WO2011034140A1 - スイッチ - Google Patents
スイッチ Download PDFInfo
- Publication number
- WO2011034140A1 WO2011034140A1 PCT/JP2010/066071 JP2010066071W WO2011034140A1 WO 2011034140 A1 WO2011034140 A1 WO 2011034140A1 JP 2010066071 W JP2010066071 W JP 2010066071W WO 2011034140 A1 WO2011034140 A1 WO 2011034140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- mechanical
- turned
- mechanical switch
- contact
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 57
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000003870 refractory metal Substances 0.000 claims description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 27
- 229910052802 copper Inorganic materials 0.000 claims description 27
- 239000010949 copper Substances 0.000 claims description 27
- 239000003990 capacitor Substances 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 19
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004870 electrical engineering Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/541—Contacts shunted by semiconductor devices
- H01H9/542—Contacts shunted by static switch means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/42—Impedances connected with contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/12—Contacts characterised by the manner in which co-operating contacts engage
- H01H1/14—Contacts characterised by the manner in which co-operating contacts engage by abutting
- H01H1/22—Contacts characterised by the manner in which co-operating contacts engage by abutting with rigid pivoted member carrying the moving contact
Definitions
- the present invention includes Japanese patent applications: Japanese Patent Application No. 2009-214415 (filed on September 16, 2009), Japanese Patent Application No. 2009-272435 (filed on November 30, 2009), Japanese Patent Application No. 2010-050648 (2010). Filed on March 8) based on the priority claim, and the entire description of the application is incorporated herein by reference.
- the present invention relates to a switch, and more particularly to a switch suitable for application to a direct current switch (DC switch).
- DC switch direct current switch
- FIG. 1 is a diagram showing a cross-sectional structure of an arc extinguishing part of an air circuit breaker described in Non-Patent Document 1 (The Institute of Electrical Engineers of Japan, “Electrical Engineering Handbook (6th edition)”, p. 755, 2001. Quoted from year).
- the blowout coil strikes the arc against the bulkhead or grid to lower the plasma temperature and extinguish the arc.
- the switch portion When the interruption operation is started, the switch portion is opened and an arc is generated between the electrodes.
- Arc plasma hits the “partition or folds” and the “diaion grid” in FIG. It is blown away by the magnetic field created by the arc current itself, the magnetic field created by the blowout coil, and the electromagnetic force generated by the arc plasma current.
- the “partition wall” iron is used in a structure as shown in the figure for households with a low voltage and devices up to AC 600V.
- the air circuit breaker As the air circuit breaker, a device having a rated current of 200 A to 6 kA and a rated breaking current of 5 to 125 kA is used.
- the charging operation includes manual operation and electric operation, and devices that are easy to operate and maintain are widely used.
- This type of air circuit breaker has not only a breaker function but also a current limiting function through the arc / plasma extinguishing action.
- Patent Document 1 discloses a DC circuit breaker in which a capacitor and a switch for commutating and interrupting a DC current in a non-vibrational manner are connected in parallel.
- a switch using a semiconductor device does not cause a problem of life as described above, but it is expensive, requires a control circuit, has a large ON resistance, generates heat, requires a radiator, etc. , Power consumption becomes large.
- An object of the present invention is to provide a DC switch that achieves miniaturization and power saving and extends the life of the switch.
- a switch comprising a mechanical switch having a metal contact and a semiconductor switch connected in parallel to the mechanical switch and controlled to be turned on and off by an electric signal.
- the mechanical switch is turned on from the non-conductive state, and when the switch is turned off, the mechanical switch is turned off from the conductive state.
- the semiconductor switch is changed from the conductive state to the non-conductive state.
- a series circuit of the second switch and the first resistor may be connected in parallel with the load.
- a series circuit of a second switch and a first resistor may be connected in parallel with the mechanical switch.
- a series circuit of a first capacitor and a first resistor may be connected in parallel with the mechanical switch.
- a voltage dividing resistor for dividing the power supply voltage may be provided, and the voltage at the voltage dividing point may be input to the control terminal of the semiconductor switch.
- a parallel circuit of a first capacitor and an auxiliary switch may be connected between the power source and the voltage dividing point in parallel with one of the voltage dividing resistors.
- the mechanical switch is turned on from the non-conductive state
- the auxiliary switch is turned off from the non-conductive state
- the mechanical switch is a cutoff mechanical switch.
- the semiconductor switch may be changed from the conductive state to the non-conductive state after the cutoff mechanical switch is changed from the conductive state to the non-conductive state.
- each of the first and second contacts of the mechanical switch has a copper contact and a refractory metal contact, and in the first contact, the surface of the refractory metal contact protrudes from the surface of the copper contact.
- the second contact comprises an elastic member behind the refractory metal contact; At the time of closing, the copper contact and the refractory metal contact abut on the same surface, one of the first and second contacts is a fixed contact, and the other is a movable contact.
- each of the first and second contacts has a copper contact and a refractory metal contact
- the first contact is a fixed contact
- the second contact is a movable contact
- the refractory metal contact surface protrudes from the copper contact surface
- the arm that movably supports the second contact is made flexible, and when closed, the copper contact and the refractory metal contact abut on the same surface.
- a current detector is provided in the current path of the mechanical switch, and when the current is detected by the current detector even though the mechanical switch is off, the semiconductor switch is turned on.
- the arc plasma generated between the contact points of the mechanical switch may be extinguished by commutating the current flowing through the mechanical switch to the semiconductor switch.
- the present invention may be configured such that after a current is further passed through the semiconductor switch for a predetermined period, the semiconductor switch is turned off and arc plasma generated between the contacts of the other mechanical switch is extinguished.
- FIG. 1 It is a timing diagram which shows the operation example of the 6th Embodiment of this invention. It is a figure which shows the structure of the 7th Embodiment of this invention. It is a figure which shows the structure of the 7th Embodiment of this invention. It is a figure which shows DC circuit example. It is a figure which shows the C switch system in the 8th Embodiment of this invention. It is a figure which shows the structure of a switch. It is a figure which shows 2 contact switch (the 1). It is a figure which shows 2 contact switch (the 2). It is a figure which shows a 2 contact switch circuit (the 1). It is a figure which shows the operation
- FIG. 2 is a diagram showing a configuration of the first exemplary embodiment of the present invention.
- a mechanical switch and a semiconductor device are connected in parallel between the contacts.
- a mechanical switch having a metal contact and an IGBT (insulated gate bipolar transistor) are connected in parallel.
- C, E, and G are the collector, emitter, and gate of the IGBT.
- FIG. 3 is a timing waveform diagram for explaining the operation of the first embodiment of FIG. Next, the operation will be described.
- a signal is given to the gate (G) of the IGBT to turn the IGBT on. This timing is time t1.
- time t2 delayed from t1 the mechanical switch SW1 is turned on.
- the power consumption due to the ON resistance of the IGBT is not large. This is because the voltage between the collector and emitter when the IGBT is ON is 2-3V, and the voltage between the contacts when the mechanical switch SW1 is ON is nearly two orders of magnitude lower than this.
- the IGBT and the mechanical switch SW1 are in the ON state at the same time, most of the current between the terminals flows to the mechanical switch SW1 side. That is, the loss is equivalent to that of a conventional mechanical contact switch. For this reason, the substantial IGBT energization time is short. Accordingly, the amount of heat generated by the IGBT is reduced, and a heat sink attached to the IGBT is not necessary.
- the IGBT may be turned off from time t2x to t3x in order to prevent current from flowing through the IGBT. In most of the energization period, no current flows through the IGBT. Therefore, the problem of heat generation due to the ON resistance of the IGBT is solved.
- the switch can be remotely controlled from an external terminal or the like via the Internet or the like.
- FIG. 4 is a diagram showing a configuration of the second exemplary embodiment of the present invention.
- This embodiment is effective when applied to a circuit (LR load) including a large inductance in the load.
- LR load circuit
- the IGBT since the circuit has magnetic energy due to inductance, when the IGBT is cut off in a short time, a surge voltage greater than the power supply voltage is generated between the collector and emitter of the IGBT. Then, the IGBT is damaged. In order to avoid this, it is necessary to use a high voltage IGBT or to select an IGBT having a large absorbed energy. However, it becomes expensive.
- the resistor R and the second switch SW2 are inserted in the circuit in parallel with the load (LR load).
- the switch SW2 When the switch is shut off, the switch SW2 is turned on. Note that the switch SW2 may not be inserted. When the switch SW2 is deleted, a current always flows through the resistor R, and power consumption increases. The switch SW2 is not inserted, for example, when the switch SW2 remains OFF and the occurrence of a situation where the switch fails is avoided. In order to avoid the failure of interruption, the mechanical switch SW1 and the switch SW2 are mechanically interlocked. The surge voltage in which the inductance component is generated by the interruption of the switch SW2 is absorbed by the resistor R (magnetic energy disappears from the circuit as heat energy by the resistor R2). When the mechanical switch SW1 is turned off, the switch SW2 is always turned on. In FIG.
- the resistor R and the switch SW2 are arranged on the load side, but generally there may be a large inductance component on the power supply side.
- a series circuit of the resistor R and the switch SW2 is preferably arranged on the power supply side with respect to the IGBT. In this case, after the switch SW2 is turned on, the switch SW2 is turned off after a certain period of time to prevent the current from constantly flowing through the resistor R.
- FIG. 5 is a diagram showing the configuration of the third exemplary embodiment of the present invention.
- This embodiment is effective when there is a large inductance on the power supply side.
- a series circuit of a resistor R and a switch SW2 is connected in parallel to the mechanical switch SW1 and the semiconductor switch IGBT.
- the mechanical switch SW1 and the IGBT are OFF (when the switch SW2 is ON)
- a current flows through the resistor R.
- the magnetic energy of the inductance element (component) in the circuit is converted into thermal energy by the resistor R.
- the value of the flowing current is limited by the resistance R, and the current can be cut by a normal switch that is 10 mA or less.
- the switch SW2 is turned off. Note that the surge voltage can be reduced by connecting a capacitor in parallel with the switch SW2. This can be said to be an IGBT snubber circuit (protection circuit).
- FIG. 6 is a diagram showing the configuration of the fourth exemplary embodiment of the present invention.
- the load includes a large amount of inductance component
- a voltage higher than the power supply voltage is generated in the switch unit at the time of interruption.
- a capacitor C1 is connected in parallel to the mechanical switch SW1 and the semiconductor switch IGBT.
- a series circuit of a resistor R and a capacitor C1 is connected between the collector and emitter of the semiconductor switch IGBT.
- the capacitor C1 cuts a direct current component. Therefore, this is equivalent to the presence of the switch SW2 in FIG. Therefore, the switch SW2 in FIG. 5 is not necessary.
- the magnetic energy due to the inductance on the power supply side can also be absorbed by this portion.
- the circuit of FIG. 4 is used to process large magnetic energy.
- FIG. 7 is a diagram showing the configuration of the fifth exemplary embodiment of the present invention.
- the control of the IGBT gate signal will be described.
- the amplitude of the IGBT gate signal is about 20V.
- the ratio of voltage dividing resistors R1 and R2 (voltage dividing ratio) may be 380: 20.
- the leakage current is 1 mA and the loss is 0.4 W.
- the parallel circuit of the capacitor C1 and the auxiliary switch SW3 is connected in parallel between the terminals of the resistor R1, and the divided voltage is connected to the gate G of the IGBT.
- the voltage dividing ratio of the voltage dividing resistors R1 and R2 corresponds to the threshold value of the gate voltage of the IGBT.
- the auxiliary switch SW3 When the auxiliary switch SW3 is turned off, a voltage is generated between the gate G and the emitter E, and the IGBT is turned on. Since the capacitor C2 is inserted, after the auxiliary switch SW3 is turned on, the IGBT is turned on with a delay of the charging time (time constant) of the capacitor C2. Subsequently, the machine switch is turned on. At this time, the auxiliary switch SW3 and the mechanical switch SW1 are configured to work together. In addition, by inserting the capacitor C2, since the current does not rise immediately when the switch SW3 is turned on, the possibility of damaging the IGBT can be reduced. For example, it is desirable that the auxiliary switch SW3 and the mechanical switch SW1 be interlocked with each other with a predetermined time delay using a relay.
- FIG. 8 is a diagram showing an operation sequence of the switch of FIG.
- the horizontal axis represents time, and the time transition of ON / OFF of the auxiliary switch SW2 and the mechanical switch SW1 is shown.
- the auxiliary switch SW3 is turned off. As a result, the IGBT is turned on.
- an IGBT is used, but any semiconductor device having a self-extinguishing capability can be applied to this circuit.
- a power MOSFET, GTO (Gate Turn Off thyristor), or the like may be used.
- the current flowing through the semiconductor device is limited to the time between t1-t2 and t3-t4. If this time is short, the current capacity of the IGBT is rated for a short time, so a small IGBT can be used. Further, it is not necessary to attach a heat radiation fin or the like to the semiconductor device.
- mechanical switches have a withstand voltage of DC400V and current capacities from 10A to 20A, so a very large switch is not required, and there are contacts with current capacities comparable to AC220V (DC conversion 311V). Available.
- FIG. 9 is a diagram showing the configuration of the sixth exemplary embodiment of the present invention.
- the DC switch can also be applied to a DC circuit breaker.
- FIG. 9 has the same circuit configuration as FIG. 2, but the mechanical switch SW1 is large.
- FIG. 10 is a diagram showing the operation sequence of FIG.
- the embodiment of FIG. 9 basically has a strong structure against arc / plasma, and normally uses breaker contacts including alternating current. However, basically, since arc plasma is hardly generated, a normal metal contact using copper can be used. In this case, it is important to use a large high-speed contact.
- the direct current flows through the cutoff machine switch SW11.
- an IGBT is used as the semiconductor switch, but a GTO having a self-extinguishing capability for a large current may be used.
- the current flowing through the semiconductor device is limited to the time t1-t3 before and after the interruption. If this time is short, an IGBT having a small current capacity can be used as a short-time rating.
- the short-time rating is determined by the material and heat capacity, and can be significantly increased from the rated value by using SiC or the like.
- a current may be injected using a capacitor or the like from the opposite direction as is well known.
- a thyristor is cheaper than an IGBT or the like, so that even if a current injection mechanism is attached, the thyristor may be cheap as a whole.
- FIG. 11 is a diagram showing a configuration of the present embodiment. Since arc plasma is generated even in a short time, a high melting point metal or the like is used for the contact portion in the circuit breaker. Since the contact point of the refractory metal has a high resistance, heat generation at the contact point is increased, and the power consumption is increased.
- the arc plasma generated at the time of breaking is preferably generated at a refractory metal contact, and a current flows through the copper contact during normal energization.
- the contact consists of two members. One is a copper contact with low electrical resistance, and the other is a refractory metal contact with high electrical resistance but resistance to arc plasma.
- the direction of the current is arbitrary.
- the surface of the refractory metal contact protrudes from the surface of the copper contact 13.
- the refractory metal contact 12 is provided with a spring 11 on the back side. For this reason, when the switch is closed, the copper contact 13 and the refractory metal contact 12 can also contact on the same surface.
- the contact pressure of the refractory metal contact 12 is higher than that of the copper contact 13, but the copper contact 13 side also takes a sufficient contact pressure that allows current to flow. For this reason, most of the current flows through the copper contact 13 side having a low contact resistance.
- FIG. 12 shows a state when the switch starts to open.
- the copper contact portion 13 is opened.
- the refractory metal contact portion 12 is still in contact. In this way, the current flowing between the copper contacts 13 is commutated to the refractory metal contact 12 side. Therefore, no arc plasma is generated between the copper contacts 13.
- the refractory metal contacts 12 are finally opened. For this reason, arc plasma is generated in this portion.
- the refractory metal contact 12 is resistant to arc plasma, damage is suppressed. This is because, since semiconductor devices such as IGBTs are connected in parallel, the arc / plasma generated in this portion is limited, and only a few ⁇ s (microseconds) is generated. Thus, contact damage is significantly reduced. With the structure as shown in FIGS. 11 and 12, a long-life switch can be configured even if semiconductor devices are not connected in parallel.
- the contact structure of this embodiment is resistant to arc / plasma. It can be easily understood that such a structure has the same effect even when the arm 10 is bent without using a spring.
- the copper contact 13 and the refractory metal contact 12 are pressed so as to be on the same surface. This is because the surface of the refractory metal contact 12 protrudes from the surface of the copper contact 13, so that the refractory metal contact 12 is still in contact with the copper contact 13 when the contact is opened.
- the spring 11 is used on the movable contact side, but a spring may be used on the fixed contact side or both. According to this embodiment, direct current can be easily interrupted.
- the switch structure described in the above embodiment may be applied to an AC switch or the like.
- the semiconductor switch is connected in parallel to the mechanical switch, and the arc is not generated between the mechanical contacts by performing a cooperative operation with each other.
- the DC switch may be more dangerous than the AC switch.
- an NFB Non-Fuse Breaker
- FIG. 13 shows a configuration in which NFB is incorporated in the DC switch.
- a DC NFB connected in series with a DC switch is connected to the load. If the load causes a short circuit accident, the DC NFB will shut off.
- DC NFB has the same structure as this DC switch. That is, semiconductor switches are connected in parallel, and a cooperative operation as described above with respect to the DC switch is performed. In the circuit of FIG.
- the configuration is as shown in FIG. That is, when the current cannot be cut off even when the DC switch is turned off, the DC switch notifies the upstream DC NFB by communication and performs a shut-off. It would be natural to use a power line to which a switch is directly connected as a communication line for performing this communication. Such a system allows each switch to set what relationship the switches are to each other when configuring the circuit. For example, the DC NFB is a parent and the DC switch is a child. Then, when the child switch fails to shut down, the parent switch is immediately contacted so that the parent switch cuts off the current.
- the parent switch also has a function of communicating with the outside, and if the child switch has failed to shut down, the parent switch has a function of notifying the administrator (personal computer or mobile phone). If this is done on a regular basis, it can be seen that there is a problem with the communication function if there is no contact, which can also be useful for system maintenance. Further, if the parent switch has a function of monitoring ON / OFF of a plurality of child switches, the system can be operated more safely. Then, it is made clear which child switch has failed to be cut off. A function of notifying the administrator of such information is provided. These make the switch system safer.
- the upstream parent switch is DC NFB.
- a circuit that completely cuts off only with a metal contact may be required. That is, in the circuit as shown in FIG. 15, the semiconductor switch (IGBT) cuts off the current, but voltage is always applied between the collector (C) and the emitter (E), which may be considered dangerous. Because. That is, it means that it is necessary to put a mechanical switch in series with the IGBT. This automatically requires at least two mechanical switches.
- FIG. 16 An example of a mechanical switch structure is shown in FIG.
- the cable, the rotating unit, and the arm in FIG. 16 correspond to the cable, the rotating unit, and the arm in FIGS. In the rotating part, the two movable electrodes are electrically insulated from each other (insulating layer 1), but are mechanically integrated.
- the fixed contact side also has two contacts, and each is electrically insulated (insulating layer 2), but is mechanically integrated. And although it is electrically wired to each contact, because of such a structure, when operated, the two contacts have slightly different ON times.
- the two contacts are SW1 and SW2, and when ON, SW2 is turned ON slightly earlier than SW1, and then SW1 is turned ON. Further, at the time of OFF, SW1 is turned off first, and thereafter, SW1 is turned off mechanically. Still, this time difference is structured and adjusted so that there is not much variation.
- FIG. 17 shows another similar example. This is a push-type switch, and it is turned ON when pushed out. As in FIG. 16, there are two contacts, one of which protrudes more through the spring structure in the direction of the other contact, so that it contacts quickly when it is ON. When both are ON, the springs are contracted and contacted together. Further, when turned off, the side with the spring is delayed and turned off. Then, by adjusting the spring length or the like, the time difference between when the two switches are turned on and off can be adjusted.
- the two contacts are SW1 and SW2, and SW2 is turned on earlier in time when turned on, and turned off later in time when turned off.
- the two metal contacts are mechanically integrated and move in conjunction with each other.
- the power supply terminal P1 of the timer (Timer) is connected to the high voltage side via the switch SW2, and the terminal P2 on the ground side is directly connected to the ground. For this reason, when the switch SW2 is closed, power is supplied to the timer (Timer).
- the switch SW2 When the switch SW2 is closed and the switch SW1 is OFF and the IGBT is also OFF, a voltage is generated at both ends of the resistors R1 and R2. Therefore, a trigger signal (trig) of the timer (Timer) is supplied to the trigger signal (trig). Voltage) is applied. Then, an output signal from the output terminal out of the timer (Timer) is applied to the gate of the IGBT, and the IGBT is turned on (conductive).
- the IGBT In the example of FIG. 18, the IGBT is connected to the high voltage side, but may be the ground side. The same applies to the following drawings. When an example of the ground side is written, it may be on the high voltage side. For example, FIGS. 20 to 24 correspond to this.
- this circuit FIG. 18 also includes a configuration in which independent switches are used with their time differences controlled separately from the switches as shown in FIG.
- FIG. 19A and 19B are diagrams showing a time sequence of the operation of the circuit of FIG.
- the circuit operation will be described below using the circuit configuration of FIG. 18 and the time sequence of FIG.
- the circuit includes a self-extinguishing semiconductor switch (which may be an IGBT or a MOSFET) and a timer (FIG. 18).
- the timer is operated by connecting terminals P1 and P2 to a power source and obtaining power.
- T1 and T2 and the pulse are written in two parts, but they may be the same time (may overlap).
- the IGBT is set to be in the ON state while the pulse is active.
- the resistors R1 and R2 (voltage dividing resistors) are connected between the switch power supply side and the switch load (EBT and E of the IGBT), and the middle point is connected to the trigger terminal of the timer (Timer).
- the voltage of the trigger signal that defines the trigger signal that enters the trig terminal is defined.
- the timing operation is as shown in FIG.
- the switch SW1 is not turned on yet, but the switch SW1 is turned on while the pulse signal inputted to the gate of the IGBT is in the activated state (High) (T1). For this reason, no arc is generated between the contacts of the mechanical switch SW1, which is the main switch. As a result, the entire switch is turned on. T1 and T2 are assumed to be about several milliseconds to several tens of milliseconds.
- the switch SW1 is turned OFF.
- the switch SW2 is still in the ON state, and the IGBT is in the OFF state (Gate OFF).
- the timer (Timer) is in a standby state because the terminals P1 and P2 are connected to the power source.
- the switch SW1 is turned off, the divided voltage of the resistors R1 and R2 is applied as a trigger signal to the trigger terminal of the timer (Timer).
- a pulse pulse width T2 is output from the out terminal of the timer (Timer) to the gate signal of the IGBT, and the IGBT is turned on.
- an arc is hardly generated between the metal contacts of the switch SW1, and the switch SW1 is turned off.
- the pulse width T2 elapses, the IGBT is turned off.
- T3 time is set to be insensitive. That is, T3> T2 is set, and the timer (Timer) outputs a terminal pulse signal by this trigger signal, and therefore does not output a pulse signal to the gate of the IGBT. Therefore, the current zero is maintained during the dead time.
- the switch SW2 is turned OFF during the current zero period. Therefore, no arc is generated between the contacts. Finally, no arc is generated at either contact point of the switches SW1 and SW2, and the current interruption is completed.
- the time of T1, T2, T3, etc. can be set, so that the entire switch system can be configured according to the characteristics of the mechanical switch.
- FIG. 20 shows the circuit configuration as another example of a similar two-contact circuit.
- the high voltage side and the ground side are opposite to those in FIG. Moreover, although the electric current direction is shown by the arrow, this has shown that the high voltage
- a high voltage may be taken on the negative side, but in this case, it is necessary to reverse the collector (C) and emitter (E) of the IGBT, so that a predetermined measure is required.
- the timing operation in FIG. 20 conforms to FIG.
- the switch SW2 enters first when it is ON.
- the switch SW2 When the switch SW2 is turned on, an arc is generated between the contacts. However, since the arc is extinguished when the switch SW2 is turned on, there is no problem.
- the switch SW2 When the switch SW2 is turned ON, power is supplied to the timer (Timer) and operation starts. At this time, since the switch SW1 is OFF, a trigger signal is input to the trigger terminal of the timer (Timer), a pulse signal is output from the out terminal to the gate of the IGBT, and the IGBT is turned on.
- the switch SW1 is turned on while the IGBT is on. For this reason, no arc is generated between the contacts in the switch SW1.
- the pulse width T1 elapses, the IGBT is turned off.
- the switch SW1 since the switch SW1 is ON, no trigger signal is input to the trig terminal, so that a pulse signal from the out terminal to the gate of the IGBT is not output, and the IGBT is maintained in the OFF state.
- the timer (Timer) is in a standby state.
- first switch SW1 When OFF, first switch SW1 is OFF. Electric power is supplied to the timer (Timer) and the standby state continues. Then, a trigger signal is input to the trigger terminal of the timer (Timer), a pulse signal is output from the out terminal, and the IGBT is turned on. For this reason, no arc occurs between the contacts of the switch SW1. Thereafter, when the period T2 elapses, the IGBT is turned off. As soon as the trigger signal is input to the trigger terminal of the timer (Timer), the timer (Timer) does not output a gate signal from the out terminal within the dead period T3, so that the IGBT is kept OFF. The circuit current is then held at zero during this period. During this period, the switch SW2 is turned off. Since no current flows at this time, no arc is generated between the contacts of the switch SW2.
- FIG. 21 is a diagram showing a modification of FIG.
- the timer takes different power, and the connection parts of P1 and P2 are different. That is, the terminal P1 is the same as P1 in FIG. 20, but the ground side of P2 is connected to the ground side of the switch SW1 and the IGBT. The operation is the same as in FIG. Since the timer is directly connected to ground, it will be resistant to noise.
- the specification standard for the NTT switch is that an electrical circuit element such as a semiconductor switch, a resistor, a capacitor (capacitor), an inductor, or the like must not be connected when the switch is OFF.
- an electrical circuit element such as a semiconductor switch, a resistor, a capacitor (capacitor), an inductor, or the like must not be connected when the switch is OFF.
- the circuit of FIG. 22 and subsequent figures by providing three switches, it is possible to completely disconnect from the power source, so that the circuit can comply with NTT standards.
- a switch SW3 is provided as a mechanical contact on the ground side.
- the switch SW3 is also mechanically interlocked with the switches SW1 and SW2. For this reason, three contacts are used.
- the mechanical switches SW1, SW2, and SW3 operate in conjunction with each other.
- An example of this is a switch used in an AC three-phase circuit. The operation is as follows. The load is assumed to be grounded. The operation is as follows.
- switch SW1 is turned OFF first. Then, since the IGBT is OFF, a trigger signal is input to the trigger terminal of the timer (Timer), and a pulse signal input from the out terminal to the gate of the IGBT is immediately output for a period T2, the IGBT is turned ON, and the switch SW2 An arc is not generated between the metal contacts, and is turned off.
- the IGBT When the pulse width T2 elapses, the IGBT is turned off, so the circuit current becomes zero. Then, the trigger signal immediately enters the trigger terminal of the timer (Timer), but during the period T3, the timer (Timer) does not receive the pulse signal input from the out terminal to the IGBT gate even if the trigger signal is input. Since it is not output, the OFF state of the IGBT is maintained. While the circuit current during that time is zero, either one of the switches SW2 and SW3 is OFF. Since the current is zero, no arc is generated between the contacts. Since all of the switches SW1, SW2, and SW3 are turned off, the switch unit is disconnected from the high voltage side and the ground side of the power source, and the cutoff is completed.
- FIG. 23 is obtained by changing a part of FIG. This is only a change in the position of the switch SW2 in FIG. The operation is the same as in FIG. In this case, the two contacts of the switches SW2 and SW3 are in series with the current flowing through the main circuit. For this reason, if the interruption fails, the arc voltage is at least doubled, which may be safer than the circuit of FIG.
- FIG. 24 is a diagram showing a modification of FIG. This is different from FIG. 23 in taking the power of the timer, and corresponds to the relationship between FIG. 20 and FIG. Therefore, the operation is the same.
- FIG. 25 shows a configuration provided with a free-wheeling diode corresponding to a load having a large inductance component. The operation is the same as in FIG.
- the surge voltage generated in the switch part at the time of interruption can be absorbed by the reflux diode.
- the energy of a circuit is absorbed by putting resistance in series with a diode.
- ⁇ Another embodiment> In a DC switch, “failure to open” does not mean that a large current flows like a short circuit, but a situation where almost the same current flows. It is difficult for other devices to detect “shutdown failure”. When the DC switch fails to shut off, arc plasma is generated, so the electrode may melt and the switch may be destroyed, which may cause a fire (fire) or the like. If there is a disconnection failure or the like once during the life of the switch, it cannot be actually used. In addition, it is considered that the failure of shut-off can hardly cause a direct fire because the distance between the electrodes is increased and the current zero is generated many times in alternating current.
- FIG. 26 shows a situation in which arc plasma is generated between the contacts of the three switches SW1, SW2, and SW3 due to the failure of interruption.
- FIG. 26 is the same as the configuration of FIG.
- a current sensor CT Current Transformer
- the signal from the CT enters the Cin of the timer / control system.
- the timer / control system determines that the interruption has failed. At this time, if the arc plasma is cut off even at one of the switches SW1 to SW3, the current interruption is successful. Therefore, the following countermeasures are taken for the failure of interruption.
- the IGBT is fired again by a signal (gate voltage) supplied from the timer / control system out to the gate.
- a signal gate voltage supplied from the timer / control system out to the gate.
- the current flowing through the switch SW1 is commutated to the IGBT. Since the interruption has failed, the timer / control system is supplied with driving power and can operate normally.
- DC switches are generally of the same type as ordinary AC switches, and the electrodes are made of a refractory metal material, and measures are taken such as enclosing them in a special gas. I can't take it. For this reason, it is considered that the DC switch cannot be widely used in homes, offices, factories, etc., unless measures against interruption failures are realized.
- FIG. 27 is a diagram showing the configuration of still another embodiment of the present invention.
- Switches SW1, SW2, SW3, and SW are provided as mechanical switches, and two switches are used as self-extinguishing elements such as IGBTs.
- the switches SW1 and SW2 are inserted on the + high-voltage side, and the switches SW3 and SW4 are inserted on the negative-side high-voltage side.
- Timers 1 and 2 for inputting a voltage divided by resistors R1 and R2 to a trigger terminal (trig).
- the switches SW1 and SW3 are turned on while the IGBTs 1 and 2 are in the ON state. For this reason, no arc is generated between the contacts in the switches SW1 and SW3.
- the pulse width T1 elapses, the IGBTs 1 and 2 are turned off.
- the trigger signal does not enter the trigger terminals of timers 1 and 2, so the pulse signal from the out terminal to the gates of IGBTs 1 and 2 is not output, and the IGBT remains in the OFF state. Is done.
- the timers 1 and 2 are in a standby state.
- the switches SW1 and SW3 on the + high voltage side and -high voltage side are turned off first. Electric power is supplied to the timers (Timers) 1 and 2, and the standby state continues. Then, a trigger signal enters the trigger terminals of the timers (Timers) 1 and 2, a pulse signal is output from the out terminal, and the IGBTs 1 and 2 are turned on. For this reason, no arc is generated between the contacts of SW1 and SW3. Thereafter, when the period T2 elapses, the IGBTs 1 and 2 are turned off.
- the switch When the switch is OFF, a gate signal is applied to the IGBTs 1 and 2 and the IGBTs 1 and 2 are turned ON.
- the switches SW1 and SW3 are turned off immediately. Since current flows to the IGBT side, no arc is generated between the contacts. Since this time difference is shortened, there may be no problem even if an arc is generated between the electrodes of the metal contact switch for a short time.
- the IGBTs 1 and 2 are turned off, and the direct current is cut off. Finally, the switches SW2 and SW4 are turned off, and the load is disconnected from the power supply side.
- the metal wire switch is not included in the ground wire. However, when necessary, a switch that is simultaneously turned off may be provided in conjunction with the switches SW2 and SW4.
- FIG. 29 is a diagram illustrating a second modification of the present embodiment.
- FIG. 29 shows a configuration in which a fuse is used to cut off current when it becomes impossible to cut off current due to an IGBT failure.
- a DC current blocking fuse 1 is provided between the collector terminal of the IGBT 1 and the connection point of the switches SW2 and SW1, and on the high voltage side,
- a DC current blocking fuse 2 is provided between the collector terminal of the IGBT 2 and the connection point of the switches SW4 and SW3. Since the ON time of the IGBT is short, the fuse does not operate during this time, and the current is not interrupted by fusing.
- a semiconductor switch element or the like may be in an ON state at the time of a failure, and if the current cannot be cut off due to the failure, the current continues to flow through the fuse for a long time. This time can be adjusted by selecting a fuse. For this reason, if a current continues to flow through the IGBT for a predetermined period, it is determined that there is a failure and the fuse operates (melting).
- a recovery circuit using a fuse can be applied to any of the above embodiments.
Landscapes
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Keying Circuit Devices (AREA)
- Relay Circuits (AREA)
Abstract
Description
本発明は、日本国特許出願:特願2009-214415号(2009年9月16日出願)、特願2009-272435号(2009年11月30日出願)、特願2010-050648号(2010年3月8日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明はスイッチに関し、特に、直流スイッチ(DCスイッチ)に適用して好適なスイッチに関する。
前記第2の接点が、前記高融点金属接点の裏に弾性部材を備え、
閉成時、銅接点と高融点金属接点は同一面で当接し、前記第1、第2の接点の一方が固定接点であり、他方が可動接点である。
前記第1の接点は固定接点であり、前記第2の接点は可動接点であり、
前記第1の接点において、前記高融点金属接点表面は銅接点表面よりも突設し、
前記第2の接点を可動自在に支持するアームを可撓性とし、閉成時、銅接点と高融点金属接点は同一面で当接する。
さらに、本発明においては、前記機械式スイッチの遮断失敗(failure to open)によって接点間に発生したアークプラズマを検出する手段と、前記機械式スイッチの前記接点間に発生したアークプラズマを検出時、前記アークプラズマを消去する手段と、を備えた構成としてもよい。
本発明においては、前記機械式スイッチの電流経路に電流検出器を備え、前記機械式スイッチがオフであるにもかかわらず、前記電流検出器で電流が検出された場合、前記半導体スイッチをオンとし、前記機械式スイッチに流れていた電流を前記半導体スイッチに転流させることで、前記機械式スイッチの接点間に発生したアークプラズマを消弧させる、構成としてもよい。あるいは、本発明においては、前記半導体スイッチをさらに所定期間電流を流したのち、前記半導体スイッチをオフとし、前記別の機械式スイッチの接点間に発生したアークプラズマを消弧させる構成としてもよい。
図2は、本発明の第1の実施形態の構成を示す図である。本発明のスイッチにおいては、接点間に、機械スイッチと半導体デバイスを並列接続して構成したものである。金属接点を持つ機械スイッチと、IGBT(insulated gate bipolar transistor)が並列接続されている。C、E、Gは、IGBTのコレクタ、エミッタ、ゲートである。
図4は、本発明の第2の実施形態の構成を示す図である。本実施形態は、負荷に大きなインダクタンスを含む回路(LR負荷)に適用すると効果的である。つまり、回路がインダクタンスによって磁気エネルギーを持っているため、IGBTは短時間で遮断を行うと、電源電圧以上の大きなサージ電圧がIGBTのコレクタ-エミッタ間に発生する。すると、IGBTが破損する。これを避けるためには、高電圧IGBTの利用や、吸収エネルギーを大きなIGBTの選択が必要になる。しかし、高価となる。
図5は、本発明の第3の実施形態の構成を示す図である。本実施形態は、電源側にも大きなインダクタンスがあるような場合に効果的である。抵抗RとスイッチSW2の直列回路が、機械スイッチSW1、半導体スイッチIGBTに並列に接続されている。機械スイッチSW1及びIGBTがOFFのとき(スイッチSW2がONのとき)、抵抗Rに電流が流れる。回路内のインダクタンス素子(成分)が持つ磁気エネルギーは抵抗Rによって熱エネルギーに変換される。流れる電流値は、抵抗Rによって制限され、10mA以下となる、通常のスイッチで電流を切ることが出来る。スイッチSW2がOFFになる。なお、スイッチSW2に並列にキャパシタを接続することによってサージ電圧を減少することが可能である。これはIGBTのスナバ回路(保護回路)ともいえる。
図6は、本発明の第4の実施形態の構成を示す図である。負荷にインダクタンス成分が多く含まれるときには、遮断時には、スイッチ部に電源電圧より高い電圧が発生する。これを避けるための回路として、本実施形態では、図6に示すように、機械スイッチSW1、半導体スイッチIGBTに並列に、キャパシタC1を接続する。図6では、抵抗RとキャパシタC1の直列回路が、半導体スイッチIGBTのコレクタとエミッタ間に接続されている。キャパシタC1は、直流成分をカットする。したがって、図5におけるスイッチSW2があることと等価となる。したがって、図5のスイッチSW2は不要になる。また、この回路では、電源側のインダクタンスによる磁気エネルギーもこの部分で吸収できる。ただし、大きな磁気エネルギーを処理するためには、図4の回路が用いられる。
図7は、本発明の第5の実施形態の構成を示す図である。IGBTのゲート信号の制御について説明する。AC100Vのスイッチではスイッチ内に制御回路が含まれることはほとんどない。IGBTのゲート信号の振幅は20V程度である。図7を参照すると、電源側の直流電圧を抵抗R1とR2で分割し、端子間電圧が400Vの場合、分圧抵抗R1とR2の比(分圧比)は380:20にすればよい。分圧抵抗に流れる電流を少なくするには、例えば380kOhmと20kOhmとなる。この場合、リーク電流は1mAとなり、損失は0.4Wである。
図9は、本発明の第6の実施形態の構成を示す図である。DCスイッチは直流遮断器にも適用できる。特に、高電圧・大電流の直流は遮断が困難になる。そこで、再度、遮断に絞って、本発明の実施形態の説明を行う。図9は、図2と同じ回路構成であるが、機械スイッチSW1は大型になっている。また図10は、図9の動作シーケンスを示す図である。
図11は、本実施形態の構成を示す図である。アーク・プラズマは短時間でも発生するため、遮断器では、接点部に高融点金属等が用いられる。高融点金属の接点は抵抗が高いことから、接点部での発熱が大となり、電力消費が増大する。遮断器において、好ましくは、遮断時に発生するアーク・プラズマは高融点金属接点で発生し、通常の通電時には、銅接点に電流が流れる構造とする。本実施形態において、接点は、2つの部材からなっている。一つは電気抵抗が低い銅接点であり、他は、電気抵抗は高いがアーク・プラズマに対して耐性がある高融点金属接点である。タングステンやモリブデン及びそれらの合金が用いられる。図11において電流の向きは任意である。スイッチの固定接点側は高融点金属接点の表面は銅接点13の表面より飛び出している。一方、可動接点側は、高融点金属接点12はバネ11が裏側に設置してある。このため、スイッチが閉じているときには、銅接点13と高融点金属接点12も同じ面で接触することができる。このような構造にすると、高融点金属接点12の接圧が銅接点13より高くなるが、銅接点13側も電流を流すことができる十分な接圧を取る。このため、大部分の電流は接触抵抗が低い銅接点13側を流れる。
DCスイッチにおいて「遮断失敗」(failure to open)は短絡のように大電流が流れるわけではなく、ほぼ同じ電流が流れている状況になる。他の機器は「遮断失敗」を検出することは困難である。DCスイッチにおいて遮断失敗時、アークプラズマが発生するため、電極が溶けスイッチが破壊する場合があり、出火(火災)等の原因ともなり得る。遮断失敗等がスイッチの寿命中に一度でもあれば実際には使用不可能となる。尚、交流では電極間距離が開くこと、及び、何度も電流ゼロが生じるために、遮断失敗が直接火災の原因となることはほぼあり得ないと考えられてきている。
・接点間電圧の検出、
・電極温度の計測、
・アークプラズマからの光及び電流の計測や磁場計測
等が挙げられる。
図27は、本発明のさらにまた別の実施形態の構成を示す図である。機械スイッチとしてスイッチSW1、SW2、SW3、SWを備え、IGBT等の自己消弧素子はそれぞれ2のスイッチを使っている。スイッチSW1、スイッチSW2は+高圧側、スイッチSW3、SW4は、負極側の-高圧側に挿入され、+高圧側、-高圧側のIGBTのゲートには、当該IGBT1、2のエミッタ・コレクタ間電圧を抵抗R1、R2で分圧した電圧をトリガー端子(trig)に入力するタイマ(Timer)1、2を備えている。ON時には、機械的に、スイッチSW1、SW2、SW3、SW4がほぼ同時にON(導通)になることによって、+高圧側とアース間の負荷、-高圧側とアース間の負荷に、それぞれ電流が流れ始める。
11 バネ
12 高融点金属接点
13 銅接点
14 回転部
15 ケーブル
Claims (36)
- 金属接点を持つ機械スイッチと、
前記機械スイッチに並列に接続され、電気信号により導通、非導通が制御される半導体スイッチと、
を備えたスイッチ。 - スイッチ導通時、前記半導体スイッチを非導通状態から導通させたのち、前記機械スイッチを非導通状態から導通させ、前記スイッチ非導通時、前記機械スイッチを導通状態から非導通としたのち、前記半導体スイッチを導通状態から非導通とする、請求項1記載のスイッチ。
- 第2のスイッチと第1の抵抗の直列回路を負荷と並列に接続してなる、請求項1記載のスイッチ。
- 前記機械スイッチと並列に、第2のスイッチと第1の抵抗の直列回路を接続してなる、請求項1又は2記載のスイッチ。
- 前記機械スイッチと並列に第1の容量と第1の抵抗の直列回路を接続してなる、請求項1記載のスイッチ。
- 電源電圧を分圧する分圧抵抗を備え、分圧点の電圧が、前記半導体スイッチの制御端子に入力される請求項1記載のスイッチ。
- 電源と前記分圧点間に、前記分圧抵抗の1つと並列に、第1の容量と補助スイッチの並列回路を接続してなる、請求項1記載のスイッチ。
- 前記補助スイッチを導通状態から非導通としたのち、前記機械スイッチを非導通状態から導通させ、
前記機械スイッチを導通状態から非導通としたのち、前記補助スイッチを非導通状態から導通させる、請求項7記載のスイッチ。 - 前記機械スイッチが遮断機械スイッチである、請求項1記載のスイッチ。
- 前記遮断機械スイッチを導通状態から非導通としたのち、前記半導体スイッチを導通状態から非導通とする、請求項9記載のスイッチ。
- 前記機械スイッチの第1、第2の接点の各々が、銅接点と高融点金属接点を有し、
前記第1の接点において、前記高融点金属接点表面は銅接点表面よりも突設し、
前記第2の接点が、前記高融点金属接点の裏に弾性部材を備え、
閉成時、銅接点と高融点金属接点は同一面で当接し、前記第1、第2の接点の一方が固定接点であり、他方が可動接点である、請求項1乃至10のいずれか1項に記載のスイッチ。 - 前記第1、第2の接点の各々が、銅接点と高融点金属接点を有し、
前記第1の接点は固定接点であり、前記第2の接点は可動接点であり、
前記第1の接点において、前記高融点金属接点表面は銅接点表面よりも突設し、
前記第2の接点を可動自在に支持するアームを可撓性とし、閉成時、銅接点と高融点金属接点は同一面で当接する、請求項11記載のスイッチ。 - DCスイッチの電流経路上流に、前記DCスイッチと通信する別のスイッチをさらに備え、前記DCスイッチのオフ時に前記DCスイッチが電流を遮断できない場合、別のスイッチが前記電流を遮断する、スイッチ。
- 前記DCスイッチが、金属接点を持つ機械スイッチと、
前記機械スイッチに並列に接続され、電気信号により導通、非導通が制御される半導体スイッチと、
を備えた請求項13記載のスイッチ。 - 前記別のスイッチは外部と通信する機能を備えた請求項14記載のスイッチ。
- 金属接点を持つ機械スイッチと、
前記機械スイッチに並列に接続され、電気信号により導通、非導通が制御される半導体スイッチと、
電源側と負荷側間の分圧抵抗による分圧電圧をトリガ信号として受け、所定パルス幅のパルスを出力するタイマを備え、前記タイマの出力パルスは前記半導体スイッチの制御端子に供給され、前記半導体スイッチのオン・オフを制御する、スイッチ。 - 前記タイマの電源端子と高圧側の間に前記機械スイッチと連動する別のスイッチ(SW2)を備えている、請求項16記載のスイッチ。
- 前記タイマの接地端子とアース側の間に前記機械スイッチと連動するさらに別のスイッチ(SW3)を備えている、請求項17記載のスイッチ。
- 前記機械スイッチの負荷側の端子とアース側の間にダイオードを備えた請求項18記載のスイッチ。
- DCスイッチ導通時、前記半導体スイッチを非導通状態から導通させたのち、前記機械スイッチを非導通状態から導通させ、前記スイッチ非導通時、前記機械スイッチを導通状態から非導通としたのち、前記半導体スイッチを導通状態から非導通とする、請求項14乃至19のいずれか1項に記載のスイッチ。
- 第2のスイッチと第1の抵抗の直列回路を負荷と並列に接続してなる、請求項14乃至20のいずれか1項に記載のスイッチ。
- 前記機械スイッチと並列に、第2のスイッチと第1の抵抗の直列回路を接続してなる、請求項14乃至21のいずれか1項に記載のスイッチ。
- 前記機械スイッチと並列に第1の容量と第1の抵抗の直列回路を接続してなる、請求項14乃至19のいずれか1項に記載のスイッチ。
- 電源電圧を分圧する分圧抵抗を備え、分圧点の電圧が、前記半導体スイッチの制御端子に入力される請求項14乃至23のいずれか1項に記載のスイッチ。
- 電源と前記分圧点間に、前記分圧抵抗の1つと並列に、第1の容量と補助スイッチの並列回路を接続してなる、請求項14乃至24のいずれか1項に記載のスイッチ。
- 前記補助スイッチを導通状態から非導通としたのち、前記機械スイッチを非導通状態から導通させ、
前記機械スイッチを導通状態から非導通としたのち、前記補助スイッチを非導通状態から導通させる、請求項25記載のスイッチ。 - 前記機械スイッチが遮断機械スイッチである、請求項14乃至19のいずれか1項に記載のスイッチ。
- 前記遮断機械スイッチを導通状態から非導通としたのち、前記半導体スイッチを導通状態から非導通とする、請求項27記載のスイッチ。
- 前記機械スイッチの第1、第2の接点を、前記機械スイッチの回転アーム部と固定部に備え、前記第1、第2の接点のそれぞれの高さの関係が、前記回転アームと前記固定部側とで異なる請求項14乃至28のいずれか1項に記載のスイッチ。
- 前記機械スイッチの第1、第2の接点を、前記機械スイッチの可動部と、前記可動部と対向する固定部に備え、前記可動部と前記固定部の一方において、前記第1、第2の接点の高さが異なる請求項15乃至28のいずれか1項に記載のスイッチ。
- 前記機械式スイッチの遮断失敗によって接点間に発生したアークプラズマを検出する手段と、
前記機械式スイッチの前記接点間に発生したアークプラズマを検出時、前記アークプラズマを消去する手段と、
を備えた請求項14乃至28のいずれか1項に記載のスイッチ。 - 前記機械式スイッチの電流経路に電流検出器を備え、
前記機械式スイッチがオフであるにもかかわらず、前記電流検出器で電流が検出された場合、前記半導体スイッチをオンとし、前記機械式スイッチに流れていた電流を前記半導体スイッチに転流させることで、前記機械式スイッチの接点間に発生したアークプラズマを消弧させる、請求項14乃至28のいずれか1項に記載のスイッチ。 - 前記機械式スイッチの電流経路に電流検出器を備え、
前記機械式スイッチがオフであるにもかかわらず、前記電流検出器で電流が検出された場合、前記半導体スイッチをオンとし、前記機械式スイッチに流れていた電流を前記半導体スイッチに転流させることで、前記機械式スイッチの接点間に発生したアークプラズマを消弧させ、
前記半導体スイッチをさらに所定期間電流を流したのち、前記半導体スイッチをオフとし、前記別の機械式スイッチの接点間に発生したアークプラズマを消弧させる、請求項17又は18に記載のスイッチ。 - 一端が接地された第1の負荷と正極電源間に直列接続された、金属接点を持つ第1、第2の機械スイッチと、
前記第1の機械スイッチに並列に接続され、電気信号により導通、非導通が制御される第1の半導体スイッチと、
前記第2の機械スイッチと前記第1の機械スイッチの接続点と前記第1の負荷側間の分圧抵抗による分圧電圧をトリガ信号として受け、所定パルス幅のパルスを出力する第1のタイマと、
一端が接地された第2の負荷と負極電源間に直列接続された、金属接点を持つ第3、第4の機械スイッチと、
前記第3の機械スイッチに並列に接続され、電気信号により導通、非導通が制御される第2の半導体スイッチと、
前記第3の機械スイッチと前記第3の機械スイッチの接続点と前記第1の負荷側間の分圧抵抗による分圧電圧をトリガ信号として受け、所定パルス幅のパルスを出力する第2のタイマと、
を備え、前記第1、第2のタイマの出力パルスは前記第1、第2の半導体スイッチの制御端子に供給され、前記第1、第2の半導体スイッチのオン・オフを制御する、スイッチ。 - 前記第1の機械スイッチと前記第1の負荷の接続点と接地間に、ダイオードと抵抗を直列に接続した第1の回路と、
前記第3の機械スイッチと前記第2の負荷の接続点と接地間に、ダイオードと抵抗を直列に接続した第2の回路と、
を備えている、請求項34記載のスイッチ。 - 前記第1の半導体スイッチと、前記第1、第2のスイッチの接続点間に接続された第1のヒューズと、
前記第2の半導体スイッチと、前記第3、第4のスイッチの接続点間に接続された第2のヒューズと、
を備えている、請求項34又は35記載のスイッチ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011531965A JP5628184B2 (ja) | 2009-09-16 | 2010-09-16 | スイッチ |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009214415 | 2009-09-16 | ||
JP2009-214415 | 2009-09-16 | ||
JP2009272435 | 2009-11-30 | ||
JP2009-272435 | 2009-11-30 | ||
JP2010050648 | 2010-03-08 | ||
JP2010-050648 | 2010-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011034140A1 true WO2011034140A1 (ja) | 2011-03-24 |
Family
ID=43758741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066071 WO2011034140A1 (ja) | 2009-09-16 | 2010-09-16 | スイッチ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5628184B2 (ja) |
WO (1) | WO2011034140A1 (ja) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012248445A (ja) * | 2011-05-30 | 2012-12-13 | Fuji Electric Co Ltd | 開閉器 |
JP2013008607A (ja) * | 2011-06-27 | 2013-01-10 | Ntt Data Intellilink Corp | 電流開閉器及び直流電流開閉器 |
JP2013258836A (ja) * | 2012-06-13 | 2013-12-26 | Kyushu Electric Power Co Inc | 電源装置 |
WO2013189524A1 (de) * | 2012-06-19 | 2013-12-27 | Siemens Aktiengesellschaft | Gleichspannungsschalter zum schalten eines gleichstromes in einem abzweig eines gleichspannungsnetzknotens |
JP2014053085A (ja) * | 2012-09-05 | 2014-03-20 | Fuji Electric Co Ltd | 開閉器 |
WO2014144552A1 (en) * | 2013-03-15 | 2014-09-18 | Advanced Geosciences, Inc. | High power current switch |
JP2014216056A (ja) * | 2013-04-22 | 2014-11-17 | 富士電機株式会社 | 直流回路遮断装置 |
JP2014241187A (ja) * | 2013-06-11 | 2014-12-25 | 富士電機株式会社 | 直流開閉器 |
JP2015508555A (ja) * | 2011-12-19 | 2015-03-19 | エスエムエー ソーラー テクノロジー アーゲー | スイッチング部材の接点ギャップにわたって発生するアークを抑圧するための回路装置 |
US9148011B2 (en) | 2012-08-27 | 2015-09-29 | Abb Technology Ltd | Apparatus arranged to break an electrical current |
JP2016110839A (ja) * | 2014-12-05 | 2016-06-20 | 河村電器産業株式会社 | 壁用直流スイッチ |
WO2016194584A1 (ja) * | 2015-06-04 | 2016-12-08 | ソニー株式会社 | 直流回路、直流電力供給装置、移動体及び電力供給システム |
JP2016213179A (ja) * | 2015-04-28 | 2016-12-15 | ゼネラル・エレクトリック・カンパニイ | 直流回路遮断器および使用方法 |
JP2016541088A (ja) * | 2013-10-07 | 2016-12-28 | 韓国電気研究院Korea Electrotechnology Research Institute | 高圧直流電流遮断装置及び方法 |
WO2017150079A1 (ja) * | 2016-03-02 | 2017-09-08 | 国立大学法人東京工業大学 | 直流遮断器 |
WO2017213774A1 (en) * | 2016-06-08 | 2017-12-14 | Eaton Corporation | Hybrid mccb employing electromechanical contacts and power electronic devices |
WO2017221561A1 (ja) * | 2016-06-20 | 2017-12-28 | ソニー株式会社 | 直流回路、移動体及び電力供給システム |
JP2018046672A (ja) * | 2016-09-14 | 2018-03-22 | 一穂 松本 | 直流配電システム |
CN107947535A (zh) * | 2017-12-22 | 2018-04-20 | 清华四川能源互联网研究院 | 一种超高压直流断路器电力电子支路单元 |
JP2018113221A (ja) * | 2017-01-13 | 2018-07-19 | オムロン株式会社 | 直流開閉器のアーク消去装置 |
JP2018113223A (ja) * | 2017-01-13 | 2018-07-19 | オムロン株式会社 | 直流開閉器のアーク消去装置 |
CN108447735A (zh) * | 2018-05-10 | 2018-08-24 | 浙江英洛华新能源科技有限公司 | 抗容性负载冲击双路高压控制组件及其闭合控制方法 |
WO2018198552A1 (ja) * | 2017-04-27 | 2018-11-01 | 株式会社明電舎 | 直流遮断装置 |
WO2018198538A1 (ja) * | 2017-04-26 | 2018-11-01 | ソニー株式会社 | アーク抑制装置、移動体及び電力供給システム |
JP2018186015A (ja) * | 2017-04-27 | 2018-11-22 | 株式会社明電舎 | 直流遮断装置 |
JP2018195565A (ja) * | 2017-05-19 | 2018-12-06 | 株式会社明電舎 | 直流遮断装置 |
JP2018538677A (ja) * | 2015-12-28 | 2018-12-27 | サイブレーク アーベーScibreak Ab | 電流を遮断する装置、システム及び方法 |
JP2019212581A (ja) * | 2018-06-08 | 2019-12-12 | 日東工業株式会社 | 遮断装置 |
JP2020024830A (ja) * | 2018-08-06 | 2020-02-13 | 富士電機株式会社 | スイッチ装置 |
KR102099944B1 (ko) * | 2019-10-30 | 2020-04-10 | 이종배 | 차량용 직류 전원 차단용 릴레이 장치 |
JPWO2020003596A1 (ja) * | 2018-06-27 | 2021-07-15 | ウチヤ・サーモスタット株式会社 | 電子機器 |
JP2021520600A (ja) * | 2018-03-09 | 2021-08-19 | エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング | 電流経路の直流電流を遮断するための断路装置、及び、自動車の車載給電システム |
CN113963990A (zh) * | 2021-10-19 | 2022-01-21 | 中国电信股份有限公司 | 一种直流接触器 |
US11764775B2 (en) | 2021-09-28 | 2023-09-19 | Richwave Technology Corp. | Switch device |
TWI819381B (zh) * | 2021-08-06 | 2023-10-21 | 立積電子股份有限公司 | 開關裝置 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725425U (ja) * | 1980-07-21 | 1982-02-09 | ||
JPS57106130U (ja) * | 1980-12-22 | 1982-06-30 | ||
JPS58188922U (ja) * | 1982-06-11 | 1983-12-15 | 松下電器産業株式会社 | 開閉器 |
JPS61173423A (ja) * | 1985-01-25 | 1986-08-05 | 松下電工株式会社 | 接点開閉装置 |
JPS61173421A (ja) * | 1985-01-25 | 1986-08-05 | 松下電工株式会社 | 接点開閉装置 |
JPS61259416A (ja) * | 1985-05-10 | 1986-11-17 | 大光電気株式会社 | スイツチ回路 |
JPH02165533A (ja) * | 1988-12-16 | 1990-06-26 | Mitsubishi Electric Corp | 電源回路開閉装置 |
JPH04322023A (ja) * | 1991-04-23 | 1992-11-12 | Mitsubishi Electric Corp | 直流しゃ断装置 |
JPH08106839A (ja) * | 1994-10-05 | 1996-04-23 | Alps Electric Co Ltd | 機械式スイッチの接点間アークの消去装置 |
JPH09245586A (ja) * | 1996-03-12 | 1997-09-19 | Tai-Haa Yan | 直流電源切断用の消弧回路装置 |
JPH10302584A (ja) * | 1997-04-28 | 1998-11-13 | Matsushita Electric Works Ltd | ハイブリッド型直流開閉器 |
JP2000076948A (ja) * | 1998-09-01 | 2000-03-14 | Toshiba Corp | 電気接触子 |
JP2000208007A (ja) * | 1997-12-09 | 2000-07-28 | Schneider Electric Ind Sa | 通信モジュールを含む電気的遮断装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004014241A (ja) * | 2002-06-05 | 2004-01-15 | Toshiba Corp | 直流遮断装置 |
-
2010
- 2010-09-16 JP JP2011531965A patent/JP5628184B2/ja not_active Expired - Fee Related
- 2010-09-16 WO PCT/JP2010/066071 patent/WO2011034140A1/ja active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725425U (ja) * | 1980-07-21 | 1982-02-09 | ||
JPS57106130U (ja) * | 1980-12-22 | 1982-06-30 | ||
JPS58188922U (ja) * | 1982-06-11 | 1983-12-15 | 松下電器産業株式会社 | 開閉器 |
JPS61173423A (ja) * | 1985-01-25 | 1986-08-05 | 松下電工株式会社 | 接点開閉装置 |
JPS61173421A (ja) * | 1985-01-25 | 1986-08-05 | 松下電工株式会社 | 接点開閉装置 |
JPS61259416A (ja) * | 1985-05-10 | 1986-11-17 | 大光電気株式会社 | スイツチ回路 |
JPH02165533A (ja) * | 1988-12-16 | 1990-06-26 | Mitsubishi Electric Corp | 電源回路開閉装置 |
JPH04322023A (ja) * | 1991-04-23 | 1992-11-12 | Mitsubishi Electric Corp | 直流しゃ断装置 |
JPH08106839A (ja) * | 1994-10-05 | 1996-04-23 | Alps Electric Co Ltd | 機械式スイッチの接点間アークの消去装置 |
JPH09245586A (ja) * | 1996-03-12 | 1997-09-19 | Tai-Haa Yan | 直流電源切断用の消弧回路装置 |
JPH10302584A (ja) * | 1997-04-28 | 1998-11-13 | Matsushita Electric Works Ltd | ハイブリッド型直流開閉器 |
JP2000208007A (ja) * | 1997-12-09 | 2000-07-28 | Schneider Electric Ind Sa | 通信モジュールを含む電気的遮断装置 |
JP2000076948A (ja) * | 1998-09-01 | 2000-03-14 | Toshiba Corp | 電気接触子 |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012248445A (ja) * | 2011-05-30 | 2012-12-13 | Fuji Electric Co Ltd | 開閉器 |
JP2013008607A (ja) * | 2011-06-27 | 2013-01-10 | Ntt Data Intellilink Corp | 電流開閉器及び直流電流開閉器 |
JP2015508555A (ja) * | 2011-12-19 | 2015-03-19 | エスエムエー ソーラー テクノロジー アーゲー | スイッチング部材の接点ギャップにわたって発生するアークを抑圧するための回路装置 |
US9543088B2 (en) | 2011-12-19 | 2017-01-10 | Sma Solar Technology Ag | Circuit arrangement for suppressing an arc occurring over a contact gap of a switching member |
JP2013258836A (ja) * | 2012-06-13 | 2013-12-26 | Kyushu Electric Power Co Inc | 電源装置 |
CN104380420A (zh) * | 2012-06-19 | 2015-02-25 | 西门子公司 | 用于在直流电网节点的支路中切换直流电流的直流电压开关 |
WO2013189524A1 (de) * | 2012-06-19 | 2013-12-27 | Siemens Aktiengesellschaft | Gleichspannungsschalter zum schalten eines gleichstromes in einem abzweig eines gleichspannungsnetzknotens |
US9882371B2 (en) | 2012-06-19 | 2018-01-30 | Siemens Aktiengesellschaft | Direct current voltage switch for switching a direct current in a branch of a direct current voltage network node |
US9148011B2 (en) | 2012-08-27 | 2015-09-29 | Abb Technology Ltd | Apparatus arranged to break an electrical current |
JP2014053085A (ja) * | 2012-09-05 | 2014-03-20 | Fuji Electric Co Ltd | 開閉器 |
CN105340180A (zh) * | 2013-03-15 | 2016-02-17 | 先进地球科学股份有限公司 | 高功率电流开关 |
US9921330B2 (en) | 2013-03-15 | 2018-03-20 | Advanced Geosciences, Inc. | High power current switch |
WO2014144552A1 (en) * | 2013-03-15 | 2014-09-18 | Advanced Geosciences, Inc. | High power current switch |
US10408960B2 (en) | 2013-03-15 | 2019-09-10 | Advanced Geosciences, Inc. | High power current switch |
CN105340180B (zh) * | 2013-03-15 | 2019-01-29 | 先进地球科学股份有限公司 | 高功率电流开关 |
JP2014216056A (ja) * | 2013-04-22 | 2014-11-17 | 富士電機株式会社 | 直流回路遮断装置 |
JP2014241187A (ja) * | 2013-06-11 | 2014-12-25 | 富士電機株式会社 | 直流開閉器 |
JP2016541088A (ja) * | 2013-10-07 | 2016-12-28 | 韓国電気研究院Korea Electrotechnology Research Institute | 高圧直流電流遮断装置及び方法 |
JP2016110839A (ja) * | 2014-12-05 | 2016-06-20 | 河村電器産業株式会社 | 壁用直流スイッチ |
JP2016213179A (ja) * | 2015-04-28 | 2016-12-15 | ゼネラル・エレクトリック・カンパニイ | 直流回路遮断器および使用方法 |
JPWO2016194584A1 (ja) * | 2015-06-04 | 2018-03-22 | ソニー株式会社 | 直流回路、直流電力供給装置、移動体及び電力供給システム |
TWI689963B (zh) * | 2015-06-04 | 2020-04-01 | 日商新力股份有限公司 | 直流電路、直流電力供給裝置、移動體及電力供給系統 |
WO2016194584A1 (ja) * | 2015-06-04 | 2016-12-08 | ソニー株式会社 | 直流回路、直流電力供給装置、移動体及び電力供給システム |
JP2018538677A (ja) * | 2015-12-28 | 2018-12-27 | サイブレーク アーベーScibreak Ab | 電流を遮断する装置、システム及び方法 |
JP7017510B2 (ja) | 2015-12-28 | 2022-02-08 | サイブレーク アーベー | 電流を遮断する装置、システム及び方法 |
JPWO2017150079A1 (ja) * | 2016-03-02 | 2018-12-20 | 国立大学法人東京工業大学 | 直流遮断器 |
WO2017150079A1 (ja) * | 2016-03-02 | 2017-09-08 | 国立大学法人東京工業大学 | 直流遮断器 |
WO2017213774A1 (en) * | 2016-06-08 | 2017-12-14 | Eaton Corporation | Hybrid mccb employing electromechanical contacts and power electronic devices |
CN109155211B (zh) * | 2016-06-08 | 2020-06-09 | 伊顿智能动力有限公司 | 采用机电触点和电力电子装置的混合mccb |
US9922781B2 (en) | 2016-06-08 | 2018-03-20 | Eaton Corporation | Hybrid MCCB employing electromechanical contacts and power electronic devices |
CN109155211A (zh) * | 2016-06-08 | 2019-01-04 | 伊顿智能动力有限公司 | 采用机电触点和电力电子装置的混合mccb |
WO2017221561A1 (ja) * | 2016-06-20 | 2017-12-28 | ソニー株式会社 | 直流回路、移動体及び電力供給システム |
JP2018046672A (ja) * | 2016-09-14 | 2018-03-22 | 一穂 松本 | 直流配電システム |
CN109891542B (zh) * | 2017-01-13 | 2020-06-30 | 欧姆龙株式会社 | 直流开关装置的电弧消除装置 |
US11087934B2 (en) | 2017-01-13 | 2021-08-10 | Omron Corporation | Arc-quenching device for direct current switch |
CN109891542A (zh) * | 2017-01-13 | 2019-06-14 | 欧姆龙株式会社 | 直流开关装置的电弧消除装置 |
JP2018113221A (ja) * | 2017-01-13 | 2018-07-19 | オムロン株式会社 | 直流開閉器のアーク消去装置 |
JP2018113223A (ja) * | 2017-01-13 | 2018-07-19 | オムロン株式会社 | 直流開閉器のアーク消去装置 |
WO2018131248A1 (ja) * | 2017-01-13 | 2018-07-19 | オムロン株式会社 | 直流開閉器のアーク消去装置 |
JPWO2018198538A1 (ja) * | 2017-04-26 | 2020-05-21 | ソニー株式会社 | アーク抑制装置、移動体及び電力供給システム |
US11189438B2 (en) | 2017-04-26 | 2021-11-30 | Sony Corporation | Arc suppression device, mobile body, and power supply system |
WO2018198538A1 (ja) * | 2017-04-26 | 2018-11-01 | ソニー株式会社 | アーク抑制装置、移動体及び電力供給システム |
JP7226307B2 (ja) | 2017-04-26 | 2023-02-21 | ソニーグループ株式会社 | アーク抑制装置、移動体及び電力供給システム |
WO2018198552A1 (ja) * | 2017-04-27 | 2018-11-01 | 株式会社明電舎 | 直流遮断装置 |
JP2018186015A (ja) * | 2017-04-27 | 2018-11-22 | 株式会社明電舎 | 直流遮断装置 |
JP2018195565A (ja) * | 2017-05-19 | 2018-12-06 | 株式会社明電舎 | 直流遮断装置 |
CN107947535A (zh) * | 2017-12-22 | 2018-04-20 | 清华四川能源互联网研究院 | 一种超高压直流断路器电力电子支路单元 |
CN107947535B (zh) * | 2017-12-22 | 2024-02-20 | 清华四川能源互联网研究院 | 一种超高压直流断路器电力电子支路单元 |
JP7138184B2 (ja) | 2018-03-09 | 2022-09-15 | エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング | 電流経路の直流電流を遮断するための断路装置、及び、自動車の車載給電システム |
JP2021520600A (ja) * | 2018-03-09 | 2021-08-19 | エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング | 電流経路の直流電流を遮断するための断路装置、及び、自動車の車載給電システム |
CN108447735B (zh) * | 2018-05-10 | 2023-11-07 | 浙江英洛华新能源科技有限公司 | 抗容性负载冲击双路高压控制组件及其闭合控制方法 |
CN108447735A (zh) * | 2018-05-10 | 2018-08-24 | 浙江英洛华新能源科技有限公司 | 抗容性负载冲击双路高压控制组件及其闭合控制方法 |
JP7102064B2 (ja) | 2018-06-08 | 2022-07-19 | 日東工業株式会社 | 遮断装置 |
JP2019212581A (ja) * | 2018-06-08 | 2019-12-12 | 日東工業株式会社 | 遮断装置 |
JPWO2020003596A1 (ja) * | 2018-06-27 | 2021-07-15 | ウチヤ・サーモスタット株式会社 | 電子機器 |
JP7311163B2 (ja) | 2018-06-27 | 2023-07-19 | ウチヤ・サーモスタット株式会社 | 電子機器 |
JP7115127B2 (ja) | 2018-08-06 | 2022-08-09 | 富士電機株式会社 | スイッチ装置 |
JP2020024830A (ja) * | 2018-08-06 | 2020-02-13 | 富士電機株式会社 | スイッチ装置 |
KR102099944B1 (ko) * | 2019-10-30 | 2020-04-10 | 이종배 | 차량용 직류 전원 차단용 릴레이 장치 |
TWI819381B (zh) * | 2021-08-06 | 2023-10-21 | 立積電子股份有限公司 | 開關裝置 |
US11764775B2 (en) | 2021-09-28 | 2023-09-19 | Richwave Technology Corp. | Switch device |
CN113963990B (zh) * | 2021-10-19 | 2024-01-02 | 中国电信股份有限公司 | 一种直流接触器 |
CN113963990A (zh) * | 2021-10-19 | 2022-01-21 | 中国电信股份有限公司 | 一种直流接触器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011034140A1 (ja) | 2013-02-14 |
JP5628184B2 (ja) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5628184B2 (ja) | スイッチ | |
JP4913761B2 (ja) | 限流遮断器 | |
US9948089B2 (en) | DC circuit breaker device | |
JP6517589B2 (ja) | 直流送電システム、その中央サーバ、及び直流送電経路の事故後の復旧方法 | |
JP6049957B2 (ja) | 直流遮断器 | |
EP3116006B1 (en) | Capacitive coupling-type arc-extinguishing circuit and device | |
CN111293010B (zh) | 断路器 | |
JP6430294B2 (ja) | 直流遮断装置 | |
Kapoor et al. | State of art of power electronics in circuit breaker technology | |
US9478974B2 (en) | DC voltage circuit breaker | |
KR101652937B1 (ko) | Dc 차단기 | |
KR102093112B1 (ko) | 직류를 인터럽팅하기 위한 인터럽터 디바이스 | |
JP6042035B2 (ja) | 直流遮断装置 | |
JP6952790B2 (ja) | 特にdcシステムにおける過電圧保護のための切断および切り替え装置 | |
JP2017527067A (ja) | 直流遮断用遮断スイッチ | |
JP7277549B2 (ja) | 送電グリッド用ハイブリッドスイッチング装置 | |
JP6456575B1 (ja) | 直流遮断器 | |
JP6424976B1 (ja) | 直流遮断装置 | |
JP7143984B2 (ja) | 直流電流開閉装置 | |
JP6694177B2 (ja) | 直流遮断装置 | |
CN113383494A (zh) | 电开关 | |
Zhao et al. | Hybrid DC switch for solar array fault protection | |
JP2016103427A (ja) | 直流電流遮断装置 | |
CN113922330A (zh) | 一种基于复合换流方式的发电机出口断路器及其控制方法 | |
US20250023341A1 (en) | Power system protection device with current limiting and controlled switching functions for ac and dc applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10817253 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011531965 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FROM 1205N OF 28.06.2012) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10817253 Country of ref document: EP Kind code of ref document: A1 |