[go: up one dir, main page]

WO2011057446A1 - 一种气压式不平衡动力装置及使用该装置的能量转换设备 - Google Patents

一种气压式不平衡动力装置及使用该装置的能量转换设备 Download PDF

Info

Publication number
WO2011057446A1
WO2011057446A1 PCT/CN2009/074935 CN2009074935W WO2011057446A1 WO 2011057446 A1 WO2011057446 A1 WO 2011057446A1 CN 2009074935 W CN2009074935 W CN 2009074935W WO 2011057446 A1 WO2011057446 A1 WO 2011057446A1
Authority
WO
WIPO (PCT)
Prior art keywords
central axis
pneumatic
unbalanced power
air
central shaft
Prior art date
Application number
PCT/CN2009/074935
Other languages
English (en)
French (fr)
Inventor
余俊均
Original Assignee
Yu Chun Kwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Chun Kwan filed Critical Yu Chun Kwan
Priority to PCT/CN2009/074935 priority Critical patent/WO2011057446A1/zh
Publication of WO2011057446A1 publication Critical patent/WO2011057446A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type

Definitions

  • the present invention relates to a power generating apparatus, and more particularly to a pneumatic unbalanced power unit that operates using a pneumatic pump and an energy conversion apparatus using the pneumatic unbalanced power unit.
  • the pneumatic unbalanced power unit can be widely used in fields such as power generation.
  • the present invention proposes a pneumatic unbalanced power unit.
  • the pneumatic unbalanced power device provided by the present invention comprises: a center shaft, a plurality of weights, a plurality of air pumps, and an air flow controller.
  • the central axis is horizontally arranged and can be rotated by an external force; a plurality of weights, a plurality of weights are distributed on the outer circumference of the central shaft; a plurality of air pumps, a plurality of air pumps are fixed on the central shaft, in the air pump a piston is provided to move close to or away from the central axis under the action of the gas, and the piston is further provided with a link, and the link moves together with the weight when the piston moves toward or away from the central axis; the air flow controller uses In controlling the flow direction of the gas of the plurality of air pressure pumps, the air flow controller controls the gas flow direction of the pressure pump when each weight is rotated to the right side of the central axis, so that the piston linkage weights move together away from the central axis, resulting in the central axis The weight on the right side has a larger torque than the weight on the left side of the central axis, so that the central shaft obtains enhanced rotational potential energy under the action of external force drive, une
  • the pneumatic unbalanced power device further includes a rotating bracket, the central shaft is disposed at the center of the rotating bracket, and the plurality of pneumatic pumps are fixedly disposed on the rotating bracket, and the plurality of weights are connected
  • the joint action of the rod is set on the rotating bracket, and the rotating bracket is used to strengthen the stability of the air pump and the weight and the center shaft.
  • the rotating bracket is further provided with a plurality of limiting blocks, and the limiting block is used for defining an active path of the weight.
  • the pneumatic unbalanced power plant further includes a source of air pressure for supplying a gas required to urge the piston to move closer to or away from the central axis.
  • the plurality of air pumps further includes a cavity, a first end face, a second end face, a first gas inlet and outlet, and a second gas inlet and outlet.
  • the piston is disposed in the cavity; the first end surface is disposed on the first side of the cavity; the second end surface is disposed on the second side of the cavity, and the second end surface is provided with a through hole; the first gas inlet and outlet is disposed in the cavity On the first side of the body, when the first gas inlet and outlet receive the gas, the piston interlocking weights together move away from the central axis, so that the moment of the weight relative to the central axis increases; the second gas inlet and outlet is disposed in the cavity On the second side, when the second gas inlet and outlet receive the gas, the piston interlocks the counterweight together with the movement of the central axis, so that the moment of the counterweight relative to the central axis is reduced.
  • the air flow controller mainly includes a first air inlet passage, a first air outlet passage, a first air outlet passage, a coupler, and a resetter.
  • a first air inlet channel the first air inlet channel is connected to the air pressure source, and is configured to receive the gas supplied by the air pressure source; in the first working state, one end of the first air outlet channel is connected to the first air inlet channel, first The other end of the outlet passage is connected to the first gas inlet and outlet; in the second working state, one end of the second outlet passage is connected to the first inlet passage, and the other end of the second outlet passage is connected to the second gas inlet and outlet;
  • the coupler is provided with a through hole matched with the first air inlet passage for switching the air flow controller from the first working state to the second working state; the resetter is for resetting the coupling to achieve the first air inlet passage alternately A circulating working state in which an outlet passage and a second outlet passage are closed.
  • the coupler is provided with an extension protruding from the rotating bracket, and the extension portion is subjected to the pushing action of the stopper provided on the right side of the central shaft and located outside the rotating bracket, and the air flow controller is from the A working state is converted into a second working state, and the first air inlet channel and the second air outlet channel are connected,
  • the piston linkage counterweight moves together away from the central axis, causing the counterweight on the right side of the central axis to have a greater torque than the weight on the left side of the central axis, so that the central shaft is driven by external force, unequal torque and
  • the enhanced rotational potential energy is obtained by the superposition of inertial forces to promote the continued rotation of the central axis.
  • the coupler is further coupled by the inductor, and the first inductor and the second inductor are respectively disposed on the left and right sides of the central axis outside the rotating bracket, and the first inductor is opposite to the second body
  • the sensing body has a distinct distinguishing feature. When the sensor rotates along the central axis and sends an inductive signal to sense the second sensing body, the sensor will trigger the coupling to convert the airflow controller from the first working state to the second working state.
  • the central shaft obtains an enhanced rotational potential energy under the action of external force drive, unequal moment and inertial force to promote the central shaft to continue to rotate.
  • the distinguishing feature comprises setting the first and second sensing bodies on the left and right sides of the central axis to have distinctly different colors or brightness.
  • the present invention also provides an energy conversion apparatus comprising the pneumatic unbalanced power device of any of the above.
  • the energy conversion device is a generator and the pneumatic unbalanced power unit acts as the rotor axis of the generator.
  • the energy conversion device is an automobile engine or a ship engine. .
  • the pneumatic unbalanced power device of the present invention requires only a small initial power input, does not consume other fuel resources, is energy-saving and environmentally friendly, and can provide a large power output.
  • Fig. 1 shows a front view of a pneumatic unbalanced power unit of the present invention.
  • Figure 2 shows a side view of the pneumatic unbalanced power unit of the present invention.
  • Fig. 3 is a view showing the first operational state of the air flow controller of the pneumatic unbalanced power unit of the present invention.
  • Fig. 4 is a view showing a second operational state of the air flow controller of the pneumatic unbalanced power unit of the present invention.
  • Fig. 5 is a schematic view showing a control mode of the air flow controller of the pneumatic unbalanced power unit of the present invention.
  • Fig. 6 is a schematic view showing another control mode of the air flow controller of the pneumatic unbalanced power unit of the present invention.
  • Figure 1 shows a front view of the pneumatic unbalanced power unit of the present invention
  • Figure 2 shows a side view of the pneumatic unbalanced power unit of the present invention.
  • the pneumatic unbalanced power unit of the present invention mainly comprises: a center shaft 10, a plurality of weights 20, a plurality of air pumps 30, a pneumatic source (not shown), an air flow controller 40, and a rotating bracket 50.
  • the center shaft 10 is a horizontally disposed shaft, and both ends thereof are supported by a support mechanism (not shown).
  • the central shaft 10 starts to rotate under the initial external force, and in the embodiment of the invention, the direction of rotation of the center shaft 10 is the clockwise direction indicated by the arrow W in Fig. 1.
  • the plurality of weights 20 are substantially evenly distributed on the outer circumference of the center shaft 10. In the embodiment of the present invention, each plane only schematically shows four weights 20, however, the number of the weights 20 It can be increased or decreased as needed.
  • a distribution of a plurality of weights 20 is shown in Fig. 2.
  • the central shaft 10 is provided with a plurality of sets of weights 20 distributed axially along the central axis 10, in this form. To configure multiple weights 20 can further enhance the rotational potential of the center shaft 10.
  • the air pump 30 is disposed between the center shaft 10 and the weight 20.
  • the air pump 30 mainly includes a cavity 31, a piston 32, a first end face 33, a second end face 34, a first gas inlet and outlet 35, a second gas inlet and outlet 36, and a link 37.
  • the cavity 31 has a hollow columnar structure.
  • the first end surface 33 is disposed on the first side of the cavity 31, and the second end surface 34 is disposed on the second side of the cavity 31.
  • the first gas inlet and outlet 35 is disposed on the first side of the cavity 31, and the second gas inlet and outlet 36 is disposed on the first end.
  • the piston 32 is disposed inside the cavity 31. When the piston 32 is pushed by the gas from the first gas inlet and outlet 35, the piston 32 will move away from the central shaft 10 in the cavity 31 when the piston 32 receives the second gas inlet and outlet. When the gas is urged by 36, the piston 32 will move in the cavity 31 within the cavity 31 to move in the cavity 31 near the central axis 10.
  • first end face 33 of the pneumatic pump 30 may be fixedly coupled to the center shaft 10 via a fixing rod 38, but is not limited thereto, and the first end face 33 of the air pump 30 may be directly fixed to the center shaft 10.
  • the second end face 34 of the air pump 30 is provided with a through hole (not shown), and the weight 20 is connected to the piston 32 through a link 37 extending through the through hole.
  • a pneumatic source (not shown) is fixedly disposed with the central shaft 10, which is used to supply gas to the pneumatic pump 30 to urge the piston 32 to move closer to and away from the central shaft 10. Since the pneumatic source pushes the pneumatic pump 30 to work is a commonly used technique, it will not be specifically described here.
  • the rotating bracket 50 is a disc having a thickness for reinforcing the stability of the air pump 30 and the weight 20, and as shown in FIGS. 1 and 2, the center shaft 10 vertically penetrates the center of the rotating bracket 50.
  • One end of the air pump 30 is fixed to the center shaft 10, and the side surface of the air pump 30 is fixed to the rotating bracket 50.
  • a plurality of limiting blocks 52 are further disposed on the rotating bracket 50, and the plurality of limiting blocks 52 are used to define an active path of the weighting block 20, and between the limiting block 52 and the gap of the weighting block 20
  • a smooth ball can be further added to reduce the friction between the weight 20 and the plurality of limit blocks 52.
  • FIG. 3 shows a first working state diagram of the airflow controller of the pneumatic unbalanced power device of the present invention
  • FIG. 4 shows the pneumatic unbalanced power pack of the present invention.
  • the air flow controller 40 of the present invention mainly includes a main body, a first air inlet passage 41, a first air outlet passage 42, a second air outlet passage 43, an interlocking arm 44, and a spring 45.
  • the main body of the air flow controller 40 is omitted from the illustration.
  • the first air inlet passage 41 is provided on the side of the coupler 44, and the first air outlet passage 42 and the second air outlet passage 43 are provided on the other side of the coupler 44.
  • the coupler 44 is a sheet having a certain thickness, and is provided with a through hole 441 for allowing gas to pass therethrough, and the coupler 44 is connected to the first outlet passage 42 in the first working state.
  • the thruster acts on the thrust
  • the first air inlet passage 41 and the second air outlet passage 43 are connected to each other (ie, the second working state).
  • the coupler 44 is reset by the spring 45 to form the first air inlet again.
  • the first operational state in which the passage 41 is connected to the first outlet passage 42.
  • the air flow controller 40 is used to control the operating state of the air pump 30.
  • the air flow controller 40 is disposed in the air flow path of the air pressure source and the air pump 30, and the first air outlet passage 42 and the second air outlet passage 43 of the air flow controller 40 are respectively connected to the second gas inlet and outlet 36 of the air pump 30 and The first gas inlet and outlet 35 is turned on, and when each of the air pressure pumps 30 is rotated to the right side of the center shaft 10, the air flow controller 40 is controlled to enter the second working state, that is, the first air inlet passage 41 and the second air outlet passage 43 are connected.
  • the gas pushes the piston 32 to move away from the central axis 10, and the piston 32 drives the weight 20 to move away from the central axis 10, causing the weight 20 on the right side of the central shaft 10 to be compared to the left side of the central axis 10.
  • the weight 20 has a greater torque, thereby enhancing the rotational potential of the central shaft 10.
  • FIG. 5 is a schematic diagram showing a control mode of the air flow controller of the pneumatic unbalanced power device of the present invention.
  • Fig. 6 is a schematic view showing another control mode of the air flow controller of the pneumatic unbalanced power unit of the present invention.
  • a stopper 46 is provided at a position outside the rotating bracket 50 and located to the right of the center shaft 10.
  • the coupler 44 of the air flow controller 40 includes a protrusion 442 that protrudes from the rotating bracket 50, whenever When the protruding portion 442 is rotated to the right side of the central axis, the protruding portion is pushed by the stopper 46 to cause the airflow controller 40 to enter the second working state from the first working state, and at this time, the first gas inlet and outlet 35 receives the gas.
  • the piston 32 drives the weight 20 to move away from the central shaft 10, causing the weight 20 on the right side of the central shaft 10 to have a greater torque than the weight 20 on the left side of the central shaft 10, thereby enhancing The rotational potential of the central shaft 10.
  • the sensor 70 connected to the actuator 44 is used to control the operating state of the air flow controller 40.
  • the inductor 70 is disposed on the air flow controller 40, and the inductor 70 can emit an inductive signal to sense the outer circumference of the center shaft 10 as the center shaft 10 rotates. Therefore, the first sensing body 72 and the second sensing body 74 are respectively disposed on the outer side of the rotating bracket 50 and on the left and right sides of the central shaft 10, and the first sensing body 72 and the second sensing body 74 have significantly different characteristics.
  • the first sensing body 72 and the second sensing body 74 are divided into objects coated with white and black, and the sensor 70 is controlled whenever the inductor 70 is rotated to the right side of the central axis and the second sensing body 74 is sensed.
  • the actuator 44 brings the air flow controller 40 into a second operational state, at which time the first gas inlet and outlet 35 receives the gas, and the piston 32 drives the counterweight 20 to move away from the central shaft 10.
  • the inductor 70 controls the coupler 44 to bring the airflow controller 40 into the first operational state, at which time the second gas inlet and outlet 36 receives the gas.
  • the piston 32 drives the weight 20 to move closer to the central axis 10, causing the weight 20 on the right side of the central shaft 10 to have a greater torque than the weight 20 on the left side of the central shaft 10, thereby The rotational potential of the central shaft 10 is enhanced.
  • the first sensing body 72 and the second sensing body 74 may also be configured in other manners.
  • the first sensing body 72 and the second sensing body 74 may be configured to have a contrast between light and dark. characteristic.
  • the first air inlet passage 41 of the air flow controller 40 is connected to the air pressure source, and the first air outlet passage 42 and the second air outlet passage 43 are respectively connected to the second gas inlet and outlet 36 and the first gas inlet and outlet 35.
  • the central shaft 10 starts to rotate under the initial external force, and simultaneously activates the air pressure source, and the air flow controller 40 Entering the first working state, that is, the air pressure source starts to supply the gas to the first air inlet passage 41, and the supplied gas enters the cavity 31 through the first air outlet passage 42 and the second gas inlet and outlet 36 to push the piston 32 to move closer to the central axis 10,
  • the weight 20 also moves with the piston 32 near the central axis 10, and the torque of the counterweight 10 gradually decreases.
  • the air flow controller 40 is controlled.
  • the first gas inlet and outlet 35 receives the gas, and the piston 32 interlocks the counterweight 20 to move away from the central shaft 10.
  • the air flow controller 40 is controlled to enter the first working state from the second working state.
  • the second gas inlet and outlet 36 receives the gas, and the piston 32 interlocks the weight.
  • the movement close to the central axis 10 causes the weight 20 on the right side of the central shaft 10 to have a greater torque than the weight 20 on the left side of the central shaft 10, so that the weight 20 is driven by an external force
  • the superposition of the unequal moments and the inertial forces further enhances the rotational potential energy of the central shaft 10, keeping the central shaft 10 continuing to rotate.
  • the pneumatic unbalanced power unit of the present invention requires only a small initial power input, and relies on a pneumatic source to perform work, without consuming other fuel resources, and is energy-saving and environmentally friendly. Large power output.
  • the device can be widely used in the fields of automobile driving, ship driving, aircraft driving, power generation and the like.
  • the pneumatic unbalanced power unit of the present invention can be used as a rotor shaft of a generator, and as a power rotating shaft of other shaft type machines.
  • the terms "first" and "second” mentioned in an embodiment of the present invention are only used as needed, and are not limited to this in practice, and the characters can be mutually Change to use.
  • the configuration of the power unit will be described only in the W direction of Fig. 1, but the actual application is not limited thereto.
  • the power unit can also be rotated in a counterclockwise direction.
  • the structural configuration of the power unit needs to be changed accordingly. For example, when the piston needs to rotate to the left side of the center shaft, the weight is driven to move away from the center axis, and when rotating to the right side. It is necessary to drive the weight to move closer to the central axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

一种气压式不平衡动力装置
及使用该装置的能量转换设备
【技术领域】
本发明涉及一种动力产生装置, 尤其涉及一种利用气压泵工作的气压式不 平衡动力装置以及使用该气压式不平衡动力装置的能量转换设备。 该气压式不 平衡动力装置可广泛应用于发电等领域。
【背景技术】
现有的动力系统大都需要消耗大量的电力或燃油, 造成能源的浪费。
现有的水力发电站多是利用大自然水力的落差来实现的, 但是, 这样受到 自然条件的限制。
因此, 需要有一种动力输出装置, 其可以借助于较小的初始驱动力形成稳 定的动力输出。
【发明内容】
为了至少部分解决以上问题, 本发明提出了一种气压式不平衡动力装置。 本发明提供的气压式不平衡动力装置包括: 中心轴、 多个配重块、 多个气 压泵以及气流控制器。 中心轴水平设置并可在外力作用下旋转; 多个配重块, 多个配重块分布设置于中心轴的外圓周; 多个气压泵, 多个气压泵固定于中心 轴上, 气压泵内设有在气体推动作用下做靠近或远离中心轴运动的活塞, 活塞 上进一步设有联杆, 联杆在活塞做靠近或远离中心轴的运动时联动配重块一起 运动; 气流控制器, 用于控制多个气压泵的气体流向, 气流控制器在每一配重 块旋转至中心轴右侧时控制所压泵的气体流向使活塞联动配重块一起作远离中 心轴的运动, 造成中心轴右侧的配重块相较于中心轴左侧的配重块具有更大的 力矩, 使得中心轴在外力驱动、 不等力矩以及惯性力的叠加作用下获得增强的 旋转势能进而促进中心轴保持继续旋转。 根据本发明一优选实施例, 气压式不平衡动力装置进一步包括旋转托架, 中心轴设于旋转托架中心, 多个气压泵固定设于旋转托架上, 多个配重块由于 的述联杆的联动作用活动性设于旋转托架上, 旋转托架用于加强气压泵和配重 块以及中心轴的稳固性。
根据本发明一优选实施例, 旋转托架上进一步设有多个限位块, 限位块用 于限定配重块的活动路径。
根据本发明一优选实施例, 气压式不平衡动力装置还包括气压源, 气压源 用于供应推动活塞做靠近或远离中心轴运动需要的气体。
根据本发明一优选实施例, 多个气压泵还包括腔体、第一端面、第二端面、 第一气体出入口以及第二气体出入口。 其中, 活塞设于腔体内; 第一端面, 设 于腔体的第一侧; 第二端面, 设于腔体的第二侧, 第二端面设有通孔; 第一气 体出入口, 设于腔体的第一侧, 当第一气体出入口接收气体时, 活塞联动配重 块一起作远离中心轴的运动, 使得配重块相对中心轴的力矩增大; 第二气体出 入口, 设于腔体的第二侧, 当第二气体出入口接收气体时, 活塞联动配重块一 起 ^1靠近中心轴的运动, 使得配重块相对中心轴的力矩减小。
根据本发明一优选实施例, 气流控制器主要包括第一入气通道、 第一出气 通道、 第一出气通道、 联动器以及复位器。 第一入气通道, 第一入气通道与气 压源接通, 用于接收气压源供应的气体; 在第一工作状态下, 第一出气通道的 一端与第一入气通道接通, 第一出气通道的另一端与第一气体出入口接通; 在 第二工作状态下, 第二出气通道的一端与第一入气通道接通, 第二出气通道的 另一端与第二气体出入口接通; 联动器设有与第一入气通道配匹配的通孔, 用 于将气流控制器从第一工作状态转换到第二工作状态; 复位器用于复位联动器 以达到第一入气通道交替与第一出气通道和第二出气通道接通的循环工作状态。
根据本发明一优选实施例, 联动器设有突出于旋转托架的延伸部, 延伸部 受到设于中心轴右侧且位于旋转托架外的挡块的挤推作用时, 气流控制器从第 一工作状态转换为第二工作状态, 达成第一入气通道与第二出气通道的接通, 活塞联动配重块一起做远离中心轴的运动, 造成中心轴右侧的配重块相较于中 心轴左侧的配重块具有更大的力矩, 使得中心轴在外力驱动、 不等力矩以及惯 性力的叠加作用下获得增强的旋转势能进而促进中心轴保持继续旋转。
根据本发明一优选实施例, 联动器由进一步由感应器联动, 旋转托架外的 中心轴左右两侧分别设有第一感应体和第二感应体, 第一感应体相对所于述第 二感应体具有明显的区别特征, 当感应器随着中心轴旋转并发出感应信号感应 到第二感应体时, 感应器将便触发联动器, 使气流控制器从第一工作状态转换 为第二工作状态, 达成第一入气通道与第二出气通道的接通, 活塞联动配重块 一起做远离中心轴的运动, 造成中心轴右侧的配重块相较于中心轴左侧的配重 块具有更大的力矩, 使得中心轴在外力驱动、 不等力矩以及惯性力的叠加作用 下获得增强的旋转势能进而促进中心轴保持继续旋转。
根据本发明一优选实施例, 区别特征包括将中心轴左右两侧的第一感应体 和第二感应体设成具有明显区别的色彩或亮度。
本发明还提供了一种能量转换设备, 包括以上任一项中的气压式不平衡动 力装置。
根据本发明一优选实施例, 该能量转换设备为发电机, 气压式不平衡动力 装置作为发电机的转子轴心。
根据本发明一优选实施例, 该能量转换设备为汽车发动机或轮船发动机。。 与现有技术中的其他动力输出装置相比, 本发明的气压式不平衡动力装置 仅需求较小的初始动力输入, 无需消耗其他燃油资源, 节能环保, 并可提较大 供动力输出。
【附图说明】
可参考附图通过实例更加具体地描述本发明, 其中附图并未按照比例绘制, 在附图中:
图 1显示了本发明的气压式不平衡动力装置的主视图。 图 2显示了本发明的气压式不平衡动力装置的侧视图。
图 3 显示了本发明的气压式不平衡动力装置的气流控制器的第一工作状态 图。
图 4显示了本发明的气压式不平衡动力装置的气流控制器的第二工作状态 图。
图 5显示了本发明的气压式不平衡动力装置的气流控制器的一种控制方式 的原理图。
图 6显示了本发明的气压式不平衡动力装置的气流控制器另一种控制方式 的原理图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。 在附图中釆用相同或类似 的图标记来标示类似的部件,为了简洁起见,有时同一部件在不同视图中出现, 但是仅在某些视图中对其进行了标示。
请一并参见图 1和图 2,图 1显示了本发明的气压式不平衡动力装置的主视 图, 图 2显示了本发明的气压式不平衡动力装置的侧视图。
本发明的气压式不平衡动力装置主要包括: 中心轴 10、 多个配重块 20、 多 个气压泵 30、 气压源 (未图示)、 气流控制器 40以及旋转托架 50。
如图 1和图 2所示,中心轴 10是水平设置的轴杆,其两端可由支撑机构(未 图示) 支撑。 在初始外力驱动下, 中心轴 10开始旋转, 在本发明的实施例中, 中心轴 10的旋转方向是附图 1中箭头 W所指的顺时针方向。
多个配重块 20大致均匀分布设置于中心轴 10的外圓周, 在本发明的实施 例中, 每一平面仅示意性地示出四个配重块 20, 然而, 配重块 20的数量可以根 据需要进行增减。
附图 2中示出了多个配重块 20的一种分布方式, 如图所示, 中心轴 10上 设有多组沿中心轴 10 轴向分布的配重块 20, 釆用这种形式来配置多个配重块 20可进一步增强了中心轴 10的旋转势能。
气压泵 30设于中心轴 10与配重块 20之间。 气压泵 30主要包括腔体 31、 活塞 32、 第一端面 33、 第二端面 34、 第一气体出入口 35、 第二气体出入口 36 以及联杆 37。
腔体 31具有中空柱状结构。 第一端面 33设于腔体 31的第一侧, 第二端面 34设于腔体 31的第二侧; 第一气体出入口 35设于腔体 31的第一侧, 第二气体 出入口 36设于腔体 31的第二侧。 活塞 32设于腔体 31内部, 当活塞 32受到来 自第一气体出入口 35的气体推动作用时, 活塞 32将在腔体 31内作远离中心轴 10的运动, 当活塞 32受到来自第二气体出入口 36的气体推动作用时, 活塞 32 将在腔体 31 内活塞 32将在腔体 31 内做靠近中心轴 10的运动运动。 此外, 气 压泵 30的第一端面 33可通过固定杆 38与中心轴 10固定连接,但并不限于此, 气压泵 30的第一端面 33也可以直接固定在中心轴 10上。 气压泵 30的第二端 面 34上设有一通孔(未标识 ), 配重块 20通过贯穿该通孔的联杆 37与活塞 32 相连接。 在气压泵 30工作时, 配重块 20将随着活塞 32—起沿中心轴 10的径 向方向做靠近或远离中心轴 10的运动。
气压源 (图未示)与中心轴 10 固定设置, 气压源用于向气压泵 30提供气 体以推动活塞 32做靠近和远离中心轴 10的运动。 由于气压源推动气压泵 30工 作属于常用的技术, 在此不对其进行具体介绍。
旋转托架 50是具有一定厚度的圓盘, 其用于加强气压泵 30和配重块 20的 稳固性, 如图 1和图 2所示, 中心轴 10垂直贯穿于旋转托架 50的中心, 气压 泵 30的一端固定于中心轴 10上, 气压泵 30的侧面固定于旋转托架 50上。 此 外, 旋转托架 50上进一步设有多个限位块 52, 该多个限位块 52用于限定配重 块 20的活动路径, 在限位块 52与配重块 20的间隙之间还可进一步增设光滑小 球来减小配重块 20与多个限位块 52之间的摩擦力。
接下来, 请一并参见图 3和图 4, 图 3显示了本发明的气压式不平衡动力装 置的气流控制器的第一工作状态图, 图 4显示了本发明的气压式不平衡动力装 置的气流控制器的第二工作状态图。
本发明的气流控制器 40 主要包括主体、 第一入气通道 41、 第一出气通道 42、 第二出气通道 43、 联动器 44以及弹簧 45。 为了便于说明气流控制器 40的 内部结构以及工作原理, 图示中省去了气流控制器 40的主体。
如图 3和图 4所示, 第一入气通道 41设于联动器 44一侧, 第一出气通道 42和第二出气通道 43设于联动器 44的另一侧。 在本发明的实施例中, 联动器 44是具有一定厚度的板料, 其上设有允许气体通过的通孔 441 , 联动器 44在第 一工作状态下与第一出气通道 42接通, 当联动器 44在受到推力作用时将联动 第一入气通道 41与第二出气通道 43接通(即第二工作状态), 当推力撤消时, 联动器 44通过弹簧 45复位再次形成第一入气通道 41与第一出气通道 42接通 的第一工作状态。
因此, 该气流控制器 40用于控制气压泵 30的工作状态。 详细而言, 气流 控制器 40设于气压源与气压泵 30的气流路径中, 且气流控制器 40的第一出气 通道 42和第二出气通道 43分别与气压泵 30的第二气体出入口 36和第一气体 出入口 35接通, 在每一气压泵 30旋转至中心轴 10右侧时, 控制气流控制器 40 进入第二工作状态, 也就是第一入气通道 41与第二出气通道 43接通的状态, 气体推动活塞 32做远离中心轴 10 运动, 活塞 32带动配重块 20—起作远离中 心轴 10的运动, 造成中心轴 10右侧的配重块 20相较于中心轴 10左侧的配重 块 20具有更大的力矩, 由此增强中心轴 10的旋转势能。
下面将介绍如何使气流控制器 40在每一气压泵 30旋转置中心轴 10右侧时 进入到第二工作状态。
接下来,请一并参见图 5和图 6 , 图 5显示了本发明的气压式不平衡动力装 置的气流控制器的一种控制方式的原理图。 图 6显示了本发明的气压式不平衡 动力装置的气流控制器的另一种控制方式的原理图。
如图 5所示, 位于旋转托架 50外侧且位于中心轴 10右侧的位置处设有挡 块 46。 气流控制器 40的联动器 44包括突出于旋转托架 50的突出部 442, 每当 突出部 442旋转至中心轴右侧时, 该突出部受到挡块 46的挤推作用而使得气流 控制器 40从第一工作状态进入第二工作状态, 此时, 第一气体出入口 35接收 气体, 活塞 32带动配重块 20—起作远离中心轴 10的运动, 造成中心轴 10右 侧的配重块 20相较于中心轴 10左侧的配重块 20具有更大的力矩, 由此增强中 心轴 10的旋转势能。
在图 6中, 釆用与联动器 44连接的感应器 70来控制气流控制器 40的工作 状态。 在本实施例中, 感应器 70设于气流控制器 40上, 感应器 70在随着中心 轴 10旋转的过程中可发出感应信号来感应中心轴 10外圓周的状态。 因此, 在 位于旋转托架 50外侧且位于中心轴 10的左右两侧分别设有第一感应体 72和第 二感应体 74 , 第一感应体 72与第二感应体 74具有明显不同的特性, 例如, 第 一感应体 72和第二感应体 74分设为涂覆有白色和黑色的物体, 每当感应器 70 旋转至中心轴右侧并感应到第二感应体 74时, 感应器 70便控制联动器 44使气 流控制器 40进入第二工作状态, 此时, 第一气体出入口 35接收气体, 活塞 32 带动配重块 20—起作远离中心轴 10的运动。 每当感应器 70旋转至中心轴左侧 并感应到第一感应体 72时, 感应器 70便控制联动器 44使气流控制器 40进入 第一工作状态, 此时, 第二气体出入口 36接收气体, 活塞 32带动配重块 20— 起作靠近中心轴 10的运动, 造成中心轴 10右侧的配重块 20相较于中心轴 10 左侧的配重块 20具有更大的力矩, 由此增强中心轴 10的旋转势能。 当然, 在 其他实施例中, 还可将第一感应体 72和第二感应体 74配置成其他方式的对比 特性, 例如, 第一感应体 72和第二感应体 74可设成具有明暗对比等特性。 当 然, 也可以仅设置一个感应体, 通过让感应器 70探知感应体到有无来控制联动 器 44的工作。
下面结合以上所述来介绍本发明的气压式不平衡动力装置的工作原理。 首先, 将气流控制器 40的第一入气通道 41与气压源接通, 并将第一出气 通道 42和第二出气通道 43分别与第二气体出入口 36和第一气体出入口 35接 通。 中心轴 10 在初始外力驱动下开始旋转, 同时启动气压源, 气流控制器 40 进入第一工作状态, 即气压源开始对第一入气通道 41供应气体, 供应的气体经 由第一出气通道 42、第二气体出入口 36进入腔体 31推动活塞 32做靠近中心轴 10运动, 此时, 配重块 20也随着活塞 32做靠近中心轴 10的运动, 其相对中心 轴 10的力矩逐渐减小, 当每一气压泵 30旋转置中心轴 10右侧时, 控制气流控 制器 40从第一工作状态进入第二工作状态, 此时, 第一气体出入口 35接收气 体, 活塞 32联动配重块 20—起作远离中心轴 10的运动。 同时, 当每一气压泵 30旋转置中心轴 10左侧时, 控制气流控制器 40从第二工作状态进入第一工作 状态, 此时, 第二气体出入口 36接收气体, 活塞 32联动配重块 20—起作靠近 中心轴 10的运动, 造成中心轴 10右侧的配重块 20相较于中心轴 10左侧的配 重块 20具有更大的力矩, 使得该配重块 20在外力驱动、 不等力矩以及惯性力 的叠加作用下进一步增强中心轴 10的旋转势能, 保持中心轴 10继续旋转。
综上所述, 本领域技术人员容易理解, 本发明的气压式不平衡动力装置仅 需求较小的初始动力输入, 并依靠气压源供气做功, 无需消耗其他燃油资源, 节能环保, 并可提供较大动力输出。该装置可广泛应用于汽车驱动、轮船驱动、 飞机驱动、 发电等领域。 优选的, 本发明的气压式不平衡动力装置可作为发电 机的转子轴心, 以及作为其他轴类机械的动力旋转轴。 当作为发电机的转子轴 心时, 在气压式不平衡动力装置上一并设置线圈, 带线圈的气压式不平衡动力 装置在旋转的同时切割电机定子的磁力线, 实现发电的功能。
需要指出的是, 在本发明一实施例中提到的 "第一"、 "第二" 等用语仅是 根据需要釆用的文字符号, 在实务中并不限于此, 并且该文字符号可以互换使 用。 在本文中, 仅以图 1中 W方向来阐述动力装置的配置情况, 但是, 实际应 用中不限于此。 动力装置也可沿逆时针方向旋转, 此时动力装置的结构配置需 要做相应改变, 比如活塞需要旋转到中心轴的左侧时带动配重块做远离中心轴 的运动, 而旋转到右侧时需要带动配重块做靠近中心轴的运动。
以上虽然结合附图描述了本发明的实施方式, 但是本领域技术人员可以在 所附权利要求的范围内做出各种变形或修改。

Claims

权 利 要求
1. 一种气压式不平衡动力装置, 其特征在于, 所述气压式不平衡动力装置 包括:
中心轴, 所述中心轴水平设置并可在外力作用下旋转;
多个配重块, 所述多个配重块分布设置于所述中心轴的外圓周;
多个气压泵, 所述多个气压泵固定于所述中心轴上, 所述气压泵内设有在 气体推动作用下做靠近或远离所述中心轴运动的活塞, 所述活塞上进一步设有 联杆, 所述联杆在所述活塞做靠近或远离所述中心轴的运动时带动所述配重块 一起运动;
气流控制器, 用于控制所述多个气压泵的气体流向, 所述气流控制器在每 一所述配重块旋转至所述中心轴右侧时控制所述所压泵的气体流向使所述活塞 带动所述配重块一起作远离所述中心轴的运动, 造成所述中心轴右侧的所述配 重块相较于所述中心轴左侧的所述配重块具有更大的力矩, 进而促进所述中心 轴保持继续旋转。
2. 根据权利要求 1所述的气压式不平衡动力装置, 其特征在于, 所述气压 式不平衡动力装置进一步包括旋转托架, 所述中心轴设于所述旋转托架中心, 所述多个气压泵固定设于所述旋转托架上, 所述多个配重块经由所述联杆活动 性设于所述旋转托架上。
3. 根据权利要求 2所述的气压式不平衡动力装置, 其特征在于, 所述旋转 托架上进一步设有多个限位块, 所述限位块用于限定所述配重块的活动路径。
4. 根据权利要求 2所述的气压式不平衡动力装置, 其特征在于, 所述气压 式不平衡动力装置还包括气压源, 所述气压源用于供应推动所述活塞做靠近或 远离所述中心轴运动需要的气体。
5. 根据权利要求 4所述的气压式不平衡动力装置, 其特征在于, 所述多个 气压泵还包括: 腔体, 所述活塞设于所述腔体内;
第一端面, 设于所述腔体的第一侧;
第二端面, 设于所述腔体的第二侧, 所述第二端面设有通孔;
第一气体出入口, 设于所述腔体的第一侧, 当所述第一气体出入口接收气 体时, 所述活塞带动所述配重块一起作远离所述中心轴的运动;
第二气体出入口, 设于所述腔体的第二侧, 当所述第二气体出入口接收气 体时, 所述活塞带动所述配重块一起做靠近所述中心轴的运动。
6. 根据权利要求 5所述的气压式不平衡动力装置, 其特征在于, 所述气流 控制器主要包括:
第一入气通道, 所述第一入气通道与气压源接通, 用于接收气压源供应的 气体;
第一出气通道, 在第一工作状态下, 所述第一出气通道的一端与所述第一 入气通道接通, 所述第一出气通道的另一端与所述第一气体出入口接通;
第二出气通道, 在第二工作状态下, 所述第二出气通道的一端与所述第一 入气通道接通, 所述第二出气通道的另一端与所述第二气体出入口接通;
联动器, 所述联动器设有与所述第一入气通道配匹配的通孔, 用于将所述 气流控制器从所述第一工作状态转换到所述第二工作状态; 以及
复位器, 用于复位所述联动器以达到所述第一入气通道交替与第一出气通 道和第二出气通道接通的循环工作状态。
7. 根据权利要求 6所述的气压式不平衡动力装置, 其特征在于, 所述联动 器设有突出于所述旋转托架的延伸部, 所述延伸部受到设于所述中心轴右侧且 位于所述旋转托架外的挡块的挤推作用时, 所述气流控制器从第一工作状态转 换为所述第二工作状态, 使得所述第一入气通道与所述第二出气通道的接通, 所述活塞带动所述配重块一起做远离所述中心轴的运动。
8. 根据权利要求 6所述的气压式不平衡动力装置, 其特征在于, 所述联动 器进一步由感应器驱动, 所述旋转托架外的所述中心轴左右两侧分别设有第一 感应体和第二感应体, 所述第一感应体相对所于述第二感应体具有明显的区别 特征, 当所述感应器随着所述中心轴旋转并发出感应信号感应到第二感应体时, 所述感应器将便触发所述联动器, 使气流控制器从第一工作状态转换为所述第 二工作状态, 使得所述第一入气通道与所述第二出气通道的接通, 所述活塞联 动所述配重块一起做远离所述中心轴的运动。
9. 根据权利要求 8所述的气压式不平衡动力装置, 其特征在于, 所述中心 轴左右两侧的所述第一感应体和所述第二感应体具有明显区别的色彩或亮度特 征。
10. 根据权利要求 6所述的气压式不平衡动力装置, 其特征在于, 所述联动 器进一步由感应器驱动, 所述旋转托架外的所述中心轴右侧设有感应体, 当所 述感应器随着所述中心轴旋转并发出感应信号感应到所述感应体时, 所述感应 器将便触发所述联动器, 使气流控制器从第一工作状态转换为所述第二工作状 态, 使得所述第一入气通道与所述第二出气通道的接通, 所述活塞联动所述配 重块一起做远离所述中心轴的运动。
11. 一种能量转换设备, 其特征在于: 所述能量转换设备包括如权利要求 1-9中任一项所述的气压式不平衡动力装置。
12. 根据权利要求 11所述的能量转换设备, 其特征在于, 所述能量转换设 备为发电机, 所述气压式不平衡动力装置作为所述发电机的转子轴心。
13. 根据权利要求 11所述的能量转换设备, 其特征在于, 所述能量转换设 备为汽车发动机、 飞机发动机或轮船发动机。
PCT/CN2009/074935 2009-11-13 2009-11-13 一种气压式不平衡动力装置及使用该装置的能量转换设备 WO2011057446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074935 WO2011057446A1 (zh) 2009-11-13 2009-11-13 一种气压式不平衡动力装置及使用该装置的能量转换设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074935 WO2011057446A1 (zh) 2009-11-13 2009-11-13 一种气压式不平衡动力装置及使用该装置的能量转换设备

Publications (1)

Publication Number Publication Date
WO2011057446A1 true WO2011057446A1 (zh) 2011-05-19

Family

ID=43991168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074935 WO2011057446A1 (zh) 2009-11-13 2009-11-13 一种气压式不平衡动力装置及使用该装置的能量转换设备

Country Status (1)

Country Link
WO (1) WO2011057446A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2127496A (en) * 1982-09-16 1984-04-11 Centrifugal Piston Expander Centrifugal piston expander method and apparatus
CN2742141Y (zh) * 2004-10-22 2005-11-23 卢君 流体式回转动力机
US6988441B2 (en) * 1999-12-07 2006-01-24 Harcourt Engine Pty Limited Rotary engine
CN2883676Y (zh) * 2006-03-04 2007-03-28 周巨龙 机体与主轴同步旋转式内燃机发动机
WO2008098328A1 (en) * 2007-02-12 2008-08-21 Francisco De Assis Da Silva Rotary radial orbital motor
CN101285398A (zh) * 2007-04-13 2008-10-15 朱福成 空气压力发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2127496A (en) * 1982-09-16 1984-04-11 Centrifugal Piston Expander Centrifugal piston expander method and apparatus
US6988441B2 (en) * 1999-12-07 2006-01-24 Harcourt Engine Pty Limited Rotary engine
CN2742141Y (zh) * 2004-10-22 2005-11-23 卢君 流体式回转动力机
CN2883676Y (zh) * 2006-03-04 2007-03-28 周巨龙 机体与主轴同步旋转式内燃机发动机
WO2008098328A1 (en) * 2007-02-12 2008-08-21 Francisco De Assis Da Silva Rotary radial orbital motor
CN101285398A (zh) * 2007-04-13 2008-10-15 朱福成 空气压力发动机

Similar Documents

Publication Publication Date Title
CN102420552B (zh) 改善电动机启停性能控制回路及控制方法
KR102706859B1 (ko) 조향 시스템 및 차량
CN104578902A (zh) 基于电磁夹持非接触式旋转压电电机
CN205445925U (zh) 一种高速变量轴向柱塞泵
CN113162313B (zh) 一种二维电机及伺服阀
CN102619817A (zh) 飞轮蓄能节能型液压振动系统
WO2011057446A1 (zh) 一种气压式不平衡动力装置及使用该装置的能量转换设备
CN105471316B (zh) 电机定子、多通道舵机控制的微小型超声电机及其控制方法
CN103867504B (zh) 一种机器人转动关节驱动装置及驱动方法
TWM605501U (zh) 偏心位移運轉動力系統(一)
CN207082922U (zh) 一种磁转机
US20110079106A1 (en) Power generating system and apparatus
TWM605500U (zh) 偏心位移運轉動力系統(二)
CN202387361U (zh) 一种由多通道切换阀控制的微热再生型吸附式干燥机
KR100769261B1 (ko) 무단변속장치
CA2726388A1 (en) Power generating system and apparatus
CN205595913U (zh) 高性能旋转电磁执行器
CN114844291A (zh) 一种增能发电方法
CN202231651U (zh) 一种磁耦合悬浮式复合动作机构
TWI728835B (zh) 偏心位移運轉動力系統(一)
CN206004468U (zh) 一种用于并联机器人的永磁直驱电机及其并联机器人结构
JP3927747B2 (ja) 回転体上電気装置用制御装置
CN202378013U (zh) 一种能抵消附加磁扭矩的磁力电锤钻
TWI728834B (zh) 偏心位移運轉動力系統(二)
CN201038916Y (zh) 电动机转子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/11/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09851201

Country of ref document: EP

Kind code of ref document: A1