[go: up one dir, main page]

WO2011004725A1 - Method for detection of pathogenic bacteria, and kit for use in the method - Google Patents

Method for detection of pathogenic bacteria, and kit for use in the method Download PDF

Info

Publication number
WO2011004725A1
WO2011004725A1 PCT/JP2010/060940 JP2010060940W WO2011004725A1 WO 2011004725 A1 WO2011004725 A1 WO 2011004725A1 JP 2010060940 W JP2010060940 W JP 2010060940W WO 2011004725 A1 WO2011004725 A1 WO 2011004725A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
primer set
targeting
primer
streptococcus
Prior art date
Application number
PCT/JP2010/060940
Other languages
French (fr)
Japanese (ja)
Inventor
克英 三宅
裕之 綱島
新太 片山
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Publication of WO2011004725A1 publication Critical patent/WO2011004725A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a pathogen detection technology. Specifically, the present invention relates to a pathogen detection method and a kit used therefor. In particular, the present invention relates to a method for simultaneously detecting two or more types of pathogenic bacteria and a kit used therefor.
  • This application claims priority based on Japanese Patent Application No. 2009-161351 filed on Jul. 8, 2009, the entire contents of which are incorporated by reference.
  • a wide variety of pathogenic bacteria may exist in soil samples and sewage samples. In such a case, in order to ensure safety, it is desired to rapidly detect various pathogenic bacteria at once. Moreover, since it is naturally expected that microorganisms other than the pathogenic bacteria are mixed, it is necessary to increase the specificity for the pathogenic bacteria. Conventional detection methods are difficult to meet these demands. For example, in the case of detection method using 16S rRNA (Patent Document 2), since 16S rRNA gene is present in all bacteria, no matter how much the sequence is used to increase the specificity, there is a possibility that nonspecific amplification will occur. I can't deny it.
  • the detection method using a probe of a gene (toxin gene or the like) specific for each pathogen can ensure specificity, but is not appropriate as a universal pathogen detection method. Then, this invention makes it a subject to detect the pathogenic microbe which can exist in a sample simply, rapidly, and specifically.
  • the present inventors paid attention to a biosynthetic gene group of capsular polysaccharides specific to pathogenic bacteria.
  • Capsular polysaccharides are present in almost all pathogens and are closely related to pathogenicity.
  • the capsular polysaccharide usually has a shape protruding from the lipid of the cell membrane and functions mainly for defense from the host. Its sugar chain structure is extremely diverse and varies depending on the type of fungus. On the other hand, there are many common structures, and the sugar that first binds to lipids in the root part, that is, the cell membrane, is usually glucose.
  • the commonality of enzymes and genes involved in the synthesis of capsular polysaccharide is very high.
  • the commonality and specificity of the capsular gene for pathogens such as Streptococcus, Pseudomonas, and Staphylococcus are examined in detail.
  • the inventors have succeeded in identifying a gene that is particularly preferable as a detection target (target), that is, a gene having extremely high commonality.
  • the gene was shown to be extremely specific.
  • a method for detecting a pathogenic bacterium in a specimen comprising performing a nucleic acid amplification reaction targeting the capsular polysaccharide gene of the pathogenic bacterium, and determining the presence or absence of the pathogenic bacterium based on the amplification result.
  • the nucleic acid amplification reaction is a PCR method.
  • [3] Two or more types of pathogens selected from Streptococcus, Staphylococcus, Clostridium, Pseudomonas, pathogenic Escherichia coli, and Salmonella The method according to [2], wherein the PCR method is a multiplex PCR method.
  • the capsular polysaccharide gene is a cpsE gene for Streptococcus, a capE gene for Staphylococcus, a kpsF gene for Clostridium, a wzz gene for Pseudomonas, and pathogenic
  • E E.
  • a method for simultaneously detecting a plurality of types of pathogenic bacteria including the following steps (1) to (4): (1) preparing a DNA sample; (2) a step of preparing a plurality of primer sets, wherein each primer set is a primer set targeting capsular polysaccharide genes of different target pathogens; (3) performing a nucleic acid amplification reaction using the DNA sample as a template and simultaneously using the plurality of sets of primers; (4) A step of detecting an amplification product.
  • the method according to [5], wherein the nucleic acid amplification reaction is a multiplex PCR method.
  • the target pathogen is selected from two or more selected from Streptococcus, Staphylococcus, Clostridium, Pseudomonas, pathogenic Escherichia coli, and Salmonella
  • the method according to [5] or [6], comprising a pathogen comprising a pathogen.
  • a primer set targeting the cpsE gene of Streptococcus, a primer set targeting the capE gene of Staphylococcus, a primer set targeting the kpsF gene of Clostridium, A primer set targeting the wzz gene of Pseudomonas, a primer set targeting the wcaA gene of pathogenic Escherichia coli, a primer set targeting the wbaP gene of Salmonella, and the rfc gene of Salmonella A kit for detecting pathogens, comprising two or more primer sets selected from the group consisting of primer sets targeted at.
  • capsular polysaccharide (schematic diagram) of pathogenic bacteria and structure of capsular polysaccharide gene.
  • the leftmost lane is a molecular weight marker.
  • the target amplification product is the band indicated by the arrow.
  • the rightmost lane is a molecular weight marker.
  • the target amplification product is the band indicated by the arrow.
  • Streptococcus agalactie genomic DNA and Streptococcus anjinosas genomic DNA were used as template DNA.
  • the band indicated by the arrow (upper: Streptococcus anjinosas, lower: Streptococcus agalactie) is the target amplification product.
  • On the left is the result of DNA amplification from genomic DNA using primers designed to target the capE gene (381 bp) of Staphylococcus aureus.
  • the rightmost lane is a molecular weight marker.
  • the target amplification product is the band indicated by the arrow.
  • On the right is the result of DNA amplification from genomic DNA using a primer set designed to target the rfc gene (311 bp) of Salmonella enterica.
  • the leftmost lane is a molecular weight marker.
  • the target amplification product is the band indicated by the arrow.
  • the template DNA used was Staphylococcus aureus genomic DNA and Salmonella enterica genomic DNA. A band corresponding to each target gene is observed.
  • the first aspect of the present invention relates to a method for detecting pathogenic bacteria.
  • the detection method of the present invention is characterized in that a nucleic acid amplification reaction targeting a capsular polysaccharide gene of a pathogenic bacterium is performed. That is, in the detection method of the present invention, a nucleic acid amplification reaction targeting the capsular polysaccharide gene of a pathogenic bacterium is performed, and the presence or absence of the pathogenic bacterium is determined based on the amplification result. When a specific amplification product is recognized, the target pathogen is detected.
  • nucleic acid amplification reactions examples include PCR (Polymerase chain reaction) method or its modification, LAMP (Loop-Mediated Isothermal Amplification) method (Tsugunori Notomi et al. Nucleic Acids Research, Vol.28, No.12, e63, 2000; Kentaro Nagamine, Keiko Watanabe et al. Clinical Chemistry, Vol. 47, No. 9, 1742-1743, 2001), ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic Acids (Patent No. 3433929, Patent No.
  • NASBA Nucleic Acid Sequence-Based Amplification
  • LCR Liigase Chain Reaction
  • 3SR Self-sustained Sequence Replication
  • SDA Standard Displacement Amplification
  • TMA Transcription Mediated Amplification
  • RCA Rolling Circle Amplification
  • a capsular polysaccharide gene that has been found to be highly common among pathogens of the same genus is targeted for detection.
  • the “target of detection” is also called “target” or “detection probe” in accordance with the conventional practice.
  • a highly common one is a chain length determining gene present on the 5 ′ side of the operon, glucose that synthesizes the first sugar of the sugar chain unit, galactose, Alternatively, it was a N-acetylglucosamine transferase gene, a flippase gene that transfers a sugar chain unit to the outside of the cell membrane.
  • the commonality of the chain length determining gene and the glucose, galactose, or N-acetylglucosamine transferase gene among the pathogenic bacteria is high. Therefore, the chain length determining gene or the first glycosyltransferase gene is preferably targeted.
  • pathogenic bacteria to be detected is not particularly limited.
  • target pathogens include Streptococcus, Staphylococcus, Clostridium, Pseudomonas, pathogenic E. coli (enteropathogenic E. coli (EPEC), intestinal tissue invasive E. coli (EIEC) ), Enterotoxigenic Escherichia coli (ETEC), enterohemorrhagic Escherichia coli (EHEC), intestinal agglutinating E. coli (EAggEC)), and Salmonella.
  • EEC enteropathogenic E. coli
  • ETEC enterohemorrhagic Escherichia coli
  • EAggEC intestinal agglutinating E. coli
  • a nucleic acid amplification reaction capable of simultaneously amplifying a plurality of targets, such as multiplex PCR, two or more, preferably three or more, more preferably four of the pathogenic bacteria exemplified here.
  • targets such as multiplex PCR
  • the above is the target pathogen.
  • the present inventors have succeeded in identifying genes with extremely high commonality and specificity for each genus for a plurality of types of pathogenic bacteria.
  • the specified gene is targeted and the detection specificity and accuracy are improved.
  • the gene which becomes a target in the said aspect is shown for every kind of pathogenic microbe (Table 1).
  • sequence of the target gene of the genus Streptococcus (cpsE gene)
  • sequence of S. anginosus is SEQ ID NO: 1
  • sequence of S. gordonii is SEQ ID NO: 2
  • sequence of S. oralis The sequence is shown in SEQ ID NO: 3
  • sequence of S. pneumoniae is shown in SEQ ID NO: 4
  • sequence of S. agalactiae is shown in SEQ ID NO: 5, respectively.
  • sequence of S. aureus is shown in SEQ ID NO: 6.
  • a Clostridial target gene (kpsF gene)
  • the sequence of Tetani (C. ⁇ tetani) is shown in SEQ ID NO: 7.
  • a target gene of the genus Pseudomonas (wzz gene)
  • the sequence of aeruginosa (P. ⁇ aeruginosa) is shown in SEQ ID NO: 8.
  • An example of the sequence of the target gene (wcaA gene) of pathogenic E. coli is shown in SEQ ID NO: 9.
  • Examples of sequences of Salmonella target genes (wbaP gene, rfc gene) are shown in SEQ ID NO: 10 (wbaP gene) and SEQ ID NO: 23 (rfc gene).
  • a nucleic acid amplification reaction using one to several primer sets (for example, PCR with a single primer set, multiple primer sets) In the case of a set, multiplex PCR) will be performed.
  • a nucleic acid amplification reaction for example, multiplex PCR
  • a nucleic acid amplification reaction may be carried out using a primer set (one to several sets for each genera) prepared for each genera.
  • Primer set for Streptococcus (designed based on the sequence of the cpsIaE gene of Streptococcus agaractie) Direct: 5'-CAATCAAATGACAGGGCTAAT-3 '(SEQ ID NO: 11) Reverse: 5'-TAAAACTAAGGCGTCGCTT-3 '(SEQ ID NO: 12)
  • Primer set for Streptococcus genus (designed based on the sequence of Streptococcus anjinosas cpsE gene) Direct: 5'-TGTACGTAGATGCCGAGG-3 '(SEQ ID NO: 13) Reverse: 5′-TTAAAGCTCAATCGCCGC-3 ′ (SEQ ID NO: 14)
  • Primer set for Pseudomonas (designed based on the sequence of Pseudomonas aeruginosa wzz gene) Direct: 5'-CGTGAAGATC
  • Each oligonucleotide constituting the primer set may be prepared by a conventional method. For example, it can be chemically synthesized using a general-purpose DNA synthesizer.
  • the detection method of the present invention typically uses a PCR method. This improves versatility and quickness.
  • a multiplex PCR method is employed.
  • the multiplex PCR method is a PCR method using a plurality of primer sets at the same time, and enables detection of a plurality of targets at once (for example, US Pat. No. 5,582,989, Journal of Microbiological Methods 68 (2007) 52 ⁇ (See 59). Therefore, if the multiplex PCR method is used, the types of pathogenic bacteria that can be detected at a time are increased, and the rapidity and convenience are further improved.
  • the following steps (1) to (4) are performed to detect a plurality of types of pathogenic bacteria simultaneously.
  • Step of preparing a DNA sample (2) Step of preparing a plurality of primer sets, each primer set being a primer set targeting capsular polysaccharide genes of different target pathogens (3) A step of performing a nucleic acid amplification reaction using the DNA sample as a template and simultaneously with the plurality of sets of primers (4) A step of detecting an amplification product
  • step (1) prepare a DNA sample.
  • the detection method of the present invention can be used to detect pathogenic bacteria in various test materials (specimens). Examples of test materials include soil, sewage, food, wiped samples, urine, stool, urine storage, sputum, and vomit. After removing impurities or diluting as necessary, a DNA sample is prepared from the test material, and the detection method of the present invention is applied.
  • a DNA sample may be prepared by a conventional method. Many kits for preparing DNA samples are also commercially available, and DNA samples can be easily obtained by using such kits.
  • each primer set has a different target pathogenic capsular polysaccharide.
  • the number of primer sets is, for example, 2 to 5 sets. As the number of primer sets increases, the number of pathogenic bacteria that can be detected simultaneously increases, but there is a problem that the possibility of non-specific amplification increases and the design of primers becomes difficult. Therefore, the number of primer sets is preferably 5 to 30 sets.
  • the number of primer sets prepared for one genus of pathogenic bacteria may not be one. That is, two or more primer sets (for example, 2, 3, 4, or 5) may be prepared for one genus.
  • a primer set labeled with a labeling substance may be used.
  • labeling substances are fluorescent substances, chemiluminescent substances, biotin, and radioisotopes.
  • step (3) the nucleic acid amplification reaction is performed using the DNA sample prepared in step (1) as a template and using the plurality of primer sets prepared in step (2) simultaneously.
  • multiplex PCR is performed.
  • Each step of the nucleic acid amplification reaction may be performed by a conventional method. If PCR is employed, for example, a commercially available PCR device (for example, thermal cycler personal manufactured by Takara Bio Inc.) can be used. Numerous PCR kits that include enzymes, reagents, etc. are also commercially available. By using such a kit, each step of PCR can be carried out easily. PCR conditions may be set in consideration of primer Tm and the like. Examples of PCR conditions are as follows.
  • heat denaturation is 90 ° C to 98 ° C
  • annealing is 30 ° C to 65 ° C
  • extension reaction is 65 ° C to 75 ° C.
  • the number of reaction cycle repetitions is, for example, 20-40.
  • Ex Taq registered trademark, Takara Bio Inc.
  • gene taq Nippon Gene
  • KOD plus Toyobo Co., Ltd.
  • the amplification product is detected, but the detection method is not particularly limited.
  • a method using electrophoresis a method using chromatography, a method using a DNA array, and the like can be employed.
  • a specific example of the method using electrophoresis is as follows. The reaction solution after PCR is applied to a gel such as agarose and subjected to electrophoresis, followed by staining with ethidium bromide. The presence or absence of the target DNA fragment (amplified product) is determined using the position (movement distance) of the band that appears by staining as an index. In addition, the amount of the target DNA fragment may be determined based on the density of the band.
  • 2% TAE Tris acetate, EDTA
  • TBE Tris borate, EDTA
  • the detection kit of the present invention is a primer set targeting the Streptococcus cpsE gene, a primer set targeting the Staphylococcus capE gene, and Clostridium spp.
  • Primer set targeting kpsF gene, primer set targeting Pseudomonas wzz gene, primer set targeting wcaA gene of pathogenic E. coli, primer set targeting wbaP gene of Salmonella, and rfc of Salmonella It includes two or more primer sets selected from the group consisting of primer sets targeting genes.
  • primer sets may be used for one genus of pathogenic bacteria.
  • An example of this embodiment an example of a kit capable of detecting Streptococcus spp. And Pseudomonas spp.
  • a primer set targeting the Streptococcus cpsE gene the cpsE gene of a specific species (one or more) And a primer set targeting a cpsE gene of one or more species different from the species, and a primer set targeting a Pseudomonas wzz gene as a specific species
  • a kit comprising a primer set targeting one or more wzz genes and a primer set targeting a wzz gene of a species (one or more) different from the species.
  • two primer sets are used for one genus of pathogenic bacteria, but the present invention is not limited to this.
  • the primer constituting the primer set is not particularly limited as long as it can specifically amplify the target gene or a part thereof.
  • the length of the primer is not limited as long as it functions as a primer (for example, a PCR primer) in the nucleic acid amplification reaction employed, and is, for example, 15 to 30 bp, preferably 20 to 30 bp, more preferably 20 to 25 bp. There may be 1 to several, preferably 1 to 5, more preferably about 1 to 3 mismatches between the primer and the region of the target gene to which it hybridizes.
  • primer set examples include the above-mentioned primer set for the genus Streptococcus (SEQ ID Nos. 11 and 12: designed based on the sequence of the cpsIaE gene of Streptococcus agalactie), and the primer set for the genus Streptococcus (SEQ ID Nos.
  • Reagents necessary for each step of nucleic acid amplification reaction typically PCR (DNA polymerase, buffer solution, etc.), reagents required for detection (reagents for gel preparation, stain solution, etc.), containers, instruments, etc. It may be included in the detection kit of the present invention. Usually, an instruction manual is attached to the detection kit of the present invention.
  • Capsular polysaccharides are present in almost all pathogens and are closely related to pathogenicity (Fig. 1).
  • the capsular polysaccharide usually has a shape protruding from the lipid of the cell membrane and functions mainly for defense from the host. Its sugar chain structure is extremely diverse and varies depending on the type of fungus. On the other hand, there are many common structures, and the sugar that first binds to the lipids of the cell membrane, ie, the cell membrane, is usually glucose or galactose.
  • the commonality of enzymes and genes involved in the synthesis of capsular polysaccharide is very high.
  • cpsE gene for Streptococcus pathogens As mentioned above, cpsE gene for Streptococcus pathogens, wzz gene for Pseudomonas pathogens, capE gene for Staphylococcus pathogens, kpsF gene for Clostridium pathogens, pathogenicity
  • the wcaA gene was found for E. coli and the wbaP and rfc genes were found for Salmonella.
  • a detection primer set was designed for each target gene as follows. (Primer set targeting the cpsIaE gene of Streptococcus agalactie) Direct: 5'-CAATCAAATGACAGGGCTAAT-3 '(SEQ ID NO: 11) Reverse: 5'-TAAAACTAAGGCGTCGCTT-3 '(SEQ ID NO: 12) (Primer set targeting the cpsE gene of Streptococcus anginosas) Direct: 5'-TGTACGTAGATGCCGAGG-3 '(SEQ ID NO: 13) Reverse: 5′-TTAAAGCTCAATCGCCGC-3 ′ (SEQ ID NO: 14) (Primer set targeting the wzz gene of Pseudomonas aeruginosa) Direct: 5'-CGTGAAGATCGTAT-3 '(SEQ ID NO: 15) Reverse: 5'-GGAATAAAAGGATCATC-3 '(SEQ ID NO: 16) (Primer set
  • test groups negative control (no DNA sample), soil DNA sample (200 ng) only, soil DNA sample (200 ng) and Streptococcus agalactiae genomic DNA (1 fg: 2x10 -25 mol), soil DNA sample (200 ng) ) And Streptococcus agalactie genomic DNA (1 pg: 2x10 -22 mol), soil DNA sample (200 pg) and Streptococcus agalactia genomic DNA (1 ng: 2x10 -19 mol), and the above primer set (SEQ ID NO: 11) And SEQ ID NO: 12).
  • KOD plus DNA polymerase was used and the PCR conditions were as follows. ⁇ PCR conditions> 2 minutes at 96 ° C, 10 seconds at 98 ° C; 30 seconds at 50 ° C; 20 seconds at 68 ° C (35 cycles)
  • test groups negative control (no DNA sample), soil DNA sample (200 ng) only, soil DNA sample (200 ng) and Pseudomonas aeruginosa genomic DNA (1 fg), soil DNA sample (200 ng) and Pseudomonas aeruginosa Set genomic DNA (1 fg), soil DNA sample (200 pg) and Pseudomonas aeruginosa genomic DNA (1 ng), soil DNA sample (200 pg) and Pseudomonas aeruginosa genomic DNA (1 ⁇ g), and set the above primer set (sequence) PCR was performed using No. 15 and SEQ ID No. 16).
  • Each sample after PCR was subjected to electrophoresis (2% TAE (Tris acetic acid, EDTA) agarose) to confirm the presence or absence of amplification. As shown in the left of FIG. 5, specific amplification of the target gene was observed. It was also shown that it can be detected with high sensitivity from a small amount of sample. As described above, the high specificity of the primer was confirmed.
  • TAE Tris acetic acid, EDTA
  • bands corresponding to each primer set were recognized. That is, it was shown that two target genes can be amplified and detected simultaneously by multiplex PCR.
  • pathogenic bacteria in a specimen are detected by targeting a capsular polysaccharide gene that is highly common and closely related to pathogenicity.
  • a PCR method that is versatile and excellent in rapidity is used.
  • pathogenic bacteria can be detected from the environment simply, quickly and specifically.
  • the present invention exhibits high specificity for pathogenic bacteria.
  • the detection method of the present invention is suitable for simultaneously detecting a plurality of pathogenic bacteria that may be present in samples such as soil, sewage, and food.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Disclosed is a method for detecting a pathogenic bacterium that is suspected to be present in a sample in a simple, rapid and specific manner. A nucleic acid amplification reaction that targets for a capsular polysaccharide gene of the pathogenic bacterium. The presence or absence of the pathogenic bacterium in the sample is determined on the basis of the results of the amplification.

Description

病原菌検出法及びそれに用いるキットPathogen detection method and kit used therefor
 本発明は病原菌の検出技術に関する。詳しくは病原菌の検出法及びそれに用いるキット等に関する。特に、2種類以上の病原菌を同時に検出する方法及びそれに用いるキットに関する。本出願は、2009年7月8日に出願された日本国特許出願第2009-161351号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a pathogen detection technology. Specifically, the present invention relates to a pathogen detection method and a kit used therefor. In particular, the present invention relates to a method for simultaneously detecting two or more types of pathogenic bacteria and a kit used therefor. This application claims priority based on Japanese Patent Application No. 2009-161351 filed on Jul. 8, 2009, the entire contents of which are incorporated by reference.
 衛生状態が良いといわれる現代においても、人は日常的に病原菌の脅威に曝されている。病原菌による健康被害を未然に防ぐためには食品中や環境中の病原菌を迅速に検出し、感染や汚染拡大の恐れを排除することが重要となる。これまでに開発された病原菌検出法としては、寒天プレートに培養してコロニーを確認する方法や抗体反応を用いたELISA法(特許文献1)などがある。また、最近では多くの細菌のゲノム解析が進んだ結果、16S rRNA遺伝子をPCRして確認する方法(特許文献2)や特異的な遺伝子を増幅してDNAチップなどで確認する方法(特許文献3)などが提唱されつつある。 Even in the present day when hygiene is said to be good, people are regularly exposed to the threat of pathogenic bacteria. In order to prevent health damage caused by pathogenic bacteria, it is important to quickly detect pathogenic bacteria in foods and the environment to eliminate the risk of infection and spread of contamination. Examples of pathogen detection methods developed so far include a method of culturing on an agar plate and confirming colonies, and an ELISA method using an antibody reaction (Patent Document 1). As a result of recent progress in genome analysis of many bacteria, a method for confirming 16S rRNA gene by PCR (Patent Document 2) or a method for amplifying a specific gene and confirming it with a DNA chip (Patent Document 3) ) Etc. are being proposed.
特開2000-78999号公報JP 2000-78999 A 特開2000-83699号公報JP 2000-83699 A 特表2008-515423公報Special table 2008-515423
 土壌サンプルや下水サンプル等には、多種多様な病原菌が存在している可能性がある。このような場合に安全性を確保するため、多種の病原菌を一括して迅速に検出することが望まれる。また、病原菌以外の微生物の混在も当然に予想されることから、病原菌に対する特異性を高める必要もある。従来の検出法ではこれらの要望に応えることは難しい。例えば、16S rRNAを利用した検出法(特許文献2)の場合、16S rRNA遺伝子は全ての細菌に存在するため、いくら配列によって特異性を高めようとしても、非特異的な増幅が起こる可能性を否定できない。また、各病原菌に特異的な遺伝子(毒素遺伝子など)のプローブを用いた検出法(特許文献3)では特異性は確保できるものの、普遍的な病原菌検出法としては適切といえない。そこで本発明は、サンプル中に存在し得る病原菌を簡便、迅速且つ特異的に検出することを課題とする。 A wide variety of pathogenic bacteria may exist in soil samples and sewage samples. In such a case, in order to ensure safety, it is desired to rapidly detect various pathogenic bacteria at once. Moreover, since it is naturally expected that microorganisms other than the pathogenic bacteria are mixed, it is necessary to increase the specificity for the pathogenic bacteria. Conventional detection methods are difficult to meet these demands. For example, in the case of detection method using 16S rRNA (Patent Document 2), since 16S rRNA gene is present in all bacteria, no matter how much the sequence is used to increase the specificity, there is a possibility that nonspecific amplification will occur. I can't deny it. In addition, the detection method (patent document 3) using a probe of a gene (toxin gene or the like) specific for each pathogen can ensure specificity, but is not appropriate as a universal pathogen detection method. Then, this invention makes it a subject to detect the pathogenic microbe which can exist in a sample simply, rapidly, and specifically.
 上記課題を解決するためには、病原菌にのみ存在し、しかも特定の菌だけでなく多くの病原菌に共通の形質を利用した方法の開発が必要となる。本発明者らは病原菌に特異的な莢膜多糖の生合成遺伝子群に着目した。莢膜多糖はほとんどすべての病原菌に存在しており、しかも病原性と深く関係がある。莢膜多糖は通常、細胞膜の脂質から突き出した形状を取っており、おもに宿主からの防御に機能する。その糖鎖構造はきわめて多様性に富み、菌の種類ごとに異なる。その一方で共通な構造も多く見られ、根元の部分、すなわち細胞膜の脂質と最初に結合する糖は通常グルコースである。また、莢膜多糖の合成に関与する酵素や遺伝子の共通性が非常に高い。後述の実施例に示すようにストレプトコッカス属、シュードモナス属、スタフィロコッカス属などの病原菌について莢膜遺伝子の共通性及び特異性を詳細に検討した結果、同属の病原菌では莢膜遺伝子の共通性が概して高いことが判明するとともに、検出対象(標的)として特に好ましい遺伝子、即ち共通性が極めて高い遺伝子の特定に成功した。また、当該遺伝子はその特異性も極めて高いことが示された。一方、このようにして特定した遺伝子を標的としたPCR法を施行した結果、非特異的な増幅は認められず、当該遺伝子の特異性の高さ及び実用性が実証された。また、それぞれ特定の病原菌に対して設計した二組のプライマーセットを併用して病原菌の検出を試みた結果、期待通り、2種類の病原菌を同時に検出可能であった。以下に示す本発明は主として以上の成果に基づく。
 [1]検体中の病原菌を検出する方法であって、前記病原菌の莢膜多糖遺伝子を標的とした核酸増幅反応を行い、増幅結果に基づき病原菌の有無を判定することを特徴とする方法。
 [2]前記核酸増幅反応がPCR法である、[1]に記載の方法。
 [3]前記病原菌がストレプトコッカス属(Streptococcus)、スタフィロコッカス属(Staphylococcus)、クロストリジウム属(Clostridium)、シュードモナス属(Pseudomonas)、病原性大腸菌、サルモネラ菌(Salmonella)から選択される2種類以上の病原菌を含み、前記PCR法がマルチプレックスPCR法である、[2]に記載の方法。
 [4]前記莢膜多糖遺伝子が、ストレプトコッカス属についてはcpsE遺伝子であり、スタフィロコッカス属についてはcapE遺伝子であり、クロストリジウム属についてはkpsF遺伝子であり、シュードモナス属についてはwzz遺伝子であり、病原性大腸菌についてはwcaA遺伝子であり、サルモネラ菌についてはwbaP遺伝子又はrfc遺伝子である、[3]に記載の方法。
 [5]以下のステップ(1)~(4)を含む、複数種類の病原菌を同時に検出する方法:
 (1)DNAサンプルを用意するステップ;
 (2)複数組のプライマーセットを用意するステップであって、各プライマーセットが互いに異なる標的病原菌の莢膜多糖遺伝子を標的としたプライマーセットであるステップ;
 (3)前記DNAサンプルを鋳型とし、前記複数組のプライマーを同時に用いて核酸増幅反応を実施するステップ;
 (4)増幅産物を検出するステップ。
 [6]前記核酸増幅反応がマルチプレックスPCR法である、[5]に記載の方法。
 [7]前記標的病原菌が、ストレプトコッカス属(Streptococcus)、スタフィロコッカス属(Staphylococcus)、クロストリジウム属(Clostridium)、シュードモナス属(Pseudomonas)、病原性大腸菌、サルモネラ菌(Salmonella)から選択される二種類以上の病原菌を含む、[5]又は[6]に記載の方法。
 [8]ストレプトコッカス属(Streptococcus)のcpsE遺伝子を標的としたプライマーセット、スタフィロコッカス属(Staphylococcus)のcapE遺伝子を標的としたプライマーセット、クロストリジウム属(Clostridium)のkpsF遺伝子を標的としたプライマーセット、シュードモナス属(Pseudomonas)のwzz遺伝子を標的としたプライマーセット、病原性大腸菌のwcaA遺伝子を標的としたプライマーセット、サルモネラ菌(Salmonella)のwbaP遺伝子を標的としたプライマーセット、及びサルモネラ菌(Salmonella)のrfc遺伝子を標的としたプライマーセットからなる群より選択される2以上のプライマーセットを含む、病原菌検出用キット。
In order to solve the above problems, it is necessary to develop a method that uses only traits common to many pathogenic bacteria as well as specific bacteria. The present inventors paid attention to a biosynthetic gene group of capsular polysaccharides specific to pathogenic bacteria. Capsular polysaccharides are present in almost all pathogens and are closely related to pathogenicity. The capsular polysaccharide usually has a shape protruding from the lipid of the cell membrane and functions mainly for defense from the host. Its sugar chain structure is extremely diverse and varies depending on the type of fungus. On the other hand, there are many common structures, and the sugar that first binds to lipids in the root part, that is, the cell membrane, is usually glucose. In addition, the commonality of enzymes and genes involved in the synthesis of capsular polysaccharide is very high. As shown in the examples below, the commonality and specificity of the capsular gene for pathogens such as Streptococcus, Pseudomonas, and Staphylococcus are examined in detail. In addition to being found to be high, the inventors have succeeded in identifying a gene that is particularly preferable as a detection target (target), that is, a gene having extremely high commonality. In addition, the gene was shown to be extremely specific. On the other hand, as a result of performing the PCR method targeting the gene identified in this way, non-specific amplification was not observed, and the high specificity and practicality of the gene were demonstrated. Moreover, as a result of attempting to detect pathogens using two primer sets designed for specific pathogens, it was possible to detect two types of pathogens at the same time as expected. The present invention described below is mainly based on the above results.
[1] A method for detecting a pathogenic bacterium in a specimen, comprising performing a nucleic acid amplification reaction targeting the capsular polysaccharide gene of the pathogenic bacterium, and determining the presence or absence of the pathogenic bacterium based on the amplification result.
[2] The method according to [1], wherein the nucleic acid amplification reaction is a PCR method.
[3] Two or more types of pathogens selected from Streptococcus, Staphylococcus, Clostridium, Pseudomonas, pathogenic Escherichia coli, and Salmonella The method according to [2], wherein the PCR method is a multiplex PCR method.
[4] The capsular polysaccharide gene is a cpsE gene for Streptococcus, a capE gene for Staphylococcus, a kpsF gene for Clostridium, a wzz gene for Pseudomonas, and pathogenic The method according to [3], wherein E. coli is a wcaA gene, and Salmonella is a wbaP gene or an rfc gene.
[5] A method for simultaneously detecting a plurality of types of pathogenic bacteria, including the following steps (1) to (4):
(1) preparing a DNA sample;
(2) a step of preparing a plurality of primer sets, wherein each primer set is a primer set targeting capsular polysaccharide genes of different target pathogens;
(3) performing a nucleic acid amplification reaction using the DNA sample as a template and simultaneously using the plurality of sets of primers;
(4) A step of detecting an amplification product.
[6] The method according to [5], wherein the nucleic acid amplification reaction is a multiplex PCR method.
[7] The target pathogen is selected from two or more selected from Streptococcus, Staphylococcus, Clostridium, Pseudomonas, pathogenic Escherichia coli, and Salmonella The method according to [5] or [6], comprising a pathogen.
[8] A primer set targeting the cpsE gene of Streptococcus, a primer set targeting the capE gene of Staphylococcus, a primer set targeting the kpsF gene of Clostridium, A primer set targeting the wzz gene of Pseudomonas, a primer set targeting the wcaA gene of pathogenic Escherichia coli, a primer set targeting the wbaP gene of Salmonella, and the rfc gene of Salmonella A kit for detecting pathogens, comprising two or more primer sets selected from the group consisting of primer sets targeted at.
病原菌の莢膜多糖の構造(模式図)と莢膜多糖遺伝子の構造。Structure of capsular polysaccharide (schematic diagram) of pathogenic bacteria and structure of capsular polysaccharide gene. ストレプトコッカス アガラクチエのcpsE遺伝子(ストレプトコッカス アガラクチエの場合、cpsIaE遺伝子と呼ばれる。以下、cpsIaE遺伝子とする)を標的として設計したプライマーを用いて土壌DNAサンプル200 ng(Kuridashi)からDNA増幅した結果。左端のレーンは分子量マーカー。矢印で示すバンドが目的の増幅産物。The result of DNA amplification from 200 ng (Kuridashi) of a soil DNA sample using a primer designed for Streptococcus agalactie cpsE gene (in the case of Streptococcus agalactie, called cpsIaE gene; hereinafter referred to as cpsIaE gene). The leftmost lane is a molecular weight marker. The target amplification product is the band indicated by the arrow. シュードモナス アエルジノサのwzz遺伝子を標的として設計したプライマーを用いて土壌DNAサンプル200 ng(Kuridashi)からDNA増幅した結果。右端のレーンは分子量マーカー。矢印で示すバンドが目的の増幅産物。Results of DNA amplification from 200 ジ ng (Kuridashi) soil DNA sample using primers designed to target the Wzz gene of Pseudomonas aeruginosa. The rightmost lane is a molecular weight marker. The target amplification product is the band indicated by the arrow. ストレプトコッカス アガラクチエのcpsIaE遺伝子を標的とするプライマーセットとストレプトコッカス アンジノサスのcpsE遺伝子を標的とするプライマーセットを用いたマルチプレックスPCRの結果。前者のプライマーセットのみを使用した場合(左のレーン)、後者のプライマーセットのみを使用した場合(中央のレーン)、両方のプライマーセットを使用した場合(右のレーン)を比較した。鋳型DNAにはストレプトコッカス アガラクチエのゲノムDNA及びストレプトコッカス アンジノサスのゲノムDNAを使用した。矢印(上:ストレプトコッカス アンジノサス、下:ストレプトコッカス アガラクチエ)で示すバンドが目的の増幅産物。Results of multiplex PCR using a primer set targeting the cpsIaE gene of Streptococcus agaractie and a primer set targeting the cpsE gene of Streptococcus anginosas. The case where only the former primer set was used (left lane), the case where only the latter primer set was used (middle lane), and the case where both primer sets were used (right lane) were compared. Streptococcus agalactie genomic DNA and Streptococcus anjinosas genomic DNA were used as template DNA. The band indicated by the arrow (upper: Streptococcus anjinosas, lower: Streptococcus agalactie) is the target amplification product. 左は、スタフィロコッカス アウレウスのcapE遺伝子(381bp)を標的として設計したプライマーを用いてゲノムDNAからDNA増幅した結果。右端のレーンは分子量マーカー。矢印で示すバンドが目的の増幅産物。右は、サルモネラ エンテリカのrfc遺伝子(311bp)を標的として設計したプライマーセットを用いてゲノムDNAからDNA増幅した結果。左端のレーンは分子量マーカー。矢印で示すバンドが目的の増幅産物。On the left is the result of DNA amplification from genomic DNA using primers designed to target the capE gene (381 bp) of Staphylococcus aureus. The rightmost lane is a molecular weight marker. The target amplification product is the band indicated by the arrow. On the right is the result of DNA amplification from genomic DNA using a primer set designed to target the rfc gene (311 bp) of Salmonella enterica. The leftmost lane is a molecular weight marker. The target amplification product is the band indicated by the arrow. スタフィロコッカス アウレウスのcapE遺伝子を標的とするプライマーセットとサルモネラ エンテリカのrfc遺伝子を標的とするプライマーセットを用いたマルチプレックスPCRの結果。鋳型DNAにはスタフィロコッカス アウレウスのゲノムDNAとサルモネラ エンテリカのゲノムDNAを使用した。各標的遺伝子に対応するバンドを認める。Results of multiplex PCR using a primer set targeting the Staphylococcus aureus capE gene and a primer set targeting Salmonella enterica rfc gene. The template DNA used was Staphylococcus aureus genomic DNA and Salmonella enterica genomic DNA. A band corresponding to each target gene is observed.
(病原菌の検出法)
 本発明の第1の局面は病原菌の検出法に関する。本発明の検出法は病原菌の莢膜多糖遺伝子を標的とした核酸増幅反応を行う点に特徴を有する。即ち、本発明の検出法では病原菌の莢膜多糖遺伝子を標的とした核酸増幅反応を行い、増幅結果に基づき病原菌の有無を判定する。特定の増幅産物を認めた場合に目的の病原菌が検出されることになる。核酸増幅反応の例として、PCR(Polymerase chain reaction)法若しくはその変法、LAMP(Loop-Mediated Isothermal Amplification)法(Tsugunori Notomi et al. Nucleic Acids Research, Vol.28, No.12, e63,
2000; Kentaro Nagamine, Keiko Watanabe et al. Clinical Chemistry, Vol.47, No.9,
1742-1743, 2001)、ICAN(Isothermal and Chimeric
primer-initiated Amplification of Nucleic acids)法(特許第3433929号、特許第3883476号)、NASBA(Nucleic Acid Sequence-Based Amplification)法、LCR(Ligase Chain Reaction)法、3SR(Self-sustained Sequence Replication)法、SDA(Standard Displacement Amplification)法、TMA(Transcription Mediated Amplification)法、RCA(Rolling Circle Amplification)を挙げることができる。中でもPCR法又はその変法による増幅反応を実施することが好ましい。
(Pathogen detection method)
The first aspect of the present invention relates to a method for detecting pathogenic bacteria. The detection method of the present invention is characterized in that a nucleic acid amplification reaction targeting a capsular polysaccharide gene of a pathogenic bacterium is performed. That is, in the detection method of the present invention, a nucleic acid amplification reaction targeting the capsular polysaccharide gene of a pathogenic bacterium is performed, and the presence or absence of the pathogenic bacterium is determined based on the amplification result. When a specific amplification product is recognized, the target pathogen is detected. Examples of nucleic acid amplification reactions include PCR (Polymerase chain reaction) method or its modification, LAMP (Loop-Mediated Isothermal Amplification) method (Tsugunori Notomi et al. Nucleic Acids Research, Vol.28, No.12, e63,
2000; Kentaro Nagamine, Keiko Watanabe et al. Clinical Chemistry, Vol. 47, No. 9,
1742-1743, 2001), ICAN (Isothermal and Chimeric
primer-initiated Amplification of Nucleic Acids (Patent No. 3433929, Patent No. 3883476), NASBA (Nucleic Acid Sequence-Based Amplification) method, LCR (Ligase Chain Reaction) method, 3SR (Self-sustained Sequence Replication) method, Examples include SDA (Standard Displacement Amplification), TMA (Transcription Mediated Amplification), and RCA (Rolling Circle Amplification). Among them, it is preferable to carry out an amplification reaction by the PCR method or a modified method thereof.
 本発明の検出法では、同属の病原菌の間で高い共通性が認められた莢膜多糖遺伝子を検出の対象とする。本明細書では、「検出の対象」のことを慣例に倣い「標的」又は「検出プローブ」とも呼ぶ。莢膜多糖遺伝子を標的にすることで、複数の同属病原菌をまとめて特異的に検出することが可能になる。 In the detection method of the present invention, a capsular polysaccharide gene that has been found to be highly common among pathogens of the same genus is targeted for detection. In this specification, the “target of detection” is also called “target” or “detection probe” in accordance with the conventional practice. By targeting the capsular polysaccharide gene, it becomes possible to specifically detect multiple pathogens of the same gene.
 本発明者らの検討の結果、夾膜遺伝子の内、共通性の高いものはオペロンの5'側に存在する鎖長決定遺伝子、糖鎖ユニットの第1番目の糖を合成するグルコース、ガラクトース、もしくはNアセチルグルコサミン転移酵素遺伝子、糖鎖ユニットを細胞膜の外側に移行させるフリッパーゼ遺伝子であった。特に、同属病原菌間での鎖長決定遺伝子及びグルコース、ガラクトース、もしくはNアセチルグルコサミン転移酵素遺伝子の共通性は高い。そこで好ましくは鎖長決定遺伝子又は第1糖転移酵素遺伝子を標的とする。 As a result of the study by the present inventors, among the capsular genes, a highly common one is a chain length determining gene present on the 5 ′ side of the operon, glucose that synthesizes the first sugar of the sugar chain unit, galactose, Alternatively, it was a N-acetylglucosamine transferase gene, a flippase gene that transfers a sugar chain unit to the outside of the cell membrane. In particular, the commonality of the chain length determining gene and the glucose, galactose, or N-acetylglucosamine transferase gene among the pathogenic bacteria is high. Therefore, the chain length determining gene or the first glycosyltransferase gene is preferably targeted.
 検出対象の病原菌(以下、「検出対象の病原菌」のことを「標的病原菌」とも呼ぶ)は特に限定されない。標的病原菌の例としてストレプトコッカス属(Streptococcus)、スタフィロコッカス属(Staphylococcus)、クロストリジウム属(Clostridium)、シュードモナス属(Pseudomonas)、病原性大腸菌(腸管病原性大腸菌(EPEC)、腸管組織侵入性大腸菌(EIEC)、腸管毒素原性大腸菌(ETEC)、腸管出血性大腸菌(EHEC)、腸管凝集接着性大腸菌(EAggEC))、サルモネラ菌(Salmonella)を挙げることができる。マルチプレックスPCR法等、複数の標的を同時に増幅可能な核酸増幅反応を利用して検出する場合には、ここで例示した病原菌の内の2種類以上、好ましくは3種類以上、更に好ましくは4種類以上を標的病原菌とする。 The pathogenic bacteria to be detected (hereinafter, “pathogenic bacteria to be detected” is also referred to as “target pathogenic bacteria”) is not particularly limited. Examples of target pathogens include Streptococcus, Staphylococcus, Clostridium, Pseudomonas, pathogenic E. coli (enteropathogenic E. coli (EPEC), intestinal tissue invasive E. coli (EIEC) ), Enterotoxigenic Escherichia coli (ETEC), enterohemorrhagic Escherichia coli (EHEC), intestinal agglutinating E. coli (EAggEC)), and Salmonella. When detecting using a nucleic acid amplification reaction capable of simultaneously amplifying a plurality of targets, such as multiplex PCR, two or more, preferably three or more, more preferably four of the pathogenic bacteria exemplified here. The above is the target pathogen.
 後述の実施例に示す通り、本発明者らは複数種類の病原菌について、属毎に共通性及び特異性が極めて高い遺伝子を特定することに成功した。本発明の好ましい一態様では、特定した遺伝子を標的とし、検出の特異性及び精度の向上を図る。以下に、当該態様で標的となる遺伝子を病原菌の種類毎に示す(表1)。
Figure JPOXMLDOC01-appb-T000001
As shown in Examples described later, the present inventors have succeeded in identifying genes with extremely high commonality and specificity for each genus for a plurality of types of pathogenic bacteria. In a preferred embodiment of the present invention, the specified gene is targeted and the detection specificity and accuracy are improved. Below, the gene which becomes a target in the said aspect is shown for every kind of pathogenic microbe (Table 1).
Figure JPOXMLDOC01-appb-T000001
 ストレプトコッカス属の標的遺伝子(cpsE遺伝子)の配列の例として、アンジノサス(S. anginosus)の配列を配列番号1に、ゴルドニイ(S. gordonii)の配列を配列番号2に、オラリス(S. oralis)の配列を配列番号3に、ニューモニエ(S. pneumoniae)の配列を配列番号4に、アガラクチエ(S. agalactiae)の配列を配列番号5にそれぞれ示す。同様に、スタフィロコッカス属の標的遺伝(capE遺伝子)の例として、アウレウス(S. aureus)の配列を配列番号6に示す。また、クロストリジウム属の標的遺伝子(kpsF遺伝子)の例として、テタニ(C. tetani)の配列を配列番号7に示す。シュードモナス属の標的遺伝子(wzz遺伝子)の例として、アエルジノサ(P. aeruginosa)の配列を配列番号8に示す。病原性大腸菌の標的遺伝子(wcaA遺伝子)の配列の例を配列番号9に示す。サルモネラ菌の標的遺伝子(wbaP遺伝子、rfc遺伝子)の配列の例を配列番号10(wbaP遺伝子)と配列番号23(rfc遺伝子)に示す。 As an example of the sequence of the target gene of the genus Streptococcus (cpsE gene), the sequence of S. anginosus is SEQ ID NO: 1, the sequence of S. gordonii is SEQ ID NO: 2, and the sequence of S. oralis The sequence is shown in SEQ ID NO: 3, the sequence of S. pneumoniae is shown in SEQ ID NO: 4, and the sequence of S. agalactiae is shown in SEQ ID NO: 5, respectively. Similarly, as an example of the target inheritance (capE gene) of the genus Staphylococcus, the sequence of S. aureus is shown in SEQ ID NO: 6. Further, as an example of a Clostridial target gene (kpsF gene), the sequence of Tetani (C. テ tetani) is shown in SEQ ID NO: 7. As an example of a target gene of the genus Pseudomonas (wzz gene), the sequence of aeruginosa (P. 番号 aeruginosa) is shown in SEQ ID NO: 8. An example of the sequence of the target gene (wcaA gene) of pathogenic E. coli is shown in SEQ ID NO: 9. Examples of sequences of Salmonella target genes (wbaP gene, rfc gene) are shown in SEQ ID NO: 10 (wbaP gene) and SEQ ID NO: 23 (rfc gene).
 本発明者らの検討の結果、共通性の高い適切な遺伝子を標的として選択すれば、一つの属に対して1~数組(属にもよるが多くても5程度)のプライマーセットを用意すれば、当該属の主な病原菌を網羅的に検出できることが判明した。従って、例えば一つの属(例えばストレプトコッカス属)の病原菌を一括して検出しようとすれば、1~数組のプライマーセットによる核酸増幅反応(例えば、プライマーセットが一つの場合はPCR、プライマーセットが複数組の場合はマルチプレックスPCR)を実施することになる。他方、複数の属を対象とした検出の場合には、属毎に用意したプライマーセット(それぞれ1~数組)を併用して核酸増幅反応(例えばマルチプレックスPCR)を実施すればよい。 As a result of the study by the present inventors, if an appropriate highly common gene is selected as a target, one to several primer sets (about 5 at most depending on the genus) are prepared for one genus. As a result, it was found that the main pathogenic bacteria of the genus can be comprehensively detected. Therefore, for example, when trying to detect pathogens of one genus (for example, Streptococcus genus) at once, a nucleic acid amplification reaction using one to several primer sets (for example, PCR with a single primer set, multiple primer sets) In the case of a set, multiplex PCR) will be performed. On the other hand, in the case of detection for a plurality of genera, a nucleic acid amplification reaction (for example, multiplex PCR) may be carried out using a primer set (one to several sets for each genera) prepared for each genera.
 ここで、本発明で使用可能なプライマーセットの例を以下に示す。
(1)ストレプトコッカス属用のプライマーセット(ストレプトコッカス アガラクチエのcpsIaE遺伝子の配列を基に設計)
 ディレクト(direct):5’-CAATCAAATGACAGGGCTAAT-3’(配列番号11)
 リバース(reverse):5’-TAAAACTAAGGCGTCGCTT-3’(配列番号12)
(2)ストレプトコッカス属用のプライマーセット(ストレプトコッカス アンジノサスのcpsE遺伝子の配列を基に設計)
 ディレクト(direct):5’-TGTACGTAGATGCCGAGG-3’(配列番号13)
 リバース(reverse):5’-TTAAAGCTCAATCGCCGC-3’(配列番号14)
(3)シュードモナス属用のプライマーセット(シュードモナス アエルジノサのwzz遺伝子の配列を基に設計)
 ディレクト(direct):5’-CGTGAAGATCGTAT-3’(配列番号15)
 リバース(reverse):5’-GGAATAAAAGGATCATC-3’(配列番号16)
(4)スタフィロコッカス属用のプライマーセット(スタフィロコッカス アウレウスのcapE遺伝子の配列を基に設計)
 ディレクト(direct):5’-ATTAATTACTGGGGGCACAG-3’(配列番号17)
 リバース(reverse):5’-TAGCATTAATAGGATACGCT-3’(配列番号18)
(5)クロストリジウム属用のプライマーセット(クロストリジウム テタニのkpsF遺伝子の配列を基に設計)
 ディレクト(direct):5’-CATGGAGATTTAGGAATGAT-3’(配列番号19)
 リバース(reverse):5’-ATCTCCTAAAAC-3’(配列番号20)
(6)サルモネラ菌(サルモネラ エンテリカのrfc遺伝子の配列を基に設計)
 ディレクト(direct):5’-CATACCTGATAATAACAGTC-3’(配列番号21)
 リバース(reverse):5’-GGTTAATTCGTATATTCTTC-3’(配列番号22)
Here, the example of the primer set which can be used by this invention is shown below.
(1) Primer set for Streptococcus (designed based on the sequence of the cpsIaE gene of Streptococcus agaractie)
Direct: 5'-CAATCAAATGACAGGGCTAAT-3 '(SEQ ID NO: 11)
Reverse: 5'-TAAAACTAAGGCGTCGCTT-3 '(SEQ ID NO: 12)
(2) Primer set for Streptococcus genus (designed based on the sequence of Streptococcus anjinosas cpsE gene)
Direct: 5'-TGTACGTAGATGCCGAGG-3 '(SEQ ID NO: 13)
Reverse: 5′-TTAAAGCTCAATCGCCGC-3 ′ (SEQ ID NO: 14)
(3) Primer set for Pseudomonas (designed based on the sequence of Pseudomonas aeruginosa wzz gene)
Direct: 5'-CGTGAAGATCGTAT-3 '(SEQ ID NO: 15)
Reverse: 5'-GGAATAAAAGGATCATC-3 '(SEQ ID NO: 16)
(4) Primer set for Staphylococcus (designed based on the sequence of Staphylococcus aureus capE gene)
Direct: 5'-ATTAATTACTGGGGGCACAG-3 '(SEQ ID NO: 17)
Reverse: 5′-TAGCATTAATAGGATACGCT-3 ′ (SEQ ID NO: 18)
(5) Primer set for the genus Clostridium (designed based on the sequence of the kpsF gene of Clostridium tetani)
Direct: 5'-CATGGAGATTTAGGAATGAT-3 '(SEQ ID NO: 19)
Reverse: 5′-ATCTCCTAAAAC-3 ′ (SEQ ID NO: 20)
(6) Salmonella (designed based on the rfc gene sequence of Salmonella enterica)
Direct: 5'-CATACCTGATAATAACAGTC-3 '(SEQ ID NO: 21)
Reverse: 5'-GGTTAATTCGTATATTCTTC-3 '(SEQ ID NO: 22)
 プライマーセットを構成する各オリゴヌクレオチドは常法で調製すればよい。例えば汎用的なDNA合成装置を用いて化学的に合成することができる。 Each oligonucleotide constituting the primer set may be prepared by a conventional method. For example, it can be chemically synthesized using a general-purpose DNA synthesizer.
 本発明の検出法では典型的にはPCR法を利用する。これによって汎用性及び迅速性の向上が図られる。好ましくは、マルチプレックスPCR法を採用する。マルチプレックスPCR法とは、複数組のプライマーセットを同時に使用するPCR法であり、複数の標的を一度に検出することを可能にする(例えば米国特許5,582,989、Journal of Microbiological Methods 68 (2007) 52 - 59 等を参照)。従って、マルチプレックスPCR法を用いれば、一度に検出できる病原菌の種類が増大し、迅速性及び簡便性が更に向上する。本発明の検出法では、典型的には以下のステップ(1)~(4)を実施し、複数種類の病原菌を同時に検出する。
 (1)DNAサンプルを用意するステップ
 (2)複数組のプライマーセットを用意するステップであって、各プライマーセットが互いに異なる標的病原菌の莢膜多糖遺伝子を標的としたプライマーセットであるステップ
 (3)前記DNAサンプルを鋳型とし、前記複数組のプライマーと同時に用いて核酸増幅反応を実施するステップ
 (4)増幅産物を検出するステップ
The detection method of the present invention typically uses a PCR method. This improves versatility and quickness. Preferably, a multiplex PCR method is employed. The multiplex PCR method is a PCR method using a plurality of primer sets at the same time, and enables detection of a plurality of targets at once (for example, US Pat. No. 5,582,989, Journal of Microbiological Methods 68 (2007) 52 − (See 59). Therefore, if the multiplex PCR method is used, the types of pathogenic bacteria that can be detected at a time are increased, and the rapidity and convenience are further improved. In the detection method of the present invention, typically, the following steps (1) to (4) are performed to detect a plurality of types of pathogenic bacteria simultaneously.
(1) Step of preparing a DNA sample (2) Step of preparing a plurality of primer sets, each primer set being a primer set targeting capsular polysaccharide genes of different target pathogens (3) A step of performing a nucleic acid amplification reaction using the DNA sample as a template and simultaneously with the plurality of sets of primers (4) A step of detecting an amplification product
 ステップ(1)ではDNAサンプルを用意する。本発明の検出法は様々な検査材料(検体)中の病原菌を検出することに利用可能である。検査材料の例として土壌、下水、食品、拭き取り試料、尿、糞便、蓄尿、痰、吐瀉物を挙げることができる。必要に応じて不純物の除去や希釈等を行った後、検査材料からDNAサンプルを調製し、本発明の検出法を適用する。DNAサンプルの調製は常法に従えばよい。DNAサンプル調製用のキットも多数市販されており、このようなキットを用いれば簡便にDNAサンプルを得ることが可能である。 In step (1), prepare a DNA sample. The detection method of the present invention can be used to detect pathogenic bacteria in various test materials (specimens). Examples of test materials include soil, sewage, food, wiped samples, urine, stool, urine storage, sputum, and vomit. After removing impurities or diluting as necessary, a DNA sample is prepared from the test material, and the detection method of the present invention is applied. A DNA sample may be prepared by a conventional method. Many kits for preparing DNA samples are also commercially available, and DNA samples can be easily obtained by using such kits.
 ステップ(2)では、後のステップ(3)において複数種類の病原菌の標的遺伝子(莢膜多糖遺伝子)を同時に増幅することが可能になるように、各プライマーセットが互いに異なる標的病原菌の莢膜多糖遺伝子を標的とした複数のプライマーセットを用意する。プライマーセットの数は例えば2組~5組とする。プライマーセットの数が多いほど同時に検出できる病原菌の種類は増加する一方で、非特異的な増幅が生ずる可能性が増大することやプライマーの設計が困難になるといった問題がある。従って、プライマーセットの数を5組~30組にするとよい。病原菌の一つの属に対して用意するプライマーセットの数は一組でなくてもよい。即ち、一つの属に対して2組以上(例えば2組、3組、4組又は5組)のプライマーセットを用意することにしてもよい。 In step (2), in order to be able to simultaneously amplify the target genes (capsular polysaccharide genes) of multiple types of pathogenic bacteria in the subsequent step (3), each primer set has a different target pathogenic capsular polysaccharide. Prepare multiple primer sets targeting genes. The number of primer sets is, for example, 2 to 5 sets. As the number of primer sets increases, the number of pathogenic bacteria that can be detected simultaneously increases, but there is a problem that the possibility of non-specific amplification increases and the design of primers becomes difficult. Therefore, the number of primer sets is preferably 5 to 30 sets. The number of primer sets prepared for one genus of pathogenic bacteria may not be one. That is, two or more primer sets (for example, 2, 3, 4, or 5) may be prepared for one genus.
 増幅産物(PCR産物)の検出を容易にするために標識物質でラベルされたプライマーセットを用いることにしてもよい。標識物質の例は蛍光物質、化学発光物質、ビオチン、放射性同位体である。 In order to facilitate detection of amplification products (PCR products), a primer set labeled with a labeling substance may be used. Examples of labeling substances are fluorescent substances, chemiluminescent substances, biotin, and radioisotopes.
 ステップ(3)では、ステップ(1)で用意したDNAサンプルを鋳型とし、ステップ(2)で用意した複数組のプライマーセットを同時に用いて核酸増幅反応を実施する。典型的にはマルチプレックスPCRを実施する。核酸増幅反応の各工程は常法で行えばよく、PCRを採用するのであれば例えば市販のPCR用装置(例えばタカラバイオ社のサーマルサイクラーパーソナル)を用いることができる。酵素や試薬等をセットにしたPCR用のキットも多数市販されている。このようなキットを利用すれば簡便にPCRの各工程を実施することができる。PCRの条件はプライマーのTm等を考慮して設定すればよい。PCRの条件の例を挙げると次の通りである。即ち、熱変性90℃~98℃、アニーリング30℃~65℃、伸長反応65℃~75℃である。反応サイクルの繰り返し数は例えば20~40とする。ポリメラーゼには例えばEx Taq(登録商標、タカラバイオ株式会社)、gene taq(株式会社ニッポン・ジーン)、KOD plus (東洋紡株式会社)等を用いることができる。 In step (3), the nucleic acid amplification reaction is performed using the DNA sample prepared in step (1) as a template and using the plurality of primer sets prepared in step (2) simultaneously. Typically, multiplex PCR is performed. Each step of the nucleic acid amplification reaction may be performed by a conventional method. If PCR is employed, for example, a commercially available PCR device (for example, thermal cycler personal manufactured by Takara Bio Inc.) can be used. Numerous PCR kits that include enzymes, reagents, etc. are also commercially available. By using such a kit, each step of PCR can be carried out easily. PCR conditions may be set in consideration of primer Tm and the like. Examples of PCR conditions are as follows. That is, heat denaturation is 90 ° C to 98 ° C, annealing is 30 ° C to 65 ° C, and extension reaction is 65 ° C to 75 ° C. The number of reaction cycle repetitions is, for example, 20-40. For example, Ex Taq (registered trademark, Takara Bio Inc.), gene taq (Nippon Gene), KOD plus (Toyobo Co., Ltd.), etc. can be used as the polymerase.
 ステップ(4)では増幅産物を検出するが、検出法は特に限定されない。例えば電気泳動を利用した方法、クロマトグラフィーを利用した方法、DNAアレイを利用した方法等を採用することができる。電気泳動を利用した方法の具体例を示すと次の通りである。PCR後の反応液をアガロース等のゲルにアプライして電気泳動を行った後、臭化エチジウムで染色する。染色によって現れるバンドの位置(移動距離)を指標にして目的のDNA断片(増幅産物)の有無を判別する。併せて、バンドの濃淡によって目的のDNA断片の量を判定することにしてもよい。電気泳動には例えば2%TAE(Tris acetate, EDTA)アガロース又は5%TBE(Tris borate, EDTA)ポリアクリルアミドゲルを使用することができる。 In step (4), the amplification product is detected, but the detection method is not particularly limited. For example, a method using electrophoresis, a method using chromatography, a method using a DNA array, and the like can be employed. A specific example of the method using electrophoresis is as follows. The reaction solution after PCR is applied to a gel such as agarose and subjected to electrophoresis, followed by staining with ethidium bromide. The presence or absence of the target DNA fragment (amplified product) is determined using the position (movement distance) of the band that appears by staining as an index. In addition, the amount of the target DNA fragment may be determined based on the density of the band. For electrophoresis, for example, 2% TAE (Tris acetate, EDTA) agarose or 5% TBE (Tris borate, EDTA) polyacrylamide gel can be used.
(病原菌の検出用キット)
 本発明の他の局面は病原菌の検出用キットを提供する。本発明の検出用キットは、複数の病原菌を同時に検出することを可能にすべく、ストレプトコッカス属のcpsE遺伝子を標的としたプライマーセット、スタフィロコッカス属のcapE遺伝子を標的としたプライマーセット、クロストリジウム属のkpsF遺伝子を標的としたプライマーセット、シュードモナス属のwzz遺伝子を標的としたプライマーセット、病原性大腸菌のwcaA遺伝子を標的としたプライマーセット、サルモネラ菌のwbaP遺伝子を標的としたプライマーセット、及びサルモネラ菌のrfc遺伝子を標的としたプライマーセットからなる群より選択される2以上のプライマーセットを含む。
(Pathogen detection kit)
Another aspect of the present invention provides a kit for detecting pathogenic bacteria. The detection kit of the present invention is a primer set targeting the Streptococcus cpsE gene, a primer set targeting the Staphylococcus capE gene, and Clostridium spp. Primer set targeting kpsF gene, primer set targeting Pseudomonas wzz gene, primer set targeting wcaA gene of pathogenic E. coli, primer set targeting wbaP gene of Salmonella, and rfc of Salmonella It includes two or more primer sets selected from the group consisting of primer sets targeting genes.
 病原菌の一つの属に対して複数組のプライマーセットを用いることにしてもよい。当該態様の一例(ストレプトコッカス属の検出とシュードモナス属の検出が可能なキットの例)を示すと、ストレプトコッカス属のcpsE遺伝子を標的としたプライマーセットとして、特定の種(一つ又は複数)のcpsE遺伝子を標的としたプライマーセットと、当該種とは異なる種(一つ又は複数)のcpsE遺伝子を標的としたプライマーセットを含むとともに、シュードモナス属のwzz遺伝子を標的としたプライマーセットとして、特定の種(一つ又は複数)のwzz遺伝子を標的としたプライマーセットと、当該種とは異なる種(一つ又は複数)のwzz遺伝子を標的としたプライマーセットを含むキットである。尚、この例では病原菌の一つの属に対して2組のプライマーセットを使用することにしたが、これに限られるものではない。 Multiple primer sets may be used for one genus of pathogenic bacteria. An example of this embodiment (an example of a kit capable of detecting Streptococcus spp. And Pseudomonas spp.) Is shown. As a primer set targeting the Streptococcus cpsE gene, the cpsE gene of a specific species (one or more) And a primer set targeting a cpsE gene of one or more species different from the species, and a primer set targeting a Pseudomonas wzz gene as a specific species ( A kit comprising a primer set targeting one or more wzz genes and a primer set targeting a wzz gene of a species (one or more) different from the species. In this example, two primer sets are used for one genus of pathogenic bacteria, but the present invention is not limited to this.
 プライマーセットを構成するプライマーは、標的遺伝子又はその一部を特異的に増幅可能なものであれば特に限定されない。また、プライマーの長さは、採用する核酸増幅反応におけるプライマー(例えばPCRプライマー)として機能する限り限定されず、例えば15~30bp、好ましくは20~30bp、更に好ましくは20~25bpである。プライマーとそれがハイブリダイズする標的遺伝子の領域との間に1~数個、好ましくは1~5個、更に好ましくは1~3個程度のミスマッチが存在していてもよい。 The primer constituting the primer set is not particularly limited as long as it can specifically amplify the target gene or a part thereof. The length of the primer is not limited as long as it functions as a primer (for example, a PCR primer) in the nucleic acid amplification reaction employed, and is, for example, 15 to 30 bp, preferably 20 to 30 bp, more preferably 20 to 25 bp. There may be 1 to several, preferably 1 to 5, more preferably about 1 to 3 mismatches between the primer and the region of the target gene to which it hybridizes.
 プライマーセットの具体例は上掲のストレプトコッカス属用のプライマーセット(配列番号11、12:ストレプトコッカス アガラクチエのcpsIaE遺伝子の配列を基に設計したもの)、ストレプトコッカス属用のプライマーセット(配列番号13、14:ストレプトコッカス アンジノサスのcpsE遺伝子の配列を基に設計したもの)、シュードモナス属用のプライマーセット(配列番号15、16)、スタフィロコッカス属用のプライマーセット(配列番号17、18)、クロストリジウム属用のプライマーセット(配列番号19、20)、サルモネラ菌用のプライマーセット(配列番号21、22)である。 Specific examples of the primer set include the above-mentioned primer set for the genus Streptococcus (SEQ ID Nos. 11 and 12: designed based on the sequence of the cpsIaE gene of Streptococcus agalactie), and the primer set for the genus Streptococcus (SEQ ID Nos. 13 and 14: Streptococcus anjinosas based on the sequence of cpsE gene), Pseudomonas genus primer set (SEQ ID NOs: 15 and 16), Staphylococcus genus primer set (SEQ ID NOs: 17 and 18), Clostridium genus primer A set (SEQ ID NOs: 19 and 20) and a primer set (SEQ ID NOs: 21 and 22) for Salmonella.
 核酸増幅反応(典型的にはPCR)の各工程に必要な試薬(DNAポリメラーゼ、緩衝液など)や検出の際に必要な試薬(ゲル作製用の試薬、染色液など)や容器、器具等を本発明の検出用キットに含めてもよい。通常、本発明の検出用キットには取り扱い説明書が添付される。 Reagents necessary for each step of nucleic acid amplification reaction (typically PCR) (DNA polymerase, buffer solution, etc.), reagents required for detection (reagents for gel preparation, stain solution, etc.), containers, instruments, etc. It may be included in the detection kit of the present invention. Usually, an instruction manual is attached to the detection kit of the present invention.
1.標的遺伝子の検索
 莢膜多糖はほとんどすべての病原菌に存在しており、しかも病原性と深く関係がある(図1)。莢膜多糖は通常、細胞膜の脂質から突き出した形状を取っており、おもに宿主からの防御に機能する。その糖鎖構造はきわめて多様性に富み、菌の種類ごとに異なる。その一方で共通な構造も多く見られ、根元の部分、すなわち細胞膜の脂質と最初に結合する糖は通常グルコースもしくはガラクトースである。また、莢膜多糖の合成に関与する酵素や遺伝子の共通性が非常に高い。
1. Search for target genes Capsular polysaccharides are present in almost all pathogens and are closely related to pathogenicity (Fig. 1). The capsular polysaccharide usually has a shape protruding from the lipid of the cell membrane and functions mainly for defense from the host. Its sugar chain structure is extremely diverse and varies depending on the type of fungus. On the other hand, there are many common structures, and the sugar that first binds to the lipids of the cell membrane, ie, the cell membrane, is usually glucose or galactose. In addition, the commonality of enzymes and genes involved in the synthesis of capsular polysaccharide is very high.
 土壌サンプル等、環境中から病原菌を簡便に検出する方法の確立を目指し、公共のデータベースに登録されている遺伝子情報を基にしていくつかの病原菌について莢膜遺伝子の共通性及び特異性を検討した。その結果、ストレプトコッカス属の病原菌ではグルコース転移酵素をコードするcpsE遺伝子の共通性及び特異性が高いことが判明した(図1)。また、シュードモナス アエルジノサの多糖(O抗原と呼ばれる)関連遺伝子の構造を詳細に検討した結果から、シュードモナス属ではwzz遺伝子(ストレプトコッカス属のCpsCの相同遺伝子)の共通性及び特異性が高いことが示唆された。一方、スタフィロコッカス アウレウスの莢膜多糖遺伝子の構造を詳細に検討した結果、スタフィロコッカス属の遺伝子構造に類似していることが明らかになるとともに、スタフィロコッカス属病原菌ではcapE遺伝子の共通性及び特異性が高いことが示唆された。また、クロストリジウム テタニのポリシアル酸合成系遺伝子であるkpsF遺伝子に注目して検討したところ、ホモロジー検索でヒットするものは全て病原菌であり、病原性のないクロストリジウム属細菌はヒットしなかった。このようにクロストリジウム属病原菌の場合、共通性及び特異性の高い遺伝子としてkpsF遺伝子が有望であることが示唆された。更には、病原性大腸菌についてはwcaA遺伝子の共通性が、サルモネラ菌についてはwbaP遺伝子及びrfc遺伝子(cpsE遺伝子やcapE遺伝子に相当する)の共通性がそれぞれ高いことが判明した。 Aiming to establish a simple method for detecting pathogens in the environment such as soil samples, we examined the commonality and specificity of capsular genes for several pathogens based on the genetic information registered in public databases. . As a result, it was found that the pathogenic bacteria belonging to the genus Streptococcus have high commonality and specificity of the cpsE gene encoding glucose transferase (FIG. 1). In addition, the results of a detailed study of the structure of the Pseudomonas aeruginosa polysaccharide (called O antigen) gene suggests that in Pseudomonas, the wzz gene (the CpsC homologue of Streptococcus) is highly common and specific. It was. On the other hand, a detailed examination of the structure of the capsular polysaccharide gene of Staphylococcus aureus revealed that it was similar to the gene structure of Staphylococcus spp. And it was suggested that the specificity is high. In addition, when the kpsF gene, which is a polysialic acid synthesis system gene of Clostridium tetani, was examined, all the hits in the homology search were pathogenic bacteria, and no Clostridium bacteria without pathogenicity were hit. Thus, in the case of Clostridium pathogens, it was suggested that the kpsF gene is promising as a highly common and specific gene. Furthermore, it was found that the commonality of the wcaA gene was high for pathogenic E. coli, and the commonality of the wbaP gene and the rfc gene (corresponding to cpsE gene and capE gene) was high for Salmonella.
 以上の通り、特異的な検出に有用な標的遺伝子としてストレプトコッカス属病原菌についてはcpsE遺伝子、シュードモナス属病原菌についてはwzz遺伝子、スタフィロコッカス属病原菌についてはcapE遺伝子、クロストリジウム属病原菌についてはkpsF遺伝子、病原性大腸菌についてはwcaA遺伝子、サルモネラ菌についてはwbaP遺伝子及びrfc遺伝子が見出された。 As mentioned above, cpsE gene for Streptococcus pathogens, wzz gene for Pseudomonas pathogens, capE gene for Staphylococcus pathogens, kpsF gene for Clostridium pathogens, pathogenicity The wcaA gene was found for E. coli and the wbaP and rfc genes were found for Salmonella.
2.検出用プライマーセットの設計
 以下の通り、標的遺伝子毎に検出用プライマーセットを設計した。
(ストレプトコッカス アガラクチエのcpsIaE遺伝子を標的とするプライマーセット)
 ディレクト(direct):5'-CAATCAAATGACAGGGCTAAT-3'(配列番号11)
 リバース(reverse):5'-TAAAACTAAGGCGTCGCTT-3'(配列番号12)
(ストレプトコッカス アンジノサスのcpsE遺伝子を標的とするプライマーセット)
 ディレクト(direct):5'-TGTACGTAGATGCCGAGG-3'(配列番号13)
 リバース(reverse):5'-TTAAAGCTCAATCGCCGC-3'(配列番号14)
(シュードモナス アエルジノサのwzz遺伝子を標的とするプライマーセット)
 ディレクト(direct):5'-CGTGAAGATCGTAT-3'(配列番号15)
 リバース(reverse):5'-GGAATAAAAGGATCATC-3'(配列番号16)
(スタフィロコッカス アウレウスのcapE遺伝子を標的とするプライマーセット)
 ディレクト(direct):5'-ATTAATTACTGGGGGCACAG-3'(配列番号17)
 リバース(reverse):5'-TAGCATTAATAGGATACGCT-3'(配列番号18)
(クロストリジウム テタニのkpsF遺伝子を標的とするプライマーセット)
 ディレクト(direct):5'-CATGGAGATTTAGGAATGAT-3'(配列番号19)
 リバース(reverse):5'-ATCTCCTAAAAC-3'(配列番号20)
(サルモネラ エンテリカのrfc遺伝子を標的とするプライマーセット)
 ディレクト(direct):5’-CATACCTGATAATAACAGTC-3’(配列番号21)
 リバース(reverse):5’-GGTTAATTCGTATATTCTTC-3’(配列番号22)
2. Design of detection primer set A detection primer set was designed for each target gene as follows.
(Primer set targeting the cpsIaE gene of Streptococcus agalactie)
Direct: 5'-CAATCAAATGACAGGGCTAAT-3 '(SEQ ID NO: 11)
Reverse: 5'-TAAAACTAAGGCGTCGCTT-3 '(SEQ ID NO: 12)
(Primer set targeting the cpsE gene of Streptococcus anginosas)
Direct: 5'-TGTACGTAGATGCCGAGG-3 '(SEQ ID NO: 13)
Reverse: 5′-TTAAAGCTCAATCGCCGC-3 ′ (SEQ ID NO: 14)
(Primer set targeting the wzz gene of Pseudomonas aeruginosa)
Direct: 5'-CGTGAAGATCGTAT-3 '(SEQ ID NO: 15)
Reverse: 5'-GGAATAAAAGGATCATC-3 '(SEQ ID NO: 16)
(Primer set targeting the capE gene of Staphylococcus aureus)
Direct: 5'-ATTAATTACTGGGGGCACAG-3 '(SEQ ID NO: 17)
Reverse: 5′-TAGCATTAATAGGATACGCT-3 ′ (SEQ ID NO: 18)
(Primer set targeting the kpsF gene of Clostridium tetani)
Direct: 5'-CATGGAGATTTAGGAATGAT-3 '(SEQ ID NO: 19)
Reverse: 5′-ATCTCCTAAAAC-3 ′ (SEQ ID NO: 20)
(Primer set targeting the rfc gene of Salmonella enterica)
Direct: 5'-CATACCTGATAATAACAGTC-3 '(SEQ ID NO: 21)
Reverse: 5'-GGTTAATTCGTATATTCTTC-3 '(SEQ ID NO: 22)
3.特異的検出の確認
(1)ストレプトコッカス アガラクチエのcpsIaE遺伝子を標的とするプライマーセットの特異性
 上掲のプライマーセット(配列番号11及び配列番号12)の特異性を以下の手順で検討した。DNA抽出キット(ISOL、株式会社ニッポンジーン)を用い土壌(Kuridashi)からDNAを調製した。以下の試験区、即ち、ネガティブコントロール(DNAサンプルなし)、土壌DNAサンプル(200ng)のみ、土壌DNAサンプル(200ng)とストレプトコッカス アガラクチエのゲノムDNA(1 fg:2x10-25mol)、土壌DNAサンプル(200ng)とストレプトコッカス アガラクチエのゲノムDNA(1 pg:2x10-22mol)、土壌DNAサンプル(200pg)とストレプトコッカス アガラクチエのゲノムDNA(1 ng:2x10-19mol)、を設定し、上記プライマーセット(配列番号11及び配列番号12)を用いてPCRを行った。尚、KOD plusDNAポリメラーゼ(東洋紡株式会社)を使用し、PCRの条件は次の通りとした。
 <PCRの条件>
 96℃で2分、98℃で10秒;50℃で30秒;68℃で20秒(35サイクル)
3. Confirmation of Specific Detection (1) Specificity of primer set targeting the cpsIaE gene of Streptococcus agaractie The specificity of the above primer sets (SEQ ID NO: 11 and SEQ ID NO: 12) was examined by the following procedure. DNA was prepared from soil (Kuridashi) using a DNA extraction kit (ISOL, Nippon Gene Co., Ltd.). The following test groups: negative control (no DNA sample), soil DNA sample (200 ng) only, soil DNA sample (200 ng) and Streptococcus agalactiae genomic DNA (1 fg: 2x10 -25 mol), soil DNA sample (200 ng) ) And Streptococcus agalactie genomic DNA (1 pg: 2x10 -22 mol), soil DNA sample (200 pg) and Streptococcus agalactia genomic DNA (1 ng: 2x10 -19 mol), and the above primer set (SEQ ID NO: 11) And SEQ ID NO: 12). KOD plus DNA polymerase (Toyobo Co., Ltd.) was used and the PCR conditions were as follows.
<PCR conditions>
2 minutes at 96 ° C, 10 seconds at 98 ° C; 30 seconds at 50 ° C; 20 seconds at 68 ° C (35 cycles)
 PCR後の各サンプルを電気泳動(2%TAE(Tris酢酸, EDTA)アガロース)に供し、増幅の有無を確認した。図2に示す通り、土壌サンプルからはストレプトコッカス アガラクチエの標的遺伝子が増幅せず、使用したプライマーの特異性の高さが確認された。 Each sample after PCR was subjected to electrophoresis (2% TAE (Tris acetic acid, EDTA) agarose) to confirm the presence or absence of amplification. As shown in FIG. 2, the target gene of Streptococcus agalactie was not amplified from the soil sample, and the specificity of the used primer was confirmed.
(2)シュードモナス アエルジノサのwzz遺伝子を標的とするプライマーセットの特異性
 上掲のプライマーセット(配列番号15及び配列番号16)の特異性を以下の通り検討した。DNA抽出キット(ISOL、株式会社ニッポンジーン)を用い土壌(Kuridashi)からDNAを調製した。以下の試験区、即ち、ネガティブコントロール(DNAサンプルなし)、土壌DNAサンプル(200ng)のみ、土壌DNAサンプル(200ng)とシュードモナス アエルジノサのゲノムDNA(1 fg)、土壌DNAサンプル(200ng)とシュードモナス アエルジノサのゲノムDNA(1 fg)、土壌DNAサンプル(200pg)とシュードモナス アエルジノサのゲノムDNA(1 ng)、土壌DNAサンプル(200pg)とシュードモナス アエルジノサのゲノムDNA(1 μg)、を設定し、上記プライマーセット(配列番号15及び配列番号16)を用いてPCRを行った。尚、KOD plusDNAポリメラーゼ(東洋紡株式会社)を使用し、PCRの条件は次の通りとした。
 <PCRの条件>
 96℃で2分、98℃で10秒;40℃で30秒;68℃で20秒(35サイクル)
(2) Specificity of the primer set targeting the P. aeruginosa wzz gene The specificity of the above primer sets (SEQ ID NO: 15 and SEQ ID NO: 16) was examined as follows. DNA was prepared from soil (Kuridashi) using a DNA extraction kit (ISOL, Nippon Gene Co., Ltd.). The following test groups: negative control (no DNA sample), soil DNA sample (200 ng) only, soil DNA sample (200 ng) and Pseudomonas aeruginosa genomic DNA (1 fg), soil DNA sample (200 ng) and Pseudomonas aeruginosa Set genomic DNA (1 fg), soil DNA sample (200 pg) and Pseudomonas aeruginosa genomic DNA (1 ng), soil DNA sample (200 pg) and Pseudomonas aeruginosa genomic DNA (1 μg), and set the above primer set (sequence) PCR was performed using No. 15 and SEQ ID No. 16). KOD plus DNA polymerase (Toyobo Co., Ltd.) was used and the PCR conditions were as follows.
<PCR conditions>
2 minutes at 96 ° C, 10 seconds at 98 ° C; 30 seconds at 40 ° C; 20 seconds at 68 ° C (35 cycles)
 PCR後の各サンプルを電気泳動(2%TAE(Tris acetate, EDTA)アガロース)に供し、増幅の有無を確認した。図3に示す通り、土壌サンプルからはシュードモナス アエルジノサの標的遺伝子が増幅せず、使用したプライマーの特異性の高さが確認された。 Each sample after PCR was subjected to electrophoresis (2% TAE (Trisacetate, EDTA) agarose) to confirm the presence or absence of amplification. As shown in FIG. 3, the target gene of Pseudomonas aeruginosa was not amplified from the soil sample, confirming the high specificity of the primers used.
(3)マルチプレックスPCRによる特異的増幅
 2種類のプライマーセット(ストレプトコッカス アガラクチエのcpsIaE遺伝子を標的とするプライマーセット(配列番号11及び配列番号12)とストレプトコッカス アンジノサスのcpsE遺伝子を標的とするプライマーセット(配列番号13及び配列番号14))を用い、ストレプトコッカス アガラクチエのゲノムDNA(10ng)とストレプトコッカス アンジノサスのゲノムDNA(10ng)を混合したものを鋳型としてマルチプレックスPCRを行った。尚、PCRや電気泳動の条件等は上記(1)の場合と同一にした。
(3) Specific amplification by multiplex PCR Two types of primer sets (a primer set targeting the cpsIaE gene of Streptococcus agalactie (SEQ ID NO: 11 and SEQ ID NO: 12)) and a primer set targeting the cpsE gene of Streptococcus anjinosas (sequence) No. 13 and SEQ ID NO: 14)), and multiplex PCR was performed using as a template a mixture of Streptococcus agalactie genomic DNA (10 ng) and Streptococcus anginosas genomic DNA (10 ng). The PCR and electrophoresis conditions were the same as in (1) above.
 図4に示す通り、二つのプライマーセットを併用した場合(右レーン)には各プライマーセットに対応するバンドを認めた。即ち、マルチプレックスPCRによって標的遺伝子を同時に増幅・検出できることが示された。 As shown in FIG. 4, when two primer sets were used together (right lane), bands corresponding to each primer set were recognized. That is, it was shown that the target gene can be amplified and detected simultaneously by multiplex PCR.
(4)スタフィロコッカス アウレウスのcapE遺伝子を標的とするプライマーセットの特異性
 上掲のプライマーセット(配列番号17及び配列番号18)の特異性を以下の手順で検討した。以下の試験区、即ち、ネガティブコントロール(DNAサンプルなし)、スタフィロコッカス アウレウスのゲノムDNA(0.1ng、1ng、10ng)を設定し、上記プライマーセット(配列番号17及び配列番号18)を用いてPCRを行った。尚、KOD plusDNAポリメラーゼ(東洋紡株式会社)を使用し、PCRの条件は次の通りとした。
 <PCRの条件>
 94℃で2分、98℃で10秒;50℃で30秒;68℃で20秒(35サイクル)
(4) Specificity of primer set targeting Staphylococcus aureus capE gene The specificity of the above primer sets (SEQ ID NO: 17 and SEQ ID NO: 18) was examined by the following procedure. Set the following test groups, ie negative control (no DNA sample), Staphylococcus aureus genomic DNA (0.1 ng, 1 ng, 10 ng), and PCR using the above primer sets (SEQ ID NO: 17 and SEQ ID NO: 18) Went. KOD plus DNA polymerase (Toyobo Co., Ltd.) was used and the PCR conditions were as follows.
<PCR conditions>
94 ° C for 2 minutes, 98 ° C for 10 seconds; 50 ° C for 30 seconds; 68 ° C for 20 seconds (35 cycles)
 PCR後の各サンプルを電気泳動(2%TAE(Tris酢酸, EDTA)アガロース)に供し、増幅の有無を確認した。図5左に示す通り、標的遺伝子の特異的な増幅を認めた。また、微量サンプルからも高感度で検出できることが示された。この通り、プライマーの特異性の高さが確認された。 Each sample after PCR was subjected to electrophoresis (2% TAE (Tris acetic acid, EDTA) agarose) to confirm the presence or absence of amplification. As shown in the left of FIG. 5, specific amplification of the target gene was observed. It was also shown that it can be detected with high sensitivity from a small amount of sample. As described above, the high specificity of the primer was confirmed.
(5)サルモネラ エンテリカのrfc遺伝子を標的とするプライマーセットの特異性
 上掲のプライマーセット(配列番号21及び配列番号22)の特異性を以下の手順で検討した。以下の試験区、即ち、ネガティブコントロール(DNAサンプルなし)、サルモネラ エンテリカのゲノムDNA(0.1ng、1ng、10ng)を設定し、上記プライマーセット(配列番号21及び配列番号22)を用いてPCRを行った。尚、KOD plusDNAポリメラーゼ(東洋紡株式会社)を使用し、PCRの条件は次の通りとした。
 <PCRの条件>
 94℃で2分、98℃で10秒;40℃で30秒;68℃で20秒(35サイクル)
(5) Specificity of the primer set targeting the rfc gene of Salmonella enterica The specificity of the above primer sets (SEQ ID NO: 21 and SEQ ID NO: 22) was examined by the following procedure. Set the following test groups, ie, negative control (no DNA sample), genomic DNA of Salmonella enterica (0.1 ng, 1 ng, 10 ng) and perform PCR using the above primer sets (SEQ ID NO: 21 and SEQ ID NO: 22). It was. KOD plus DNA polymerase (Toyobo Co., Ltd.) was used and the PCR conditions were as follows.
<PCR conditions>
94 ° C for 2 minutes, 98 ° C for 10 seconds; 40 ° C for 30 seconds; 68 ° C for 20 seconds (35 cycles)
 PCR後の各サンプルを電気泳動(2%TAE(Tris酢酸, EDTA)アガロース)に供し、増幅の有無を確認した。図5右に示す通り、高い特異性及び感度で標的遺伝子を検出できた。即ち、プライマーの有用性が示された。 Each sample after PCR was subjected to electrophoresis (2% TAE (Tris acetic acid, EDTA) agarose) to confirm the presence or absence of amplification. As shown in the right of FIG. 5, the target gene could be detected with high specificity and sensitivity. That is, the usefulness of the primer was shown.
(6)マルチプレックスPCRによる特異的増幅
 2種類のプライマーセット(スタフィロコッカス アウレウスのcapE遺伝子を標的とするプライマーセット(配列番号17及び配列番号18)とサルモネラ エンテリカのrfc遺伝子を標的とするプライマーセット(配列番号21及び配列番号22))を用い、スタフィロコッカス アウレウスのゲノムDNAとサルモネラ エンテリカのゲノムDNAを混合したものを鋳型としてマルチプレックスPCRを行った。尚、PCRや電気泳動の条件等は上記(5)の場合と同一にした。
(6) Specific amplification by multiplex PCR Two types of primer sets (primer sets targeting the capE gene of Staphylococcus aureus (SEQ ID NO: 17 and SEQ ID NO: 18) and primer sets targeting the rfc gene of Salmonella enterica (SEQ ID NO: 21 and SEQ ID NO: 22)), multiplex PCR was performed using a mixture of Staphylococcus aureus genomic DNA and Salmonella enterica genomic DNA as a template. The PCR and electrophoresis conditions were the same as in the case of (5) above.
 図6に示す通り、各プライマーセットに対応するバンドを認めた。即ち、マルチプレックスPCRによって二つの標的遺伝子を同時に増幅・検出できることが示された。 As shown in FIG. 6, bands corresponding to each primer set were recognized. That is, it was shown that two target genes can be amplified and detected simultaneously by multiplex PCR.
 本発明では、共通性が高く且つ病原性に密接に関係する莢膜多糖遺伝子を標的として検体中の病原菌を検出する。また、典型的には、汎用的であり且つ迅速性に優れたPCR法を利用する。これらの特徴を備える本発明によれば、環境中から病原菌を簡便、迅速且つ特異的に検出可能となる。病原性と関係のない16SrRNA遺伝子を標的とする従来の方法に比べ、本発明は病原菌に対する高い特異性を発揮する。本発明の検出法は土壌、下水、食品等のサンプル中に存在し得る複数の病原菌を同時に検出することに好適である。 In the present invention, pathogenic bacteria in a specimen are detected by targeting a capsular polysaccharide gene that is highly common and closely related to pathogenicity. Typically, a PCR method that is versatile and excellent in rapidity is used. According to the present invention having these features, pathogenic bacteria can be detected from the environment simply, quickly and specifically. Compared to conventional methods targeting 16S rRNA genes that are not related to pathogenicity, the present invention exhibits high specificity for pathogenic bacteria. The detection method of the present invention is suitable for simultaneously detecting a plurality of pathogenic bacteria that may be present in samples such as soil, sewage, and food.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.
 配列番号11~22:人工配列の説明:プライマー Sequence numbers 11-22: Description of artificial sequence: Primer

Claims (8)

  1.  検体中の病原菌を検出する方法であって、前記病原菌の莢膜多糖遺伝子を標的とした核酸増幅反応を行い、増幅結果に基づき病原菌の有無を判定することを特徴とする方法。 A method for detecting a pathogenic bacterium in a specimen, comprising performing a nucleic acid amplification reaction targeting the capsular polysaccharide gene of the pathogenic bacterium and determining the presence or absence of the pathogenic bacterium based on the amplification result.
  2.  前記核酸増幅反応がPCR法である、請求項1に記載の方法。 The method according to claim 1, wherein the nucleic acid amplification reaction is a PCR method.
  3.  前記病原菌がストレプトコッカス属(Streptococcus)、スタフィロコッカス属(Staphylococcus)、クロストリジウム属(Clostridium)、シュードモナス属(Pseudomonas)、病原性大腸菌、サルモネラ菌(Salmonella)から選択される2種類以上の病原菌を含み、前記PCR法がマルチプレックスPCR法である、請求項2に記載の方法。 The pathogen includes two or more pathogens selected from Streptococcus, Staphylococcus, Clostridium, Pseudomonas, pathogenic Escherichia coli, and Salmonella, The method according to claim 2, wherein the PCR method is a multiplex PCR method.
  4.  前記莢膜多糖遺伝子が、ストレプトコッカス属についてはcpsE遺伝子であり、スタフィロコッカス属についてはcapE遺伝子であり、クロストリジウム属についてはkpsF遺伝子であり、シュードモナス属についてはwzz遺伝子であり、病原性大腸菌についてはwcaA遺伝子であり、サルモネラ菌についてはwbaP遺伝子又はrfc遺伝子である、請求項3に記載の方法。 The capsular polysaccharide gene is the cpsE gene for Streptococcus, the capE gene for Staphylococcus, the kpsF gene for Clostridium, the wzz gene for Pseudomonas, and the pathogenic E. coli The method according to claim 3, which is a wcaA gene, and is Salmonella wbaP gene or rfc gene.
  5.  以下のステップ(1)~(4)を含む、複数種類の病原菌を同時に検出する方法:
     (1)DNAサンプルを用意するステップ;
     (2)複数組のプライマーセットを用意するステップであって、各プライマーセットが互いに異なる標的病原菌の莢膜多糖遺伝子を標的としたプライマーセットであるステップ;
     (3)前記DNAサンプルを鋳型とし、前記複数組のプライマーを同時に用いて核酸増幅反応を実施するステップ;
     (4)増幅産物を検出するステップ。
    A method for simultaneously detecting multiple types of pathogens, including the following steps (1) to (4):
    (1) preparing a DNA sample;
    (2) a step of preparing a plurality of primer sets, wherein each primer set is a primer set targeting capsular polysaccharide genes of different target pathogens;
    (3) performing a nucleic acid amplification reaction using the DNA sample as a template and simultaneously using the plurality of sets of primers;
    (4) A step of detecting an amplification product.
  6.  前記核酸増幅反応がマルチプレックスPCR法である、請求項5に記載の方法。 The method according to claim 5, wherein the nucleic acid amplification reaction is a multiplex PCR method.
  7.  前記標的病原菌が、ストレプトコッカス属(Streptococcus)、スタフィロコッカス属(Staphylococcus)、クロストリジウム属(Clostridium)、シュードモナス属(Pseudomonas)、病原性大腸菌、サルモネラ菌(Salmonella)から選択される二種類以上の病原菌を含む、請求項5又は6に記載の方法。 The target pathogen includes at least two types of pathogens selected from Streptococcus, Staphylococcus, Clostridium, Pseudomonas, pathogenic Escherichia coli, and Salmonella The method according to claim 5 or 6.
  8.  ストレプトコッカス属(Streptococcus)のcpsE遺伝子を標的としたプライマーセット、スタフィロコッカス属(Staphylococcus)のcapE遺伝子を標的としたプライマーセット、クロストリジウム属(Clostridium)のkpsF遺伝子を標的としたプライマーセット、シュードモナス属(Pseudomonas)のwzz遺伝子を標的としたプライマーセット、病原性大腸菌のwcaA遺伝子を標的としたプライマーセット、サルモネラ菌(Salmonella)のwbaP遺伝子を標的としたプライマーセット、及びサルモネラ菌(Salmonella)のrfc遺伝子を標的としたプライマーセットからなる群より選択される2以上のプライマーセットを含む、病原菌検出用キット。 Primer set targeting Streptococcus cpsE gene, primer set targeting Staphylococcus capE gene, primer set targeting Clostridium kpsF gene, Pseudomonas genus ( Pseudomonas) primer set targeting wzz gene, pathogenic Escherichia coli wcaA gene targeting primer set, Salmonella wbaP gene targeting primer set, and Salmonella rfc gene targeting A kit for detecting pathogens, comprising two or more primer sets selected from the group consisting of prepared primer sets.
PCT/JP2010/060940 2009-07-08 2010-06-28 Method for detection of pathogenic bacteria, and kit for use in the method WO2011004725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009161351 2009-07-08
JP2009-161351 2009-07-08

Publications (1)

Publication Number Publication Date
WO2011004725A1 true WO2011004725A1 (en) 2011-01-13

Family

ID=43429146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060940 WO2011004725A1 (en) 2009-07-08 2010-06-28 Method for detection of pathogenic bacteria, and kit for use in the method

Country Status (1)

Country Link
WO (1) WO2011004725A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948900A (en) * 1994-05-16 1999-09-07 Uab Research Foundation Streptococcus pneumoniae capsular polysaccharide genes and flanking regions
US6183973B1 (en) * 1997-06-19 2001-02-06 Umbi - University Of Maryland Biotechnology Institute Vibrio vulnificus molecular probes, antibodies, and proteins
WO2005064016A1 (en) * 2003-12-26 2005-07-14 Prima Meat Packers, Ltd. Method of multiplex microorganism detection
JP2007274934A (en) * 2006-04-04 2007-10-25 Nippon Meat Packers Inc Primer set and method for detecting food poisoning bacterium
JP2009039046A (en) * 2007-08-09 2009-02-26 Yamaguchi Univ Primer set for detecting pneumonia

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948900A (en) * 1994-05-16 1999-09-07 Uab Research Foundation Streptococcus pneumoniae capsular polysaccharide genes and flanking regions
US6183973B1 (en) * 1997-06-19 2001-02-06 Umbi - University Of Maryland Biotechnology Institute Vibrio vulnificus molecular probes, antibodies, and proteins
WO2005064016A1 (en) * 2003-12-26 2005-07-14 Prima Meat Packers, Ltd. Method of multiplex microorganism detection
JP2007274934A (en) * 2006-04-04 2007-10-25 Nippon Meat Packers Inc Primer set and method for detecting food poisoning bacterium
JP2009039046A (en) * 2007-08-09 2009-02-26 Yamaguchi Univ Primer set for detecting pneumonia

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
COLLINS L.V.: "Molecular Cloning, Characterization, and Nucleotide Sequence of the rfc Gene, Which Encodes an O-Antigen Polymerase of Salmonella typhimurium", JOURNAL OF BACTERIOLOGY, vol. 173, no. 8, 1991, pages 2521 - 2529 *
DATABASE GENBANK [online] 13 June 2002 (2002-06-13), RAYMOND C.K. ET AL.: "Definition: Pseudomonas aeruginosa serotype 020 putative O-antigen biosynthesis gene cluster, partial sequence.", retrieved from http://www. ncbi.nlm.nih.gov/nuccore/20559984 Database accession no. AF498413 *
DATABASE GENBANK [online] 13 March 1997 (1997-03-13), SAU S. ET AL.: "Definition:Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G, cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N, cap80, cap8P, complete cds.", retrieved from http://www.ncbi.nlm.nih.gov/ nuccore/1657639 Database accession no. U73374 *
DATABASE GENBANK [online] 16 May 2001 (2001-05-16), HOBBS M. ET AL.: "Definition: putative glycosyl transferase [Escherichia coli].", retrieved from http://www.ncbi.nlm.nih. gov/protein/1407606 Database accession no. AAC77836 *
DATABASE GENBANK [online] 20 July 2008 (2008-07-20), BRUGGEMANN H. ET AL.: "Definition: polysialic acid capsule expression protein kpsF [Clostridium tetani E88].", retrieved from http://www.ncbi.nlm.nih. gov/sviewer/viewer.fcgi?val=28210619&sat=NCBI& satkey=23381576 Database accession no. NP_781563 *
DATABASE GENBANK [online] 29 April 2005 (2005-04-29), CIESLEWICZ M.J. ET AL.: "Definition: Streptococcus agalactiae strain 7271 Cps7C, Cps7D, Cps7E, Cps7F, Cps7G, Cps7H, Cps7M, Cps7I, Cps7J, Cps7K, Cps7L, NeuB, NeuC, NeuD, and NeuA genes, complete cds.", retrieved from http://www.ncbi.nlm.nih. gov/nuccore/38640633 Database accession no. AY376403 *
DATABASE GENBANK [online] 9 September 2004 (2004-09-09), BROWN P.K. ET AL.: "Definition: S.enterica rfbJ gene cluster.", retrieved from http://www.ncbi.nlm.nih.gov/nuccore/ 47004 Database accession no. X61917 *
HIROYUKI TSUNASHIMA ET AL.: "Byogenkin Yurai no Kyomaku Tato Seigosei Idenshigun no Tanri to Kaiseki", ABSTRACTS OF THE 74TH ANNUAL MEETING (YOKOHAMA) OF THE SOCIETY OF CHEMICAL ENGINEERS, vol. 74, 18 February 2009 (2009-02-18), pages S303 *

Similar Documents

Publication Publication Date Title
Millar et al. Molecular diagnostics of medically important bacterial infections
Ravan et al. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157: H7
Huang et al. Quadruplex real-time PCR assay for detection and identification of Vibrio cholerae O1 and O139 strains and determination of their toxigenic potential
Volokhov et al. Sequencing of the intergenic 16S-23S rRNA spacer (ITS) region of Mollicutes species and their identification using microarray-based assay and DNA sequencing
JP2013520186A (en) Assays and kits for serotyping of Pseudomonas aeruginosa and oligonucleotide sequences useful in such methods and kits
Andersen et al. Highly specific assays to detect isolates of Pseudomonas syringae pv. actinidiae biovar 3 and Pseudomonas syringae pv. actinidifoliorum directly from plant material
Sławiak et al. Multiplex detection and identification of bacterial pathogens causing potato blackleg and soft rot in Europe, using padlock probes
US20160060684A1 (en) Rapid salmonella serotyping assay
JP2007274934A (en) Primer set and method for detecting food poisoning bacterium
Gracias et al. Nucleic acid sequence‐based amplification (NASBA) in molecular bacteriology: a procedural guide
Kim et al. Simultaneous identification of 13 foodborne pathogens by using capillary electrophoresis–single strand conformation polymorphism coupled with multiplex ligation-dependent probe amplification and its application in foods
Elgaml et al. Analysis of 16S ribosomal RNA gene segments for the diagnosis of Gram negative pathogenic bacteria isolated from urinary tract infections
EP2347013B1 (en) Method for the specific detection of low abundance rna species in a biological sample
KR100457355B1 (en) Pcr primers for amplifying the gene of pathogenic microorganism, and method and test kit for detecting pathogenic microorganism by using the same
US9932642B2 (en) Rapid Salmonella serotyping assay
Kim et al. Rapid and simple detection of the invA gene in Salmonella spp. by isothermal target and probe amplification (iTPA)
Horsmon et al. Real-time fluorogenic PCR assays for the detection of entA, the gene encoding staphylococcal enterotoxin A
Amann et al. Typing in situ with probes
WO2011004725A1 (en) Method for detection of pathogenic bacteria, and kit for use in the method
CN105256041B (en) The nucleotide special to aeromonas hydrophila O44, O24, O25 and O28 and application
JP2022025153A (en) One or more primers or probes specific for Bifidobacterium breve
KR20010072357A (en) Genes for detecting bacteria and detection method by using the same
KR102009326B1 (en) DEVELOPMENT OF SINGLEPLEX REAL-TIME PCR KIT FOR RAPID DETECTION OF CLOSTRIDIUM PERFRINGENS USING cpa, cpe TARGET GENE
KR101332366B1 (en) Primer set and method for distinguishing of Bacillus thuringiensis and Bacillus cereus
Kouguchi et al. Sequence-specific detection using a universal probe system based on the formation of a four-way junction structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP