[go: up one dir, main page]

WO2011027394A1 - 廃棄物処理方法 - Google Patents

廃棄物処理方法 Download PDF

Info

Publication number
WO2011027394A1
WO2011027394A1 PCT/JP2009/004347 JP2009004347W WO2011027394A1 WO 2011027394 A1 WO2011027394 A1 WO 2011027394A1 JP 2009004347 W JP2009004347 W JP 2009004347W WO 2011027394 A1 WO2011027394 A1 WO 2011027394A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
melting furnace
treatment
crushed material
charged
Prior art date
Application number
PCT/JP2009/004347
Other languages
English (en)
French (fr)
Inventor
谷垣信宏
柏原友
栗田雅也
小林淳志
Original Assignee
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社 filed Critical 新日鉄エンジニアリング株式会社
Priority to JP2011529692A priority Critical patent/JPWO2011027394A1/ja
Priority to EP09848925A priority patent/EP2474783A1/en
Priority to PCT/JP2009/004347 priority patent/WO2011027394A1/ja
Publication of WO2011027394A1 publication Critical patent/WO2011027394A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/10Drying by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/60Separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/70Blending
    • F23G2201/701Blending with additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/80Shredding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a waste treatment method for performing a specific treatment on waste charged in a melting furnace that performs melting treatment of waste using a massive carbon-based combustible material such as coke.
  • the amount of coke used is reduced by using combustible dust as an alternative to coke. Moreover, by supplying combustible materials such as solid fuel and biomass into the melting furnace from the tuyere together with the combustible dust, even if the amount of combustible dust fluctuates, the amount of combustion before the tuyere is secured. The amount used is reduced.
  • the amount of coke used is reduced by supplying oxygen and combustible dust from the tuyere into the melting furnace. Moreover, the amount of combustible dust blown so that the ratio (B / A) of the oxygen amount (A) supplied from the tuyere to the theoretical oxygen amount (B) is in the range of 0.5 to 1.0. The air blowing conditions at the tuyere are changed accordingly. As a result, the amount of coke used is reduced.
  • the theoretical oxygen amount (B) is an oxygen amount determined from the amount and composition of combustible dust supplied to the tuyere and the amount and composition of coke.
  • the present invention is a technique that focuses on the waste charged in the melting furnace, and reduces the amount of coke used from a viewpoint different from the techniques described in Patent Documents 1 to 3.
  • the waste treatment method according to the first invention of the present application is directed to at least one of a sorting process, a crushing process, and a drying process for waste before being charged into a melting furnace that performs a melting process of waste using coke.
  • One process is performed.
  • a waste having a moisture content of 50% by weight or less can be selected from the waste type composition, and the selected waste can be charged into the melting furnace.
  • the water content of the whole waste can be 5 to 40% by weight or less.
  • the crushed material obtained by crushing / drying can be sieved, and the crushed material on the sieve obtained by sieving can be charged into the melting furnace.
  • the drying treatment it becomes possible to easily select wastes having a moisture content of 50% by weight or less in the waste type composition.
  • biological treatment on the crushed material under the sieve obtained by sieving, the combustible gas is generated, and at least a part of the combustible gas is burned.
  • the crushed material on the sieve is subjected to a drying treatment, and the crushed material subjected to the drying treatment can be charged into the melting furnace.
  • a crushed material having a particle size of 5 to 300 mm By performing a sorting process on the crushed material obtained by the crushing treatment, a crushed material having a particle size of 5 to 300 mm can be selected, and the selected crushed material can be charged into the melting furnace.
  • the waste processing system according to the second invention of the present application is a melting furnace that performs melting processing of waste using coke, and sorting processing, crushing processing, and drying of waste before being charged into the melting furnace. And a processing device that performs at least one of the processes.
  • the treatment apparatus can select a waste having a moisture content of 50% by weight or less from the waste type composition, and can charge the selected waste into the melting furnace. As the whole waste to be charged, waste having a moisture content of 5 to 40% by weight or less can be selected.
  • the treatment equipment crushes and dries the waste before being charged into the melting furnace, and in the sorting process, sifts the crushed material obtained by the crushing treatment, thereby A crushed material can be selected.
  • By drying and crushing it becomes possible to easily select a waste having a moisture content of 50% by weight or less from among the types of waste.
  • the processing device uses the thermal energy when combusting at least a part of the combustible gas obtained by performing biological treatment on the crushed material under the sieve by sieving, and the crushed material on the sieve. Can be dried.
  • the treatment apparatus can select a crushed material having a particle size of 5 to 300 mm by performing a sorting process on the crushed material obtained by the crushing process. Then, the selected crushed material can be charged into the melting furnace.
  • a plurality of tuyere for supplying oxygen-containing gas into the melting furnace can be provided at a plurality of positions in the vertical direction of the melting furnace.
  • the oxygen concentration in the oxygen-containing gas supplied from the tuyere arranged at the lowest stage can be 21 to 50% by volume.
  • the present invention by performing at least one of a sorting process, a crushing process, and a drying process on the waste before being charged into the melting furnace, massive carbon such as coke in the melting furnace is obtained.
  • the waste can be efficiently melted and treated using combustible materials, and the amount of coke used can be reduced.
  • the processing of waste using a massive carbon-based combustible material such as coke includes waste drying, pyrolysis, combustion, and melting.
  • Example 1 It is the schematic which shows the structure of the waste melting facility in Example 1 of this invention. In Example 1, it is the schematic which shows the pre-processing of a waste material.
  • Example 1 The waste melting facility in Example 1 of the present invention will be described with reference to FIG.
  • an inlet 11 for charging waste is provided together with coke and limestone as auxiliary materials.
  • a drying process, a thermal decomposition process, a combustion process, and a melting process are performed on the waste.
  • a waste packed bed L1 a dry distillation residue layer L2, and a coke packed bed L3 exist.
  • the waste filling layer L1 is a layer filled with waste.
  • the waste is dried and pyrolyzed, and gas is generated by the pyrolysis of the waste.
  • the carbonization residue layer L2 is constituted by the carbonized waste.
  • the coke packed layer L3 is a layer filled with coke, and slag and metal are generated by performing a melting process on the dry distillation residue. The generated slag and metal are discharged from the bottom of the melting furnace 1 to the outside.
  • the melting furnace 1 is provided with a plurality of tuyere 12 for supplying oxygen-containing gas into the melting furnace 1.
  • oxygen-containing gas air existing in the atmosphere or oxygen-enriched air can be used.
  • Oxygen-enriched air is air that contains a larger proportion of oxygen than the proportion of oxygen in the air present in the atmosphere (generally 21%).
  • the plurality of tuyere 12 are provided at a plurality of positions in the vertical direction of the melting furnace 1.
  • the number of tuyere 12 and the position where a plurality of tuyere 12 are provided can be set as appropriate. Further, only one tuyere 12 may be used.
  • the combustion reaction in the melting furnace 1 can be promoted by supplying the oxygen-containing gas from the plurality of tuyere 12 into the melting furnace 1 as in this embodiment. And the thermal energy which generate
  • the oxygen concentration of the oxygen-containing gas supplied from the tuyere 12 arranged at the bottom of the plurality of tuyere 12 is preferably 21 to 50% by volume.
  • oxygen can be mixed with air so that the oxygen concentration is 21 to 50% by volume.
  • the temperature in the melting furnace 1 when the oxygen concentration of the oxygen-containing gas is lower than 21% by volume, the temperature in the melting furnace 1 (particularly, the temperature at the bottom of the furnace filled with coke) may be excessively lowered. In this case, coke is used to raise the temperature in the melting furnace 1, and the amount of coke used increases.
  • the oxygen concentration of the oxygen-containing gas when the oxygen concentration of the oxygen-containing gas is higher than 50% by volume, the temperature in the melting furnace 1 (particularly, the temperature at the bottom of the furnace filled with coke) may increase excessively. In this case, the solution loss reaction (C + CO 2 ⁇ 2CO) proceeds excessively, and the consumption of coke increases more than necessary.
  • the gas generated in the melting furnace 1 is discharged from the upper part of the melting furnace 1 and supplied to the dust collecting device 2.
  • the dust collector 2 collects combustible dust contained in the gas.
  • the gas that has passed through the dust collecting device 2 is supplied to the boiler 4 as combustion exhaust gas by being completely burned in the combustion chamber 3.
  • the boiler 4 generates steam by heat exchange with the combustion exhaust gas, and this steam is supplied to the steam turbine 5.
  • the steam turbine 5 can generate power using the supplied steam.
  • the dust collection apparatus 2 may not be installed.
  • the combustion exhaust gas after heat recovery by the boiler 4 is supplied to the dust collector 6.
  • the dust collector 6 removes dust and the like contained in the combustion exhaust gas using a filter.
  • the combustion exhaust gas filtered by the dust collector 6 is discharged from the chimney 7 into the atmosphere.
  • a predetermined pretreatment is performed before charging the waste directly into the melting furnace 1.
  • pre-processing of waste there are a sorting process S1, a crushing process S2, and a drying process S3.
  • pretreatment waste the waste before the pretreatment
  • posttreatment waste the waste after the pretreatment
  • the sorting process S1 will be described.
  • the pre-treatment waste having a moisture content of 50% by weight or less is sorted out of the pre-treatment waste.
  • the waste after treatment does not contain waste having a moisture content higher than 50% by weight, but may be contained. That is, it is only necessary that at least a part of the waste having a moisture content higher than 50% by weight can be removed from the waste before treatment by the sorting treatment S1.
  • waste having a moisture content higher than 50% by weight include moss (water content is 70 to 80% by weight).
  • the sorting process S1 can be performed manually by an operator or mechanically.
  • the manual sorting process S1 includes a waste sorting operation performed at home or the like.
  • sieving can be performed, and as a device for sieving, for example, a trommel or a vibration sieving machine can be used.
  • the waste before treatment is sieved using the above equipment, and the waste on the sieve is charged into the melting furnace 1.
  • the waste before treatment can be crushed and dried before sieving.
  • the sieve mesh can be appropriately set based on the viewpoint of removing waste having a moisture content higher than 50% by weight as described above.
  • the waste under the sieve obtained by sieving often has a higher moisture content than the waste on the sieve.
  • animal fine dust may have a moisture content of 49.8%
  • plant fine dust may have a moisture content of 33.1%.
  • by performing crushing and drying treatment it is possible to easily sort moss having a high water content as waste under the sieve.
  • the temperature inside the melting furnace 1 is made difficult to decrease by charging the melting furnace 1. be able to. That is, the heat energy used for evaporating (drying) the water contained in the waste can be reduced, and the temperature in the melting furnace 1 can be suppressed from decreasing.
  • waste having a moisture content higher than 50% by weight can generate combustible gas by performing biological treatment.
  • biological treatment include fermentation treatment such as methane fermentation and ethanol fermentation.
  • the combustible gas generated by the biological treatment can be used in the melting furnace 1.
  • the oxygen-containing gas is produced using the thermal energy when the combustible gas (at least part) obtained by biological treatment is burned. Can be preheated. Thereby, the temperature of combustible dust can be raised before reaching the inside of the melting furnace 1 by efficiently using thermal energy. If the temperature of the combustible dust is raised, the time until the temperature of the combustible dust reaches the ignition temperature in the melting furnace 1 can be shortened, and the combustibility of the combustible dust can be improved. . Thereby, while being able to increase the quantity of combustible dust used instead of coke, the usage-amount of coke can be reduced.
  • biomass carbide is generated using thermal energy when combustible gas (at least part) obtained by biological treatment is burned. be able to.
  • carbonized_material can be produced
  • biomass refers to all living organisms, that is, organic materials that can be regenerated as energy resources, and examples thereof include wood, pulp waste liquid, paper, and oil. Carbon dioxide can be reduced by using biomass carbide. Moreover, if sewage sludge, waste wood, food waste, etc. are used as biomass, it is effective for recycling of waste.
  • crushing treatment S2 at least a part of the pre-treatment waste is crushed by a crusher.
  • a known apparatus can be appropriately selected according to the type of waste before treatment.
  • the melting furnace 1 Compared with the case where the waste not subjected to the crushing process S2 is charged into the melting furnace 1 by charging the processed waste (crushed material) crushed by the crushing process S2 into the melting furnace 1, the melting furnace 1 The heat exchange efficiency between the high temperature gas and the crushed material can be improved. That is, using the heat generated in the melting furnace 1, the crushed material can be efficiently dried and distilled. And the usage-amount of the coke in the melting furnace 1 can be reduced by suppressing the fall of the thermal energy at the time of performing the drying process etc. of a waste. In addition, by crushing, it is possible to easily select wastes having a moisture content of 50% by weight or less.
  • the particle size of the crushed material is preferably 5 to 300 [mm].
  • a crushed product having a particle size of 5 to 300 [mm] can be obtained by performing sieving at least once on the crushed product obtained by the crushing treatment S2.
  • the density of the waste packed bed L1 (see FIG. 1) in the melting furnace 1 is increased, and the air permeability of the waste packed bed L1 is deteriorated.
  • the equipment capacity of a device (such as a blower) for supplying the oxygen-containing gas has to be improved.
  • a fluidization phenomenon occurs, and there is a possibility that combustible dust supplied into the melting furnace 1 as a substitute for coke may be scattered. In this case, it is difficult to reduce the amount of coke used.
  • the particle size of the crushed material is larger than 300 [mm]
  • heat exchange between the waste (crushed material) and the high-temperature gas tends to be insufficient in the waste packed bed L1.
  • the waste may reach the coke packed bed disposed at the bottom of the melting furnace 1 without being dried and dry distilled. In this case, in order to dry and dry-distill waste, extra coke is required, and the amount of coke used increases.
  • the particle size of the crushed material is more preferably 30 to 200 [mm].
  • the drying process S3 at least a part of the pre-treatment waste is dried.
  • the waste can be actively dried using a dryer, or the waste can be naturally dried.
  • a dryer if a dryer is used, the processing efficiency of the waste in the melting furnace 1 can be improved.
  • natural drying if natural drying is performed, the energy for performing a drying process can be reduced.
  • waste having a water content of 50% by weight or less can be easily selected by drying and crushing.
  • a dryer according to the kind of waste before a process, a well-known apparatus can be selected suitably.
  • the moisture content of the waste after treatment should be lower than the moisture content of the waste before treatment.
  • the water content of the waste after treatment is more preferably in the range of 5 to 40% by weight.
  • the heat energy for performing the drying treatment of the waste after treatment in the melting furnace 1 can be reduced. It can suppress that the usage-amount increases.
  • the drying treatment S3 must be carried out for a long time, which is not preferable for improving the waste treatment efficiency of the entire system. Further, when the moisture content of the waste is higher than 40% by weight, the thermal energy for performing the drying treatment of the waste in the melting furnace 1 increases, and it becomes difficult to reduce the amount of coke used.
  • heat generated when the combustible gas (at least a part) generated by the biological process is burned can be used.
  • waste having a moisture content higher than 50% by weight can be removed, and biological treatment can be performed on the waste.
  • biological treatment can be performed on the waste.
  • any one of the above-described sorting process S1, crushing process S2, and drying process S3 may be performed on the waste before processing.
  • a plurality of treatments are performed in combination, wastes in the melting furnace 1 can be efficiently treated and the amount of coke used can be reduced due to the synergistic effect of each treatment.
  • the order of these processes can be set as appropriate.
  • the drying rate of the waste in the melting furnace 1 can be increased, the melting furnace The temperature fall in 1 can be suppressed. Thereby, the usage-amount of coke can be reduced.
  • the waste include fibers such as paper, plastic, grass, wood, bamboo, metal, glass, ceramics, rubber, leather, and shredder dust. These wastes can be sorted by the sorting process S1, the crushing process S2, and the drying process S3 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

【課題】 廃棄物の溶融処理を効率良く行わせて、溶融炉内におけるコークスの使用量を低減する。 【解決手段】 コークスを用いた廃棄物の溶融処理を行う溶融炉(1)に装入される前の廃棄物に対して、選別処理(S1)、破砕処理(S2)および乾燥処理(S3)のうち少なくとも1つの処理を行う。少なくとも1つの処理により、含水率が50重量%以下の廃棄物を選択し、選択された廃棄物を溶融炉に装入することができる。

Description

廃棄物処理方法
 本発明は、コークス等の塊状炭素系可燃物質を用いた廃棄物の溶融処理を行う溶融炉に装入される廃棄物に対して、特定の処理を行う廃棄物処理方法に関するものである。
 コークス等の塊状炭素系可燃物質を用いて廃棄物の溶融処理を行う廃棄物溶融炉では、コークスの使用量を低減させるための技術が提案されている。
 特許文献1に記載の技術では、コークスの代替物として、可燃性ダストを用いることにより、コークスの使用量を低減させている。しかも、可燃性ダストとともに、固形燃料やバイオマスといった可燃物を羽口から溶融炉内に供給することにより、可燃性ダストの量が変動しても、羽口前の燃焼量を確保してコークスの使用量を低減させるようにしている。
 特許文献2に記載の技術では、酸素および可燃性ダストを羽口から溶融炉内に供給することで、コークスの使用量を低減させている。しかも、羽口から供給される酸素量(A)と理論酸素量(B)との比率(B/A)が0.5~1.0の範囲内になるように、可燃性ダストの吹き込み量に応じて、羽口における送風条件を変化させている。これにより、コークスの使用量を低減させるようにしている。ここで、理論酸素量(B)として、羽口に供給される可燃性ダストの量および組成と、コークスの量および組成とから求められる酸素量としている。
 特許文献3に記載の技術では、コークスの代わりに、バイオマス炭化物を用いることにより、コークスの使用量を低減させるとともに、化石燃料に起因した二酸化炭素の発生量を低減させるようにしている。
特開2006-207911号公報 特開2003-056820号公報 特開2007-093069号公報
 本願発明は、溶融炉に装入される廃棄物に着目した技術であり、特許文献1~3に記載の技術とは異なる観点から、コークスの使用量を低減させるものである。
 本願第1の発明である廃棄物処理方法は、コークスを用いた廃棄物の溶融処理を行う溶融炉に装入される前の廃棄物に対して、選別処理、破砕処理および乾燥処理のうち少なくとも1つの処理を行うことを特徴とする。ここで、少なくとも1つの処理により、廃棄物種類組成のなかで、含水率が50重量%以下の廃棄物を選択し、選択された廃棄物を溶融炉に装入することができる。廃棄物全体としての含水率を5~40重量%以下とすることができる。
 一方、選別処理において、破砕・乾燥処理によって得られた破砕物に対して篩い分けを行い、篩い分けによって得られた篩上の破砕物を溶融炉に装入することができる。特に、乾燥処理を行うことによって、廃棄物種類組成の中で、含水率が50重量%以下の廃棄物を容易に選別することが可能となる。ここで、篩い分けによって得られた篩下の破砕物に対して生物処理を行うことにより、可燃性ガスを生成させ、可燃性ガスの少なくとも一部を燃焼させた際の熱エネルギを用いて、篩上の破砕物に対して乾燥処理を行い、乾燥処理された破砕物を溶融炉内に装入することができる。
 破砕処理によって得られた破砕物に対して、選別処理を行うことにより、粒径が5~300mmの破砕物を選択し、選択された破砕物を溶融炉に装入することができる。
 本願第2の発明である廃棄物処理システムは、コークスを用いて廃棄物の溶融処理を行う溶融炉と、溶融炉に装入される前の廃棄物に対して、選別処理、破砕処理および乾燥処理のうち少なくとも1つの処理を行う処理装置と、を有することを特徴とする。
 ここで、処理装置は、廃棄物種類組成のうち、含水率が50重量%以下の廃棄物を選択することができ、選択された廃棄物を溶融炉内に装入することができる。装入する廃棄物全体として、含水率が5~40重量%以下の廃棄物を選択することができる。
 処理装置は、溶融炉に装入される前の廃棄物に対して破砕・乾燥処理を行い、選別処理において、破砕処理によって得られた破砕物に対して篩い分けを行うことにより、篩上の破砕物を選択することができる。乾燥し、破砕することによって、廃棄物種類組成のうち、含水率が50重量%以下の廃棄物を容易に選択することが可能となる。
 そして、篩上の破砕物を溶融炉内に装入することができる。また、処理装置は、篩い分けによる篩下の破砕物に対して生物処理を行うことによって得られた可燃性ガスの少なくとも一部を燃焼させた際の熱エネルギを用いて、篩上の破砕物に対して乾燥処理を行うことができる。
 処理装置は、破砕処理によって得られた破砕物に対して選別処理を行うことにより、粒径が5~300mmの破砕物を選択することができる。そして、選択された破砕物を溶融炉内に装入することができる。
 溶融炉の上下方向における複数の位置に、溶融炉内に酸素含有ガスを供給するための複数の羽口を設けることができる。この場合において、複数の羽口のうち、最下段に配置された羽口から供給される酸素含有ガスにおける酸素濃度を21~50体積%とすることができる。
 本願発明によれば、溶融炉内に装入される前の廃棄物に対して、選別処理、破砕処理および乾燥処理のうち少なくとも1つの処理を行うことにより、溶融炉内におけるコークス等の塊状炭素系可燃物質を用いた廃棄物の溶融・処理を効率良く行い、コークス使用量を低減することができる。ここで、コークス等の塊状炭素系可燃物質を用いた廃棄物の処理には、廃棄物の乾燥処理、熱分解処理、燃焼処理および溶融処理が含まれる。
本発明の実施例1における廃棄物溶融設備の構成を示す概略図である。 実施例1において、廃棄物の前処理を示す概略図である。
 以下、本発明の実施例について説明する。
 本発明の実施例1における廃棄物溶融設備について、図1を用いて説明する。
 廃棄物溶融炉1(以下、単に溶融炉という)の上部には、副資材であるコークスおよび石灰石とともに、廃棄物を装入するための装入口11が設けられている。溶融炉1内では、廃棄物に対して、乾燥処理、熱分解処理、燃焼処理および溶融処理が行われる。ここで、溶融炉1内には、廃棄物充填層L1、乾留残渣層L2およびコークス充填層L3が存在している。
 廃棄物充填層L1は、廃棄物が充填されている層であり、廃棄物充填層L1では、廃棄物の乾燥処理および熱分解処理が行われ、廃棄物の熱分解処理によってガスが発生する。廃棄物の乾留が進むと、乾留された廃棄物によって乾留残渣層L2が構成される。
 コークス充填層L3は、コークスが充填された層であり、乾留残渣に対して溶融処理を行うことにより、スラグおよびメタルが生成される。生成されたスラグおよびメタルは、溶融炉1の炉底部から外部に排出される。
 なお、廃棄物に対する乾燥処理等は、溶融炉1内で連続的に行われており、上記各層L1~L3の境界は、一義的に決定されるものではない。図1では、各層L1~L3の位置関係を分かり易くするために境界を示している。
 溶融炉1には、溶融炉1内に酸素含有ガスを供給するための複数の羽口12が設けられている。酸素含有ガスとしては、大気中に存在する空気や、酸素富化空気を用いることができる。酸素富化空気は、大気に存在する空気に含まれる酸素の割合(一般的には、21%)よりも大きな割合の酸素を含む空気である。複数の羽口12は、溶融炉1の上下方向における複数の位置に設けられている。
 ここで、羽口12の数や、複数の羽口12を設ける位置は、適宜設定することができる。また、1つの羽口12を用いるだけでもよい。
 本実施例のように、複数の羽口12から酸素含有ガスを溶融炉1内に供給することにより、溶融炉1内における燃焼反応を促進させることができる。そして、燃焼に伴って発生する熱エネルギを、廃棄物の乾燥処理および熱分解処理を行うための熱源として利用することができる。
 一方、複数の羽口12のうち、最下段に配置された羽口12から供給される酸素含有ガスの酸素濃度としては、21~50体積%であることが好ましい。具体的には、最下段の羽口12に供給される酸素含有ガスとして、空気に対して、酸素濃度が21~50体積%となるように酸素を混合させることができる。このように酸素濃度を設定することにより、溶融炉1内の温度を、コークスが適切に燃焼することができる状態とすることができる。ここでいうコークスの適切な燃焼とは、コークスの過剰な燃焼や消費が行われないことを意味する。
 ここで、酸素含有ガスの酸素濃度が21体積%よりも低いと、溶融炉1内の温度(特に、コークスが充填された炉底部の温度)が低下しすぎてしまうことがある。この場合には、溶融炉1内の温度を上昇させるためにコークスが使用されてしまい、コークスの使用量が増加してしまう。一方、酸素含有ガスの酸素濃度が50体積%よりも高いと、溶融炉1内の温度(特に、コークスが充填された炉底部の温度)が過度に上昇してしまうことがある。この場合には、ソリューション・ロス反応(C+CO→2CO)が過度に進行してしまい、コークスの消費量が必要以上に増加してしまう。
 溶融炉1内で生成されたガスは、溶融炉1の上部から排出されて、ダスト捕集装置2に供給される。ダスト捕集装置2は、ガスに含まれる可燃性ダストを捕集する。ダスト捕集装置2を通過したガスは、燃焼室3において完全燃焼されることにより、燃焼排ガスとしてボイラ4に供給される。ボイラ4は、燃焼排ガスとの熱交換によって蒸気を発生させ、この蒸気は、蒸気タービン5に供給される。蒸気タービン5では、供給された蒸気を用いて動力を発生させることができる。なお、ダスト捕集装置2は、設置されない場合もある。
 ボイラ4で熱回収された後の燃焼排ガスは、集塵装置6に供給される。集塵装置6は、燃焼排ガスに含まれる塵等を、フィルタを用いて除去する。集塵装置6でフィルタ処理された燃焼排ガスは、煙突7から大気中に排出される。
 次に、溶融炉1に装入される廃棄物について、図2を用いて説明する。本実施例では、廃棄物を直接、溶融炉1に装入する前に、所定の前処理を行っている。
 廃棄物の前処理としては、選別処理S1、破砕処理S2および乾燥処理S3がある。ここで、前処理を行う前の廃棄物を「処理前廃棄物」といい、前処理を行った後の廃棄物を「処理後廃棄物」という。
 まず、選別処理S1について説明する。選別処理S1では、処理前廃棄物のうち、含水率が50重量%以下の処理前廃棄物を選別する。ここで、選別処理S1では、処理後廃棄物に、含水率が50重量%よりも高い廃棄物が含まれていないことが好ましいが、含まれていてもよい。すなわち、選別処理S1によって、含水率が50重量%よりも高い廃棄物の少なくとも一部を、処理前廃棄物から取り除くことができればよい。なお、含水率が50重量%よりも高い廃棄物としては、例えば、厨芥類(含水率が70~80重量%)がある。
 選別処理S1は、作業者の手作業によって行うこともできるし、機械的に行うこともできる。手作業による選別処理S1としては、家庭等で行われるごみの分別作業が含まれる。また、機械的な選別処理S1としては、例えば、篩い分けを行うことができ、篩い分けを行う機器としては、例えば、トロンメルや振動篩い機を用いることができる。
 篩い分けでは、処理前廃棄物に対して上記機器を用いて篩い分けを行い、篩上の廃棄物を溶融炉1内に装入する。ここで、篩い分けを行う前に、処理前廃棄物を破砕・乾燥しておくこともできる。破砕・乾燥処理によって、処理前廃棄物の篩い分けを効率良く行うことができる。また、篩い目は、上述したように含水率が50重量%よりも高い廃棄物を取り除く観点に基づいて、適宜設定することができる。
 篩い分けによって得られた篩下の廃棄物は、篩上の廃棄物と比べて、含水率が高いことが多い。例えば、動物性細塵では、含水率が49.8%であり、植物性細塵では、含水率が33.1%であることがある。また、破砕・乾燥処理を行うことで、含水率の高い厨芥類を篩下の廃棄物として選別しやすくすることもできる。
 処理前廃棄物から、篩下の廃棄物、言い換えれば、含水率の高い側の廃棄物を除去したうえで、溶融炉1に装入することにより、溶融炉1内の温度を低下させにくくすることができる。すなわち、廃棄物に含まれる水分を蒸発(乾燥)させるために用いられる熱エネルギを低減させることができ、溶融炉1内の温度が低下してしまうのを抑制することができる。
 含水率が50重量%以下である廃棄物においては、水分が、廃棄物の内部に含まれているのではなく、廃棄物の表面に付着していることが多い。そして、廃棄物の表面に水分が付着している場合には、廃棄物の水分を容易に蒸発させることができる。このため、溶融炉1内の温度を上昇させるためのコークス使用量を減らして、コークスの使用量を低減することができる。
 ここで、溶融炉1に装入される廃棄物の含水率が低いほど、溶融炉1内における廃棄物の乾燥・乾留を効率良く行うことができる。
 一方、含水率が50重量%よりも高い廃棄物は、生物処理を行うことにより、可燃性ガスを発生させることができる。生物処理としては、例えば、メタン発酵やエタノール発酵といった発酵処理がある。生物処理によって生成された可燃性ガスは、溶融炉1内にて用いることができる。
 具体的には、図1に示すダスト捕集装置2で捕集された可燃性ダストを、溶融炉1に取り付けられた羽口(不図示)から溶融炉1内に供給する構成において、可燃性ダストとともに、生物処理によって得られた可燃性ガス(少なくとも一部)を溶融炉1内に供給することができる。これにより、可燃性ダストの燃焼効率を向上させることができる。可燃性ダストの燃焼効率を向上させれば、可燃性ダストをコークスの代わりに用いることができ、溶融炉1内におけるコークスの使用量を低減することができる。
 また、可燃性ダストおよび酸素含有ガスを溶融炉1内に供給する構成において、生物処理によって得られた可燃性ガス(少なくとも一部)を燃焼させたときの熱エネルギを用いて、酸素含有ガスを予熱することができる。これにより、熱エネルギを効率良く利用して、溶融炉1内に到達する前に可燃性ダストの温度を上昇させておくことができる。可燃性ダストの温度を上昇させておけば、溶融炉1内において可燃性ダストの温度が着火温度に到達するまでの時間を短縮することができ、可燃性ダストの燃焼性を向上させることができる。これにより、コークスの代わりとして用いられる可燃性ダストの量を増加させることができるとともに、コークスの使用量を低減することができる。
 さらに、溶融炉1内に廃棄物とともにバイオマス炭化物を装入する構成において、生物処理によって得られた可燃性ガス(少なくとも一部)を燃焼させたときの熱エネルギを用いて、バイオマス炭化物を生成することができる。これにより、熱エネルギを効率良く利用して、バイオマス炭化物を生成することができる。
 ここで、バイオマスとは、すべての生物、すなわちエネルギ資源として再生可能な有機体をいい、例えば木材、パルプ廃液、紙、油が挙げられる。バイオマス炭化物を利用すれば、二酸化炭素を削減することができる。また、バイオマスとして下水汚泥、廃木材、食品廃棄物等を利用すれば、廃棄物のリサイクル利用として有効である。
 次に、破砕処理S2について説明する。
 破砕処理S2では、処理前廃棄物の少なくとも一部を破砕機によって破砕する。この破砕機としては、処理前廃棄物の種類に応じて、公知の装置を適宜、選択することができる。
 破砕処理S2によって破砕された処理後廃棄物(破砕物)を溶融炉1に装入することにより、破砕処理S2を行わない廃棄物を溶融炉1に装入する場合に比べて、溶融炉1内の高温ガスと破砕物との間における熱交換効率を向上させることができる。すなわち、溶融炉1内で発生した熱を用いて、破砕物の乾燥処理および乾留処理を効率良く行うことができる。そして、廃棄物の乾燥処理等を行う際の熱エネルギの低下を抑制することにより、溶融炉1内におけるコークスの使用量を低減することができる。また、破砕することによって、含水率が50重量%以下の廃棄物の選別を容易にすることができる。
 破砕物の粒径は、5~300[mm]であることが好ましい。ここで、破砕処理S2によって得られた破砕物に対して、少なくとも1回の篩い分けを行うことにより、粒径が5~300[mm]の破砕物を得ることができる。
 破砕物の粒径が5[mm]よりも小さいと、溶融炉1内における廃棄物充填層L1(図1参照)の密度が高くなり、廃棄物充填層L1の通気性が悪化してしまう。これにより、溶融炉1内に酸素含有ガスを供給し難くなったり、酸素含有ガスを供給するための機器(ブロワ等)の設備能力を向上させたりしなければならなくなる。また、溶融炉1内の廃棄物充填層L1において、流動化現象が発生してしまい、コークスの代替物として溶融炉1内に供給された可燃性ダストが飛散してしまうおそれもある。この場合、コークス使用量の低減は困難となる。
 破砕物の粒径が300[mm]よりも大きいと、廃棄物充填層L1において、廃棄物(破砕物)および高温ガスの間における熱交換が不十分となりやすい。熱交換が十分に行われないと、廃棄物が乾燥および乾留されないまま、溶融炉1の炉底部に配置されたコークス充填層に到達してしまうことがある。この場合には、廃棄物を乾燥・乾留させるために、コークスが余分に必要となってしまい、コークスの使用量が増加してしまう。
 ここで、溶融炉1内における廃棄物(破砕物)の処理を効率良く行う上では、破砕物の粒径を30~200[mm]とすることが、より好ましい。
 次に、乾燥処理S3について説明する。
 乾燥処理S3では、処理前廃棄物の少なくとも一部を乾燥させる。乾燥処理S3では、乾燥機を用いて積極的に廃棄物を乾燥させたり、廃棄物を自然乾燥させたりすることができる。ここで、乾燥機を用いれば、溶融炉1における廃棄物の処理効率を向上させることができる。また、自然乾燥を行えば、乾燥処理を行うためのエネルギを削減することができる。さらに、乾燥・破砕することによって、含水率が50重量%以下である廃棄物を容易に選別することができる。なお、乾燥機としては、処理前廃棄物の種類に応じて、公知の機器を適宜、選択することができる。
 乾燥処理S3では、処理後廃棄物の含水率が、処理前廃棄物の含水率よりも低ければよい。ここで、処理後廃棄物の含水率は、5~40重量%の範囲内であれば、より好ましい。
 処理後廃棄物の含水率を処理前廃棄物の含水率よりも低くすれば、溶融炉1内において、処理後廃棄物の乾燥処理等を行うための熱エネルギを低減することができ、コークスの使用量が増加してしまうのを抑制することができる。
 含水率が5重量%よりも低い廃棄物を得ようとすると、長時間において乾燥処理S3を行わなければならず、系全体の廃棄物の処理効率を向上させるうえで好ましくない。また、廃棄物の含水率が40重量%よりも高い場合には、溶融炉1内において廃棄物の乾燥処理等を行うための熱エネルギが増加し、コークスの使用量を低減させにくくなる。
 乾燥処理S3においては、生物処理によって生成された可燃性ガス(少なくとも一部)を燃焼させたときの熱を用いることができる。例えば、選別処理S1又は破砕処理S2を行うことによって、含水率が50重量%よりも高い廃棄物を取り除き、この廃棄物に対して生物処理を行うことができる。このように生物処理によって生成された可燃性ガスを用いることにより、乾燥処理S3の熱エネルギを発生させるための専用の燃料を用いる必要が無くなる。
 上述した選別処理S1、破砕処理S2および乾燥処理S3のうち、いずれか1つの処理を処理前廃棄物に対して行えばよい。ここで、複数の処理を組み合わせて行えば、各処理の相乗効果によって、溶融炉1内における廃棄物の処理を効率良く行い、コークス使用量を低減することができる。また、複数の処理を行う場合において、これらの処理の順序は、適宜設定することができる。
 また、溶融炉1に装入される廃棄物が、熱分解速度が高かったり、含水率が50重量%以下であったりすれば、溶融炉1内における廃棄物の乾燥速度を早めたり、溶融炉1内における温度低下を抑制したりすることができる。これにより、コークスの使用量を低減することができる。この廃棄物としては、例えば、紙、プラスチック、草、木、竹といった繊維、金属、ガラス、陶磁器、ゴム、革、シュレッダーダストといったものがある。これらの廃棄物は、上述した選別処理S1、破砕処理S2および乾燥処理S3によって選別することができる。
1:溶融炉
11:装入口
12:羽口
2:ダスト捕集装置
3:燃焼室
4:ボイラ
5:蒸気タービン
6:集塵装置
7:煙突
S1:選別処理
S2:破砕処理
S3:乾燥処理

Claims (14)

  1.  コークスを用いた廃棄物の溶融処理を行う溶融炉に装入される前の廃棄物に対して、選別処理、破砕処理および乾燥処理のうち少なくとも1つの処理を行うことを特徴とする廃棄物処理方法。
  2.  前記少なくとも1つの処理を行うことにより、廃棄物種類組成のうち、含水率が50重量%以下の廃棄物を選択し、選択された廃棄物を前記溶融炉に装入することを特徴とする請求項1に記載の廃棄物処理方法。
  3.  前記少なくとも1つの処理を行うことにより、廃棄物全体の含水率を5~40重量%以下とし、該廃棄物を前記溶融炉に装入することを特徴とする請求項2に記載の廃棄物処理方法。
  4.  前記溶融炉に装入される前の廃棄物に対して前記破砕処理を行い、
     前記選別処理において、前記破砕処理によって得られた破砕物に対して篩い分けを行い、
     前記篩い分けによって得られた篩上の破砕物を前記溶融炉に装入することを特徴とする請求項1から3のいずれか1つに記載の廃棄物処理方法。
  5.  前記篩い分けによって得られた篩下の破砕物に対して生物処理を行うことにより、可燃性ガスを生成し、
     前記可燃性ガスの少なくとも一部を燃焼させた際の熱エネルギを用いて、前記篩上の破砕物に対して前記乾燥処理を行い、
     前記乾燥処理された破砕物を前記溶融炉内に装入することを特徴とする請求項4に記載の廃棄物処理方法。
  6.  前記破砕処理によって得られた破砕物に対して、前記選別処理を行うことにより、粒径が5~300mmの破砕物を選択し、選択された破砕物を前記溶融炉に装入することを特徴とする請求項1から5のいずれか1つに記載の廃棄物処理方法。
  7.  コークスを用いて廃棄物の溶融処理を行う溶融炉と、
     前記溶融炉に装入される前の廃棄物に対して、選別処理、破砕処理および乾燥処理のうち少なくとも1つの処理を行う処理装置と、
    を有することを特徴とする廃棄物処理システム。
  8.  前記処理装置は、廃棄物種類組成のうち、含水率が50重量%以下の廃棄物を選択し、前記溶融炉へ装入することを特徴とする請求項7に記載の廃棄物処理システム。
  9.  前記処理装置は、前記溶融炉に装入される廃棄物全体の含水率を5~40重量%以下の廃棄物とすることを特徴とする請求項8又は9に記載の廃棄物処理システム。
  10.  前記処理装置は、
     前記溶融炉に装入される前の廃棄物に対して前記破砕処理を行い、
     前記選別処理において、前記破砕処理によって得られた破砕物に対して篩い分けを行うことにより、前記溶融炉に装入される篩上の破砕物を選択することを特徴とする請求項7から9のいずれか1つに記載の廃棄物処理システム。
  11.  前記処理装置は、前記篩い分けによる篩下の破砕物に対して生物処理を行うことによって得られた可燃性ガスの少なくとも一部を燃焼させた際の熱エネルギを用いて、前記篩上の破砕物に対して前記乾燥処理を行うことを特徴とする請求項10に記載の廃棄物処理システム。
  12.  前記処理装置は、前記破砕処理によって得られた破砕物に対して前記選別処理を行うことにより、前記溶融炉に装入される、粒径が5~300mmの破砕物を選択することを特徴とする請求項7から11のいずれか1つに記載の廃棄物処理システム。
  13.  前記溶融炉は、前記溶融炉の上下方向における複数の位置に設けられ、前記溶融炉内に酸素含有ガスを供給するための複数の羽口を有していることを特徴とする請求項7から12のいずれか1つに記載の廃棄物処理システム。
  14.  前記複数の羽口のうち、最下段に配置された羽口から供給される酸素含有ガスにおける酸素濃度が21~50体積%であることを特徴とする請求項13に記載の廃棄物処理システム。
     
PCT/JP2009/004347 2009-09-03 2009-09-03 廃棄物処理方法 WO2011027394A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011529692A JPWO2011027394A1 (ja) 2009-09-03 2009-09-03 廃棄物処理方法
EP09848925A EP2474783A1 (en) 2009-09-03 2009-09-03 Waste treatment method
PCT/JP2009/004347 WO2011027394A1 (ja) 2009-09-03 2009-09-03 廃棄物処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004347 WO2011027394A1 (ja) 2009-09-03 2009-09-03 廃棄物処理方法

Publications (1)

Publication Number Publication Date
WO2011027394A1 true WO2011027394A1 (ja) 2011-03-10

Family

ID=43648956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004347 WO2011027394A1 (ja) 2009-09-03 2009-09-03 廃棄物処理方法

Country Status (3)

Country Link
EP (1) EP2474783A1 (ja)
JP (1) JPWO2011027394A1 (ja)
WO (1) WO2011027394A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563659A (zh) * 2012-03-02 2012-07-11 唐伟民 垃圾焚烧发电工艺及其设备
CN106016281A (zh) * 2016-06-16 2016-10-12 安庆市宇控电子科技有限公司 一种废物破碎装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601688B2 (ja) * 2011-01-13 2014-10-08 新日鉄住金エンジニアリング株式会社 シャフト炉式ガス化溶融炉における吹き抜け解消方法
JP5811501B2 (ja) * 2011-11-17 2015-11-11 Jfeエンジニアリング株式会社 廃棄物溶融処理方法
CN110899082B (zh) * 2019-11-19 2021-03-26 四川兴华路通再生资源科技有限公司 一种固体建筑垃圾堆放运输系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390668A (en) * 1977-01-20 1978-08-09 Ebara Infilco Co Ltd High-temperature melting treatment method for city garbage
JPS5552381A (en) * 1978-10-11 1980-04-16 Agency Of Ind Science & Technol Energy recovery from solid municipal wastes
JPH0694228A (ja) * 1992-09-16 1994-04-05 Takenaka Komuten Co Ltd 炭化式ゴミ焼却装置
JPH07119948A (ja) * 1993-10-20 1995-05-12 Hitachi Ltd 排水・廃棄物統合処理システム
JPH11153309A (ja) * 1997-11-20 1999-06-08 Nippon Steel Corp 廃棄物溶融処理方法及び廃棄物溶融処理装置
JP2003056820A (ja) 2001-08-20 2003-02-26 Nippon Steel Corp 廃棄物溶融炉への可燃性ダストの吹き込み方法
JP2005241054A (ja) * 2004-02-24 2005-09-08 Nippon Steel Corp 粉状バイオマスを利用する廃棄物溶融処理方法
JP2006207911A (ja) 2005-01-27 2006-08-10 Nippon Steel Corp 廃棄物溶融炉の操業方法
JP2006266537A (ja) * 2005-03-22 2006-10-05 Hitachi Metals Ltd 塵芥と汚泥とを合わせて処理する廃棄物処理設備
JP2007093069A (ja) 2005-09-28 2007-04-12 Nippon Steel Engineering Co Ltd 廃棄物溶融炉の操業方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729723B2 (ja) * 2000-10-23 2005-12-21 日立造船株式会社 廃棄物の前処理装置
JP2004089773A (ja) * 2002-08-29 2004-03-25 Sumitomo Heavy Ind Ltd 廃棄物処理設備
JP2009028672A (ja) * 2007-07-30 2009-02-12 Nippon Steel Engineering Co Ltd 高含水廃棄物の処理方法および処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390668A (en) * 1977-01-20 1978-08-09 Ebara Infilco Co Ltd High-temperature melting treatment method for city garbage
JPS5552381A (en) * 1978-10-11 1980-04-16 Agency Of Ind Science & Technol Energy recovery from solid municipal wastes
JPH0694228A (ja) * 1992-09-16 1994-04-05 Takenaka Komuten Co Ltd 炭化式ゴミ焼却装置
JPH07119948A (ja) * 1993-10-20 1995-05-12 Hitachi Ltd 排水・廃棄物統合処理システム
JPH11153309A (ja) * 1997-11-20 1999-06-08 Nippon Steel Corp 廃棄物溶融処理方法及び廃棄物溶融処理装置
JP2003056820A (ja) 2001-08-20 2003-02-26 Nippon Steel Corp 廃棄物溶融炉への可燃性ダストの吹き込み方法
JP2005241054A (ja) * 2004-02-24 2005-09-08 Nippon Steel Corp 粉状バイオマスを利用する廃棄物溶融処理方法
JP2006207911A (ja) 2005-01-27 2006-08-10 Nippon Steel Corp 廃棄物溶融炉の操業方法
JP2006266537A (ja) * 2005-03-22 2006-10-05 Hitachi Metals Ltd 塵芥と汚泥とを合わせて処理する廃棄物処理設備
JP2007093069A (ja) 2005-09-28 2007-04-12 Nippon Steel Engineering Co Ltd 廃棄物溶融炉の操業方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563659A (zh) * 2012-03-02 2012-07-11 唐伟民 垃圾焚烧发电工艺及其设备
CN102563659B (zh) * 2012-03-02 2015-02-25 唐伟民 垃圾焚烧发电工艺及其设备
CN106016281A (zh) * 2016-06-16 2016-10-12 安庆市宇控电子科技有限公司 一种废物破碎装置
CN106016281B (zh) * 2016-06-16 2018-09-21 嘉兴智慧园区营运管理有限公司 一种废物破碎装置

Also Published As

Publication number Publication date
EP2474783A1 (en) 2012-07-11
JPWO2011027394A1 (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
JP4995812B2 (ja) 熱分解及び関連プラントによる廃棄物処理のための統合プロセス
JP5501644B2 (ja) バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置
JP2002543268A (ja) 木材残渣を炭化して活性炭を製造する方法
EP2716970B1 (en) Waste-melting method
CN101073767A (zh) 一种饱和活性焦处理方法
JP2010242035A (ja) バイオマス炭の製造方法
CN106433799A (zh) 处理生活垃圾的系统和方法
WO2011027394A1 (ja) 廃棄物処理方法
WO2008040396A1 (en) Renewable energy recovery from msw and other wastes
CN109590312A (zh) 一种废弃有机物绝氧裂解工艺及其设备
US9045696B2 (en) System and method for purifying solid carboniferous fuels, using a rotary chamber, prior to chemical looping combustion
CN101513640A (zh) 锌镉超积累植物无害化固定床热解系统
AU2011253788B2 (en) Integrated process for waste treatment by pyrolysis and related plant
CA3173561C (en) Organic waste carbonization system
JP2008163280A (ja) 塩素含有有機廃棄物の処理方法及び処理装置
CN203669943U (zh) 一种利用废固节能发电的装置
CN206143142U (zh) 处理生活垃圾的系统
CN208600439U (zh) 生活垃圾发电系统
CN101781594A (zh) 一种将固体垃圾转变为燃料或能量的方法及装置
CN109575968A (zh) 一种废弃有机物绝氧裂解碳化工艺及其设备
RU2718051C1 (ru) Способ окислительной торрефикации биоотходов в кипящем слое
CN104593023B (zh) 将从建筑垃圾回收的生物质进行气化能源转化的工艺与装置
KR101395886B1 (ko) 하수슬러지를 이용한 재생골재 생산방법
US9487721B2 (en) Refined torrefied biomass
CN207661783U (zh) 一种小型垃圾气炭互补炭化燃烧炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529692

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009848925

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE