WO2011011101A1 - System and method for determining sigma of a clinical diagnostic process - Google Patents
System and method for determining sigma of a clinical diagnostic process Download PDFInfo
- Publication number
- WO2011011101A1 WO2011011101A1 PCT/US2010/030702 US2010030702W WO2011011101A1 WO 2011011101 A1 WO2011011101 A1 WO 2011011101A1 US 2010030702 W US2010030702 W US 2010030702W WO 2011011101 A1 WO2011011101 A1 WO 2011011101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- specimen data
- patient
- sigma
- standard deviation
- data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000002405 diagnostic procedure Methods 0.000 title claims abstract description 73
- 239000012491 analyte Substances 0.000 claims abstract description 50
- 230000008569 process Effects 0.000 claims description 66
- 238000012935 Averaging Methods 0.000 claims 10
- 238000011156 evaluation Methods 0.000 description 7
- 238000003324 Six Sigma (6σ) Methods 0.000 description 6
- 239000013610 patient sample Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000003908 quality control method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000013213 extrapolation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000012774 diagnostic algorithm Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000012332 laboratory investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/40—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
Definitions
- the present invention relates to clinical diagnostic processes, and more particularly to a system and method of determining a sigma-mctric for such processes.
- the sigma-mctric was first introduced by Motorola as part of its Six Sigma Quality Management program. While initially applied to manufacturing processes to reduce defects and improve quality, the six sigma principles are today widely used throughout various aspects of manufacturing and business to improve processes.
- the sigma-mctric defines how many sigmas (i.e., standard deviations) of deviation or variation a process can experience and still be within its allowable tolerance limits. The higher the sigma, the more robust a process is in the presence of error. By definition, a six sigma process is still within specification even with six standard deviations of variation.
- the sigma-metric allows quality comparison of widely divergent processes.
- Six Sigma Quality Design & Control (Wl:Wcstgard QC, Inc., 2001 , pg 29)
- the sigma-metric of various processes arc: Airline Baggage Handling - 4.2 sigma; Airline Passenger Survival - 6.42 sigma; Hematology Specimen Acceptability - 4.15 sigma; and Firestone Tires - 5 sigma.
- Dr. Westgard introduced the six sigma concepts to the clinical diagnostic community with his essay Six Sigma Quality Management and Desirable Laboratory Precision (2003. Westgard QC, www.westgard.com/essav35.htm').
- the present invention addresses the shortcomings of the prior methods of determining and displaying numerous sigmas for the various concentrations encountered in a clinical diagnostic process.
- the system and method of the present invention allow for determining a single sigma for the process that reflects what is actually experienced by patients getting tested with the clinical process.
- the result is a single sigma that is applicable to the clinical process that accurately describes the clinical process' actual, in use, error tolerance.
- Quality control design processes using the sigma output from this invention will have a greater degree of accuracy and control than those that use conventional means.
- Exemplary systems and methods for determining a sigma of a clinical diagnostic process and/or processes are disclosed.
- specimen data are collected from a plurality of laboratory instruments.
- the specimen data are evaluated to determine a concentration and an analytical standard deviation for each specimen.
- One or more clinical diagnostic process are run and patient analyte values are acquired, with a standard deviation assigned to each patient analyte value based on the standard deviation of specimen data having a corresponding concentration.
- a single sigma-metric is computed based on the patient analyte assigned standard deviations, the sigma-metric representing the sigma of the clinical diagnostic process.
- the computed sigma-metric is reported to a user or laboratory manager for determination of overall system accuracy and usability.
- the single sigma-metric allows evaluation of multiple laboratory instruments and multiple clinical diagnostic processes (and combinations thereof) to be performed, providing a user or laboratory manager with a single simple metric by which to evaluate the performance of a clinical diagnostic process. Unlike the evaluations of the prior art, there is no uncertainty about whether a particular metric relates to an instrument, a process, or a laboratory, and there is no uncertainty about how or whether those isolated metrics can be combined or interpreted together.
- FJG. 1 depicts a block diagram of a client computer system configured with an application module for determining a sigma of a clinical diagnostic process according to a first exemplary embodiment of the present invention.
- FlG. 2 depicts a block diagram of a network arrangement for executing a shared application and/or communicating data and commands between multiple computing systems and devices according to an exemplary embodiment of the present invention.
- FlG. 3 depicts a block diagram of a process for determining a sigma-mctric of a clinical diagnostic process according to an exemplary embodiment of the present invention.
- FlG. 4 depicts a block diagram of a process for determining a sigma-metric for a plurality of clinical diagnostic processes according to an exemplary embodiment of the present invention.
- FIGS 1-4 A system and method for determining sigma of a clinical diagnostic process in accordance with exemplary embodiments of the present invention are depicted in FIGS 1-4. While the invention will be described in detail hereinbclow with reference to the depicted exemplary embodiments and alternative embodiments, it should be understood that the invention is not limited to the specific configurations shown and described in these embodiments. Rather, one skilled in the art will appreciate that a variety of configurations may be implemented in accordance with the present invention.
- Sigma and “sigma-metric” are used herein, with “sigma” generally referring to the well-known sigma quality control concept, and “sigma-mctric” referring more specifically to a quantity calculated by the system and method for a clinical diagnostic process as described herein.
- a system client computer system e.g., a clinical diagnostic instrument 10 is configured with an application module 20 operable to perform testing on various analytes, such as patient specimens or quality control specimens.
- Application module 20 may execute any sequence of diagnostic steps or one or more diagnostic algorithms in conjunction with implementing any clinical diagnostic process, such as a hematology analyzer or any other clinical diagnostic or analytical process.
- a plurality of client computer systems 10 may be arranged in a network configuration for executing a shared application and/or for communicating data and commands between multiple computing systems and devices according to an exemplary embodiment of the present invention.
- client computer system 10 may operate as a stand-alone system such as a diagnostic instrument device or laboratory instrument, or it may be connected to a server system 30 and/or other client systems 10 and/or other devices/servers 32 over a network 34.
- client system 10 may include a desktop personal computer, a workstation, a laptop computer, a handheld mobile device, or any other computing device capable of executing the application module 20.
- client system 10 is configured to interface directly or indirectly with server system 30 over network 34.
- Network 34 may be any type of network known in the art, such as a local area network (LAN), a wide area network (WAN), the Internet, an ad- hoc network, or any other type of network.
- Client system 10 may also communicate directly or indirectly with one or more other client systems 10 and devices/servers 32 over network 34.
- Client system 10 preferably executes a web browsing program, such as Microsoft's Internet Explorer, Netscape Navigator, Opera or the like, allowing a user of client system 10 to access, process and view information and pages available to it from server system 30 or other server systems over network 34.
- Client system 10 also preferably includes one or more user interface devices 36, such as a keyboard, a mouse, a touch screen, graphical tablet, pen or the like, for interacting with a graphical user interface (GUI) provided on a display 38.
- GUI graphical user interface
- Display 38 is preferably a monitor or LCD screen, but may be any type of display device known in the art.
- application module 20 executes entirely on client system 10 (e.g., stand alone), however, in alternative embodiments the application module may be executed in a networked environment such as a client-server, peer-to-peer, or multi-computer networked environment where portions of the application code may be executed on different portions of the network system or where data and commands are exchanged between various components or devices executing portions of the application code.
- a networked environment such as a client-server, peer-to-peer, or multi-computer networked environment where portions of the application code may be executed on different portions of the network system or where data and commands are exchanged between various components or devices executing portions of the application code.
- interconnection via a LAN is preferred, however, it should be understood that other networks can be used, such as the Internet or any intranet, extranet, virtual private network (VPN), non-TCP/IP based network, WAN or the like.
- VPN virtual private network
- a LAN 33 interconnects multiple devices to a client system 10.
- a network is exemplary of a multiple instrument environment 35, such as a laboratory or hospital, where multiple instruments, devices, or servers are connected to a client system 10 in a Laboratory Information System (LIS) arrangement.
- LAN 33 may include wireless and wired links and nodes, and use various communication protocols as are well known in the art.
- server system 30 acts as a central computer system that executes a majority of, or all, of the application module code, with each client system 10 acting as a terminal or log-in point for a user.
- client system 10 may reside in a laboratory or a hospital multiple instrument environment 35 as part of a LIS, while server system 30 may reside in a geographically remote location.
- the application module code is preferably executed entirely on server system 30, with data and commands sent between client system 10 over network 34.
- client system 10 resides in a laboratory, client system 10 would provide the required patient data and/or test results/data, and other information from a local database and local instruments and devices for processing by server system 30, which would then provide processing results back to client system 10, or to other computer systems.
- the application code may execute entirely on a single system or portions may execute on both systems 10 and 30 (or on multiple systems in other exemplary embodiments) as desired for computational efficiency purposes.
- a client system 10 in a multiple instrument environment 35 may execute a portion or all of the application module code.
- client system 10 and some or all of its components are operator configurable through operation of the application module 20, which includes computer code executable on a central processing unit 40 coupled to other components over one or more busses 42 as is well known in the art.
- Computer code including instructions for operating and configuring client system 10 (or other systems on which the application module is executing, such as server system 30 of FIG.
- An appropriate media drive 44 is provided for receiving and reading documents, data and code from such a computer-readable medium.
- the entire program code of module 20, or portions thereof, or related commands such as Active X commands may be transmitted and downloaded from a software source, such as server system 30, to client system 10 or from another server system or computing device to client system I O over the Internet as is well known, or transmitted over any other conventional network connection (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g.. TCP/IP, HTTP, HTITS, Ethernet, etc.) as are also well known.
- computer code for implementing aspects of the present invention can be implemented in a variety of coding languages such as C, C++, Java, Visual Basic, and others, or any scripting language, such as VBScript, JavaScript, Perl or markup languages such as XML, that can be executed on client system 10 and/or in a client server or networked arrangement.
- a variety of languages can be used in the external and internal storage of data, e.g., patient results, device and instrument information (e.g., IDs, date/time stamps, calibration information, temperature information, etc.), and other information, according to aspects of the present invention.
- application module 20 includes instructions for monitoring and controlling clinical diagnostic processes, as well as for providing user interface configuration capabilities, as described herein.
- Application module 20 is preferably downloaded and stored on media hard drive 44 (or other memory such as a local or attached RAM or ROM), although application module 20 can also be provided on any software storage medium such as a floppy disk, CD, DVD, etc. as discussed above.
- application module 20 includes various software modules for processing data content.
- a communication interface module 22 is provided for communicating text and/or other data to a display driver for rendering images (e.g., GUI images) on display 38, and for communicating with device/server 32 and/or other computers or server systems in network embodiments.
- a user interface module 24 is provided for receiving user input, commands, and signals from user interface device 36.
- Communication interface module 22 preferably includes a browser application, which may be the same browser as the default browser configured on client system 10 as described previously, or any other browser or user interface application. Alternatively, interface module 22 includes the functionality to interface with a browser application executing on client system 10.
- Application module 20 also includes a clinical diagnostic process module 28 that performs instructions to process data according to one or more predefined clinical diagnostic processes.
- the clinical diagnostic process may implement a complete hematology analyzer, a specific glucose analyzer, or any other clinical analytical or diagnostic process, or any variations or combinations of those or other processes.
- application module 20 may include other modules operable to perform other clinical diagnostic processes or analyses or quality control processes.
- application module 20 further includes a Determine Sigma module 26 operable to calculate a sigma value or sigma-metric for any or all of the clinical diagnostic process operating in the application module.
- Determine Sigma module 26 is shown as operating in conjunction with the application module 20 and in conjunction with the clinical diagnostic process 28 (or processes) executing within that module, it should be understood that the determine sigma module is not necessarily itself a part of the application process, but may operate independently of that process. Thus, while the module embodying the determine sigma process of the present invention may be included in an instrument or system implementing a clinical diagnostic process and may execute on a system in conjunction with that process (as depicted in the exemplary system of FIG.
- the determine sigma process of the present invention may also be used or implemented in conjunction with other clinical diagnostic processes or in a stand-alone configuration, that is contemplated by and within the scope of the present invention.
- Compiled statistics (e.g., device and instrument information), patient information, and other information are preferably stored in database 46, which may reside in memory 48, in a memory card or other memory or storage system such as an attached storage subsystem RAID drive system, for retrieval by the clinical diagnostic process module 28, the determine sigma module 26, and other parts of application module 20. It should be appreciated that application module 20, or portions thereof, as well as appropriate data can be downloaded to and executed on client system 10.
- determine sigma module 26 The operation of the determine sigma module 26 will now be described with particular reference to FIGS 3 and 4, depicting exemplary embodiments of the system and process for use with an individual clinical diagnostic process or with a group of clinical diagnostic processes, such as a multi-laboratory environment.
- the determine sigma process acquires specimens for precision analysis.
- the specimens may be commercial control materials or may be pooled patient specimens, in either case the sample volumes of the specimens are preferably large enough to allow a precision evaluation to be conducted. Because the accuracy of the calculated sigma is related to the number of samples of each specimen and the range of the specimen concentrations evaluated, most preferably the specimen concentrations cover the entire analytical range of the process being evaluated, and the specimens are repeatedly measured over an extended period of time.
- the analytical precision of the repeatedly measured specimens may be determined for each laboratory instrument by various protocols, any of which may be used in conjunction with the present invention.
- one recommended protocol is described in the publication: Estimates of Within-Device (or Within-Laboratory) Precision from Evaluation of Precision Performance of Quantitative Methods; Approved Guideline - (Second Edition, ISBN 1 -56238-542-9).
- the acquired specimen data are evaluated.
- ⁇ t blocks 102 and 104 a series comprising N samples of the acquired specimen data are evaluated for each laboratory instrument in order to estimate the mean and standard deviation (SD) at each specimen concentration.
- SDs standard deviations
- the analytical standard deviations (SDs) for the process at each concentration provided from the evaluation are stored as a set of tuples each comprising a concentration and a corresponding standard deviation (e.g., as (concentration, SD) ), with the concentrations preferably spanning the analytical range of the process and the SDs corresponding to an estimate of the analytical imprecision of the process at the corresponding concentration.
- the calculated analytical standard deviations are applied to a representative sample of patient analyte values.
- the patient analyte values are acquired.
- the patient values are preferably taken over an extended period of time, other less- tested analytes may require data collected over a longer timeframe.
- the patient values reflect the distribution of patient analyte concentrations normally encountered by the clinical diagnostic process.
- the system and method of determining sigma of a clinical diagnostic process of the present invention may be used in conjunction with any clinical diagnostic process.
- the patient values used at block 106 are derived from the clinical diagnostic process for which sigma is being calculated. However, if patient values for that specific clinical diagnostic process are not available then a reference population may be substituted as an estimate of actual patient population that the clinical process evaluates.
- the frequency of occurrence of individual analyte concentrations encountered by the clinical diagnostic process are compiled.
- the concentration of that patient sample is compared to the concentrations in the specimen tuples (concentration, SD) for the laboratory instrument on which the patient value was obtained.
- concentration concentration
- the corresponding SD from the tuple is assigned to that patient sample.
- a direct match may be considered either an exact match of concentrations, or a match within a predetermined threshold (e.g., if the patient concentration is within 0.1 percent of the concentration in the specimen data).
- the SDs for the patient data are calculated by interpolating or extrapolating from the SDs in the tuples as follows:
- a SD is assigned based on cither a direct match with the specimen data concentrations, by interpolating between specimen values, or by extrapolating from specimen values. It should be understood that while a simple piecewise linear interpolation function and lower limit truncation function have been described, other interpolation and extrapolation schemes may of course be implemented in accordance with the present invention.
- each patient value has thus been assigned a SD, with a set of (concentration, SD) tuples representing the SD for each concentration of patient data in a manner similar to that of the specimen data as discussed above.
- Total Allowable Error (TE A ) goals for a given analyte are the limits of allowable error (expressed in concentration units), defined over the analytical range of the clinical diagnostic process, typically set by a laboratory director or manager. While there are general considerations and guidelines to determine a Total Allowable Error for an analyte, there are no universal or standard total allowable error specifications available. Thus, any given laboratory, group of laboratories, or instruments within a laboratory may use a different TE A value as determined by the laboratory director. Some guidelines for determining a total allowable error are discussed in the Sweden Consensus Conference on Quality Specifications in Laboratory Medicine, 25-26 April 1999, and in a consensus statement (Consensus Agreement: D. Kenny, CG. Fraser, P.
- a sigma value for each patient value is estimated by computing the ratio of the Total Allowable Error (TE A ) goal for each patient value divided by the SD for the patient value.
- the estimated sigma-metric for the clinical diagnostic process is calculated by adding the sigma values for each of the patient values and dividing that sum by the total number of patient values.
- bias is often an issue in laboratory instruments and laboratory testing, the calculation of the sigma-metric can also account for bias by subtracting the bias at each patient value from the Total Allowable Error for the patient value before dividing by the SD for the patient value.
- bias can be estimated from proficiency testing program, inter-laboratory quality control programs, or between test methods using patient samples as described in Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline— Second Edition .(CLSf document EP9-A2, ISBN 1-56238-472-4). - I l -
- the sigma-metric as just calculated thus provides a single sigma value representative of the sigma of the entire clinical diagnostic process.
- the calculated sigma-metric is reported to a laboratory manager and/or other user(s) of the laboratory instruments who can thus make a determination of the quality or validity of the entire clinical diagnostic process.
- a high sigma-metric generally indicates that a process is working well and there does not need to be much effort expended to ensure that it's functioning correctly.
- a low sigma may indicate that the process is problematic and may not really be providing useful results. Prior to the present invention, there was no effective way to make such a determination.
- FIG. 4 a method for determining sigma for a group of clinical diagnostic processes running on a plurality of laboratory instruments in a plurality of laboratories is depicted generally by numeral 26'.
- the processes and laboratories may be geographically dispersed, with communication between the instruments and computer systems as previously described.
- Block 26' corresponds generally to the determine sigma module 26 as described above for a single clinical diagnostic process.
- three separate clinical diagnostic processes are designated generally as a, b, and c.
- the steps of determining a sigma-metric for all of the processes is initially the same in all three paths, with the paths combining once the standard deviations are assigned to the patient analyte values as will now be described. It should be apparent that the general flow and steps in each path (i.e., for each clinical diagnostic process) are substantially the same as described above for a single clinical diagnostic process, thus reference to the previous description will facilitate the explanation of this embodiment.
- specimens for each process are acquired for analysis.
- the specimens may be commercial control materials or may be patient specimens, in either case the sample volumes of the specimens are preferably large enough to allow a precision evaluation to be conducted. Because the accuracy of the calculated sigma is related to the number of samples of each specimen and the range of the specimen concentrations evaluated, most preferably, the specimen concentrations cover the entire analytical range of the process being evaluated and the specimens are repeatedly measured over an extended period of time, with the analytical precision of the specimens being determined as previously described.
- the acquired specimen data are evaluated.
- a series comprising N samples of the acquired specimen data are evaluated for each laboratory instrument in order to estimate the mean and standard deviation (SD) at each specimen concentration.
- SDs standard deviations
- the analytical standard deviations (SDs) for the process at each concentration provided from the evaluation are stored as a set of tuples each comprising a concentration and a corresponding standard deviation (e.g., as: (concentration, SD) ), with the concentrations preferably spanning the analytical range of the process and the SDs corresponding to an estimate of the analytical imprecision of the process at the corresponding concentration.
- the process paths proceed to blocks 206a, 206b, and 206c, where the calculated analytical standard deviations are applied to a representative sample of patient analyte values.
- the patient analyte values are acquired.
- the patient values are preferably taken over an extended period of time, other less-tested analytes may require data collected over a longer timeframe.
- the patient values reflect the distribution of patient analyte concentrations normally encountered by the clinical diagnostic process and the relative distribution of patient specimens among the plurality of laboratory instruments and laboratories.
- the system and method of determining sigma of a clinical diagnostic process of the present invention may be used in conjunction with any clinical diagnostic process.
- the patient values used at block 206a, b, c are derived from the clinical diagnostic process for which sigma is being calculated. However, if patient values for that specific clinical diagnostic process are not available then a reference population may be substituted as an estimate of actual patient population that the clinical process evaluates.
- the frequency of occurrence of individual analyte concentrations encountered by the clinical diagnostic process are compiled.
- the concentration of that patient sample is compared to the concentrations in the specimen tuples (concentration, SD) for the laboratory instrument on which the patient value was obtained.
- concentration concentration
- the corresponding SD from the tuple is assigned to that patient sample.
- a direct match may be considered either an exact match of concentrations, or a match within a predetermined threshold (e.g., if the patient concentration is within 0.1 percent of the concentration in the specimen data).
- the SDs for the patient data are calculated by interpolating or extrapolating from the
- a SD is assigned based on either a direct match with the specimen data concentrations, by interpolating between specimen values, or by extrapolating from specimen values. It should be understood that while a simple piecewise linear interpolation function and lower limit truncation function have been described, other interpolation and extrapolation schemes may of course be implemented in accordance with the present invention.
- each patient value has thus been assigned a SD, with a set of (concentration, SD) tuples representing the SD for each concentration of patient data in a manner similar to that of the specimen data as discussed above.
- a sigma value for each patient value is estimated by computing the ratio of the Total Allowable Error (TE A ) goal for each patient value divided by the SD for the patient value.
- bias can be accounted for by subtracting the bias from the Total Allowable Error before dividing by SD.
- the estimated sigma-metric for the combined clinical diagnostic processes is calculated by adding the sigma values for each of the patient values and dividing that sum by the total number of patient values in the entire population of patient values.
- the sigma-metric as just calculated thus provides a single sigma value representative of the sigma of three separate clinical diagnostic processes.
- the calculated sigma-metric is reported to a laboratory manager and/or other user(s) of the laboratory instruments who can thus make a determination of the quality or validity of the entire clinical diagnostic processes. It should be apparent that while three separate clinical diagnostic processes are depicted in the exemplary embodiment of FIG. 4, the present invention may be applied to any number of such processes, and is not limited by the exemplary embodiment described. It should also be apparent that the features described herein and limitations in the claims hereto may permissibly be combined or arranged in various combinations and embodiments, such embodiments are contemplated by the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012521633A JP5681712B2 (en) | 2009-07-24 | 2010-04-12 | Computer-implemented method and system for determining the sigma of a clinical diagnostic process |
EP10802578.4A EP2457091B1 (en) | 2009-07-24 | 2010-04-12 | System and method for determining sigma of a clinical diagnostic process |
CN201080032297.XA CN102472743B (en) | 2009-07-24 | 2010-04-12 | System and method for determining sigma of a clinical diagnostic process |
AU2010274948A AU2010274948B2 (en) | 2009-07-24 | 2010-04-12 | System and method for determining sigma of a clinical diagnostic process |
CA2759416A CA2759416C (en) | 2009-07-24 | 2010-04-12 | System and method for determining sigma of a clinical diagnostic process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/508,718 US8589081B2 (en) | 2009-07-24 | 2009-07-24 | System and method to determine sigma of a clinical diagnostic process |
US12/508,718 | 2009-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011011101A1 true WO2011011101A1 (en) | 2011-01-27 |
Family
ID=43498041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/030702 WO2011011101A1 (en) | 2009-07-24 | 2010-04-12 | System and method for determining sigma of a clinical diagnostic process |
Country Status (7)
Country | Link |
---|---|
US (1) | US8589081B2 (en) |
EP (1) | EP2457091B1 (en) |
JP (1) | JP5681712B2 (en) |
CN (1) | CN102472743B (en) |
AU (1) | AU2010274948B2 (en) |
CA (1) | CA2759416C (en) |
WO (1) | WO2011011101A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110954465A (en) * | 2018-09-26 | 2020-04-03 | 希森美康株式会社 | Flow cytometer, data transmission method, and information processing system |
WO2022058404A1 (en) | 2020-09-18 | 2022-03-24 | Umicore Ag & Co. Kg | Scr catalyst compositions and scr catalytic articles comprising said catalyst compositions |
EP4063003A1 (en) | 2021-03-23 | 2022-09-28 | UMICORE AG & Co. KG | Filter for the aftertreatment of exhaust gases of internal combustion engines |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001047434A2 (en) * | 2000-02-10 | 2001-07-05 | Potencia Medical Ag | Mechanical impotence treatment apparatus |
CN102636732B (en) * | 2012-04-17 | 2014-04-16 | 山西太钢不锈钢股份有限公司 | Method for searching for 10kV power grid grounding based on six-sigma tool |
WO2015006295A1 (en) * | 2013-07-08 | 2015-01-15 | Edwards Lifesciences Corporation | Determination of a hemodynamic parameter |
US20160012191A1 (en) * | 2014-07-10 | 2016-01-14 | Bio-Rad Laboratories, Inc, | System and method for spot checking small out-of-control conditions in a clinical diagnostic process |
US20160034653A1 (en) * | 2014-07-31 | 2016-02-04 | Bio-Rad Laboratories, Inc. | System and method for recovering from a large out-of-control condition in a clinical diagnostic process |
GB2594054A (en) | 2020-04-08 | 2021-10-20 | Martel Instr Ltd | Data collection device |
WO2023172935A2 (en) * | 2022-03-09 | 2023-09-14 | Bio-Rad Laboratories, Inc. | System and method for dynamically adjusting analytical precision in clinical diagnostic processes |
WO2024020390A1 (en) * | 2022-07-21 | 2024-01-25 | Bio-Rad Laboratories, Inc. | System and method for designing quality control (qc) ranges for multiple clinical diagnostic instruments testing the same analyte |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5687716A (en) * | 1995-11-15 | 1997-11-18 | Kaufmann; Peter | Selective differentiating diagnostic process based on broad data bases |
US6273854B1 (en) * | 1998-05-05 | 2001-08-14 | Body Bio Corporation | Medical diagnostic analysis method and system |
US6500117B1 (en) * | 1998-09-02 | 2002-12-31 | William Franklin Hancock, Jr. | Methods and apparatus for interpreting measured laboratory data |
US20060194329A1 (en) * | 2003-03-31 | 2006-08-31 | Atsushi Ogiwara | Sample analyzing method and sample analyzing program |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5355880A (en) * | 1992-07-06 | 1994-10-18 | Sandia Corporation | Reliable noninvasive measurement of blood gases |
US5541854A (en) * | 1993-05-26 | 1996-07-30 | Xyletech Systems, Inc. | Method of analyzing multiple range test data |
US6269276B1 (en) * | 1998-03-31 | 2001-07-31 | Roche Diagnostics Corporation | Multi-rule quality control method and apparatus |
JP3760806B2 (en) * | 2001-06-25 | 2006-03-29 | 株式会社日立製作所 | Analysis result management method and apparatus |
US8099257B2 (en) * | 2001-08-24 | 2012-01-17 | Bio-Rad Laboratories, Inc. | Biometric quality control process |
JP2003083981A (en) * | 2001-09-14 | 2003-03-19 | Horiba Ltd | Accuracy control system of clinical inspection apparatus |
JP2003166988A (en) * | 2001-11-30 | 2003-06-13 | Sysmex Corp | Clinical inspection system |
JP4871618B2 (en) * | 2006-03-14 | 2012-02-08 | 株式会社日立ハイテクノロジーズ | Quality control system |
-
2009
- 2009-07-24 US US12/508,718 patent/US8589081B2/en active Active
-
2010
- 2010-04-12 AU AU2010274948A patent/AU2010274948B2/en active Active
- 2010-04-12 EP EP10802578.4A patent/EP2457091B1/en active Active
- 2010-04-12 JP JP2012521633A patent/JP5681712B2/en active Active
- 2010-04-12 CA CA2759416A patent/CA2759416C/en active Active
- 2010-04-12 WO PCT/US2010/030702 patent/WO2011011101A1/en active Application Filing
- 2010-04-12 CN CN201080032297.XA patent/CN102472743B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5687716A (en) * | 1995-11-15 | 1997-11-18 | Kaufmann; Peter | Selective differentiating diagnostic process based on broad data bases |
US6273854B1 (en) * | 1998-05-05 | 2001-08-14 | Body Bio Corporation | Medical diagnostic analysis method and system |
US6500117B1 (en) * | 1998-09-02 | 2002-12-31 | William Franklin Hancock, Jr. | Methods and apparatus for interpreting measured laboratory data |
US20060194329A1 (en) * | 2003-03-31 | 2006-08-31 | Atsushi Ogiwara | Sample analyzing method and sample analyzing program |
Non-Patent Citations (3)
Title |
---|
"Six Sigma Quality Design & Control", 2001, WESTGARD QC, INC., pages: 29 |
See also references of EP2457091A4 |
SIX SIGMA QUALITY MANAGEMENT AND DESIRABLE LABORATORY PRECISION, 2003, Retrieved from the Internet <URL:www.westgard.com/essav35.htm> |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110954465A (en) * | 2018-09-26 | 2020-04-03 | 希森美康株式会社 | Flow cytometer, data transmission method, and information processing system |
CN110954465B (en) * | 2018-09-26 | 2024-12-24 | 希森美康株式会社 | Flow cytometer, data transmission method and information processing system |
WO2022058404A1 (en) | 2020-09-18 | 2022-03-24 | Umicore Ag & Co. Kg | Scr catalyst compositions and scr catalytic articles comprising said catalyst compositions |
EP4063003A1 (en) | 2021-03-23 | 2022-09-28 | UMICORE AG & Co. KG | Filter for the aftertreatment of exhaust gases of internal combustion engines |
WO2022200310A1 (en) | 2021-03-23 | 2022-09-29 | Umicore Ag & Co. Kg | Filter for the aftertreatment of exhaust gases of internal combustion engines |
Also Published As
Publication number | Publication date |
---|---|
US20110022323A1 (en) | 2011-01-27 |
EP2457091B1 (en) | 2020-06-03 |
CA2759416A1 (en) | 2011-01-27 |
EP2457091A1 (en) | 2012-05-30 |
AU2010274948B2 (en) | 2015-08-20 |
CA2759416C (en) | 2023-01-17 |
CN102472743A (en) | 2012-05-23 |
EP2457091A4 (en) | 2017-03-08 |
US8589081B2 (en) | 2013-11-19 |
AU2010274948A1 (en) | 2011-11-10 |
JP5681712B2 (en) | 2015-03-11 |
JP2013500467A (en) | 2013-01-07 |
CN102472743B (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010274948B2 (en) | System and method for determining sigma of a clinical diagnostic process | |
Bobb et al. | Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures | |
US10332621B2 (en) | Method and apparatus for calibration and testing of scientific measurement equipment | |
CN114829928B (en) | Automated chromatogrAN_SNhy analysis for blood examination assessment | |
Tekindal et al. | Evaluating left-censored data through substitution, parametric, semi-parametric, and nonparametric methods: a simulation study | |
JP2008076267A (en) | Accuracy control system, analyzer, and accuracy control method | |
Dosne et al. | A strategy for residual error modeling incorporating scedasticity of variance and distribution shape | |
JP2017516066A (en) | System and method for determining risk factors for secondary hyperparathyroidism | |
US20200342962A1 (en) | Automatically generating rules for lab instruments | |
Zheng et al. | Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach | |
Li et al. | Joint models for a primary endpoint and multiple longitudinal covariate processes | |
Make et al. | Interpreting results from clinical trials: understanding minimal clinically important differences in COPD outcomes | |
McCabe et al. | Constructing indirect utility models: some observations on the principles and practice of mapping to obtain health state utilities | |
Heagerty et al. | Exploration of lagged associations using longitudinal data | |
Jonkman et al. | Equivalence testing for parallelism in the four-parameter logistic model | |
AU2015207930B2 (en) | System and method for recovering from a large out-of-control condition in a clinical diagnostic process | |
US20190035490A1 (en) | Altering patient care based on long term sdd | |
Larsen et al. | Ionized calcium measurements are influenced by albumin–should ionized calcium be corrected? | |
AU2015203847B2 (en) | System and method for spot checking small out-of-control conditions in a clinical diagnostic process | |
Oliver et al. | Analytical performance evaluation and comparability of patient results within a point-of-care blood gas network | |
Pan et al. | Flexible estimation of differences in treatment-specific recurrent event means in the presence of a terminating event | |
Salah et al. | On the evaluation of reliability, repeatability, and reproducibility of instrumental evaluation methods and measurement systems | |
Albert | Modeling longitudinal biomarker data from multiple assays that have different known detection limits | |
JP2022132159A (en) | Troubleshooting with proximity interaction and voice commands |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080032297.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10802578 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2759416 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2298/MUMNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2010274948 Country of ref document: AU Date of ref document: 20100412 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010802578 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012521633 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |