[go: up one dir, main page]

WO2011029926A1 - Verfahren zur ermittlung von rissen in turbinenschaufeln - Google Patents

Verfahren zur ermittlung von rissen in turbinenschaufeln Download PDF

Info

Publication number
WO2011029926A1
WO2011029926A1 PCT/EP2010/063366 EP2010063366W WO2011029926A1 WO 2011029926 A1 WO2011029926 A1 WO 2011029926A1 EP 2010063366 W EP2010063366 W EP 2010063366W WO 2011029926 A1 WO2011029926 A1 WO 2011029926A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
frequencies
measured
natural frequencies
determined
Prior art date
Application number
PCT/EP2010/063366
Other languages
English (en)
French (fr)
Inventor
Michael Jung
Uwe Linnemann
Christoph Hermann Richter
Peter Schindler
Lando Steckel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN2010800409460A priority Critical patent/CN102498372A/zh
Priority to EP10754471.0A priority patent/EP2478342B1/de
Publication of WO2011029926A1 publication Critical patent/WO2011029926A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • G01H1/006Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines of the rotor of turbo machines

Definitions

  • the invention relates to a method for determining cracks in turbine blades, wherein blade vibrations of the turbine blade during operation are determined and a crack during operation can be determined.
  • Turbomachines in particular steam turbines, are exposed during operation to high mechanical and thermal loads.
  • Turbomachines essentially comprise a stationary component and a component rotatably mounted about a rotation axis. At this rotatably mounted component are in the
  • This object is achieved by a method for determining cracks in turbine blades, blade vibrations of the turbine blade being determined during operation, the blade natural frequencies being determined, theoretical blade natural frequencies being calculated, and the measured blade natural frequencies are compared with the theoretical blade natural frequencies, wherein a determination of a deviation between the measured blade natural frequency and the theoretical blade natural frequency takes place, an error message being generated as soon as the deviation is above a defined limit value, a false message being generated if a frequency drift is detected.
  • the invention thus goes the new way to determine cracks in turbine blades during operation. This is done primarily by first calculating blade internal frequencies according to theoretical models and comparing these with measured blade natural frequencies. These theoretical blade natural frequencies depend inter alia on various operating parameters such as temperature and rotational frequency. As soon as the measured blade natural frequencies have a deviation from the theoretically calculated blade natural frequencies, an error message is generated as soon as this deviation is above a defined limit value.
  • the blade vibration is measured without contact.
  • the measuring method in a first approximation exerts kei ⁇ nen influence on the blade vibration of the turbine blades and in addition a sufficiently accurate frequency measurement ⁇ possible.
  • the contactless measurement of both the blade vibrations determined as well as the Rotati ⁇ onsfrequenz of the rotor.
  • the theoretical blade natural frequencies are determined by means of finite element calculations. Using the finite calculations indicated a ver ⁇ tively accurate method to determine the natural frequencies of turbine blades. In a first approximation, the blade natural frequencies for all on a rotor in one Wreath arranged turbine blades identical. In advantageous further developments, the blade natural frequencies are determined individually per turbine blade, wherein the position of this turbine blade in the rotor ring must be compulsorily determined.
  • the measured blade frequencies are determined via fast Fourier transformation.
  • the blade vibrations are measured without contact.
  • These data records, which are present as time records, are then transformed by means of a fast Fourier transformation into a frequency signal.
  • the fast Fourier transformation is a suitable method for changing the time signal into a frequency signal since this is done comparatively quickly.
  • the blade natural frequencies are determined as a function of a crack and as a function of speed and temperature deviations, resulting in a large number of data records.
  • a crack in the door ⁇ binenschaufel is initially assumed and out calculates the natural frequencies in dependence of the speed of the rotor and as a function of temperature. If, in real operation, a crack is detected in a first approximation, it can be changed by changing conditions, such as eg. B. a changed speed or a changed temperature of the crack can be clearly identified.
  • crack propagation can be continuously observed, since an increasing crack is reflected in a changed frequency behavior as a function of the speed and temperature conditions.
  • the records thus obtained are stored and compared with the actually measured shovel ⁇ natural frequencies. As soon as deviations occur and they are above a limit, this is detected as a disturbance in the form of a crack. Once the deviation is above a defined threshold, a disturbance signal is ⁇ sends.
  • the measured blade frequencies are observed at defined time intervals and, if necessary, a crack is determined from the temporal development of the measured blade frequencies.
  • the underlying idea is that once a crack is detected, it will be observed at time intervals and possibly a crack ⁇ growth is determined.
  • the measured eigenfre ⁇ frequencies are compared with the theoretically determined natural frequencies, in which case a crack is assumed in the model for the theoretically calculated natural frequencies, which leads to different natural frequencies.
  • Figure 1 is a schematic representation of the method.
  • a rotor rim 2 with multiple turbine blades 3 can be seen, with only a turbine blade was provided with the reference numeral 3 for reasons of clarity. In operation, these turbine blades 3 experience undesirable vibrations which, in the worst case, could lead to a crack in the turbine blade 3. These vibrations are determined by means of non-contact sensors 4.
  • a non-contact sensor 4 is arranged on the shaft. The positions of the non-contact sensors 4 are fixed.
  • the time signals 5 determined via the non-contact sensors 4 are temporarily stored in a time record 6.
  • these time signals 5 are converted into frequency signals 7. This is done via a Fou ⁇ rier transform or similar spectral analysis.
  • the blade natural frequencies of a turbine blade 3 are calculated. In doing so, the blade natural frequencies are calculated taking into account the influence of risks and disturbing influences such as speed and temperature deviations.
  • the data records thus obtained are stored and evaluated in a module 9 in a next method step.
  • the measured acting ⁇ felfrequenzen with the theoretically calculated blade frequencies are compared and, if a deviation is detected, generates an error message when the deviation is above a defined limit value.
  • Natural frequency and m-natural frequency at a current and at the reference time are considered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Turbines (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Ermittlung von Rissen in Turbinenschaufeln (3), wobei die Ermittlung während des Betriebes erfolgt, wobei zunächst über Finite-Elemente-Berechnungen Schaufeleigenfrequenzen theoretisch ermittelt werden und anschließend mit gemessenen Schaufeleigenfrequenzen verglichen und eine Fehlermeldung generiert wird, sobald eine Abweichung über einem definierten Grenzwert beobachtet wird.

Description

Beschreibung
Verfahren zur Ermittlung von Rissen in Turbinenschaufeln
Die Erfindung betrifft ein Verfahren zur Ermittlung von Rissen in Turbinenschaufeln, wobei Schaufelschwingungen der Turbinenschaufel während eines Betriebes ermittelt werden und ein Riss während des Betriebes ermittelbar ist.
Turbomaschinen, insbesondere Dampfturbinen, werden im Betrieb hohen mechanischen und thermischen Belastungen ausgesetzt. Strömungsmaschinen umfassen im Wesentlichen ein feststehendes Bauteil sowie ein um eine Rotationsachse drehbar gelagertes Bauteil. An diesem drehbar gelagerten Bauteil sind in der
Regel Turbinenschaufeln angeordnet, die die thermische Ener¬ gie des Dampfes in Rotationsenergie umwandeln. Bei den im Be¬ trieb auftretenden hohen thermischen Belastungen und den mechanischen Kräften ist es möglich, dass die Turbinenschau- fein Schaufelschwingungen durchführen. Darüber hinaus ist es möglich, dass Risse in den Turbinenschaufeln entstehen können. Eine Detektion solcher Risse ist in der Regel sehr schwierig. Derzeit werden Turbinenschaufeln im Stillstand während einer Revision oder Reparaturarbeiten auf Risse untersucht. Solch eine Untersuchungsmethode ist zeitaufwändig und erfolgt nicht während des Betriebes. Wünschenswert wäre es eine Methode zu haben, mit der es möglich ist, Risse in einer Turbinenschaufel während des Betriebes zu ermitteln. Die Aufgabe der Erfindung ist es, ein Verfahren anzugeben, mit dem es möglich ist, Risse in einer Turbinenschaufel wäh¬ rend des Betriebes zu ermitteln.
Diese Aufgabe wird gelöst durch ein Verfahren zur Ermittlung von Rissen in Turbinenschaufeln, wobei Schaufelschwingungen der Turbinenschaufel während eines Betriebes ermittelt wer¬ den, wobei die Schaufeleigenfrequenzen ermittelt werden, wobei theoretische Schaufeleigenfrequenzen berechnet werden und die gemessenen Schaufeleigenfrequenzen mit den theoretischen Schaufeleigenfrequenzen verglichen werden, wobei eine Ermittlung einer Abweichung zwischen der gemessenen Schaufeleigenfrequenz und der theoretischen Schaufeleigenfrequenz erfolgt, wobei ein Generieren einer Fehlermeldung erfolgt, sobald die Abweichung über einem definierten Grenzwert liegt, wobei eine Fehlmeldung generiert wird, wenn ein Frequenzdrift detektiert wird . Die Erfindung geht somit den neuen Weg, Risse in Turbinenschaufeln während des Betriebes zu ermitteln. Dies erfolgt in erster Linie dadurch, dass zunächst Schaufeleigenfrequenzen gemäß theoretischen Modellen berechnet werden und diese mit gemessenen Schaufeleigenfrequenzen verglichen werden. Diese theoretischen Schaufeleigenfrequenzen hängen u. a. von verschiedenen Betriebsparametern wie Temperatur und Rotationsfrequenz ab. Sobald die gemessenen Schaufeleigenfrequenzen eine Abweichung gegenüber den theoretisch berechneten Schaufeleigenfrequenzen aufweisen, wird eine Fehlermeldung gene- riert, sobald diese Abweichung über einem definierten Grenzwert liegt.
Vorteilhafte Weiterentwicklungen sind in den Unteransprüchen angegeben. So wird in einer ersten vorteilhaften Weiterbil- dung die Schaufelschwingung berührungslos gemessen. Dies bietet den Vorteil, dass die Messmethode in erster Näherung kei¬ nen Einfluss auf die Schaufelschwingung der Turbinenschaufeln ausübt und darüber hinaus eine hinreichend genaue Frequenz¬ messung ermöglicht. Mit der berührungslosen Messung werden sowohl die Schaufelschwingungen ermittelt sowie die Rotati¬ onsfrequenz des Rotors.
In vorteilhaften Weiterentwicklungen werden die theoretischen Schaufeleigenfrequenzen mittels Finite-Elemente-Berechnungen ermittelt. Mittels der Finite-Berechnungen ist eine ver¬ gleichsweise genaue Methode angegeben, die Eigenfrequenzen von Turbinenschaufeln zu ermitteln. In erster Näherung sind die Schaufeleigenfrequenzen für alle auf einem Rotor in einem Kranz angeordneten Turbinenschaufeln identisch. In vorteilhaften Weiterentwicklungen werden die Schaufeleigenfrequenzen individuell pro Turbinenschaufel ermittelt, wobei die Lage dieser Turbinenschaufel im Rotorkranz zwingend ermittelt wer- den muss.
In einer vorteilhaften Weiterbildung werden die gemessenen Schaufelfrequenzen über Fast-Fourie-Transformation ermittelt. Zunächst werden die Schaufelschwingungen berührungslos gemes- sen. Diese als Zeitschriebe vorliegenden Datensätze werden anschließend mittels einer Fast-Fourie-Transformation in ein Frequenzsignal transformiert. Die Fast-Fourie-Transformation ist hierbei eine geeignete Methode, das Zeitsignal in ein Frequenzsignal zu ändern, da dies vergleichsweise schnell er- folgt.
In einer vorteilhaften Weiterbildung werden die Schaufeleigenfrequenzen in Abhängigkeit eines Risses und in Abhängigkeit von Drehzahl- und Temperaturabweichungen ermittelt, wo- durch eine Vielzahl von Datensätzen entsteht. Mit dem theoretischen Berechnungsmodell wird zunächst ein Riss in der Tur¬ binenschaufel angenommen und darauf hin die Eigenfrequenzen in Abhängigkeit der Drehzahl des Rotors und in Abhängigkeit der Temperatur berechnet. Wird nun im realen Betrieb ein Riss in erster Näherung detektiert kann durch veränderte Bedingungen, wie z. B. eine geänderte Drehzahl oder eine geänderte Temperatur der Riss eindeutig identifiziert werden. Darüber hinaus kann die Rissfortpflanzung fortwährend beobachtet wer¬ den, da ein größer werdender Riss sich in einem veränderten Frequenzverhalten in Abhängigkeit der Drehzahl- und Temperaturbedingungen niederschlägt. Die somit gewonnenen Datensätze werden abgespeichert und mit den real gemessenen Schaufel¬ eigenfrequenzen verglichen. Sobald Abweichungen entstehen und diese über einem Grenzwert liegen wird dies als Störung in Form eines Risses detektiert. Sobald die Abweichung über einem definierten Grenzwert liegt, wird ein Störsignal ausge¬ sendet . In einer vorteilhaften Weiterentwicklung werden die gemessenen Schaufelfrequenzen in definierten zeitlichen Abständen beobachtet und aus der zeitlichen Entwicklung der gemessenen Schaufelfrequenzen ein Riss ggf. ermittelt. Hier liegt der Gedanke zugrunde, dass sobald ein Riss ermittelt ist, dieser in zeitlichen Abständen beobachtet wird und ggf. ein Riss¬ wachstum ermittelt wird. Dazu werden die gemessenen Eigenfre¬ quenzen mit den theoretisch ermittelten Eigenfrequenzen verglichen, wobei hierbei in dem Modell für die theoretisch be- rechneten Eigenfrequenzen ein Riss angenommen wird, der zu unterschiedlichen Eigenfrequenzen führt.
Die Erfindung wird anhand eines Ausführungsbeispiels näher erläutert .
Es zeigt:
Figur 1 eine schematische Darstellung des Verfahrens.
Im Teilbild 1 ist ein Rotorkranz 2 mit mehreren Turbinenschaufeln 3 zu sehen, wobei lediglich eine Turbinenschaufel mit dem Bezugszeichen 3 aus Gründen der Übersichtlichkeit versehen wurde. Im Betrieb erfahren diese Turbinenschaufeln 3 unerwünschte Schwingungen, die schlimmstenfalls zu einem riss in der Turbinenschaufel 3 führen könnten. Diese Schwingungen werden mit Hilfe von berührungslosen Sensoren 4 ermittelt. Ein berührungsloser Sensor 4 ist hierbei an der Welle angeordnet. Die Positionen der berührungslosen Sensoren 4 sind fest angeordnet.
Die über die berührungslosen Sensoren 4 ermittelten Zeitsignale 5 werden in einem Zeitschrieb 6 zwischengespeichert. In einem nächsten Verfahrensschritt werden diese Zeitsignale 5 in Frequenzsignale 7 umgewandelt. Dies erfolgt über eine Fou¬ rier-Transformation oder ähnliche Spektralanalyse. Über Finite-Elemente-Berechnung werden die Schaufeleigenfrequenzen einer Turbinenschaufel 3 berechnet. Hierbei werden die Schaufeleigenfrequenzen unter Berücksichtigung von Risseinflüssen und von Störeinflüssen wie Drehzahl- und Tempera- turabweichungen berechnet. Die somit gewonnenen Datensätze werden gespeichert und in einem nächsten Verfahrensschritt in einem Modul 9 ausgewertet. Dabei werden die gemessenen Schau¬ felfrequenzen mit den theoretisch berechneten Schaufelfrequenzen verglichen und, sofern eine Abweichung ermittelt ist, eine Fehlermeldung generiert, sobald die Abweichung über einem definierten Grenzwert liegt.
Bei der Analyse im Modul 9 werden im Wesentlichen die Unterschiede einer aktuellen n-ter Eigenfrequenz zu einer n-ter Eigenfrequenz zum Referenzzeitpunkt für untere k Eigenfre¬ quenzen ermittelt. In einer alternativen Auswertemethode können die Unterschiede der Differenz zwischen einer n-ter
Eigenfrequenz und m-ter Eigenfrequenz zu einem aktuellen und zum Referenzzeitpunkt in Betracht gezogen werden. In erster Näherung erfolgt ein Frequenzdrift bei einem Riss, der in einfacher Weise erkannt und analysiert werden kann.

Claims

Patentansprüche
1. Verfahren zur Ermittelung von Rissen in Turbinenschaufeln (3),
wobei Schaufelschwingungen der Turbinenschaufel (3) während eines Betriebes ermittelt werden, mit den Schritten:
Ermitteln der gemessenen Schaufeleigenfrequenz,
Berechnung von theoretischen Schaufeleigenfrequenzen, Vergleichen der gemessenen Schaufeleigenfrequenzen mit den theoretischen Schaufeleigenfrequenzen,
Ermittlung einer Abweichung zwischen der gemessenen Schaufeleigenfrequenz und der theoretischen Schaufeleigenfrequenz,
Generieren einer Fehlermeldung, sobald die Abweichung über einem definierten Grenzwert liegt,
- Generieren einer Fehlermeldung, sobald ein Frequenzdrift detektiert wird.
2. Verfahren nach Anspruch 1,
wobei die Schaufelschwingungen berührungslos gemessen werden .
3. Verfahren nach Anspruch 1 oder 2,
wobei die Berechnung der theoretischen Schaufeleigenfrequenzen mittels Finite-Elemente-Berechnung ermittelt wird.
4. Verfahren nach Anspruch 1, 2 oder 3,
wobei die gemessenen Schaufelfrequenzen über Fourie-Trans- formation oder ähnliche Spektralanalyse ermittelt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Berechnung der Schaufeleigenfrequenzen in Abhängigkeit eines Risses und in Abhängigkeit von Drehzahl- und Temperaturabweichungen erfolgt und dadurch eine Vielzahl von Datensätzen entsteht. Verfahren nach einem der vorhergehenden Ansprüche, wobei die gemessenen Schaufeleigenfrequenzen in definierten zeitlichen Abständen beobachtet werden und aus der zeitlichen Entwicklung der gemessenen Schaufelfrequenzen ein Riss ermittelbar ist.
PCT/EP2010/063366 2009-09-14 2010-09-13 Verfahren zur ermittlung von rissen in turbinenschaufeln WO2011029926A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800409460A CN102498372A (zh) 2009-09-14 2010-09-13 用于测定在涡轮叶片中的裂纹的方法
EP10754471.0A EP2478342B1 (de) 2009-09-14 2010-09-13 Verfahren zur ermittlung von rissen in turbinenschaufeln

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09011731.8 2009-09-14
EP09011731A EP2299248A1 (de) 2009-09-14 2009-09-14 Verfahren zur Ermittlung von Rissen in Turbinenschaufeln

Publications (1)

Publication Number Publication Date
WO2011029926A1 true WO2011029926A1 (de) 2011-03-17

Family

ID=42026773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063366 WO2011029926A1 (de) 2009-09-14 2010-09-13 Verfahren zur ermittlung von rissen in turbinenschaufeln

Country Status (3)

Country Link
EP (2) EP2299248A1 (de)
CN (1) CN102498372A (de)
WO (1) WO2011029926A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013202261A1 (de) * 2013-02-12 2014-08-28 Senvion Se Verfahren zum Überprüfen des Betriebs einer Windenergieanlage und Windenergieanlage
CN105760637A (zh) * 2016-04-21 2016-07-13 哈尔滨工业大学 一种小型汽轮机转子挠度理论值计算方法
CN107152943A (zh) * 2017-05-15 2017-09-12 上海电机学院 一种用于检测汽轮机预扭叶片装配质量的装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739167B2 (en) * 2012-07-25 2017-08-22 Siemens Energy, Inc. Method and system for monitoring rotating blade health
EP2728128A1 (de) 2012-10-31 2014-05-07 Siemens Aktiengesellschaft Messverfahren zur Schadenserkennung an einer Turbinenschaufel und Turbine
US9657588B2 (en) * 2013-12-26 2017-05-23 General Electric Company Methods and systems to monitor health of rotor blades
US20150184533A1 (en) * 2013-12-26 2015-07-02 General Electric Company Methods and systems to monitor health of rotor blades
CN103983697B (zh) * 2014-05-09 2016-08-24 西安交通大学 一种运行状态下离心压缩机叶轮裂纹的频域定量诊断方法
CN103984813B (zh) * 2014-05-09 2017-06-06 西安交通大学 一种离心压缩机裂纹叶轮结构的振动建模与分析方法
CN105352586B (zh) * 2015-11-20 2018-05-22 天津大学 通过检测共振频率实现叶片疲劳裂纹检测的方法
JP6736511B2 (ja) * 2017-03-28 2020-08-05 三菱重工業株式会社 翼異常検出装置、翼異常検出システム、回転機械システム及び翼異常検出方法
KR102123192B1 (ko) * 2019-12-30 2020-06-15 한전케이피에스 주식회사 침식 손상된 증기터빈 lsb 수명연장 방법
CN112082742B (zh) * 2020-07-22 2021-08-13 西安交通大学 一种航空发动机轮盘裂纹智能识别方法、系统及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413519A (en) * 1981-07-29 1983-11-08 Westinghouse Electric Corp. Turbine blade vibration detection apparatus
DE20021970U1 (de) * 2000-12-30 2001-04-05 Igus Ingenieurgemeinschaft Umweltschutz Meß-und Verfahrenstechnik GmbH, 01099 Dresden Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
EP1505374A1 (de) * 2003-08-08 2005-02-09 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Störungsermittlung durch Ermittlung des Schwingungsverhaltens einer Leitschaufel
DE102005017054A1 (de) * 2004-07-28 2006-03-23 Igus - Innovative Technische Systeme Gmbh Verfahren und Vorrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413519A (en) * 1981-07-29 1983-11-08 Westinghouse Electric Corp. Turbine blade vibration detection apparatus
DE20021970U1 (de) * 2000-12-30 2001-04-05 Igus Ingenieurgemeinschaft Umweltschutz Meß-und Verfahrenstechnik GmbH, 01099 Dresden Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
EP1505374A1 (de) * 2003-08-08 2005-02-09 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Störungsermittlung durch Ermittlung des Schwingungsverhaltens einer Leitschaufel
DE102005017054A1 (de) * 2004-07-28 2006-03-23 Igus - Innovative Technische Systeme Gmbh Verfahren und Vorrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013202261A1 (de) * 2013-02-12 2014-08-28 Senvion Se Verfahren zum Überprüfen des Betriebs einer Windenergieanlage und Windenergieanlage
US10145360B2 (en) 2013-02-12 2018-12-04 Senvion Gmbh Method for monitoring the operation of a wind energy plant and wind energy plant
CN105760637A (zh) * 2016-04-21 2016-07-13 哈尔滨工业大学 一种小型汽轮机转子挠度理论值计算方法
CN107152943A (zh) * 2017-05-15 2017-09-12 上海电机学院 一种用于检测汽轮机预扭叶片装配质量的装置

Also Published As

Publication number Publication date
EP2478342A1 (de) 2012-07-25
EP2299248A1 (de) 2011-03-23
CN102498372A (zh) 2012-06-13
EP2478342B1 (de) 2014-12-31

Similar Documents

Publication Publication Date Title
EP2478342B1 (de) Verfahren zur ermittlung von rissen in turbinenschaufeln
EP2294287B1 (de) Verfahren und vorrichtung zur risserkennung an verdichterlaufschaufeln
EP2870346B1 (de) Erkennung eines erweiterten spitzentaktmessungsmodus einer schaufel
EP2588755B1 (de) Kalibrierung eines windturbinensensors
DE10065314B4 (de) Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
EP2026160A1 (de) Überwachung mittels Signalkombination
DE102006060650A1 (de) Vorrichtung und Verfahren zur berührungslosen Schaufelschwingungsmessung
US9840935B2 (en) Rotating machinery monitoring system
DE20021970U1 (de) Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
CN101660493A (zh) 用于测试桨距系统故障的桨距控制系统
EP2520794A1 (de) Verfahren zum Prüfen einer Windturbine in einem Windpark auf Gier-Fehlausrichtung, Verfahren zur Überwachung einer Windturbine in einem Windpark und Überwachungsvorrichtung
DE102008049704A1 (de) Messen von Rotorunwucht mittels Spaltweitensensoren
EP3642481B1 (de) Verfahren zur bestimmung von windturbinenschaufelkantenweiser lastwiederkehr
Krause et al. Asynchronous response analysis of non-contact vibration measurements on compressor rotor blades
EP3589843B1 (de) Verfahren und vorrichtung zum bestimmen eines indikators für eine vorhersage einer instabilität in einem verdichter sowie verwendung
Mack et al. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements
Anthony et al. Modifications and upgrades to the AFRL Turbine Research Facility
DE112013001966T5 (de) Abgasturbolader
JP4523826B2 (ja) ガスタービン監視装置及びガスタービン監視システム
EP3388809B1 (de) Verfahren und anordnung zum detektieren einer unwucht eines rotierenden maschinenelements
KR20250029638A (ko) 블레이드 진단 시스템 및 방법
Hougaard et al. Wind turbine main shaft crack detection with SCADA generator speed measurement
DE102015222324A1 (de) Vorrichtung und Verfahren zum Erzeugen einer Unwucht
WITOS et al. Structural Health Monitoring of Turbomachinery using TOA Signal and Expert Software
WO2023198534A1 (en) A method for early identification of material fatigue in wind turbine installations

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040946.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10754471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010754471

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE