WO2011004419A1 - Directional coupler - Google Patents
Directional coupler Download PDFInfo
- Publication number
- WO2011004419A1 WO2011004419A1 PCT/JP2009/003117 JP2009003117W WO2011004419A1 WO 2011004419 A1 WO2011004419 A1 WO 2011004419A1 JP 2009003117 W JP2009003117 W JP 2009003117W WO 2011004419 A1 WO2011004419 A1 WO 2011004419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- amplitude
- input
- phase
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
Definitions
- the present invention relates to a directional coupler.
- Circulators, duplexers, directional couplers, etc. are used to separate the transmit and receive signals.
- a general directional coupler is composed of a passive element for coupling and a transmission line for phase shift.
- the present invention has been made to solve this problem, and aims to improve the deterioration of NF due to the loss of a received signal and to provide a highly efficient and compact directional coupler.
- an input terminal to which a first input signal is input, and a first output signal obtained by converting the first input signal are output, and an input and output to which a second input signal is input
- a directional coupler comprising a terminal and an output terminal for outputting a second output signal obtained by converting the second input signal, wherein the voltage-current converter converts the first input signal into a current signal.
- a first phase shifter for shifting a phase of the current signal to obtain a first phase shift signal, and an output impedance larger than a characteristic impedance between the input / output terminal and the output terminal, the first phase shift signal An output impedance larger than a characteristic impedance between the input / output terminal and the output terminal, and adjusting an amplitude of the current signal;
- a second amplitude adjuster for obtaining an amplitude signal, the second amplitude A second phase shift signal that is in phase with the first amplitude signal, and a third phase that is out of phase with the phase of the second amplitude signal.
- a second phase shifter for obtaining a phase shift signal and a second output signal; combining the first output signal with the first amplitude signal and the second phase shift signal; and the second amplitude signal And a third phase shift signal.
- FIG. 6 shows an example of a first variable phase shifter 212.
- FIG. 6 shows an example of the 3rd variable amplitude regulator 217.
- FIG. 1 is a view showing the configuration of a directional coupler 1 according to a first embodiment of the present invention.
- the directional coupler 1 of FIG. 1 outputs from the input / output terminal 102 a first output signal S018 obtained by converting the first input signal S011 input from the input terminal 101, and receives the input from the input / output terminal 102.
- a voltage-current converter 111 for outputting from the output terminal 103 a second output signal S022 obtained by converting the second input signal S021, the voltage-current converter 111 converting the first input signal S011 into a current signal S012;
- the first phase shifter 112 which shifts the phase of the current signal S012 to obtain the first phase shift signal S013, and the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103, and the first phase shift signal Adjusts the amplitude of the current signal S012 by adjusting the amplitude of S013 to obtain the first amplitude signal S014, and the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103.
- the second amplitude adjuster 114 for obtaining the second amplitude signal S015, and the phase of the second amplitude signal S015 To obtain a second phase shift signal S016 in phase with the phase of the first amplitude signal S014, shift the phase of the first amplitude signal S014, and shift the phase of the second amplitude signal S015 out of phase with the phase of the second amplitude signal S015.
- FIG. 2 is a diagram showing an example of the voltage-current converter 111 according to the present embodiment.
- the voltage-current converter 111 has a source-grounded MOS transistor M1 to which the first input signal S011 is applied to the gate terminal. That is, the source terminal of the MOS transistor M1 of the voltage-current converter 111 is grounded, the gate terminal is connected to the input terminal 101, and the drain terminal is connected to the first phase shifter 112 and the second amplitude adjuster 114.
- the voltage-current converter 111 converts the first input signal S012 input from the input terminal 101 into a current signal S012, and outputs the current signal S012 from the drain terminal.
- the current signal output from the drain terminal and the current signal input to the first phase shifter 112 or the second amplitude adjuster 114 are signals having different current amplitudes, but have the same signal information. Since these are signals, each signal is hereinafter referred to as "current signal S012".
- the first phase shifter 112 shown in FIG. 3 has a first inductor element 116 connected at one end (terminal A) to the voltage-current converter 111 and the second amplitude adjuster 114, and one end connected to the first inductor element 116.
- a second inductor element 117 whose other end (terminal B) is connected to the first amplitude adjustment means 113, and a capacitor element 118 whose one end is connected to the other end of the first inductor element 116 and whose other end is grounded Prepare.
- the characteristic impedance of the first phase shifter 112 and the input impedance of the first and second amplitude adjusters 113 and 114 can be obtained.
- the phases of the signals that match and pass from terminal A to terminal B are shifted.
- the phase of the current signal S012 input from the terminal A is shifted by 90 degrees to obtain the first phase shift signal S013, and the first phase shift signal S013 is output from the terminal B.
- the second phase shifter 115 is the first except that the terminal A is connected to the output terminal 103 and the second amplitude adjuster 114, and the terminal B to the input / output terminal 102 and the first amplitude adjuster 113. Since the configuration is the same as that of the phase shifter 112, the description is omitted.
- the second phase shifter 115 shifts the phase of the second amplitude signal S015 input from the terminal A by 90 degrees to obtain the second phase shift signal S016 and outputs the second phase signal S016 from the terminal B.
- the second phase shifter 115 shifts the phase of the first amplitude signal S014 input from the terminal B by 90 degrees to obtain the third phase shift signal S017, and outputs the third phase signal S017 from the terminal A.
- the second phase shifter 115 shifts the phase of the second input signal S021 input from the terminal B by 90 degrees to obtain the second output signal S022, and outputs the second output signal S022 from the terminal A.
- the first amplitude adjuster 113 has an impedance conversion circuit having a characteristic in which the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103.
- the output impedance refers to the impedance of the impedance conversion circuit viewed from the input / output terminal 102 or the output terminal 103 side.
- the impedance conversion circuit includes a gate-grounded MOS transistor M2.
- the source terminal of the MOS transistor M 2 is connected to the first phase shifter 112, and the drain terminal is connected to the input / output terminal 102 and the second phase shifter 115.
- a predetermined voltage (V_bias) is applied to the gate terminal of the MOS transistor M2.
- the MOS transistor amplifies the amplitude of the first phase shift signal S013 input to the source terminal according to a predetermined voltage value applied to the gate terminal, generates a first amplitude signal S014, and outputs it from the drain terminal. .
- the gate-grounded MOS transistor M2 is characterized in that the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103. Therefore, the gate-grounded MOS transistor M2 efficiently outputs the signal input from the source terminal from the drain terminal, but hardly outputs the signal input from the drain terminal from the source terminal.
- the gate-grounded MOS transistor of the second amplitude adjuster 114 has a source terminal connected to the voltage-current converter 111 and a drain terminal connected to the output terminal 103 and the second phase shifter 115. Since the configuration is the same as that of the one-amplitude adjuster 113, the description is omitted.
- the second amplitude adjuster adjusts the amplitude of the current signal S012 input to the source terminal to obtain a second amplitude signal S015, and outputs the second amplitude signal S015 from the drain terminal.
- the first input signal S011 input to the input terminal 101 is converted into a current signal S012 by the voltage-current converter 111.
- the current signal S 012 is input to the first phase shifter 112 and the second amplitude adjuster 114.
- the current signal S012 is converted by the first phase shifter 112 into a first phase shift signal S013 whose phase is shifted by 90 degrees.
- the amplitude of the first phase signal S013 is adjusted by the first amplitude adjuster 113 to become the first amplitude signal S014.
- the amplitude of the current signal S 012 input to the second amplitude adjuster 114 is adjusted by the second amplitude adjuster 114 to become a second amplitude signal S 015.
- the second amplitude signal S015 is converted into a second phase shift signal S016 whose phase is shifted by 90 degrees by the second phase shifter 115.
- the first amplitude signal S014 and the second phase shift signal S016 described above are combined to form a first output signal S018.
- the first amplitude signal S014 is shifted by 90 degrees in phase by the first phase shifter 112, and the second phase shift signal S016 is also shifted by 90 degrees in phase by the second phase shifter 115. That is, since the first amplitude signal S014 and the second phase shift signal S016 are both shifted in phase by 90 degrees, they become in-phase signals.
- the first amplitude signal S014 is also input to the second phase shifter 115.
- the phase of the first amplitude signal S014 input to the second phase shifter 115 is further shifted by 90 degrees to form a third phase shift signal S017.
- the third phase shift signal S017 is 180 degrees out of phase with the current signal S012 and the second amplitude signal S015.
- the third phase shift signal S017 is combined with the second amplitude signal S015 and output from the output terminal 103.
- the phase difference between the third phase shift signal S017 and the second amplitude signal S015 is 180 degrees, and the phases are opposite to each other.
- the amplitude signal S015 mutually cancels out, and a signal is not output from the output terminal 103.
- the directional coupler 1 when the first input signal S011 is input to the input terminal 101, the directional coupler 1 according to the present embodiment outputs the first output signal S018 from the input / output terminal 102, but from the output terminal 103. Do not output a signal.
- the second input signal S 021 input to the input / output terminal 102 is converted into a second output signal S 022 by the second phase shifter 115 and output from the output terminal 103.
- the first and second amplitude adjusters 113 and 114 have the impedance conversion circuit whose output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103, the second input signal S021 is , Little input to the first and second amplitude adjusters 113 and 114.
- the directional coupler 1 when the second input signal S022 is input to the input / output terminal 102, the directional coupler 1 according to the present embodiment outputs the second output signal S022 from the output terminal 103. Does not output a signal.
- FIG. 5 is a graph showing the characteristics of the directional coupler 1 according to the present embodiment.
- the horizontal axis of the graph in FIG. 5 indicates the frequency of the first and second input signals S011 and S012, and the vertical axis indicates the output gain at each of the terminals 101 to 103.
- the ratio (gain of the first input signal) of the first output signal S018 obtained from the input / output terminal 102 when the first input signal S011 is input to the input terminal 101 to the first input signal S011 is indicated by an alternate long and short dash line. There is.
- the ratio (round-around) of the signal obtained from the output terminal 103 to the first input signal is indicated by a two-dot chain line.
- the ratio (gain of the second input signal) of the second output signal S022 obtained from the output terminal 103 to the second input signal S021 obtained when the second input signal S021 is input to the input / output terminal 102 is indicated by a solid line.
- the desired frequency is the operating frequency of the directional coupler 1 according to this embodiment, and as described later, when the directional coupler 1 is mounted on a wireless device, the wireless device uses it for transmitting and receiving signals. Frequency.
- the sneaking at the desired frequency is sharply reduced, and the first input signal is hardly output to the output terminal 103 at the desired frequency. Recognize.
- the gain of the first input signal is greater than 0 dB. This is because the amplitudes of the current signal S012 and the first phase shift signal S013 are adjusted by the first and second amplitude adjusters 113.
- the gain of the second input signal hardly changes with the frequency. This indicates that the second input signal S021 input to the input / output terminal 102 is output from the output terminal 103 with almost no loss in the directional coupler 1.
- the first and second amplitude adjusters 113 and 114 have an impedance conversion circuit whose output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103. Therefore, the second input signal S021 is hardly input to the first and second amplitude adjusters 113 and 114. Accordingly, the directional coupler 1 according to the present embodiment can output the signal from the output terminal 103 with almost no loss of the gain of the second input signal S021.
- the directional coupler according to the present embodiment adjusts the amplitude of the first input signal S011 by the first and second amplitude adjusters 113 and 114, the amplitudes of the second amplitude signal S015 and the third phase shift signal S017 Can be of similar size. Therefore, the wraparound of the first input signal S011 to the output terminal 103 can be further reduced.
- first and second variable phase shifters 212 and 215 are used instead of the first and second phase shifters 112 and 115 of the directional coupler 1 shown in FIG.
- the first and second variable amplitude adjusters 213 and 214 are provided instead of the first and second amplitude adjusters 113 and 114, and the phase of the signal output from the output terminal 103 when the first input signal is input from the input terminal 101 Alternatively, the power level is detected, and the adjustment amount of the shift amount of the first and second variable phase shifters 212 and 215 and the adjustment amount of the amplitude of the first and second variable amplitude adjusters 213 and 214 are determined based on the detected phase or power level.
- Detector 119 the adjustment amount of the shift amount determined by the detector 119, and the shift amount of the first and second variable amplitude adjusters 213 and 214 based on the adjustment amount of the amplitude and the adjustment amount of the first
- a control unit 120 that controls the adjustment amount is provided.
- the control unit 120 applies control signals to the gate terminals of the first and second gate grounded MOS transistors M2 of the first and second variable amplitude adjusters 213 and 214, respectively, to control the first and second variable amplitude adjusters 213 and 214. It is characterized in that the amount of adjustment of the amplitude is controlled.
- the control unit 120 adjusts the amplitude of the second variable amplitude adjuster 214 by adding the loss adjustment amount of the first and second variable phase shifters 212 and 215 to the amplitude adjustment amount of the first variable amplitude adjuster 213. It may be configured to control to
- the first variable phase shifter 212 is connected in series to the plurality of first inductor elements 116-1 to 116-n connected in parallel and the first inductor elements 116-1 to 116-n, each of which is connected in parallel Of a plurality of second inductor elements 117-1 to 117-n connected to one end, a plurality of first inductor elements 116-1 to 116-n at one end, and a plurality of second inductor elements 117-1 to 117-n at one end
- a third selector for selecting at least one of the plurality of second inductor
- the first selector 220 also includes switches SW-11 and SW-21 inserted between the terminal A and the first inductor elements 116-1 and 116-2.
- the second selector 221 includes switches SW-12 and 22 inserted between the terminal B and the respective second inductor elements 117-1 and 117-2.
- the third selector 222 includes switches SW31 and SW32 inserted between the first inductor element 116- and the second inductor element 117 and the capacitor elements 118-1 and 118-3.
- the control unit 120 controls the shift amount of the first variable phase shifter 212 by switching on and off the switches SW-11 to SW32 described above.
- the current signal S 012 input to the terminal A of the first variable phase shifter 212 is shifted in phase by the shift amount and output from the terminal B.
- the second variable phase shifter 215 has the same configuration as that of the first variable phase shifter 212, and thus the description thereof will be omitted.
- the first variable amplitude adjuster 213 has the same configuration as the first amplitude adjuster 113 shown in FIG. 4, but the control unit 120 applies a control voltage instead of applying a predetermined voltage (V_bias) to the gate terminal.
- V_bias a predetermined voltage
- the amount of adjustment of the amplitude changes with the control voltage.
- the first variable amplitude adjuster 213 adjusts the amplitude of the first phase shift signal S013 input to the source terminal of the MOS transistor M2 according to the control voltage, generates a first amplitude signal S014, and outputs it from the drain terminal.
- the second variable amplitude adjuster 214 also has a configuration similar to that of the first variable amplitude adjuster 213.
- the first and second variable amplitude adjusters 213 and 214 adjust the amplitude by the same amount. If no loss occurs even in the other elements, the phase difference between the first amplitude signal S014 and the second phase shift signal S016 is 0 degrees, and the first output signal S018 is the first amplitude signal S014 and the second phase shift signal. It becomes a signal that is synthesized with S016. Similarly, the phase difference between the third phase shift signal S017 and the second amplitude signal S015 is 180 degrees, and the third phase shift signal S017 and the second amplitude signal S015 cancel each other at the output terminal 103. No signal is output.
- the resistance value of each element changes depending on the environment, and the phase and amplitude of the signal change according to the first and second input signals S011 and S021. Therefore, the first and second variable phase shifters 212 and 215
- the phase difference between the first amplitude signal S014 and the second phase shift signal S016 is set to 0 degree, and the amplitude value is set even if the adjustment amount of the first and second variable amplitude adjusters 213 and 214 is determined in advance. It is difficult to keep the same level.
- the third phase shift signal S017 and the second amplitude signal S015 do not cancel each other, and a wraparound of the first input signal S011 occurs at the output terminal 103.
- the detector 119 detects the phase and power level of the signal output from the output terminal 103.
- the detector 119 determines the phase shift of the signal output from the output terminal 103 as the adjustment amount of the shift amount adjusted by the first and second variable phase shifters 212 and 215. For example, the detector 119 determines the adjustment amount of the shift amount as “+ ⁇ ” when the phase of the signal is advanced by ⁇ degrees and as “ ⁇ ” when it is delayed by ⁇ degrees.
- the detector 119 determines the power level of the signal output from the output terminal 103 as the amount of amplitude adjustment to be adjusted by the first and second variable amplitude adjusters 213 and 214. For example, if the detected power level is A, the detector 119 determines “A” as the amount of amplitude adjustment. The detector 119 notifies the control unit 120 of the determined adjustment amount of the shift amount and the adjustment amount of the amplitude.
- the control unit 120 controls the first and second variable phase shifters 212 and 215 and the first and second variable amplitude adjusters 213 and 214 based on the shift amount and the adjustment amount of the amplitude notified from the detector 119. For example, when the adjustment amount of the phase is “+ ⁇ ”, the control unit 120 performs control so that the shift amounts of the first and second variable phase shifters 212 and 215 decrease ⁇ . Specifically, the shift amount of the current signal S012 shifted by the first variable phase shifter 212 may be reduced by ⁇ , and the shift amount of the first amplitude signal S014 shifted by the second variable phase shifter 215 by ⁇ You may reduce it. Either of the variable phase shifters 212 and 215 may be controlled, but in any case, the control unit 120 compares the phase of the third phase shift signal S017 with the phase of the third phase shift signal S017 before control. Control to shift by “ ⁇ degree”.
- the control unit 120 When the adjustment amount of the amplitude is “A”, the control unit 120 performs control so that the adjustment amount of the amplitude in the first and second variable amplitude adjusters 213 and 214 decreases by “A”. Specifically, the adjustment amount of one of the first and second variable amplitude adjusters 213 and 214 may be decreased by “A”, and the adjustment amount of the smaller one may be increased by “A”. Good. In any case, the control unit 120 reduces the amplitude of the larger amplitude value or reduces the amplitude value so that the difference between the amplitude of the second amplitude signal S015 and the amplitude of the third phase shift signal S017 approaches zero. The control voltage is applied to increase the amplitude value of.
- control method is an example of detecting both the phase and the amplitude, and is a method of detecting only the amplitude and controlling the amount of adjustment of the shift amount and the amplitude such that the amplitude becomes substantially zero. There is also a method of detecting either one of them.
- the directional coupler 2 detects and detects the phase or power level of the signal output from the output terminal 103 while obtaining the same effect as that of the first embodiment.
- the wraparound of the first input signal S011 to the output terminal 103 can be accurately suppressed. For example, even if the shift amount of each signal of the directional coupler 2 or the adjustment amount of the amplitude change due to a manufacturing error of the directional coupler 2 or a change in the use environment, the first input signal S011 to the output terminal 103 The wraparound can be accurately suppressed.
- control unit 120 controls all of the first and second variable phase shifters 212 and 215 and the first and second variable amplitude adjusters 213 and 214.
- first and second variable phase shifters 212 and 215 or Either of the first and second variable amplitude adjusters 213 and 214 may be controlled.
- control unit 120 may be configured to control either one of the first and second variable phase shifters 212 and 215, and configured to control one of the first and second variable amplitude adjusters 213 and 214.
- the directional coupler 2 controls at least one of the first and second variable phase shifters 212 and 215 and the first and second variable amplitude adjusters 213 and 214 to control the first input signal S011 compared to the case where no control is performed at all.
- the wraparound to the output terminal 103 can be suppressed more accurately.
- FIG. 9 is a diagram showing a third variable amplitude adjuster 217 according to the present modification.
- the fourth variable amplitude adjuster 218 has the same configuration as the third variable amplitude adjuster 217, and thus the description thereof is omitted.
- the third variable amplitude adjusters 217 include gate-grounded MOS transistors M3-1 to M3-s (s is an integer of 2 or more) which are connected in parallel and have different gate widths.
- the control unit 120 controls the adjustment amount of the amplitude of the third variable amplitude adjuster 217 by applying a control signal to at least one of the gate-grounded MOS transistors M3-1 to M3-s.
- Control unit 120 turns on / off MOS transistors M3-1 to M3-3 in accordance with the power level detected by detection unit 119.
- the control unit 120 controls the third variable amplitude adjuster 217 by applying a constant control voltage to the gate terminals of the MOS transistors M3-1 to M3-3.
- the adjustment amount of the amplitude of the third variable amplitude adjuster 217 can be controlled as a digital value.
- the MOS transistor M3-1 may be a main amplitude adjustment transistor
- the other MOS transistors M3-2 and M3-3 may be fine adjustment transistors.
- the directional coupler 3 is provided between the input terminal 101 and the voltage-current converter 111 in the directional coupler 1 shown in FIG.
- the first matching unit 321 matches the voltage-current converter 111 with a circuit (not shown) connected to the input terminal 101 such as a transmission circuit. Therefore, the first input signal S011 input to the input terminal 101 is input to the voltage-current converter 111 with high efficiency.
- the transmission line 322 matches the second phase shifter 115 with a circuit (not shown) connected to an input / output terminal such as an antenna. Therefore, the second input signal S021 input to the input / output terminal 102 is input to the second phase shifter 115 with high efficiency.
- the second matching unit 323 matches the output terminal 103 with the transmission line 322.
- the directional coupler 3 outputs the second input signal S021 input from the input / output terminal 102 from the output terminal 103 as the second output signal S022 with high efficiency without reflection loss.
- the directional coupler 3 achieves the same effects as the directional coupler according to the first embodiment, and inputs / outputs the first and second matching units 321 and 323 and the transmission line 322.
- the first input signal input from the input terminal 101 can be output from the input / output terminal 102 as the first output signal S018 with high efficiency without reflection loss.
- the second input signal S021 input from the input / output terminal 102 can be output from the output terminal 103 as the second output signal S022 with high efficiency without reflection loss.
- the directional coupler 1 shown in FIG. 1 is provided with a matching unit and a transmission line, but the directional coupler 2 shown in the second embodiment and the first modification example is similarly provided with a matching unit and a transmission line. May be provided.
- FIG. 11 shows a modification 2 according to the present embodiment.
- the directional coupler 4 according to the second modification has a configuration in which a signal blocking unit 324 is further provided to the directional coupler 3 of FIG.
- One end of the signal blocking unit 324 illustrated in FIG. 11 is connected to the power supply potential Vdd, and the other end is connected to the second phase shifter 115, the first amplitude adjuster 113, and the transmission line 322. Since the first amplitude adjuster 113 and the second amplitude adjuster 114 are composed of active elements, it is necessary to supply power to the elements.
- the signal blocking unit 324 blocks the passage of the high frequency signal to the power supply potential Vdd.
- the second input signal S 021 input from the input / output terminal 102 and the first output signal S 018 output from the input / output terminal 102 pass the signal to the power supply potential Vdd. Input and output signals with high efficiency without
- the signal blocking unit 324 is not included in the directional coupler according to the first and second embodiments or the first modification. You may provide.
- FIG. 12 is a view showing the directional coupler 5 according to the first embodiment of the present invention.
- the directional coupler 5 of FIG. 12 has a configuration in which the input / output terminal 102 and the output terminal 103 of the directional coupler 1 of FIG. 1 are interchanged.
- the directional coupler 5 is different from the directional coupler 1 (the first and second phase shifters 112 and 115 in FIG. 1) in the shift amount of the phase shifted by the fourth and fifth phase shifters 512 and 515.
- the directional coupler 5 outputs a first output signal S018 obtained by converting the first input signal S011 input from the input terminal 101 from the input / output terminal 502, and a second input input from the input / output terminal 502.
- a directional coupler that outputs a second output signal S022 obtained by converting the signal S021 from the output terminal 503, and converts the first input signal S011 into a current signal S012, and a current signal S012 Output impedance is larger than the characteristic impedance between the input / output terminal 502 and the output terminal 503, and the amplitude of the fourth phase shift signal S513.
- the second amplitude adjuster 114 for obtaining the amplitude signal S015 and the phase of the second amplitude signal S015
- a fifth phase shift signal S516 in antiphase with the phase of the first amplitude signal S014, and shift the phase of the first amplitude signal S014 so as to be in phase with the phase of the second amplitude signal S015
- a fifth phase shifter 515 which obtains the signal S517, shifts the phase of the second input signal S021, and obtains the second output signal S022, and the first output signal S018 is the second amplitude signal S015 and the sixth phase shift. It is characterized in that it is a signal obtained by combining the phase signal S517.
- the fourth phase shifter 512 shifts the phase of the current signal S012 by “ ⁇ 90 degrees”.
- the fifth phase shifter 515 shifts the phases of the second amplitude signal S015, the first amplitude signal S014, and the second input signal S021 by "90 degrees”.
- the directional coupler 5 according to the third embodiment relates to the directivity according to the first embodiment by changing the phase shift amount of the phase shifter even when the input and output terminals and the output terminal are interchanged. The same effect as the coupler 1 can be obtained.
- the input and output terminals and the output terminal of the directional coupler 1 of FIG. 1 are interchanged, the input and output terminals of the directional coupler according to the second and third embodiments and the modified examples 1 and 2 Even if the output terminal is replaced, the same effect as the directional couplers according to the second and third embodiments and the first and second modifications can be obtained by changing the phase shift amount of each phase shifter.
- FIG. 13 is a view showing an application example when the directional coupler 1 shown in FIG. 1 is mounted on the wireless device 400. As shown in FIG.
- the transmission circuit 401, an oscillator 402 that outputs an oscillation signal according to the digital signal output from the transmission circuit 401, and the oscillation signal of the oscillator 402 are input as a first input signal S011, and the first output signal
- a low noise amplifier 404 connected to the output terminal 103 to amplify the second output signal S022 to obtain an amplified signal
- a frequency converter 405 to convert the frequency of the amplified signal to obtain a baseband signal
- a baseband signal and a baseband signal
- a reception circuit 406 that performs reception processing.
- the transmission circuit 401 outputs a digital signal of “0” or “1”.
- the oscillator 402 outputs an oscillation signal while the digital signal is "1". This connects a switch (not shown) between the oscillator 402 and the input terminal 101 of the directional coupler 1 of FIG. 1 and turns on the switch when the digital signal is “1”. It can be realized by turning off the switch.
- the oscillation signal is input to the transmission / reception antenna 403 via the directional coupler 1 and transmitted.
- the transmit / receive antenna 403 inputs the received signal to the low noise amplifier 404 via the directional coupler 1.
- the low noise amplifier amplifies the received signal to obtain an amplified signal.
- the amplified signal is multiplied by the oscillation signal output from the oscillator 402 in the frequency converter 405 and converted into a baseband signal.
- the baseband signal is subjected to demodulation processing, digital signal processing, and the like in the reception circuit 406 to be a data signal.
- the frequency at which the oscillator 402 oscillates is the operating frequency of the directional coupler 1 and corresponds to the desired frequency in FIG.
- the oscillation signal is transmitted from the transmission / reception antenna 403 without being input to the reception circuit 406 by using the directional coupler 1 illustrated in FIG. 1. Further, the reception signal is not input to the transmission circuit 401. As described above, by using the directional coupler 1 shown in FIG. 1, a highly efficient wireless device 400 with small reflection loss can be realized.
- the fourth embodiment shows an application example of the directional coupler 1
- the directional couplers shown in the second to fourth embodiments and the modified examples 1 and 2 or directional coupling combining these embodiments Can be applied to wireless devices as well.
- the present invention is not limited to one that transmits an oscillation signal as in the wireless device to which the directional coupler 1 shown in FIG. 1 is applied, and any wireless device that shares an antenna for transmission and reception can be applied.
- the present invention is not limited to the above embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention.
- various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components in different embodiments may be combined as appropriate.
Landscapes
- Amplifiers (AREA)
Abstract
A directional coupler, which is configured to convert first and second input signals to output first and second output signals, respectively, comprises: a voltage-to-current converter that converts the first input signal to a current signal; a first phase shifter that shifts the phase of the current signal to obtain a first phase shifted signal; a first amplitude adjuster the output impedance of which is greater than the characteristic impedance between an input/output terminal and an output terminal and which adjusts the amplitude of the first phase shifted signal to obtain a first amplitude signal; a second amplitude adjuster the output impedance of which is greater than the characteristic impedance between an input/output terminal and an output terminal and which adjusts the amplitude of the current signal to obtain a second amplitude signal; and a second phase shifter that shifts the phase of the second amplitude signal to obtain a second phase shifted signal being in phase with the first amplitude signal, also shifts the phase of the first amplitude signal to obtain a third phase shifted signal being in opposite phase with the second amplitude signal, and that also shifts the phase of the second input signal to obtain the second output signal. The first output signal is a signal obtained by combining the first amplitude signal with the second phase shifted signal.
Description
本発明は、方向性結合器に関する。
The present invention relates to a directional coupler.
ひとつのアンテナを送受両方に利用する無線装置では、送信信号が受信側に回り込む自己干渉のために受信感度が劣化する課題がある。送受信号を分離するために、サーキュレータ、デュプレクサ、方向性結合器などが用いられている。
In a wireless device that uses one antenna for both transmission and reception, there is a problem that the reception sensitivity is degraded due to self-interference in which the transmission signal is transmitted to the reception side. Circulators, duplexers, directional couplers, etc. are used to separate the transmit and receive signals.
一般的な方向性結合器は、例えば、非特許文献1に示すように、結合用の受動素子と移相用の伝送線路で構成されている。
For example, as shown in Non-Patent Document 1, a general directional coupler is composed of a passive element for coupling and a transmission line for phase shift.
上述した方向性結合器では、受信信号は、受動素子を通ため、アンテナからの信号は損失が生じ、受信信号のNF(Noise Figure)の劣化が生じるという問題がある。
In the directional coupler described above, since the received signal passes through the passive element, the signal from the antenna is lost, and there is a problem that deterioration of NF (Noise Figure) of the received signal occurs.
本発明は、この問題を解決するためになされたものであり、受信信号の損失によるNFの劣化を改善し、高効率、小型な方向性結合器を提供することを目的とする。
The present invention has been made to solve this problem, and aims to improve the deterioration of NF due to the loss of a received signal and to provide a highly efficient and compact directional coupler.
本発明の一観点によると、第1入力信号が入力される入力端子と、該第1入力信号を変換して得られる第1出力信号を出力し、かつ第2入力信号が入力される入出力端子と、該第2入力信号を変換して得られる第2出力信号を出力する出力端子とを有する方向性結合器であって、前記第1入力信号を電流信号に変換する電圧電流変換器と、前記電流信号の位相をシフトし、第1移相信号を得る第1移相器と、前記入出力端子と前記出力端子との間の特性インピーダンスより出力インピーダンスが大きく、前記第1移相信号の振幅を調整し、第1振幅信号を得る第1振幅調整器と、前記入出力端子と前記出力端子との間の特性インピーダンスより出力インピーダンスが大きく、前記電流信号の振幅を調整し、第2振幅信号を得る第2振幅調整器と、 前記第2振幅信号、前記第1振幅信号、及び前記第2入力信号の位相をそれぞれシフトし、前記第1振幅信号と同相となる第2移相信号、前記第2振幅信号の位相と逆相となる第3移相信号、及び第2出力信号を得る第2移相器と、を備え、前記第1出力信号を、前記第1振幅信号と前記第2移相信号とから合成し、前記第2振幅信号と前記第3移相信号とを合成することを特徴とする方向性結合器を提供する。
According to one aspect of the present invention, an input terminal to which a first input signal is input, and a first output signal obtained by converting the first input signal are output, and an input and output to which a second input signal is input A directional coupler comprising a terminal and an output terminal for outputting a second output signal obtained by converting the second input signal, wherein the voltage-current converter converts the first input signal into a current signal. A first phase shifter for shifting a phase of the current signal to obtain a first phase shift signal, and an output impedance larger than a characteristic impedance between the input / output terminal and the output terminal, the first phase shift signal An output impedance larger than a characteristic impedance between the input / output terminal and the output terminal, and adjusting an amplitude of the current signal; A second amplitude adjuster for obtaining an amplitude signal, the second amplitude A second phase shift signal that is in phase with the first amplitude signal, and a third phase that is out of phase with the phase of the second amplitude signal. A second phase shifter for obtaining a phase shift signal and a second output signal; combining the first output signal with the first amplitude signal and the second phase shift signal; and the second amplitude signal And a third phase shift signal.
本発明によれば、受信信号の損失によるNFの劣化を改善し、高効率、小型な方向性結合器を提供することができる。
According to the present invention, it is possible to improve the deterioration of NF due to the loss of a received signal, and to provide a highly efficient and compact directional coupler.
以下、図面を参照し本発明の実施の形態を説明する。なお、以下の実施形態中では、同一の番号を付した部分については同様の動作を行うものとし、重ねての説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same operation is performed for the parts given the same numbers, and the overlapping description will be omitted.
(第1実施形態)
図1は、本発明の第1実施形態に係る方向性結合器1の構成を示す図である。図1の方向性結合器1は、入力端子101から入力される第1入力信号S011を変換して得られる第1出力信号S018を入出力端子102から出力し、入出力端子102から入力される第2入力信号S021を変換して得られる第2出力信号S022を出力端子103から出力する方向性結合器であって、第1入力信号S011を電流信号S012に変換する電圧電流変換器111と、電流信号S012の位相をシフトし、第1移相信号S013を得る第1移相器112と、入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きく、第1移相信号S013の振幅を調整し、第1振幅信号S014を得る第1振幅調整器113と、入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きく、電流信号S012の振幅を調整し、第2振幅信号S015を得る第2振幅調整器114と、第2振幅信号S015の位相をシフトし、第1振幅信号S014の位相と同相となる第2移相信号S016を得、第1振幅信号S014の位相をシフトし、第2振幅信号S015の位相と逆相となる第3移相信号S017を得、第2入力信号S021の位相をシフトし、第2出力信号S022を得る第2移相器115と、を備え、第1出力信号S018は、第1振幅信号S014と第2移相信号S016とが合成された信号であることを特徴とする。 First Embodiment
FIG. 1 is a view showing the configuration of adirectional coupler 1 according to a first embodiment of the present invention. The directional coupler 1 of FIG. 1 outputs from the input / output terminal 102 a first output signal S018 obtained by converting the first input signal S011 input from the input terminal 101, and receives the input from the input / output terminal 102. A voltage-current converter 111 for outputting from the output terminal 103 a second output signal S022 obtained by converting the second input signal S021, the voltage-current converter 111 converting the first input signal S011 into a current signal S012; The first phase shifter 112 which shifts the phase of the current signal S012 to obtain the first phase shift signal S013, and the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103, and the first phase shift signal Adjusts the amplitude of the current signal S012 by adjusting the amplitude of S013 to obtain the first amplitude signal S014, and the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103. , The second amplitude adjuster 114 for obtaining the second amplitude signal S015, and the phase of the second amplitude signal S015 To obtain a second phase shift signal S016 in phase with the phase of the first amplitude signal S014, shift the phase of the first amplitude signal S014, and shift the phase of the second amplitude signal S015 out of phase with the phase of the second amplitude signal S015. A second phase shifter 115 for obtaining the phase signal S017, shifting the phase of the second input signal S021, and obtaining the second output signal S022, the first output signal S018 comprising the first amplitude signal S014 and the second amplitude signal S014; It is characterized in that it is a signal obtained by combining the phase shift signal S016.
図1は、本発明の第1実施形態に係る方向性結合器1の構成を示す図である。図1の方向性結合器1は、入力端子101から入力される第1入力信号S011を変換して得られる第1出力信号S018を入出力端子102から出力し、入出力端子102から入力される第2入力信号S021を変換して得られる第2出力信号S022を出力端子103から出力する方向性結合器であって、第1入力信号S011を電流信号S012に変換する電圧電流変換器111と、電流信号S012の位相をシフトし、第1移相信号S013を得る第1移相器112と、入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きく、第1移相信号S013の振幅を調整し、第1振幅信号S014を得る第1振幅調整器113と、入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きく、電流信号S012の振幅を調整し、第2振幅信号S015を得る第2振幅調整器114と、第2振幅信号S015の位相をシフトし、第1振幅信号S014の位相と同相となる第2移相信号S016を得、第1振幅信号S014の位相をシフトし、第2振幅信号S015の位相と逆相となる第3移相信号S017を得、第2入力信号S021の位相をシフトし、第2出力信号S022を得る第2移相器115と、を備え、第1出力信号S018は、第1振幅信号S014と第2移相信号S016とが合成された信号であることを特徴とする。 First Embodiment
FIG. 1 is a view showing the configuration of a
図2は、本実施形態に係る電圧電流変換器111の一例を示す図である。電圧電流変換器111は、第1入力信号S011がゲート端子に印加されるソース接地型MOSトランジスタM1を有している。すなわち、電圧電流変換器111のMOSトランジスタM1は、ソース端子が接地され、ゲート端子が入力端子101に、ドレイン端子が第1移相器112及び第2振幅調整器114に接続されている。電圧電流変換器111は、入力端子101から入力された第1入力信号S012を電流信号S012に変換してドレイン端子から出力する。なお、ドレイン端子から出力される電流信号と、第1移相器112又は第2振幅調整器114に入力される電流信号とは、電流の振幅が異なる信号であるが、同一の信号情報をもつ信号であるため、いずれの信号も以下「電流信号S012」と称する。
FIG. 2 is a diagram showing an example of the voltage-current converter 111 according to the present embodiment. The voltage-current converter 111 has a source-grounded MOS transistor M1 to which the first input signal S011 is applied to the gate terminal. That is, the source terminal of the MOS transistor M1 of the voltage-current converter 111 is grounded, the gate terminal is connected to the input terminal 101, and the drain terminal is connected to the first phase shifter 112 and the second amplitude adjuster 114. The voltage-current converter 111 converts the first input signal S012 input from the input terminal 101 into a current signal S012, and outputs the current signal S012 from the drain terminal. The current signal output from the drain terminal and the current signal input to the first phase shifter 112 or the second amplitude adjuster 114 are signals having different current amplitudes, but have the same signal information. Since these are signals, each signal is hereinafter referred to as "current signal S012".
続いて、図3を用いて第1移相器112の一例を説明する。図3に示す第1移相器112は、一端(端子A)が電圧電流変換器111及び第2振幅調整器114に接続された第1インダクタ素子116と、一端が第1インダクタ素子116に接続され他端(端子B)が第1振幅調整手段113に接続された第2インダクタ素子117と、一端が前記第1インダクタ素子116の他端に接続され他端が接地されたキャパシタ素子118とを備える。第1,2インダクタ素子116,117のインダクタンスLと、キャパシタ素子118のキャパシタンスCを適切な値とすることで、第1移相器112の特性インピーダンスと第1,2振幅調整器113,114の入力インピーダンスとが一致し、かつ端子Aから端子Bへ通過する信号の位相がシフトする。本実施形態では、端子Aから入力される電流信号S012の位相を90度シフトして第1移相信号S013を得て、端子Bから出力するものとする。
Subsequently, an example of the first phase shifter 112 will be described with reference to FIG. The first phase shifter 112 shown in FIG. 3 has a first inductor element 116 connected at one end (terminal A) to the voltage-current converter 111 and the second amplitude adjuster 114, and one end connected to the first inductor element 116. A second inductor element 117 whose other end (terminal B) is connected to the first amplitude adjustment means 113, and a capacitor element 118 whose one end is connected to the other end of the first inductor element 116 and whose other end is grounded Prepare. By setting the inductance L of the first and second inductor elements 116 and 117 and the capacitance C of the capacitor element 118 to appropriate values, the characteristic impedance of the first phase shifter 112 and the input impedance of the first and second amplitude adjusters 113 and 114 can be obtained. The phases of the signals that match and pass from terminal A to terminal B are shifted. In this embodiment, the phase of the current signal S012 input from the terminal A is shifted by 90 degrees to obtain the first phase shift signal S013, and the first phase shift signal S013 is output from the terminal B.
なお、第2移相器115は、端子Aが出力端子103及び第2振幅調整器114と、端子Bが入出力端子102及第1振幅調整器113と接続されている点を除き、第1移相器112と同様の構成であるため、説明を省略する。本実施形態では、第2移相器115は、端子Aから入力される第2振幅信号S015の位相を90度シフトして第2移相信号S016を得て端子Bから出力する。また、第2移相器115は、端子Bから入力される第1振幅信号S014の位相を90度シフトして第3移相信号S017を得て、端子Aから出力する。第2移相器115は、端子Bから入力される第2入力信号S021の位相を90度シフトして第2出力信号S022を得、端子Aから出力する。
Note that the second phase shifter 115 is the first except that the terminal A is connected to the output terminal 103 and the second amplitude adjuster 114, and the terminal B to the input / output terminal 102 and the first amplitude adjuster 113. Since the configuration is the same as that of the phase shifter 112, the description is omitted. In the present embodiment, the second phase shifter 115 shifts the phase of the second amplitude signal S015 input from the terminal A by 90 degrees to obtain the second phase shift signal S016 and outputs the second phase signal S016 from the terminal B. The second phase shifter 115 shifts the phase of the first amplitude signal S014 input from the terminal B by 90 degrees to obtain the third phase shift signal S017, and outputs the third phase signal S017 from the terminal A. The second phase shifter 115 shifts the phase of the second input signal S021 input from the terminal B by 90 degrees to obtain the second output signal S022, and outputs the second output signal S022 from the terminal A.
図4を用いて第1振幅調整器113の一例を説明する。本実施形態に係る第1振幅調整器113は、入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きい特性を持つインピーダンス変換回路を有している。なお、出力インピーダンスとは、入出力端子102又は出力端子103側からみたインピーダンス変換回路のインピーダンスを指す。具体的に、インピーダンス変換回路は、ゲート接地型MOSトランジスタM2を備えている。MOSトランジスタM2のソース端子は第1移相器112に、ドレイン端子は入出力端子102及び第2移相器115に接続されている。またMOSトランジスタM2のゲート端子は所定の電圧(V_bias)が印加されている。MOSトランジスタは、ゲート端子に印加される所定の電圧値に応じて、ソース端子に入力された第1移相信号S013の振幅を増幅し、第1振幅信号S014を生成してドレイン端子から出力する。
An example of the first amplitude adjuster 113 will be described with reference to FIG. The first amplitude adjuster 113 according to the present embodiment has an impedance conversion circuit having a characteristic in which the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103. The output impedance refers to the impedance of the impedance conversion circuit viewed from the input / output terminal 102 or the output terminal 103 side. Specifically, the impedance conversion circuit includes a gate-grounded MOS transistor M2. The source terminal of the MOS transistor M 2 is connected to the first phase shifter 112, and the drain terminal is connected to the input / output terminal 102 and the second phase shifter 115. A predetermined voltage (V_bias) is applied to the gate terminal of the MOS transistor M2. The MOS transistor amplifies the amplitude of the first phase shift signal S013 input to the source terminal according to a predetermined voltage value applied to the gate terminal, generates a first amplitude signal S014, and outputs it from the drain terminal. .
ゲート接地型MOSトランジスタM2は、入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きいという特徴をもつ。従って、ゲート接地型MOSトランジスタM2は、ソース端子から入力される信号を効率よくドレイン端子から出力するが、ドレイン端子から入力される信号を、ソース端子からはほとんど出力しない。
The gate-grounded MOS transistor M2 is characterized in that the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103. Therefore, the gate-grounded MOS transistor M2 efficiently outputs the signal input from the source terminal from the drain terminal, but hardly outputs the signal input from the drain terminal from the source terminal.
なお、第2振幅調整器114が有するゲート接地型MOSトランジスタは、ソース端子が電圧電流変換器111に、ドレイン端子が出力端子103及び第2移相器115に接続されている点を除き、第1振幅調整器113と同様の構成であるため、説明を省略する。第2振幅調整器は、ソース端子に入力される電流信号S012の振幅を調整し第2振幅信号S015を得、ドレイン端子から出力する。
The gate-grounded MOS transistor of the second amplitude adjuster 114 has a source terminal connected to the voltage-current converter 111 and a drain terminal connected to the output terminal 103 and the second phase shifter 115. Since the configuration is the same as that of the one-amplitude adjuster 113, the description is omitted. The second amplitude adjuster adjusts the amplitude of the current signal S012 input to the source terminal to obtain a second amplitude signal S015, and outputs the second amplitude signal S015 from the drain terminal.
続いて、方向性結合器1の動作を説明する。まず、入力端子101から入力される第1入力信号S011を変換して得られる第1出力信号S018を入出力端子102から出力する動作について説明する。
Subsequently, the operation of the directional coupler 1 will be described. First, an operation of outputting from the input / output terminal 102 the first output signal S018 obtained by converting the first input signal S011 input from the input terminal 101 will be described.
入力端子101に入力された第1入力信号S011は、電圧電流変換器111によって電流信号S012に変換される。電流信号S012は、第1移相器112及び第2振幅調整器114に入力される。電流信号S012は、第1移相器112で位相が90度シフトされた第1移相信号S013に変換される。第1位相信号S013は、第1振幅調整器113で振幅が調整されて第1振幅信号S014となる。
The first input signal S011 input to the input terminal 101 is converted into a current signal S012 by the voltage-current converter 111. The current signal S 012 is input to the first phase shifter 112 and the second amplitude adjuster 114. The current signal S012 is converted by the first phase shifter 112 into a first phase shift signal S013 whose phase is shifted by 90 degrees. The amplitude of the first phase signal S013 is adjusted by the first amplitude adjuster 113 to become the first amplitude signal S014.
一方、第2振幅調整器114に入力された電流信号S012は、第2振幅調整器114で振幅が調整されて第2振幅信号S015 となる。第2振幅信号S015は、第2移相器115で位相が90度シフトされた第2移相信号S016に変換される。上述した第1振幅信号S014と第2移相信号S016とが合成され第1出力信号S018となる。なお、第1振幅信号S014は第1移相器112で90度位相がシフトされており、第2移相信号S016も第2移相器115で位相が90度シフトされている。すなわち、第1振幅信号S014と第2移相信号S016とはいずれも90度位相がシフトされているので同相信号となる。
On the other hand, the amplitude of the current signal S 012 input to the second amplitude adjuster 114 is adjusted by the second amplitude adjuster 114 to become a second amplitude signal S 015. The second amplitude signal S015 is converted into a second phase shift signal S016 whose phase is shifted by 90 degrees by the second phase shifter 115. The first amplitude signal S014 and the second phase shift signal S016 described above are combined to form a first output signal S018. The first amplitude signal S014 is shifted by 90 degrees in phase by the first phase shifter 112, and the second phase shift signal S016 is also shifted by 90 degrees in phase by the second phase shifter 115. That is, since the first amplitude signal S014 and the second phase shift signal S016 are both shifted in phase by 90 degrees, they become in-phase signals.
第1振幅信号S014は、第2移相器115にも入力される。第2移相器115に入力された第1振幅信号S014は、位相がさらに90度シフトされ、第3移相信号S017となる。第3移相信号S017は、電流信号S012及び第2振幅信号S015に比べ180度位相がシフトされている。通常、第3移相信号S017は、第2振幅信号S015と合成されて出力端子103から出力される。しかしながら本実施形態に係る方向性結合器では、第3移相信号S017と第2振幅信号S015との位相差が180度であり、互いに逆相となるため、第3移相信号S017と第2振幅信号S015とが互いに打ち消しあい、出力端子103からは信号が出力されない。
The first amplitude signal S014 is also input to the second phase shifter 115. The phase of the first amplitude signal S014 input to the second phase shifter 115 is further shifted by 90 degrees to form a third phase shift signal S017. The third phase shift signal S017 is 180 degrees out of phase with the current signal S012 and the second amplitude signal S015. Usually, the third phase shift signal S017 is combined with the second amplitude signal S015 and output from the output terminal 103. However, in the directional coupler according to the present embodiment, the phase difference between the third phase shift signal S017 and the second amplitude signal S015 is 180 degrees, and the phases are opposite to each other. The amplitude signal S015 mutually cancels out, and a signal is not output from the output terminal 103.
このように、本実施形態に係る方向性結合器1は、入力端子101に第1入力信号S011が入力されると、入出力端子102から第1出力信号S018を出力するが出力端子103からは信号を出力しない。
As described above, when the first input signal S011 is input to the input terminal 101, the directional coupler 1 according to the present embodiment outputs the first output signal S018 from the input / output terminal 102, but from the output terminal 103. Do not output a signal.
次に、入出力端子102から入力される第2入力信号S021を変換して得られる第2出力信号S022を出力端子103から出力する動作について説明する。
Next, an operation of outputting from the output terminal 103 the second output signal S022 obtained by converting the second input signal S021 input from the input / output terminal 102 will be described.
入出力端子102に入力された第2入力信号S021は、第2移相器115によって第2出力信号S022に変換され、出力端子103から出力される。上述したように、第1,2振幅調整器113,114は、入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きいインピーダンス変換回路を有しているため、第2入力信号S021は、第1,2振幅調整器113,114にほとんど入力されない。
The second input signal S 021 input to the input / output terminal 102 is converted into a second output signal S 022 by the second phase shifter 115 and output from the output terminal 103. As described above, since the first and second amplitude adjusters 113 and 114 have the impedance conversion circuit whose output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103, the second input signal S021 is , Little input to the first and second amplitude adjusters 113 and 114.
このように、本実施形態に係る方向性結合器1は、入出力端子102に第2入力信号S022が入力されると、出力端子103から第2出力信号S022を出力するが、入力端子101からは信号を出力しない。
As described above, when the second input signal S022 is input to the input / output terminal 102, the directional coupler 1 according to the present embodiment outputs the second output signal S022 from the output terminal 103. Does not output a signal.
図5は、本実施形態に係る方向性結合器1の特性を示すグラフである。図5のグラフの横軸は第1,2入力信号S011,S012の周波数、縦軸は各端子101~103における出力利得を示している。第1入力信号S011を入力端子101に入力した場合に入出力端子102から得られる第1出力信号S018と、第1入力信号S011との比(第1入力信号の利得)を一点鎖線で示している。第1入力信号S011を入力端子101に入力した場合に出力端子103から得られる信号と、第1入力信号との比(回り込み)を二点鎖線で示している。また、第2入力信号S021を入出力端子102に入力した場合に出力端子103から得られる第2出力信号S022と、第2入力信号S021との比(第2入力信号の利得)を実線で示している。なお、所望周波数とは、本実施形態に係る方向性結合器1の動作周波数であり、後述するように方向性結合器1が無線装置に実装された場合は、無線装置が信号の送受信に使用する周波数である。
FIG. 5 is a graph showing the characteristics of the directional coupler 1 according to the present embodiment. The horizontal axis of the graph in FIG. 5 indicates the frequency of the first and second input signals S011 and S012, and the vertical axis indicates the output gain at each of the terminals 101 to 103. The ratio (gain of the first input signal) of the first output signal S018 obtained from the input / output terminal 102 when the first input signal S011 is input to the input terminal 101 to the first input signal S011 is indicated by an alternate long and short dash line. There is. When the first input signal S011 is input to the input terminal 101, the ratio (round-around) of the signal obtained from the output terminal 103 to the first input signal is indicated by a two-dot chain line. Further, the ratio (gain of the second input signal) of the second output signal S022 obtained from the output terminal 103 to the second input signal S021 obtained when the second input signal S021 is input to the input / output terminal 102 is indicated by a solid line. ing. The desired frequency is the operating frequency of the directional coupler 1 according to this embodiment, and as described later, when the directional coupler 1 is mounted on a wireless device, the wireless device uses it for transmitting and receiving signals. Frequency.
図5に示すグラフからわかるように、本実施形態に係る方向性結合器1では、所望周波数における回り込みが急激に下がっており、所望周波数において第1入力信号が出力端子103にほとんど出力されないことがわかる。第1入力信号の利得が0dBより大きくなっている。これは第1,2振幅調整器113で電流信号S012及び第1移相信号S013の振幅が調整されるためである。第2入力信号の利得は、周波数によってほとんど変化していない。これは入出力端子102に入力された第2入力信号S021が方向性結合器1でほとんど損失することなく出力端子103から出力されていることを示している。
As can be seen from the graph shown in FIG. 5, in the directional coupler 1 according to the present embodiment, the sneaking at the desired frequency is sharply reduced, and the first input signal is hardly output to the output terminal 103 at the desired frequency. Recognize. The gain of the first input signal is greater than 0 dB. This is because the amplitudes of the current signal S012 and the first phase shift signal S013 are adjusted by the first and second amplitude adjusters 113. The gain of the second input signal hardly changes with the frequency. This indicates that the second input signal S021 input to the input / output terminal 102 is output from the output terminal 103 with almost no loss in the directional coupler 1.
以上のように、本実施形態に係る方向性結合器1では、第1,2振幅調整器113,114が入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きいインピーダンス変換回路を有しているため、第2入力信号S021が第1,2振幅調整器113,114にほとんど入力されない。従って、本実施形態に係る方向性結合器1は、第2入力信号S021の利得をほとんど損失することなく、出力端子103から出力させることができる。
As described above, in the directional coupler 1 according to the present embodiment, the first and second amplitude adjusters 113 and 114 have an impedance conversion circuit whose output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103. Therefore, the second input signal S021 is hardly input to the first and second amplitude adjusters 113 and 114. Accordingly, the directional coupler 1 according to the present embodiment can output the signal from the output terminal 103 with almost no loss of the gain of the second input signal S021.
また、本実施形態に係る方向性結合器は、第1入力信号S011の振幅を第1,2振幅調整器113,114で調整しているため、第2振幅信号S015及び第3移相信号S017の振幅を同程度の大きさすることができる。そのため、第1入力信号S011の出力端子103への回り込みをより低減させることができる。
Moreover, since the directional coupler according to the present embodiment adjusts the amplitude of the first input signal S011 by the first and second amplitude adjusters 113 and 114, the amplitudes of the second amplitude signal S015 and the third phase shift signal S017 Can be of similar size. Therefore, the wraparound of the first input signal S011 to the output terminal 103 can be further reduced.
(第2実施形態)
図6に示すように、本実施形態に係る方向性結合器2は、図1に示す方向性結合器1の第1,2移相器112,115の代わりに第1,2可変移相器212,215を、第1,2振幅調整器113,114の代わりに第1,2可変振幅調整器213,214を備えており、さらに入力端子101から第1入力信号が入力されると出力端子103から出力される信号の位相又は電力レベルを検出し、検出した位相又は電力レベルに基づいて、第1,2可変移相器212,215のシフト量の調整量と、第1,2可変振幅調整器213,214の振幅の調整量を決定する検出器119と、検出器119により決定されたシフト量の調整量と、振幅の調整量に基づいて第1,2可変移相器212,215のシフト量と第1,2可変振幅調整器213,214の調整量とを制御する制御部120を備えている。制御部120は、第1,2可変振幅調整器213,214がそれぞれ有する第1,2ゲート接地型MOSトランジスタM2のゲート端子にそれぞれ制御信号を印加することにより、第1,2可変振幅調整器213,214の振幅の調整量を制御することを特徴とする。なお、制御部120は、第2可変振幅調整器214が、第1可変振幅調整器213の振幅の調整量に、第1,2可変移相器212,215の損失分を加えた量の振幅を調整するよう制御するように構成してもよい。 Second Embodiment
As shown in FIG. 6, in thedirectional coupler 2 according to the present embodiment, first and second variable phase shifters 212 and 215 are used instead of the first and second phase shifters 112 and 115 of the directional coupler 1 shown in FIG. The first and second variable amplitude adjusters 213 and 214 are provided instead of the first and second amplitude adjusters 113 and 114, and the phase of the signal output from the output terminal 103 when the first input signal is input from the input terminal 101 Alternatively, the power level is detected, and the adjustment amount of the shift amount of the first and second variable phase shifters 212 and 215 and the adjustment amount of the amplitude of the first and second variable amplitude adjusters 213 and 214 are determined based on the detected phase or power level. Detector 119, the adjustment amount of the shift amount determined by the detector 119, and the shift amount of the first and second variable amplitude adjusters 213 and 214 based on the adjustment amount of the amplitude and the adjustment amount of the first A control unit 120 that controls the adjustment amount is provided. The control unit 120 applies control signals to the gate terminals of the first and second gate grounded MOS transistors M2 of the first and second variable amplitude adjusters 213 and 214, respectively, to control the first and second variable amplitude adjusters 213 and 214. It is characterized in that the amount of adjustment of the amplitude is controlled. The control unit 120 adjusts the amplitude of the second variable amplitude adjuster 214 by adding the loss adjustment amount of the first and second variable phase shifters 212 and 215 to the amplitude adjustment amount of the first variable amplitude adjuster 213. It may be configured to control to
図6に示すように、本実施形態に係る方向性結合器2は、図1に示す方向性結合器1の第1,2移相器112,115の代わりに第1,2可変移相器212,215を、第1,2振幅調整器113,114の代わりに第1,2可変振幅調整器213,214を備えており、さらに入力端子101から第1入力信号が入力されると出力端子103から出力される信号の位相又は電力レベルを検出し、検出した位相又は電力レベルに基づいて、第1,2可変移相器212,215のシフト量の調整量と、第1,2可変振幅調整器213,214の振幅の調整量を決定する検出器119と、検出器119により決定されたシフト量の調整量と、振幅の調整量に基づいて第1,2可変移相器212,215のシフト量と第1,2可変振幅調整器213,214の調整量とを制御する制御部120を備えている。制御部120は、第1,2可変振幅調整器213,214がそれぞれ有する第1,2ゲート接地型MOSトランジスタM2のゲート端子にそれぞれ制御信号を印加することにより、第1,2可変振幅調整器213,214の振幅の調整量を制御することを特徴とする。なお、制御部120は、第2可変振幅調整器214が、第1可変振幅調整器213の振幅の調整量に、第1,2可変移相器212,215の損失分を加えた量の振幅を調整するよう制御するように構成してもよい。 Second Embodiment
As shown in FIG. 6, in the
図7に、第1可変移相器212の一例を示す。第1可変移相器212は、並列に接続された複数の第1インダクタ素子116-1~116-nと、各第1インダクタ素子116-1~116-nに直列に接続され、それぞれが並列に接続された複数の第2インダクタ素子117-1~117-nと、一端が複数の第1インダクタ素子116-1~116-nと複数の第2インダクタ素子117-1~117-nとの間に接続され他端が接地された複数のキャパシタ素子118-1~118-mと、複数の第1インダクタ素子116-1~116-nの中から少なくとも1つの素子を選択する第1選択器220と、複数の第2インダクタ素子117-1~117-nの中から少なくとも1つの素子を選択する第2選択器221と、複数のキャパシタ素子118-1~118-mの中から少なくとも1つの素子を選択する第3選択器222と、を備え、第1可変移相器212のシフト量は、第1~3選択器220~222が選択する素子によって変化することを特徴とする。なお、n,mは、1以上の整数である。
An example of the first variable phase shifter 212 is shown in FIG. The first variable phase shifter 212 is connected in series to the plurality of first inductor elements 116-1 to 116-n connected in parallel and the first inductor elements 116-1 to 116-n, each of which is connected in parallel Of a plurality of second inductor elements 117-1 to 117-n connected to one end, a plurality of first inductor elements 116-1 to 116-n at one end, and a plurality of second inductor elements 117-1 to 117-n at one end A first selector for selecting at least one element from among a plurality of capacitor elements 118-1 to 118-m connected between and having the other end grounded and a plurality of first inductor elements 116-1 to 116-n 220, a second selector 221 for selecting at least one of the plurality of second inductor elements 117-1 to 117-n, and at least one of the plurality of capacitor elements 118-1 to 118-m. And a third selector 222 for selecting an element, wherein the shift amount of the first variable phase shifter 212 varies according to the element selected by the first to third selectors 220 to 222. Note that n and m are integers of 1 or more.
図7に示す例では、m=n=3の場合の第1可変移相器212を示している。また、第1選択器220は、端子Aと各第1インダクタ素子116-1,116-2の間に挿入されたスイッチSW-11,SW-21を備えている。第2選択器221は、端子Bと各第2インダクタ素子117-1,117-2の間に挿入されたスイッチSW-12,22を備えている。第3選択器222は、第1インダクタ素子116-及び第2インダクタ素子117と、キャパシタ素子118-1,118-3の間に挿入されたスイッチSW31,32を備えている。制御部120は、上述したスイッチSW-11~SW32のオン・オフを切り替えることで、第1可変移相器212のシフト量を制御する。第1可変移相器212の端子Aに入力された電流信号S012は、シフト量だけ位相をシフトされて端子Bから出力される。なお、第2可変移相器215も第1可変移相器212と同様の構成であるため、説明を省略する。
The example shown in FIG. 7 shows the first variable phase shifter 212 in the case of m = n = 3. The first selector 220 also includes switches SW-11 and SW-21 inserted between the terminal A and the first inductor elements 116-1 and 116-2. The second selector 221 includes switches SW-12 and 22 inserted between the terminal B and the respective second inductor elements 117-1 and 117-2. The third selector 222 includes switches SW31 and SW32 inserted between the first inductor element 116- and the second inductor element 117 and the capacitor elements 118-1 and 118-3. The control unit 120 controls the shift amount of the first variable phase shifter 212 by switching on and off the switches SW-11 to SW32 described above. The current signal S 012 input to the terminal A of the first variable phase shifter 212 is shifted in phase by the shift amount and output from the terminal B. The second variable phase shifter 215 has the same configuration as that of the first variable phase shifter 212, and thus the description thereof will be omitted.
次に、図8に第1可変振幅調整器213を示す。第1可変振幅調整器213は、図4に示す第1振幅調整器113と同じ構成だが、ゲート端子に所定の電圧(V_bias)が印加されるのではなく、制御部120によって制御電圧が印加される点が異なる。制御電圧によって、振幅の調整量は変化する。第1可変振幅調整器213は、MOSトランジスタM2のソース端子に入力される第1移相信号S013の振幅を制御電圧に応じて調整し、第1振幅信号S014を生成しドレイン端子から出力する。なお、第2可変振幅調整器214も第1可変振幅調整器213と同様の構成である。
Next, a first variable amplitude adjuster 213 is shown in FIG. The first variable amplitude adjuster 213 has the same configuration as the first amplitude adjuster 113 shown in FIG. 4, but the control unit 120 applies a control voltage instead of applying a predetermined voltage (V_bias) to the gate terminal. Are different. The amount of adjustment of the amplitude changes with the control voltage. The first variable amplitude adjuster 213 adjusts the amplitude of the first phase shift signal S013 input to the source terminal of the MOS transistor M2 according to the control voltage, generates a first amplitude signal S014, and outputs it from the drain terminal. The second variable amplitude adjuster 214 also has a configuration similar to that of the first variable amplitude adjuster 213.
ここで、第1,2可変移相器212,215のシフト量が90度であり、その他の素子でも位相のずれが発生しない場合かつ第1,2可変振幅調整器213,214が同じ量だけ振幅を調整し、その他の素子でも損失が発生しない場合は、第1振幅信号S014と第2移相信号S016との位相差は0度となり第1出力信号S018は、第1振幅信号S014と第2移相信号S016とが合成された信号となる。同様に、第3移相信号S017と第2振幅信号S015との位相差は180度となり、出力端子103では第3移相信号S017と第2振幅信号S015とが互いに打ち消しあい、出力端子103から信号が出力されない。
Here, when the shift amount of the first and second variable phase shifters 212 and 215 is 90 degrees and the phase shift does not occur even in other elements, the first and second variable amplitude adjusters 213 and 214 adjust the amplitude by the same amount. If no loss occurs even in the other elements, the phase difference between the first amplitude signal S014 and the second phase shift signal S016 is 0 degrees, and the first output signal S018 is the first amplitude signal S014 and the second phase shift signal. It becomes a signal that is synthesized with S016. Similarly, the phase difference between the third phase shift signal S017 and the second amplitude signal S015 is 180 degrees, and the third phase shift signal S017 and the second amplitude signal S015 cancel each other at the output terminal 103. No signal is output.
しかしながら、環境によって各素子の抵抗値が変化したり入力される第1,2入力信号S011,S021などに応じて信号の位相や振幅が変化したりするため、第1,2可変移相器212,215のシフト量及び第1,2可変振幅調整器213,214の振幅の調整量を予め決めておいても、第1振幅信号S014と第2移相信号S016との位相差を0度に、振幅値を同程度に保つことは難しい。同様に、出力端子103では第3移相信号S017と第2振幅信号S015とが互いに打ち消しあわず、出力端子103に第1入力信号S011の回り込みが発生してしまう。
However, the resistance value of each element changes depending on the environment, and the phase and amplitude of the signal change according to the first and second input signals S011 and S021. Therefore, the first and second variable phase shifters 212 and 215 The phase difference between the first amplitude signal S014 and the second phase shift signal S016 is set to 0 degree, and the amplitude value is set even if the adjustment amount of the first and second variable amplitude adjusters 213 and 214 is determined in advance. It is difficult to keep the same level. Similarly, at the output terminal 103, the third phase shift signal S017 and the second amplitude signal S015 do not cancel each other, and a wraparound of the first input signal S011 occurs at the output terminal 103.
そこで、本実施形態に係る方向性結合器2では、検出器119によって、出力端子103から出力される信号の位相及び電力レベルを検出する。第1入力信号S011が入力されている場合、出力端子103からは信号が出力されないことが望ましい。検出器119は、出力端子103から出力される信号の位相のずれを、第1,2可変移相器212,215で調整するシフト量の調整量と決定する。例えば、検出器119は、シフト量の調整量を、信号の位相がα度進んでいる場合は「+α」と、β度遅れている場合は「-β」と決定する。
Therefore, in the directional coupler 2 according to the present embodiment, the detector 119 detects the phase and power level of the signal output from the output terminal 103. When the first input signal S011 is input, it is desirable that no signal is output from the output terminal 103. The detector 119 determines the phase shift of the signal output from the output terminal 103 as the adjustment amount of the shift amount adjusted by the first and second variable phase shifters 212 and 215. For example, the detector 119 determines the adjustment amount of the shift amount as “+ α” when the phase of the signal is advanced by α degrees and as “−β” when it is delayed by β degrees.
検出器119は、出力端子103から出力される信号の電力レベルを第1,2可変振幅調整器213,214で調整する振幅の調整量と決定する。例えば、検出した電力レベルがAだった場合、検出器119は、「A」を振幅の調整量と決定する。検出器119は、決定したシフト量の調整量及び振幅の調整量を制御部120に通知する。
The detector 119 determines the power level of the signal output from the output terminal 103 as the amount of amplitude adjustment to be adjusted by the first and second variable amplitude adjusters 213 and 214. For example, if the detected power level is A, the detector 119 determines “A” as the amount of amplitude adjustment. The detector 119 notifies the control unit 120 of the determined adjustment amount of the shift amount and the adjustment amount of the amplitude.
制御部120は、検出器119から通知されるシフト量及び振幅の調整量に基づいて第1,2可変移相器212,215及び第1,2可変振幅調整器213,214を制御する。例えば、制御部120は、位相の調整量が「+α」であった場合、第1,2可変移相器212,215でのシフト量がα減るように制御する。具体的には、第1可変移相器212がシフトする電流信号S012のシフト量をαだけ減らしてもよく、第2可変移相器215がシフトする第1振幅信号S014のシフト量をαだけ減らしてもよい。どちらの可変移相器212,215を制御してもよいが、いずれにしても制御部120は、第3移相信号S017の位相が、制御する前の第3移相信号S017の位相に比べて「-α度」ずれるように制御する。
The control unit 120 controls the first and second variable phase shifters 212 and 215 and the first and second variable amplitude adjusters 213 and 214 based on the shift amount and the adjustment amount of the amplitude notified from the detector 119. For example, when the adjustment amount of the phase is “+ α”, the control unit 120 performs control so that the shift amounts of the first and second variable phase shifters 212 and 215 decrease α. Specifically, the shift amount of the current signal S012 shifted by the first variable phase shifter 212 may be reduced by α, and the shift amount of the first amplitude signal S014 shifted by the second variable phase shifter 215 by α You may reduce it. Either of the variable phase shifters 212 and 215 may be controlled, but in any case, the control unit 120 compares the phase of the third phase shift signal S017 with the phase of the third phase shift signal S017 before control. Control to shift by “α degree”.
制御部120は、振幅の調整量が「A」であった場合、第1,2可変振幅調整器213,214での振幅の調整量が「A」減るように制御する。具体的には、第1,2可変振幅調整器213,214のどちらか振幅の調整量が大きい方の調整量を「A」減らすようにしてもよく、少ない方の調整量を「A」増やしてもよい。いずれにしても制御部120は、第2振幅信号S015の振幅と第3移相信号S017の振幅との差がゼロに近づくように、振幅値の大きな方の振幅を減らす又は振幅値の小さな方の振幅値を増やすように制御電圧を印加する。なお、上述した制御方法は位相と振幅の両方を検出する場合の一例であり、振幅のみを検出し、振幅がほぼゼロとなるようシフト量及び振幅の調整量を制御する方法など、振幅又は位相のどちらか一方を検出する方法もある。
When the adjustment amount of the amplitude is “A”, the control unit 120 performs control so that the adjustment amount of the amplitude in the first and second variable amplitude adjusters 213 and 214 decreases by “A”. Specifically, the adjustment amount of one of the first and second variable amplitude adjusters 213 and 214 may be decreased by “A”, and the adjustment amount of the smaller one may be increased by “A”. Good. In any case, the control unit 120 reduces the amplitude of the larger amplitude value or reduces the amplitude value so that the difference between the amplitude of the second amplitude signal S015 and the amplitude of the third phase shift signal S017 approaches zero. The control voltage is applied to increase the amplitude value of. The above-described control method is an example of detecting both the phase and the amplitude, and is a method of detecting only the amplitude and controlling the amount of adjustment of the shift amount and the amplitude such that the amplitude becomes substantially zero. There is also a method of detecting either one of them.
以上のように、第2実施形態に係る方向性結合器2は、第1実施形態と同様の効果が得られるとともに、出力端子103から出力される信号の位相又は電力レベルを検出し、検出した結果に応じて第1,2可変移相器212,215及び第1,2可変振幅調整器213,214を制御することで、第1入力信号S011の出力端子103への回り込みを精度よく抑制することができる。例えば、方向性結合器2の製造誤差や使用環境の変化などにより、方向性結合器2の各信号のシフト量や振幅の調整量が変化しても第1入力信号S011の出力端子103への回り込みを精度よく抑制することができる。
As described above, the directional coupler 2 according to the second embodiment detects and detects the phase or power level of the signal output from the output terminal 103 while obtaining the same effect as that of the first embodiment. By controlling the first and second variable phase shifters 212 and 215 and the first and second variable amplitude adjusters 213 and 214 according to the result, the wraparound of the first input signal S011 to the output terminal 103 can be accurately suppressed. For example, even if the shift amount of each signal of the directional coupler 2 or the adjustment amount of the amplitude change due to a manufacturing error of the directional coupler 2 or a change in the use environment, the first input signal S011 to the output terminal 103 The wraparound can be accurately suppressed.
なお、本実施形態では、制御部120は、第1,2可変移相器212,215及び第1,2可変振幅調整器213,214の全てを制御しているが、第1,2可変移相器212,215または第1,2可変振幅調整器213,214のどちらかを制御してもよい。また、制御部120は、第1,2可変移相器212,215のどちらか一方を制御するよう構成してもよく、第1,2可変振幅調整器213,214のどちらか一方を制御するように構成してもよい。方向性結合器2は、第1,2可変移相器212,215及び第1,2可変振幅調整器213,214の少なくとも1つを制御することで、まったく制御しなかった場合に比べ第1入力信号S011の出力端子103への回り込みをより精度よく抑制することができる。
In the present embodiment, the control unit 120 controls all of the first and second variable phase shifters 212 and 215 and the first and second variable amplitude adjusters 213 and 214. However, the first and second variable phase shifters 212 and 215 or Either of the first and second variable amplitude adjusters 213 and 214 may be controlled. In addition, the control unit 120 may be configured to control either one of the first and second variable phase shifters 212 and 215, and configured to control one of the first and second variable amplitude adjusters 213 and 214. May be The directional coupler 2 controls at least one of the first and second variable phase shifters 212 and 215 and the first and second variable amplitude adjusters 213 and 214 to control the first input signal S011 compared to the case where no control is performed at all. The wraparound to the output terminal 103 can be suppressed more accurately.
(変形例1)
図9を用いて、第2実施形態に係る方向性結合器2の変形例1を示す。本変形例では、第1,2可変振幅調整器213,214の代わりに、第3,4可変振幅調整器217,218を用いている点が異なる。図9は、本変形例に係る第3可変振幅調整器217を示す図である。第4可変振幅調整器218は、第3可変振幅調整器217と同じ構成であるため説明を省略する。 (Modification 1)
Themodification 1 of the directional coupler 2 which concerns on 2nd Embodiment is shown using FIG. The present modification is different in that third and fourth variable amplitude adjusters 217 and 218 are used instead of the first and second variable amplitude adjusters 213 and 214. FIG. 9 is a diagram showing a third variable amplitude adjuster 217 according to the present modification. The fourth variable amplitude adjuster 218 has the same configuration as the third variable amplitude adjuster 217, and thus the description thereof is omitted.
図9を用いて、第2実施形態に係る方向性結合器2の変形例1を示す。本変形例では、第1,2可変振幅調整器213,214の代わりに、第3,4可変振幅調整器217,218を用いている点が異なる。図9は、本変形例に係る第3可変振幅調整器217を示す図である。第4可変振幅調整器218は、第3可変振幅調整器217と同じ構成であるため説明を省略する。 (Modification 1)
The
第3可変振幅調整器217は、各々が並列に接続され、各ゲート幅が異なるゲート接地型MOSトランジスタM3-1~M3-s(sは2以上の整数)を有している。制御部120は、ゲート接地型MOSトランジスタM3-1~M3-sの少なくとも1つに制御信号を印加することにより、第3可変振幅調整器217の振幅の調整量を制御する。
The third variable amplitude adjusters 217 include gate-grounded MOS transistors M3-1 to M3-s (s is an integer of 2 or more) which are connected in parallel and have different gate widths. The control unit 120 controls the adjustment amount of the amplitude of the third variable amplitude adjuster 217 by applying a control signal to at least one of the gate-grounded MOS transistors M3-1 to M3-s.
図9は、s=3の場合の例を示す図である。MOSトランジスタM3-1~M3-3は、ゲート幅がそれぞれ異なるため、ソース端子に入力される第1移相信号S013をそれぞれ異なる調整量で振幅を調整して、第1振幅信号S014を生成する。
FIG. 9 is a diagram showing an example in the case of s = 3. Since the gate widths of the MOS transistors M3-1 to M3-3 are different from each other, the first phase shift signal S013 input to the source terminal is adjusted in amplitude by different adjustment amounts to generate a first amplitude signal S014. .
制御部120は、検出部119が検出した電力レベルに応じて、MOSトランジスタM3-1~M3-3をオン・オフする。制御部120は、MOSトランジスタM3-1~M3-3のゲート端子に一定の制御電圧を印加することで第3可変振幅調整器217を制御する。
Control unit 120 turns on / off MOS transistors M3-1 to M3-3 in accordance with the power level detected by detection unit 119. The control unit 120 controls the third variable amplitude adjuster 217 by applying a constant control voltage to the gate terminals of the MOS transistors M3-1 to M3-3.
このように複数のMOSトランジスタM3-1~M3-3を並列に接続することで、第3可変振幅調整器217の振幅の調整量をデジタル値として制御可能である。さらに、例えば、MOSトランジスタM3-1をメインの振幅調整用トランジスタとし、その他のMOSトランジスタM3-2,M3-3を微調整用トランジスタとしてもよい。微調整用トランジスタM3-2,M3-3をゲート幅の小さい微小トランジスタで構成することで、より細かい振幅の調整が可能となる。
By thus connecting the plurality of MOS transistors M3-1 to M3-3 in parallel, the adjustment amount of the amplitude of the third variable amplitude adjuster 217 can be controlled as a digital value. Furthermore, for example, the MOS transistor M3-1 may be a main amplitude adjustment transistor, and the other MOS transistors M3-2 and M3-3 may be fine adjustment transistors. By configuring the fine adjustment transistors M3-2 and M3-3 to be small transistors with a small gate width, it is possible to perform finer amplitude adjustment.
(第3実施形態)
図10に示すように、本実施形態に係る方向性結合器3は、図1に示す方向性結合器1に、入力端子101と電圧電流変換器111との間に設けられ、入力端子101と電圧電流変換器111との整合をとる第1整合器321と、入出力端子102と第2移相器115との間に設けられた伝送線路322と、出力端子103と第2移相器115との間に設けられ、出力端子103と伝送線路322との整合をとる第2整合器323と、をさらに備えた構成となっている。 Third Embodiment
As shown in FIG. 10, thedirectional coupler 3 according to the present embodiment is provided between the input terminal 101 and the voltage-current converter 111 in the directional coupler 1 shown in FIG. A first matching unit 321 for matching with the voltage-current converter 111, a transmission line 322 provided between the input / output terminal 102 and the second phase shifter 115, an output terminal 103 and a second phase shifter 115 And a second matching unit 323 for matching between the output terminal 103 and the transmission line 322.
図10に示すように、本実施形態に係る方向性結合器3は、図1に示す方向性結合器1に、入力端子101と電圧電流変換器111との間に設けられ、入力端子101と電圧電流変換器111との整合をとる第1整合器321と、入出力端子102と第2移相器115との間に設けられた伝送線路322と、出力端子103と第2移相器115との間に設けられ、出力端子103と伝送線路322との整合をとる第2整合器323と、をさらに備えた構成となっている。 Third Embodiment
As shown in FIG. 10, the
第1整合器321は、例えば送信回路といった入力端子101に接続される回路(図示せず)と電圧電流変換器111との間の整合をとる。従って、入力端子101に入力される第1入力信号S011は、高効率に電圧電流変換器111へと入力される。
The first matching unit 321 matches the voltage-current converter 111 with a circuit (not shown) connected to the input terminal 101 such as a transmission circuit. Therefore, the first input signal S011 input to the input terminal 101 is input to the voltage-current converter 111 with high efficiency.
伝送線路322は、例えばアンテナといった入出力端子に接続される回路(図示せず)と第2移相器115との整合をとる。従って、入出力端子102に入力される第2入力信号S021は、高効率に第2移相器115へと入力される。
The transmission line 322 matches the second phase shifter 115 with a circuit (not shown) connected to an input / output terminal such as an antenna. Therefore, the second input signal S021 input to the input / output terminal 102 is input to the second phase shifter 115 with high efficiency.
第2整合器323は、出力端子103と伝送線路322との整合をとる。これにより、方向性結合器3は、入出力端子102から入力される第2入力信号S021を反射損なく高効率に出力端子103から第2出力信号S022として出力する。
The second matching unit 323 matches the output terminal 103 with the transmission line 322. Thus, the directional coupler 3 outputs the second input signal S021 input from the input / output terminal 102 from the output terminal 103 as the second output signal S022 with high efficiency without reflection loss.
以上のように、第3実施形態に係る方向性結合器3は、第1実施形態に係る方向性結合器と同様の効果を得るとともに、第1,2整合器321,323や伝送線路322を入出力端子と素子との間に設けることで、入力端子101から入力される第1入力信号を反射損なく高効率に入出力端子102から第1出力信号S018として出力することができる。同様に、入出力端子102から入力される第2入力信号S021を反射損なく高効率に出力端子103から第2出力信号S022として出力することができる。
As described above, the directional coupler 3 according to the third embodiment achieves the same effects as the directional coupler according to the first embodiment, and inputs / outputs the first and second matching units 321 and 323 and the transmission line 322. By providing between the terminal and the element, the first input signal input from the input terminal 101 can be output from the input / output terminal 102 as the first output signal S018 with high efficiency without reflection loss. Similarly, the second input signal S021 input from the input / output terminal 102 can be output from the output terminal 103 as the second output signal S022 with high efficiency without reflection loss.
なお、本実施形態では、図1の方向性結合器1に整合器や伝送線路を設けているが、第2実施形態や変形例1に示す方向性結合器2に同様に整合器や伝送線路を設けてもよい。
In the present embodiment, the directional coupler 1 shown in FIG. 1 is provided with a matching unit and a transmission line, but the directional coupler 2 shown in the second embodiment and the first modification example is similarly provided with a matching unit and a transmission line. May be provided.
(変形例2)
図11に本実施形態に係る変形例2を示す。本変形例2に係る方向性結合器4は、図10の方向性結合器3に、信号阻止部324をさらに設けた構成となっている。 (Modification 2)
FIG. 11 shows amodification 2 according to the present embodiment. The directional coupler 4 according to the second modification has a configuration in which a signal blocking unit 324 is further provided to the directional coupler 3 of FIG.
図11に本実施形態に係る変形例2を示す。本変形例2に係る方向性結合器4は、図10の方向性結合器3に、信号阻止部324をさらに設けた構成となっている。 (Modification 2)
FIG. 11 shows a
図11に示す信号阻止部324は、一端が電源電位Vddに接続され、他端が第2移相器115、第1振幅調整器113、及び伝送線路322に接続されている。第1振幅調整器113及び第2振幅調整器114は能動素子で構成されるため当該素子へ電源を供給する必要がある。信号阻止部324は高周波信号が電源電位Vddへ通過することを阻止する。
One end of the signal blocking unit 324 illustrated in FIG. 11 is connected to the power supply potential Vdd, and the other end is connected to the second phase shifter 115, the first amplitude adjuster 113, and the transmission line 322. Since the first amplitude adjuster 113 and the second amplitude adjuster 114 are composed of active elements, it is necessary to supply power to the elements. The signal blocking unit 324 blocks the passage of the high frequency signal to the power supply potential Vdd.
方向性結合器4に信号阻止部324を設けることで、入出力端子102から入力される第2入力信号S021及び入出力端子102から出力される第1出力信号S018は電源電位Vddに信号を通過させることなく、高効率に信号を入出力する。
By providing the signal blocking unit 324 in the directional coupler 4, the second input signal S 021 input from the input / output terminal 102 and the first output signal S 018 output from the input / output terminal 102 pass the signal to the power supply potential Vdd. Input and output signals with high efficiency without
なお、本変形例では、図10の方向性結合器3に信号阻止部324を設ける例について説明したが、第1,2実施形態や変形例1に係る方向性結合器に信号阻止部324を設けてもよい。
In this modification, although an example in which the signal blocking unit 324 is provided in the directional coupler 3 of FIG. 10 has been described, the signal blocking unit 324 is not included in the directional coupler according to the first and second embodiments or the first modification. You may provide.
(第4実施形態)
図12は、本発明の第1実施形態に係る方向性結合器5を示す図である。図12の方向性結合器5は、図1の方向性結合器1の入出力端子102と出力端子103を入れ替えた構成となっている。方向性結合器5は、第4,5移相器512,515でシフトする位相のシフト量が方向性結合器1(図1では、第1,2移相器112,115)と異なる。 Fourth Embodiment
FIG. 12 is a view showing thedirectional coupler 5 according to the first embodiment of the present invention. The directional coupler 5 of FIG. 12 has a configuration in which the input / output terminal 102 and the output terminal 103 of the directional coupler 1 of FIG. 1 are interchanged. The directional coupler 5 is different from the directional coupler 1 (the first and second phase shifters 112 and 115 in FIG. 1) in the shift amount of the phase shifted by the fourth and fifth phase shifters 512 and 515.
図12は、本発明の第1実施形態に係る方向性結合器5を示す図である。図12の方向性結合器5は、図1の方向性結合器1の入出力端子102と出力端子103を入れ替えた構成となっている。方向性結合器5は、第4,5移相器512,515でシフトする位相のシフト量が方向性結合器1(図1では、第1,2移相器112,115)と異なる。 Fourth Embodiment
FIG. 12 is a view showing the
方向性結合器5は、入力端子101から入力される第1入力信号S011を変換して得られる第1出力信号S018を入出力端子502から出力し、入出力端子502から入力される第2入力信号S021を変換して得られる第2出力信号S022を出力端子503から出力する方向性結合器であって、第1入力信号S011を電流信号S012に変換する電圧電流変換器111と、電流信号S012の位相をシフトし、第4移相信号S513を得る第4移相器512と、入出力端子502と出力端子503との間の特性インピーダンスより出力インピーダンスが大きく、第4移相信号S513の振幅を調整し、第1振幅信号S014を得る第1振幅調整器113と、入出力端子102と出力端子103との間の特性インピーダンスより出力インピーダンスが大きく、電流信号S012の振幅を調整し、第2振幅信号S015を得る第2振幅調整器114と、第2振幅信号S015の位相をシフトし、第1振幅信号S014の位相と逆相となる第5移相信号S516を得、第1振幅信号S014の位相をシフトし、第2振幅信号S015の位相と同相となる第6移相信号S517を得、第2入力信号S021の位相をシフトし、第2出力信号S022を得る第5移相器515と、を備え、第1出力信号S018は、第2振幅信号S015と第6移相信号S517とが合成された信号であることを特徴とする。
The directional coupler 5 outputs a first output signal S018 obtained by converting the first input signal S011 input from the input terminal 101 from the input / output terminal 502, and a second input input from the input / output terminal 502. A directional coupler that outputs a second output signal S022 obtained by converting the signal S021 from the output terminal 503, and converts the first input signal S011 into a current signal S012, and a current signal S012 Output impedance is larger than the characteristic impedance between the input / output terminal 502 and the output terminal 503, and the amplitude of the fourth phase shift signal S513. To obtain the first amplitude signal S 014, and the output impedance is larger than the characteristic impedance between the input / output terminal 102 and the output terminal 103, and adjusts the amplitude of the current signal S 012, The second amplitude adjuster 114 for obtaining the amplitude signal S015 and the phase of the second amplitude signal S015 To obtain a fifth phase shift signal S516 in antiphase with the phase of the first amplitude signal S014, and shift the phase of the first amplitude signal S014 so as to be in phase with the phase of the second amplitude signal S015 And a fifth phase shifter 515 which obtains the signal S517, shifts the phase of the second input signal S021, and obtains the second output signal S022, and the first output signal S018 is the second amplitude signal S015 and the sixth phase shift. It is characterized in that it is a signal obtained by combining the phase signal S517.
第4,5移相器512,515でシフトする信号のシフト量の一例を説明する。例えば、第4移相器512は電流信号S012の位相を「-90度」シフトする。この場合、第5移相器515は、第2振幅信号S015、第1振幅信号S014及び第2入力信号S021の位相を「90度」シフトする。
An example of the shift amount of the signal shifted by the fourth and fifth phase shifters 512 and 515 will be described. For example, the fourth phase shifter 512 shifts the phase of the current signal S012 by “−90 degrees”. In this case, the fifth phase shifter 515 shifts the phases of the second amplitude signal S015, the first amplitude signal S014, and the second input signal S021 by "90 degrees".
以上のように、第3実施形態に係る方向性結合器5は、入出力端子及び出力端子を入れ替えても、移相器の位相シフト量を変更することで、第1実施形態に係る方向性結合器1と同様の効果を得ることができる。
As described above, the directional coupler 5 according to the third embodiment relates to the directivity according to the first embodiment by changing the phase shift amount of the phase shifter even when the input and output terminals and the output terminal are interchanged. The same effect as the coupler 1 can be obtained.
なお、本実施形態では、図1の方向性結合器1の入出力端子と出力端子を入れ替えているが、第2,3実施形態や変形例1,2に係る方向性結合器の入出力端子と出力端子を入れ替えても、各移相器の位相シフト量を変更することで、第2,3実施形態や変形例1,2に係る方向性結合器と同様の効果を得ることができる。
In the present embodiment, although the input and output terminals and the output terminal of the directional coupler 1 of FIG. 1 are interchanged, the input and output terminals of the directional coupler according to the second and third embodiments and the modified examples 1 and 2 Even if the output terminal is replaced, the same effect as the directional couplers according to the second and third embodiments and the first and second modifications can be obtained by changing the phase shift amount of each phase shifter.
(第5実施形態)
図13は、図1に示す方向性結合器1を無線装置400に実装した場合の応用例を示す図である。 Fifth Embodiment
FIG. 13 is a view showing an application example when thedirectional coupler 1 shown in FIG. 1 is mounted on the wireless device 400. As shown in FIG.
図13は、図1に示す方向性結合器1を無線装置400に実装した場合の応用例を示す図である。 Fifth Embodiment
FIG. 13 is a view showing an application example when the
無線装置400は、送信回路401と、送信回路401から出力されるデジタル信号に応じて発振信号を出力する発振器402と、発振器402の発振信号が第1入力信号S011として入力され、第1出力信号S018を出力する図1に示す方向性結合器1と、入出力端子102に接続され、第1出力信号S018を送信し、受信信号を第2入力信号S021として入出力端子102に入力する送受信アンテナ403と、出力端子103に接続され、第2出力信号S022を増幅し増幅信号を得る低雑音アンプ404と、増幅信号を周波数変換し、ベースバンド信号を得る周波数変換器405と、ベースバンド信号に対し、受信処理を行う受信回路406と、を備える。
In the wireless device 400, the transmission circuit 401, an oscillator 402 that outputs an oscillation signal according to the digital signal output from the transmission circuit 401, and the oscillation signal of the oscillator 402 are input as a first input signal S011, and the first output signal The directional coupler 1 shown in FIG. 1 that outputs S018, and the transmitting / receiving antenna that is connected to the input / output terminal 102, transmits the first output signal S018, and inputs the received signal to the input / output terminal 102 as the second input signal S021. 403, a low noise amplifier 404 connected to the output terminal 103 to amplify the second output signal S022 to obtain an amplified signal, a frequency converter 405 to convert the frequency of the amplified signal to obtain a baseband signal, and a baseband signal And a reception circuit 406 that performs reception processing.
送信回路401は、「0」又は「1」のデジタル信号を出力する。発振器402は、デジタル信号が「1」の間、発振信号を出力する。これは、発振器402と図1の方向性結合器1の入力端子101との間をスイッチ(図示せず)で接続し、デジタル信号が「1」のときにスイッチをオンとし、「0」のときにスイッチをオフとすることで実現できる。発振信号は、方向性結合器1を介して送受信アンテナ403に入力され送信される。
The transmission circuit 401 outputs a digital signal of “0” or “1”. The oscillator 402 outputs an oscillation signal while the digital signal is "1". This connects a switch (not shown) between the oscillator 402 and the input terminal 101 of the directional coupler 1 of FIG. 1 and turns on the switch when the digital signal is “1”. It can be realized by turning off the switch. The oscillation signal is input to the transmission / reception antenna 403 via the directional coupler 1 and transmitted.
送受信アンテナ403は、方向性結合器1を介して受信信号を低雑音アンプ404に入力する。低雑音アンプは、受信信号を増幅し、増幅信号を得る。増幅信号は、周波数変換器405で発振器402が出力する発振信号と乗算され、ベースバンド信号に変換される。ベースバンド信号は、受信回路406で、復調処理やデジタル信号処理等が施されデータ信号となる。
The transmit / receive antenna 403 inputs the received signal to the low noise amplifier 404 via the directional coupler 1. The low noise amplifier amplifies the received signal to obtain an amplified signal. The amplified signal is multiplied by the oscillation signal output from the oscillator 402 in the frequency converter 405 and converted into a baseband signal. The baseband signal is subjected to demodulation processing, digital signal processing, and the like in the reception circuit 406 to be a data signal.
なお、発振器402が発振する周波数が、方向性結合器1の動作周波数であり、図5の所望周波数に該当する。
The frequency at which the oscillator 402 oscillates is the operating frequency of the directional coupler 1 and corresponds to the desired frequency in FIG.
以上のように第4実施形態に係る無線装置400は、図1に示す方向性結合器1を用いることで、発振信号が受信回路406に入力されることなく送受信アンテナ403から送信される。また受信信号が送信回路401に入力されることもない。このように図1に示す方向性結合器1を用いることで反射損が小さく高効率な無線装置400を実現することができる。
As described above, in the wireless device 400 according to the fourth embodiment, the oscillation signal is transmitted from the transmission / reception antenna 403 without being input to the reception circuit 406 by using the directional coupler 1 illustrated in FIG. 1. Further, the reception signal is not input to the transmission circuit 401. As described above, by using the directional coupler 1 shown in FIG. 1, a highly efficient wireless device 400 with small reflection loss can be realized.
なお、第4実施形態では方向性結合器1の応用例について示したが、第2乃至第4実施形態や変形例1,2に示す方向性結合器やこれらの実施形態を組み合わせた方向性結合器も同様に無線装置に応用することができる。
Although the fourth embodiment shows an application example of the directional coupler 1, the directional couplers shown in the second to fourth embodiments and the modified examples 1 and 2 or directional coupling combining these embodiments Can be applied to wireless devices as well.
また、図1に示す方向性結合器1を応用する無線装置のように発振信号を送信するものに限らず、送受信でアンテナを共用する無線装置であればいずれにも応用することができる。
Further, the present invention is not limited to one that transmits an oscillation signal as in the wireless device to which the directional coupler 1 shown in FIG. 1 is applied, and any wireless device that shares an antenna for transmission and reception can be applied.
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
The present invention is not limited to the above embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention. In addition, various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components in different embodiments may be combined as appropriate.
1~4 方向性結合器
112,115、212,215 移相器
113,114,213,214,217,218 振幅調整器
119 検出器
120 制御部
321,323 整合器
322 伝送線路
324 電流阻止部 1 to 4 directional coupler
112, 115, 212, 215 phase shifter
113, 114, 213, 214, 217, 218 Amplitude adjuster
119 detector
120 control unit
321, 323 matching unit
322 transmission line
324 current blocking unit
112,115、212,215 移相器
113,114,213,214,217,218 振幅調整器
119 検出器
120 制御部
321,323 整合器
322 伝送線路
324 電流阻止部 1 to 4 directional coupler
112, 115, 212, 215 phase shifter
113, 114, 213, 214, 217, 218 Amplitude adjuster
119 detector
120 control unit
321, 323 matching unit
322 transmission line
324 current blocking unit
Claims (5)
- 第1入力信号が入力される入力端子と、該第1入力信号を変換して得られる第1出力信号を出力し、かつ第2入力信号が入力される入出力端子と、該第2入力信号を変換して得られる第2出力信号を出力する出力端子とを有する方向性結合器であって、
前記第1入力信号を電流信号に変換する電圧電流変換器と、
前記電流信号の位相をシフトし、第1移相信号を得る第1移相器と、
前記入出力端子と前記出力端子との間の特性インピーダンスより出力インピーダンスが大きく、前記第1移相信号の振幅を調整して第1振幅信号を得る第1振幅調整器と、
前記入出力端子と前記出力端子との間の特性インピーダンスより出力インピーダンスが大きく、前記電流信号の振幅を調整して第2振幅信号を得る第2振幅調整器と、
前記第2振幅信号、前記第1振幅信号、及び前記第2入力信号の位相をそれぞれシフトし、前記第1振幅信号と同相となる第2移相信号、前記第2振幅信号の位相と逆相となる第3移相信号、及び第2出力信号を得る第2移相器と、
を備え、
前記第1出力信号を、前記第1振幅信号と前記第2移相信号とから合成し、
前記第2振幅信号と前記第3移相信号とを合成する
ことを特徴とする方向性結合器。 An input terminal to which a first input signal is input, an input / output terminal that outputs a first output signal obtained by converting the first input signal and a second input signal, and the second input signal And an output terminal for outputting a second output signal obtained by converting
A voltage-current converter for converting the first input signal into a current signal;
A first phase shifter for shifting the phase of the current signal to obtain a first phase shift signal;
A first amplitude adjuster which has an output impedance larger than a characteristic impedance between the input / output terminal and the output terminal, and adjusts the amplitude of the first phase shift signal to obtain a first amplitude signal;
A second amplitude adjuster which has an output impedance larger than a characteristic impedance between the input / output terminal and the output terminal, and adjusts the amplitude of the current signal to obtain a second amplitude signal;
A second phase shift signal which is in phase with the first amplitude signal by shifting the phases of the second amplitude signal, the first amplitude signal, and the second input signal, and the phase opposite to the phase of the second amplitude signal A second phase shifter for obtaining a second output signal, and a third phase shift signal
Equipped with
Combining the first output signal from the first amplitude signal and the second phase shift signal;
A directional coupler, comprising: synthesizing the second amplitude signal and the third phase shift signal. - 前記出力端子から出力される信号の位相又は電力レベルを検出し、前記位相又は電力レベルに基づいて前記第1,2移相器のシフト量の調整量と、前記第1,2振幅調整器の振幅の調整量とを決定する検出器と、
前記検出器で決定された前記シフト量の調整量及び前記振幅の調整量に基づいて前記第1,2移相器のシフト量と、前記第1,2振幅調整器の振幅の調整量とを制御する制御部と、
をさらに備えることを特徴とする請求項1に記載する方向性結合器。 The phase or power level of the signal output from the output terminal is detected, and the adjustment amount of the shift amount of the first and second phase shifters based on the phase or power level, and the first and second amplitude adjusters A detector that determines the amount of amplitude adjustment;
Based on the adjustment amount of the shift amount determined by the detector and the adjustment amount of the amplitude, the shift amounts of the first and second phase shifters and the adjustment amounts of the amplitude of the first and second amplitude adjusters A control unit to control
The directional coupler according to claim 1, further comprising: - 前記電圧電流変換器は、前記第1入力信号がゲート端子に印加されるソース接地型MOSトランジスタを有し、
前記第1振幅調整器は、ソース端子が前記第1移相器に接続され、ドレイン端子が前記第2移相器に接続された第1ゲート接地型MOSトランジスタを有し、
前記第2振幅調整器は、ソース端子が前記電圧電流変換器のドレイン端子に接続され、ドレイン端子が前記第2移相器に接続された第2カスコード接地型MOSトランジスタを有することを特徴とする請求項2に記載する方向性結合器。 The voltage-current converter includes a source-grounded MOS transistor having a gate terminal to which the first input signal is applied.
The first amplitude adjuster includes a first gate-grounded MOS transistor having a source terminal connected to the first phase shifter and a drain terminal connected to the second phase shifter,
The second amplitude adjuster includes a second cascode grounded MOS transistor having a source terminal connected to the drain terminal of the voltage-current converter and a drain terminal connected to the second phase shifter. The directional coupler according to claim 2. - 前記第1振幅調整器は、各々が並列に接続され、各ゲート幅が異なる第1ゲート接地型MOSトランジスタを複数有し、
前記第2振幅調整器は、各々が並列に接続され、各ゲート幅が異なる第2ゲート接地型MOSトランジスタを複数有し、
前記制御部は、前記第1ゲート接地型MOSトランジスタの少なくとも1つ及び前記第2ゲート接地型MOSトランジスタの少なくとも1つに制御信号を印加することにより、前記振幅の調整量を制御することを特徴とする請求項3に記載する方向性結合器。 The first amplitude adjuster includes a plurality of first gate grounded MOS transistors that are connected in parallel and have different gate widths.
The second amplitude adjuster includes a plurality of second gate grounded MOS transistors, each connected in parallel and having different gate widths.
The control unit controls the adjustment amount of the amplitude by applying a control signal to at least one of the first gate-grounded MOS transistor and at least one of the second gate-grounded MOS transistor. A directional coupler as set forth in claim 3. - 前記入力端子と前記電圧電流変換器との間に設けられ、前記第1入力信号と前記電圧電流変換器との整合をとる第1整合器と、
前記入出力端子と前記第2移相器との間に設けられた伝送線路と、
前記出力端子と前記第2移相器との間に設けられ、前記伝送線路と整合する第2整合器と、
をさらに備えることを特徴とする請求項4に記載する方向性結合器。 A first matching unit provided between the input terminal and the voltage-current converter for matching the first input signal with the voltage-current converter;
A transmission line provided between the input / output terminal and the second phase shifter;
A second matching device provided between the output terminal and the second phase shifter, for matching with the transmission line;
The directional coupler according to claim 4, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/003117 WO2011004419A1 (en) | 2009-07-06 | 2009-07-06 | Directional coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/003117 WO2011004419A1 (en) | 2009-07-06 | 2009-07-06 | Directional coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011004419A1 true WO2011004419A1 (en) | 2011-01-13 |
Family
ID=43428861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003117 WO2011004419A1 (en) | 2009-07-06 | 2009-07-06 | Directional coupler |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011004419A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779429A (en) * | 2014-01-14 | 2015-07-15 | 英飞凌科技股份有限公司 | System and method for a directional coupler |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58125411U (en) * | 1982-02-19 | 1983-08-26 | 日本電気株式会社 | balanced amplifier |
JPH02214302A (en) * | 1989-02-15 | 1990-08-27 | Fujitsu Ltd | microwave amplifier |
JPH06310901A (en) * | 1993-04-21 | 1994-11-04 | Mitsubishi Electric Corp | 90× phase shifter |
JP2005086533A (en) * | 2003-09-09 | 2005-03-31 | Ntt Docomo Inc | 90 degrees hybrid circuit |
JP2006295562A (en) * | 2005-04-11 | 2006-10-26 | Ntt Docomo Inc | Ninety-degree hybrid circuit |
-
2009
- 2009-07-06 WO PCT/JP2009/003117 patent/WO2011004419A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58125411U (en) * | 1982-02-19 | 1983-08-26 | 日本電気株式会社 | balanced amplifier |
JPH02214302A (en) * | 1989-02-15 | 1990-08-27 | Fujitsu Ltd | microwave amplifier |
JPH06310901A (en) * | 1993-04-21 | 1994-11-04 | Mitsubishi Electric Corp | 90× phase shifter |
JP2005086533A (en) * | 2003-09-09 | 2005-03-31 | Ntt Docomo Inc | 90 degrees hybrid circuit |
JP2006295562A (en) * | 2005-04-11 | 2006-10-26 | Ntt Docomo Inc | Ninety-degree hybrid circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779429A (en) * | 2014-01-14 | 2015-07-15 | 英飞凌科技股份有限公司 | System and method for a directional coupler |
CN104779429B (en) * | 2014-01-14 | 2018-05-04 | 英飞凌科技股份有限公司 | system and method for directional coupler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11349465B2 (en) | Polyphase phase shifter | |
US7352241B2 (en) | Variable gain amplifier | |
US20170244442A1 (en) | Semiconductor device | |
US7528652B2 (en) | Amplifying device and radio communication circuit | |
US8736336B2 (en) | Phase shifter having transistor of which impedance is changeable according to phase control amount | |
US10784636B1 (en) | Asymmetrical quadrature hybrid coupler | |
JP2010258867A (en) | Variable-gain amplifier circuit, and integrated circuit for wireless communication device using the same | |
US8571143B2 (en) | Quadrature signal phase controller for controlling phase | |
JP2006314087A (en) | Amplifier circuit and radio equipment | |
CN110212929B (en) | A harmonic suppression transmitter | |
JP5016506B2 (en) | Power amplification device and communication device | |
WO2011004419A1 (en) | Directional coupler | |
JP2022099920A (en) | Semiconductor integrated circuit | |
JP4393544B2 (en) | Mixer circuit and wireless communication apparatus using the same | |
JP6474131B2 (en) | Vector synthesis type phase shifter and control method of vector synthesis type phase shifter | |
CN106209158A (en) | A kind of carrier leak based on UHF rfid interrogator eliminates system | |
WO2015019525A1 (en) | Cascode-type transconductance amplifier and variable gain circuit, and tuner system provided with same | |
US8275342B2 (en) | Downconversion mixer | |
JP5881492B2 (en) | ASK signal generator | |
WO2004040755A1 (en) | Filter circuit and radio device | |
US8310311B2 (en) | Semiconductor integrated circuit device and communication system | |
US9385663B2 (en) | Envelope tracking push-pull or differential power amplifier | |
US11165400B2 (en) | Device and method for conditioning signals | |
US8340598B2 (en) | Dual mode power amplifier | |
JP2007158380A (en) | Variable gain amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09847024 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09847024 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |