WO2011039885A1 - Cold-rolled steel sheet - Google Patents
Cold-rolled steel sheet Download PDFInfo
- Publication number
- WO2011039885A1 WO2011039885A1 PCT/JP2009/067171 JP2009067171W WO2011039885A1 WO 2011039885 A1 WO2011039885 A1 WO 2011039885A1 JP 2009067171 W JP2009067171 W JP 2009067171W WO 2011039885 A1 WO2011039885 A1 WO 2011039885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- steel sheet
- bainite
- cold
- Prior art date
Links
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 61
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 123
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 69
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 60
- 229910001567 cementite Inorganic materials 0.000 claims abstract description 58
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000002244 precipitate Substances 0.000 claims abstract description 55
- 239000002245 particle Substances 0.000 claims abstract description 47
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 38
- 238000009826 distribution Methods 0.000 claims abstract description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 47
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 47
- 239000001257 hydrogen Substances 0.000 abstract description 47
- 229910000831 Steel Inorganic materials 0.000 description 87
- 239000010959 steel Substances 0.000 description 87
- 238000000137 annealing Methods 0.000 description 38
- 230000000717 retained effect Effects 0.000 description 36
- 238000001816 cooling Methods 0.000 description 30
- 238000010438 heat treatment Methods 0.000 description 27
- 230000015572 biosynthetic process Effects 0.000 description 18
- 230000000694 effects Effects 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 239000006104 solid solution Substances 0.000 description 13
- 238000005496 tempering Methods 0.000 description 12
- 238000005098 hot rolling Methods 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000009466 transformation Effects 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000003111 delayed effect Effects 0.000 description 7
- 238000005984 hydrogenation reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052720 vanadium Inorganic materials 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 6
- 230000002542 deteriorative effect Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000008520 organization Effects 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910006540 α-FeOOH Inorganic materials 0.000 description 2
- 241000252073 Anguilliformes Species 0.000 description 1
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a cold-rolled steel sheet (cold-rolled thin steel sheet) suitable for automobile parts and the like, and in particular, a high-strength cold-rolled steel sheet having excellent workability, or excellent hydrogen embrittlement resistance in addition to workability. It relates to a high-strength cold-rolled steel sheet.
- cold-rolled steel sheets used for automobile frame parts and the like are required to have high strength for the purpose of achieving both collision safety and fuel efficiency reduction by reducing the weight of the vehicle body, and excellent for processing into complex frame parts Also, moldability is required. For this reason, it has been desired to provide a high-strength steel sheet having both increased elongation (total elongation; El) and stretch flangeability (hole expansion ratio; ⁇ ). There is a demand for a steel sheet having a hole expansion ratio of 90% or more at 10% or more.
- Patent Document 1 discloses a high-tensile cold-rolled steel sheet containing 1.6 to 2.5% by mass in total of at least one of Mn, Cr, and Mo and substantially comprising a martensite single-phase structure. Has been. In this steel sheet, the hole expansion ratio (stretch flangeability) is 90% or more, but the elongation does not reach 10%.
- Patent Document 2 discloses a high-tensile steel plate having a two-phase structure of ferrite having an area ratio of 65 to 85% and the balance being tempered martensite.
- Patent Document 3 discloses a high-tensile steel plate having a two-phase structure in which the average crystal grain sizes of ferrite and martensite are both 2 ⁇ m or less and the volume ratio of martensite is 20% or more and less than 60%. . Although both the high-tensile steel sheets disclosed in Patent Document 2 and Patent Document 3 ensure an elongation of 10% or more, the hole expansion ratio (stretch flangeability) does not reach 90%.
- Patent Document 4 1.0 to 2.0% by mass of Si is added, and the space factor is 5% or more of retained austenite and 60% or more of bainitic ferrite.
- a high-strength cold-rolled steel sheet having a phase structure is disclosed. Although this steel sheet has high elongation and relatively high stretch flangeability, it is mainly used to improve elongation. Although elongation of 10% or more is obtained, stretch flangeability is up to about 60%. It has only been obtained.
- Patent Document 5 1.0 to 2.0% by mass of Si is added, and the Baini is composed of a structure including a space factor of 5 to 20% of retained austenite and 50% or more of bainitic ferrite.
- a high-strength cold-rolled steel sheet composed of a multiphase structure mainly composed of tick ferrite is disclosed. Although this steel sheet exhibits very excellent elongation of 20% or more, stretch flangeability is only obtained up to about 80%.
- Non-Patent Document 1 describes that if a metal structure is mainly tempered martensite and an element (Cr, Mo, V, etc.) exhibiting temper softening resistance is added, it is effective in improving delayed fracture resistance. ing. This is a technology that suppresses fracture by precipitating alloy carbides and utilizing them as hydrogen trap sites to shift the delayed fracture mode from grain boundaries to intragranular fracture.
- these findings are for application to medium carbon steel, and cannot be used as it is for a thin steel sheet having a low carbon content that requires weldability and workability.
- the present applicants developed an ultra-high strength thin steel sheet having excellent hydrogen embrittlement resistance, satisfying the carbon content C: more than 0.25 to 0.60% and the balance being iron and inevitable impurities ( Patent Document 6).
- the metal structure after tensile processing with a processing rate of 3% satisfies the area ratio of the entire structure, and the residual austenite structure: 1% or more, bainitic ferrite and martensite: 80% or more in total
- the average axial ratio (major axis / minor axis) of the residual austenite crystal grains satisfies 5 or more.
- the thin steel sheet described in Patent Document 6 exhibits excellent strength, elongation, and hydrogen embrittlement resistance. However, even in the thin steel sheet described in Patent Document 6, retained austenite becomes a starting point of fracture and becomes a factor of reducing stretch flangeability. As described above, the stretch flangeability, which is becoming increasingly important in recent years, is assured of a desired level (at least TS ⁇ ⁇ : 60000 (MPa ⁇ %) [unit of Ts: MPa], preferably ⁇ : 100% or more). It was difficult to achieve.
- an object of the present invention is to provide a cold-rolled steel sheet (cold-rolled thin steel sheet) with improved workability (specifically, stretch flangeability). More specifically, one object of the present invention is to provide a high-strength cold-rolled steel sheet excellent in workability, in which both elongation and stretch flangeability are enhanced. Another object of the present invention is to provide a high-strength cold-rolled steel sheet with improved stretch flangeability while ensuring excellent hydrogen embrittlement resistance.
- the cold-rolled steel sheet of the present invention that has achieved the above-mentioned object is C: 0.03 mass% or more, less than 0.30 mass%, Si: 2.0 mass% or less (including 0 mass%), Mn: 0.1 to 2.8% by mass, P: 0.1% by mass or less, S: 0.005% by mass or less, N: 0.01% by mass or less, and Al: 0.01 to 1.00% by mass,
- the area ratio of tempered bainite is 50% or more (including 100%)
- the total area ratio of tempered martensite and retained austenite is less than 3% (including 0%)
- the balance is ferrite.
- a distribution state of precipitates in the tempered bainite and / or a distribution state of cementite particles in the tempered bainite are controlled.
- the above-described cold-rolled steel sheet contains Si: 1.0% by mass or less (0 Mn: 0.5 to 2.4% by mass, and Al: 0.01% by mass or more and less than 0.10% by mass, and the area ratio of the tempered bainite is 70% or more (100%). It is recommended that the number of cementite particles having an equivalent circle diameter of 0.1 ⁇ m or more be 3 or less per 1 ⁇ m 2 of the tempered bainite.
- V 0.001 to 1.00 mass 20% or more of precipitates having an equivalent circle diameter of 1 to 10 nm per 1 ⁇ m 2 of the tempered bainite, and 10 precipitates or less of equivalent circle diameter of 20 nm or more containing V per 1 ⁇ m 2 of the tempered bainite. It is recommended that there be.
- the number of cementite particles having an equivalent circle diameter of 0.1 ⁇ m or more is 3 or less per 1 ⁇ m 2 of the tempered bainite.
- the above-described cold-rolled steel sheet of the present invention preferably contains Cr: 0.1 to 3.0% by mass.
- the cold-rolled steel sheet of the present invention described above contains B: 0.0002 to 0.0050 mass%, and Nb and / or Ti is ((N) ⁇ 0.003) / 12 ⁇ [Nb] / It is preferable to include so as to satisfy the relationship of 96+ [Ti] / 48 ⁇ ([N] +0.01) / 12 (however, [] means the content (% by mass) of each element).
- the cold-rolled steel sheet of the present invention described above has Mo: 0.01 to 1.0% by mass, Cu: 0.05 to 1.0% by mass, and Ni: 0.05 to 1.0% by mass. It is also preferable that it contains 1 or more types.
- the cold-rolled steel sheet of the present invention described above has Ca: 0.0005 to 0.01% by mass, Mg: 0.0005 to 0.01% by mass, and REM: 0.0004 to 0.01% by mass. It is also preferable that it contains 1 or more types.
- the ratio of tempered martensite and retained austenite which is the main cause of fracture in a tempered bainite single phase structure or a multiphase structure mainly composed of ferrite and tempered bainite, is reduced as much as possible.
- the present invention can provide a high-strength cold-rolled steel sheet excellent in workability or a high-strength cold-rolled steel sheet excellent in workability and hydrogen embrittlement resistance.
- the present inventors have a high structure composed mainly of tempered bainite (hereinafter simply referred to as “bainite”), which has a higher deformability than tempered martensite (hereinafter sometimes simply referred to as “martensite”).
- bainite tempered bainite
- martensite tempered martensite
- the present invention includes C: 0.03% by mass or more and less than 0.30% by mass, Si: 2.0% by mass or less (including 0% by mass), Mn: 0.1 to 2.8
- a cold-rolled steel sheet containing, by mass, P: 0.1% by mass or less, S: 0.005% by mass or less, N: 0.01% by mass or less, and Al: 0.01 to 1.00% by mass
- the area ratio of tempered bainite is 50% or more (including 100%)
- the total area ratio of tempered martensite and residual austenite is less than 3% (including 0%) and the balance has a structure made of ferrite
- a cold-rolled steel sheet characterized by controlling the distribution of precipitates in the tempered bainite and / or the distribution of cementite particles in the tempered bainite (hereinafter, this invention is referred to as a basic invention). is there).
- the steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite.
- the present invention particularly reduces the tempered martensite structure and residual austenite structure as much as possible, and controls the distribution of precipitates in the tempered bainite and / or the distribution of cementite particles present in the tempered bainite. It has the characteristics.
- Bainite is a homogeneous structure having high strength and excellent plasticity.
- stretch flangeability can be improved while securing tensile strength and elongation.
- the area ratio of tempered bainite is 50% or more, preferably 70% or more, in order to effectively exhibit the above-described action.
- it is 90% or more (including 100%).
- ferrite since ferrite has high ductility but low strength, increasing the proportion of ferrite improves the elongation but decreases the strength.
- the balance of the steel sheet of the present invention is ferrite, but the ferrite area ratio is smaller than that of tempered bainite.
- the total area ratio of tempered martensite and retained austenite be limited to less than 3%, further 2% or less, particularly 1% or less.
- each measuring method of each area ratio of tempered bainite, ferrite, tempered martensite and retained austenite will be described.
- the area ratio of ferrite first, each test steel sheet was mirror-polished and corroded with a 3% nital solution to reveal a metal structure. Thereafter, five fields of view were observed with a scanning electron microscope (SEM) at a magnification of 2000 times, and the equiaxed region not containing cementite was determined to be ferrite by image analysis, and the area ratio of ferrite was determined from the area ratio of the ferrite region to the entire structure. Calculated.
- SEM scanning electron microscope
- each test steel sheet was mirror-polished and corroded with a repeller corrosive solution to reveal a metal structure. Thereafter, five fields of view were observed with a scanning electron microscope (SEM) at a magnification of 2000 times, and the area that appeared white from the image contrast by image analysis was made tempered martensite and retained austenite. The total area ratio of sites and retained austenite was calculated.
- SEM scanning electron microscope
- Component composition of the basic invention (C: 0.03 mass% or more, less than 0.30 mass%) C is an important element that affects the area ratio of bainite and affects strength and stretch flangeability. If the C content is less than 0.03% by mass, the bainite area ratio is insufficient, so that the strength cannot be ensured. On the other hand, if the C content exceeds 0.30% by mass, the hardenability becomes too high, the transformation to bainite is too suppressed, the ratio of martensite and austenite increases, and stretch flangeability cannot be ensured.
- the range of the C content is preferably 0.05 to 0.25% by mass, more preferably 0.07 to 0.20% by mass.
- Si 2.0 mass% or less (including 0 mass%)
- Si is a useful element that can increase strength without deteriorating elongation as a solid solution strengthening element. If the Si content exceeds 2.0% by mass, the formation of austenite during heating is inhibited, so that the area ratio of bainite cannot be ensured and stretch flangeability cannot be ensured. In this case, the formation of cementite is inhibited, and retained austenite (residual ⁇ ) and martensite are likely to remain.
- the range of the Si content is preferably 1.8% by mass or less, more preferably 1.5% by mass or less (including 0% by mass).
- Mn 0.1 to 2.8% by mass
- Mn is a useful element having an effect of enhancing the strength and stretch flangeability by increasing the hardenability and securing the bainite area ratio during rapid cooling after heating during annealing. If the Mn content is less than 0.1% by mass, the bainite area ratio is insufficient, so that the strength and stretch flangeability cannot be ensured. On the other hand, if the Mn content exceeds 2.8% by mass, bainite transformation is suppressed, martensite and austenite remain, and stretch flangeability is deteriorated.
- the range of the Mn content is preferably 0.30 to 2.5% by mass, more preferably 0.50 to 2.2% by mass.
- P 0.1% by mass or less
- P content is 0.1% by mass or less. P content becomes like this. Preferably it is 0.05 mass% or less, More preferably, it is 0.03 mass% or less.
- S (S: 0.005 mass% or less) S is also unavoidably present as an impurity element, forms MnS inclusions, and becomes a starting point of a crack when the hole is expanded, thereby reducing stretch flangeability. Therefore, the P content is 0.005% by mass or less, more preferably 0.003% by mass or less.
- N 0.01% by mass or less
- N is inevitably present as an impurity element, and the elongation and stretch flangeability are lowered by strain aging.
- the N content is preferably as low as 0.01% by mass or less.
- Al 0.01 to 1.00% by mass
- Al combines with N to form AlN and reduces the solid solution N that contributes to the occurrence of strain aging, thereby preventing the stretch flangeability from deteriorating and contributing to the strength improvement by solid solution strengthening.
- the Al content is less than 0.01% by mass, solid solution N remains in the steel, strain aging occurs, and elongation and stretch flangeability cannot be ensured.
- the Al content exceeds 1.00% by mass, the formation of austenite during heating is inhibited, so that the area ratio of bainite cannot be ensured and stretch flangeability cannot be ensured.
- the inventors of the present invention ensured elongation by using a tempered bainite structure having a higher deformability than tempered martensite as a main structure and introducing a ferrite structure into the bainite structure as necessary.
- the present inventors reduced the ratio of tempered martensite and retained austenite (hereinafter, sometimes referred to as “residual ⁇ ”), which is the main cause of destruction, and other main causes of destruction.
- the hole expansion ratio is 90% at a total elongation of 10% or more with respect to the steel sheet having the desired level, that is, the tensile strength of 800 MPa class or more. It has been found that stretch flangeability of at least% can be secured.
- a high-strength cold-rolled steel sheet having both improved elongation and flangeability and excellent workability is based on the basic invention described above, Si: 1.0 mass% or less (including 0 mass%), Mn : 0.5 to 2.4% by mass and Al: 0.01% by mass or more and less than 0.10% by mass, the area ratio of the tempered bainite is 70% or more (including 100%),
- the steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite.
- the tempered bainite It is characterized in that the number of coarse cementite particles precipitated therein is controlled.
- Bainite is a homogeneous structure having high strength and excellent plasticity.
- the steel sheet of the present invention can improve stretch flangeability while securing tensile strength and elongation by using a bainite-based structure having such properties.
- the area ratio of tempered bainite is 70% or more, preferably 80% or more. Preferably, it is 90% or more (including 100%).
- the cementite particles having an equivalent circle diameter of 0.1 ⁇ m or more present in the tempered bainite are 3 or less, preferably 2.4 or less, more preferably 1 per 1 ⁇ m 2 of the tempered bainite. 6 or less.
- each specimen steel plate was mirror-polished and corroded with 3% nital to reveal the metal structure, and then a scanning electron microscope with a magnification of 10,000 times with respect to the field of view of 100 ⁇ m 2 so that the region inside the bainite could be analyzed. (SEM) images were observed. Then, the white portion is marked and marked as cementite particles from the contrast of the image, and with the image analysis software, the equivalent circle diameter is calculated from the area of each marked cementite particle, and a predetermined size existing per unit area The number of cementite particles was determined.
- Si 1.0% by mass or less (including 0% by mass)
- Si as a solid solution strengthening element, has the effect of increasing strength without deteriorating elongation and suppressing the coarsening of cementite particles present in bainite during tempering. Si also has the effect of improving stretch flangeability by preventing the formation of such coarse cementite particles.
- the range of Si content is preferably 0.5% by mass or less, more preferably 0.2% by mass or less (including 0% by mass).
- Mn 0.5 to 2.4% by mass
- Mn is a solid solution strengthening element similar to Si, increasing strength without deteriorating elongation, increasing hardenability and contributing to securing the bainite area ratio, and also having the effect of improving strength and stretch flangeability Element. If the Mn content is less than 0.5% by mass, the hardenability is insufficient, the bainite area ratio cannot be secured, and the strength cannot be secured. On the other hand, if the Mn content is more than 2.4% by mass, the hardenability becomes too high, and martensite is excessively formed, and the stretch flangeability deteriorates.
- the range of the Mn content is preferably 0.8 to 3.0% by mass, more preferably 1.0 to 2.2% by mass.
- Al 0.01% by mass or more and less than 0.10% by mass
- Al combines with N to form AlN and reduces the solid solution N that contributes to the occurrence of strain aging, thereby preventing the stretch flangeability from deteriorating and contributing to the strength improvement by solid solution strengthening. If the Al content is less than 0.01% by mass, solid solution N remains in the steel, strain aging occurs, and elongation and stretch flangeability cannot be ensured.
- the Al content is 0.10% by mass or more, the formation of cementite is inhibited, and the total area ratio of tempered martensite and retained austenite becomes excessive, so that stretch flangeability deteriorates.
- the preferable manufacturing method for obtaining the cold rolled steel sheet of 1st invention is demonstrated below.
- the hot rolling conditions steel having the above composition is melted and slab is formed by ingot forming or continuous casting and then hot-rolled.
- the finish rolling finish temperature is set to Ar 3 or higher, and after cooling appropriately, winding is performed in the range of 450 to 700 ° C.
- pickling is performed and then cold rolling is performed.
- the cold rolling rate is preferably about 30% or more. And after the said cold rolling, although it anneals continuously, you may further temper as needed.
- annealing heating temperature Ac 3 to 1000 ° C.
- annealing holding time held for 3600 seconds or less
- annealing temperature to 400 to 550 ° C. (cooling end temperature) 10 to 200 ° C./second
- the cooling end temperature is maintained for 10 to 600 seconds, and then cooled to room temperature.
- ⁇ Annealing heating temperature Ac 3 to 1000 ° C.>
- the reason why the annealing heating temperature is set to Ac 3 or more and 1000 ° C. or less is to ensure an area ratio of bainite that is sufficiently transformed into austenite during annealing and is transformed from austenite during subsequent cooling. It is less than the annealing heating temperature Ac 3, due to the lack of transformation of the austenite at the time of annealing heating, the amount of bainite to transformation product from austenite during subsequent cooling can not be ensured by the area rate of 70% or more reduced.
- the annealing heating temperature exceeds 1000 ° C.
- the austenite structure becomes coarse and the bendability and toughness of the steel sheet deteriorate, and the annealing equipment deteriorates.
- the annealing holding time exceeds 3600 seconds, productivity is extremely deteriorated, which is not preferable.
- the heat history during holding in the cooling end temperature range (400 to 550 ° C.) is not particularly limited, and may be any heat history in an isothermal holding state, a cooling state, or a re-temperature raising state.
- V-containing precipitates V carbides and carbonitrides
- the main structure is a tempered bainite structure having a higher deformability than tempered martensite, and if necessary, a certain degree of elongation is ensured by introducing a ferrite structure into the bainite structure.
- residual ⁇ certain tempered martensite and retained austenite
- V 0.001 to 1.00% by mass
- the steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite, and particularly reduces the tempered martensite structure and residual austenite structure as much as possible.
- it is characterized in that the distribution state of the V-containing precipitates in the tempered bainite is controlled.
- the number of fine precipitates having an equivalent circle diameter of 1 to 10 nm is 20 or more, preferably 50 or more, more preferably 100 or more per 1 ⁇ m 2 of tempered bainite.
- a preferable range of the size (equivalent circle diameter) of the fine precipitate is 1 to 8 nm, and a more preferable range is 1 to 6 nm.
- Precipitates containing V such as VC have extremely high rigidity and critical shear stress compared to the parent phase, and the precipitates themselves are not easily deformed even if the periphery of the precipitates is deformed. Therefore, when the precipitate containing V has a size of 20 nm or more, a large strain is generated at the interface between the parent phase and the precipitate, and breakage occurs. For this reason, if there are a large amount of coarse precipitates containing V of 20 nm or more, stretch flangeability deteriorates. Therefore, stretch flangeability can be improved by restricting the density of coarse V-containing precipitates.
- coarse precipitates containing V having an equivalent circle diameter of 20 nm or more are limited to 10 or less, preferably 5 or less, more preferably 3 or less, per 1 ⁇ m 2 of tempered bainite.
- a steel having bainite as a main structure such as a conventional high-strength cold-rolled steel sheet
- tempered martensite and retained austenite are easily formed, and these structures are the starting points of fracture. Therefore, the dispersion state of the cementite particles precipitated in the bainite during tempering does not significantly affect the stretch flangeability.
- the number of cementite particles having an equivalent circle diameter of 0.1 ⁇ m or more present in the tempered bainite is limited to 3 or less, further 2.5 or less, especially 2 or less per 1 ⁇ m 2 of the tempered bainite. It is recommended that you do this.
- a thin film sample is prepared by a thin film method or an extraction replica method, and an area of 2 ⁇ m 2 or more is observed with this sample using a field emission transmission electron microscope (FE-TEM) at a magnification of 100,000 to 300,000 times. . Then, mark the dark part from the contrast of the image as a precipitate, and with the image analysis software, calculate the equivalent circle diameter from the area of each marked precipitate, and the precipitate of a predetermined size present per unit area The number was determined.
- FE-TEM field emission transmission electron microscope
- V Component composition of the second invention
- V promotes the production of ⁇ -FeOOH, which is iron oxide, which is said to be thermodynamically stable and protective among rust produced in the atmosphere.
- V is an important element for improving hydrogen embrittlement resistance because it functions as a hydrogen trap site by being present in steel as fine carbides and carbonitrides.
- the V content is less than 0.01% by mass, the effect of improving the hydrogen embrittlement resistance cannot be sufficiently obtained.
- the V content exceeds 1.00% by mass, the stretch flangeability deteriorates because V carbide or V carbonitride that grows coarsely and exists in the steel in an insoluble state during heating during annealing.
- the range of V content is preferably 0.01% by mass or more and less than 0.50% by mass, and more preferably 0.02% by mass or more and less than 0.30% by mass.
- Hot rolling conditions it is recommended that the hot rolling heating temperature is set to 900 ° C. or higher, the hot rolling finish rolling temperature is set to 800 ° C. or higher, and after appropriate cooling, winding is performed at a temperature of 450 ° C. or lower.
- V is completely dissolved in the heating stage, suppressing precipitation during hot rolling and precipitation of V carbide and carbonitride during winding, and annealing. During heating, coarse V carbides and carbonitrides can be prevented from remaining.
- cold rolling rate is preferably about 30% or more.
- annealing heating temperature Ta (° C.): [ ⁇ 9500 / ⁇ log ([% C] ⁇ [% V]) ⁇ 6.72 ⁇ ⁇ 273] ° C. or higher, and Ac 3 or higher and 1000 ° C. or lower And hold annealing time: 20 to 3600 seconds. Then, after quenching from the annealing heating temperature to the cooling end temperature: 300 ° C. to [Bs-100] ° C. at a cooling rate of 10 to 200 ° C./second, the cooling end temperature is held for 10 to 600 seconds. Good.
- the annealing heating temperature Ta (° C.) ⁇ Ac 3 when the annealing heating temperature Ta (° C.) ⁇ Ac 3 , the amount of transformation to austenite is insufficient during annealing heating, so that the amount of bainite transformed from austenite during subsequent cooling is reduced, and the area ratio is 50% or more. This is not preferable because it cannot be secured.
- an annealing heating temperature Ta (° C.)> 1000 ° C. is not preferable because the austenite structure becomes coarse and the bendability and toughness of the steel sheet deteriorate and the annealing equipment deteriorates.
- the annealing holding time is less than 20 seconds, it is not preferable because V carbides cannot be completely dissolved. On the other hand, if the annealing holding time exceeds 3600 seconds, productivity is extremely deteriorated.
- the holding time at the cooling end temperature is less than 10 seconds, the bainite transformation does not proceed sufficiently and the elongation and stretch flangeability cannot be secured. On the other hand, if it exceeds 600 seconds, the productivity is extremely deteriorated.
- Pg exp [ ⁇ 13123 / (Tt + 273)] ⁇ t is based on the grain growth model of the precipitate described in Koichi Sugimoto et al., Material Histology, Asakura Shoten Publishing, p106 formula (4.18). It is a parameter that defines the size of the precipitate, with variables set and simplified.
- the tempering holding time t (seconds) be Pg ⁇ 0.20 ⁇ 10 ⁇ 5 , whereby the stretch flangeability can be further improved by preventing the growth of cementite.
- the cold-rolled steel sheet of the present invention basically contains the aforementioned components, with the balance being substantially iron and impurities.
- the following allowable components can be added as long as the effects of the present invention are not impaired.
- the upper bainite which is mainly targeted by the steel of the present invention, is (1) formation of bainitic ferrite ⁇ (2) spout of carbon from bainitic ferrite to austenite ⁇ (3) cementite from austenite It is formed by a transformation phenomenon that proceeds in the flow of formation. In this flow, the formation of cementite from austenite is delayed by the addition of an alloy element such as Si, so that residual austenite and tempered martensite are easily formed.
- Cr is an element that increases the driving force for nucleation of cementite, and promotes the formation of cementite, thereby suppressing the formation of retained austenite and tempered martensite.
- the cementite formed is usually coarsened due to the diffusion rate-determining of the carbon having a high diffusion rate, and thus is coarsened.
- the coarsening proceeds due to the diffusion-limited rate of Cr having a low diffusion rate. Therefore, cementite coarsening can be suppressed.
- the range of the Cr content is preferably 0.3 to 2.5% by mass, more preferably 0.6 to 2.0% by mass.
- B is an element useful for improving the hardenability and increasing the area ratio of bainite by being present in the austenite grain boundary in a solid solution state in the steel. If the addition amount of B is less than 0.0002% by mass, the above-described effects cannot be exhibited effectively. On the other hand, if the addition amount of B exceeds 0.0050% by mass, Fe 23 (CB) 6 is formed and the solid solution B is reduced, so that the effect of improving hardenability is diminished.
- Nb and / or Ti ([N] ⁇ 0.003) / 12 ⁇ [Nb] / 96 + [Ti] / 48 ⁇ ([N] +0.01) / 12 ([] is the content of each element ( Mass%)))
- N forms BN and consumes B
- Ti and Nb are elements useful for exerting a hardenability improving effect by B because N is strongly fixed as TiN or Nb (CN) and the formation of BN is suppressed. If the addition amount of these elements is insufficient, the above BN formation inhibiting action is not effectively exhibited.
- the addition amount of these elements becomes excessive, the formation of cementite is inhibited, the ratio of tempered martensite and retained austenite increases, and stretch flangeability deteriorates.
- Mo 0.01 to 1.0 mass%, Cu: 0.05 to 1.0 mass%, Ni: 0.05 to 1.0 mass%
- Mo forms alloy carbides and carbonitrides that can become hydrogen trap sites during tempering, and Cu and Ni, like V, promote the formation of ⁇ -FeOOH, thereby improving hydrogen embrittlement resistance. Also has the effect of improving. If the addition amount of each element is less than each of the above lower limit values, the above effects cannot be exhibited effectively. On the other hand, when the addition amount of each element exceeds 1.0 mass%, austenite remains at the time of quenching, and stretch flangeability is deteriorated.
- REM refers to a rare earth element, that is, a group 3A element in the periodic table.
- Example 1 Example according to the first invention
- Steels having the components shown in Table 1 were melted to produce 120 mm thick ingots. This was hot rolled to a thickness of 25 mm, and then hot rolled again to a thickness of 3.2 mm. After pickling this, it cold-rolled to 1.6 mm in thickness to make a test material, and heat-treated on the conditions shown in Table 2.
- the area ratios of tempered bainite, ferrite, tempered martensite and retained austenite, and the size and number of cementite particles were measured by the measurement method described above.
- the tensile strength TS, the elongation El, and the stretch flangeability ⁇ were measured for each of the above steel plates.
- the tensile strength TS and elongation El were measured in accordance with JIS Z 2241 by preparing a No. 5 test piece described in JIS Z 2201 with the long axis in the direction perpendicular to the rolling direction.
- stretch flangeability (lambda) performed the hole expansion test according to the iron continuous standard JFST1001, and measured the hole expansion rate, and made this the stretch flangeability.
- steel no. 1 to 6, 9 to 11, 14 to 16, 18, and 21 to 25 all have a tensile strength TS of 800 MPa or more, an elongation El of 10% or more, and a stretch flangeability (hole expansion ratio) ⁇ of 90. %, And a high-strength cold-rolled steel sheet having both elongation and stretch flangeability that satisfies the above-mentioned required level was obtained.
- steel No. which is a comparative example. 7, 8, 12, 13, 17, 19, 20, 26 to 28 are inferior in any of the characteristics.
- steel No. No. 7 is inferior in stretch flangeability because the total area ratio of martensite and retained austenite becomes excessive because the Si content is too high.
- Steel No. No. 8 is inferior in tensile strength because the amount of cementite in bainite is insufficient due to the C content being too low.
- FIG. 1 As a result of arranging the degree of influence of the number of cementite particles on the stretch flangeability (hole expansion ratio) ⁇ , FIG. 1 was obtained.
- the stretch flangeability (hole expansion ratio) ⁇ decreases almost linearly as the number of coarse cementite particles having an equivalent circle diameter of 0.1 ⁇ m or more increases.
- FIG. 1 shows that the number of coarse cementite particles needs to be 3 / ⁇ m 2 or less in order to ensure ⁇ ⁇ 90% above the desired level.
- Example 2 Example according to the second invention
- Steels having the components shown in Table 4 were melted to prepare an ingot having a thickness of 120 mm. After this was hot rolled to a thickness of 25 mm, it was again hot rolled to a thickness of 3 mm. After pickling this, it cold-rolled to thickness 1.2mm to make a test material, and heat-treated on the conditions shown in Table 5.
- each area ratio of tempered bainite, ferrite, tempered martensite and retained austenite, the size and number of precipitates (existence density), and the size of cementite particles and The existence number (existence density) was measured.
- tensile strength TS, elongation El, stretch flangeability ⁇ are measured to evaluate mechanical properties, and hydrogen embrittlement risk index is measured to evaluate hydrogen embrittlement resistance. did.
- the tensile strength TS and elongation El were measured in accordance with JIS Z 2241 by preparing a No. 5 test piece described in JIS Z 2201 with the long axis perpendicular to the rolling direction.
- the stretch flangeability ⁇ was measured according to the iron standard JFST1001, the hole expansion rate was measured, and the hole expansion rate was measured.
- the hydrogen embrittlement risk index was determined by performing a low strain rate technique (SSRT) with a strain rate of 1 ⁇ 10 ⁇ 4 / s using a flat plate test piece having a thickness of 1.2 mm.
- the hydrogen embrittlement risk index was calculated from the definition formula.
- Hydrogen embrittlement risk index (%) 100 ⁇ (1 ⁇ E 1 / E 0 )
- E 0 indicates the elongation at break of a test piece substantially free of hydrogen in steel
- E 1 indicates a steel material (test piece) electrochemically charged with hydrogen in sulfuric acid. Elongation at break is shown.
- the hydrogen charge is performed by immersing a steel material (test piece) in a mixed solution of H 2 SO 4 (0.5 mol / L) and KSCN (0.01 mol / L) at room temperature and a constant current (100 A / m 2). ).
- Table 6 shows the measurement results of the mechanical properties and hydrogen embrittlement resistance.
- invention steels (steel Nos. 30, 31, 38, 39, 42, 44, 45, 48, 49) satisfying the essential constituent requirements of the present invention (the above-mentioned component composition rules and the above-mentioned essential structure rules).
- , 54, 56, 60 to 65; all of the circles) have an tensile strength TS of 780 MPa or more, and an index TS ⁇ ⁇ for evaluating the balance between the tensile strength TS and stretch flangeability (hole expansion ratio) ⁇ .
- comparative steel lacking at least one of the essential constituent elements of the present invention (steel Nos. 29, 32 to 37, 40, 41, 43, 46, 47, 50 to 53, 55; ) Is inferior in any of the mechanical properties and hydrogen embrittlement resistance properties.
- the recommended steels (steel Nos. 57 to 59; marked with ⁇ ) that satisfy the above recommended structure provision (a) are all tensile.
- the strength TS is 980 MPa or more
- the stretch flangeability (hole expansion ratio) ⁇ is 100% or more
- the hydrogen embrittlement risk index is 15% or less, which is superior in strength and workability to the steel of the invention. It was found that a high-strength cold-rolled steel sheet can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Disclosed is a cold-rolled steel sheet having improved processability and improved hydrogen embrittlement resistance. The cold-rolled steel sheet comprises not less than 0.03% by mass and less than 0.30% by mass of C, 2.0% by mass or less (including 0% by mass) of Si, 0.1 to 2.8% by mass of Mn, 0.1% by mass or less of P, 0.005% by mass or less of S, 0.01% by mass or less of N, and 0.01 to 1.00% by mass of Al. In the cold-rolled steel sheet, the area ratio of tempered bainite is 50% or more (including 100%), the total area ratio of tempered martensite and remaining austenite is less than 3% (including 0%), and a structure comprising ferrite makes up the remainder. In the cold-rolled steel sheet, the distribution of precipitates in the tempered bainite and/or the distribution of cementite particles in the tempered bainite are controlled.
Description
本発明は、自動車部品などに適する冷延鋼板(冷延薄鋼板)に関し、特には、加工性に優れた高強度冷延鋼板、または、加工性に加えて耐水素脆化特性にも優れた高強度冷延鋼板に関する。
The present invention relates to a cold-rolled steel sheet (cold-rolled thin steel sheet) suitable for automobile parts and the like, and in particular, a high-strength cold-rolled steel sheet having excellent workability, or excellent hydrogen embrittlement resistance in addition to workability. It relates to a high-strength cold-rolled steel sheet.
例えば自動車の骨格部品などに使用される冷延鋼板には、衝突安全性や車体軽量化による燃費軽減を両立させる目的で高強度が求められるとともに、形状の複雑な骨格部品に加工するために優れた成形加工性も要求される。
このため、伸び(全伸び;El)と伸びフランジ性(穴広げ率;λ)がともに高められた高強度鋼板の提供が切望されており、例えば引張強度800MPa級以上の鋼板であって全伸び10%以上で穴広げ率90%以上の鋼板が要望されている。 For example, cold-rolled steel sheets used for automobile frame parts and the like are required to have high strength for the purpose of achieving both collision safety and fuel efficiency reduction by reducing the weight of the vehicle body, and excellent for processing into complex frame parts Also, moldability is required.
For this reason, it has been desired to provide a high-strength steel sheet having both increased elongation (total elongation; El) and stretch flangeability (hole expansion ratio; λ). There is a demand for a steel sheet having a hole expansion ratio of 90% or more at 10% or more.
このため、伸び(全伸び;El)と伸びフランジ性(穴広げ率;λ)がともに高められた高強度鋼板の提供が切望されており、例えば引張強度800MPa級以上の鋼板であって全伸び10%以上で穴広げ率90%以上の鋼板が要望されている。 For example, cold-rolled steel sheets used for automobile frame parts and the like are required to have high strength for the purpose of achieving both collision safety and fuel efficiency reduction by reducing the weight of the vehicle body, and excellent for processing into complex frame parts Also, moldability is required.
For this reason, it has been desired to provide a high-strength steel sheet having both increased elongation (total elongation; El) and stretch flangeability (hole expansion ratio; λ). There is a demand for a steel sheet having a hole expansion ratio of 90% or more at 10% or more.
このような要求を受けて、種々の組織制御の考え方に基づき、伸びと伸びフランジ性のバランスを改善した高強度鋼板が多数提案されている。しかしながら、伸びと伸びフランジ性が上記要望レベルを満足するように両立した鋼板は、いまだ完成に至っていない。
例えば、特許文献1には、Mn、CrおよびMoの少なくとも1種を合計で1.6~2.5質量%含有し、実質的にマルテンサイトの単相組織からなる高張力冷延鋼板が開示されている。この鋼板では、穴広げ率(伸びフランジ性)は90%以上が得られているものの、伸びは10%に達していない。
また、特許文献2には、フェライトが面積率で65~85%であり、残部が焼戻しマルテンサイトの二相組織からなる高張力鋼板が開示されている。また、特許文献3には、フェライトおよびマルテンサイトの平均結晶粒径がともに2μm以下であり、マルテンサイトの体積率が20%以上60%未満の二相組織からなる高張力鋼板が開示されている。これら特許文献2および特許文献3に開示された高張力鋼板はいずれも、伸びは10%以上を確保しているものの、穴広げ率(伸びフランジ性)は90%に達していない。
また、特許文献4には、Siを1.0~2.0質量%添加し、占積率で、残留オーステナイトを5%以上、ベイニティックフェライトを60%以上含むベイニティックフェライト主体の複相組織からなる高強度冷延鋼板が開示されている。この鋼板は、高伸びで比較的高い伸びフランジ性が得られているが、伸び向上を主体とするものであり、伸びは10%以上が得られているものの、伸びフランジ性は60%程度までしか得られていない。
さらに、特許文献5には、同じくSiを1.0~2.0質量%添加し、占積率で、残留オーステナイトを5~20%、ベイニティックフェライトを50%以上含む組織からなるベイニティックフェライト主体の複相組織からなる高強度冷延鋼板が開示されている。この鋼板は、20%以上の非常に優れた伸びを示すものの、伸びフランジ性は80%程度までしか得られていない。 In response to such demands, a number of high-strength steel sheets with improved balance between elongation and stretch flangeability have been proposed based on various structural control concepts. However, a steel sheet that has both elongation and stretch flangeability so as to satisfy the above-mentioned required level has not yet been completed.
For example, Patent Document 1 discloses a high-tensile cold-rolled steel sheet containing 1.6 to 2.5% by mass in total of at least one of Mn, Cr, and Mo and substantially comprising a martensite single-phase structure. Has been. In this steel sheet, the hole expansion ratio (stretch flangeability) is 90% or more, but the elongation does not reach 10%.
Further, Patent Document 2 discloses a high-tensile steel plate having a two-phase structure of ferrite having an area ratio of 65 to 85% and the balance being tempered martensite. Patent Document 3 discloses a high-tensile steel plate having a two-phase structure in which the average crystal grain sizes of ferrite and martensite are both 2 μm or less and the volume ratio of martensite is 20% or more and less than 60%. . Although both the high-tensile steel sheets disclosed in Patent Document 2 and Patent Document 3 ensure an elongation of 10% or more, the hole expansion ratio (stretch flangeability) does not reach 90%.
In Patent Document 4, 1.0 to 2.0% by mass of Si is added, and the space factor is 5% or more of retained austenite and 60% or more of bainitic ferrite. A high-strength cold-rolled steel sheet having a phase structure is disclosed. Although this steel sheet has high elongation and relatively high stretch flangeability, it is mainly used to improve elongation. Although elongation of 10% or more is obtained, stretch flangeability is up to about 60%. It has only been obtained.
Further, in Patent Document 5, 1.0 to 2.0% by mass of Si is added, and the Baini is composed of a structure including a space factor of 5 to 20% of retained austenite and 50% or more of bainitic ferrite. A high-strength cold-rolled steel sheet composed of a multiphase structure mainly composed of tick ferrite is disclosed. Although this steel sheet exhibits very excellent elongation of 20% or more, stretch flangeability is only obtained up to about 80%.
例えば、特許文献1には、Mn、CrおよびMoの少なくとも1種を合計で1.6~2.5質量%含有し、実質的にマルテンサイトの単相組織からなる高張力冷延鋼板が開示されている。この鋼板では、穴広げ率(伸びフランジ性)は90%以上が得られているものの、伸びは10%に達していない。
また、特許文献2には、フェライトが面積率で65~85%であり、残部が焼戻しマルテンサイトの二相組織からなる高張力鋼板が開示されている。また、特許文献3には、フェライトおよびマルテンサイトの平均結晶粒径がともに2μm以下であり、マルテンサイトの体積率が20%以上60%未満の二相組織からなる高張力鋼板が開示されている。これら特許文献2および特許文献3に開示された高張力鋼板はいずれも、伸びは10%以上を確保しているものの、穴広げ率(伸びフランジ性)は90%に達していない。
また、特許文献4には、Siを1.0~2.0質量%添加し、占積率で、残留オーステナイトを5%以上、ベイニティックフェライトを60%以上含むベイニティックフェライト主体の複相組織からなる高強度冷延鋼板が開示されている。この鋼板は、高伸びで比較的高い伸びフランジ性が得られているが、伸び向上を主体とするものであり、伸びは10%以上が得られているものの、伸びフランジ性は60%程度までしか得られていない。
さらに、特許文献5には、同じくSiを1.0~2.0質量%添加し、占積率で、残留オーステナイトを5~20%、ベイニティックフェライトを50%以上含む組織からなるベイニティックフェライト主体の複相組織からなる高強度冷延鋼板が開示されている。この鋼板は、20%以上の非常に優れた伸びを示すものの、伸びフランジ性は80%程度までしか得られていない。 In response to such demands, a number of high-strength steel sheets with improved balance between elongation and stretch flangeability have been proposed based on various structural control concepts. However, a steel sheet that has both elongation and stretch flangeability so as to satisfy the above-mentioned required level has not yet been completed.
For example, Patent Document 1 discloses a high-tensile cold-rolled steel sheet containing 1.6 to 2.5% by mass in total of at least one of Mn, Cr, and Mo and substantially comprising a martensite single-phase structure. Has been. In this steel sheet, the hole expansion ratio (stretch flangeability) is 90% or more, but the elongation does not reach 10%.
Further, Patent Document 2 discloses a high-tensile steel plate having a two-phase structure of ferrite having an area ratio of 65 to 85% and the balance being tempered martensite. Patent Document 3 discloses a high-tensile steel plate having a two-phase structure in which the average crystal grain sizes of ferrite and martensite are both 2 μm or less and the volume ratio of martensite is 20% or more and less than 60%. . Although both the high-tensile steel sheets disclosed in Patent Document 2 and Patent Document 3 ensure an elongation of 10% or more, the hole expansion ratio (stretch flangeability) does not reach 90%.
In Patent Document 4, 1.0 to 2.0% by mass of Si is added, and the space factor is 5% or more of retained austenite and 60% or more of bainitic ferrite. A high-strength cold-rolled steel sheet having a phase structure is disclosed. Although this steel sheet has high elongation and relatively high stretch flangeability, it is mainly used to improve elongation. Although elongation of 10% or more is obtained, stretch flangeability is up to about 60%. It has only been obtained.
Further, in Patent Document 5, 1.0 to 2.0% by mass of Si is added, and the Baini is composed of a structure including a space factor of 5 to 20% of retained austenite and 50% or more of bainitic ferrite. A high-strength cold-rolled steel sheet composed of a multiphase structure mainly composed of tick ferrite is disclosed. Although this steel sheet exhibits very excellent elongation of 20% or more, stretch flangeability is only obtained up to about 80%.
一方、ボルト、PC鋼線やラインパイプ等の用途に多く用いられる高強度鋼では、引張強度が780MPa以上、特に980MPa以上になると、鋼中への水素の侵入により水素脆化(酸洗脆性、めっき脆性、遅れ破壊など)が発生することが従来より広く知られている。遅れ破壊は、高強度鋼において腐食環境または雰囲気から発生した水素が、転位、空孔、粒界などの欠陥部へ拡散して材料を脆化させ、応力が付与された状態で破壊を生じる現象のことであり、金属材料の延性や靭性が低下する等の弊害をもたらす。耐水素脆化特性を向上させる技術のほとんどは、ボルト等に用いられる鋼材を対象とするものである。例えば非特許文献1には、金属組織を焼戻しマルテンサイト主体とし、焼戻し軟化抵抗性を示す元素(Cr、Mo、V等)を添加すれば、耐遅れ破壊性の向上に有効であると記載されている。これは、合金炭化物を析出させて水素のトラップサイトとして活用することにより、遅れ破壊形態を粒界から粒内破壊へ移行させて破壊を抑制する技術である。ところが、これらの知見は中炭素鋼に適用するためのものであり、溶接性や加工性が必要な低炭素含有量の薄鋼板にはそのまま活用することができない。
On the other hand, in high-strength steels often used for applications such as bolts, PC steel wires and line pipes, when the tensile strength is 780 MPa or more, particularly 980 MPa or more, hydrogen embrittlement (pickling brittleness, It has been widely known that plating brittleness, delayed fracture, etc.) occur. Delayed fracture is a phenomenon in which hydrogen generated from a corrosive environment or atmosphere in high-strength steel diffuses into defects such as dislocations, vacancies, and grain boundaries, embrittles the material, and breaks when stress is applied. That is, it causes adverse effects such as a decrease in the ductility and toughness of the metal material. Most of the techniques for improving the resistance to hydrogen embrittlement are for steel materials used for bolts and the like. For example, Non-Patent Document 1 describes that if a metal structure is mainly tempered martensite and an element (Cr, Mo, V, etc.) exhibiting temper softening resistance is added, it is effective in improving delayed fracture resistance. ing. This is a technology that suppresses fracture by precipitating alloy carbides and utilizing them as hydrogen trap sites to shift the delayed fracture mode from grain boundaries to intragranular fracture. However, these findings are for application to medium carbon steel, and cannot be used as it is for a thin steel sheet having a low carbon content that requires weldability and workability.
そこで、本出願人らは、炭素量C:0.25超~0.60%を満たし、残部が鉄及び不可避不純物からなる、耐水素脆化特性に優れた超高強度薄鋼板を開発した(特許文献6)。この高強度薄鋼板は、加工率3%の引張加工後の金属組織が、全組織に対する面積率で、残留オーステナイト組織:1%以上、ベイニティックフェライト及びマルテンサイト:合計で80%以上を満たすとともに、前記残留オーステナイト結晶粒の平均軸比(長軸/短軸):5以上を満たすことを特徴とする。
Therefore, the present applicants developed an ultra-high strength thin steel sheet having excellent hydrogen embrittlement resistance, satisfying the carbon content C: more than 0.25 to 0.60% and the balance being iron and inevitable impurities ( Patent Document 6). In this high-strength thin steel sheet, the metal structure after tensile processing with a processing rate of 3% satisfies the area ratio of the entire structure, and the residual austenite structure: 1% or more, bainitic ferrite and martensite: 80% or more in total In addition, the average axial ratio (major axis / minor axis) of the residual austenite crystal grains satisfies 5 or more.
特許文献6記載の薄鋼板は、優れた強度と伸びと耐水素脆化特性を示すものである。しかしながら、特許文献6記載の薄鋼板においても、残留オーステナイトが破壊の起点となり伸びフランジ性を低下させる要因となる。このように、近年、ますます重要視されつつある伸びフランジ性については要望レベル(少なくともTS×λで60000(MPa・%)[Tsの単位:MPa]、望ましくはλ:100%以上)を確実に達成することが難しかった。
The thin steel sheet described in Patent Document 6 exhibits excellent strength, elongation, and hydrogen embrittlement resistance. However, even in the thin steel sheet described in Patent Document 6, retained austenite becomes a starting point of fracture and becomes a factor of reducing stretch flangeability. As described above, the stretch flangeability, which is becoming increasingly important in recent years, is assured of a desired level (at least TS × λ: 60000 (MPa ·%) [unit of Ts: MPa], preferably λ: 100% or more). It was difficult to achieve.
上記のような状況を鑑みて、本発明の目的は、加工性(具体的には伸びフランジ性)を高めた冷延鋼板(冷延薄鋼板)を提供することである。
より具体的には、本発明の一つの目的は、伸びと伸びフランジ性をいずれも高めた、加工性に優れた高強度冷延鋼板を提供することである。また、本発明の他の目的は、優れた耐水素脆化特性を確保しつつ、伸びフランジ性をも高めた高強度冷延鋼板を提供することである。 In view of the above situation, an object of the present invention is to provide a cold-rolled steel sheet (cold-rolled thin steel sheet) with improved workability (specifically, stretch flangeability).
More specifically, one object of the present invention is to provide a high-strength cold-rolled steel sheet excellent in workability, in which both elongation and stretch flangeability are enhanced. Another object of the present invention is to provide a high-strength cold-rolled steel sheet with improved stretch flangeability while ensuring excellent hydrogen embrittlement resistance.
より具体的には、本発明の一つの目的は、伸びと伸びフランジ性をいずれも高めた、加工性に優れた高強度冷延鋼板を提供することである。また、本発明の他の目的は、優れた耐水素脆化特性を確保しつつ、伸びフランジ性をも高めた高強度冷延鋼板を提供することである。 In view of the above situation, an object of the present invention is to provide a cold-rolled steel sheet (cold-rolled thin steel sheet) with improved workability (specifically, stretch flangeability).
More specifically, one object of the present invention is to provide a high-strength cold-rolled steel sheet excellent in workability, in which both elongation and stretch flangeability are enhanced. Another object of the present invention is to provide a high-strength cold-rolled steel sheet with improved stretch flangeability while ensuring excellent hydrogen embrittlement resistance.
上記のような目的を達成した本発明の冷延鋼板は、C:0.03質量%以上、0.30質量%未満、Si:2.0質量%以下(0質量%を含む)、Mn:0.1~2.8質量%、P:0.1質量%以下、S:0.005質量%以下、N:0.01質量%以下、及びAl:0.01~1.00質量%、を含む冷延鋼板において、焼戻しベイナイトの面積率が50%以上(100%を含む)、焼戻しマルテンサイト及び残留オーステナイトの面積率の合計が3%未満(0%を含む)であるとともに残部がフェライトからなる組織を有し、前記焼戻しベイナイト中における析出物の分布状態、及び/または、前記焼戻しベイナイト中におけるセメンタイト粒子の分布状態を制御したことを特徴とする。
The cold-rolled steel sheet of the present invention that has achieved the above-mentioned object is C: 0.03 mass% or more, less than 0.30 mass%, Si: 2.0 mass% or less (including 0 mass%), Mn: 0.1 to 2.8% by mass, P: 0.1% by mass or less, S: 0.005% by mass or less, N: 0.01% by mass or less, and Al: 0.01 to 1.00% by mass, In a cold-rolled steel sheet containing tempered steel, the area ratio of tempered bainite is 50% or more (including 100%), the total area ratio of tempered martensite and retained austenite is less than 3% (including 0%), and the balance is ferrite. And a distribution state of precipitates in the tempered bainite and / or a distribution state of cementite particles in the tempered bainite are controlled.
このような構成を採用することにより、加工性に優れた高強度冷延鋼板、あるいは、優れた耐水素脆化特性を確保しつつ加工性をも高めた高強度冷延鋼板を提供することが可能となる。
By adopting such a configuration, it is possible to provide a high-strength cold-rolled steel sheet with excellent workability or a high-strength cold-rolled steel sheet with improved workability while ensuring excellent hydrogen embrittlement resistance. It becomes possible.
より具体的に、伸びと伸びフランジ性をいずれも高めた、加工性に優れた高強度冷延鋼板を提供するためには、前記した冷延鋼板が、Si:1.0質量%以下(0質量%を含む)、Mn:0.5~2.4質量%、及びAl:0.01質量%以上、0.10質量%未満、を含み、前記焼戻しベイナイトの面積率が70%以上(100%を含む)であり、円相当直径0.1μm以上のセメンタイト粒子が、前記焼戻しベイナイト1μm2当たり3個以下であることが推奨される。
More specifically, in order to provide a high-strength cold-rolled steel sheet excellent in workability, in which both elongation and stretch flangeability are improved, the above-described cold-rolled steel sheet contains Si: 1.0% by mass or less (0 Mn: 0.5 to 2.4% by mass, and Al: 0.01% by mass or more and less than 0.10% by mass, and the area ratio of the tempered bainite is 70% or more (100%). It is recommended that the number of cementite particles having an equivalent circle diameter of 0.1 μm or more be 3 or less per 1 μm 2 of the tempered bainite.
また、優れた耐水素脆化特性を確保しつつ、伸びフランジ性をも高めた高強度冷延鋼板を提供するためには、前記した冷延鋼板において、V:0.001~1.00質量%を含み、円相当直径1~10nmの析出物が、前記焼戻しベイナイト1μm2当たり20個以上であり、Vを含む円相当直径20nm以上の析出物が、前記焼戻しベイナイト1μm2当たり10個以下であることが推奨される。
In addition, in order to provide a high-strength cold-rolled steel sheet with improved stretch embrittlement characteristics while ensuring excellent hydrogen embrittlement resistance, in the above-described cold-rolled steel sheet, V: 0.001 to 1.00 mass 20% or more of precipitates having an equivalent circle diameter of 1 to 10 nm per 1 μm 2 of the tempered bainite, and 10 precipitates or less of equivalent circle diameter of 20 nm or more containing V per 1 μm 2 of the tempered bainite. It is recommended that there be.
このように析出物を制御した発明においては、さらに、円相当直径0.1μm以上のセメンタイト粒子が、前記焼戻しベイナイト1μm2当たり3個以下であることが推奨される。
In the invention in which the precipitates are controlled in this way, it is further recommended that the number of cementite particles having an equivalent circle diameter of 0.1 μm or more is 3 or less per 1 μm 2 of the tempered bainite.
上記した本発明の冷延鋼板は、Cr:0.1~3.0質量%を含むものであると好ましい。
The above-described cold-rolled steel sheet of the present invention preferably contains Cr: 0.1 to 3.0% by mass.
また、上記した本発明の冷延鋼板は、B:0.0002~0.0050質量%を含むとともに、Nb及び/またはTiを、([N]-0.003)/12≦[Nb]/96+[Ti]/48≦([N]+0.01)/12の関係を満たすように含むことが好ましい(ただし、[ ]は各元素の含有量(質量%)を意味する)。
The cold-rolled steel sheet of the present invention described above contains B: 0.0002 to 0.0050 mass%, and Nb and / or Ti is ((N) −0.003) / 12 ≦ [Nb] / It is preferable to include so as to satisfy the relationship of 96+ [Ti] / 48 ≦ ([N] +0.01) / 12 (however, [] means the content (% by mass) of each element).
また、上記した本発明の冷延鋼板は、Mo:0.01~1.0質量%、Cu:0.05~1.0質量%、及びNi:0.05~1.0質量%、の1種以上を含むものであるのも好ましい。
The cold-rolled steel sheet of the present invention described above has Mo: 0.01 to 1.0% by mass, Cu: 0.05 to 1.0% by mass, and Ni: 0.05 to 1.0% by mass. It is also preferable that it contains 1 or more types.
また、上記した本発明の冷延鋼板は、Ca:0.0005~0.01質量%、Mg:0.0005~0.01質量%、及びREM:0.0004~0.01質量%、の1種以上を含むものであるのも好ましい。
The cold-rolled steel sheet of the present invention described above has Ca: 0.0005 to 0.01% by mass, Mg: 0.0005 to 0.01% by mass, and REM: 0.0004 to 0.01% by mass. It is also preferable that it contains 1 or more types.
本発明によれば、焼戻しベイナイト単相組織、またはフェライトと焼戻しベイナイトを主体とする複相組織において破壊の主要原因となっていた、焼戻しマルテンサイトと残留オーステナイトの割合を極力少なくする。同時に、焼戻しベイナイト中に析出した粗大なセメンタイト粒子の存在数を適正に制御すること、及び/または、焼戻しベイナイト中に析出した析出物の分布状態を適正に制御することによって、引張強度(以下、単に「強度」ということあり。)や耐水素脆化特性を確保しつつ、伸びフランジ性を従来鋼よりさらに改善することができる。これらにより、本発明は、加工性に優れた高強度冷延鋼板、或いは加工性と耐水素脆化特性に優れた高強度冷延鋼板を提供できるようになった。
According to the present invention, the ratio of tempered martensite and retained austenite, which is the main cause of fracture in a tempered bainite single phase structure or a multiphase structure mainly composed of ferrite and tempered bainite, is reduced as much as possible. At the same time, by appropriately controlling the number of coarse cementite particles precipitated in tempered bainite and / or appropriately controlling the distribution of precipitates precipitated in tempered bainite, It may be simply referred to as “strength”), and the stretch flangeability can be further improved over conventional steel while ensuring hydrogen embrittlement resistance. Accordingly, the present invention can provide a high-strength cold-rolled steel sheet excellent in workability or a high-strength cold-rolled steel sheet excellent in workability and hydrogen embrittlement resistance.
本発明者らは、焼戻しマルテンサイト(以下、単に「マルテンサイト」ということあり。)に比べ変形能の高い焼戻しベイナイト(以下、単に「ベイナイト」ということあり。)を主体とする組織からなる高強度鋼板に着目した。そして、鋭意検討の結果、本発明者らは、ベイナイト中における析出物やセメンタイト粒子の分布状態を制御することにより、伸びフランジ性を改善し、更に耐水素脆化特性をも改善できることを見出し、本発明を完成するに至った。
The present inventors have a high structure composed mainly of tempered bainite (hereinafter simply referred to as “bainite”), which has a higher deformability than tempered martensite (hereinafter sometimes simply referred to as “martensite”). We focused on the strength steel plate. And as a result of intensive studies, the present inventors have found that by controlling the distribution of precipitates and cementite particles in bainite, it is possible to improve stretch flangeability and further improve hydrogen embrittlement resistance, The present invention has been completed.
具体的には、本発明は、C:0.03質量%以上、0.30質量%未満、Si:2.0質量%以下(0質量%を含む)、Mn:0.1~2.8質量%、P:0.1質量%以下、S:0.005質量%以下、N:0.01質量%以下、及びAl:0.01~1.00質量%、を含む冷延鋼板において、焼戻しベイナイトの面積率が50%以上(100%を含む)、焼戻しマルテンサイト及び残留オーステナイトの面積率の合計が3%未満(0%を含む)であるとともに残部がフェライトからなる組織を有し、前記焼戻しベイナイト中における析出物の分布状態、及び/または、前記焼戻しベイナイト中におけるセメンタイト粒子の分布状態を制御したことを特徴とする冷延鋼板である(以下、この発明を基本発明と呼ぶことがある)。
Specifically, the present invention includes C: 0.03% by mass or more and less than 0.30% by mass, Si: 2.0% by mass or less (including 0% by mass), Mn: 0.1 to 2.8 In a cold-rolled steel sheet containing, by mass, P: 0.1% by mass or less, S: 0.005% by mass or less, N: 0.01% by mass or less, and Al: 0.01 to 1.00% by mass, The area ratio of tempered bainite is 50% or more (including 100%), the total area ratio of tempered martensite and residual austenite is less than 3% (including 0%) and the balance has a structure made of ferrite, A cold-rolled steel sheet characterized by controlling the distribution of precipitates in the tempered bainite and / or the distribution of cementite particles in the tempered bainite (hereinafter, this invention is referred to as a basic invention). is there).
以下、上記基本発明の特徴について説明する。
〔基本発明の組織〕
上述したとおり、本発明鋼板は、焼戻しベイナイト単相、または、フェライトと焼戻しベイナイトを主体とする複相組織をベースとするものである。そして、本発明は特に、焼戻しマルテンサイト組織と残留オーステナイト組織を極力少なくするとともに、前記焼戻しベイナイト中における析出物の分布状態、及び/または、前記焼戻しベイナイト中に存在するセメンタイト粒子の分布状態を制御したことに特徴を有する。 The features of the basic invention will be described below.
[Organization of basic invention]
As described above, the steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite. The present invention particularly reduces the tempered martensite structure and residual austenite structure as much as possible, and controls the distribution of precipitates in the tempered bainite and / or the distribution of cementite particles present in the tempered bainite. It has the characteristics.
〔基本発明の組織〕
上述したとおり、本発明鋼板は、焼戻しベイナイト単相、または、フェライトと焼戻しベイナイトを主体とする複相組織をベースとするものである。そして、本発明は特に、焼戻しマルテンサイト組織と残留オーステナイト組織を極力少なくするとともに、前記焼戻しベイナイト中における析出物の分布状態、及び/または、前記焼戻しベイナイト中に存在するセメンタイト粒子の分布状態を制御したことに特徴を有する。 The features of the basic invention will be described below.
[Organization of basic invention]
As described above, the steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite. The present invention particularly reduces the tempered martensite structure and residual austenite structure as much as possible, and controls the distribution of precipitates in the tempered bainite and / or the distribution of cementite particles present in the tempered bainite. It has the characteristics.
<焼戻しベイナイト:面積率で50%以上(100%を含む)、残部フェライト>
ベイナイトは、強度が高く、かつ、可塑性にも優れる均質な組織である。このような性質を有するベイナイト主体の組織にすることにより、引張強度と伸びを確保しつつ、伸びフランジ性を向上できる。
焼戻しベイナイトの割合が減少すると、組織が不均一になり伸びフランジ性が確保できなくなるので、上記作用を有効に発揮させるため、焼戻しベイナイトの面積率は、50%以上、好ましくは70%以上、さらに好ましくは90%以上(100%を含む)とする。
また、フェライトは、延性は高いものの強度が低いため、フェライトの割合を増加させると伸びは向上するが、強度は低下する。また、フェライトの割合が多くなると、変形時にフェライトにひずみが集中し、フェライトとベイナイトとの界面でのひずみが大きくなり、該界面での亀裂発生が助長されるようになるため、伸びフランジ性が劣化する。よって、延性の観点から、本発明鋼板の残部はフェライトとするが、フェライト面積率は焼戻しベイナイトよりも小さくする。 <Tempered bainite: 50% or more in area ratio (including 100%), remaining ferrite>
Bainite is a homogeneous structure having high strength and excellent plasticity. By using a bainite-based structure having such properties, stretch flangeability can be improved while securing tensile strength and elongation.
When the ratio of tempered bainite is reduced, the structure becomes non-uniform and stretch flangeability cannot be ensured, so that the area ratio of tempered bainite is 50% or more, preferably 70% or more, in order to effectively exhibit the above-described action. Preferably, it is 90% or more (including 100%).
In addition, since ferrite has high ductility but low strength, increasing the proportion of ferrite improves the elongation but decreases the strength. In addition, when the proportion of ferrite increases, strain concentrates on the ferrite during deformation, strain at the interface between ferrite and bainite increases, and cracking at the interface is promoted, so that stretch flangeability is improved. to degrade. Therefore, from the viewpoint of ductility, the balance of the steel sheet of the present invention is ferrite, but the ferrite area ratio is smaller than that of tempered bainite.
ベイナイトは、強度が高く、かつ、可塑性にも優れる均質な組織である。このような性質を有するベイナイト主体の組織にすることにより、引張強度と伸びを確保しつつ、伸びフランジ性を向上できる。
焼戻しベイナイトの割合が減少すると、組織が不均一になり伸びフランジ性が確保できなくなるので、上記作用を有効に発揮させるため、焼戻しベイナイトの面積率は、50%以上、好ましくは70%以上、さらに好ましくは90%以上(100%を含む)とする。
また、フェライトは、延性は高いものの強度が低いため、フェライトの割合を増加させると伸びは向上するが、強度は低下する。また、フェライトの割合が多くなると、変形時にフェライトにひずみが集中し、フェライトとベイナイトとの界面でのひずみが大きくなり、該界面での亀裂発生が助長されるようになるため、伸びフランジ性が劣化する。よって、延性の観点から、本発明鋼板の残部はフェライトとするが、フェライト面積率は焼戻しベイナイトよりも小さくする。 <Tempered bainite: 50% or more in area ratio (including 100%), remaining ferrite>
Bainite is a homogeneous structure having high strength and excellent plasticity. By using a bainite-based structure having such properties, stretch flangeability can be improved while securing tensile strength and elongation.
When the ratio of tempered bainite is reduced, the structure becomes non-uniform and stretch flangeability cannot be ensured, so that the area ratio of tempered bainite is 50% or more, preferably 70% or more, in order to effectively exhibit the above-described action. Preferably, it is 90% or more (including 100%).
In addition, since ferrite has high ductility but low strength, increasing the proportion of ferrite improves the elongation but decreases the strength. In addition, when the proportion of ferrite increases, strain concentrates on the ferrite during deformation, strain at the interface between ferrite and bainite increases, and cracking at the interface is promoted, so that stretch flangeability is improved. to degrade. Therefore, from the viewpoint of ductility, the balance of the steel sheet of the present invention is ferrite, but the ferrite area ratio is smaller than that of tempered bainite.
<焼戻しマルテンサイトと残留オーステナイトとの面積率の合計:3%未満>
本発明に係る高強度冷延鋼板のように合金元素を多量に添加した鋼をベイナイト変態させると、変態速度が遅くなり、ベイナイトだけでなくマルテンサイトも形成されやすくなる。マルテンサイトは硬質であるため、フェライトとマルテンサイトとの界面にひずみが集中して破壊が起こりやすくなり、伸びフランジ性が劣化する。また、残留オーステナイトも、ひずみが加わった際に硬質なマルテンサイトに変態し破壊の起点になるため、やはり伸びフランジ性を劣化させる。したがって、これらの組織の割合をできるだけ少なくすることで伸びフランジ性を改善できる。よって、焼戻しマルテンサイトと残留オーステナイトとの面積率の合計は、3%未満、さらに2%以下、特に1%以下に制限するのが推奨される。
以上のような組織形態を主体とした上で、前記焼戻しベイナイト中における析出物の分布状態、及び/または、前記焼戻しベイナイト中に存在するセメンタイト粒子の分布状態を制御することによって、伸びと伸びフランジ性をいずれも高めた高強度冷延鋼板、或いは、優れた耐水素脆化特性を確保しつつ、伸びフランジ性をも高めた高強度冷延鋼板を提供することが可能となる。 <Total area ratio of tempered martensite and retained austenite: less than 3%>
When steel containing a large amount of alloying elements such as the high-strength cold-rolled steel sheet according to the present invention is bainite transformed, the transformation speed becomes slow, and not only bainite but also martensite is easily formed. Since martensite is hard, strain concentrates on the interface between ferrite and martensite and breakage easily occurs, and stretch flangeability deteriorates. Residual austenite also transforms into hard martensite when strain is applied and becomes the starting point of fracture, so that stretch flangeability is also deteriorated. Therefore, stretch flangeability can be improved by reducing the ratio of these structures as much as possible. Therefore, it is recommended that the total area ratio of tempered martensite and retained austenite be limited to less than 3%, further 2% or less, particularly 1% or less.
By controlling the distribution state of precipitates in the tempered bainite and / or the distribution state of cementite particles present in the tempered bainite on the basis of the above-described structure morphology, elongation and elongation flange are achieved. It is possible to provide a high-strength cold-rolled steel sheet with improved properties, or a high-strength cold-rolled steel sheet with improved stretch flangeability while ensuring excellent hydrogen embrittlement resistance.
本発明に係る高強度冷延鋼板のように合金元素を多量に添加した鋼をベイナイト変態させると、変態速度が遅くなり、ベイナイトだけでなくマルテンサイトも形成されやすくなる。マルテンサイトは硬質であるため、フェライトとマルテンサイトとの界面にひずみが集中して破壊が起こりやすくなり、伸びフランジ性が劣化する。また、残留オーステナイトも、ひずみが加わった際に硬質なマルテンサイトに変態し破壊の起点になるため、やはり伸びフランジ性を劣化させる。したがって、これらの組織の割合をできるだけ少なくすることで伸びフランジ性を改善できる。よって、焼戻しマルテンサイトと残留オーステナイトとの面積率の合計は、3%未満、さらに2%以下、特に1%以下に制限するのが推奨される。
以上のような組織形態を主体とした上で、前記焼戻しベイナイト中における析出物の分布状態、及び/または、前記焼戻しベイナイト中に存在するセメンタイト粒子の分布状態を制御することによって、伸びと伸びフランジ性をいずれも高めた高強度冷延鋼板、或いは、優れた耐水素脆化特性を確保しつつ、伸びフランジ性をも高めた高強度冷延鋼板を提供することが可能となる。 <Total area ratio of tempered martensite and retained austenite: less than 3%>
When steel containing a large amount of alloying elements such as the high-strength cold-rolled steel sheet according to the present invention is bainite transformed, the transformation speed becomes slow, and not only bainite but also martensite is easily formed. Since martensite is hard, strain concentrates on the interface between ferrite and martensite and breakage easily occurs, and stretch flangeability deteriorates. Residual austenite also transforms into hard martensite when strain is applied and becomes the starting point of fracture, so that stretch flangeability is also deteriorated. Therefore, stretch flangeability can be improved by reducing the ratio of these structures as much as possible. Therefore, it is recommended that the total area ratio of tempered martensite and retained austenite be limited to less than 3%, further 2% or less, particularly 1% or less.
By controlling the distribution state of precipitates in the tempered bainite and / or the distribution state of cementite particles present in the tempered bainite on the basis of the above-described structure morphology, elongation and elongation flange are achieved. It is possible to provide a high-strength cold-rolled steel sheet with improved properties, or a high-strength cold-rolled steel sheet with improved stretch flangeability while ensuring excellent hydrogen embrittlement resistance.
以下、焼戻しベイナイト、フェライト、焼戻しマルテンサイトおよび残留オーステナイトの各面積率の各測定方法について説明する。
フェライトの面積率については、まず、各供試鋼板を鏡面研磨し、3%ナイタール液で腐食して金属組織を顕出させた。その後、走査型電子顕微鏡(SEM)にて倍率2000倍で5視野観察し、画像解析によってセメンタイトを含まず等軸状の領域をフェライトとし、全組織に対するフェライト領域の面積比率よりフェライトの面積率を算出した。 Hereinafter, each measuring method of each area ratio of tempered bainite, ferrite, tempered martensite and retained austenite will be described.
Regarding the area ratio of ferrite, first, each test steel sheet was mirror-polished and corroded with a 3% nital solution to reveal a metal structure. Thereafter, five fields of view were observed with a scanning electron microscope (SEM) at a magnification of 2000 times, and the equiaxed region not containing cementite was determined to be ferrite by image analysis, and the area ratio of ferrite was determined from the area ratio of the ferrite region to the entire structure. Calculated.
フェライトの面積率については、まず、各供試鋼板を鏡面研磨し、3%ナイタール液で腐食して金属組織を顕出させた。その後、走査型電子顕微鏡(SEM)にて倍率2000倍で5視野観察し、画像解析によってセメンタイトを含まず等軸状の領域をフェライトとし、全組織に対するフェライト領域の面積比率よりフェライトの面積率を算出した。 Hereinafter, each measuring method of each area ratio of tempered bainite, ferrite, tempered martensite and retained austenite will be described.
Regarding the area ratio of ferrite, first, each test steel sheet was mirror-polished and corroded with a 3% nital solution to reveal a metal structure. Thereafter, five fields of view were observed with a scanning electron microscope (SEM) at a magnification of 2000 times, and the equiaxed region not containing cementite was determined to be ferrite by image analysis, and the area ratio of ferrite was determined from the area ratio of the ferrite region to the entire structure. Calculated.
焼戻しマルテンサイトと残留オーステナイトとの合計面積率については、まず、各供試鋼板を鏡面研磨し、レペラ腐食液を用いて腐食して金属組織を顕出させた。その後、走査型電子顕微鏡(SEM)にて倍率2000倍で5視野観察し、画像解析によって画像のコントラストから白く見える領域を焼戻しマルテンサイトと残留オーステナイトとし、全組織に対するこの領域の面積比率より焼戻しマルテンサイトと残留オーステナイトとの合計面積率を算出した。
Regarding the total area ratio of tempered martensite and retained austenite, first, each test steel sheet was mirror-polished and corroded with a repeller corrosive solution to reveal a metal structure. Thereafter, five fields of view were observed with a scanning electron microscope (SEM) at a magnification of 2000 times, and the area that appeared white from the image contrast by image analysis was made tempered martensite and retained austenite. The total area ratio of sites and retained austenite was calculated.
焼戻しベイナイトの面積率については、フェライトとマルテンサイトと残留オーステナイト以外の領域をベイナイトとして、上記でそれぞれ算出したフェライトの面積率、並びに焼戻しマルテンサイト及び残留オーステナイトの合計面積率を100%から差し引くことにより求めた。
Regarding the area ratio of tempered bainite, by subtracting the area ratio of ferrite calculated above and the total area ratio of tempered martensite and retained austenite from 100%, with the area other than ferrite, martensite and retained austenite as bainite. Asked.
次に、本発明鋼板を構成する基本成分組成について説明する。
〔基本発明の成分組成〕
(C:0.03質量%以上、0.30質量%未満)
Cは、ベイナイトの面積率に影響し、強度および伸びフランジ性に影響する重要な元素である。C含有量が0.03質量%未満ではベイナイト面積率が不足するため強度が確保できない。一方、C含有量が0.30質量%超では焼入れ性が高くなりすぎ、ベイナイトへの変態が抑制されすぎて、マルテンサイトやオーステナイトの割合が増加し、伸びフランジ性が確保できない。C含有量の範囲は、好ましくは0.05~0.25質量%、さらに好ましくは0.07~0.20質量%である。 Next, the basic component composition constituting the steel sheet of the present invention will be described.
[Component composition of the basic invention]
(C: 0.03 mass% or more, less than 0.30 mass%)
C is an important element that affects the area ratio of bainite and affects strength and stretch flangeability. If the C content is less than 0.03% by mass, the bainite area ratio is insufficient, so that the strength cannot be ensured. On the other hand, if the C content exceeds 0.30% by mass, the hardenability becomes too high, the transformation to bainite is too suppressed, the ratio of martensite and austenite increases, and stretch flangeability cannot be ensured. The range of the C content is preferably 0.05 to 0.25% by mass, more preferably 0.07 to 0.20% by mass.
〔基本発明の成分組成〕
(C:0.03質量%以上、0.30質量%未満)
Cは、ベイナイトの面積率に影響し、強度および伸びフランジ性に影響する重要な元素である。C含有量が0.03質量%未満ではベイナイト面積率が不足するため強度が確保できない。一方、C含有量が0.30質量%超では焼入れ性が高くなりすぎ、ベイナイトへの変態が抑制されすぎて、マルテンサイトやオーステナイトの割合が増加し、伸びフランジ性が確保できない。C含有量の範囲は、好ましくは0.05~0.25質量%、さらに好ましくは0.07~0.20質量%である。 Next, the basic component composition constituting the steel sheet of the present invention will be described.
[Component composition of the basic invention]
(C: 0.03 mass% or more, less than 0.30 mass%)
C is an important element that affects the area ratio of bainite and affects strength and stretch flangeability. If the C content is less than 0.03% by mass, the bainite area ratio is insufficient, so that the strength cannot be ensured. On the other hand, if the C content exceeds 0.30% by mass, the hardenability becomes too high, the transformation to bainite is too suppressed, the ratio of martensite and austenite increases, and stretch flangeability cannot be ensured. The range of the C content is preferably 0.05 to 0.25% by mass, more preferably 0.07 to 0.20% by mass.
(Si:2.0質量%以下(0質量%を含む))
Siは、固溶強化元素として、伸びを劣化させずに高強度化できる有用な元素である。Si含有量が2.0質量%超では加熱時におけるオーステナイトの形成を阻害するため、ベイナイトの面積率を確保できず、伸びフランジ性を確保できない。また、この場合には、セメンタイトの形成を阻害し、残留オーステナイト(残留γ)やマルテンサイトを残存させやすくなる。Si含有量の範囲は、好ましくは1.8質量%以下、さらに好ましくは1.5質量%以下(0質量%を含む)である。 (Si: 2.0 mass% or less (including 0 mass%))
Si is a useful element that can increase strength without deteriorating elongation as a solid solution strengthening element. If the Si content exceeds 2.0% by mass, the formation of austenite during heating is inhibited, so that the area ratio of bainite cannot be ensured and stretch flangeability cannot be ensured. In this case, the formation of cementite is inhibited, and retained austenite (residual γ) and martensite are likely to remain. The range of the Si content is preferably 1.8% by mass or less, more preferably 1.5% by mass or less (including 0% by mass).
Siは、固溶強化元素として、伸びを劣化させずに高強度化できる有用な元素である。Si含有量が2.0質量%超では加熱時におけるオーステナイトの形成を阻害するため、ベイナイトの面積率を確保できず、伸びフランジ性を確保できない。また、この場合には、セメンタイトの形成を阻害し、残留オーステナイト(残留γ)やマルテンサイトを残存させやすくなる。Si含有量の範囲は、好ましくは1.8質量%以下、さらに好ましくは1.5質量%以下(0質量%を含む)である。 (Si: 2.0 mass% or less (including 0 mass%))
Si is a useful element that can increase strength without deteriorating elongation as a solid solution strengthening element. If the Si content exceeds 2.0% by mass, the formation of austenite during heating is inhibited, so that the area ratio of bainite cannot be ensured and stretch flangeability cannot be ensured. In this case, the formation of cementite is inhibited, and retained austenite (residual γ) and martensite are likely to remain. The range of the Si content is preferably 1.8% by mass or less, more preferably 1.5% by mass or less (including 0% by mass).
(Mn:0.1~2.8質量%)
Mnは、焼入れ性を高めて焼鈍の際の加熱後の急速冷却時にベイナイト面積率を確保することで、強度と伸びフランジ性を高める効果を有する有用な元素である。Mn含有量が0.1質量%未満では、ベイナイト面積率が不足するため、強度と伸びフランジ性が確保できない。一方、Mn含有量が2.8質量%超では、ベイナイト変態が抑制され、マルテンサイトやオーステナイトが残存し、伸びフランジ性を低下させる。Mn含有量の範囲は、好ましくは0.30~2.5質量%、さらに好ましくは0.50~2.2質量%である。 (Mn: 0.1 to 2.8% by mass)
Mn is a useful element having an effect of enhancing the strength and stretch flangeability by increasing the hardenability and securing the bainite area ratio during rapid cooling after heating during annealing. If the Mn content is less than 0.1% by mass, the bainite area ratio is insufficient, so that the strength and stretch flangeability cannot be ensured. On the other hand, if the Mn content exceeds 2.8% by mass, bainite transformation is suppressed, martensite and austenite remain, and stretch flangeability is deteriorated. The range of the Mn content is preferably 0.30 to 2.5% by mass, more preferably 0.50 to 2.2% by mass.
Mnは、焼入れ性を高めて焼鈍の際の加熱後の急速冷却時にベイナイト面積率を確保することで、強度と伸びフランジ性を高める効果を有する有用な元素である。Mn含有量が0.1質量%未満では、ベイナイト面積率が不足するため、強度と伸びフランジ性が確保できない。一方、Mn含有量が2.8質量%超では、ベイナイト変態が抑制され、マルテンサイトやオーステナイトが残存し、伸びフランジ性を低下させる。Mn含有量の範囲は、好ましくは0.30~2.5質量%、さらに好ましくは0.50~2.2質量%である。 (Mn: 0.1 to 2.8% by mass)
Mn is a useful element having an effect of enhancing the strength and stretch flangeability by increasing the hardenability and securing the bainite area ratio during rapid cooling after heating during annealing. If the Mn content is less than 0.1% by mass, the bainite area ratio is insufficient, so that the strength and stretch flangeability cannot be ensured. On the other hand, if the Mn content exceeds 2.8% by mass, bainite transformation is suppressed, martensite and austenite remain, and stretch flangeability is deteriorated. The range of the Mn content is preferably 0.30 to 2.5% by mass, more preferably 0.50 to 2.2% by mass.
(P:0.1質量%以下)
Pは不純物元素として不可避的に存在し、固溶強化により強度の上昇に寄与するが、旧オーステナイト粒界に偏析し、粒界を脆化させることで伸びフランジ性を劣化させる。従って、P含有量は、0.1質量%以下である。P含有量は、好ましくは0.05質量%以下、さらに好ましくは0.03質量%以下である。 (P: 0.1% by mass or less)
P is unavoidably present as an impurity element and contributes to an increase in strength by solid solution strengthening, but segregates at the prior austenite grain boundaries and causes the grain boundaries to become brittle, thereby deteriorating stretch flangeability. Therefore, the P content is 0.1% by mass or less. P content becomes like this. Preferably it is 0.05 mass% or less, More preferably, it is 0.03 mass% or less.
Pは不純物元素として不可避的に存在し、固溶強化により強度の上昇に寄与するが、旧オーステナイト粒界に偏析し、粒界を脆化させることで伸びフランジ性を劣化させる。従って、P含有量は、0.1質量%以下である。P含有量は、好ましくは0.05質量%以下、さらに好ましくは0.03質量%以下である。 (P: 0.1% by mass or less)
P is unavoidably present as an impurity element and contributes to an increase in strength by solid solution strengthening, but segregates at the prior austenite grain boundaries and causes the grain boundaries to become brittle, thereby deteriorating stretch flangeability. Therefore, the P content is 0.1% by mass or less. P content becomes like this. Preferably it is 0.05 mass% or less, More preferably, it is 0.03 mass% or less.
(S:0.005質量%以下)
Sも不純物元素として不可避的に存在し、MnS介在物を形成し、穴拡げ時に亀裂の起点となることで伸びフランジ性を低下させる。従って、P含有量は、0.005質量%以下であり、より好ましくは0.003質量%以下である。 (S: 0.005 mass% or less)
S is also unavoidably present as an impurity element, forms MnS inclusions, and becomes a starting point of a crack when the hole is expanded, thereby reducing stretch flangeability. Therefore, the P content is 0.005% by mass or less, more preferably 0.003% by mass or less.
Sも不純物元素として不可避的に存在し、MnS介在物を形成し、穴拡げ時に亀裂の起点となることで伸びフランジ性を低下させる。従って、P含有量は、0.005質量%以下であり、より好ましくは0.003質量%以下である。 (S: 0.005 mass% or less)
S is also unavoidably present as an impurity element, forms MnS inclusions, and becomes a starting point of a crack when the hole is expanded, thereby reducing stretch flangeability. Therefore, the P content is 0.005% by mass or less, more preferably 0.003% by mass or less.
(N:0.01質量%以下)
Nも不純物元素として不可避的に存在し、ひずみ時効により伸びと伸びフランジ性を低下させる。そのため、N含有量は低い方が好ましく、0.01質量%以下とする。 (N: 0.01% by mass or less)
N is inevitably present as an impurity element, and the elongation and stretch flangeability are lowered by strain aging. For this reason, the N content is preferably as low as 0.01% by mass or less.
Nも不純物元素として不可避的に存在し、ひずみ時効により伸びと伸びフランジ性を低下させる。そのため、N含有量は低い方が好ましく、0.01質量%以下とする。 (N: 0.01% by mass or less)
N is inevitably present as an impurity element, and the elongation and stretch flangeability are lowered by strain aging. For this reason, the N content is preferably as low as 0.01% by mass or less.
(Al:0.01~1.00質量%)
AlはNと結合してAlNを形成し、歪時効の発生に寄与する固溶Nを低減させることで伸びフランジ性の劣化を防止するとともに、固溶強化により強度向上に寄与する。Al含有量が0.01質量%未満では、鋼中に固溶Nが残存するため、ひずみ時効が起こり、伸びと伸びフランジ性を確保できない。一方、Al含有量が1.00質量%超では、加熱時におけるオーステナイトの形成を阻害するため、ベイナイトの面積率を確保できず、伸びフランジ性を確保できなくなる。 (Al: 0.01 to 1.00% by mass)
Al combines with N to form AlN and reduces the solid solution N that contributes to the occurrence of strain aging, thereby preventing the stretch flangeability from deteriorating and contributing to the strength improvement by solid solution strengthening. If the Al content is less than 0.01% by mass, solid solution N remains in the steel, strain aging occurs, and elongation and stretch flangeability cannot be ensured. On the other hand, if the Al content exceeds 1.00% by mass, the formation of austenite during heating is inhibited, so that the area ratio of bainite cannot be ensured and stretch flangeability cannot be ensured.
AlはNと結合してAlNを形成し、歪時効の発生に寄与する固溶Nを低減させることで伸びフランジ性の劣化を防止するとともに、固溶強化により強度向上に寄与する。Al含有量が0.01質量%未満では、鋼中に固溶Nが残存するため、ひずみ時効が起こり、伸びと伸びフランジ性を確保できない。一方、Al含有量が1.00質量%超では、加熱時におけるオーステナイトの形成を阻害するため、ベイナイトの面積率を確保できず、伸びフランジ性を確保できなくなる。 (Al: 0.01 to 1.00% by mass)
Al combines with N to form AlN and reduces the solid solution N that contributes to the occurrence of strain aging, thereby preventing the stretch flangeability from deteriorating and contributing to the strength improvement by solid solution strengthening. If the Al content is less than 0.01% by mass, solid solution N remains in the steel, strain aging occurs, and elongation and stretch flangeability cannot be ensured. On the other hand, if the Al content exceeds 1.00% by mass, the formation of austenite during heating is inhibited, so that the area ratio of bainite cannot be ensured and stretch flangeability cannot be ensured.
次に、伸びと伸びフランジ性をいずれも高めた、加工性に優れた高強度冷延鋼板について、より具体的に説明する。
本発明者らは、焼戻しマルテンサイトに比べ変形能の高い焼戻しベイナイト組織を主要組織とし、該ベイナイト組織にフェライト組織を必要に応じて導入することで伸びを確保した。その一方で、本発明者らは、破壊の主要原因である焼戻しマルテンサイトと残留オーステナイト(以下、「残留γ」と表記することあり。)の割合を極力少なくするとともに、破壊の他の主要原因である焼戻しベイナイト中に析出したセメンタイト粒子のサイズとその存在数を適正に制御することで、前記要望レベル、即ち、引張強度800MPa級以上の鋼板に対して全伸び10%以上で穴広げ率90%以上の伸びフランジ性を確保できることを見出した。すなわち、伸びと伸びフランジ性をいずれも高めた、加工性に優れた高強度冷延鋼板は、前記した基本発明をベースとして、Si:1.0質量%以下(0質量%を含む)、Mn:0.5~2.4質量%、及びAl:0.01質量%以上、0.10質量%未満を含み、前記焼戻しベイナイトの面積率が70%以上(100%を含む)であり、円相当直径0.1μm以上のセメンタイト粒子が、前記焼戻しベイナイト1μm2当たり3個以下である冷延鋼板である(以下、この発明を第1発明と呼ぶことがある)。 Next, the high-strength cold-rolled steel sheet excellent in workability, in which both elongation and stretch flangeability are improved, will be described more specifically.
The inventors of the present invention ensured elongation by using a tempered bainite structure having a higher deformability than tempered martensite as a main structure and introducing a ferrite structure into the bainite structure as necessary. On the other hand, the present inventors reduced the ratio of tempered martensite and retained austenite (hereinafter, sometimes referred to as “residual γ”), which is the main cause of destruction, and other main causes of destruction. By appropriately controlling the size and the number of the cementite particles precipitated in the tempered bainite, the hole expansion ratio is 90% at a total elongation of 10% or more with respect to the steel sheet having the desired level, that is, the tensile strength of 800 MPa class or more. It has been found that stretch flangeability of at least% can be secured. That is, a high-strength cold-rolled steel sheet having both improved elongation and flangeability and excellent workability is based on the basic invention described above, Si: 1.0 mass% or less (including 0 mass%), Mn : 0.5 to 2.4% by mass and Al: 0.01% by mass or more and less than 0.10% by mass, the area ratio of the tempered bainite is 70% or more (including 100%), This is a cold-rolled steel sheet having 3 or less cementite particles having an equivalent diameter of 0.1 μm or more per 1 μm 2 of the tempered bainite (hereinafter, the present invention may be referred to as the first invention).
本発明者らは、焼戻しマルテンサイトに比べ変形能の高い焼戻しベイナイト組織を主要組織とし、該ベイナイト組織にフェライト組織を必要に応じて導入することで伸びを確保した。その一方で、本発明者らは、破壊の主要原因である焼戻しマルテンサイトと残留オーステナイト(以下、「残留γ」と表記することあり。)の割合を極力少なくするとともに、破壊の他の主要原因である焼戻しベイナイト中に析出したセメンタイト粒子のサイズとその存在数を適正に制御することで、前記要望レベル、即ち、引張強度800MPa級以上の鋼板に対して全伸び10%以上で穴広げ率90%以上の伸びフランジ性を確保できることを見出した。すなわち、伸びと伸びフランジ性をいずれも高めた、加工性に優れた高強度冷延鋼板は、前記した基本発明をベースとして、Si:1.0質量%以下(0質量%を含む)、Mn:0.5~2.4質量%、及びAl:0.01質量%以上、0.10質量%未満を含み、前記焼戻しベイナイトの面積率が70%以上(100%を含む)であり、円相当直径0.1μm以上のセメンタイト粒子が、前記焼戻しベイナイト1μm2当たり3個以下である冷延鋼板である(以下、この発明を第1発明と呼ぶことがある)。 Next, the high-strength cold-rolled steel sheet excellent in workability, in which both elongation and stretch flangeability are improved, will be described more specifically.
The inventors of the present invention ensured elongation by using a tempered bainite structure having a higher deformability than tempered martensite as a main structure and introducing a ferrite structure into the bainite structure as necessary. On the other hand, the present inventors reduced the ratio of tempered martensite and retained austenite (hereinafter, sometimes referred to as “residual γ”), which is the main cause of destruction, and other main causes of destruction. By appropriately controlling the size and the number of the cementite particles precipitated in the tempered bainite, the hole expansion ratio is 90% at a total elongation of 10% or more with respect to the steel sheet having the desired level, that is, the tensile strength of 800 MPa class or more. It has been found that stretch flangeability of at least% can be secured. That is, a high-strength cold-rolled steel sheet having both improved elongation and flangeability and excellent workability is based on the basic invention described above, Si: 1.0 mass% or less (including 0 mass%), Mn : 0.5 to 2.4% by mass and Al: 0.01% by mass or more and less than 0.10% by mass, the area ratio of the tempered bainite is 70% or more (including 100%), This is a cold-rolled steel sheet having 3 or less cementite particles having an equivalent diameter of 0.1 μm or more per 1 μm 2 of the tempered bainite (hereinafter, the present invention may be referred to as the first invention).
以下、第1発明を特徴づける組織について説明する。
〔第1発明の組織〕
本発明鋼板は、焼戻しベイナイト単相、または、フェライトと焼戻しベイナイトを主体とする複相組織をベースとするものであるが、特に、焼戻しマルテンサイト組織と残留オーステナイト組織を極力少なくするとともに、焼戻しベイナイト中に析出した粗大なセメンタイト粒子の存在数が制御されている点を特徴とする。 Hereinafter, the organization characterizing the first invention will be described.
[Organization of the first invention]
The steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite. In particular, while reducing the tempered martensite structure and the retained austenite structure as much as possible, the tempered bainite It is characterized in that the number of coarse cementite particles precipitated therein is controlled.
〔第1発明の組織〕
本発明鋼板は、焼戻しベイナイト単相、または、フェライトと焼戻しベイナイトを主体とする複相組織をベースとするものであるが、特に、焼戻しマルテンサイト組織と残留オーステナイト組織を極力少なくするとともに、焼戻しベイナイト中に析出した粗大なセメンタイト粒子の存在数が制御されている点を特徴とする。 Hereinafter, the organization characterizing the first invention will be described.
[Organization of the first invention]
The steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite. In particular, while reducing the tempered martensite structure and the retained austenite structure as much as possible, the tempered bainite It is characterized in that the number of coarse cementite particles precipitated therein is controlled.
<焼戻しベイナイト:面積率で70%以上(100%を含む)>
ベイナイトは、強度が高く、かつ、可塑性にも優れる均質な組織である。本発明鋼板は、このような性質を有するベイナイト主体の組織にすることにより、引張強度と伸びを確保しつつ、伸びフランジ性を向上できる。焼戻しベイナイトの割合が減少すると組織が不均一になり、伸びフランジ性が確保できなくなるので、上記作用を有効に発揮させるため、焼戻しベイナイトの面積率は、70%以上、好ましくは80%以上、さらに好ましくは90%以上(100%を含む)とする。 <Tempered bainite: 70% or more in area ratio (including 100%)>
Bainite is a homogeneous structure having high strength and excellent plasticity. The steel sheet of the present invention can improve stretch flangeability while securing tensile strength and elongation by using a bainite-based structure having such properties. When the ratio of tempered bainite decreases, the structure becomes non-uniform and stretch flangeability cannot be ensured. Therefore, in order to effectively exhibit the above action, the area ratio of tempered bainite is 70% or more, preferably 80% or more. Preferably, it is 90% or more (including 100%).
ベイナイトは、強度が高く、かつ、可塑性にも優れる均質な組織である。本発明鋼板は、このような性質を有するベイナイト主体の組織にすることにより、引張強度と伸びを確保しつつ、伸びフランジ性を向上できる。焼戻しベイナイトの割合が減少すると組織が不均一になり、伸びフランジ性が確保できなくなるので、上記作用を有効に発揮させるため、焼戻しベイナイトの面積率は、70%以上、好ましくは80%以上、さらに好ましくは90%以上(100%を含む)とする。 <Tempered bainite: 70% or more in area ratio (including 100%)>
Bainite is a homogeneous structure having high strength and excellent plasticity. The steel sheet of the present invention can improve stretch flangeability while securing tensile strength and elongation by using a bainite-based structure having such properties. When the ratio of tempered bainite decreases, the structure becomes non-uniform and stretch flangeability cannot be ensured. Therefore, in order to effectively exhibit the above action, the area ratio of tempered bainite is 70% or more, preferably 80% or more. Preferably, it is 90% or more (including 100%).
<上記焼戻しベイナイト中に存在する、円相当直径0.1μm以上のセメンタイト粒子:焼戻しベイナイト1μm2当たり3個以下>
従来の高強度冷延鋼板(特許文献4、5参照)のようなベイナイトを主要組織とする鋼の場合、通常、焼戻しマルテンサイトや残留オーステナイトが形成されやすく、これらの組織が破壊の起点となるため、焼戻しの際にベイナイト中に析出したセメンタイト粒子の分散状態は伸びフランジ性にあまり影響を与えない。しかし、焼戻しマルテンサイトおよび残留オーステナイトが少なくなると変形時のおける破壊の起点が、ベイナイト中に析出したセメンタイト粒子に遷移するため、ベイナイト中におけるセメンタイト粒子の存在状態が伸びフランジ性を律速するようになる。このため、本発明に係る高強度冷延鋼板のように焼戻しマルテンサイトおよび残留オーステナイトの形成を極力抑制した鋼の場合は、破壊の起点となるセメンタイト粒子の析出状態を制御することで伸びフランジ性を調整することが可能となる。なお、セメンタイト粒子のうち、破壊の起点として働くのは大きい粒子だけであるので、粗大なセメンタイト粒子の数を減少させることにより所定の伸びフランジ性にまで改善することができる。
上記作用を有効に発揮させるため、焼戻しベイナイト中に存在する、円相当直径0.1μm以上のセメンタイト粒子は、該焼戻しベイナイト1μm2当たり3個以下、好ましくは2.4個以下、さらに好ましくは1.6個以下とする。 <Cementite particles with an equivalent circle diameter of 0.1 μm or more present in the tempered bainite: 3 or less per 1 μm 2 of tempered bainite>
In the case of a steel having bainite as a main structure, such as conventional high-strength cold-rolled steel sheets (see Patent Documents 4 and 5), tempered martensite and retained austenite are usually easily formed, and these structures serve as starting points for fracture. Therefore, the dispersion state of the cementite particles precipitated in the bainite during tempering does not significantly affect the stretch flangeability. However, when tempered martensite and retained austenite are reduced, the starting point of fracture during deformation transitions to cementite particles precipitated in bainite, so that the presence state of cementite particles in bainite determines the stretch flangeability. . For this reason, in the case of steel that suppresses the formation of tempered martensite and retained austenite as much as possible, such as the high-strength cold-rolled steel sheet according to the present invention, stretch flangeability is achieved by controlling the precipitation state of cementite particles that are the starting point of fracture. Can be adjusted. Of the cementite particles, only large particles serve as the starting point of fracture, so that the number of coarse cementite particles can be reduced to improve the predetermined stretch flangeability.
In order to effectively exert the above action, the cementite particles having an equivalent circle diameter of 0.1 μm or more present in the tempered bainite are 3 or less, preferably 2.4 or less, more preferably 1 per 1 μm 2 of the tempered bainite. 6 or less.
従来の高強度冷延鋼板(特許文献4、5参照)のようなベイナイトを主要組織とする鋼の場合、通常、焼戻しマルテンサイトや残留オーステナイトが形成されやすく、これらの組織が破壊の起点となるため、焼戻しの際にベイナイト中に析出したセメンタイト粒子の分散状態は伸びフランジ性にあまり影響を与えない。しかし、焼戻しマルテンサイトおよび残留オーステナイトが少なくなると変形時のおける破壊の起点が、ベイナイト中に析出したセメンタイト粒子に遷移するため、ベイナイト中におけるセメンタイト粒子の存在状態が伸びフランジ性を律速するようになる。このため、本発明に係る高強度冷延鋼板のように焼戻しマルテンサイトおよび残留オーステナイトの形成を極力抑制した鋼の場合は、破壊の起点となるセメンタイト粒子の析出状態を制御することで伸びフランジ性を調整することが可能となる。なお、セメンタイト粒子のうち、破壊の起点として働くのは大きい粒子だけであるので、粗大なセメンタイト粒子の数を減少させることにより所定の伸びフランジ性にまで改善することができる。
上記作用を有効に発揮させるため、焼戻しベイナイト中に存在する、円相当直径0.1μm以上のセメンタイト粒子は、該焼戻しベイナイト1μm2当たり3個以下、好ましくは2.4個以下、さらに好ましくは1.6個以下とする。 <Cementite particles with an equivalent circle diameter of 0.1 μm or more present in the tempered bainite: 3 or less per 1 μm 2 of tempered bainite>
In the case of a steel having bainite as a main structure, such as conventional high-strength cold-rolled steel sheets (see Patent Documents 4 and 5), tempered martensite and retained austenite are usually easily formed, and these structures serve as starting points for fracture. Therefore, the dispersion state of the cementite particles precipitated in the bainite during tempering does not significantly affect the stretch flangeability. However, when tempered martensite and retained austenite are reduced, the starting point of fracture during deformation transitions to cementite particles precipitated in bainite, so that the presence state of cementite particles in bainite determines the stretch flangeability. . For this reason, in the case of steel that suppresses the formation of tempered martensite and retained austenite as much as possible, such as the high-strength cold-rolled steel sheet according to the present invention, stretch flangeability is achieved by controlling the precipitation state of cementite particles that are the starting point of fracture. Can be adjusted. Of the cementite particles, only large particles serve as the starting point of fracture, so that the number of coarse cementite particles can be reduced to improve the predetermined stretch flangeability.
In order to effectively exert the above action, the cementite particles having an equivalent circle diameter of 0.1 μm or more present in the tempered bainite are 3 or less, preferably 2.4 or less, more preferably 1 per 1 μm 2 of the tempered bainite. 6 or less.
以下、セメンタイト粒子のサイズおよびその存在数の各測定方法について説明する。
まず、各供試鋼板を鏡面研磨し、3%ナイタールで腐食して金属組織を顕出させた後、ベイナイト内部の領域を解析できるよう、100μm2領域の視野について倍率10000倍の走査型電子顕微鏡(SEM)像を観察した。そして、画像のコントラストから白い部分をセメンタイト粒子と判別してマーキングし、画像解析ソフトにて、前記マーキングした各セメンタイト粒子の面積から円相当直径を算出するとともに、単位面積あたりに存在する所定のサイズのセメンタイト粒子の個数を求めた。 Hereinafter, each measuring method of the size of cementite particles and the number thereof will be described.
First, each specimen steel plate was mirror-polished and corroded with 3% nital to reveal the metal structure, and then a scanning electron microscope with a magnification of 10,000 times with respect to the field of view of 100 μm 2 so that the region inside the bainite could be analyzed. (SEM) images were observed. Then, the white portion is marked and marked as cementite particles from the contrast of the image, and with the image analysis software, the equivalent circle diameter is calculated from the area of each marked cementite particle, and a predetermined size existing per unit area The number of cementite particles was determined.
まず、各供試鋼板を鏡面研磨し、3%ナイタールで腐食して金属組織を顕出させた後、ベイナイト内部の領域を解析できるよう、100μm2領域の視野について倍率10000倍の走査型電子顕微鏡(SEM)像を観察した。そして、画像のコントラストから白い部分をセメンタイト粒子と判別してマーキングし、画像解析ソフトにて、前記マーキングした各セメンタイト粒子の面積から円相当直径を算出するとともに、単位面積あたりに存在する所定のサイズのセメンタイト粒子の個数を求めた。 Hereinafter, each measuring method of the size of cementite particles and the number thereof will be described.
First, each specimen steel plate was mirror-polished and corroded with 3% nital to reveal the metal structure, and then a scanning electron microscope with a magnification of 10,000 times with respect to the field of view of 100 μm 2 so that the region inside the bainite could be analyzed. (SEM) images were observed. Then, the white portion is marked and marked as cementite particles from the contrast of the image, and with the image analysis software, the equivalent circle diameter is calculated from the area of each marked cementite particle, and a predetermined size existing per unit area The number of cementite particles was determined.
次に、第1発明を構成する成分組成のうち、基本発明と異なる点について説明する。
Next, the differences from the basic invention among the component compositions constituting the first invention will be described.
(Si:1.0質量%以下(0質量%を含む))
Siは、固溶強化元素として、伸びを劣化させずに強度を高めるとともに、焼戻し時における、ベイナイト中に存在するセメンタイト粒子の粗大化を抑制する作用も有する。Siは、このような粗大なセメンタイト粒子の生成を防止することで、伸びフランジ性を向上させる効果も有する。しかしながら、Siは焼戻しマルテンサイトや残留オーステナイトの形成を助長するため、Si含有量を1.0質量%以下に制限する必要がある。Si含有量の範囲は、好ましくは0.5質量%以下、さらに好ましくは0.2質量%以下(0質量%を含む)である。 (Si: 1.0% by mass or less (including 0% by mass))
Si, as a solid solution strengthening element, has the effect of increasing strength without deteriorating elongation and suppressing the coarsening of cementite particles present in bainite during tempering. Si also has the effect of improving stretch flangeability by preventing the formation of such coarse cementite particles. However, since Si promotes the formation of tempered martensite and retained austenite, it is necessary to limit the Si content to 1.0 mass% or less. The range of Si content is preferably 0.5% by mass or less, more preferably 0.2% by mass or less (including 0% by mass).
Siは、固溶強化元素として、伸びを劣化させずに強度を高めるとともに、焼戻し時における、ベイナイト中に存在するセメンタイト粒子の粗大化を抑制する作用も有する。Siは、このような粗大なセメンタイト粒子の生成を防止することで、伸びフランジ性を向上させる効果も有する。しかしながら、Siは焼戻しマルテンサイトや残留オーステナイトの形成を助長するため、Si含有量を1.0質量%以下に制限する必要がある。Si含有量の範囲は、好ましくは0.5質量%以下、さらに好ましくは0.2質量%以下(0質量%を含む)である。 (Si: 1.0% by mass or less (including 0% by mass))
Si, as a solid solution strengthening element, has the effect of increasing strength without deteriorating elongation and suppressing the coarsening of cementite particles present in bainite during tempering. Si also has the effect of improving stretch flangeability by preventing the formation of such coarse cementite particles. However, since Si promotes the formation of tempered martensite and retained austenite, it is necessary to limit the Si content to 1.0 mass% or less. The range of Si content is preferably 0.5% by mass or less, more preferably 0.2% by mass or less (including 0% by mass).
(Mn:0.5~2.4質量%)
Mnは、Siと同様に固溶強化元素として、伸びを劣化させずに強度を高めるとともに、焼入れ性を高めてベイナイト面積率の確保に寄与し、強度と伸びフランジ性を向上させる効果も有する有用な元素である。Mn含有量が0.5質量%未満では、焼入れ性が不足してベイナイト面積率が確保できなくなり、強度が確保できなくなる。一方、Mn含有量が2.4質量%超であると、焼入れ性が高くなりすぎてマルテンサイトが過剰に形成され、伸びフランジ性が劣化する。Mn含有量の範囲は、好ましくは0.8~3.0質量%、さらに好ましくは1.0~2.2質量%である。 (Mn: 0.5 to 2.4% by mass)
Mn is a solid solution strengthening element similar to Si, increasing strength without deteriorating elongation, increasing hardenability and contributing to securing the bainite area ratio, and also having the effect of improving strength and stretch flangeability Element. If the Mn content is less than 0.5% by mass, the hardenability is insufficient, the bainite area ratio cannot be secured, and the strength cannot be secured. On the other hand, if the Mn content is more than 2.4% by mass, the hardenability becomes too high, and martensite is excessively formed, and the stretch flangeability deteriorates. The range of the Mn content is preferably 0.8 to 3.0% by mass, more preferably 1.0 to 2.2% by mass.
Mnは、Siと同様に固溶強化元素として、伸びを劣化させずに強度を高めるとともに、焼入れ性を高めてベイナイト面積率の確保に寄与し、強度と伸びフランジ性を向上させる効果も有する有用な元素である。Mn含有量が0.5質量%未満では、焼入れ性が不足してベイナイト面積率が確保できなくなり、強度が確保できなくなる。一方、Mn含有量が2.4質量%超であると、焼入れ性が高くなりすぎてマルテンサイトが過剰に形成され、伸びフランジ性が劣化する。Mn含有量の範囲は、好ましくは0.8~3.0質量%、さらに好ましくは1.0~2.2質量%である。 (Mn: 0.5 to 2.4% by mass)
Mn is a solid solution strengthening element similar to Si, increasing strength without deteriorating elongation, increasing hardenability and contributing to securing the bainite area ratio, and also having the effect of improving strength and stretch flangeability Element. If the Mn content is less than 0.5% by mass, the hardenability is insufficient, the bainite area ratio cannot be secured, and the strength cannot be secured. On the other hand, if the Mn content is more than 2.4% by mass, the hardenability becomes too high, and martensite is excessively formed, and the stretch flangeability deteriorates. The range of the Mn content is preferably 0.8 to 3.0% by mass, more preferably 1.0 to 2.2% by mass.
(Al:0.01質量%以上0.10質量%未満)
AlはNと結合してAlNを形成し、ひずみ時効の発生に寄与する固溶Nを低減させることで伸びフランジ性の劣化を防止するとともに、固溶強化により強度向上に寄与する。Al含有量が0.01質量%未満では鋼中に固溶Nが残存するため、ひずみ時効が起こり、伸びと伸びフランジ性を確保できない。一方、Al含有量が0.10質量%以上ではセメンタイトの形成を阻害し、焼戻しマルテンサイトと残留オーステナイトとの合計面積率が過大になるため伸びフランジ性が劣化する。 (Al: 0.01% by mass or more and less than 0.10% by mass)
Al combines with N to form AlN and reduces the solid solution N that contributes to the occurrence of strain aging, thereby preventing the stretch flangeability from deteriorating and contributing to the strength improvement by solid solution strengthening. If the Al content is less than 0.01% by mass, solid solution N remains in the steel, strain aging occurs, and elongation and stretch flangeability cannot be ensured. On the other hand, when the Al content is 0.10% by mass or more, the formation of cementite is inhibited, and the total area ratio of tempered martensite and retained austenite becomes excessive, so that stretch flangeability deteriorates.
AlはNと結合してAlNを形成し、ひずみ時効の発生に寄与する固溶Nを低減させることで伸びフランジ性の劣化を防止するとともに、固溶強化により強度向上に寄与する。Al含有量が0.01質量%未満では鋼中に固溶Nが残存するため、ひずみ時効が起こり、伸びと伸びフランジ性を確保できない。一方、Al含有量が0.10質量%以上ではセメンタイトの形成を阻害し、焼戻しマルテンサイトと残留オーステナイトとの合計面積率が過大になるため伸びフランジ性が劣化する。 (Al: 0.01% by mass or more and less than 0.10% by mass)
Al combines with N to form AlN and reduces the solid solution N that contributes to the occurrence of strain aging, thereby preventing the stretch flangeability from deteriorating and contributing to the strength improvement by solid solution strengthening. If the Al content is less than 0.01% by mass, solid solution N remains in the steel, strain aging occurs, and elongation and stretch flangeability cannot be ensured. On the other hand, when the Al content is 0.10% by mass or more, the formation of cementite is inhibited, and the total area ratio of tempered martensite and retained austenite becomes excessive, so that stretch flangeability deteriorates.
次に、第1発明の冷延鋼板を得るための好ましい製造方法を以下に説明する。
〔第1発明の好ましい製造方法〕
上記のような冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延を行なう。熱間圧延条件としては、仕上げ圧延の終了温度をAr3点以上に設定し、適宜冷却を行った後、450~700℃の範囲で巻き取る。熱間圧延終了後は酸洗してから冷間圧延を行うが、冷間圧延率は30%程度以上とするのがよい。
そして、上記冷間圧延後、引き続き焼鈍を行うが、必要に応じてさらに焼戻ししてもよい。 Next, the preferable manufacturing method for obtaining the cold rolled steel sheet of 1st invention is demonstrated below.
[Preferred production method of the first invention]
In order to produce the cold-rolled steel sheet as described above, first, steel having the above composition is melted and slab is formed by ingot forming or continuous casting and then hot-rolled. As the hot rolling conditions, the finish rolling finish temperature is set to Ar 3 or higher, and after cooling appropriately, winding is performed in the range of 450 to 700 ° C. After hot rolling is completed, pickling is performed and then cold rolling is performed. The cold rolling rate is preferably about 30% or more.
And after the said cold rolling, although it anneals continuously, you may further temper as needed.
〔第1発明の好ましい製造方法〕
上記のような冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延を行なう。熱間圧延条件としては、仕上げ圧延の終了温度をAr3点以上に設定し、適宜冷却を行った後、450~700℃の範囲で巻き取る。熱間圧延終了後は酸洗してから冷間圧延を行うが、冷間圧延率は30%程度以上とするのがよい。
そして、上記冷間圧延後、引き続き焼鈍を行うが、必要に応じてさらに焼戻ししてもよい。 Next, the preferable manufacturing method for obtaining the cold rolled steel sheet of 1st invention is demonstrated below.
[Preferred production method of the first invention]
In order to produce the cold-rolled steel sheet as described above, first, steel having the above composition is melted and slab is formed by ingot forming or continuous casting and then hot-rolled. As the hot rolling conditions, the finish rolling finish temperature is set to Ar 3 or higher, and after cooling appropriately, winding is performed in the range of 450 to 700 ° C. After hot rolling is completed, pickling is performed and then cold rolling is performed. The cold rolling rate is preferably about 30% or more.
And after the said cold rolling, although it anneals continuously, you may further temper as needed.
[焼鈍条件]
焼鈍条件としては、焼鈍加熱温度:Ac3~1000℃に加熱し、焼鈍保持時間:3600秒以下保持した後、該焼鈍加熱温度から400~550℃(冷却終了温度)まで10~200℃/秒の冷却速度で急冷した後、該冷却終了温度で10~600秒保持し、その後、室温まで冷却する。 [Annealing conditions]
As annealing conditions, annealing heating temperature: Ac 3 to 1000 ° C., annealing holding time: held for 3600 seconds or less, and then from annealing temperature to 400 to 550 ° C. (cooling end temperature) 10 to 200 ° C./second After rapidly cooling at a cooling rate of 10 ° C., the cooling end temperature is maintained for 10 to 600 seconds, and then cooled to room temperature.
焼鈍条件としては、焼鈍加熱温度:Ac3~1000℃に加熱し、焼鈍保持時間:3600秒以下保持した後、該焼鈍加熱温度から400~550℃(冷却終了温度)まで10~200℃/秒の冷却速度で急冷した後、該冷却終了温度で10~600秒保持し、その後、室温まで冷却する。 [Annealing conditions]
As annealing conditions, annealing heating temperature: Ac 3 to 1000 ° C., annealing holding time: held for 3600 seconds or less, and then from annealing temperature to 400 to 550 ° C. (cooling end temperature) 10 to 200 ° C./second After rapidly cooling at a cooling rate of 10 ° C., the cooling end temperature is maintained for 10 to 600 seconds, and then cooled to room temperature.
<焼鈍加熱温度:Ac3~1000℃>
焼鈍加熱温度をAc3以上1000℃以下とするのは、焼鈍加熱時に十分にオーステナイトに変態させ、その後の冷却時にオーステナイトから変態生成するベイナイトの面積率を70%以上確保するためである。
焼鈍加熱温度がAc3未満では、焼鈍加熱時においてオーステナイトへの変態量が不足するため、その後の冷却時にオーステナイトから変態生成するベイナイトの量が減少して面積率70%以上を確保できなくなる。一方、焼鈍加熱温度が1000℃を超えると、オーステナイト組織が粗大化して鋼板の曲げ性や靭性が劣化するとともに、焼鈍設備の劣化をもたらすため好ましくない。
また、焼鈍保持時間が3600秒を超えると、生産性が極端に悪化するので好ましくない。 <Annealing heating temperature: Ac 3 to 1000 ° C.>
The reason why the annealing heating temperature is set to Ac 3 or more and 1000 ° C. or less is to ensure an area ratio of bainite that is sufficiently transformed into austenite during annealing and is transformed from austenite during subsequent cooling.
It is less than the annealing heating temperature Ac 3, due to the lack of transformation of the austenite at the time of annealing heating, the amount of bainite to transformation product from austenite during subsequent cooling can not be ensured by the area rate of 70% or more reduced. On the other hand, if the annealing heating temperature exceeds 1000 ° C., the austenite structure becomes coarse and the bendability and toughness of the steel sheet deteriorate, and the annealing equipment deteriorates.
Further, if the annealing holding time exceeds 3600 seconds, productivity is extremely deteriorated, which is not preferable.
焼鈍加熱温度をAc3以上1000℃以下とするのは、焼鈍加熱時に十分にオーステナイトに変態させ、その後の冷却時にオーステナイトから変態生成するベイナイトの面積率を70%以上確保するためである。
焼鈍加熱温度がAc3未満では、焼鈍加熱時においてオーステナイトへの変態量が不足するため、その後の冷却時にオーステナイトから変態生成するベイナイトの量が減少して面積率70%以上を確保できなくなる。一方、焼鈍加熱温度が1000℃を超えると、オーステナイト組織が粗大化して鋼板の曲げ性や靭性が劣化するとともに、焼鈍設備の劣化をもたらすため好ましくない。
また、焼鈍保持時間が3600秒を超えると、生産性が極端に悪化するので好ましくない。 <Annealing heating temperature: Ac 3 to 1000 ° C.>
The reason why the annealing heating temperature is set to Ac 3 or more and 1000 ° C. or less is to ensure an area ratio of bainite that is sufficiently transformed into austenite during annealing and is transformed from austenite during subsequent cooling.
It is less than the annealing heating temperature Ac 3, due to the lack of transformation of the austenite at the time of annealing heating, the amount of bainite to transformation product from austenite during subsequent cooling can not be ensured by the area rate of 70% or more reduced. On the other hand, if the annealing heating temperature exceeds 1000 ° C., the austenite structure becomes coarse and the bendability and toughness of the steel sheet deteriorate, and the annealing equipment deteriorates.
Further, if the annealing holding time exceeds 3600 seconds, productivity is extremely deteriorated, which is not preferable.
<400~550℃(冷却終了温度)まで10~200℃/秒の冷却速度で急冷した後、該冷却終了温度範囲で10~600秒保持>
これは、冷却中にオーステナイトからフェライトやマルテンサイト組織が形成されることをできるだけ抑制し、ベイナイト組織を十分に得るためである。
400℃より低い温度まで急冷すると、マルテンサイトが過剰に形成されてベイナイトが十分に得られなくなる。一方、550℃より高い温度で急冷を終了させたり、冷却速度が10℃/秒未満になると、フェライトが過剰に形成され、ベイナイトが不足し、強度が確保できなくなる。一方、冷却速度が200℃/秒超では、制御が困難になるので現実的でない。また、冷却終了温度範囲での保持時間が10秒未満では、ベイナイトへの変態が十分に進行せず、伸びと伸びフランジ性が確保できなくなる。一方、該保持時間が600秒を超えると、ベイナイト組織中に析出したセメンタイト粒子が粗大になりすぎて伸びフランジ性が低下する。
なお、冷却終了温度範囲(400~550℃)での保持中の熱履歴は特に限定されず、等温保持状態、冷却状態、再昇温状態のいずれの熱履歴であってもよい。 <After quenching to 400 to 550 ° C. (cooling end temperature) at a cooling rate of 10 to 200 ° C./second, hold for 10 to 600 seconds in the cooling end temperature range>
This is because the formation of ferrite and martensite structure from austenite during cooling is suppressed as much as possible, and a bainite structure is sufficiently obtained.
When rapidly cooled to a temperature lower than 400 ° C., martensite is excessively formed and bainite cannot be obtained sufficiently. On the other hand, if quenching is terminated at a temperature higher than 550 ° C. or the cooling rate is less than 10 ° C./second, ferrite is excessively formed, bainite is insufficient, and strength cannot be secured. On the other hand, if the cooling rate exceeds 200 ° C./second, control becomes difficult, which is not realistic. Moreover, if the holding time in the cooling end temperature range is less than 10 seconds, the transformation to bainite does not proceed sufficiently, and the elongation and stretch flangeability cannot be ensured. On the other hand, when the holding time exceeds 600 seconds, the cementite particles precipitated in the bainite structure become too coarse and the stretch flangeability deteriorates.
The heat history during holding in the cooling end temperature range (400 to 550 ° C.) is not particularly limited, and may be any heat history in an isothermal holding state, a cooling state, or a re-temperature raising state.
これは、冷却中にオーステナイトからフェライトやマルテンサイト組織が形成されることをできるだけ抑制し、ベイナイト組織を十分に得るためである。
400℃より低い温度まで急冷すると、マルテンサイトが過剰に形成されてベイナイトが十分に得られなくなる。一方、550℃より高い温度で急冷を終了させたり、冷却速度が10℃/秒未満になると、フェライトが過剰に形成され、ベイナイトが不足し、強度が確保できなくなる。一方、冷却速度が200℃/秒超では、制御が困難になるので現実的でない。また、冷却終了温度範囲での保持時間が10秒未満では、ベイナイトへの変態が十分に進行せず、伸びと伸びフランジ性が確保できなくなる。一方、該保持時間が600秒を超えると、ベイナイト組織中に析出したセメンタイト粒子が粗大になりすぎて伸びフランジ性が低下する。
なお、冷却終了温度範囲(400~550℃)での保持中の熱履歴は特に限定されず、等温保持状態、冷却状態、再昇温状態のいずれの熱履歴であってもよい。 <After quenching to 400 to 550 ° C. (cooling end temperature) at a cooling rate of 10 to 200 ° C./second, hold for 10 to 600 seconds in the cooling end temperature range>
This is because the formation of ferrite and martensite structure from austenite during cooling is suppressed as much as possible, and a bainite structure is sufficiently obtained.
When rapidly cooled to a temperature lower than 400 ° C., martensite is excessively formed and bainite cannot be obtained sufficiently. On the other hand, if quenching is terminated at a temperature higher than 550 ° C. or the cooling rate is less than 10 ° C./second, ferrite is excessively formed, bainite is insufficient, and strength cannot be secured. On the other hand, if the cooling rate exceeds 200 ° C./second, control becomes difficult, which is not realistic. Moreover, if the holding time in the cooling end temperature range is less than 10 seconds, the transformation to bainite does not proceed sufficiently, and the elongation and stretch flangeability cannot be ensured. On the other hand, when the holding time exceeds 600 seconds, the cementite particles precipitated in the bainite structure become too coarse and the stretch flangeability deteriorates.
The heat history during holding in the cooling end temperature range (400 to 550 ° C.) is not particularly limited, and may be any heat history in an isothermal holding state, a cooling state, or a re-temperature raising state.
次に、優れた耐水素脆化特性を確保しつつ、伸びフランジ性をも高めた高強度冷延鋼板について、より具体的に説明する。
本発明者らは、基本発明をベースとし、これに、合金元素としてVを添加することにより、水素のトラップサイトとして強く働くVの炭化物および炭窒化物(以下、「V含有析出物」と総称する。)を適正なサイズでベイナイト中に導入することで耐水素脆化特性を確保しつつ、伸びフランジ性を改善できると考え、耐水素脆化特性および伸びフランジ性に及ぼす各種要因の影響を調査するなど鋭意検討を行った。
上記検討の結果、焼戻しマルテンサイトに比べ変形能の高い焼戻しベイナイト組織を主要組織とし、必要に応じて該ベイナイト組織にフェライト組織を導入することである程度の伸びを確保する一方、破壊の主要原因である焼戻しマルテンサイトと残留オーステナイト(以下、「残留γ」と表記することあり。)の割合を極力少なくするとともにV含有析出物を微細化することで、耐水素脆化特性を確保しつつ、伸びフランジ性を向上できることを見出した。すなわち、前記した基本発明をベースとして、V:0.001~1.00質量%を含み、円相当直径1~10nmの析出物が、前記焼戻しベイナイト1μm2当たり20個以上であり、Vを含む円相当直径20nm以上の析出物が、前記焼戻しベイナイト1μm2当たり10個以下であるようにした冷延鋼板である(以下、この発明を第2発明と呼ぶことがある)。 Next, the high-strength cold-rolled steel sheet that has enhanced stretch flangeability while ensuring excellent hydrogen embrittlement resistance will be described more specifically.
The inventors of the present invention are based on the basic invention, and by adding V as an alloy element thereto, V carbides and carbonitrides (hereinafter referred to as “V-containing precipitates”) that strongly act as hydrogen trap sites. Is introduced into the bainite at an appropriate size, while maintaining the hydrogen embrittlement resistance and improving the stretch flangeability, and the influence of various factors on the hydrogen embrittlement resistance and stretch flangeability. We conducted intensive studies such as investigating.
As a result of the above studies, the main structure is a tempered bainite structure having a higher deformability than tempered martensite, and if necessary, a certain degree of elongation is ensured by introducing a ferrite structure into the bainite structure. By reducing the proportion of certain tempered martensite and retained austenite (hereinafter, sometimes referred to as “residual γ”) as much as possible and miniaturizing the V-containing precipitates, elongation while securing hydrogen embrittlement resistance is ensured. It was found that the flangeability can be improved. That is, based on the basic invention described above, V: 0.001 to 1.00% by mass, and there are 20 or more precipitates with an equivalent circle diameter of 1 to 10 nm per 1 μm 2 of the tempered bainite and V is included. This is a cold-rolled steel sheet in which the number of precipitates having an equivalent circle diameter of 20 nm or more is 10 or less per 1 μm 2 of the tempered bainite (hereinafter, the present invention may be referred to as a second invention).
本発明者らは、基本発明をベースとし、これに、合金元素としてVを添加することにより、水素のトラップサイトとして強く働くVの炭化物および炭窒化物(以下、「V含有析出物」と総称する。)を適正なサイズでベイナイト中に導入することで耐水素脆化特性を確保しつつ、伸びフランジ性を改善できると考え、耐水素脆化特性および伸びフランジ性に及ぼす各種要因の影響を調査するなど鋭意検討を行った。
上記検討の結果、焼戻しマルテンサイトに比べ変形能の高い焼戻しベイナイト組織を主要組織とし、必要に応じて該ベイナイト組織にフェライト組織を導入することである程度の伸びを確保する一方、破壊の主要原因である焼戻しマルテンサイトと残留オーステナイト(以下、「残留γ」と表記することあり。)の割合を極力少なくするとともにV含有析出物を微細化することで、耐水素脆化特性を確保しつつ、伸びフランジ性を向上できることを見出した。すなわち、前記した基本発明をベースとして、V:0.001~1.00質量%を含み、円相当直径1~10nmの析出物が、前記焼戻しベイナイト1μm2当たり20個以上であり、Vを含む円相当直径20nm以上の析出物が、前記焼戻しベイナイト1μm2当たり10個以下であるようにした冷延鋼板である(以下、この発明を第2発明と呼ぶことがある)。 Next, the high-strength cold-rolled steel sheet that has enhanced stretch flangeability while ensuring excellent hydrogen embrittlement resistance will be described more specifically.
The inventors of the present invention are based on the basic invention, and by adding V as an alloy element thereto, V carbides and carbonitrides (hereinafter referred to as “V-containing precipitates”) that strongly act as hydrogen trap sites. Is introduced into the bainite at an appropriate size, while maintaining the hydrogen embrittlement resistance and improving the stretch flangeability, and the influence of various factors on the hydrogen embrittlement resistance and stretch flangeability. We conducted intensive studies such as investigating.
As a result of the above studies, the main structure is a tempered bainite structure having a higher deformability than tempered martensite, and if necessary, a certain degree of elongation is ensured by introducing a ferrite structure into the bainite structure. By reducing the proportion of certain tempered martensite and retained austenite (hereinafter, sometimes referred to as “residual γ”) as much as possible and miniaturizing the V-containing precipitates, elongation while securing hydrogen embrittlement resistance is ensured. It was found that the flangeability can be improved. That is, based on the basic invention described above, V: 0.001 to 1.00% by mass, and there are 20 or more precipitates with an equivalent circle diameter of 1 to 10 nm per 1 μm 2 of the tempered bainite and V is included. This is a cold-rolled steel sheet in which the number of precipitates having an equivalent circle diameter of 20 nm or more is 10 or less per 1 μm 2 of the tempered bainite (hereinafter, the present invention may be referred to as a second invention).
以下、まず第2発明を特徴づける組織について説明する。
〔第2発明の組織〕
上述したとおり、本発明鋼板は、焼戻しベイナイト単相、または、フェライトと焼戻しベイナイトを主体とする複相組織をベースとするものであるが、特に、焼戻しマルテンサイト組織と残留オーステナイト組織を極力少なくするとともに、焼戻しベイナイト中のV含有析出物の分布状態が制御されている点に特徴を有するものである。 Hereinafter, the organization characterizing the second invention will be described first.
[Organization of the second invention]
As described above, the steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite, and particularly reduces the tempered martensite structure and residual austenite structure as much as possible. At the same time, it is characterized in that the distribution state of the V-containing precipitates in the tempered bainite is controlled.
〔第2発明の組織〕
上述したとおり、本発明鋼板は、焼戻しベイナイト単相、または、フェライトと焼戻しベイナイトを主体とする複相組織をベースとするものであるが、特に、焼戻しマルテンサイト組織と残留オーステナイト組織を極力少なくするとともに、焼戻しベイナイト中のV含有析出物の分布状態が制御されている点に特徴を有するものである。 Hereinafter, the organization characterizing the second invention will be described first.
[Organization of the second invention]
As described above, the steel sheet of the present invention is based on a tempered bainite single phase or a multiphase structure mainly composed of ferrite and tempered bainite, and particularly reduces the tempered martensite structure and residual austenite structure as much as possible. At the same time, it is characterized in that the distribution state of the V-containing precipitates in the tempered bainite is controlled.
<円相当直径1~10nmの析出物:焼戻しベイナイト1μm2当たり20個以上>
水素のトラップサイトとして有効に作用する微細なVの炭化物および炭窒化物を組織中に適切に分散させることにより、耐水素脆化特性を向上させ、加工後の耐遅れ破壊性を確保することができる。つまり、特に比表面積の大きい微細なV含有析出物を多量に分散させることで、水素のトラップサイトを増加させる。これに加え、V含有析出物を微細にすることで、母相に対してV含有析出物の周囲に整合ひずみ場を付与し、ひずみ場に集まりやすい水素に対するトラップサイトとしての能力を高めることができる。これらによって耐水素脆化特性が改善される。なお、この粒径範囲(円相当直径1~10nm)では、Vを含まない析出物はほとんど存在しないので、本規定では、下記円相当直径20nm以上の析出物の場合のようにVを含むものに限定せずにすべての析出物を対象とした。 <Precipitates with equivalent circle diameter of 1 to 10 nm: 20 or more per 1 μm 2 of tempered bainite>
By appropriately dispersing fine V carbides and carbonitrides that effectively act as hydrogen trap sites in the structure, hydrogen embrittlement resistance can be improved and delayed fracture resistance after processing can be ensured. it can. That is, hydrogen trap sites are increased by dispersing a large amount of fine V-containing precipitates having a large specific surface area. In addition to this, by making the V-containing precipitates fine, it is possible to impart a matching strain field around the V-containing precipitates to the parent phase and enhance the ability as a trap site for hydrogen that tends to collect in the strain field. it can. These improve the hydrogen embrittlement resistance. In this particle size range (equivalent circle diameter of 1 to 10 nm), there are almost no precipitates that do not contain V. Therefore, in this rule, those containing V as in the case of precipitates with an equivalent circle diameter of 20 nm or more as described below. All precipitates were targeted without being limited to.
水素のトラップサイトとして有効に作用する微細なVの炭化物および炭窒化物を組織中に適切に分散させることにより、耐水素脆化特性を向上させ、加工後の耐遅れ破壊性を確保することができる。つまり、特に比表面積の大きい微細なV含有析出物を多量に分散させることで、水素のトラップサイトを増加させる。これに加え、V含有析出物を微細にすることで、母相に対してV含有析出物の周囲に整合ひずみ場を付与し、ひずみ場に集まりやすい水素に対するトラップサイトとしての能力を高めることができる。これらによって耐水素脆化特性が改善される。なお、この粒径範囲(円相当直径1~10nm)では、Vを含まない析出物はほとんど存在しないので、本規定では、下記円相当直径20nm以上の析出物の場合のようにVを含むものに限定せずにすべての析出物を対象とした。 <Precipitates with equivalent circle diameter of 1 to 10 nm: 20 or more per 1 μm 2 of tempered bainite>
By appropriately dispersing fine V carbides and carbonitrides that effectively act as hydrogen trap sites in the structure, hydrogen embrittlement resistance can be improved and delayed fracture resistance after processing can be ensured. it can. That is, hydrogen trap sites are increased by dispersing a large amount of fine V-containing precipitates having a large specific surface area. In addition to this, by making the V-containing precipitates fine, it is possible to impart a matching strain field around the V-containing precipitates to the parent phase and enhance the ability as a trap site for hydrogen that tends to collect in the strain field. it can. These improve the hydrogen embrittlement resistance. In this particle size range (equivalent circle diameter of 1 to 10 nm), there are almost no precipitates that do not contain V. Therefore, in this rule, those containing V as in the case of precipitates with an equivalent circle diameter of 20 nm or more as described below. All precipitates were targeted without being limited to.
上記作用を有効に発揮させるには、円相当直径1~10nmの微細な析出物は、焼戻しベイナイト1μm2当たり20個以上、好ましくは50個以上、さらに好ましくは100個以上とする。上記微細な析出物のサイズ(円相当直径)の好ましい範囲は1~8nm、さらに好ましい範囲は1~6nmである。
In order to effectively exert the above action, the number of fine precipitates having an equivalent circle diameter of 1 to 10 nm is 20 or more, preferably 50 or more, more preferably 100 or more per 1 μm 2 of tempered bainite. A preferable range of the size (equivalent circle diameter) of the fine precipitate is 1 to 8 nm, and a more preferable range is 1 to 6 nm.
なお、上記微細な析出物の円相当直径の下限を1nmとしたのは、これより微細な析出物は、水素のトラップサイトとしての効果が小さくなるためである。
The reason why the lower limit of the equivalent circle diameter of the fine precipitates is set to 1 nm is that finer precipitates are less effective as hydrogen trap sites.
<円相当直径20nm以上のVを含む析出物:焼戻しベイナイト1μm2当たり10個以下>
VCなどのVを含む析出物は、母相に比べて剛性および臨界せん断応力が非常に高く、析出物の周囲が変形しても析出物自体は変形しにくい。そのため、Vを含む析出物が20nm以上のサイズになると母相と析出物との界面に大きなひずみが生じ、破壊が発生するようになる。このため、20nm以上のVを含む粗大な析出物が多量に存在すると伸びフランジ性が劣化する。したがって、粗大なV含有析出物の存在密度を制限することで、伸びフランジ性を改善することができる。 <Precipitates containing V having an equivalent circle diameter of 20 nm or more: 10 or less per 1 μm 2 of tempered bainite>
Precipitates containing V such as VC have extremely high rigidity and critical shear stress compared to the parent phase, and the precipitates themselves are not easily deformed even if the periphery of the precipitates is deformed. Therefore, when the precipitate containing V has a size of 20 nm or more, a large strain is generated at the interface between the parent phase and the precipitate, and breakage occurs. For this reason, if there are a large amount of coarse precipitates containing V of 20 nm or more, stretch flangeability deteriorates. Therefore, stretch flangeability can be improved by restricting the density of coarse V-containing precipitates.
VCなどのVを含む析出物は、母相に比べて剛性および臨界せん断応力が非常に高く、析出物の周囲が変形しても析出物自体は変形しにくい。そのため、Vを含む析出物が20nm以上のサイズになると母相と析出物との界面に大きなひずみが生じ、破壊が発生するようになる。このため、20nm以上のVを含む粗大な析出物が多量に存在すると伸びフランジ性が劣化する。したがって、粗大なV含有析出物の存在密度を制限することで、伸びフランジ性を改善することができる。 <Precipitates containing V having an equivalent circle diameter of 20 nm or more: 10 or less per 1 μm 2 of tempered bainite>
Precipitates containing V such as VC have extremely high rigidity and critical shear stress compared to the parent phase, and the precipitates themselves are not easily deformed even if the periphery of the precipitates is deformed. Therefore, when the precipitate containing V has a size of 20 nm or more, a large strain is generated at the interface between the parent phase and the precipitate, and breakage occurs. For this reason, if there are a large amount of coarse precipitates containing V of 20 nm or more, stretch flangeability deteriorates. Therefore, stretch flangeability can be improved by restricting the density of coarse V-containing precipitates.
上記作用を有効に発揮させるには、円相当直径20nm以上のVを含む粗大な析出物は、焼戻しベイナイト1μm2当たり10個以下、好ましくは5個以下、さらに好ましくは3個以下に制限する。
In order to effectively exhibit the above action, coarse precipitates containing V having an equivalent circle diameter of 20 nm or more are limited to 10 or less, preferably 5 or less, more preferably 3 or less, per 1 μm 2 of tempered bainite.
本発明鋼板の組織は上記規定を満足させることを必須とするが、この必須組織規定に加えてさらに下記の組織規定をも満足させることが推奨される。
Although the structure of the steel sheet of the present invention is required to satisfy the above-mentioned rules, it is recommended that the following structure rules be further satisfied in addition to the required structure rules.
<円相当直径0.1μm以上のセメンタイト粒子:焼戻しベイナイト1μm2当たり3個以下>
前記第1発明でも説明した通り、従来の高強度冷延鋼板のようなベイナイトを主要組織とする鋼の場合、通常、焼戻しマルテンサイトや残留オーステナイトが形成されやすく、これらの組織が破壊の起点となるため、焼戻しの際にベイナイト中に析出したセメンタイト粒子の分散状態は伸びフランジ性にあまり影響を与えない。しかし、焼戻しマルテンサイトおよび残留オーステナイトが少なくなると変形時のおける破壊の起点が、ベイナイト中に析出したセメンタイト粒子に遷移するため、ベイナイト中におけるセメンタイト粒子の存在状態が伸びフランジ性を律速するようになる。このため、本発明に係る高強度冷延鋼板のように焼戻しマルテンサイトおよび残留オーステナイトの形成を極力抑制した鋼の場合は、破壊の起点となるセメンタイト粒子の析出状態を制御することで伸びフランジ性を調整することが可能となる。なお、セメンタイト粒子のうち、破壊の起点として働くのは大きい粒子だけであるので、粗大なセメンタイト粒子の数を減少させることにより所定の伸びフランジ性にまで改善することができる。 <Cementite particles having an equivalent circle diameter of 0.1 μm or more: 3 or less per 1 μm 2 of tempered bainite>
As described in the first invention, in the case of a steel having bainite as a main structure such as a conventional high-strength cold-rolled steel sheet, usually, tempered martensite and retained austenite are easily formed, and these structures are the starting points of fracture. Therefore, the dispersion state of the cementite particles precipitated in the bainite during tempering does not significantly affect the stretch flangeability. However, when tempered martensite and retained austenite are reduced, the starting point of fracture during deformation transitions to cementite particles precipitated in bainite, so that the presence state of cementite particles in bainite determines the stretch flangeability. . For this reason, in the case of steel that suppresses the formation of tempered martensite and retained austenite as much as possible, such as the high-strength cold-rolled steel sheet according to the present invention, stretch flangeability is achieved by controlling the precipitation state of cementite particles that are the starting point of fracture. Can be adjusted. Of the cementite particles, only large particles serve as the starting point of fracture, so that the number of coarse cementite particles can be reduced to improve the predetermined stretch flangeability.
前記第1発明でも説明した通り、従来の高強度冷延鋼板のようなベイナイトを主要組織とする鋼の場合、通常、焼戻しマルテンサイトや残留オーステナイトが形成されやすく、これらの組織が破壊の起点となるため、焼戻しの際にベイナイト中に析出したセメンタイト粒子の分散状態は伸びフランジ性にあまり影響を与えない。しかし、焼戻しマルテンサイトおよび残留オーステナイトが少なくなると変形時のおける破壊の起点が、ベイナイト中に析出したセメンタイト粒子に遷移するため、ベイナイト中におけるセメンタイト粒子の存在状態が伸びフランジ性を律速するようになる。このため、本発明に係る高強度冷延鋼板のように焼戻しマルテンサイトおよび残留オーステナイトの形成を極力抑制した鋼の場合は、破壊の起点となるセメンタイト粒子の析出状態を制御することで伸びフランジ性を調整することが可能となる。なお、セメンタイト粒子のうち、破壊の起点として働くのは大きい粒子だけであるので、粗大なセメンタイト粒子の数を減少させることにより所定の伸びフランジ性にまで改善することができる。 <Cementite particles having an equivalent circle diameter of 0.1 μm or more: 3 or less per 1 μm 2 of tempered bainite>
As described in the first invention, in the case of a steel having bainite as a main structure such as a conventional high-strength cold-rolled steel sheet, usually, tempered martensite and retained austenite are easily formed, and these structures are the starting points of fracture. Therefore, the dispersion state of the cementite particles precipitated in the bainite during tempering does not significantly affect the stretch flangeability. However, when tempered martensite and retained austenite are reduced, the starting point of fracture during deformation transitions to cementite particles precipitated in bainite, so that the presence state of cementite particles in bainite determines the stretch flangeability. . For this reason, in the case of steel that suppresses the formation of tempered martensite and retained austenite as much as possible, such as the high-strength cold-rolled steel sheet according to the present invention, stretch flangeability is achieved by controlling the precipitation state of cementite particles that are the starting point of fracture. Can be adjusted. Of the cementite particles, only large particles serve as the starting point of fracture, so that the number of coarse cementite particles can be reduced to improve the predetermined stretch flangeability.
上記作用を有効に発揮させるため、焼戻しベイナイト中に存在する円相当直径0.1μm以上のセメンタイト粒子は、該焼戻しベイナイト1μm2当たり3個以下、さらに2.5個以下、特に2個以下に制限するのが推奨される。
In order to effectively exhibit the above action, the number of cementite particles having an equivalent circle diameter of 0.1 μm or more present in the tempered bainite is limited to 3 or less, further 2.5 or less, especially 2 or less per 1 μm 2 of the tempered bainite. It is recommended that you do this.
以下、析出物のサイズおよびその存在数の測定方法について説明する。
Hereinafter, a method for measuring the size and the number of precipitates will be described.
[析出物のサイズおよびその存在数の測定方法]
まず、薄膜法、または、抽出レプリカ法にて薄膜サンプルを作成し、このサンプルを電界放射型透過型電子顕微鏡(FE-TEM)を用いて100000倍から300000倍で2μm2以上の領域を観察する。そして、画像のコントラストから黒っぽい部分を析出物としてマーキングし、画像解析ソフトにて、前記マーキングした各析出物の面積から円相当直径を算出するとともに、単位面積あたりに存在する所定サイズの析出物の個数を求めた。 [Method of measuring the size of precipitates and their number]
First, a thin film sample is prepared by a thin film method or an extraction replica method, and an area of 2 μm 2 or more is observed with this sample using a field emission transmission electron microscope (FE-TEM) at a magnification of 100,000 to 300,000 times. . Then, mark the dark part from the contrast of the image as a precipitate, and with the image analysis software, calculate the equivalent circle diameter from the area of each marked precipitate, and the precipitate of a predetermined size present per unit area The number was determined.
まず、薄膜法、または、抽出レプリカ法にて薄膜サンプルを作成し、このサンプルを電界放射型透過型電子顕微鏡(FE-TEM)を用いて100000倍から300000倍で2μm2以上の領域を観察する。そして、画像のコントラストから黒っぽい部分を析出物としてマーキングし、画像解析ソフトにて、前記マーキングした各析出物の面積から円相当直径を算出するとともに、単位面積あたりに存在する所定サイズの析出物の個数を求めた。 [Method of measuring the size of precipitates and their number]
First, a thin film sample is prepared by a thin film method or an extraction replica method, and an area of 2 μm 2 or more is observed with this sample using a field emission transmission electron microscope (FE-TEM) at a magnification of 100,000 to 300,000 times. . Then, mark the dark part from the contrast of the image as a precipitate, and with the image analysis software, calculate the equivalent circle diameter from the area of each marked precipitate, and the precipitate of a predetermined size present per unit area The number was determined.
ただし、20nm以上の析出物については、FE-TEMに付随のEDXまたはEELSを用いて析出物中にVが存在していることを確認したものだけをカウントした。
However, for the precipitates of 20 nm or more, only those that confirmed the presence of V in the precipitates using EDX or EELS attached to FE-TEM were counted.
次に、第2発明の冷延鋼板を構成する成分組成のうち、前記基本発明と異なる点について説明する。
Next, of the component compositions constituting the cold rolled steel sheet according to the second invention, differences from the basic invention will be described.
〔第2発明の成分組成〕
(V:0.001~1.00質量%)
Vは、大気中で生成するさびの中でも熱力学的に安定で保護性があるといわれている酸化鉄であるα-FeOOHの生成を促進させる。また、Vは、微細な炭化物および炭窒化物として鋼中に存在することにより水素のトラップサイトとして働くことから、耐水素脆化特性向上のための重要な元素である。V含有量が0.01質量%未満では耐水素脆化特性の改善効果が十分に得られない。一方、V含有量が1.00質量%超では、焼鈍の際の加熱時に鋼中に未固溶で存在し、粗大に成長するV炭化物またはV炭窒化物が増加するため伸びフランジ性が劣化する。V含有量の範囲は、好ましくは0.01質量%以上0.50質量%未満、さらに好ましくは0.02質量%以上0.30質量%未満である。 [Component composition of the second invention]
(V: 0.001 to 1.00% by mass)
V promotes the production of α-FeOOH, which is iron oxide, which is said to be thermodynamically stable and protective among rust produced in the atmosphere. V is an important element for improving hydrogen embrittlement resistance because it functions as a hydrogen trap site by being present in steel as fine carbides and carbonitrides. When the V content is less than 0.01% by mass, the effect of improving the hydrogen embrittlement resistance cannot be sufficiently obtained. On the other hand, if the V content exceeds 1.00% by mass, the stretch flangeability deteriorates because V carbide or V carbonitride that grows coarsely and exists in the steel in an insoluble state during heating during annealing. To do. The range of V content is preferably 0.01% by mass or more and less than 0.50% by mass, and more preferably 0.02% by mass or more and less than 0.30% by mass.
(V:0.001~1.00質量%)
Vは、大気中で生成するさびの中でも熱力学的に安定で保護性があるといわれている酸化鉄であるα-FeOOHの生成を促進させる。また、Vは、微細な炭化物および炭窒化物として鋼中に存在することにより水素のトラップサイトとして働くことから、耐水素脆化特性向上のための重要な元素である。V含有量が0.01質量%未満では耐水素脆化特性の改善効果が十分に得られない。一方、V含有量が1.00質量%超では、焼鈍の際の加熱時に鋼中に未固溶で存在し、粗大に成長するV炭化物またはV炭窒化物が増加するため伸びフランジ性が劣化する。V含有量の範囲は、好ましくは0.01質量%以上0.50質量%未満、さらに好ましくは0.02質量%以上0.30質量%未満である。 [Component composition of the second invention]
(V: 0.001 to 1.00% by mass)
V promotes the production of α-FeOOH, which is iron oxide, which is said to be thermodynamically stable and protective among rust produced in the atmosphere. V is an important element for improving hydrogen embrittlement resistance because it functions as a hydrogen trap site by being present in steel as fine carbides and carbonitrides. When the V content is less than 0.01% by mass, the effect of improving the hydrogen embrittlement resistance cannot be sufficiently obtained. On the other hand, if the V content exceeds 1.00% by mass, the stretch flangeability deteriorates because V carbide or V carbonitride that grows coarsely and exists in the steel in an insoluble state during heating during annealing. To do. The range of V content is preferably 0.01% by mass or more and less than 0.50% by mass, and more preferably 0.02% by mass or more and less than 0.30% by mass.
次に、第2発明の冷延鋼板を得るための好ましい製造方法を以下に説明する。
〔第2発明の好ましい製造方法〕
上記のような冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延(熱延)を行う。 Next, the preferable manufacturing method for obtaining the cold rolled steel sheet of 2nd invention is demonstrated below.
[Preferred production method of the second invention]
In order to manufacture the cold-rolled steel sheet as described above, first, steel having the above-described composition is melted and formed into a slab by ingot forming or continuous casting, followed by hot rolling (hot rolling).
〔第2発明の好ましい製造方法〕
上記のような冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延(熱延)を行う。 Next, the preferable manufacturing method for obtaining the cold rolled steel sheet of 2nd invention is demonstrated below.
[Preferred production method of the second invention]
In order to manufacture the cold-rolled steel sheet as described above, first, steel having the above-described composition is melted and formed into a slab by ingot forming or continuous casting, followed by hot rolling (hot rolling).
[熱間圧延条件]
熱間圧延条件としては、熱延加熱温度を900℃以上、熱延仕上圧延温度を800℃以上に設定し、適宜冷却を行った後、450℃以下の温度で巻き取るのが推奨される。 [Hot rolling conditions]
As hot rolling conditions, it is recommended that the hot rolling heating temperature is set to 900 ° C. or higher, the hot rolling finish rolling temperature is set to 800 ° C. or higher, and after appropriate cooling, winding is performed at a temperature of 450 ° C. or lower.
熱間圧延条件としては、熱延加熱温度を900℃以上、熱延仕上圧延温度を800℃以上に設定し、適宜冷却を行った後、450℃以下の温度で巻き取るのが推奨される。 [Hot rolling conditions]
As hot rolling conditions, it is recommended that the hot rolling heating temperature is set to 900 ° C. or higher, the hot rolling finish rolling temperature is set to 800 ° C. or higher, and after appropriate cooling, winding is performed at a temperature of 450 ° C. or lower.
このような温度条件で熱間圧延を行うことで、Vを加熱段階で完全に固溶させ、熱間圧延中における析出や巻取り中におけるVの炭化物や炭窒化物の析出を抑制し、焼鈍の際の加熱時に粗大なVの炭化物や炭窒化物が残存しないようにすることができる。
By performing hot rolling under such temperature conditions, V is completely dissolved in the heating stage, suppressing precipitation during hot rolling and precipitation of V carbide and carbonitride during winding, and annealing. During heating, coarse V carbides and carbonitrides can be prevented from remaining.
熱間圧延終了後は酸洗してから冷間圧延を行うが、冷間圧延率は30%程度以上であるのがよい。
After completion of hot rolling, pickling is performed and then cold rolling is performed, but the cold rolling rate is preferably about 30% or more.
そして、上記冷間圧延後、引き続き、焼鈍、さらには焼戻しを行う。
Then, after the cold rolling, annealing and further tempering are performed.
[焼鈍条件]
焼鈍条件としては、まず、焼鈍加熱温度Ta(℃):[-9500/{log([%C]・[%V])-6.72}-273]℃以上、かつAc3以上1000℃以下に加熱し、焼鈍保持時間:20~3600秒保持する。その後、該焼鈍加熱温度から、冷却終了温度:300℃以上[Bs-100]℃以下まで10~200℃/秒の冷却速度で急冷した後、該冷却終了温度で10~600秒保持するのがよい。 [Annealing conditions]
As annealing conditions, first, annealing heating temperature Ta (° C.): [−9500 / {log ([% C] · [% V]) − 6.72} −273] ° C. or higher, and Ac 3 or higher and 1000 ° C. or lower And hold annealing time: 20 to 3600 seconds. Then, after quenching from the annealing heating temperature to the cooling end temperature: 300 ° C. to [Bs-100] ° C. at a cooling rate of 10 to 200 ° C./second, the cooling end temperature is held for 10 to 600 seconds. Good.
焼鈍条件としては、まず、焼鈍加熱温度Ta(℃):[-9500/{log([%C]・[%V])-6.72}-273]℃以上、かつAc3以上1000℃以下に加熱し、焼鈍保持時間:20~3600秒保持する。その後、該焼鈍加熱温度から、冷却終了温度:300℃以上[Bs-100]℃以下まで10~200℃/秒の冷却速度で急冷した後、該冷却終了温度で10~600秒保持するのがよい。 [Annealing conditions]
As annealing conditions, first, annealing heating temperature Ta (° C.): [−9500 / {log ([% C] · [% V]) − 6.72} −273] ° C. or higher, and Ac 3 or higher and 1000 ° C. or lower And hold annealing time: 20 to 3600 seconds. Then, after quenching from the annealing heating temperature to the cooling end temperature: 300 ° C. to [Bs-100] ° C. at a cooling rate of 10 to 200 ° C./second, the cooling end temperature is held for 10 to 600 seconds. Good.
<焼鈍加熱温度Ta(℃):[-9500/{log([%C]・[%V])-6.72}-273]℃以上、かつAc3以上1000℃以下、焼鈍保持時間:20~3600秒>
Ta(℃)≧[-9500/{log([%C]・[%V])-6.72}-273]℃とするのは、焼鈍加熱時にV炭化物等を完全に固溶させることで、20nm以上の粗大なV含有析出物の存在密度を低下させるためである。また、これは、焼鈍加熱時に十分にオーステナイトに変態させることで、その後の冷却時にオーステナイトから変態生成するベイナイトの面積率を50%以上確保するためである。 <Annealing heating temperature Ta (° C.): [−9500 / {log ([% C] · [% V]) − 6.72} −273] ° C. or higher and Ac 3 or higher and 1000 ° C. or lower, annealing holding time: 20 ~ 3600 seconds>
Ta (° C.) ≧ [−9500 / {log ([% C] · [% V]) − 6.72} −273] ° C. is achieved by completely dissolving V carbides and the like during annealing heating. This is to reduce the density of coarse V-containing precipitates of 20 nm or more. Moreover, this is because the area ratio of bainite that is transformed from austenite during subsequent cooling is secured by 50% or more by sufficiently transforming into austenite during annealing and heating.
Ta(℃)≧[-9500/{log([%C]・[%V])-6.72}-273]℃とするのは、焼鈍加熱時にV炭化物等を完全に固溶させることで、20nm以上の粗大なV含有析出物の存在密度を低下させるためである。また、これは、焼鈍加熱時に十分にオーステナイトに変態させることで、その後の冷却時にオーステナイトから変態生成するベイナイトの面積率を50%以上確保するためである。 <Annealing heating temperature Ta (° C.): [−9500 / {log ([% C] · [% V]) − 6.72} −273] ° C. or higher and Ac 3 or higher and 1000 ° C. or lower, annealing holding time: 20 ~ 3600 seconds>
Ta (° C.) ≧ [−9500 / {log ([% C] · [% V]) − 6.72} −273] ° C. is achieved by completely dissolving V carbides and the like during annealing heating. This is to reduce the density of coarse V-containing precipitates of 20 nm or more. Moreover, this is because the area ratio of bainite that is transformed from austenite during subsequent cooling is secured by 50% or more by sufficiently transforming into austenite during annealing and heating.
焼鈍加熱温度Ta(℃)<[-9500/{log([%C]・[%V])-6.72}-273]℃、すなわち、log[%V]<[-9500/(Ta+273)]-log[%C]では、焼鈍加熱時に未固溶のV炭化物等が残存しこれが粗大化して、伸びフランジ変形時において破壊の起点が増加するため、伸びフランジ性が低下するので好ましくない。なお、上記Ta(℃)≧[-9500/{log([%C]・[%V])-6.72}-273]℃の関係式は、日本鉄鋼協会編、第3版鉄鋼便覧、第I巻 基礎、p.412の図7.43中に示された、[V]・[C]の溶解度積の温度依存性を表す直線プロットを読み取り、これをVが完全に固溶する温度を計算できるように変形して求めた。
Annealing heating temperature Ta (° C.) <[− 9500 / {log ([% C] · [% V]) − 6.72} −273] ° C., that is, log [% V] <[− 9500 / (Ta + 273) ] -Log [% C] is not preferable because undissolved V carbide and the like remain during annealing and become coarse, and the starting point of fracture increases when the stretch flange is deformed. The relational expression Ta (° C.) ≧ [−9500 / {log ([% C] · [% V]) − 6.72} −273] ° C. is the edition of the Japan Iron and Steel Institute, 3rd edition Steel Handbook, Volume I Basics, p. The linear plot showing the temperature dependence of the solubility product of [V] · [C] shown in FIG. 743 of 412 is read and transformed so that the temperature at which V is completely dissolved can be calculated. Asked.
また、焼鈍加熱温度Ta(℃)<Ac3では、焼鈍加熱時においてオーステナイトへの変態量が不足するため、その後の冷却時にオーステナイトから変態生成するベイナイトの量が減少して面積率50%以上を確保できなくなるため好ましくない。一方、焼鈍加熱温度Ta(℃)>1000℃では、オーステナイト組織が粗大化して鋼板の曲げ性や靭性が劣化するとともに、焼鈍設備の劣化をもたらすため好ましくない。
In addition, when the annealing heating temperature Ta (° C.) <Ac 3 , the amount of transformation to austenite is insufficient during annealing heating, so that the amount of bainite transformed from austenite during subsequent cooling is reduced, and the area ratio is 50% or more. This is not preferable because it cannot be secured. On the other hand, an annealing heating temperature Ta (° C.)> 1000 ° C. is not preferable because the austenite structure becomes coarse and the bendability and toughness of the steel sheet deteriorate and the annealing equipment deteriorates.
また、焼鈍保持時間が20秒未満ではV炭化物等を完全に固溶させることができなくなり好ましくない。一方、焼鈍保持時間が3600秒を超えると、生産性が極端に悪化するので好ましくない。
Also, if the annealing holding time is less than 20 seconds, it is not preferable because V carbides cannot be completely dissolved. On the other hand, if the annealing holding time exceeds 3600 seconds, productivity is extremely deteriorated.
<冷却終了温度:300℃以上[Bs-100]℃以下、冷却速度:10~200℃/秒、冷却終了温度での保持時間:10~600秒>
これは、上記焼鈍加熱時に変態生成したオーステナイトからのベイナイト変態を十分に進行させてベイナイト面積率50%以上を確保するためである。 <Cooling end temperature: 300 ° C. or more and [Bs-100] ° C. or less, cooling rate: 10 to 200 ° C./second, holding time at cooling end temperature: 10 to 600 seconds>
This is because the bainite transformation from the austenite transformed during the annealing heating is sufficiently advanced to secure a bainite area ratio of 50% or more.
これは、上記焼鈍加熱時に変態生成したオーステナイトからのベイナイト変態を十分に進行させてベイナイト面積率50%以上を確保するためである。 <Cooling end temperature: 300 ° C. or more and [Bs-100] ° C. or less, cooling rate: 10 to 200 ° C./second, holding time at cooling end temperature: 10 to 600 seconds>
This is because the bainite transformation from the austenite transformed during the annealing heating is sufficiently advanced to secure a bainite area ratio of 50% or more.
冷却終了温度が300℃未満では、マルテンサイトが形成され、伸びフランジ性が低下する。一方、冷却終了温度が[Bs-100]℃を超えると、ベイナイト変態完了までの時間がかかりすぎ、マルテンサイトや残留オーステナイトが形成され、伸びフランジ性が確保できなくなる。
When the cooling end temperature is less than 300 ° C., martensite is formed and stretch flangeability is deteriorated. On the other hand, if the cooling end temperature exceeds [Bs-100] ° C., it takes too much time to complete the bainite transformation, martensite and retained austenite are formed, and stretch flangeability cannot be secured.
冷却終了温度での保持時間が10秒未満では、ベイナイト変態が十分に進行せず伸びと伸びフランジ性が確保できなくなる一方、600秒を超えると、生産性が極端に悪化するので好ましくない。
If the holding time at the cooling end temperature is less than 10 seconds, the bainite transformation does not proceed sufficiently and the elongation and stretch flangeability cannot be secured. On the other hand, if it exceeds 600 seconds, the productivity is extremely deteriorated.
[焼戻し条件]
焼戻し条件としては、上記焼鈍冷却後の温度から焼戻し加熱温度Tt(℃):480℃以上Ac1℃以下で、かつ焼戻し保持時間t(秒)が、Pg=exp[-13123/(Tt+273)]×t<1.21×10-5となる条件で保持した後、室温まで冷却すればよい。 [Tempering conditions]
As the tempering conditions, the temperature after the annealing cooling to the tempering heating temperature Tt (° C.): 480 ° C. or higher and Ac 1 ° C. or lower and the tempering holding time t (second) is Pg = exp [−13123 / (Tt + 273)] After holding under the condition of xt <1.21 × 10 −5 , it may be cooled to room temperature.
焼戻し条件としては、上記焼鈍冷却後の温度から焼戻し加熱温度Tt(℃):480℃以上Ac1℃以下で、かつ焼戻し保持時間t(秒)が、Pg=exp[-13123/(Tt+273)]×t<1.21×10-5となる条件で保持した後、室温まで冷却すればよい。 [Tempering conditions]
As the tempering conditions, the temperature after the annealing cooling to the tempering heating temperature Tt (° C.): 480 ° C. or higher and Ac 1 ° C. or lower and the tempering holding time t (second) is Pg = exp [−13123 / (Tt + 273)] After holding under the condition of xt <1.21 × 10 −5 , it may be cooled to room temperature.
焼戻し中にV炭化物等を析出させるには480℃以上に加熱する必要があり、析出物のサイズを制御するには加熱温度と保持時間との関係を適切に制御する必要がある。
In order to precipitate V carbide or the like during tempering, it is necessary to heat to 480 ° C. or higher, and to control the size of the precipitate, it is necessary to appropriately control the relationship between the heating temperature and the holding time.
ここで、Pg=exp[-13123/(Tt+273)]×tは、杉本孝一ほか、材料組織学、朝倉書店出版、p106の式(4.18)に記載の析出物の粒成長モデルを元に変数の設定および簡略化を行った、析出物のサイズを規定するパラメータである。
Here, Pg = exp [−13123 / (Tt + 273)] × t is based on the grain growth model of the precipitate described in Koichi Sugimoto et al., Material Histology, Asakura Shoten Publishing, p106 formula (4.18). It is a parameter that defines the size of the precipitate, with variables set and simplified.
Pg=exp[-13123/(Tt+273)]×t≧1.21×10-5となる条件では、析出物の粗大化が進行して、20nm以上の粗大な析出物の個数が多くなりすぎるため、伸びフランジ性が確保できなくなる。
Under the condition of Pg = exp [−13123 / (Tt + 273)] × t ≧ 1.21 × 10 −5 , the coarsening of the precipitate proceeds, and the number of coarse precipitates of 20 nm or more increases too much. The stretch flangeability cannot be secured.
焼戻し保持時間t(秒)は、Pg<0.20×10-5となる条件とすることが推奨され、これによりセメンタイトの成長を防止することで伸びフランジ性をさらに改善することができる。
It is recommended that the tempering holding time t (seconds) be Pg <0.20 × 10 −5 , whereby the stretch flangeability can be further improved by preventing the growth of cementite.
本発明の冷延鋼板(基本発明、第1発明、第2発明)は前記した成分を基本的に含有し、残部が実質的に鉄および不純物である。しかしながら、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。
The cold-rolled steel sheet of the present invention (basic invention, first invention, second invention) basically contains the aforementioned components, with the balance being substantially iron and impurities. However, in addition, the following allowable components can be added as long as the effects of the present invention are not impaired.
(Cr:0.1~3.0質量%)
ベイナイトのうち、本発明の鋼が主として対象とする上部ベイナイトは、(1)ベイニティックフェライトの形成→(2)ベイニティックフェライトからオーステナイトへの炭素の吐き出し→(3)オーステナイトからのセメンタイトの形成、という流れで進行する変態現象により形成される。この流れ中、オーステナイトからのセメンタイトの形成はSiなどの合金元素の添加により遅延するため、残留オーステナイトや焼戻しマルテンサイトが形成されやすくなる。これに対して、Crはセメンタイトの核生成の駆動力を大きくする元素であり、セメンタイトの形成を促進し、これにより残留オーステナイトや焼戻しマルテンサイトの形成を抑制する作用を有する。また、形成されたセメンタイトは、通常は拡散速度の大きい炭素の拡散律速により粗大化が進行するため粗大化しやすいが、Crが添加されると、拡散速度の小さいCrの拡散律速により粗大化が進行するようになるため、セメンタイトの粗大化が抑制できる。その結果、破壊の起点となるセメンタイトを微細に分散でき、伸びフランジ性を改善することができる。Cr含有量が0.1質量%未満では上記作用を有効に発揮することができず、焼戻しマルテンサイトや残留オーステナイトの割合が増加するとともに、セメンタイトが粗大化するため伸びフランジ性が劣化する。一方、Cr含有量が3.0質量%超では、焼入れ時に残留オーステナイトが形成され、ベイナイト面積率を確保できず、強度と伸びフランジ性が劣化する。Cr含有量の範囲は、好ましくは0.3~2.5質量%、さらに好ましくは0.6~2.0質量%である。 (Cr: 0.1-3.0% by mass)
Among the bainite, the upper bainite, which is mainly targeted by the steel of the present invention, is (1) formation of bainitic ferrite → (2) spout of carbon from bainitic ferrite to austenite → (3) cementite from austenite It is formed by a transformation phenomenon that proceeds in the flow of formation. In this flow, the formation of cementite from austenite is delayed by the addition of an alloy element such as Si, so that residual austenite and tempered martensite are easily formed. On the other hand, Cr is an element that increases the driving force for nucleation of cementite, and promotes the formation of cementite, thereby suppressing the formation of retained austenite and tempered martensite. In addition, the cementite formed is usually coarsened due to the diffusion rate-determining of the carbon having a high diffusion rate, and thus is coarsened. However, when Cr is added, the coarsening proceeds due to the diffusion-limited rate of Cr having a low diffusion rate. Therefore, cementite coarsening can be suppressed. As a result, it is possible to finely disperse cementite that is the starting point of fracture, and to improve stretch flangeability. If the Cr content is less than 0.1% by mass, the above effect cannot be exhibited effectively, the ratio of tempered martensite and retained austenite increases, and cementite coarsens, so that the stretch flangeability deteriorates. On the other hand, if the Cr content exceeds 3.0% by mass, retained austenite is formed during quenching, the bainite area ratio cannot be ensured, and the strength and stretch flangeability deteriorate. The range of the Cr content is preferably 0.3 to 2.5% by mass, more preferably 0.6 to 2.0% by mass.
ベイナイトのうち、本発明の鋼が主として対象とする上部ベイナイトは、(1)ベイニティックフェライトの形成→(2)ベイニティックフェライトからオーステナイトへの炭素の吐き出し→(3)オーステナイトからのセメンタイトの形成、という流れで進行する変態現象により形成される。この流れ中、オーステナイトからのセメンタイトの形成はSiなどの合金元素の添加により遅延するため、残留オーステナイトや焼戻しマルテンサイトが形成されやすくなる。これに対して、Crはセメンタイトの核生成の駆動力を大きくする元素であり、セメンタイトの形成を促進し、これにより残留オーステナイトや焼戻しマルテンサイトの形成を抑制する作用を有する。また、形成されたセメンタイトは、通常は拡散速度の大きい炭素の拡散律速により粗大化が進行するため粗大化しやすいが、Crが添加されると、拡散速度の小さいCrの拡散律速により粗大化が進行するようになるため、セメンタイトの粗大化が抑制できる。その結果、破壊の起点となるセメンタイトを微細に分散でき、伸びフランジ性を改善することができる。Cr含有量が0.1質量%未満では上記作用を有効に発揮することができず、焼戻しマルテンサイトや残留オーステナイトの割合が増加するとともに、セメンタイトが粗大化するため伸びフランジ性が劣化する。一方、Cr含有量が3.0質量%超では、焼入れ時に残留オーステナイトが形成され、ベイナイト面積率を確保できず、強度と伸びフランジ性が劣化する。Cr含有量の範囲は、好ましくは0.3~2.5質量%、さらに好ましくは0.6~2.0質量%である。 (Cr: 0.1-3.0% by mass)
Among the bainite, the upper bainite, which is mainly targeted by the steel of the present invention, is (1) formation of bainitic ferrite → (2) spout of carbon from bainitic ferrite to austenite → (3) cementite from austenite It is formed by a transformation phenomenon that proceeds in the flow of formation. In this flow, the formation of cementite from austenite is delayed by the addition of an alloy element such as Si, so that residual austenite and tempered martensite are easily formed. On the other hand, Cr is an element that increases the driving force for nucleation of cementite, and promotes the formation of cementite, thereby suppressing the formation of retained austenite and tempered martensite. In addition, the cementite formed is usually coarsened due to the diffusion rate-determining of the carbon having a high diffusion rate, and thus is coarsened. However, when Cr is added, the coarsening proceeds due to the diffusion-limited rate of Cr having a low diffusion rate. Therefore, cementite coarsening can be suppressed. As a result, it is possible to finely disperse cementite that is the starting point of fracture, and to improve stretch flangeability. If the Cr content is less than 0.1% by mass, the above effect cannot be exhibited effectively, the ratio of tempered martensite and retained austenite increases, and cementite coarsens, so that the stretch flangeability deteriorates. On the other hand, if the Cr content exceeds 3.0% by mass, retained austenite is formed during quenching, the bainite area ratio cannot be ensured, and the strength and stretch flangeability deteriorate. The range of the Cr content is preferably 0.3 to 2.5% by mass, more preferably 0.6 to 2.0% by mass.
(B:0.0002~0.0050質量%)
Bは、鋼中に固溶状態でオーステナイト粒界に存在することで、焼入れ性を高め、ベイナイト面積率を高めるのに有用な元素である。Bの添加量が0.0002質量%未満では、上記のような作用を有効に発揮することができない。一方、Bの添加量が0.0050質量%を超えて過剰になるとFe23(CB)6を形成し、固溶Bが減少するため、焼入れ性改善作用を減殺する。 (B: 0.0002 to 0.0050 mass%)
B is an element useful for improving the hardenability and increasing the area ratio of bainite by being present in the austenite grain boundary in a solid solution state in the steel. If the addition amount of B is less than 0.0002% by mass, the above-described effects cannot be exhibited effectively. On the other hand, if the addition amount of B exceeds 0.0050% by mass, Fe 23 (CB) 6 is formed and the solid solution B is reduced, so that the effect of improving hardenability is diminished.
Bは、鋼中に固溶状態でオーステナイト粒界に存在することで、焼入れ性を高め、ベイナイト面積率を高めるのに有用な元素である。Bの添加量が0.0002質量%未満では、上記のような作用を有効に発揮することができない。一方、Bの添加量が0.0050質量%を超えて過剰になるとFe23(CB)6を形成し、固溶Bが減少するため、焼入れ性改善作用を減殺する。 (B: 0.0002 to 0.0050 mass%)
B is an element useful for improving the hardenability and increasing the area ratio of bainite by being present in the austenite grain boundary in a solid solution state in the steel. If the addition amount of B is less than 0.0002% by mass, the above-described effects cannot be exhibited effectively. On the other hand, if the addition amount of B exceeds 0.0050% by mass, Fe 23 (CB) 6 is formed and the solid solution B is reduced, so that the effect of improving hardenability is diminished.
(Nb及び/またはTi:([N]-0.003)/12≦[Nb]/96+[Ti]/48≦([N]+0.01)/12([ ]は各元素の含有量(質量%)を意味する。))
NはBNを形成してBを消費するため、固溶Bによる焼入れ性改善作用を減殺してしまう。これに対して、Ti、NbはNをTiNまたはNb(CN)として強く固定し、BNの形成を抑制するので、Bによる焼入れ性改善作用を発揮させるのに有用な元素である。これらの元素の添加量が不足すると上記BN形成抑制作用が有効に発揮されない。一方、これらの元素の添加量が過剰になるとセメンタイトの形成が阻害され、焼戻しマルテンサイトや残留オーステナイトの割合が大きくなり、伸びフランジ性が劣化する。 (Nb and / or Ti: ([N] −0.003) / 12 ≦ [Nb] / 96 + [Ti] / 48 ≦ ([N] +0.01) / 12 ([] is the content of each element ( Mass%))))
Since N forms BN and consumes B, the hardenability improving effect by solid solution B is reduced. On the other hand, Ti and Nb are elements useful for exerting a hardenability improving effect by B because N is strongly fixed as TiN or Nb (CN) and the formation of BN is suppressed. If the addition amount of these elements is insufficient, the above BN formation inhibiting action is not effectively exhibited. On the other hand, when the addition amount of these elements becomes excessive, the formation of cementite is inhibited, the ratio of tempered martensite and retained austenite increases, and stretch flangeability deteriorates.
NはBNを形成してBを消費するため、固溶Bによる焼入れ性改善作用を減殺してしまう。これに対して、Ti、NbはNをTiNまたはNb(CN)として強く固定し、BNの形成を抑制するので、Bによる焼入れ性改善作用を発揮させるのに有用な元素である。これらの元素の添加量が不足すると上記BN形成抑制作用が有効に発揮されない。一方、これらの元素の添加量が過剰になるとセメンタイトの形成が阻害され、焼戻しマルテンサイトや残留オーステナイトの割合が大きくなり、伸びフランジ性が劣化する。 (Nb and / or Ti: ([N] −0.003) / 12 ≦ [Nb] / 96 + [Ti] / 48 ≦ ([N] +0.01) / 12 ([] is the content of each element ( Mass%))))
Since N forms BN and consumes B, the hardenability improving effect by solid solution B is reduced. On the other hand, Ti and Nb are elements useful for exerting a hardenability improving effect by B because N is strongly fixed as TiN or Nb (CN) and the formation of BN is suppressed. If the addition amount of these elements is insufficient, the above BN formation inhibiting action is not effectively exhibited. On the other hand, when the addition amount of these elements becomes excessive, the formation of cementite is inhibited, the ratio of tempered martensite and retained austenite increases, and stretch flangeability deteriorates.
(Mo:0.01~1.0質量%、Cu:0.05~1.0質量%、Ni:0.05~1.0質量%の1種以上)
これらの元素は、焼入れ性を高めてベイナイト面積率の確保に寄与することで、強度と伸びフランジ性を高めるのに有用な元素である。Moは、焼戻し時に水素のトラップサイトとなりうる合金炭化物および炭窒化物を形成することにより、また、CuとNiは、Vと同様、α-FeOOHの生成を促進させることにより、耐水素脆化特性をも改善する効果を有する。各元素の添加量が上記各下限値未満では、上記のような作用を有効に発揮できない。一方、各元素の添加量が1.0質量%を超えると、焼入れ時にオーステナイトが残存し、伸びフランジ性を低下させる。 (Mo: 0.01 to 1.0 mass%, Cu: 0.05 to 1.0 mass%, Ni: 0.05 to 1.0 mass%)
These elements are useful elements for enhancing the strength and stretch flangeability by increasing the hardenability and contributing to securing the bainite area ratio. Mo forms alloy carbides and carbonitrides that can become hydrogen trap sites during tempering, and Cu and Ni, like V, promote the formation of α-FeOOH, thereby improving hydrogen embrittlement resistance. Also has the effect of improving. If the addition amount of each element is less than each of the above lower limit values, the above effects cannot be exhibited effectively. On the other hand, when the addition amount of each element exceeds 1.0 mass%, austenite remains at the time of quenching, and stretch flangeability is deteriorated.
これらの元素は、焼入れ性を高めてベイナイト面積率の確保に寄与することで、強度と伸びフランジ性を高めるのに有用な元素である。Moは、焼戻し時に水素のトラップサイトとなりうる合金炭化物および炭窒化物を形成することにより、また、CuとNiは、Vと同様、α-FeOOHの生成を促進させることにより、耐水素脆化特性をも改善する効果を有する。各元素の添加量が上記各下限値未満では、上記のような作用を有効に発揮できない。一方、各元素の添加量が1.0質量%を超えると、焼入れ時にオーステナイトが残存し、伸びフランジ性を低下させる。 (Mo: 0.01 to 1.0 mass%, Cu: 0.05 to 1.0 mass%, Ni: 0.05 to 1.0 mass%)
These elements are useful elements for enhancing the strength and stretch flangeability by increasing the hardenability and contributing to securing the bainite area ratio. Mo forms alloy carbides and carbonitrides that can become hydrogen trap sites during tempering, and Cu and Ni, like V, promote the formation of α-FeOOH, thereby improving hydrogen embrittlement resistance. Also has the effect of improving. If the addition amount of each element is less than each of the above lower limit values, the above effects cannot be exhibited effectively. On the other hand, when the addition amount of each element exceeds 1.0 mass%, austenite remains at the time of quenching, and stretch flangeability is deteriorated.
(Ca:0.0005~0.01質量%、Mg:0.0005~0.01質量%、REM:0.0004~0.01質量%の1種以上)
これらの元素は、介在物を微細化し、破壊の起点を減少させることで、伸びフランジ性を向上させるのに有用である。Ca、Mgの添加量が0.0005質量%未満、またはREMの添加量が0.0004%未満では、上記のような作用を有効に発揮することができない。一方、各元素の添加量がいずれも0.01質量%を超えると、逆に介在物が粗大化し、伸びフランジ性が低下してしまう。 (Ca: 0.0005 to 0.01% by mass, Mg: 0.0005 to 0.01% by mass, REM: 0.0004 to 0.01% by mass or more)
These elements are useful for improving stretch flangeability by miniaturizing inclusions and reducing the starting point of fracture. When the addition amount of Ca and Mg is less than 0.0005 mass%, or the addition amount of REM is less than 0.0004%, the above-described effects cannot be exhibited effectively. On the other hand, when the addition amount of each element exceeds 0.01% by mass, the inclusions are coarsened, and the stretch flangeability is deteriorated.
これらの元素は、介在物を微細化し、破壊の起点を減少させることで、伸びフランジ性を向上させるのに有用である。Ca、Mgの添加量が0.0005質量%未満、またはREMの添加量が0.0004%未満では、上記のような作用を有効に発揮することができない。一方、各元素の添加量がいずれも0.01質量%を超えると、逆に介在物が粗大化し、伸びフランジ性が低下してしまう。 (Ca: 0.0005 to 0.01% by mass, Mg: 0.0005 to 0.01% by mass, REM: 0.0004 to 0.01% by mass or more)
These elements are useful for improving stretch flangeability by miniaturizing inclusions and reducing the starting point of fracture. When the addition amount of Ca and Mg is less than 0.0005 mass%, or the addition amount of REM is less than 0.0004%, the above-described effects cannot be exhibited effectively. On the other hand, when the addition amount of each element exceeds 0.01% by mass, the inclusions are coarsened, and the stretch flangeability is deteriorated.
なお、REMは、希土類元素、すなわち、周期律表の3A属元素を指す。
Note that REM refers to a rare earth element, that is, a group 3A element in the periodic table.
(実施例1:第1発明に係る実施例)
表1に示す成分の鋼を溶製し、厚さ120mmのインゴットを作成した。
これを熱間圧延で厚さ25mmにした後、再度、熱間圧延で厚さ3.2mmとした。これを酸洗した後、厚さ1.6mmに冷間圧延して供試材とし、表2に示す条件にて熱処理を施した。 (Example 1: Example according to the first invention)
Steels having the components shown in Table 1 were melted to produce 120 mm thick ingots.
This was hot rolled to a thickness of 25 mm, and then hot rolled again to a thickness of 3.2 mm. After pickling this, it cold-rolled to 1.6 mm in thickness to make a test material, and heat-treated on the conditions shown in Table 2.
表1に示す成分の鋼を溶製し、厚さ120mmのインゴットを作成した。
これを熱間圧延で厚さ25mmにした後、再度、熱間圧延で厚さ3.2mmとした。これを酸洗した後、厚さ1.6mmに冷間圧延して供試材とし、表2に示す条件にて熱処理を施した。 (Example 1: Example according to the first invention)
Steels having the components shown in Table 1 were melted to produce 120 mm thick ingots.
This was hot rolled to a thickness of 25 mm, and then hot rolled again to a thickness of 3.2 mm. After pickling this, it cold-rolled to 1.6 mm in thickness to make a test material, and heat-treated on the conditions shown in Table 2.
熱処理後の各鋼板について、前記した測定方法により、焼戻しベイナイト、フェライト、焼戻しマルテンサイトおよび残留オーステナイトの各面積率、ならびに、セメンタイト粒子のサイズおよびその存在数を測定した。
For each steel plate after the heat treatment, the area ratios of tempered bainite, ferrite, tempered martensite and retained austenite, and the size and number of cementite particles were measured by the measurement method described above.
また、上記各鋼板について、引張強度TS、伸びEl、および伸びフランジ性λを測定した。なお、引張強度TSと伸びElは、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に従って測定を行った。また、伸びフランジ性λは、鉄連規格JFST1001に則り、穴拡げ試験を実施して穴拡げ率の測定を行い、これを伸びフランジ性とした。これらの測定結果を表3に示す。
Further, the tensile strength TS, the elongation El, and the stretch flangeability λ were measured for each of the above steel plates. The tensile strength TS and elongation El were measured in accordance with JIS Z 2241 by preparing a No. 5 test piece described in JIS Z 2201 with the long axis in the direction perpendicular to the rolling direction. Moreover, stretch flangeability (lambda) performed the hole expansion test according to the iron continuous standard JFST1001, and measured the hole expansion rate, and made this the stretch flangeability. These measurement results are shown in Table 3.
表3に示すように、発明例である鋼No.1~6、9~11、14~16、18、21~25は、いずれも、引張強度TSが800MPa以上で、かつ、伸びElが10%以上で伸びフランジ性(穴広げ率)λが90%以上を満足し、前記した要望レベルを満足する、伸びと伸びフランジ性を兼備した高強度冷延鋼板が得られた。
As shown in Table 3, steel no. 1 to 6, 9 to 11, 14 to 16, 18, and 21 to 25 all have a tensile strength TS of 800 MPa or more, an elongation El of 10% or more, and a stretch flangeability (hole expansion ratio) λ of 90. %, And a high-strength cold-rolled steel sheet having both elongation and stretch flangeability that satisfies the above-mentioned required level was obtained.
これに対して、比較例である鋼No.7、8、12、13、17、19、20、26~28は、いずれかの特性が劣っている。
On the other hand, steel No. which is a comparative example. 7, 8, 12, 13, 17, 19, 20, 26 to 28 are inferior in any of the characteristics.
例えば、鋼No.7は、Si含有量が高すぎることにより、マルテンサイトと残留オーステナイトとの合計面積率が過大になるため、伸びフランジ性が劣っている。
For example, steel No. No. 7 is inferior in stretch flangeability because the total area ratio of martensite and retained austenite becomes excessive because the Si content is too high.
また、鋼No.8は、C含有量が低すぎることにより、ベイナイト中のセメンタイト量が不足するため、引張強度が劣っている。
Steel No. No. 8 is inferior in tensile strength because the amount of cementite in bainite is insufficient due to the C content being too low.
また、鋼No.12は、C含有量が高すぎることにより、マルテンサイトと残留オーステナイトとの合計面積率が過大になるため、引張強度は優れているが、伸びフランジ性が劣っている。
Steel No. In No. 12, since the total area ratio of martensite and retained austenite becomes excessive because the C content is too high, the tensile strength is excellent, but the stretch flangeability is inferior.
また、鋼No.13は、Mn含有量が低すぎることにより、ベイナイト面積率が不足するため、引張強度は確保されているが、伸びフランジ性が劣っている。
Steel No. In No. 13, since the Mn content is too low, the bainite area ratio is insufficient, so that the tensile strength is ensured, but the stretch flangeability is inferior.
また、鋼No.17は、Mn含有量が高すぎることにより、マルテンサイトが過剰に形成され、マルテンサイトと残留オーステナイトとの合計面積率が過大になるため、引張強度は優れているが、伸びフランジ性が劣っている。
Steel No. No. 17, because the Mn content is too high, martensite is excessively formed, and the total area ratio of martensite and retained austenite becomes excessive, so the tensile strength is excellent, but the stretch flangeability is inferior. Yes.
また、鋼No.26~28は、焼鈍条件が推奨範囲を外れていることにより、本発明の組織を規定する要件のうち少なくとも一つを満たさず、伸びフランジ性が劣っている。
Steel No. Nos. 26 to 28 do not satisfy at least one of the requirements for defining the structure of the present invention because the annealing conditions are out of the recommended range, and the stretch flangeability is inferior.
ここで、表3に示すデータのうち、鋼の成分組成とマトリックス組織の構成が本発明の規定範囲を満たす鋼No.のデータを用いて、以下の解析を試みた。
Here, among the data shown in Table 3, steel No. 1 in which the composition of the steel and the structure of the matrix structure satisfy the specified range of the present invention. The following analysis was attempted using the above data.
すなわち、伸びフランジ性(穴広げ率)λに及ぼすセメンタイト粒子数の影響度合いについて整理した結果、図1が得られた。
That is, as a result of arranging the degree of influence of the number of cementite particles on the stretch flangeability (hole expansion ratio) λ, FIG. 1 was obtained.
図1に示すように、伸びフランジ性(穴広げ率)λは、円相当直径0.1μm以上の粗大なセメンタイト粒子数の増加に伴って、ほぼ直線的に低下する。図1により、上記要望レベル以上のλ≧90%を確保するには、該粗大セメンタイト粒子数を3個/μm2以下にする必要があることがわかる。
As shown in FIG. 1, the stretch flangeability (hole expansion ratio) λ decreases almost linearly as the number of coarse cementite particles having an equivalent circle diameter of 0.1 μm or more increases. FIG. 1 shows that the number of coarse cementite particles needs to be 3 / μm 2 or less in order to ensure λ ≧ 90% above the desired level.
(実施例2:第2発明に係る実施例)
表4に示す成分の鋼を溶製し、厚さ120mmのインゴットを作成した。
これを熱間圧延で厚さ25mmにした後、再度、熱間圧延で厚さ3mmとした。これを酸洗した後、厚さ1.2mmに冷間圧延して供試材とし、表5に示す条件にて熱処理を施した。 (Example 2: Example according to the second invention)
Steels having the components shown in Table 4 were melted to prepare an ingot having a thickness of 120 mm.
After this was hot rolled to a thickness of 25 mm, it was again hot rolled to a thickness of 3 mm. After pickling this, it cold-rolled to thickness 1.2mm to make a test material, and heat-treated on the conditions shown in Table 5.
表4に示す成分の鋼を溶製し、厚さ120mmのインゴットを作成した。
これを熱間圧延で厚さ25mmにした後、再度、熱間圧延で厚さ3mmとした。これを酸洗した後、厚さ1.2mmに冷間圧延して供試材とし、表5に示す条件にて熱処理を施した。 (Example 2: Example according to the second invention)
Steels having the components shown in Table 4 were melted to prepare an ingot having a thickness of 120 mm.
After this was hot rolled to a thickness of 25 mm, it was again hot rolled to a thickness of 3 mm. After pickling this, it cold-rolled to thickness 1.2mm to make a test material, and heat-treated on the conditions shown in Table 5.
上記熱処理後の各鋼板について、前記した測定方法により、焼戻しベイナイト、フェライト、焼戻しマルテンサイトおよび残留オーステナイトの各面積率、析出物のサイズおよびその存在数(存在密度)、ならびに、セメンタイト粒子のサイズおよびその存在数(存在密度)を測定した。
About each steel plate after the heat treatment, by the measurement method described above, each area ratio of tempered bainite, ferrite, tempered martensite and retained austenite, the size and number of precipitates (existence density), and the size of cementite particles and The existence number (existence density) was measured.
また、上記各鋼板について、機械的特性を評価するため、引張強度TS、伸びEl、伸びフランジ性λを測定し、さらに、耐水素脆化特性を評価するため、水素脆化危険度指数を測定した。
For each steel sheet, tensile strength TS, elongation El, stretch flangeability λ are measured to evaluate mechanical properties, and hydrogen embrittlement risk index is measured to evaluate hydrogen embrittlement resistance. did.
なお、引張強度TSと伸びElは、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に従って測定を行った。
The tensile strength TS and elongation El were measured in accordance with JIS Z 2241 by preparing a No. 5 test piece described in JIS Z 2201 with the long axis perpendicular to the rolling direction.
また、伸びフランジ性λは、鉄連規格JFST1001に則り、穴拡げ試験を実施して穴拡げ率の測定を行い、これを伸びフランジ性とした。
Also, the stretch flangeability λ was measured according to the iron standard JFST1001, the hole expansion rate was measured, and the hole expansion rate was measured.
水素脆化危険度指数は、板厚1.2mmの平板試験片を用いて、ひずみ速度が1×10-4/sの低ひずみ速度引張試験(SSRT:Slow Strain Rate Technique)を行い、下記の定義式により水素脆化危険度指数を算出した。
The hydrogen embrittlement risk index was determined by performing a low strain rate technique (SSRT) with a strain rate of 1 × 10 −4 / s using a flat plate test piece having a thickness of 1.2 mm. The hydrogen embrittlement risk index was calculated from the definition formula.
水素脆化危険度指数(%)=100×(1-E1/E0)
Hydrogen embrittlement risk index (%) = 100 × (1−E 1 / E 0 )
ここで、E0は、実質的に鋼中に水素を含まない状態の試験片の破断時の伸びを示し、E1は、硫酸中で電気化学的に水素をチャージさせた鋼材(試験片)の破断時の伸びを示している。なお、上記水素チャージは、鋼材(試験片)をH2SO4(0.5mol/L)とKSCN(0.01mol/L)の混合溶液中に浸漬し、室温かつ定電流(100A/m2)の条件で行った。
Here, E 0 indicates the elongation at break of a test piece substantially free of hydrogen in steel, and E 1 indicates a steel material (test piece) electrochemically charged with hydrogen in sulfuric acid. Elongation at break is shown. The hydrogen charge is performed by immersing a steel material (test piece) in a mixed solution of H 2 SO 4 (0.5 mol / L) and KSCN (0.01 mol / L) at room temperature and a constant current (100 A / m 2). ).
上記水素脆化危険度指数は、15%を超えると使用中に水素脆化を起こす危険があるので、本発明では、15%以下のものを耐水素脆化特性に優れると評価した。
When the hydrogen embrittlement risk index exceeds 15%, there is a risk of causing hydrogen embrittlement during use. Therefore, in the present invention, those with 15% or less were evaluated as having excellent hydrogen embrittlement resistance.
上記機械的特性および耐水素脆化特性の測定結果を表6に示す。
Table 6 shows the measurement results of the mechanical properties and hydrogen embrittlement resistance.
表6に示すように、本発明の必須構成要件(上記成分組成規定および上記必須組織規定)を充足する発明鋼(鋼No.30、31、38、39、42、44、45、48、49、54、56、60~65;○印のもの)は、いずれも、引張強度TSが780MPa以上、引張強度TSと伸びフランジ性(穴広げ率)λの間のバランスを評価する指数TS×λが60000MPa・%以上で、かつ、水素脆化危険度指数が15%以下を満足する。従って、加工性と耐水素脆化特性とを兼備した高強度冷延鋼板が得られた。
As shown in Table 6, invention steels (steel Nos. 30, 31, 38, 39, 42, 44, 45, 48, 49) satisfying the essential constituent requirements of the present invention (the above-mentioned component composition rules and the above-mentioned essential structure rules). , 54, 56, 60 to 65; all of the circles) have an tensile strength TS of 780 MPa or more, and an index TS × λ for evaluating the balance between the tensile strength TS and stretch flangeability (hole expansion ratio) λ. Is 60000 MPa ·% or more, and the hydrogen embrittlement risk index is 15% or less. Therefore, a high-strength cold-rolled steel sheet having both workability and hydrogen embrittlement resistance was obtained.
これに対して、本発明の必須構成要件のうち少なくとも一つを欠く比較鋼(鋼No.29、32~37、40、41、43、46、47、50~53、55;×印のもの)は、上記機械的特性と耐水素脆化特性のうちいずれかの特性が劣っている。
In contrast, comparative steel lacking at least one of the essential constituent elements of the present invention (steel Nos. 29, 32 to 37, 40, 41, 43, 46, 47, 50 to 53, 55; ) Is inferior in any of the mechanical properties and hydrogen embrittlement resistance properties.
例えば、鋼No.29は、V含有量が低すぎることにより、円相当直径1~6nmの微細な析出物の存在数(存在密度)が不足する。そのため、引張強度と伸びフランジ性は優れているが、耐水素化脆化特性が劣っている。
For example, steel No. In No. 29, since the V content is too low, the number (existence density) of fine precipitates having an equivalent circle diameter of 1 to 6 nm is insufficient. Therefore, the tensile strength and stretch flangeability are excellent, but the hydrogenation embrittlement resistance is inferior.
また、鋼No.43は、V含有量が高すぎることにより、円相当直径20nm以上の粗大な析出物の存在数(存在密度)が過大になる。そのため、引張強度と耐水素化脆化特性は優れているが、伸びフランジ性が劣っている。
Steel No. In No. 43, since the V content is too high, the number (existence density) of coarse precipitates having an equivalent circle diameter of 20 nm or more becomes excessive. Therefore, although tensile strength and hydrogenation embrittlement resistance are excellent, stretch flangeability is inferior.
また、鋼No.46は、Si含有量が高すぎることにより、マルテンサイトと残留オーステナイト(残留γ)の合計面積率が過大になる。そのため、引張強度と耐水素化脆化特性は優れているが、伸びフランジ性が劣っている。
Steel No. No. 46 has an excessively high Si content, so that the total area ratio of martensite and residual austenite (residual γ) becomes excessive. Therefore, although tensile strength and hydrogenation embrittlement resistance are excellent, stretch flangeability is inferior.
また、鋼No.47は、C含有量が低すぎることにより、ベイナイト面積率が不足する。そのため、伸びフランジ性と耐水素化脆化特性は優れているが、引張強度が劣っている。
Steel No. 47 is insufficient in the bainite area ratio because the C content is too low. Therefore, stretch flangeability and hydrogenation embrittlement resistance are excellent, but tensile strength is inferior.
また、鋼No.51は、C含有量が高すぎることにより、マルテンサイトと残留オーステナイト(残留γ)の残存量が増加するとともに、20nm以上の粗大な析出物の数が過大になる。そのため、引張強度は優れているが、伸びフランジ性と耐水素化脆化特性が劣っている。
Steel No. In No. 51, when the C content is too high, the residual amount of martensite and residual austenite (residual γ) increases, and the number of coarse precipitates of 20 nm or more becomes excessive. Therefore, although tensile strength is excellent, stretch flangeability and hydrogenation embrittlement resistance are inferior.
また、鋼No.52は、Mn含有量が低すぎることにより、ベイナイト面積率が不足するため、伸びフランジ性と耐水素化脆化特性は優れているが、引張強度が劣っている。
Steel No. In No. 52, since the Mn content is too low, the bainite area ratio is insufficient, so that the stretch flangeability and hydrogenation embrittlement resistance are excellent, but the tensile strength is inferior.
また、鋼No.55は、Mn含有量が高すぎることにより、マルテンサイトと残留オーステナイトの残存量が増加する。そのため、引張強度は優れているが、伸びフランジ性と耐水素化脆化特性が劣っている。
Steel No. In No. 55, when the Mn content is too high, the residual amount of martensite and retained austenite increases. Therefore, although tensile strength is excellent, stretch flangeability and hydrogenation embrittlement resistance are inferior.
また、鋼No.32~37、40、41、50は、焼鈍条件または焼戻し条件が推奨範囲を外れていることにより、本発明の組織を規定する要件のうち少なくとも一つを満たさず、いずれかの特性が劣っている。
Steel No. Nos. 32 to 37, 40, 41 and 50 do not satisfy at least one of the requirements for defining the structure of the present invention because the annealing condition or tempering condition is out of the recommended range, and any of the characteristics is inferior. Yes.
また、表6に示すように、本発明の必須構成要件に加え、上記推奨組織規定(a)をも充足する推奨鋼(鋼No.57~59;◎印のもの)は、いずれも、引張強度TSが980MPa以上、伸びフランジ性(穴広げ率)λが100%以上で、かつ、水素脆化危険度指数が15%以下を満足し、上記発明鋼よりもさらに強度と加工性に優れた高強度冷延鋼板が得られることがわかった。
Further, as shown in Table 6, in addition to the essential constituent requirements of the present invention, the recommended steels (steel Nos. 57 to 59; marked with ◎) that satisfy the above recommended structure provision (a) are all tensile. The strength TS is 980 MPa or more, the stretch flangeability (hole expansion ratio) λ is 100% or more, and the hydrogen embrittlement risk index is 15% or less, which is superior in strength and workability to the steel of the invention. It was found that a high-strength cold-rolled steel sheet can be obtained.
Claims (8)
- C:0.03質量%以上、0.30質量%未満、
Si:2.0質量%以下(0質量%を含む)、
Mn:0.1~2.8質量%、
P:0.1質量%以下、
S:0.005質量%以下、
N:0.01質量%以下、及び
Al:0.01~1.00質量%、を含む冷延鋼板において、
焼戻しベイナイトの面積率が50%以上(100%を含む)、焼戻しマルテンサイト及び残留オーステナイトの面積率の合計が3%未満(0%を含む)であるとともに残部がフェライトからなる組織を有し、
前記焼戻しベイナイト中における析出物の分布状態、及び/または、前記焼戻しベイナイト中におけるセメンタイト粒子の分布状態を制御したことを特徴とする冷延鋼板。 C: 0.03 mass% or more, less than 0.30 mass%,
Si: 2.0% by mass or less (including 0% by mass),
Mn: 0.1 to 2.8% by mass,
P: 0.1% by mass or less,
S: 0.005 mass% or less,
In a cold-rolled steel sheet containing N: 0.01% by mass or less, and Al: 0.01-1.00% by mass,
The area ratio of tempered bainite is 50% or more (including 100%), the total area ratio of tempered martensite and residual austenite is less than 3% (including 0%) and the balance has a structure made of ferrite,
A cold-rolled steel sheet characterized by controlling a distribution state of precipitates in the tempered bainite and / or a distribution state of cementite particles in the tempered bainite. - Si:1.0質量%以下(0質量%を含む)、
Mn:0.5~2.4質量%、及び
Al:0.01質量%以上、0.10質量%未満、を含み、
前記焼戻しベイナイトの面積率が70%以上(100%を含む)であり、
円相当直径0.1μm以上のセメンタイト粒子が、前記焼戻しベイナイト1μm2当たり3個以下である請求項1に記載の冷延鋼板。 Si: 1.0% by mass or less (including 0% by mass),
Mn: 0.5 to 2.4 mass%, and Al: 0.01 mass% or more, less than 0.10 mass%,
The area ratio of the tempered bainite is 70% or more (including 100%),
The cold-rolled steel sheet according to claim 1, wherein the number of cementite particles having an equivalent circle diameter of 0.1 µm or more is 3 or less per 1 µm 2 of the tempered bainite. - V:0.001~1.00質量%を含み、
円相当直径1~10nmの析出物が、前記焼戻しベイナイト1μm2当たり20個以上であり、
Vを含む円相当直径20nm以上の析出物が、前記焼戻しベイナイト1μm2当たり10個以下である請求項1に記載の冷延鋼板。 V: 0.001 to 1.00% by mass,
There are 20 or more precipitates having an equivalent circle diameter of 1 to 10 nm per 1 μm 2 of the tempered bainite,
The cold-rolled steel sheet according to claim 1, wherein the number of precipitates having an equivalent circle diameter of 20 nm or more including V is 10 or less per 1 µm 2 of the tempered bainite. - 円相当直径0.1μm以上のセメンタイト粒子が、前記焼戻しベイナイト1μm2当たり3個以下である請求項3に記載の冷延鋼板。 The cold-rolled steel sheet according to claim 3, wherein the number of cementite particles having an equivalent circle diameter of 0.1 µm or more is 3 or less per 1 µm 2 of the tempered bainite.
- Cr:0.1~3.0質量%を含む請求項1に記載の冷延鋼板。 The cold-rolled steel sheet according to claim 1, comprising Cr: 0.1 to 3.0% by mass.
- B:0.0002~0.0050質量%を含むとともに、
Nb及び/またはTiを、([N]-0.003)/12≦[Nb]/96+[Ti]/48≦([N]+0.01)/12の関係を満たすように含む請求項1に記載の冷延鋼板。(ただし、[ ]は各元素の含有量(質量%)を意味する) B: Including 0.0002 to 0.0050 mass%,
2. Nb and / or Ti are included so as to satisfy a relationship of ([N] −0.003) / 12 ≦ [Nb] / 96 + [Ti] / 48 ≦ ([N] +0.01) / 12. Cold-rolled steel sheet as described in 1. (However, [] means the content (% by mass) of each element) - Mo:0.01~1.0質量%、
Cu:0.05~1.0質量%、及び
Ni:0.05~1.0質量%、の1種以上を含む請求項1に記載の冷延鋼板。 Mo: 0.01 to 1.0% by mass,
The cold rolled steel sheet according to claim 1, comprising at least one of Cu: 0.05 to 1.0 mass% and Ni: 0.05 to 1.0 mass%. - Ca:0.0005~0.01質量%、
Mg:0.0005~0.01質量%、及び
REM:0.0004~0.01質量%、の1種以上を含む請求項1に記載の冷延鋼板。 Ca: 0.0005 to 0.01% by mass,
The cold-rolled steel sheet according to claim 1, comprising at least one of Mg: 0.0005 to 0.01 mass% and REM: 0.0004 to 0.01 mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/067171 WO2011039885A1 (en) | 2009-10-01 | 2009-10-01 | Cold-rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/067171 WO2011039885A1 (en) | 2009-10-01 | 2009-10-01 | Cold-rolled steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011039885A1 true WO2011039885A1 (en) | 2011-04-07 |
Family
ID=43825739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/067171 WO2011039885A1 (en) | 2009-10-01 | 2009-10-01 | Cold-rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011039885A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015097354A1 (en) * | 2013-12-24 | 2015-07-02 | Arcelormittal Wire France | Cold-rolled steel wire having high resistance to hydrogen embrittlement and fatigue and reinforcement for flexible pipes incorporating same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0657375A (en) * | 1992-08-07 | 1994-03-01 | Sumitomo Metal Ind Ltd | Ultra high strength cold rolled steel sheet and method for producing the same |
JP2003073773A (en) * | 2001-08-31 | 2003-03-12 | Kobe Steel Ltd | High-strength steel sheet superior in workability and fatigue characteristic, and manufacturing method therefor |
JP2005220440A (en) * | 2004-01-09 | 2005-08-18 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen embrittlement resistance and manufacturing method therefor |
JP2005298956A (en) * | 2004-04-16 | 2005-10-27 | Sumitomo Metal Ind Ltd | Hot-rolled steel sheet and manufacturing method thereof |
-
2009
- 2009-10-01 WO PCT/JP2009/067171 patent/WO2011039885A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0657375A (en) * | 1992-08-07 | 1994-03-01 | Sumitomo Metal Ind Ltd | Ultra high strength cold rolled steel sheet and method for producing the same |
JP2003073773A (en) * | 2001-08-31 | 2003-03-12 | Kobe Steel Ltd | High-strength steel sheet superior in workability and fatigue characteristic, and manufacturing method therefor |
JP2005220440A (en) * | 2004-01-09 | 2005-08-18 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen embrittlement resistance and manufacturing method therefor |
JP2005298956A (en) * | 2004-04-16 | 2005-10-27 | Sumitomo Metal Ind Ltd | Hot-rolled steel sheet and manufacturing method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015097354A1 (en) * | 2013-12-24 | 2015-07-02 | Arcelormittal Wire France | Cold-rolled steel wire having high resistance to hydrogen embrittlement and fatigue and reinforcement for flexible pipes incorporating same |
WO2015097349A1 (en) * | 2013-12-24 | 2015-07-02 | Arcelormittal Wire France | Cold-rolled wire made from steel having a high resistance to hydrogen embrittlement and fatigue and reinforcement for flexible pipes incorporating same |
US10550448B2 (en) | 2013-12-24 | 2020-02-04 | Arcelormittal Wire France | Cold rolled steel wire, method and reinforcement of flexible conduits |
EP3960884A1 (en) * | 2013-12-24 | 2022-03-02 | Arcelormittal Wire France | Cold rolled wire made from steel with high resistance to fatigue and to breakdown by hydrogen and reinforcement of flexible conduits including same |
US11408049B2 (en) | 2013-12-24 | 2022-08-09 | Arcelormittal Wire France | Cold rolled steel wire, method and reinforcement of flexible conduits |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4712882B2 (en) | High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability | |
JP4712838B2 (en) | High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability | |
KR101126953B1 (en) | High-strength cold-rolled steel sheet | |
JP5093422B2 (en) | High strength steel plate and manufacturing method thereof | |
JP6017341B2 (en) | High strength cold-rolled steel sheet with excellent bendability | |
JP4324225B1 (en) | High strength cold-rolled steel sheet with excellent stretch flangeability | |
WO2009110607A1 (en) | Cold-rolled steel sheets | |
JP5400484B2 (en) | High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability | |
JP5126844B2 (en) | Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member | |
JP5466552B2 (en) | High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability | |
EP2765211B1 (en) | High-tensile-strength hot-rolled steel sheet and method for producing same | |
JP5363922B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
WO2012036309A1 (en) | High-strength hot-rolled steel sheet having excellent bending workability and method for producing same | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP2009215572A (en) | High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability | |
JP5080215B2 (en) | High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability | |
JP4712842B2 (en) | High strength cold-rolled steel sheet with excellent elongation and stretch flangeability | |
CN115735012B (en) | Steel plate and method for producing the same | |
JPWO2020130060A1 (en) | Cr-based stainless steel sheet with excellent hydrogen embrittlement resistance | |
JP5189959B2 (en) | High strength cold-rolled steel sheet with excellent elongation and stretch flangeability | |
JP5483562B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP7442645B2 (en) | High-strength steel plate with excellent workability and its manufacturing method | |
WO2010109702A1 (en) | Cold-rolled steel sheet | |
EP4265771A1 (en) | High strength steel sheet having excellent workability and method for manufacturing same | |
JP4712839B2 (en) | High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09850075 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09850075 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |