WO2011046053A1 - 撮像レンズ及び撮像装置 - Google Patents
撮像レンズ及び撮像装置 Download PDFInfo
- Publication number
- WO2011046053A1 WO2011046053A1 PCT/JP2010/067533 JP2010067533W WO2011046053A1 WO 2011046053 A1 WO2011046053 A1 WO 2011046053A1 JP 2010067533 W JP2010067533 W JP 2010067533W WO 2011046053 A1 WO2011046053 A1 WO 2011046053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging
- image
- object side
- imaging lens
- Prior art date
Links
- 230000005499 meniscus Effects 0.000 claims abstract description 34
- 238000003384 imaging method Methods 0.000 claims description 140
- 230000014509 gene expression Effects 0.000 claims description 41
- 239000003779 heat-resistant material Substances 0.000 claims description 4
- 230000004075 alteration Effects 0.000 abstract description 92
- 238000010586 diagram Methods 0.000 description 43
- 201000009310 astigmatism Diseases 0.000 description 33
- 230000003287 optical effect Effects 0.000 description 20
- 239000000758 substrate Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 206010010071 Coma Diseases 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000005394 sealing glass Substances 0.000 description 6
- 238000004904 shortening Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 239000006059 cover glass Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 235000012489 doughnuts Nutrition 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0035—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
Definitions
- the present invention relates to an imaging lens and an imaging apparatus suitable for an imaging apparatus using a solid-state imaging device such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor.
- a solid-state imaging device such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor.
- Compact and thin imaging devices using solid-state imaging devices such as CCD image sensors and CMOS image sensors are portable terminals that are compact and thin electronic devices such as mobile phones and PDAs (Personal Digital Assistants), and notebooks. It has also been installed in PCs and the like, so that not only audio information but also image information can be transmitted to a remote place.
- PDAs Personal Digital Assistants
- PCs and the like so that not only audio information but also image information can be transmitted to a remote place.
- a solid-state image sensor and an imaging lens as main parts constituting the imaging device.
- a CCD image sensor, a CMOS image sensor, or the like is often used.
- the pixel pitch of solid-state image sensors has been reduced, and higher resolution and higher performance have been achieved with higher pixels.
- miniaturization of the solid-state imaging device is achieved by maintaining the pixels.
- Patent Document 1 As an imaging lens, as shown in Patent Document 1, a three-lens configuration, in which the first lens and the second lens are positive, has been proposed. In addition, as shown in Patent Documents 2 to 4, imaging lenses in which the second lens is negative have been proposed.
- the imaging lens disclosed in Patent Document 1 does not have sufficient correction of coma and astigmatism, and cannot be said to be able to cope with an increase in the number of pixels of a solid-state imaging device.
- the imaging lenses disclosed in Patent Documents 2 to 4 have difficulty in forming high-quality images because the F-number is dark or astigmatism correction is insufficient and the field curvature is large. It was.
- the present invention has been made in view of such problems, and provides a three-lens imaging lens in which various aberrations are favorably corrected while being smaller than the conventional one, and an imaging apparatus using the imaging lens. Objective.
- TL Distance on the optical axis from the most object-side lens surface to the image-side focal point of the entire imaging lens system
- 2Y ′ diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device) Aiming for miniaturization that satisfies the requirements.
- the “image side focal point” means an image point when a parallel light beam parallel to the optical axis is incident on the lens.
- a parallel plate such as an optical low-pass filter, an infrared cut filter, a band-pass filter, or a seal glass of a solid-state image sensor package is disposed between the most image-side surface of the imaging lens and the image-side focal position. In this case, the value of the TL is calculated with the parallel plate portion as an air conversion distance.
- the imaging lens according to claim 1 In order from the object side, there are an aperture stop, a first lens, a second lens, a third lens,
- the first lens is a positive lens, a meniscus lens convex on the object side and concave on the image side
- the second lens is a concave lens on the object side
- the third lens is a negative lens; Furthermore, the following conditional expressions are satisfied.
- D4 Air distance (mm) on the axis of the second lens and the third lens f: Focal length (mm) of the entire imaging lens system f2: Focal length (mm) of the second lens r3: radius of curvature of object side surface of the second lens (mm) It is.
- the basic configuration of the present invention for obtaining a small imaging lens with good aberration correction is, in order from the object side, an aperture stop, a positive meniscus shape having positive refractive power, convex on the object side, and concave on the image side. It consists of a first lens, a second lens concave on the object side, and a third lens having negative refractive power.
- This lens configuration is advantageous in reducing the overall length of the imaging lens because the first surface of the first lens is convex on the object side and the second surface is concave on the image side.
- a negative lens as the third lens, it is possible to reduce the Petzpearl sum and obtain an imaging lens that secures good imaging performance up to the periphery.
- the exit pupil position can be located farther from the imaging surface, so that good telecentric characteristics (hereinafter also referred to as telecentricity) are maintained.
- the overall length can be shortened.
- the lens configuration according to the present invention is assumed to be a thin positive lens obtained by combining the first lens and the second lens, and a single thin negative lens obtained by combining the third lens.
- the focal length of the synthesized first lens is f12
- the distance between the two lenses is d
- the distance from the synthesized second lens to the image plane (back focus) is fB
- Conditional expression (1) is a conditional expression for shortening the overall length of the imaging lens. As described above, in order to shorten the entire length of the imaging lens, it is desirable to increase the distance D4. However, if the value D4 / f of the conditional expression (1) exceeds the upper limit, the axial ray bundle incident on the third lens becomes too thin, and the axial chromatic aberration cannot be corrected well. Moreover, since the height of the off-axis ray incident on the third lens is increased, the diameter of the third lens is increased, which is not suitable for making the lens compact. On the other hand, if the value D4 / f of conditional expression (1) is below the lower limit, the total lens length cannot be shortened effectively. Therefore, it is desirable to satisfy the conditional expression (1). More preferably, the following formula (1 ′), 0.10 ⁇ D4 / f ⁇ 0.20 (1 ′) The range is good.
- Conditional expression (2) is a conditional expression for shortening the total length of the imaging lens. As described above, in order to shorten the total lens length, it is necessary to reduce the combined focal length f12 of the first lens and the second lens. In order to reduce the composite focal length f12, it is conceivable to first increase the power of the first lens. However, if the power of the first lens is increased, the spherical aberration and the off-axis coma aberration will increase. It cannot be corrected.
- the power of the second lens when the power of the second lens is negative, the one with weaker power of the second lens can reduce the combined focal length f12 and can shorten the total length.
- the power of the second lens when the power of the second lens is positive, the power of the second lens is larger in order to shorten the overall length.
- the power of the second lens if the power of the second lens is too large, the axial chromatic aberration is insufficiently corrected. In other words, the Petzpearl sum becomes large and the field curvature cannot be corrected.
- conditional expression (2) should be satisfied.
- the following formula (2 ′) 0.00 ⁇
- Conditional expression (3) is a conditional expression for satisfactorily correcting coma at the intermediate image height while shortening the overall length of the imaging lens.
- conditional expression (3) More preferably, the following formula (3 ′), -2.35 ⁇ f / r3 ⁇ 0.00 (3 ′) The range is good.
- the radius of curvature of the convex surface is positive and the radius of curvature of the concave surface is negative.
- At least the image side surface of the third lens is aspherical, and the aspherical surface has at least one aspherical inflection point. It is characterized by that.
- the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.
- the third lens is a negative meniscus lens having a convex surface facing the object side on a paraxial axis.
- the principal point position of the third lens which is a negative lens, becomes closer to the image side. Therefore, from the first lens to the second lens in equation (7) above The distance d between the synthetic lens and the third lens is increased, and the total lens length L can be shortened.
- An imaging lens according to a fourth aspect of the present invention is the imaging lens according to any one of the first to third aspects, wherein the third lens has the following conditional expression (4): -1.00 ⁇ f3 / f ⁇ 0.00 (4) Where f3: focal length of the third lens (mm) It is characterized by satisfying.
- Conditional expression (4) is a conditional expression for satisfactorily correcting various aberrations while shortening the overall length of the imaging lens. If the power of the third lens, which is a negative lens, is strong, axial chromatic aberration and curvature of field can be kept small, but if the negative power is low, the telecentricity can be kept good, so the balance is important. It is.
- the value f3 / f falls below the lower limit of the conditional expression (4), it is advantageous for aberration correction, but the total length becomes too long, which is disadvantageous for miniaturization.
- the value f3 / f exceeds the upper limit of the conditional expression (4), the aberration correction becomes insufficient. Therefore, it is preferable to satisfy the conditional expression (4).
- the imaging lens according to claim 5 is the invention according to any one of claims 1 to 4, wherein the second lens has the following conditional expression (5): -1.90 ⁇ f / r4 ⁇ 0.40 (5) Where r4: radius of curvature of the image side surface of the second lens (mm) It is characterized by satisfying.
- Conditional expression (5) is a conditional expression for favorably correcting various aberrations while shortening the overall length of the imaging lens.
- r4 takes a value satisfying conditional expression (5), so that a lens in which the Petzpearl sum and chromatic aberration are corrected can be obtained while keeping the total length small.
- conditional expression (5) When r4 is positive, the smaller r4 becomes, the larger the negative power of the second lens becomes, and it becomes easier to correct various aberrations. However, if the upper limit of conditional expression (5) is exceeded, the total length becomes too large.
- conditional expression (5) when r4 is negative, as r4 approaches 0, the combined power of the first and second lenses increases positively and the total length decreases. However, if the lower limit of conditional expression (5) is not reached, axial chromatic aberration will increase or the Petzpearl sum will deteriorate. Therefore, it is preferable to satisfy the conditional expression (5).
- the imaging lens according to claim 6 is the invention according to any one of claims 1 to 5, wherein the second lens has the following conditional expression (6): 1.55 ⁇ n2 (6) However, n2: The refractive index of the second lens is satisfied.
- Conditional expression (6) is a conditional expression for satisfactorily correcting coma while shortening the overall length of the imaging lens.
- the radius of curvature of the object side surface of the second lens can be further reduced, and coma aberration can be corrected well.
- the imaging lens according to claim 7 is the imaging lens according to any one of claims 1 to 6, wherein the first lens, the second lens, and the third lens are made of a heat-resistant material.
- a so-called reflow process in which the electronic component and the lens module are simultaneously mounted on a substrate in a high-temperature reflow bath by configuring the first lens, the second lens, and the third lens with a heat-resistant material. Therefore, the imaging device can be manufactured at a low cost and in large quantities.
- the material having heat resistance is preferably glass having heat resistance.
- An imaging apparatus includes the imaging lens according to any one of the first to seventh aspects and a solid-state imaging element.
- the present invention it is possible to provide a three-lens imaging lens in which various aberrations are favorably corrected while being smaller than the conventional one, and an imaging apparatus using the imaging lens.
- FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow. It is a figure which shows the state equipped with the imaging device 50 in the mobile telephone 100 as a portable terminal.
- 3 is a control block diagram of the mobile phone 100.
- FIG. 2 is a cross-sectional view of an imaging lens of Example 1.
- FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1; 6 is a cross-sectional view of an imaging lens of Example 2.
- FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 2; 6 is a cross-sectional view of an imaging lens of Example 3.
- FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 3; 6 is a cross-sectional view of an imaging lens of Example 4.
- FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 4; 6 is a cross-sectional view of an imaging lens of Example 5.
- FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 2; 6 is a cross-sectional view of an imaging lens of Example 5.
- FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 5; 6 is a cross-sectional view of an imaging lens of Example 6.
- FIG. FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 6; 10 is a cross-sectional view of an imaging lens of Example 7.
- FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 7; 10 is a cross-sectional view of an imaging lens of Example 8.
- FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 8; 10 is a cross-sectional view of an imaging lens of Example 9.
- FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 9; 10 is a cross-sectional view of an imaging lens of Example 10.
- FIG. FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 10;
- FIG. 1 is a perspective view of an imaging apparatus 50 according to the present embodiment
- FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow.
- the imaging device 50 includes a CMOS image sensor 51 as a solid-state imaging device having a photoelectric conversion unit 51 a, an imaging lens 10 that causes the photoelectric conversion unit 51 a of the image sensor 51 to capture a subject image, A substrate 52 having an external connection terminal (not shown) for holding the image sensor 51 and transmitting / receiving the electric signal is provided, and these are integrally formed.
- a photoelectric conversion unit 51a as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side, and signal processing (not shown) is performed.
- a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
- a number of pads (not shown) are arranged near the outer edge of the plane on the light receiving side of the image sensor 51, and are connected to the substrate 52 via wires (not shown).
- the image sensor 51 converts the signal charge from the photoelectric conversion unit 51a into an image signal such as a digital YUV signal, and outputs the image signal to a predetermined circuit on the substrate 52 via a wire (not shown).
- Y is a luminance signal
- the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.
- the substrate 52 that supports the image sensor 51 is communicably connected to the image sensor 51 through a wiring (not shown).
- the substrate 52 is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal (not shown), and a voltage for driving the image sensor 51 from the external circuit And a clock signal can be received, and a digital YUV signal can be output to an external circuit.
- an external circuit for example, a control circuit included in a host device of a portable terminal mounted with an imaging device
- an external connection terminal not shown
- a clock signal can be received, and a digital YUV signal can be output to an external circuit.
- the upper part of the image sensor 51 is covered and sealed with a cover glass CG attached to a rectangular tube-shaped (or cylindrical) lower lens frame 20, and a plate such as an infrared cut filter is provided above the cover glass CG.
- PT is fixed to the lower lens frame 20.
- the lower end of the lower lens frame 20 that holds the periphery of the cover glass CG and the plate PT is fixed to the upper surface of the substrate 52 around the image sensor 51, and the upper end of the lower lens frame 20 is the lower end of the upper lens frame 21.
- the upper lens frame 21 is hollow and has a flange portion 21a extending inward in the direction perpendicular to the optical axis at the upper end, and the imaging lens 10 is fitted in the inside thereof.
- the imaging lens 10 includes, in order from the object side (upper side in FIG. 2), an aperture stop formed by the opening of the flange portion 21a, a meniscus shape having a positive refractive power, convex toward the object side, and concave toward the image side.
- 1 lens L1 a second lens L2 concave on the object side, and a third lens L3 having negative refractive power.
- the lenses L1 to L3 are preferably made of a heat resistant material such as glass.
- the upper surface of the flange portion L1a of the first lens L1 is in contact with the lower surface of the flange portion 21a of the upper lens frame 21, and the upper surface of the flange portion L2a of the second lens L2 sandwiches a donut plate-shaped light shielding member SH.
- the lower surface of the flange portion L2a of the second lens L2 is in contact with the upper surface of a donut plate-shaped fixing member SP that is attached to the upper lens frame 20 and also serves as a spacer.
- the upper surface of the flange portion L3a of the third lens L3 is in contact with the lower surface of the fixing member SP. Thereby, the distance between lenses can be adjusted correctly.
- a circular aperture stop is formed at the center of the flange portion 21a of the upper lens frame 21, and the object side optical surface of the first lens L1 protrudes from the aperture stop toward the object side.
- D4 is the air interval (mm) on the axes of the second lens L2 and the third lens L3, f is the focal length (mm) of the entire imaging lens system, and f2 is the second lens.
- L2 is the focal length (mm)
- r3 is the radius of curvature (mm) of the object side surface of the second lens
- the lower lens frame 20 assembled with the plate PT is assembled and bonded so as to cover the CMOS image sensor 51 disposed on the substrate 52, and the first lens L1, the light shielding member SH, the second lens L2, and the fixing member.
- the upper lens frame 21 inserted in the order of SP and the third lens L3 is bonded to the lower lens frame 20.
- the assembly mode is not limited to the above.
- the third lens L3 is bonded to the substrate 52.
- the CMOS image sensor 51 may be assembled and bonded so as to cover it.
- FIG. 3 is a diagram illustrating a state in which the imaging device 50 is mounted on a mobile phone 100 as a mobile terminal that is a digital device.
- FIG. 4 is a control block diagram of the mobile phone 100.
- the imaging device 50 is provided with the object-side end surface of the imaging lens on the back surface of the mobile phone 100 (the liquid crystal display unit side is the front surface), and is positioned below the liquid crystal display unit. It is arranged so that. Note that the arrangement of the imaging device 50 is not limited to this.
- the external connection terminal (not shown) of the imaging device 50 is connected to the control unit 101 of the mobile phone 100 and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
- the mobile phone 100 controls each unit in an integrated manner, and also executes a control unit (CPU) 101 that executes a program corresponding to each process, and an input unit for inputting a number and the like.
- a control unit (CPU) 101 that executes a program corresponding to each process, and an input unit for inputting a number and the like.
- 60 a display unit 70 for displaying predetermined data and captured images, a wireless communication unit 80 for realizing various information communication with an external server, a system program and various processing programs for the mobile phone 100,
- a storage unit (ROM) 91 that stores necessary data such as a terminal ID, and various processing programs and data executed by the control unit 101 or processing data, image data by the imaging device 50, and the like are temporarily stored.
- a temporary storage unit (RAM) 92 used as a work area.
- the image signal input from the imaging device 50 is stored in the non-volatile storage unit (flash memory) 93 by the control unit 101 of the mobile phone 100, or displayed on the display unit 70, and further wireless communication is performed.
- the image information is transmitted to the outside via the unit 80.
- the mobile phone 100 includes a microphone and a speaker for inputting and outputting audio.
- an image signal of a still image or a moving image is captured by the image sensor 51.
- the photographer presses the button BT in the input unit 60 shown in FIG. 3 at a desired photo opportunity the release is performed and the image signal is taken into the imaging device 50.
- the image signal input from the imaging device 50 is sent to the control unit of the mobile phone 100 and stored in the nonvolatile storage unit 93 or displayed on the display unit 70, and further via the wireless communication unit 80.
- the video information is transmitted to the outside.
- f focal length of the entire imaging lens system
- fB back focus
- F F number 2Y: diagonal length of imaging surface of solid-state imaging device
- r radius of curvature
- D axial distance
- Nd refractive index ⁇ d of lens material with respect to d-line: lens material
- Abbe number ENTP entrance pupil position EXTP when the first lens object side surface is used as a reference
- EXTP exit pupil position H1 when the last surface of the imaging system is used as a reference
- H1 front principal point position
- H2 rear principal point position .
- the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction.
- the height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.
- a power of 10 eg, 2.5 ⁇ 10 ⁇ 2
- E eg, 2.5E-02
- data having no numerical value is 0.
- FIG. 5 is a cross-sectional view of the imaging lens of the first embodiment.
- S is an aperture stop
- L1 is a first meniscus lens having positive refractive power and convex toward the object side, concave toward the image side
- L2 is concave toward the object side
- the second lens L3 has a meniscus shape that is convex on the object side, has an inflection point on the object side and the image side, and has a negative refractive power
- PT is an optical low-pass filter
- CG is a parallel plate assuming a sealing glass of a solid-state image sensor
- IM is a solid-state image sensor.
- FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the first example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- FIG. 7 is a cross-sectional view of the imaging lens of the second embodiment.
- S is an aperture stop
- L1 is a first meniscus lens having a positive refractive power and convex on the object side, concave on the image side
- L2 is concave on the object side, and is a positive meniscus shape convex on the image side.
- the second lens L3 has a meniscus shape that is convex on the object side, has an inflection point on the object side and the image side, and has a negative refractive power
- PT is an optical low-pass filter
- CG is a parallel plate assuming a sealing glass of a solid-state image sensor
- IM is a solid-state image sensor.
- FIG. 8 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the second example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- FIG. 9 is a cross-sectional view of the imaging lens of Example 3.
- S is an aperture stop
- L1 is a first meniscus lens having positive refractive power and convex toward the object side, concave toward the image side
- L2 is concave toward the object side
- negative meniscus shape convex toward the image side.
- a second lens having a refractive power of L3, L3 is concave on the object side and the image side, has an inflection point on the image side, and has a negative refractive power
- PT is an optical low-pass filter or IR cut
- CG is a parallel plate assuming a seal glass of a solid-state image sensor
- IM is a solid-state image sensor.
- FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the third example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- FIG. 11 is a cross-sectional view of the imaging lens of Example 4.
- S is an aperture stop
- L1 is a first meniscus lens having positive refractive power and convex toward the object side, concave toward the image side
- L2 is concave toward the object side
- the second lens L3 has a meniscus shape that is convex on the object side, has an inflection point on the object side and the image side, and has a negative refractive power
- PT is an optical low-pass filter
- CG is a parallel plate assuming a sealing glass of a solid-state image sensor
- IM is a solid-state image sensor.
- FIG. 12 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the fourth example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- FIG. 13 is a cross-sectional view of the imaging lens of Example 5.
- S is an aperture stop
- L1 is a first meniscus lens having positive refractive power and convex toward the object side, concave toward the image side
- L2 is concave toward the object side
- the second lens L3 has a meniscus shape that is convex on the object side, has an inflection point on the object side and the image side, and has a negative refractive power
- PT is an optical low-pass filter
- CG is a parallel plate assuming a sealing glass of a solid-state image sensor
- IM is a solid-state image sensor.
- the 14 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the fifth example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- FIG. 15 is a sectional view of the imaging lens of Example 6.
- S is an aperture stop
- L1 is a first meniscus lens having a positive refractive power and convex on the object side, concave on the image side
- L2 is concave on the object side, and is a positive meniscus shape convex on the image side.
- the second lens L3 has a meniscus shape that is convex on the object side, has an inflection point on the object side and the image side, and has a negative refractive power
- PT is an optical low-pass filter
- CG is a parallel plate assuming a sealing glass of a solid-state image sensor
- IM is a solid-state image sensor.
- FIG. 16 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the sixth example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- Example 7 shows lens data of Example 7.
- FIG. 17 is a cross-sectional view of the imaging lens of Example 7.
- S is an aperture stop
- L1 is a first meniscus lens having a positive refractive power and convex on the object side
- L2 is concave on the object side
- the second lens L3 has a meniscus shape that is convex on the object side, has an inflection point on the object side and the image side, and has a negative refractive power
- PT is an optical low-pass filter
- CG is a parallel plate assuming a sealing glass of a solid-state image sensor
- IM is a solid-state image sensor.
- FIG. 18 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the seventh example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- FIG. 19 is a sectional view of the imaging lens of Example 8.
- S is an aperture stop
- L1 is a meniscus first lens having positive refractive power and convex toward the object side, concave toward the image side
- L2 is negative refractive power concave toward the object side and concave toward the image side
- the second lens L3 has a meniscus shape that is convex on the object side, has an inflection point on the object side and the image side, and has a negative refractive power.
- FIG. 20 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the eighth example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- Example 9 shows lens data of Example 9.
- FIG. 21 is a sectional view of the imaging lens of Example 9.
- S is an aperture stop
- L1 is a meniscus first lens having positive refractive power and convex toward the object side, concave toward the image side
- L2 is negative refractive power concave toward the object side and concave toward the image side
- the second lens L3 has a meniscus shape that is convex on the object side, has an inflection point on the object side and the image side, and has a negative refractive power.
- FIG. 22 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the ninth example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- FIG. 23 is a cross-sectional view of the imaging lens of the tenth embodiment.
- S is an aperture stop
- L1 is a first meniscus lens having a positive refractive power and convex on the object side, concave on the image side
- L2 is concave on the object side, and is a positive meniscus shape convex on the image side.
- L3 is a concave lens on the object side, concave on the image side, has an inflection point on the image side, and has a negative refractive power
- PT is an optical low-pass filter
- CG is a parallel plate assuming a seal glass of a solid-state image sensor
- IM is a solid-state image sensor.
- FIG. 24 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the tenth example.
- the broken line represents the amount of spherical aberration with respect to the g line
- the solid line represents the amount of spherical aberration with respect to the d line.
- the solid line represents the sagittal surface
- the broken line represents the meridional surface.
- Table 11 summarizes the values of the conditional expressions for each example.
- the principal ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small in the periphery of the imaging surface.
- recent technology has made it possible to reduce the pudging by revising the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array.
- the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the image pickup surface of the image pickup device, the color filter or Since the on-chip microlens array shifts to the optical axis side of the imaging lens, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel.
- produces with a solid-state image sensor can be restrained small.
- the present embodiment is a design example aiming at further miniaturization with respect to the portion where the requirement is relaxed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
TL/2Y’<0.9 (I)
但し、
TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y’:固体撮像素子の撮像面対角線長(固体撮像素子の矩形有効画素領域の対角線長)
を満足するレベルの小型化を目指している。この範囲を満たすことで、レンズ全長を短くでき相乗的にレンズ外径も小さくできる。これにより、撮像装置全体の小型軽量化が可能となる。
物体側から順に開口絞り、第1レンズ、第2レンズ、第3レンズを有し、
前記第1レンズは、正レンズであって、物体側に凸、像側に凹のメニスカスレンズであり、
前記第2レンズは、物体側に凹のレンズであり、
前記第3レンズは負レンズであり、
更に、以下の条件式を満足することを特徴とする。
0.10<D4/f<0.25 (1)
0.00≦|f/f2|<0.65 (2)
-2.50<f/r3<0.00 (3)
但し、
D4:前記第2レンズと前記第3レンズの軸上での空気間隔(mm)
f :前記撮像レンズ全系の焦点距離(mm)
f2:前記第2レンズの焦点距離(mm)
r3:前記第2レンズの物体側面の曲率半径(mm)
である。
L=fB+d
=f(1-d/f12)+d
=f-((f/f12)-1)d (7)
で与えられる。
条件式(1)は、前記撮像レンズの全長を短縮化するための条件式である。上記の通り、撮像レンズ全長を短くするためには、間隔D4を広くとることが望ましい。しかし、条件式(1)の値D4/fが上限を上回ると、第3レンズに入射する軸上光線束が細くなりすぎるため軸上色収差を良好に補正することができなくなる。また、第3レンズに入射する軸外光線高が高くなるため第3レンズの径が大きくなり、レンズのコンパクト化に不向きである。一方、条件式(1)の値D4/fが下限を下回ると、レンズ全長を有効に短くできない。そこで、条件式(1)を満たすことが望ましい。また、より望ましくは下式(1’)、
0.10<D4/f<0.20 (1’)
の範囲がよい。
条件式(2)は、前記撮像レンズの全長を短縮するための条件式である。上記の通り、レンズ全長を短くするためには、第1レンズと第2レンズの合成焦点距離f12を小さくする必要がある。合成焦点距離f12を小さくするためには、まず第1レンズのパワーを強くすることが考えられるが、第1レンズのパワーを強くすると球面収差や軸外でのコマ収差が大きくなり後のレンズで補正しきれなくなる。
0.00≦|f/f2|<0.55 (2’)
の範囲がよい。
条件式(3)は、撮像レンズ全長を短くしつつ中間像高でのコマ収差を良好に補正するための条件式である。コマ収差を補正するには、なるべく太い光束が通過する面の曲率を緩くし、光束の光軸付近と周辺付近との面の曲率の差を少なくすることが望ましい。このため、条件式(3)を満たすのがよい。また、より望ましくは下式(3’)、
-2.35<f/r3<0.00 (3’)
の範囲がよい。尚、本明細書中、凸面の曲率半径を正とし、凹面の曲率半径を負とする。
-1.00<f3/f<0.00 (4)
但し、f3:前記第3レンズの焦点距離(mm)
を満足することを特徴とする。
条件式(4)は、撮像レンズ全長を短くしつつ諸収差を良好に補正するための条件式である。負レンズである第3レンズのパワーが強い方が軸上色収差、像面湾曲を小さく保つことが出来るが、負のパワーが小さい方がテレセン性を良好に保つことができるので、そのバランスが重要である。ここで、値f3/fが条件式(4)の下限を下回ると収差補正には有利であるが全長が長くなり過ぎてしまい小型化に不利である。一方、値f3/fが条件式(4)の上限を上回ると収差補正が不十分になってしまう。よって、条件式(4)を満たすのが好ましい。
-1.90<f/r4<0.40 (5)
但し、r4:前記第2レンズの像側面の曲率半径(mm)
を満足することを特徴とする。
条件式(5)は、撮像レンズ全長を短くしつつ諸収差を良好に補正するための条件式である。第2レンズの物体側の曲率が緩いとき、r4が条件式(5)を満たす値をとることで全長を小さく保ちつつ、ペッツパール和や色収差が補正されたレンズを得ることができる。r4が正の時、r4が小さくなればなるほど第2レンズの負のパワーが大きくなり諸収差を補正しやすくなる。しかし、条件式(5)の上限を上回ると全長が大きくなりすぎてしまう。一方、r4が負の時、r4が0に近づくにつれ第1、2レンズの合成パワーは正に大きくなり全長は短くなる。しかし、条件式(5)の下限を下回ると軸上色収差が大きくなったりペッツパール和が悪くなったりする。よって、条件式(5)を満たすのがよい。
1.55<n2 (6)
但し、n2:前記第2レンズの屈折率
を満足することを特徴とする。
条件式(6)は、撮像レンズ全長を短くしつつコマ収差を良好に補正するための条件式である。条件式(6)を満たすように第2レンズの屈折率を大きくすることで、第2レンズの物体側面の曲率半径を更に小さくすることができ、コマ収差を良好に補正することができる。
0.10<D4/f<0.25 (1)
0.00≦|f/f2|<0.65 (2)
-2.50<f/r3<0.00 (3)
が成立する。
f :撮像レンズ全系の焦点距離
fB:バックフォーカス
F :Fナンバー
2Y:固体撮像素子の撮像面対角線長
r :曲率半径
D :軸上面間隔
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
ENTP:第1レンズ物体側面を基準としたときの入射瞳位置
EXTP:撮像系の最終面を基準としたときの射出瞳位置
H1:前側主点位置
H2:後側主点位置
である。
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
である。
実施例1のレンズデータを表1に示す。図5は、実施例1の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凸のメニスカス形状の負の屈折力を有する第2レンズ、L3は物体側に凸のメニスカス形状であり、物体側及び像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図6は、実施例1にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例2のレンズデータを表2に示す。図7は、実施例2の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凸のメニスカス形状の正の屈折力を有する第2レンズ、L3は物体側に凸のメニスカス形状であり、物体側及び像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図8は、実施例2にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例3のレンズデータを表3に示す。図9は、実施例3の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凸のメニスカス形状の負の屈折力を有する第2レンズ、L3は物体側及び像側に凹であり、像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図10は、実施例3にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例4のレンズデータを表4に示す。図11は、実施例4の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凸のメニスカス形状の負の屈折力を有する第2レンズ、L3は物体側に凸のメニスカス形状であり、物体側及び像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図12は、実施例4にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例5のレンズデータを表5に示す。図13は、実施例5の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凸のメニスカス形状の負の屈折力を有する第2レンズ、L3は物体側に凸のメニスカス形状であり、物体側及び像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図14は、実施例5にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例6のレンズデータを表6に示す。図15は、実施例6の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凸のメニスカス形状の正の屈折力を有する第2レンズ、L3は物体側に凸のメニスカス形状であり、物体側及び像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図16は、実施例6にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例7のレンズデータを表7に示す。図17は、実施例7の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凸のメニスカス形状の正の屈折力を有する第2レンズ、L3は物体側に凸のメニスカス形状であり、物体側及び像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図18は、実施例7にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例8のレンズデータを表8に示す。図19は、実施例8の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凹の負の屈折力を有する第2レンズ、L3は物体側に凸のメニスカス形状であり、物体側及び像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図20は、実施例8にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例9のレンズデータを表9に示す。図21は、実施例9の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凹の負の屈折力を有する第2レンズ、L3は物体側に凸のメニスカス形状であり、物体側及び像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図22は、実施例9にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
実施例10のレンズデータを表10に示す。図23は、実施例10の撮像レンズの断面図である。図中、Sは開口絞り、L1は正の屈折力を有し物体側に凸、像側に凹のメニスカス形状の第1レンズ、L2は物体側に凹、像側に凸のメニスカス形状の正の屈折力を有する第2レンズ、L3は物体側に凹、像側に凹であり、像側に変曲点を有し、負の屈折力を有する第3レンズ、PTは光学的ローパスフィルタやIRカットフィルタ等を想定した平行平板、CGは固体撮像素子のシールガラス等を想定した平行平板、IMは固体撮像素子である。図24は、実施例10にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、破線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリジオナル面をそれぞれ表す。
20 下部鏡枠
21 上部鏡枠
50 撮像装置
51 イメージセンサ
51a 光電変換部
52 基板
60 入力部
70 表示部
80 無線通信部
92 記憶部
100 携帯電話機
101 制御部
CG カバーガラス
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L1a~L3a フランジ部
PT プレート(赤外線カットフィルタ)
S 開口絞り
SP 固定部材
Claims (8)
- 物体側から順に開口絞り、第1レンズ、第2レンズ、第3レンズを有し、
前記第1レンズは、正レンズであって、物体側に凸、像側に凹のメニスカスレンズであり、
前記第2レンズは、物体側に凹のレンズであり、
前記第3レンズは負レンズであり、
更に、以下の条件式を満足することを特徴とする撮像レンズ。
0.10<D4/f<0.25 (1)
0.00≦|f/f2|<0.65 (2)
-2.50<f/r3<0.00 (3)
但し、
D4:前記第2レンズと前記第3レンズの軸上での空気間隔(mm)
f :前記撮像レンズ全系の焦点距離(mm)
f2:前記第2レンズの焦点距離(mm)
r3:前記第2レンズの物体側面の曲率半径(mm) - 前記第3レンズの少なくとも像側面は非球面形状とされており、その非球面は少なくとも1つの非球面変曲点を有していることを特徴とする請求項1に記載の撮像レンズ。
- 前記第3レンズは、近軸上で物体側に凸面を向けた負メニスカスレンズであることを特徴とする請求項1又は2に記載の撮像レンズ。
- 前記第3レンズは、以下の条件式(4)を満足することを特徴とする請求項1~3のいずれかに記載の撮像レンズ。
-1.00<f3/f<0.00 (4)
但し、f3:前記第3レンズの焦点距離(mm) - 前記第2レンズは以下の条件式(5)を満足することを特徴とする請求項1~4のいずれかに記載の撮像レンズ。
-1.90<f/r4<0.40 (5)
但し、r4:前記第2レンズの像側面の曲率半径(mm) - 前記第2レンズは以下の条件式(6)を満足することを特徴とする請求項1~5のいずれかに記載の撮像レンズ。
1.55<n2 (6)
但し、n2:前記第2レンズの屈折率 - 前記第1レンズ、前記第2レンズ及び前記第3レンズが耐熱性を有する材料で構成されることを特徴とする請求項1~6のいずれかに記載の撮像レンズ。
- 請求項1~7のいずれかに記載の撮像レンズと、固体撮像素子と、を有することを特徴とする撮像装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/501,678 US8558939B2 (en) | 2009-10-16 | 2010-10-06 | Image pickup lens and image pickup apparatus |
JP2011536109A JP5585586B2 (ja) | 2009-10-16 | 2010-10-06 | 撮像レンズ及び撮像装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-239640 | 2009-10-16 | ||
JP2009239640 | 2009-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011046053A1 true WO2011046053A1 (ja) | 2011-04-21 |
Family
ID=43876104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/067533 WO2011046053A1 (ja) | 2009-10-16 | 2010-10-06 | 撮像レンズ及び撮像装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8558939B2 (ja) |
JP (1) | JP5585586B2 (ja) |
WO (1) | WO2011046053A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103163626A (zh) * | 2011-12-19 | 2013-06-19 | 大立光电股份有限公司 | 成像镜头组 |
WO2019235248A1 (ja) * | 2018-06-08 | 2019-12-12 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
WO2019235250A1 (ja) * | 2018-06-08 | 2019-12-12 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8542310B2 (en) * | 2008-07-04 | 2013-09-24 | Konica Minolta Opto, Inc. | Imaging lens, manufacturing method and imaging unit therefor |
US8292524B1 (en) * | 2011-08-05 | 2012-10-23 | Hon Hai Precision Industry Co., Ltd. | Lens module and camera module having same |
JP5952135B2 (ja) * | 2012-08-28 | 2016-07-13 | カンタツ株式会社 | 超小型撮像レンズ |
CN102928959A (zh) * | 2012-10-20 | 2013-02-13 | 中山联合光电科技有限公司 | 一种高像素,体积小的光学系统 |
US9541708B2 (en) * | 2013-04-03 | 2017-01-10 | Molex, Llc | Expanded beam lens assembly |
JP2015060067A (ja) * | 2013-09-18 | 2015-03-30 | 株式会社東芝 | 撮像レンズ及び固体撮像装置 |
TWI627438B (zh) * | 2015-11-12 | 2018-06-21 | 柯尼卡美能達股份有限公司 | 鏡頭單元、攝像裝置及行動機器 |
US11579410B2 (en) * | 2017-04-18 | 2023-02-14 | Zhejiang Sunny Optical Co., Ltd. | Camera lens assembly |
CN110007445B (zh) * | 2019-05-27 | 2024-04-16 | 浙江舜宇光学有限公司 | 光学成像镜头 |
TWI719659B (zh) * | 2019-10-03 | 2021-02-21 | 大立光電股份有限公司 | 取像用光學系統、取像裝置及電子裝置 |
CN110531505B (zh) * | 2019-10-29 | 2020-02-28 | 江西联创电子有限公司 | 红外光学成像镜头及成像设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008065305A (ja) * | 2006-09-07 | 2008-03-21 | Largan Precision Co Ltd | 撮影用光学レンズ組 |
JP2008070425A (ja) * | 2006-09-12 | 2008-03-27 | Kyocera Corp | 撮像レンズ、光学モジュール、および携帯端末 |
JP2009092803A (ja) * | 2007-10-05 | 2009-04-30 | Komatsulite Mfg Co Ltd | 撮像レンズ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100534702B1 (ko) | 2003-08-11 | 2005-12-07 | 현대자동차주식회사 | V형 엔진의 체인 구동 시스템 |
JP4485247B2 (ja) | 2004-04-16 | 2010-06-16 | セイコープレシジョン株式会社 | 撮像レンズおよびこれを備えた撮像モジュール |
JP2007156277A (ja) | 2005-12-07 | 2007-06-21 | Kyocera Corp | 撮像レンズ、光学モジュール、および携帯端末 |
JP2007264181A (ja) * | 2006-03-28 | 2007-10-11 | Fujinon Corp | 撮像レンズ |
KR20070102115A (ko) * | 2006-04-14 | 2007-10-18 | 엘지이노텍 주식회사 | 렌즈 모듈 및 렌즈 모듈이 포함된 카메라 모듈 |
JP5063434B2 (ja) * | 2007-03-30 | 2012-10-31 | 富士フイルム株式会社 | 撮像レンズ |
JP5097058B2 (ja) * | 2008-09-03 | 2012-12-12 | パナソニック株式会社 | 撮像レンズ及びそれを用いた撮像装置 |
JP5366314B2 (ja) * | 2009-06-29 | 2013-12-11 | 株式会社オプトロジック | 撮像レンズ |
-
2010
- 2010-10-06 JP JP2011536109A patent/JP5585586B2/ja active Active
- 2010-10-06 WO PCT/JP2010/067533 patent/WO2011046053A1/ja active Application Filing
- 2010-10-06 US US13/501,678 patent/US8558939B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008065305A (ja) * | 2006-09-07 | 2008-03-21 | Largan Precision Co Ltd | 撮影用光学レンズ組 |
JP2008070425A (ja) * | 2006-09-12 | 2008-03-27 | Kyocera Corp | 撮像レンズ、光学モジュール、および携帯端末 |
JP2009092803A (ja) * | 2007-10-05 | 2009-04-30 | Komatsulite Mfg Co Ltd | 撮像レンズ |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103163626A (zh) * | 2011-12-19 | 2013-06-19 | 大立光电股份有限公司 | 成像镜头组 |
WO2019235248A1 (ja) * | 2018-06-08 | 2019-12-12 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
WO2019235250A1 (ja) * | 2018-06-08 | 2019-12-12 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
JPWO2019235250A1 (ja) * | 2018-06-08 | 2021-07-15 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
JPWO2019235248A1 (ja) * | 2018-06-08 | 2021-07-26 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
JP7237956B2 (ja) | 2018-06-08 | 2023-03-13 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
JP7446994B2 (ja) | 2018-06-08 | 2024-03-11 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
US11940602B2 (en) | 2018-06-08 | 2024-03-26 | Sony Semiconductor Solutions Corporation | Imaging device |
US12306382B2 (en) | 2018-06-08 | 2025-05-20 | Sony Semiconductor Solutions Corporation | Imaging device |
Also Published As
Publication number | Publication date |
---|---|
US20120206639A1 (en) | 2012-08-16 |
JPWO2011046053A1 (ja) | 2013-03-07 |
JP5585586B2 (ja) | 2014-09-10 |
US8558939B2 (en) | 2013-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5585586B2 (ja) | 撮像レンズ及び撮像装置 | |
JP4269334B2 (ja) | 撮像レンズ、撮像ユニット及び携帯端末 | |
JP4910723B2 (ja) | 撮像レンズ及び撮像装置並びに携帯端末 | |
US9310582B2 (en) | Image pick-up lens, image pick-up device, portable terminal and digital instrument | |
JP4924141B2 (ja) | 撮像レンズ、撮像装置及び携帯端末 | |
JP6175903B2 (ja) | 撮像レンズ、撮像装置及び携帯端末 | |
JP5304117B2 (ja) | 撮像レンズ及び撮像装置並びに携帯端末 | |
JP5348563B2 (ja) | 撮像レンズ、撮像装置及び携帯端末 | |
WO2013137312A1 (ja) | 撮像レンズ、撮像装置、及び携帯端末 | |
JP6451639B2 (ja) | 撮像装置及び携帯端末 | |
WO2010047178A1 (ja) | 撮像レンズ及び撮像装置並びに携帯端末 | |
JP2013156389A (ja) | 撮像レンズ、撮像装置、及び携帯端末 | |
JP2011095301A (ja) | 撮像レンズ、撮像装置及び携帯端末 | |
JP4894222B2 (ja) | 撮像レンズ、撮像ユニット及び携帯端末 | |
WO2014034432A1 (ja) | 撮像レンズ、撮像装置及び携帯端末 | |
JP2012230233A (ja) | 撮像レンズ、撮像装置及び携帯端末 | |
KR101221703B1 (ko) | 촬상 렌즈, 촬상 유닛 및 휴대 단말 | |
WO2013132915A1 (ja) | 撮像レンズ及び撮像装置 | |
CN104204892A (zh) | 摄像透镜、摄像装置以及便携终端 | |
JP4617744B2 (ja) | 撮像レンズ、撮像ユニット及びこの撮像ユニットを備える携帯端末 | |
JP5678956B2 (ja) | 撮像レンズ、撮像装置及び携帯端末 | |
JP2005077556A (ja) | 撮像レンズ、撮像ユニット及び携帯端末 | |
CN103229086B (zh) | 摄像透镜以及摄像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10823321 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011536109 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13501678 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10823321 Country of ref document: EP Kind code of ref document: A1 |