算出部2へ出力する。コントラストゲイン算出部2では、検出された映像信号VSの特徴量に基づいて、1フレーム毎に、映像信号VSのコントラストゲイン(各階調のゲイン)を算出し、その算出結果をコントラストゲイン調整部3へ出力する。コントラストゲイン調整部3は、前記コントラストゲインの算出結果に基づいて、入力映像信号VSのコントラストゲインを調整する。
The video signal VS input to the liquid crystal display device 10 is input to the feature amount detection unit 1 and the contrast gain adjustment unit 3. Then, the feature amount detection unit 1 detects the feature amount of the video signal VS for each frame, and outputs the detection result to the contrast gain calculation unit 2. The contrast gain calculation unit 2 calculates the contrast gain (gain of each gradation) of the video signal VS for each frame based on the detected feature amount of the video signal VS, and the calculation result is the contrast gain adjustment unit 3. Output to. The contrast gain adjustment unit 3 adjusts the contrast gain of the input video signal VS based on the calculation result of the contrast gain.
例えば、上記の処理により、図2に示すようなダイナミックレンジを持つ入力映像信号VSに対して、図3に示すようなガンマカーブによりコントラストゲインの調整がされた場合を考える。すなわち、入力映像信号VSに対して、0(黒レベル)から輝度i1まで及び輝度i2から輝度i3(白レベル)までの輝度領域では1倍のゲイン、輝度i1から輝度i2までの輝度領域では2倍のゲインがかけられたものとする。これにより、コントラストゲイン調整部3から出力される映像信号VSは、図4に示すように階調補正がなされる。なお、図4中の点線部分が2倍のゲインがかけられた輝度領域である。
For example, let us consider a case where the contrast gain is adjusted with the gamma curve as shown in FIG. 3 for the input video signal VS having the dynamic range as shown in FIG. 2 by the above processing. That is, with respect to the input video signal VS, in the luminance region from 0 (black level) to the luminance i 1 and from the luminance i 2 to the luminance i 3 (white level), the gain is 1 times, from the luminance i 1 to the luminance i 2. It is assumed that a double gain is applied in the luminance region. As a result, the video signal VS output from the contrast gain adjusting unit 3 is subjected to gradation correction as shown in FIG. Note that the dotted line portion in FIG. 4 is a luminance region to which a double gain is applied.
このとき、コントラストゲイン算出部2は、2倍のゲインがかけられた輝度領域の映像信号VSがコントラストゲイン調整部3から出力されている期間は、選択制御信号SCを「11」として、第3ノイズシェーピング部13でノイズシェーピング処理がなされた映像信号VSが信号選択部4より選択的に出力されるようにする。一方、コントラストゲイン算出部2は、1倍ゲイン輝度領域の映像信号VSがコントラストゲイン調整部3から出力されている期間は、選択制御信号SCを「00」として、ノイズシェーピング効果なしの映像信号VSが信号選択部4より選択的に出力されるようにする。
At this time, the contrast gain calculation unit 2 sets the selection control signal SC to “11” during the period in which the video signal VS in the luminance region multiplied by the double gain is output from the contrast gain adjustment unit 3, The video signal VS subjected to the noise shaping process in the noise shaping unit 13 is selectively output from the signal selection unit 4. On the other hand, the contrast gain calculation unit 2 sets the selection control signal SC to “00” during the period when the video signal VS in the 1 × gain luminance region is output from the contrast gain adjustment unit 3, and the video signal VS without the noise shaping effect. Are selectively output from the signal selector 4.
同様に、コントラストゲイン算出部2は、映像信号VSにかけられたコントラストゲインの大きさに応じて選択制御信号SCを切り替え、ノイズシェーピング効果なしの映像信号VS又は第1~第3ノイズシェーピング部11、12、13の何れかでノイズシェーピング処理がなされた映像信号VSが信号選択部4より選択的に出力されるようにする。
Similarly, the contrast gain calculation unit 2 switches the selection control signal SC according to the magnitude of the contrast gain applied to the video signal VS, and the video signal VS without the noise shaping effect or the first to third noise shaping units 11, The video signal VS subjected to the noise shaping process in any one of 12 and 13 is selectively output from the signal selection unit 4.
このように、コントラストゲイン算出部2は、映像信号VSに同期して、映像信号VSにかけられたコントラストゲインの大きさに応じて、ノイズシェーピング効果を切り替える。前述のように、映像信号VSにかけられたコントラストゲインが大きい輝度領域ほど擬輪郭が発生し易い。一方、ノイズシェーピング効果を高める(ノイズシェーピングで拡散する下位ビット数を増加させる)ほど、映像がぼやけて擬輪郭の発生の低減に寄与し、実質的な階調性の向上につながる。よって、本実施の形態のようにコントラストゲインが大きい輝度領域ほどノイズシェーピング効果を高めることにより、効果的に擬輪郭の発生を低減できるのである。
As described above, the contrast gain calculation unit 2 switches the noise shaping effect in synchronization with the video signal VS according to the magnitude of the contrast gain applied to the video signal VS. As described above, a pseudo contour is more likely to occur in a luminance region having a larger contrast gain applied to the video signal VS. On the other hand, as the noise shaping effect is enhanced (the number of low-order bits diffused by noise shaping is increased), the image becomes blurred and contributes to the reduction of the occurrence of pseudo contour, leading to a substantial improvement in gradation. Therefore, the generation of pseudo contours can be effectively reduced by increasing the noise shaping effect in a luminance region having a larger contrast gain as in the present embodiment.
上記のように擬輪郭の発生が効果的に低減された映像信号VSは、液晶パネル18を駆動する駆動回路17に入力され、映像信号VSに対応した高品質の映像が液晶パネル18に表示される。
The video signal VS in which the generation of the pseudo contour is effectively reduced as described above is input to the drive circuit 17 that drives the liquid crystal panel 18, and a high-quality video corresponding to the video signal VS is displayed on the liquid crystal panel 18. The
上記の液晶表示装置10は、複数のノイズシェーピング部(第1~第3ノイズシェーピング部11、12、13)を並列接続した構成であるが、図5に示すように、複数のノイズシェーピング部を直列接続した構成とすることもできる。
The liquid crystal display device 10 has a configuration in which a plurality of noise shaping units (first to third noise shaping units 11, 12, 13) are connected in parallel. As shown in FIG. It can also be set as the structure connected in series.
図5に示す液晶表示装置20は、図1の第1~第3ノイズシェーピング部11、12、13の代わりに、第1~第3ノイズシェーピング部21、22、23(誤差拡散部)を備えている。液晶表示装置20におけるその他の基本構成は、図1の液晶表示装置10と同様である。
The liquid crystal display device 20 shown in FIG. 5 includes first to third noise shaping units 21, 22, and 23 (error diffusion units) instead of the first to third noise shaping units 11, 12, and 13 of FIG. ing. Other basic configurations of the liquid crystal display device 20 are the same as those of the liquid crystal display device 10 of FIG.
液晶表示装置20において、コントラストゲイン調整部3から出力される映像信号VSは、第1ノイズシェーピング部21及び信号選択部4に入力される。第1ノイズシェーピング部21は、コントラストゲイン調整部3より入力される10ビット構成の映像信号VSの下位2ビットをノイズシェーピング処理により誤差拡散し、8ビットで構成された映像信号に変換して出力する。第1ノイズシェーピング部21から出力される映像信号は、第2ノイズシェーピング部22に入力されると共に、ビット数変換部14において下位2ビットに「00」が付加されて10ビットの映像信号に変換された上で、信号選択部4に入力される。
In the liquid crystal display device 20, the video signal VS output from the contrast gain adjustment unit 3 is input to the first noise shaping unit 21 and the signal selection unit 4. The first noise shaping unit 21 performs error diffusion on the lower 2 bits of the 10-bit video signal VS input from the contrast gain adjustment unit 3 by noise shaping processing, converts the error signal into an 8-bit video signal, and outputs the video signal. To do. The video signal output from the first noise shaping unit 21 is input to the second noise shaping unit 22 and is converted into a 10-bit video signal by adding “00” to the lower 2 bits in the bit number conversion unit 14. Then, the signal is input to the signal selector 4.
また、第2ノイズシェーピング部22は、第1ノイズシェーピング部21より入力される8ビット構成の映像信号の下位2ビットをノイズシェーピング処理により誤差拡散し、6ビットで構成された映像信号に変換して出力する。これにより、第2ノイズシェーピング部22から出力される6ビット構成の映像信号は、2段のノイズシェーピングにより、実質的に入力映像信号VSの下位4ビットが拡散されることになる。第2ノイズシェーピング部22から出力される映像信号は、第3ノイズシェーピング部23に入力されると共に、ビット数変換部15において下位4ビットに「0000」が付加されて10ビットの映像信号に変換された上で、信号選択部4に入力される。
Also, the second noise shaping unit 22 performs error diffusion on the lower 2 bits of the 8-bit video signal input from the first noise shaping unit 21 by noise shaping processing, and converts it to a 6-bit video signal. Output. As a result, in the 6-bit video signal output from the second noise shaping unit 22, the lower 4 bits of the input video signal VS are substantially diffused by two-stage noise shaping. The video signal output from the second noise shaping unit 22 is input to the third noise shaping unit 23 and is converted into a 10-bit video signal by adding “0000” to the lower 4 bits in the bit number conversion unit 15. Then, the signal is input to the signal selector 4.
また、第3ノイズシェーピング部23は、第2ノイズシェーピング部22より入力される6ビット構成の映像信号の下位2ビットをノイズシェーピング処理により誤差拡散し、4ビットで構成された映像信号に変換して出力する。これにより、第3ノイズシェーピング部23から出力される4ビット構成の映像信号は、3段のノイズシェーピングにより、実質的に入力映像信号VSの下位6ビットが拡散されることになる。第3ノイズシェーピング部23から出力される映像信号は、ビット数変換部16において下位6ビットに「000000」が付加されて10ビットの映像信号に変換された上で、信号選択部4に入力される。
Further, the third noise shaping unit 23 performs error diffusion on the lower 2 bits of the 6-bit video signal input from the second noise shaping unit 22 by noise shaping processing, and converts it into a 4-bit video signal. Output. As a result, the lower 6 bits of the input video signal VS are substantially diffused in the 4-bit video signal output from the third noise shaping unit 23 by the three-stage noise shaping. The video signal output from the third noise shaping unit 23 is converted to a 10-bit video signal by adding “000000” to the lower 6 bits in the bit number conversion unit 16 and then input to the signal selection unit 4. The
図5に示す液晶表示装置20においても、図1に示す液晶表示装置10と同様に、信号選択部4により、ノイズシェーピング効果なし、ノイズシェーピング効果小(映像信号の下位2ビットを拡散)、ノイズシェーピング効果中(映像信号の下位4ビットを拡散)、ノイズシェーピング効果大(映像信号の下位6ビットを拡散)の4段階切り替えが可能である。このノイズシェーピング効果の切り替え動作は、図1に示す液晶表示装置10と同様であり、ここではその説明を省略する。図5に示す液晶表示装置20においても、図1に示す液晶表示装置10と同様に、擬輪郭の発生を効果的に低減できる。
Also in the liquid crystal display device 20 shown in FIG. 5, as in the liquid crystal display device 10 shown in FIG. 1, the signal selection unit 4 has no noise shaping effect, the noise shaping effect is small (low-order 2 bits of the video signal are diffused), and noise. It is possible to switch between four levels during the shaping effect (diffusion of the lower 4 bits of the video signal) and the large noise shaping effect (diffusion of the lower 6 bits of the video signal). The switching operation of the noise shaping effect is the same as that of the liquid crystal display device 10 shown in FIG. 1, and the description thereof is omitted here. Also in the liquid crystal display device 20 shown in FIG. 5, the generation of pseudo contours can be effectively reduced as in the liquid crystal display device 10 shown in FIG. 1.
複数のノイズシェーピング部を直列接続した液晶表示装置20は、複数のノイズシェーピング部を並列接続した液晶表示装置10よりもノイズシェーピング部の回路構成を小型化できる。すなわち、図1の液晶表示装置10においては、第1~第3ノイズシェーピング部11、12、13は、何れも、10ビットの入力映像信号VSを処理対象としている。一方、図5の液晶表示装置20においては、第1ノイズシェーピング部21だけが10ビットの入力映像信号VSを処理対象とし、第2及び第3ノイズシェーピング部22、23は10ビットより小さい8ビット及び6ビットの入力映像信号VSを処理対象としているため、回路構成の小型化を図れるのである。
The liquid crystal display device 20 in which a plurality of noise shaping units are connected in series can have a smaller circuit configuration of the noise shaping unit than the liquid crystal display device 10 in which a plurality of noise shaping units are connected in parallel. That is, in the liquid crystal display device 10 of FIG. 1, each of the first to third noise shaping units 11, 12, and 13 has a 10-bit input video signal VS as a processing target. On the other hand, in the liquid crystal display device 20 of FIG. 5, only the first noise shaping unit 21 processes the 10-bit input video signal VS, and the second and third noise shaping units 22 and 23 are 8 bits smaller than 10 bits. Since the 6-bit input video signal VS is a processing target, the circuit configuration can be reduced in size.
その一方で、複数のノイズシェーピング部を直列接続した液晶表示装置20では、複数段のノイズシェーピング効果の累積によってモアレが発生しないように、回路設計することを要する。この点、複数のノイズシェーピング部を並列接続した液晶表示装置10では、上記のようなノイズシェーピング効果の累積によるモアレは生じないので、回路設計が容易である。
On the other hand, in the liquid crystal display device 20 in which a plurality of noise shaping units are connected in series, it is necessary to design a circuit so that moire does not occur due to accumulation of noise shaping effects in a plurality of stages. In this respect, in the liquid crystal display device 10 in which a plurality of noise shaping units are connected in parallel, the moire due to the accumulation of the noise shaping effect as described above does not occur, and thus the circuit design is easy.
なお、図1及び図5に示す本実施の形態の液晶表示装置10、20は、第1~第3ノイズシェーピング部により、映像信号の下位2ビット、下位4ビット及び下位6ビットを拡散する構成となっているが、これに限定されるものではなく、ノイズシェーピング効果の程度を決定する誤差拡散のビット数は、任意に設定できる。たとえば、第1~第3ノイズシェーピング部が、それぞれ、映像信号の下位2ビットを拡散(ノイズシェーピング10→8ビット)、下位3ビットを拡散(ノイズシェーピング10→7ビット)及び下位4ビットを拡散(ノイズシェーピング10→6ビット)する構成であってもよい。
The liquid crystal display devices 10 and 20 of the present embodiment shown in FIGS. 1 and 5 are configured to diffuse the lower 2 bits, lower 4 bits and lower 6 bits of the video signal by the first to third noise shaping units. However, the present invention is not limited to this, and the number of error diffusion bits for determining the degree of the noise shaping effect can be arbitrarily set. For example, the first to third noise shaping units diffuse the lower 2 bits of the video signal (noise shaping 10 → 8 bits), diffuse the lower 3 bits (noise shaping 10 → 7 bits), and diffuse the lower 4 bits, respectively. The configuration may be (noise shaping 10 → 6 bits).
また、図1及び図5に示す本実施の形態の液晶表示装置10、20においては、4つのコントラストゲイン範囲に対して4段階のノイズシェーピング効果の切り替えができる構成となっているが、これに限定されるものではない。すなわち、n個(nは2以上の整数)のコントラストゲイン範囲に対してn段階のノイズシェーピング効果の切り替えができる構成であれば、擬輪郭の発生を効果的に低減できるという本実施の形態の作用効果を奏する。より詳しくは、ノイズシェーピング効果の異なる(n-1)個のノイズシェーピング部を並列接続又は直列接続すると共に、コントラストゲイン算出部2が映像信号VSにかけるコントラストゲインに応じて(n個に領域分割されたコントラストゲイン範囲の何れに属するかに応じて)ノイズシェーピング効果の切り替えを行う構成であれば、本実施の形態の作用効果を奏する。
In addition, the liquid crystal display devices 10 and 20 of the present embodiment shown in FIGS. 1 and 5 are configured to be able to switch the noise shaping effect in four stages with respect to four contrast gain ranges. It is not limited. That is, in the present embodiment, the generation of pseudo contours can be effectively reduced if the configuration can switch the noise shaping effect in n stages for n (n is an integer of 2 or more) contrast gain ranges. Has an effect. More specifically, (n−1) noise shaping units having different noise shaping effects are connected in parallel or in series, and the contrast gain calculation unit 2 divides the region into n regions according to the contrast gain applied to the video signal VS. Any configuration that switches the noise shaping effect (depending on which of the contrast gain ranges has been assigned) provides the effects of the present embodiment.
次に、ノイズシェーピング効果の切り替わる境界部分の画素領域において、αブレンド処理を用いてノイズシェーピング効果を徐々に切り替えることにより、さらなる擬輪郭の低減を可能とする構成について、以下に説明する。
Next, a configuration capable of further reducing the pseudo contour by gradually switching the noise shaping effect using the α blend process in the pixel region at the boundary where the noise shaping effect is switched will be described below.
図6は、図1の液晶表示装置10に、上記のαブレンド処理を適用した概略構成図である。液晶表示装置10は、図1の構成に追加して、遅延部5、信号選択部6、変化検出部7、係数切替部8及びαブレンド部9をさらに具備している。
FIG. 6 is a schematic configuration diagram in which the α blend process is applied to the liquid crystal display device 10 of FIG. The liquid crystal display device 10 further includes a delay unit 5, a signal selection unit 6, a change detection unit 7, a coefficient switching unit 8, and an α blend unit 9 in addition to the configuration of FIG. 1.
遅延部5にはコントラストゲイン算出部2からの選択制御信号SCが入力される。そして、遅延部5は、水平N画素(Nは自然数)に相当する期間だけ選択制御信号SCを遅延させて信号選択部6へ出力する。すなわち、映像信号VSの水平同期信号の周期をT[秒]とすると、遅延部5は、N×T[秒]だけ選択制御信号SCを遅延させる。ここで遅延の対象となる「水平N画素」とは、図7に示すように、αブレンド処理によりノイズシェーピング効果が漸次的に切り替わる境界画素領域Ndotに相当する。
The selection control signal SC from the contrast gain calculation unit 2 is input to the delay unit 5. The delay unit 5 delays the selection control signal SC for a period corresponding to horizontal N pixels (N is a natural number) and outputs the delayed selection control signal SC to the signal selection unit 6. That is, when the period of the horizontal synchronizing signal of the video signal VS is T [seconds], the delay unit 5 delays the selection control signal SC by N × T [seconds]. Here, the “horizontal N pixels” to be delayed corresponds to a boundary pixel region Ndot where the noise shaping effect is gradually switched by the α blending process, as shown in FIG.
信号選択部6の構成は前記信号選択部4と同様の4入力マルチプレクサであり、信号選択部6の各入力端子には、コントラストゲイン調整部3から出力された(ノイズシェーピング処理がなされていない)映像信号VS、第1~第3ノイズシェーピング部11、12、13でノイズシェーピング処理がなされた映像信号VSがそれぞれ入力される。上記のように信号選択部6には水平N画素分だけ遅延された選択制御信号SCが入力されるので、信号選択部6の出力(図7中の(e)参照)は、信号選択部4の出力(図7中の(d)参照)より水平N画素分だけ遅延する。
The configuration of the signal selection unit 6 is a four-input multiplexer similar to that of the signal selection unit 4, and is output from the contrast gain adjustment unit 3 to each input terminal of the signal selection unit 6 (no noise shaping process is performed). The video signal VS and the video signal VS that has been subjected to the noise shaping processing by the first to third noise shaping units 11, 12, and 13 are input. Since the selection control signal SC delayed by horizontal N pixels is input to the signal selection unit 6 as described above, the output of the signal selection unit 6 (see (e) in FIG. 7) is the signal selection unit 4. (See (d) in FIG. 7) is delayed by the horizontal N pixels.
変化検出部7にはコントラストゲイン算出部2からの選択制御信号SCが入力される。そして、変化検出部7は、選択制御信号SCが変化するタイミングを検出することによって、ノイズシェーピング効果の切り替わる境界を検出し、検出信号を係数切替部8へ出力する。
The change control unit 7 receives the selection control signal SC from the contrast gain calculation unit 2. Then, the change detecting unit 7 detects the boundary at which the noise shaping effect is switched by detecting the timing at which the selection control signal SC changes, and outputs the detection signal to the coefficient switching unit 8.
係数切替部8は、変化検出部7より検出信号が入力されたとき、αブレンド処理の係数αの値を、ノイズシェーピング効果の切り替わる境界画素領域Ndotに相当する期間にわたって0から1まで漸増して、αブレンド部9へ出力する(図7中の(f)参照)。なお、係数切替部8は、水平N画素に相当する期間以外では、係数αを0に設定する。例えば、係数切替部8は、変化検出部7より検出信号が入力されたとき、映像信号VSの水平同期信号の周期T毎に、カウンタの値を0から1ずつカウントアップして行き、カウンタの値がNになったら0にリセットするカウンタに連動して、係数αの値を周期T毎に(1/N)ずつ増加させる構成とすることができる。
When the detection signal is input from the change detection unit 7, the coefficient switching unit 8 gradually increases the value of the coefficient α of the α blending process from 0 to 1 over a period corresponding to the boundary pixel region Ndot where the noise shaping effect is switched. , And output to the α blend unit 9 (see (f) in FIG. 7). The coefficient switching unit 8 sets the coefficient α to 0 except during a period corresponding to horizontal N pixels. For example, when the detection signal is input from the change detection unit 7, the coefficient switching unit 8 increments the counter value from 0 to 1 for each period T of the horizontal synchronization signal of the video signal VS, In conjunction with a counter that resets to 0 when the value reaches N, the value of the coefficient α can be increased by (1 / N) every period T.
αブレンド部9には、信号選択部4から出力される映像信号VS(映像信号Aとする)、信号選択部6から出力される映像信号VS(映像信号Bとする)及び係数切替部8から出力される係数αの値が入力される。このαブレンド部9は、上記の2つの画像信号A及びBを、係数αを用いて下式(1)のように半透明合成し、映像信号OUTを生成する。
The α blend unit 9 includes a video signal VS (referred to as a video signal A) output from the signal selection unit 4, a video signal VS (referred to as a video signal B) output from the signal selection unit 6, and a coefficient switching unit 8. The value of the coefficient α to be output is input. The α blend unit 9 semi-transparently combines the above two image signals A and B using the coefficient α as shown in the following expression (1) to generate a video signal OUT.
OUT=(1-α)×A+α×B (1)
OUT = (1-α) × A + α × B (1)
αブレンド部9から出力される映像信号は、図1の駆動回路17に入力され、映像信号に対応した映像が液晶パネル18に表示される。
The video signal output from the α blend unit 9 is input to the drive circuit 17 in FIG. 1, and an image corresponding to the video signal is displayed on the liquid crystal panel 18.
上記の構成において、図7を参照しながら、αブレンド処理を用いてノイズシェーピング効果を漸次的に切り替える動作について、以下に説明する。ここでは、第1ノイズシェーピング部11でノイズシェーピングされた映像信号から第2ノイズシェーピング部12でノイズシェーピングされた映像信号へと切り替わる場合を例示する。
The operation of gradually switching the noise shaping effect using the α blend process in the above configuration will be described below with reference to FIG. Here, the case where the video signal noise-shaped by the first noise shaping unit 11 is switched to the video signal noise-shaped by the second noise shaping unit 12 is illustrated.
図7中の(c)に示すように、コントラストゲイン算出部2より出力されている選択制御信号SCが、「01」から「10」へ切り替わった場合、信号選択部4から出力される映像信号Aは、同図中の(d)に示すように、選択制御信号SCの変化タイミングでノイズシェーピング効果が切り替わる。なお、同図中において、第1ノイズシェーピング部11でノイズシェーピングされた映像信号の画素領域を「NS8bit領域」と、第2ノイズシェーピング部12でノイズシェーピングされた映像信号の画素領域を「NS6bit領域」と表記している。
As shown in (c) of FIG. 7, when the selection control signal SC output from the contrast gain calculation unit 2 is switched from “01” to “10”, the video signal output from the signal selection unit 4. In A, the noise shaping effect is switched at the change timing of the selection control signal SC as shown in FIG. In the figure, the pixel region of the video signal noise-shaped by the first noise shaping unit 11 is “NS8 bit region”, and the pixel region of the video signal noise-shaped by the second noise shaping unit 12 is “NS6 bit region”. ".
一方、信号選択部6から出力される映像信号Bは、遅延部5による選択制御信号SCの遅延処理により、図7中の(e)に示すように、境界画素領域Ndotに相当する期間だけ映像信号Aに遅延してノイズシェーピング効果が切り替わる。
On the other hand, the video signal B output from the signal selection unit 6 is video for a period corresponding to the boundary pixel region Ndot as shown in FIG. 7E due to the delay processing of the selection control signal SC by the delay unit 5. Delayed to signal A, the noise shaping effect is switched.
そして、係数切替部8から出力される係数αの値は、図7中の(f)に示すように、選択制御信号SCが「01」から「10」へ切り替わったことが変化検出部7で検出されてから境界画素領域Ndotに相当する期間にわたって0から1まで漸増する。
Then, the value of the coefficient α output from the coefficient switching unit 8 indicates that the change detection unit 7 indicates that the selection control signal SC has been switched from “01” to “10” as shown in (f) in FIG. After the detection, it gradually increases from 0 to 1 over a period corresponding to the boundary pixel region Ndot.
よって、境界画素領域Ndotにおけるαブレンド処理により、図7中の(g)に示すように映像信号Aの「NS6bit領域」は漸増する一方、図7中の(h)に示すように映像信号Bの「NS8bit領域」は漸減する。その結果、図7中の(b)に示すように、「NS8bit領域」と「NS6bit領域」とが徐々にαブレンドされてノイズシェーピング効果が漸次的に切り替えられた映像信号OUTが出力される。
Therefore, by the α blend process in the boundary pixel area Ndot, the “NS6 bit area” of the video signal A gradually increases as shown in (g) of FIG. 7, while the video signal B as shown in (h) of FIG. The “NS8-bit area” of the area gradually decreases. As a result, as shown in (b) of FIG. 7, the “NS8 bit region” and the “NS6 bit region” are gradually α-blended, and the video signal OUT in which the noise shaping effect is gradually switched is output.
比較のために、上記のαブレンド処理を行わない場合の映像信号を図7中の(a)に示している。この場合、「NS8bit領域」の最終画素と「NS6bit領域」の開始画素との間で、ノイズシェーピング効果が一気に切り替わる。これに対して、上記αブレンド処理を行う構成により、境界画素領域Ndotにわたってノイズシェーピング効果が漸次的に切り替えられるので、擬輪郭の低減効果がさらに向上する。
For comparison, a video signal in the case where the α blending process is not performed is shown in (a) of FIG. In this case, the noise shaping effect is switched at a stroke between the last pixel of the “NS8 bit region” and the start pixel of the “NS6 bit region”. On the other hand, since the noise shaping effect is gradually switched over the boundary pixel region Ndot by the configuration in which the α blend process is performed, the effect of reducing the pseudo contour is further improved.
なお、上記の境界画素領域Ndotの画素数Nは、固定値を用いてもよいが、映像信号に応じて適宜変更することもできる。例えば、動きの早い映像はあまり動きのない映像よりも相対的に映像がぼやけ易いため、擬輪郭は目立ち難い。よって、動きの早い映像ほど境界画素領域Ndotの画素数Nを少なくする調整が可能である。また、例えば肌色は擬輪郭が目立ち易く緑色は擬輪郭が目立ち難いといった人間の視覚特性を考慮し、映像信号の色域によって境界画素領域Ndotの画素数Nを調整することも可能である。
Note that a fixed value may be used for the number N of pixels in the boundary pixel region Ndot, but it may be changed as appropriate according to the video signal. For example, a fast-moving image is relatively less blurred than an image that does not move much, so that the pseudo contour is not noticeable. Therefore, it is possible to adjust to reduce the number N of pixels in the boundary pixel region Ndot as the image moves faster. Further, for example, in consideration of human visual characteristics such that the false contour is conspicuous for the skin color and the pseudo contour is not conspicuous for the green color, the number N of pixels in the boundary pixel region Ndot can be adjusted according to the color gamut of the video signal.
また、図6は、複数のノイズシェーピング部(第1~第3ノイズシェーピング部11、12、13)を並列接続した構成にαブレンド処理を適用した例を示したものであるが、同様に、複数のノイズシェーピング部を直列接続した図5に示す構成にαブレンド処理を適用することもできる。
FIG. 6 shows an example in which the α blend process is applied to a configuration in which a plurality of noise shaping units (first to third noise shaping units 11, 12, 13) are connected in parallel. The α blend process can also be applied to the configuration shown in FIG. 5 in which a plurality of noise shaping units are connected in series.
(実施の形態2)
図8は、本実施の形態に係る映像信号処理装置を適用した液晶表示装置40(映像表示装置)の概略構成図である。なお、前記の実施の形態1と同様の構成を有する部材には同一の部材番号を付記し、その説明を省略する。 (Embodiment 2)
FIG. 8 is a schematic configuration diagram of a liquid crystal display device 40 (video display device) to which the video signal processing device according to the present embodiment is applied. In addition, the same member number is attached to the member which has the structure similar to the saidEmbodiment 1, and the description is abbreviate | omitted.
図8は、本実施の形態に係る映像信号処理装置を適用した液晶表示装置40(映像表示装置)の概略構成図である。なお、前記の実施の形態1と同様の構成を有する部材には同一の部材番号を付記し、その説明を省略する。 (Embodiment 2)
FIG. 8 is a schematic configuration diagram of a liquid crystal display device 40 (video display device) to which the video signal processing device according to the present embodiment is applied. In addition, the same member number is attached to the member which has the structure similar to the said
図8において、液晶表示装置40は、映像信号処理装置としての、色域検出部30(誤差拡散効果切替部)、信号選択部4(誤差拡散効果切替部)、第1ノイズシェーピング部11(誤差拡散部)、第2ノイズシェーピング部12(誤差拡散部)、第3ノイズシェーピング部13(誤差拡散部)及びビット数変換部14~16を備える。さらに、液晶表示装置40は、駆動回路17及び液晶パネル18(表示部)を備える。
In FIG. 8, a liquid crystal display device 40 includes a color gamut detection unit 30 (error diffusion effect switching unit), a signal selection unit 4 (error diffusion effect switching unit), and a first noise shaping unit 11 (error) as video signal processing devices. A diffusion unit), a second noise shaping unit 12 (error diffusion unit), a third noise shaping unit 13 (error diffusion unit), and bit number conversion units 14-16. Furthermore, the liquid crystal display device 40 includes a drive circuit 17 and a liquid crystal panel 18 (display unit).
色域検出部30は、映像信号VSの色相により色域を検出し、その検出結果に応じて選択制御信号SCを信号選択部4へ出力する。この色域検出部30の処理は、映像信号VSに同期してリアルタイムでなされる。上記の色域としては、例えば、緑色系、赤色系、灰色系(無彩色)及び青色系に分類することができる。その他にも、黄~緑、マゼンタ~赤、シアン~青などのような色域分類も可能である。
The color gamut detection unit 30 detects a color gamut based on the hue of the video signal VS, and outputs a selection control signal SC to the signal selection unit 4 according to the detection result. The processing of the color gamut detection unit 30 is performed in real time in synchronization with the video signal VS. The color gamut can be classified into, for example, green, red, gray (achromatic), and blue. In addition, color gamut classifications such as yellow to green, magenta to red, and cyan to blue are possible.
同じ階調(すなわち、映像信号のビット数が同じ)であっても、人間の視覚特性上、擬輪郭が目立ち易い色域とそうでない色域がある。例えば、青色系の色域は擬輪郭が目立ち易い一方、緑色系の色域は擬輪郭が比較的目立ち難い。擬輪郭の目立ち易さを例示すると、緑色系<赤色系<灰色系(無彩色)<青色系の順で擬輪郭が目立ち易くなる。
Even if the gradation is the same (that is, the number of bits of the video signal is the same), there are color gamuts where false contours are conspicuous and those that are not so due to human visual characteristics. For example, a false contour is easily noticeable in a blue color gamut, whereas a false contour is relatively inconspicuous in a green color gamut. For example, the pseudo contour is more conspicuous in the order of green system <red system <gray system (achromatic color) <blue system.
そこで、色域検出部30は、例えば、映像信号VSの色相が緑色系のときは選択制御信号SC=“00”を出力し、ノイズシェーピング処理がなされていない映像信号VSが信号選択部4にて選択されるようにする。また、色域検出部30は、例えば、映像信号VSの色相が赤色系のときは選択制御信号SC=“01”を出力し、第1ノイズシェーピング部11でノイズシェーピング処理(10→8ビット)がなされた映像信号が信号選択部4にて選択されるようにする。また、色域検出部30は、例えば、映像信号VSの色相が灰色系のときは選択制御信号SC=“10”を出力し、第2ノイズシェーピング部12でノイズシェーピング処理(10→6ビット)がなされた映像信号が信号選択部4にて選択されるようにする。また、色域検出部30は、例えば、映像信号VSの色相が青色系のときは選択制御信号SC=”11”を出力し、第3ノイズシェーピング部12でノイズシェーピング処理(10→4ビット)がなされた映像信号が信号選択部4にて選択されるようにする。これにより、緑色系<赤色系<灰色系<青色系の順で、ノイズシェーピング効果が高くなる(図9参照)。
Therefore, for example, when the hue of the video signal VS is green, the color gamut detection unit 30 outputs the selection control signal SC = “00”, and the video signal VS not subjected to noise shaping processing is output to the signal selection unit 4. To be selected. Further, the color gamut detection unit 30 outputs the selection control signal SC = “01” when the hue of the video signal VS is red, for example, and the first noise shaping unit 11 performs noise shaping processing (10 → 8 bits). The video signal subjected to is selected by the signal selection unit 4. Further, the color gamut detection unit 30 outputs, for example, a selection control signal SC = “10” when the hue of the video signal VS is gray, and the second noise shaping unit 12 performs noise shaping processing (10 → 6 bits). The video signal subjected to is selected by the signal selection unit 4. The color gamut detection unit 30 outputs the selection control signal SC = “11” when the hue of the video signal VS is blue, for example, and the third noise shaping unit 12 performs noise shaping processing (10 → 4 bits). The video signal subjected to is selected by the signal selection unit 4. As a result, the noise shaping effect becomes higher in the order of green system <red system <gray system <blue system (see FIG. 9).
上記構成の液晶表示装置40は、色域検出部30が映像信号VSの色域を検出し、色域に応じてノイズシェーピング効果を適応的に制御する。これにより、例えば空や水面の映像信号(青色系又はシアン~青の色領域の映像信号)においては、ノイズシェーピング効果を高めた(ノイズシェーピングで拡散する下位ビット数を多くした)処理がなされる。また、山などの映像信号(緑色系の色領域の映像信号)においては、ノイズシェーピング処理はなされない(又はノイズシェーピング効果を非常に弱くした処理とすることもできる)。前述のように、ノイズシェーピング効果を高める(ノイズシェーピングで拡散する下位ビット数を増加させる)ほど、映像がぼやけて擬輪郭の発生の低減が可能であるので、本実施の形態のように、擬輪郭の目立ち易い色域ほどノイズシェーピング効果を高めることにより、擬輪郭の発生を効果的に低減できる。
In the liquid crystal display device 40 configured as described above, the color gamut detection unit 30 detects the color gamut of the video signal VS, and adaptively controls the noise shaping effect according to the color gamut. As a result, for example, in a sky or water surface video signal (a video signal in a blue or cyan to blue color region), a process that enhances the noise shaping effect (increases the number of lower bits diffused by noise shaping) is performed. . In addition, noise shaping processing is not performed on a video signal such as a mountain (video signal in a green color region) (or processing with a very weak noise shaping effect can be performed). As described above, as the noise shaping effect is increased (the number of lower bits diffused by noise shaping is increased), the image is blurred and the generation of pseudo contour can be reduced. By increasing the noise shaping effect for a color gamut that is more conspicuous, the occurrence of pseudo contour can be effectively reduced.
上記の液晶表示装置40は、複数のノイズシェーピング部(第1~第3ノイズシェーピング部11、12、13)を並列接続した構成であるが、図10に示すように、複数のノイズシェーピング部を直列接続した液晶表示装置50として構成することもできる。なお、複数のノイズシェーピング部を直列接続した構成については、すでに図5で詳述しているので、ここではその説明を省略する。
The liquid crystal display device 40 has a configuration in which a plurality of noise shaping units (first to third noise shaping units 11, 12, 13) are connected in parallel. As shown in FIG. It can also be configured as a liquid crystal display device 50 connected in series. Since the configuration in which a plurality of noise shaping units are connected in series has already been described in detail with reference to FIG. 5, the description thereof is omitted here.
なお、図8及び図10に示す本実施の形態の液晶表示装置40、50は、第1~第3ノイズシェーピング部により、映像信号の下位2ビット、下位4ビット及び下位6ビットを拡散する構成となっているが、これに限定されるものではなく、ノイズシェーピング効果の程度を決定する誤差拡散のビット数は任意に設定できる。
The liquid crystal display devices 40 and 50 of the present embodiment shown in FIGS. 8 and 10 are configured to diffuse the lower 2 bits, lower 4 bits and lower 6 bits of the video signal by the first to third noise shaping units. However, the present invention is not limited to this, and the number of error diffusion bits for determining the degree of the noise shaping effect can be arbitrarily set.
また、図8及び図10に示す本実施の形態の液晶表示装置40、50においては、4つの色域に対して4段階のノイズシェーピング効果の切り替えができる構成となっているが、これに限定されるものではない。すなわち、n個(nは2以上の整数)の色域に対してn段階のノイズシェーピング効果の切り替えができる構成であれば、擬輪郭の発生を効果的に低減できるという本実施の形態の作用効果を奏する。より具体的には、ノイズシェーピング効果の異なる(n-1)個のノイズシェーピング部を並列接続又は直列接続すると共に、色域検出部30が映像信号VSの色相に応じた色域(n個に領域分割された色域)を検知し、当該色域に応じてノイズシェーピング効果の切り替えを行う構成であればよい。
In addition, the liquid crystal display devices 40 and 50 according to the present embodiment shown in FIGS. 8 and 10 are configured to be able to switch the noise shaping effect in four stages for four color gamuts, but this is not limitative. Is not to be done. That is, if the configuration can switch the noise shaping effect in n stages for n (n is an integer of 2 or more) color gamuts, the operation of this embodiment can effectively reduce the occurrence of pseudo contours. There is an effect. More specifically, (n−1) noise shaping units having different noise shaping effects are connected in parallel or in series, and the color gamut detection unit 30 has a color gamut corresponding to the hue of the video signal VS (n Any configuration may be used as long as it detects an area-divided color gamut and switches the noise shaping effect according to the color gamut.
また、図8及び図10に示す本実施の形態の液晶表示装置40、50に対して、図6に示したαブレンド処理を適用することができる。これにより、映像信号VSの色域に応じてノイズシェーピング効果の切り替えが行われる境界部分の画素領域において、αブレンド処理を用いてノイズシェーピング効果を徐々に切り替えることができ、さらなる擬輪郭の低減が図れる。
Further, the α blend process shown in FIG. 6 can be applied to the liquid crystal display devices 40 and 50 of the present embodiment shown in FIGS. As a result, the noise shaping effect can be gradually switched using the α blend process in the pixel region at the boundary where the noise shaping effect is switched according to the color gamut of the video signal VS, and the pseudo contour can be further reduced. I can plan.
ここで、前記の実施の形態1と実施の形態2との効果を併せて奏する構成について説明する。図11に示す液晶表示装置60は、図1の液晶表示装置10の構成に追加して、映像信号VSの色域を検出する前記色域検出部30を具備する。この液晶表示装置60は、映像信号VSのコントラストゲイン及び色域に応じて、ノイズシェーピング効果を切り替えるようになっている。このノイズシェーピング効果の切り替え動作について、以下に説明する。
Here, a configuration that combines the effects of the first embodiment and the second embodiment will be described. A liquid crystal display device 60 shown in FIG. 11 includes the color gamut detection unit 30 that detects the color gamut of the video signal VS in addition to the configuration of the liquid crystal display device 10 of FIG. The liquid crystal display device 60 switches the noise shaping effect according to the contrast gain and color gamut of the video signal VS. The switching operation of the noise shaping effect will be described below.
色域検出部30が検出した色域の情報は、コントラストゲイン算出部2に出力される。コントラストゲイン算出部2は、前記の実施の形態1で説明したように、映像信号VSにかけるコントラストゲインに応じて、ノイズシェーピング効果を4段階で切り替える選択制御信号SCを生成するのであるが、このとき、色域検出部30からの色域情報に基づいて選択制御信号SCを補正する。
Information on the color gamut detected by the color gamut detection unit 30 is output to the contrast gain calculation unit 2. As described in the first embodiment, the contrast gain calculation unit 2 generates the selection control signal SC that switches the noise shaping effect in four stages according to the contrast gain applied to the video signal VS. At this time, the selection control signal SC is corrected based on the color gamut information from the color gamut detection unit 30.
例えば、緑色系<赤色系<灰色系<青色系の順で擬輪郭が目立ち易くなることを考慮して、色域が緑色系ならノイズシェーピング効果を2段階下げ、色域が赤色系なら当該効果を1段階下げ、色域が灰色系なら当該効果を1段階上げ、色域が青色系なら当該効果を2段階上げるようにすることが考えられる。
For example, considering the fact that pseudo contours tend to be conspicuous in the order of green system <red system <gray system <blue system, the noise shaping effect is lowered by two levels if the color gamut is green, and the effect is achieved if the color gamut is red. It is conceivable to increase the effect by one step if the color gamut is gray, and to increase the effect by two steps if the color gamut is blue.
ここで、図2に示すようなダイナミックレンジを持つ入力映像信号VSに対して、図3に示すようなガンマカーブによりコントラストゲインの調整がされた場合を具体例として考える。このとき、コントラストゲイン算出部2は、2倍のゲインがかけられた輝度領域の映像信号VSがコントラストゲイン調整部3から出力されている期間は、ノイズシェーピング効果が最も高くなるように選択制御信号SCを「11」とするのが実施の形態1であるが、例えば当該輝度領域の色域が緑色系であった場合、実施の形態2の要素を取り入れてノイズシェーピング効果を2段階下げ、選択制御信号SCを「01」とする。なお、色域情報に基づく上記の段階補正において、選択可能なノイズシェーピング効果が上限又は下限に達してしまい、当該効果の段階補正がそれ以上できない場合は、ノイズシェーピング効果の上限又は下限が選択されることになる。
Here, a case where a contrast gain is adjusted by a gamma curve as shown in FIG. 3 for an input video signal VS having a dynamic range as shown in FIG. 2 is considered as a specific example. At this time, the contrast gain calculation unit 2 selects the selection control signal so that the noise shaping effect becomes the highest during the period in which the video signal VS in the luminance region multiplied by the double gain is output from the contrast gain adjustment unit 3. The SC is set to “11” in the first embodiment. For example, when the color gamut of the luminance region is green, the noise shaping effect is reduced by two steps by incorporating the elements of the second embodiment. The control signal SC is set to “01”. In the above-described step correction based on the color gamut information, if the noise shaping effect that can be selected reaches the upper limit or the lower limit, and the step correction of the effect cannot be further performed, the upper limit or the lower limit of the noise shaping effect is selected. Will be.
これにより、映像信号VSのコントラストゲイン及び色域の両方を考慮した最適なノイズシェーピング効果の選択が実現でき、擬輪郭の発生をより効果的に抑制して映像品質の向上を図ることができる。
Thereby, it is possible to select an optimal noise shaping effect considering both the contrast gain and the color gamut of the video signal VS, and it is possible to more effectively suppress the occurrence of pseudo contours and improve the video quality.
コントラストゲイン算出部2が色域検出部30からの色域情報に基づいて選択制御信号SCを補正する他の構成例としては、ノイズシェーピング効果を選択するときのコントラストゲインの値に、色域に応じた補正係数γを乗算することが考えられる。ここで、緑色系<赤色系<灰色系<青色系の順で擬輪郭が目立ち易くなることを考慮すれば、これらの各補正係数γについては、γGreen<γRed<1<γGray<γBlueのように設定することができる。前記の具体例のように2倍のゲインがかけられた輝度領域の映像信号VSの色域が緑色系であった場合、例えばγGreen=0.7とし、補正後のコントラストゲインの値を2×γGreen=1.4倍としてノイズシェーピング効果を選択するようにする。この場合もノイズシェーピング効果を2段階下げたのと同様となり、選択制御信号SCとして「01」が選択されることになる。
As another configuration example in which the contrast gain calculation unit 2 corrects the selection control signal SC based on the color gamut information from the color gamut detection unit 30, the contrast gain value when selecting the noise shaping effect is set to the color gamut. It is conceivable to multiply the corresponding correction coefficient γ. Here, in consideration of the fact that pseudo contours are more conspicuous in the order of green system <red system <gray system <blue system, for each of these correction coefficients γ, γ Green <γ Red <1 <γ Gray <γ It can be set like Blue . When the color gamut of the video signal VS in the luminance region to which the gain of 2 is applied as in the specific example is green, for example, γ Green = 0.7 and the corrected contrast gain value is 2 The noise shaping effect is selected by setting xγ Green = 1.4 times. In this case as well, the noise shaping effect is reduced by two stages, and “01” is selected as the selection control signal SC.
図11に示す液晶表示装置60においても、図5に示したように複数のノイズシェーピング部を直列接続した構成とすることもできるし、図6に示したαブレンド処理を適用することもできる。
Also in the liquid crystal display device 60 shown in FIG. 11, a plurality of noise shaping units may be connected in series as shown in FIG. 5, or the α blend process shown in FIG. 6 may be applied.
なお、上記の各実施の形態では、映像信号VSに対して誤差拡散を行う誤差拡散部として第1~第3ノイズシェーピング部を適用した例について説明したが、これに限定されるものではない。例えば、誤差拡散部は、ディザリングなどのノイズシェーピング以外の誤差拡散を行うものであってもよい。
In each of the above-described embodiments, examples in which the first to third noise shaping units are applied as error diffusion units that perform error diffusion on the video signal VS have been described. However, the present invention is not limited to this. For example, the error diffusion unit may perform error diffusion other than noise shaping such as dithering.
また、上記の各実施の形態では、映像表示装置の一例として液晶表示装置について説明したが、本発明が適用される映像表示装置はこれに限定されるものではない。例えば、プラズマディスプレイや有機EL(electroluminescence)ディスプレイ等の他の映像表示装置にも同様に適用可能である。
In each of the above embodiments, a liquid crystal display device has been described as an example of a video display device. However, the video display device to which the present invention is applied is not limited to this. For example, the present invention can be similarly applied to other video display devices such as a plasma display and an organic EL (electroluminescence) display.
なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
The specific embodiments described above mainly include inventions having the following configurations.
本発明の一局面に係る映像信号処理装置は、映像信号のコントラストゲインを調整するコントラストゲイン調整部と、前記コントラストゲイン調整部によりコントラストゲインが調整された映像信号に対して誤差拡散を行う誤差拡散部と、前記映像信号のコントラストゲインに応じて、前記誤差拡散部が誤差として拡散するビット数を変更することにより誤差拡散効果を切り替える誤差拡散効果切替部とを備える。
A video signal processing apparatus according to an aspect of the present invention includes a contrast gain adjusting unit that adjusts a contrast gain of a video signal, and error diffusion that performs error diffusion on the video signal whose contrast gain is adjusted by the contrast gain adjusting unit. And an error diffusion effect switching unit that switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the contrast gain of the video signal.
上記の構成によれば、コントラストゲイン調整部により映像信号のコントラストゲインが調整される。このとき、映像信号にかけられるゲインが大きいほど階調差が大きくなって擬輪郭が発生し易くなる。そこで、本発明では、コントラストゲインが調整された映像信号に対して、誤差拡散部により誤差拡散処理を行う。そして、この誤差拡散処理において、誤差拡散効果切替部が、映像信号のコントラストゲインに応じて誤差拡散するビット数を変更することにより、誤差拡散効果を切り替える。このように、コントラストゲインによって適応的に誤差拡散効果を切り替える(誤差拡散するビット数を変更する)ことにより、擬輪郭の発生を制御できる。なぜならば、誤差拡散効果を高める(誤差拡散するビット数を増加させる)ほど、映像がぼやけて擬輪郭の低減につながるからである。本発明の構成により、コントラストゲインが大きい映像信号に対して誤差拡散効果を高めることが可能となるので、擬輪郭の発生を抑制して映像品質の向上を図ることができる。
According to the above configuration, the contrast gain of the video signal is adjusted by the contrast gain adjustment unit. At this time, the larger the gain applied to the video signal, the larger the gradation difference and the more likely the pseudo contour is generated. Therefore, in the present invention, error diffusion processing is performed by the error diffusion unit on the video signal whose contrast gain has been adjusted. In this error diffusion process, the error diffusion effect switching unit switches the error diffusion effect by changing the number of bits for error diffusion according to the contrast gain of the video signal. As described above, the generation of the pseudo contour can be controlled by adaptively switching the error diffusion effect (changing the number of bits for error diffusion) according to the contrast gain. This is because as the error diffusion effect is increased (the number of bits for error diffusion is increased), the video is blurred and the pseudo contour is reduced. According to the configuration of the present invention, it is possible to enhance the error diffusion effect for a video signal having a large contrast gain. Therefore, it is possible to improve the video quality by suppressing the generation of pseudo contours.
また、上記の映像信号処理装置において、前記誤差拡散部は、映像信号の下位ビットを誤差としてノイズシェーピングにより拡散するノイズシェーピング部を含み、前記誤差拡散効果切替部は、前記映像信号のコントラストゲインが大きくなるほど、前記ノイズシェーピング部が拡散する下位ビット数を増加させることが好ましい。
In the video signal processing apparatus, the error diffusion unit includes a noise shaping unit that diffuses noise shaping using lower bits of the video signal as errors, and the error diffusion effect switching unit has a contrast gain of the video signal. It is preferable to increase the number of lower bits diffused by the noise shaping unit as the value increases.
このように、ノイズシェーピング部を誤差拡散処理に用い、映像信号のコントラストゲインが大きくなるほど、拡散する下位ビット数を増加させる構成とすることにより、簡単な構成により擬輪郭の発生を効果的に低減できる。
In this way, the noise shaping unit is used for error diffusion processing, and as the contrast gain of the video signal increases, the number of lower bits to be diffused increases, thereby effectively reducing the occurrence of pseudo contours with a simple configuration. it can.
また、上記の映像信号処理装置において、誤差拡散効果の切り替わる境界画素領域の映像信号に対して、誤差拡散効果の異なる映像信号同士のαブレンド処理により誤差拡散効果を漸次的に切り替えるαブレンド処理部をさらに備えていることが好ましい。
Further, in the above video signal processing apparatus, an α blend processing unit that gradually switches the error diffusion effect by α blend processing of video signals having different error diffusion effects with respect to the video signal of the boundary pixel region where the error diffusion effect switches. Is preferably further provided.
上記の構成により、誤差拡散効果の切り替わる境界画素領域では、誤差拡散効果が一気に切り替えられるのではなく、誤差拡散効果の異なる映像信号同士をαブレンドしながら漸次的に誤差拡散効果が切り替えられることになる。これにより、上記の境界画素領域における階調性が向上し、擬輪郭の低減効果がさらに向上する。
With the above configuration, in the boundary pixel region where the error diffusion effect is switched, the error diffusion effect is not switched all at once, but the error diffusion effect is gradually switched while α-blending video signals having different error diffusion effects. Become. Thereby, the gradation in the boundary pixel region is improved, and the effect of reducing the pseudo contour is further improved.
また、上記の映像信号処理装置において、前記映像信号の色域を検出する色域検出部をさらに備え、前記誤差拡散効果切替部は、前記映像信号のコントラストゲイン及び色域に応じて、前記誤差拡散部が誤差として拡散するビット数を変更することにより誤差拡散効果を切り替えることが好ましい。
The video signal processing apparatus further includes a color gamut detection unit that detects a color gamut of the video signal, and the error diffusion effect switching unit is configured to detect the error according to a contrast gain and a color gamut of the video signal. It is preferable to switch the error diffusion effect by changing the number of bits that the diffusion unit diffuses as an error.
上記の構成により、映像信号のコントラストゲイン及び色域の両方を考慮した最適な誤差拡散効果の選択が実現でき、擬輪郭の発生をより効果的に抑制することができる。
With the above configuration, it is possible to realize selection of the optimum error diffusion effect considering both the contrast gain and the color gamut of the video signal, and it is possible to more effectively suppress the generation of pseudo contours.
本発明の他の局面に係る映像信号処理装置は、映像信号の色域を検出する色域検出部と、前記映像信号に対して誤差拡散を行う誤差拡散部と、前記色域検出部が検出した色域に応じて、前記誤差拡散部が誤差として拡散するビット数を変更することにより誤差拡散効果を切り替える誤差拡散効果切替部とを備える。
A video signal processing apparatus according to another aspect of the present invention includes a color gamut detection unit that detects a color gamut of a video signal, an error diffusion unit that performs error diffusion on the video signal, and the color gamut detection unit detects And an error diffusion effect switching unit that switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the color gamut.
上記の構成によれば、映像信号の色域によって適応的に誤差拡散効果を切り替える(誤差拡散するビット数を変更する)。ここで、色域に関し、同じ階調(すなわち、映像信号のビット数が同じ)であっても、人間の視覚特性上、擬輪郭が目立ち易い色域とそうでない色域とがある(例えば、青色系の色域は、緑色系の色域よりも相対的に擬輪郭が目立ち易い)。また、前述のように、誤差拡散効果を高める(誤差拡散するビット数を増加させる)ほど、映像がぼやけて擬輪郭の低減が可能である。よって、本発明の構成により、擬輪郭の目立ち易い色域ほど誤差拡散効果を高めれば、擬輪郭の発生を抑制して映像品質の向上を図れる。
According to the above configuration, the error diffusion effect is adaptively switched according to the color gamut of the video signal (the number of bits for error diffusion is changed). Here, regarding the color gamut, even if the gradation is the same (that is, the number of bits of the video signal is the same), there are a color gamut in which false contours are conspicuous and a color gamut in which it is not so (for example, The blue color gamut is relatively more prominent in pseudo contour than the green color gamut). Further, as described above, as the error diffusion effect is increased (the number of bits for error diffusion is increased), the video is blurred and the pseudo contour can be reduced. Therefore, according to the configuration of the present invention, if the error diffusion effect is enhanced in a color gamut in which pseudo contour is more conspicuous, generation of pseudo contour can be suppressed and image quality can be improved.
また、上記の映像信号処理装置において、前記誤差拡散部は、映像信号の下位ビットを誤差としてノイズシェーピングにより拡散するノイズシェーピング部を含み、前記誤差拡散効果切替部は、擬輪郭が目立ち易い色域ほど、前記ノイズシェーピング部が拡散する下位ビット数を増加させることが好ましい。
Further, in the video signal processing device, the error diffusion unit includes a noise shaping unit that diffuses the low-order bits of the video signal as an error by noise shaping, and the error diffusion effect switching unit has a color gamut in which pseudo contour is conspicuous. It is preferable to increase the number of lower bits diffused by the noise shaping unit.
このように、ノイズシェーピング部を誤差拡散処理に用い、映像信号のコントラストゲインが大きくなるほど、拡散する下位ビット数を増加させる構成とすることにより、簡単な構成により擬輪郭の発生を効果的に低減できる。
In this way, the noise shaping unit is used for error diffusion processing, and as the contrast gain of the video signal increases, the number of lower bits to be diffused increases, thereby effectively reducing the occurrence of pseudo contours with a simple configuration. it can.
また、上記の映像信号処理装置において、誤差拡散効果の切り替わる境界画素領域の映像信号に対して、αブレンド処理により誤差拡散効果を漸次的に切り替えるαブレンド処理部をさらに備えていることが好ましい。
In addition, it is preferable that the video signal processing apparatus further includes an α blend processing unit that gradually switches the error diffusion effect by α blend processing on the video signal in the boundary pixel region where the error diffusion effect is switched.
上記の構成により、誤差拡散効果の切り替わる境界画素領域では、誤差拡散効果が一気に切り替えられるのではなく、誤差拡散効果の異なる映像信号同士をαブレンドしながら漸次的に誤差拡散効果が切り替えられることになる。これにより、上記の境界画素領域における階調性が向上し、擬輪郭の低減効果がさらに向上する。
With the above configuration, in the boundary pixel region where the error diffusion effect is switched, the error diffusion effect is not switched all at once, but the error diffusion effect is gradually switched while α-blending video signals having different error diffusion effects. Become. Thereby, the gradation in the boundary pixel region is improved, and the effect of reducing the pseudo contour is further improved.
本発明のさらに他の局面に係る映像表示装置は、上記の映像信号処理装置と、前記映像信号処理装置によって信号処理がなされた映像信号を表示する表示部とを備えている。
A video display device according to still another aspect of the present invention includes the video signal processing device described above and a display unit that displays a video signal that has been subjected to signal processing by the video signal processing device.
上記の構成により、擬輪郭の発生を効果的に抑制し、映像品質の向上を図ることができる映像表示装置を実現できる。
With the above configuration, it is possible to realize a video display device capable of effectively suppressing the occurrence of pseudo contours and improving the video quality.
本発明に係る映像信号処理装置及び映像表示装置は、テレビジョン受像機、ディスプレイ装置、プロジェクタ装置などの映像機器に好適に利用することができる。
The video signal processing device and the video display device according to the present invention can be suitably used for video equipment such as a television receiver, a display device, and a projector device.
Claims (8)
- 映像信号のコントラストゲインを調整するコントラストゲイン調整部と、
前記コントラストゲイン調整部によりコントラストゲインが調整された映像信号に対して誤差拡散を行う誤差拡散部と、
前記映像信号のコントラストゲインに応じて、前記誤差拡散部が誤差として拡散するビット数を変更することにより誤差拡散効果を切り替える誤差拡散効果切替部と、を備えることを特徴とする映像信号処理装置。 A contrast gain adjustment unit for adjusting the contrast gain of the video signal;
An error diffusion unit for performing error diffusion on the video signal whose contrast gain has been adjusted by the contrast gain adjustment unit;
An image signal processing apparatus comprising: an error diffusion effect switching unit that switches an error diffusion effect by changing a number of bits that the error diffusion unit diffuses as an error according to a contrast gain of the image signal. - 前記誤差拡散部は、映像信号の下位ビットを誤差としてノイズシェーピングにより拡散するノイズシェーピング部を含み、
前記誤差拡散効果切替部は、前記映像信号のコントラストゲインが大きくなるほど、前記ノイズシェーピング部が拡散する下位ビット数を増加させることを特徴とする請求項1に記載の映像信号処理装置。 The error diffusion unit includes a noise shaping unit for diffusing by noise shaping as a lower bit of the video signal as an error,
The video signal processing apparatus according to claim 1, wherein the error diffusion effect switching unit increases the number of lower bits diffused by the noise shaping unit as the contrast gain of the video signal increases. - 誤差拡散効果の切り替わる境界画素領域の映像信号に対して、誤差拡散効果の異なる映像信号同士のαブレンド処理により誤差拡散効果を漸次的に切り替えるαブレンド処理部をさらに備えていることを特徴とする請求項1又は2に記載の映像信号処理装置。 An α blend processing unit that gradually switches the error diffusion effect by α blend processing of video signals having different error diffusion effects with respect to the video signal in the boundary pixel region where the error diffusion effect is switched is further provided. The video signal processing apparatus according to claim 1 or 2.
- 前記映像信号の色域を検出する色域検出部をさらに備え、
前記誤差拡散効果切替部は、前記映像信号のコントラストゲイン及び色域に応じて、前記誤差拡散部が誤差として拡散するビット数を変更することにより誤差拡散効果を切り替えることを特徴とする請求項1ないし3の何れか1項に記載の映像信号処理装置。 A color gamut detector that detects a color gamut of the video signal;
The error diffusion effect switching unit switches the error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to a contrast gain and a color gamut of the video signal. 4. The video signal processing apparatus according to any one of items 3 to 3. - 映像信号の色域を検出する色域検出部と、
前記映像信号に対して誤差拡散を行う誤差拡散部と、
前記色域検出部が検出した色域に応じて、前記誤差拡散部が誤差として拡散するビット数を変更することにより誤差拡散効果を切り替える誤差拡散効果切替部と、を備えることを特徴とする映像信号処理装置。 A color gamut detector that detects the color gamut of the video signal;
An error diffusion unit for performing error diffusion on the video signal;
An error diffusion effect switching unit that switches an error diffusion effect by changing the number of bits that the error diffusion unit diffuses as an error according to the color gamut detected by the color gamut detection unit. Signal processing device. - 前記誤差拡散部は、映像信号の下位ビットを誤差としてノイズシェーピングにより拡散するノイズシェーピング部を含み、
前記誤差拡散効果切替部は、擬輪郭が目立ち易い色域ほど、前記ノイズシェーピング部が拡散する下位ビット数を増加させることを特徴とする請求項5に記載の映像信号処理装置。 The error diffusion unit includes a noise shaping unit for diffusing by noise shaping as a lower bit of the video signal as an error,
6. The video signal processing apparatus according to claim 5, wherein the error diffusion effect switching unit increases the number of lower bits diffused by the noise shaping unit in a color gamut in which pseudo contour is more conspicuous. - 誤差拡散効果の切り替わる境界画素領域の映像信号に対して、αブレンド処理により誤差拡散効果を漸次的に切り替えるαブレンド処理部をさらに備えていることを特徴とする請求項5又は6に記載の映像信号処理装置。 7. The video according to claim 5, further comprising an α blend processing unit that gradually switches the error diffusion effect by α blend processing with respect to the video signal of the boundary pixel region where the error diffusion effect is switched. Signal processing device.
- 請求項1~7の何れか1項に記載の映像信号処理装置と、
前記映像信号処理装置によって信号処理がなされた映像信号を表示する表示部と、を備えていることを特徴とする映像表示装置。 A video signal processing device according to any one of claims 1 to 7,
And a display unit that displays the video signal that has been signal-processed by the video signal processing device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-261894 | 2009-11-17 | ||
JP2009261894 | 2009-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011061888A1 true WO2011061888A1 (en) | 2011-05-26 |
Family
ID=44059376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/006049 WO2011061888A1 (en) | 2009-11-17 | 2010-10-12 | Video signal processing device and video display apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011061888A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046775A (en) * | 2001-07-05 | 2003-02-14 | Samsung Sdi Co Ltd | Error Propagation Suppression Circuit to Suppress Propagation of Accumulated Error by Error Diffusion Method |
JP2004516520A (en) * | 2000-12-20 | 2004-06-03 | トムソン ライセンシング ソシエテ アノニム | Method and system for contour reduction of LCOS display device by dithering |
JP2004304216A (en) * | 2003-03-28 | 2004-10-28 | Matsushita Electric Ind Co Ltd | Noise shaping circuit |
JP2005257886A (en) * | 2004-03-10 | 2005-09-22 | Yamaha Corp | Image processing method and image processing device |
JP2006033469A (en) * | 2004-07-16 | 2006-02-02 | Hitachi Ltd | Gradation correction circuit and television receiver using the same |
-
2010
- 2010-10-12 WO PCT/JP2010/006049 patent/WO2011061888A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004516520A (en) * | 2000-12-20 | 2004-06-03 | トムソン ライセンシング ソシエテ アノニム | Method and system for contour reduction of LCOS display device by dithering |
JP2003046775A (en) * | 2001-07-05 | 2003-02-14 | Samsung Sdi Co Ltd | Error Propagation Suppression Circuit to Suppress Propagation of Accumulated Error by Error Diffusion Method |
JP2004304216A (en) * | 2003-03-28 | 2004-10-28 | Matsushita Electric Ind Co Ltd | Noise shaping circuit |
JP2005257886A (en) * | 2004-03-10 | 2005-09-22 | Yamaha Corp | Image processing method and image processing device |
JP2006033469A (en) * | 2004-07-16 | 2006-02-02 | Hitachi Ltd | Gradation correction circuit and television receiver using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5124050B1 (en) | Video display device and television receiver | |
JP5085792B1 (en) | Video display device and television receiver | |
US8451299B2 (en) | Controller, hold-type display device, electronic apparatus, and signal adjusting method for hold-type display device | |
US20200082753A1 (en) | Display unit, image processing device, display method, and electronic apparatus | |
US7110010B1 (en) | Apparatus and method of video signal processing for matrix display apparatus | |
KR100803545B1 (en) | Driving device for plasma display panel, and driving method thereof | |
US20110254878A1 (en) | Image processing apparatus | |
KR20140000153A (en) | Display, image processing unit, and display method | |
JP5197858B1 (en) | Video display device and television receiver | |
US9349173B2 (en) | Image processor and image processing method | |
JP2004266755A (en) | Image processing apparatus, image display apparatus, and image processing method | |
WO2012090358A1 (en) | Video signal processing device | |
US20110081095A1 (en) | Image processing apparatus and image processing method | |
JP2016163099A (en) | Image processor and image display device | |
JP2002132225A (en) | Video signal corrector and multimedia computer system using the same | |
US7499062B2 (en) | Image display method and image display apparatus for displaying a gradation by a subfield method | |
JP3661925B2 (en) | Video signal processing circuit and method for display device | |
JP4186579B2 (en) | Image display method and image display apparatus | |
WO2011061888A1 (en) | Video signal processing device and video display apparatus | |
JP5174982B1 (en) | Video display device and television receiver | |
JP3912079B2 (en) | Error diffusion processing circuit and method for display device | |
KR100648601B1 (en) | Dithering system and method for smooth gradation reproduction in plasma display | |
US20100104212A1 (en) | Contour correcting device, contour correcting method and video display device | |
KR100508306B1 (en) | An Error Diffusion Method based on Temporal and Spatial Dispersion of Minor Pixels on Plasma Display Panel | |
JP2001117528A (en) | Picture display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10831288 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10831288 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |