WO2011001778A1 - Method for manufacturing silicon structure, device for manufacturing same, and program for manufacturing same - Google Patents
Method for manufacturing silicon structure, device for manufacturing same, and program for manufacturing same Download PDFInfo
- Publication number
- WO2011001778A1 WO2011001778A1 PCT/JP2010/059343 JP2010059343W WO2011001778A1 WO 2011001778 A1 WO2011001778 A1 WO 2011001778A1 JP 2010059343 W JP2010059343 W JP 2010059343W WO 2011001778 A1 WO2011001778 A1 WO 2011001778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- etching
- plasma
- frequency power
- silicon
- silicon structure
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000005530 etching Methods 0.000 claims abstract description 95
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 34
- 239000010703 silicon Substances 0.000 claims abstract description 34
- PDJAZCSYYQODQF-UHFFFAOYSA-N iodine monofluoride Chemical compound IF PDJAZCSYYQODQF-UHFFFAOYSA-N 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims description 68
- 230000006698 induction Effects 0.000 claims description 15
- CEBDXRXVGUQZJK-UHFFFAOYSA-N 2-methyl-1-benzofuran-7-carboxylic acid Chemical group C1=CC(C(O)=O)=C2OC(C)=CC2=C1 CEBDXRXVGUQZJK-UHFFFAOYSA-N 0.000 claims description 10
- 238000009616 inductively coupled plasma Methods 0.000 claims description 4
- 238000001312 dry etching Methods 0.000 abstract description 15
- 238000010792 warming Methods 0.000 abstract description 10
- 239000007789 gas Substances 0.000 description 74
- 230000001681 protective effect Effects 0.000 description 54
- 239000000758 substrate Substances 0.000 description 17
- 229910018503 SF6 Inorganic materials 0.000 description 15
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 15
- 229960000909 sulfur hexafluoride Drugs 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 13
- 230000008859 change Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- XRURPHMPXJDCOO-UHFFFAOYSA-N iodine heptafluoride Chemical compound FI(F)(F)(F)(F)(F)F XRURPHMPXJDCOO-UHFFFAOYSA-N 0.000 description 1
- VJUJMLSNVYZCDT-UHFFFAOYSA-N iodine trifluoride Chemical compound FI(F)F VJUJMLSNVYZCDT-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00523—Etching material
- B81C1/00531—Dry etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
- H01L21/30655—Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0111—Bulk micromachining
- B81C2201/0112—Bosch process
Definitions
- the present invention relates to a method of manufacturing a silicon structure, a manufacturing apparatus thereof, and a manufacturing program thereof.
- MEMS Micro Electro Mechanical Systems
- the present invention greatly contributes to the development of anisotropic dry etching technology for silicon that achieves high verticality and good sidewall shape by using a gas with a low warming coefficient instead of sulfur hexafluoride (SF 6 ). It is.
- SF 6 sulfur hexafluoride
- One method of manufacturing a silicon structure according to the present invention includes a first step of converting an etching gas containing iodine fluoride into a plasma by applying a high frequency power, and a plasma of an organic deposit forming gas by applying the high frequency power. By alternately and repeatedly performing the second step, the silicon region in the workpiece including the silicon region is etched.
- an etching gas containing iodine fluoride is used instead of sulfur hexafluoride (SF 6 ).
- SF 6 sulfur hexafluoride
- Another method of manufacturing a silicon structure according to the present invention is an etching including iodine fluoride by applying high-frequency power to an induction coil (hereinafter also simply referred to as a coil) using a dielectric coupled plasma etching apparatus.
- the first step of turning the gas into a plasma and the second step of turning the organic deposit forming gas into a plasma by applying high frequency power to the induction coil are alternately repeated, and the silicon region
- a step of etching the silicon region by applying high-frequency power to a stage electrode on which an object to be processed is placed.
- an etching gas containing iodine fluoride is used instead of sulfur hexafluoride (SF 6 ).
- SF 6 sulfur hexafluoride
- an etching process in which an etching gas containing iodine fluoride is turned into plasma by a dielectric-coupled plasma etching apparatus and a protective film forming process in which the organic deposit forming gas is turned into plasma by the apparatus are alternately repeated.
- a silicon structure having high verticality and good sidewall shape can be obtained.
- the silicon structure manufacturing program of the present invention includes a first step of converting an etching gas containing iodine fluoride into plasma by applying high-frequency power, and an organic deposit forming gas by applying high-frequency power.
- the step of etching the silicon region in the object to be processed including the silicon region is performed by alternately and repeatedly performing the second step of converting the plasma into a plasma.
- an etching gas containing iodine fluoride is used in place of sulfur hexafluoride (SF 6 ).
- SF 6 sulfur hexafluoride
- an etching step in which the etching gas containing iodine fluoride is turned into plasma and a protective film forming step in which the organic deposit forming gas is turned into plasma are alternately repeated, thereby achieving high verticality and good sidewall shape.
- a silicon structure manufacturing program comprising: a first step of converting an etching gas containing iodine fluoride into plasma by applying high frequency power to an induction coil using a dielectric coupled plasma etching apparatus; The second step of converting the organic deposit forming gas into plasma by applying high-frequency power to the induction coil is alternately repeated, and the object to be processed including the silicon region is placed during the first step. A step of etching the silicon region by applying high frequency power to the stage electrode.
- an etching gas containing iodine fluoride is used in place of sulfur hexafluoride (SF 6 ).
- SF 6 sulfur hexafluoride
- the etching step in which the etching gas containing iodine fluoride is turned into plasma by the dielectric coupling type plasma etching apparatus and the protective film forming step in which the organic deposit forming gas is turned into plasma by the apparatus are alternately repeated.
- a silicon structure having high verticality and good sidewall shape can be obtained.
- a silicon structure manufacturing apparatus includes a control unit that is controlled by any one of the silicon structure manufacturing programs described above or a recording medium that records any one of the silicon structure manufacturing programs. ing.
- the etching process in which the etching gas containing iodine fluoride is turned into plasma and the protective film forming process in which the organic deposit forming gas is turned into plasma are alternately repeated.
- iodine fluoride is a gas whose global warming potential (GWP) is small enough to be negligible compared to sulfur hexafluoride (SF 6 ) (substantially, GWP is 0 (zero)). It can also make a significant contribution to the prevention of global warming.
- GWP global warming potential
- FIG. 10 It is sectional drawing which shows the structure of the manufacturing apparatus of the silicon structure in one embodiment of this invention. It is a schematic diagram which shows a part of final silicon structure in one embodiment of this invention. It is a section SEM (scanning electron microscope) photograph of a part of silicon structure 10 in one embodiment of the present invention. It is a figure which shows the time change of the flow volume of the protective film formation gas in the protective film formation process in one Embodiment of this invention. It is a figure which shows the time change of the flow volume of the etching gas in the etching process in one Embodiment of this invention.
- FIG. 1 is a cross-sectional view showing an example of a device configuration of a silicon structure manufacturing apparatus 100 (hereinafter also simply referred to as a manufacturing apparatus 100) according to this embodiment.
- FIG. 2 is a schematic view showing a part of the final silicon structure of the present embodiment.
- the silicon substrate W that is an object to be processed is a single crystal silicon substrate, but is not limited to this.
- the present embodiment can be applied even to a polycrystalline silicon substrate or an amorphous silicon substrate.
- the present embodiment can be applied to an object to be processed (for example, a substrate) having a polycrystalline silicon layer or an amorphous silicon layer in part.
- a silicon substrate W to be etched (hereinafter also simply referred to as a substrate W) is placed on a stage 21 provided on the lower side of the chamber 20.
- the chamber 20 is supplied with at least one gas selected from an etching gas and an organic deposit forming gas (hereinafter also referred to as a protective film forming gas) from the cylinders 22a and 22b through gas flow controllers 23a and 23b, respectively.
- the gases are turned into plasma by the induction coil 24 to which high frequency power is applied by the first high frequency power source 25. Thereafter, high-frequency power is applied to the stage 21 using the second high-frequency power source 26, so that the generated plasma is drawn into the silicon substrate W.
- the power is applied to the stage 21 in a pulse form, in other words, in a state where the ON state and the OFF state of the application repeatedly appear at predetermined intervals.
- a vacuum pump 27 is connected to the chamber 20 via an exhaust flow rate regulator 28 in order to decompress the inside of the chamber 20 and exhaust a gas generated after the process.
- the exhaust flow rate from the chamber 20 is changed by an exhaust flow rate regulator 28.
- the above-described gas flow rate regulators 23a and 23b, the first high frequency power source 25, the second high frequency power source 26 capable of applying pulses, and the exhaust flow rate regulator 28 are controlled by a control unit 29.
- a known pressure gauge for measuring the pressure in the chamber 20 is not shown.
- FIG. 3 is a cross-sectional SEM (scanning electron microscope) photograph of a part of the silicon structure 10 described above. As shown in FIG. 3, it can be confirmed that good anisotropic dry etching was performed in this embodiment.
- FIG. 4A is a diagram showing a change over time in the flow rate of the protective film forming gas in the protective film forming step of the present embodiment.
- FIG. 4B is a figure which shows the time change of the flow volume of the etching gas in the etching process of this embodiment.
- FIG. 4C is a figure which shows the time change of the induction coil application electric power in the protective film formation process of this embodiment, and the induction coil application electric power in an etching process.
- FIG. 4D is a diagram showing temporal changes in power applied to the stage electrode (also referred to as substrate applied power) in the protective film formation step of the present embodiment and power applied to the stage electrode in the etching step.
- FIG. 4A is a diagram showing a change over time in the flow rate of the protective film forming gas in the protective film forming step of the present embodiment.
- FIG. 4B is a figure which shows the time change of the flow volume of the etching gas in the etching process of this embodiment.
- 4E is a diagram showing the change over time in the chamber pressure in the protective film formation step and the chamber pressure in the etching step of the present embodiment.
- “D” representing the protective film forming step period
- “E” representing the etching step period are shown.
- 4A to 4E show only a part of the time zone of the repeated protective film forming process or etching process.
- the anisotropic dry etching of silicon of the present embodiment employs a method of sequentially repeating a protective film forming process in which a protective film forming gas is introduced and an etching process in which an etching gas is introduced.
- the protective film forming gas is C 4 F 8 and the etching gas is IF 5 .
- a silicon substrate W on which a resist film is patterned as the etching mask 12 using a known photolithography technique is used.
- the protective film forming gas is 200 sccm (also referred to as 200 mL / min.) For 2 seconds which is one unit processing time.
- the pressure in the chamber 20 is controlled to 8 Pa.
- a high frequency power of 13.56 MHz is applied to the induction coil 24 at 2600 W (for convenience, the second high frequency power may be used), but no power is applied to the stage 21.
- the etching gas is supplied at 200 sccm for 9 seconds, which is a unit processing time, and the pressure in the chamber 20 is controlled to 15 Pa.
- a high frequency power of 13.56 MHz is applied to the induction coil 24 at 2600 W (for convenience, it may be the first high frequency power), and a high frequency power of 13.56 MHz is applied to the stage 21 at 80 W (for convenience, the third high frequency power). It may be electric power.) Applied.
- the above-described protective film forming step and etching step are continuously repeated for a predetermined time (about 50 minutes in the present embodiment), whereby the silicon structure 10 shown in FIG. Is formed.
- the etching rate under the anisotropic dry etching condition of this embodiment is about 0.9 ⁇ m / min. (Micrometers / minute). Further, the roughness of the side wall 14 in this embodiment (the length L in FIG. 2) is about 0.05 ⁇ m or less.
- iodine pentafluoride whose global warming potential (GWP) is small enough to be ignored (substantially GWP is 0 (zero)) is used in the etching process. Yes. Therefore, as described above, the total amount of greenhouse gases discharged for forming the silicon structure 10 having a trench structure having a depth of about 43 ⁇ m and an aspect ratio of about 14 is significantly suppressed.
- a protective film is formed as compared with the case where sulfur hexafluoride (SF 6 ) is used. It was revealed that a good trench shape can be obtained even if the process time is short. Specifically, when the time length of the above-described etching process is set to 1, the time length of the protective film forming process is set to 0.11 or more and 0.33 or less, for example, as shown in FIG. A silicon structure with good, ie high verticality and good sidewall shape can be formed.
- IF 5 iodine pentafluoride
- SF 6 sulfur hexafluoride
- the time length of the protective film forming step is less than 0.11, a part of the protective film formed on the surface of the side wall 14 of the etched trench structure is consumed or disappeared. There is an increased possibility that etching in the horizontal direction from 14 proceeds. Conversely, when the length of time of the protective film forming process exceeds 0.33, the protective film formed on the bottom surface of the trench structure is removed in the etching process and is not cut off, so that the bottom surface as shown in FIG. The possibility that the residue 17 is formed increases.
- the time length of the etching process is set to 1.
- the length of time for the protective film forming step is greater than 0.33 and not greater than 0.66.
- iodine pentafluoride (IF 5 ) is used as an etching gas
- a protective film is formed with a higher global warming potential (GWP) than when sulfur hexafluoride (SF 6 ) is used as an etching gas.
- GWP global warming potential
- SF 6 sulfur hexafluoride
- the amount of gas used can also be reduced.
- the control unit 29 provided in the above-described manufacturing apparatus 100 is connected to the computer 60.
- the computer 60 monitors or comprehensively controls the above process by a manufacturing program of the silicon structure 10 for executing the above anisotropic dry etching process.
- a manufacturing program for the silicon structure 10 will be described with reference to a specific manufacturing flowchart.
- the above-described manufacturing program is stored in a known recording medium such as an optical disk inserted into a hard disk drive in the computer 60 or an optical disk drive provided in the computer 60.
- the storage destination of is not limited to this.
- the manufacturing program can also monitor or control each of the processes described above via a known technique such as a local area network or an Internet line.
- FIG. 6 is a manufacturing flowchart of the silicon structure 10 of the present embodiment.
- step S101 after the silicon substrate W is transferred into the chamber 20, the gas in the chamber 20 is exhausted.
- steps S102 to S104 the silicon substrate W is subjected to anisotropic dry etching in the chamber 20 under the above-described conditions.
- step S102 a step of performing the protective film forming process of the present embodiment is executed.
- step S103 a step of performing the etching process of the present embodiment is executed.
- step S104 the program according to the present embodiment has the number of times that the respective steps of the step of performing the protective film forming step (step S102) and the step of performing the etching step (step S103) were initially set. It is determined whether or not it has been repeatedly executed. As a result, when the initially set number of times is repeatedly executed, the program of the present embodiment stops the anisotropic dry etching (step S105). On the other hand, when the initially set number of times is not repeatedly executed, a step of performing the protective film forming step and the etching step again is executed (steps S102 and S103).
- Step S106 the program of the present embodiment is brought into a state in which the silicon substrate W is taken out as shown in Step S105 (Step S106), and then the program of the present embodiment is finished.
- the substrate W may be directly taken out from the chamber after the chamber 20 is restored to the atmospheric pressure.
- the substrate W is connected via a loader / unloader (not shown) that can be connected to the chamber 20. It may be taken out.
- the manufacturing program for the silicon structure 10 of the present embodiment integrally controls each condition in the etching process and the protective film forming process as described above. As a result of executing the manufacturing program of the present embodiment, a silicon structure having a high sidewall and a good sidewall shape is formed.
- FIG. 7 is a cross-sectional SEM photograph of a part of the silicon structure 30 in the present embodiment.
- FIG. 8 is an enlarged cross-sectional SEM photograph of a part (near the opening) of the silicon structure 30 in the present embodiment.
- a silicon structure 30 having a trench structure with a width of about 50 ⁇ m and a depth of about 20 ⁇ m is obtained.
- the etching rate under the anisotropic dry etching condition of this embodiment is about 2 ⁇ m / min. (Micrometers / minute).
- the roughness of the side wall in this embodiment is about 0.1 ⁇ m as shown in FIG.
- the iodine pentafluoride (IF 5) is used as the etching gas is not limited thereto.
- iodine pentafluoride (IF 5 ) iodine trifluoride (IF 3 ) and iodine heptafluoride (IF 7 ) can also be applied to the above-described embodiments.
- C 4 F 8 is used as the protective film forming gas, but the present invention is not limited to this.
- C 4 F 8 , C 5 F 8 and C 4 F 6 can also be applied to the above-described embodiment.
- the etching gas and the protective film forming gas do not need to be composed of only a single gas.
- the etching gas may contain oxygen gas or argon gas in addition to iodine pentafluoride (IF 5 ), and the protective film forming gas may contain oxygen gas in addition to C 4 F 8 or the like. good.
- sulfur hexafluoride (SF 6 ) is not included in the etching gas.
- the object to be etched is a trench, but is not limited to this. Even if the object is a hole, substantially the same effect as the present invention can be obtained. Furthermore, in each of the above-described embodiments, there is one type of opening width (about 3 ⁇ m or about 50 ⁇ m), but the present invention is not limited to this. Even if there are two or more opening widths, the present invention can be applied.
- the protective film forming step is first performed, and then the etching step is performed.
- the order is not limited.
- an etching process may be performed first and then a protective film forming process may be performed.
- a gas to be plasma in advance for several seconds to 10 seconds in order to obtain a stable pressure for generating plasma in the chamber.
- an etching gas with a low global warming potential (GWP) such as iodine pentafluoride (IF 5 ) than to introduce a protective film forming gas with a high global warming potential (GWP) first.
- GWP global warming potential
- IF 5 iodine pentafluoride
- the process immediately before stopping the anisotropic etching of the present embodiment is not limited to the etching process. Even if the protective film forming step is executed immediately before the anisotropic etching is stopped, the same effect as that of the present embodiment can be obtained. That is, based on the flowchart shown in FIG. 6, the program in which anisotropic etching is stopped (step S105) after step S102 is executed as a final process after step S102 and step S103 are repeated is also implemented. It can be applied as one variant of form.
- high-frequency power is applied to the stage electrode only in the etching process, but the present invention is not limited to this.
- high-frequency power can be applied to the stage electrode also in the protective film forming process. Since high-frequency power is applied in the protective film forming step, formation of the protective film on the bottom surface of the etched region may be suppressed, which may rather contribute to an improvement in the etching rate.
- ICP Inductively Coupled Plasma
- CCP Capacitive-Coupled Plasma
- ECR Electro-Cyclotron Resonance Plasma
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
- Micromachines (AREA)
Abstract
A method for manufacturing a silicon structure comprises a step for etching a silicon region of an object to be processed that includes the silicon region by alternately repeating a first step for converting an etching gas containing iodine fluoride into plasma by applying high-frequency power and a second step for converting an organic deposit forming gas into plasma by applying high-frequency power. As a result, a silicon structure having high perpendicularity and a good sidewall shape can be obtained by anisotropic dry etching of silicon which exerts less influence on global warming.
Description
本発明は、シリコン構造体の製造方法及びその製造装置並びにその製造プログラムに関するものである。
The present invention relates to a method of manufacturing a silicon structure, a manufacturing apparatus thereof, and a manufacturing program thereof.
シリコンを用いたMEMS(Micro Electro Mechanical Systems)デバイスが適用される技術分野は日進月歩で拡大しており、近年では、その技術がマイクロタービンやセンサーのみならず情報通信分野や医療分野へも適用されている。このMEMS技術を支える主要な要素技術の一つがシリコンの異方性ドライエッチングであり、この要素技術の発展がMEMS技術の発展を支えているといえる。
The technical field to which MEMS (Micro Electro Mechanical Systems) devices using silicon are applied is steadily expanding, and in recent years, the technology has been applied not only to microturbines and sensors but also to information communication and medical fields. Yes. One of the main elemental technologies that support this MEMS technology is anisotropic dry etching of silicon, and it can be said that the development of this elemental technology supports the development of MEMS technology.
従来、幾つか存在するシリコンの異方性ドライエッチングプロセスの中で、本願出願人を含む複数の企業がこれまで提案してきた代表的なプロセスは、エッチング工程と保護膜形成工程とが繰り返し行われるプロセスである(例えば、特許文献1)。このプロセスのエッチング工程では、エッチングガスとして、主として六フッ化硫黄(SF6)が用いられてきた。
Conventionally, among several existing anisotropic dry etching processes for silicon, a typical process proposed by a plurality of companies including the applicant of the present application is an etching process and a protective film forming process that are repeatedly performed. Process (for example, Patent Document 1). In the etching process of this process, sulfur hexafluoride (SF 6 ) has been mainly used as an etching gas.
近年、シリコンの異方性ドライエッチングの技術は飛躍的に進歩してきたが、その一方で、これまでそのプロセスを実施するために産業界で使用されてきた温室効果ガスの影響が懸念され始めている。例えば、上述の六フッ化硫黄(SF6)は、いわゆる地球温暖化係数(GWP)が非常に高いため、このガスに代替するガスを見出し、市場に送り出すことは、地球環境を考える上でも急務であるといえる。しかしながら、六フッ化硫黄(SF6)は、これまでシリコンの異方性ドライエッチング技術を支える基幹ガスとして用いられてきたため、市場の要求に耐えうる代替ガスを見出すことは容易ではない。
In recent years, the technology of anisotropic dry etching of silicon has progressed dramatically, but on the other hand, the influence of greenhouse gases that have been used in the industry to carry out the process has begun to be concerned. . For example, the above-mentioned sulfur hexafluoride (SF 6 ) has a very high so-called global warming potential (GWP), so finding an alternative gas to this gas and sending it to the market is an urgent task in consideration of the global environment. You can say that. However, since sulfur hexafluoride (SF 6 ) has been used as a basic gas that supports anisotropic dry etching technology of silicon, it is not easy to find an alternative gas that can withstand market demands.
本発明は、六フッ化硫黄(SF6)に代わる温暖化係数の低いガスを用いて高い垂直性と良好な側壁形状を達成する、シリコンの異方性ドライエッチング技術の発展に大いに貢献するものである。
The present invention greatly contributes to the development of anisotropic dry etching technology for silicon that achieves high verticality and good sidewall shape by using a gas with a low warming coefficient instead of sulfur hexafluoride (SF 6 ). It is.
発明者らは、六フッ化硫黄(SF6)の代替ガスを選定するにあたり、六フッ化硫黄(SF6)単体のプラズマ化によるシリコンのエッチング特性に加えて、上述のエッチング工程と保護膜形成工程とが繰り返し行われるプロセスにおける有機堆積物形成ガスとの関係ないし相性についても着目した。発明者らが数多くの代替ガスの候補について鋭意研究を行った結果、地球温暖化係数(GWP)が殆ど無視できるほどに小さいガスが上述のエッチング工程と保護膜形成工程とが繰り返し行われるプロセスに適用し得ることが見出され、本発明が完成した。
In selecting an alternative gas for sulfur hexafluoride (SF 6 ), the inventors, in addition to the etching characteristics of silicon due to the plasma formation of sulfur hexafluoride (SF 6 ) alone, the above-described etching process and protective film formation We also paid attention to the relationship or compatibility with the organic deposit forming gas in the process where the process is repeated. As a result of the inventors' diligent research on a number of alternative gas candidates, a gas having such a small global warming potential (GWP) as to be almost negligible is a process in which the etching process and the protective film forming process are repeated. It was found that it was applicable and the present invention was completed.
本発明の1つのシリコン構造体の製造方法は、高周波電力を印加することによりフッ化ヨウ素を含むエッチングガスをプラズマ化する第1工程と、高周波電力を印加することにより有機堆積物形成ガスをプラズマ化する第2工程とを交互に繰り返し行うことによって、シリコン領域を含む被処理物におけるそのシリコン領域をエッチングする工程を有している。
One method of manufacturing a silicon structure according to the present invention includes a first step of converting an etching gas containing iodine fluoride into a plasma by applying a high frequency power, and a plasma of an organic deposit forming gas by applying the high frequency power. By alternately and repeatedly performing the second step, the silicon region in the workpiece including the silicon region is etched.
このシリコン構造体の製造方法によれば、フッ化ヨウ素を含むエッチングガスが六フッ化硫黄(SF6)に代わって用いられる。その結果、フッ化ヨウ素を含むエッチングガスがプラズマ化されるエッチング工程と有機堆積物形成ガスがプラズマ化される保護膜形成工程とが交互に繰り返し行われるプロセスにより、高い垂直性と良好な側壁形状を有するシリコン構造体が得られる。
According to this silicon structure manufacturing method, an etching gas containing iodine fluoride is used instead of sulfur hexafluoride (SF 6 ). As a result, an etching process in which an etching gas containing iodine fluoride is turned into plasma and a protective film forming process in which the organic deposit forming gas is turned into plasma are alternately repeated, thereby achieving high verticality and good sidewall shape. A silicon structure having
また、本発明のもう1つのシリコン構造体の製造方法は、誘電結合型プラズマエッチング装置を用いて誘導コイル(以下、単にコイルとも言う。)に高周波電力を印加することによりフッ化ヨウ素を含むエッチングガスをプラズマ化する第1工程と、その誘導コイルに高周波電力を印加することにより有機堆積物形成ガスをプラズマ化する第2工程とを交互に繰り返し行うとともに、前述の1工程の間、シリコン領域を含む被処理物が載置されるステージ電極に高周波電力を印加することによって、そのシリコン領域をエッチングする工程を有している。
Another method of manufacturing a silicon structure according to the present invention is an etching including iodine fluoride by applying high-frequency power to an induction coil (hereinafter also simply referred to as a coil) using a dielectric coupled plasma etching apparatus. The first step of turning the gas into a plasma and the second step of turning the organic deposit forming gas into a plasma by applying high frequency power to the induction coil are alternately repeated, and the silicon region A step of etching the silicon region by applying high-frequency power to a stage electrode on which an object to be processed is placed.
このシリコン構造体の製造方法によれば、フッ化ヨウ素を含むエッチングガスが六フッ化硫黄(SF6)に代わって用いられる。その結果、フッ化ヨウ素を含むエッチングガスが誘電結合型プラズマエッチング装置によってプラズマ化されるエッチング工程とその装置によって有機堆積物形成ガスがプラズマ化される保護膜形成工程とが交互に繰り返し行われるプロセスにより、高い垂直性と良好な側壁形状を有するシリコン構造体が得られる。
According to this silicon structure manufacturing method, an etching gas containing iodine fluoride is used instead of sulfur hexafluoride (SF 6 ). As a result, an etching process in which an etching gas containing iodine fluoride is turned into plasma by a dielectric-coupled plasma etching apparatus and a protective film forming process in which the organic deposit forming gas is turned into plasma by the apparatus are alternately repeated. As a result, a silicon structure having high verticality and good sidewall shape can be obtained.
また、本発明の1つのシリコン構造体の製造プログラムは、高周波電力を印加することによりフッ化ヨウ素を含むエッチングガスをプラズマ化する第1ステップと、高周波電力を印加することにより有機堆積物形成ガスをプラズマ化する第2ステップとを交互に繰り返し行うことによって、シリコン領域を含む被処理物におけるそのシリコン領域をエッチングするステップを有している。
In addition, the silicon structure manufacturing program of the present invention includes a first step of converting an etching gas containing iodine fluoride into plasma by applying high-frequency power, and an organic deposit forming gas by applying high-frequency power. The step of etching the silicon region in the object to be processed including the silicon region is performed by alternately and repeatedly performing the second step of converting the plasma into a plasma.
このシリコン構造体の製造プログラムによれば、フッ化ヨウ素を含むエッチングガスが六フッ化硫黄(SF6)に代わって用いられる。その結果、フッ化ヨウ素を含むエッチングガスがプラズマ化されるエッチングステップと有機堆積物形成ガスがプラズマ化される保護膜形成ステップとが交互に繰り返し行われることにより、高い垂直性と良好な側壁形状を有するシリコン構造体が得られる。
According to this silicon structure manufacturing program, an etching gas containing iodine fluoride is used in place of sulfur hexafluoride (SF 6 ). As a result, an etching step in which the etching gas containing iodine fluoride is turned into plasma and a protective film forming step in which the organic deposit forming gas is turned into plasma are alternately repeated, thereby achieving high verticality and good sidewall shape. A silicon structure having
また、本発明のもう1つのシリコン構造体の製造プログラムは、誘電結合型プラズマエッチング装置を用いて誘導コイルに高周波電力を印加することによりフッ化ヨウ素を含むエッチングガスをプラズマ化する第1ステップと、その誘導コイルに高周波電力を印加することにより有機堆積物形成ガスをプラズマ化する第2ステップとを交互に繰り返し行うとともに、前述の第1ステップの間、シリコン領域を含む被処理物が載置されるステージ電極に高周波電力を印加することによって、そのシリコン領域をエッチングするステップを有している。
According to another aspect of the present invention, there is provided a silicon structure manufacturing program comprising: a first step of converting an etching gas containing iodine fluoride into plasma by applying high frequency power to an induction coil using a dielectric coupled plasma etching apparatus; The second step of converting the organic deposit forming gas into plasma by applying high-frequency power to the induction coil is alternately repeated, and the object to be processed including the silicon region is placed during the first step. A step of etching the silicon region by applying high frequency power to the stage electrode.
このシリコン構造体の製造プログラムによれば、フッ化ヨウ素を含むエッチングガスが六フッ化硫黄(SF6)に代わって用いられる。その結果、フッ化ヨウ素を含むエッチングガスが誘電結合型プラズマエッチング装置によってプラズマ化されるエッチングステップとその装置によって有機堆積物形成ガスがプラズマ化される保護膜形成ステップとが交互に繰り返し行われることにより、高い垂直性と良好な側壁形状を有するシリコン構造体が得られる。
According to this silicon structure manufacturing program, an etching gas containing iodine fluoride is used in place of sulfur hexafluoride (SF 6 ). As a result, the etching step in which the etching gas containing iodine fluoride is turned into plasma by the dielectric coupling type plasma etching apparatus and the protective film forming step in which the organic deposit forming gas is turned into plasma by the apparatus are alternately repeated. As a result, a silicon structure having high verticality and good sidewall shape can be obtained.
また、本発明の1つのシリコン構造体の製造装置は、上述のいずれかのシリコン構造体の製造プログラム又はそのいずれかのシリコン構造体の製造プログラムを記録した記録媒体によって制御される制御部を備えている。
In addition, a silicon structure manufacturing apparatus according to the present invention includes a control unit that is controlled by any one of the silicon structure manufacturing programs described above or a recording medium that records any one of the silicon structure manufacturing programs. ing.
本発明の製造方法、製造装置、又は製造プログラムによれば、フッ化ヨウ素を含むエッチングガスがプラズマ化されるエッチング工程と有機堆積物形成ガスがプラズマ化される保護膜形成工程とが交互に繰り返し行われることにより、高い垂直性と良好な側壁形状を有するシリコン構造体が得られる。また、フッ化ヨウ素は、地球温暖化係数(GWP)が六フッ化硫黄(SF6)と比較して殆ど無視できるほどに小さいガス(実質的に、GWPが0(ゼロ))であることから、地球温暖化抑制にも大きく貢献し得る。
According to the manufacturing method, manufacturing apparatus, or manufacturing program of the present invention, the etching process in which the etching gas containing iodine fluoride is turned into plasma and the protective film forming process in which the organic deposit forming gas is turned into plasma are alternately repeated. By doing so, a silicon structure having high verticality and good sidewall shape can be obtained. In addition, iodine fluoride is a gas whose global warming potential (GWP) is small enough to be negligible compared to sulfur hexafluoride (SF 6 ) (substantially, GWP is 0 (zero)). It can also make a significant contribution to the prevention of global warming.
10,30 シリコン構造体
12 エッチングマスク
14 側壁
17 残渣
20 チャンバー
21 ステージ
22a,22b ガスボンベ
23a,23b ガス流量調整器
24 誘導コイル
25 第1高周波電源
26 第2高周波電源
27 真空ポンプ
28 排気流量調整器
29 制御部
60 コンピュータ
100 シリコン構造体の製造装置 DESCRIPTION OF SYMBOLS 10,30 Silicon structure 12 Etching mask 14 Side wall 17 Residue 20 Chamber 21 Stage 22a, 22b Gas cylinder 23a, 23b Gas flow rate regulator 24 Inductive coil 25 First high frequency power source 26 Second high frequency power source 27 Vacuum pump 28 Exhaust flow rate regulator 29 Control unit 60 Computer 100 Silicon structure manufacturing apparatus
12 エッチングマスク
14 側壁
17 残渣
20 チャンバー
21 ステージ
22a,22b ガスボンベ
23a,23b ガス流量調整器
24 誘導コイル
25 第1高周波電源
26 第2高周波電源
27 真空ポンプ
28 排気流量調整器
29 制御部
60 コンピュータ
100 シリコン構造体の製造装置 DESCRIPTION OF
つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしもスケール通りに示されていない。また、各図面を見やすくするために、一部の符号が省略され得る。また、特に言及がない限り、以下の各種ガスの流量は、標準状態の流量を示す。
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this description, common parts are denoted by common reference symbols throughout the drawings unless otherwise specified. In the drawings, the elements of the present embodiment are not necessarily shown to scale. Moreover, in order to make each drawing easy to see, some reference numerals may be omitted. Unless otherwise specified, the flow rates of the following various gases indicate the flow rates in the standard state.
<第1の実施形態>
図1は、本実施形態のシリコン構造体の製造装置100(以下、単に製造装置100ともいう)の装置構成の一例を示す断面図である。また、図2は、本実施形態の最終的なシリコン構造体の一部を示す模式図である。なお、本実施形態において、被処理物であるシリコン基板Wは単結晶シリコン基板であるが、これに限定されない。例えば、多結晶シリコン基板やアモルファスシリコン基板であっても本実施形態は適用され得る。同様に、多結晶シリコン層やアモルファスシリコン層を一部に有する被処理物(例えば、基板)に対しても本実施形態は適用され得る。 <First Embodiment>
FIG. 1 is a cross-sectional view showing an example of a device configuration of a silicon structure manufacturing apparatus 100 (hereinafter also simply referred to as a manufacturing apparatus 100) according to this embodiment. FIG. 2 is a schematic view showing a part of the final silicon structure of the present embodiment. In the present embodiment, the silicon substrate W that is an object to be processed is a single crystal silicon substrate, but is not limited to this. For example, the present embodiment can be applied even to a polycrystalline silicon substrate or an amorphous silicon substrate. Similarly, the present embodiment can be applied to an object to be processed (for example, a substrate) having a polycrystalline silicon layer or an amorphous silicon layer in part.
図1は、本実施形態のシリコン構造体の製造装置100(以下、単に製造装置100ともいう)の装置構成の一例を示す断面図である。また、図2は、本実施形態の最終的なシリコン構造体の一部を示す模式図である。なお、本実施形態において、被処理物であるシリコン基板Wは単結晶シリコン基板であるが、これに限定されない。例えば、多結晶シリコン基板やアモルファスシリコン基板であっても本実施形態は適用され得る。同様に、多結晶シリコン層やアモルファスシリコン層を一部に有する被処理物(例えば、基板)に対しても本実施形態は適用され得る。 <First Embodiment>
FIG. 1 is a cross-sectional view showing an example of a device configuration of a silicon structure manufacturing apparatus 100 (hereinafter also simply referred to as a manufacturing apparatus 100) according to this embodiment. FIG. 2 is a schematic view showing a part of the final silicon structure of the present embodiment. In the present embodiment, the silicon substrate W that is an object to be processed is a single crystal silicon substrate, but is not limited to this. For example, the present embodiment can be applied even to a polycrystalline silicon substrate or an amorphous silicon substrate. Similarly, the present embodiment can be applied to an object to be processed (for example, a substrate) having a polycrystalline silicon layer or an amorphous silicon layer in part.
まず、図1に示すシリコン構造体の製造装置100の構成について説明する。エッチング対象となるシリコン基板W(以下、単に基板Wともいう。)は、チャンバー20の下部側に設けられたステージ21に載置される。チャンバー20には、エッチングガス、有機堆積物形成ガス(以下、保護膜形成ガスともいう)から選ばれる少なくとも一種類のガスが、各ボンベ22a,22bからそれぞれガス流量調整器23a,23bを通して供給される。これらのガスは、第1高周波電源25により高周波電力を印加された誘導コイル24によりプラズマ化される。その後、第2高周波電源26を用いてステージ21に高周波電力が印加されることにより、これらの生成されたプラズマはシリコン基板Wに引き込まれる。ここで、本実施形態では、ステージ21に対してパルス状、換言すれば、印加のオン状態とオフ状態が所定間隔で繰り返し現れる状況で電力が印加される。また、このチャンバー20内を減圧し、かつプロセス後に生成されるガスを排気するため、チャンバー20には真空ポンプ27が排気流量調整器28を介して接続されている。尚、このチャンバー20からの排気流量は排気流量調整器28により変更される。上述のガス流量調整器23a,23b、第1高周波電源25、パルス状の印加が可能な第2高周波電源26、及び排気流量調整器28は、制御部29により制御される。なお、チャンバー20内の圧力を計測する公知の圧力計は図示されていない。
First, the configuration of the silicon structure manufacturing apparatus 100 shown in FIG. 1 will be described. A silicon substrate W to be etched (hereinafter also simply referred to as a substrate W) is placed on a stage 21 provided on the lower side of the chamber 20. The chamber 20 is supplied with at least one gas selected from an etching gas and an organic deposit forming gas (hereinafter also referred to as a protective film forming gas) from the cylinders 22a and 22b through gas flow controllers 23a and 23b, respectively. The These gases are turned into plasma by the induction coil 24 to which high frequency power is applied by the first high frequency power source 25. Thereafter, high-frequency power is applied to the stage 21 using the second high-frequency power source 26, so that the generated plasma is drawn into the silicon substrate W. Here, in the present embodiment, the power is applied to the stage 21 in a pulse form, in other words, in a state where the ON state and the OFF state of the application repeatedly appear at predetermined intervals. Further, a vacuum pump 27 is connected to the chamber 20 via an exhaust flow rate regulator 28 in order to decompress the inside of the chamber 20 and exhaust a gas generated after the process. The exhaust flow rate from the chamber 20 is changed by an exhaust flow rate regulator 28. The above-described gas flow rate regulators 23a and 23b, the first high frequency power source 25, the second high frequency power source 26 capable of applying pulses, and the exhaust flow rate regulator 28 are controlled by a control unit 29. A known pressure gauge for measuring the pressure in the chamber 20 is not shown.
次に、本実施形態のシリコン構造体10の製造工程について説明する。なお、本実施形態の最終的なシリコン構造体10は、幅が約3μmであって深さが約43μmのトレンチ構造を備えている。図3は、前述のシリコン構造体10の一部の断面SEM(走査電子顕微鏡)写真である。図3に示すように、本実施形態では良好な異方性ドライエッチングが行われたことが確認できる。
Next, the manufacturing process of the silicon structure 10 of this embodiment will be described. Note that the final silicon structure 10 of this embodiment has a trench structure having a width of about 3 μm and a depth of about 43 μm. FIG. 3 is a cross-sectional SEM (scanning electron microscope) photograph of a part of the silicon structure 10 described above. As shown in FIG. 3, it can be confirmed that good anisotropic dry etching was performed in this embodiment.
また、図4Aは、本実施形態の保護膜形成工程における保護膜形成ガスの流量の時間変化を示す図である。また、図4Bは、本実施形態のエッチング工程におけるエッチングガスの流量の時間変化を示す図である。また、図4Cは、本実施形態の保護膜形成工程における誘導コイル印加電力及びエッチング工程における誘導コイル印加電力の時間変化を示す図である。また、図4Dは、本実施形態の保護膜形成工程におけるステージ電極への印加電力(基板印加電力とも言う)及びエッチング工程におけるステージ電極への印加電力の時間変化を示す図である。加えて、図4Eは、本実施形態の保護膜形成工程におけるチャンバー内圧力及びエッチング工程におけるチャンバー内圧力の時間変化を示す図である。なお、各図中における保護膜形成工程とエッチング工程とを判別し易くするために、保護膜形成工程期間を表す「D」と、エッチング工程期間を表す「E」が示されている。また、図4A乃至図4Eは、言うまでもなく、繰り返される保護膜形成工程又はエッチング工程の一部の時間帯のみを示している。
FIG. 4A is a diagram showing a change over time in the flow rate of the protective film forming gas in the protective film forming step of the present embodiment. Moreover, FIG. 4B is a figure which shows the time change of the flow volume of the etching gas in the etching process of this embodiment. Moreover, FIG. 4C is a figure which shows the time change of the induction coil application electric power in the protective film formation process of this embodiment, and the induction coil application electric power in an etching process. FIG. 4D is a diagram showing temporal changes in power applied to the stage electrode (also referred to as substrate applied power) in the protective film formation step of the present embodiment and power applied to the stage electrode in the etching step. In addition, FIG. 4E is a diagram showing the change over time in the chamber pressure in the protective film formation step and the chamber pressure in the etching step of the present embodiment. In order to make it easy to distinguish between the protective film forming step and the etching step in each figure, “D” representing the protective film forming step period and “E” representing the etching step period are shown. 4A to 4E, of course, show only a part of the time zone of the repeated protective film forming process or etching process.
ここで、本実施形態のシリコンの異方性ドライエッチングは、保護膜形成ガスが導入される保護膜形成工程とエッチングガスが導入されるエッチング工程とを順次繰り返す方法を採用する。本実施形態の保護膜形成ガスはC4F8であり、エッチングガスはIF5である。なお、本実施形態では、公知のフォトリソグラフィー技術を用いてエッチングマスク12としてのレジスト膜のパターニングが行われたシリコン基板Wが用いられる。
Here, the anisotropic dry etching of silicon of the present embodiment employs a method of sequentially repeating a protective film forming process in which a protective film forming gas is introduced and an etching process in which an etching gas is introduced. In this embodiment, the protective film forming gas is C 4 F 8 and the etching gas is IF 5 . In the present embodiment, a silicon substrate W on which a resist film is patterned as the etching mask 12 using a known photolithography technique is used.
本実施形態のシリコン構造体10の製造工程では、最初に、保護膜形成工程において、一単位処理時間である2秒間に、保護膜形成ガスが200sccm(200mL/min.ともいう。以下の各流量において同じ。)で供給され、チャンバー20内の圧力は8Paに制御される。誘導コイル24には、13.56MHzの高周波電力が2600W(便宜上、第2の高周波電力としても良い。)印加されるが、ステージ21には電力が印加されない。一方、つづくエッチング工程では、一単位処理時間である9秒間に、エッチングガスが200sccmで供給され、チャンバー20内の圧力は15Paに制御される。誘導コイル24には13.56MHzの高周波電力が2600W(便宜上、第1の高周波電力としても良い。)印加されるとともに、ステージ21には13.56MHzの高周波電力が80W(便宜上、第3の高周波電力としても良い。)印加される。図4A乃至図4Eに示すように、上述の保護膜形成工程及びエッチング工程が、所定の時間(本実施形態では約50分間)、継続して繰り返されることにより、図3に示すシリコン構造体10が形成される。
In the manufacturing process of the silicon structure 10 of this embodiment, first, in the protective film forming process, the protective film forming gas is 200 sccm (also referred to as 200 mL / min.) For 2 seconds which is one unit processing time. The pressure in the chamber 20 is controlled to 8 Pa. A high frequency power of 13.56 MHz is applied to the induction coil 24 at 2600 W (for convenience, the second high frequency power may be used), but no power is applied to the stage 21. On the other hand, in the subsequent etching process, the etching gas is supplied at 200 sccm for 9 seconds, which is a unit processing time, and the pressure in the chamber 20 is controlled to 15 Pa. A high frequency power of 13.56 MHz is applied to the induction coil 24 at 2600 W (for convenience, it may be the first high frequency power), and a high frequency power of 13.56 MHz is applied to the stage 21 at 80 W (for convenience, the third high frequency power). It may be electric power.) Applied. As shown in FIGS. 4A to 4E, the above-described protective film forming step and etching step are continuously repeated for a predetermined time (about 50 minutes in the present embodiment), whereby the silicon structure 10 shown in FIG. Is formed.
なお、本実施形態の異方性ドライエッチング条件によるエッチング速度は、約0.9μm/min.(マイクロメートル/分)である。また、本実施形態における側壁14の荒さ(図2の長さL)は、約0.05μm以下である。
Note that the etching rate under the anisotropic dry etching condition of this embodiment is about 0.9 μm / min. (Micrometers / minute). Further, the roughness of the side wall 14 in this embodiment (the length L in FIG. 2) is about 0.05 μm or less.
ところで、本実施形態では、エッチング工程において、地球温暖化係数(GWP)が殆ど無視できるほどに小さい(実質的に、GWPが0(ゼロ)の)五フッ化ヨウ素(IF5)が用いられている。従って、上述のとおり、深さが約43μmであってアスペクト比が約14のトレンチ構造を有するシリコン構造体10の形成のために排出される温室効果ガスの総量は顕著に抑制される。
By the way, in this embodiment, iodine pentafluoride (IF 5 ) whose global warming potential (GWP) is small enough to be ignored (substantially GWP is 0 (zero)) is used in the etching process. Yes. Therefore, as described above, the total amount of greenhouse gases discharged for forming the silicon structure 10 having a trench structure having a depth of about 43 μm and an aspect ratio of about 14 is significantly suppressed.
さらに、発明者らの調査により、五フッ化ヨウ素(IF5)をエッチングガスとして本実施形態のプロセスを行った場合、六フッ化硫黄(SF6)を用いたときと比較して保護膜形成工程の時間が短くても良好なトレンチの形状が得られることが明らかとなった。具体的には、上述のエッチング工程の時間の長さを1としたときに、保護膜形成工程の時間の長さが0.11以上0.33以下とすることにより、例えば図3に示すような良好な、すなわち高い垂直性と良好な側壁形状を有するシリコン構造体が形成され得る。ここで、保護膜形成工程の時間の長さが0.11未満になると、特にエッチングされたトレンチ構造の側壁14の表面上に形成された保護膜の一部が消耗ないし消失することによって、側壁14から水平方向へのエッチングが進行してしまう可能性が高まる。逆に、保護膜形成工程の時間の長さが0.33を超えると、トレンチ構造の底面に形成される保護膜がエッチング工程において除去され切らなくなることによって、その底面に図5に示すような残渣17が形成される可能性が高まる。
Further, according to the investigation by the inventors, when the process of the present embodiment is performed using iodine pentafluoride (IF 5 ) as an etching gas, a protective film is formed as compared with the case where sulfur hexafluoride (SF 6 ) is used. It was revealed that a good trench shape can be obtained even if the process time is short. Specifically, when the time length of the above-described etching process is set to 1, the time length of the protective film forming process is set to 0.11 or more and 0.33 or less, for example, as shown in FIG. A silicon structure with good, ie high verticality and good sidewall shape can be formed. Here, when the time length of the protective film forming step is less than 0.11, a part of the protective film formed on the surface of the side wall 14 of the etched trench structure is consumed or disappeared. There is an increased possibility that etching in the horizontal direction from 14 proceeds. Conversely, when the length of time of the protective film forming process exceeds 0.33, the protective film formed on the bottom surface of the trench structure is removed in the etching process and is not cut off, so that the bottom surface as shown in FIG. The possibility that the residue 17 is formed increases.
他方、本実施形態のプロセスの保護膜形成ガス流量及びエッチング速度が略同じである六フッ化硫黄(SF6)をエッチングガスとしたプロセスの場合、エッチング工程の時間の長さを1としたときに、保護膜形成工程の時間の長さが0.33よりも大きく、かつ0.66以下である。
On the other hand, in the case of a process in which sulfur hexafluoride (SF 6 ), which has substantially the same flow rate and etching rate of the protective film forming gas in the process of the present embodiment, is used as the etching gas, the time length of the etching process is set to 1. In addition, the length of time for the protective film forming step is greater than 0.33 and not greater than 0.66.
従って、五フッ化ヨウ素(IF5)をエッチングガスとして採用すれば、六フッ化硫黄(SF6)をエッチングガスとして採用する場合と比較して、地球温暖化係数(GWP)が高い保護膜形成ガスの使用量も低減することができる。なお、未だ詳しいメカニズムは判明していないが、五フッ化ヨウ素(IF5)を採用した場合、エッチング過程において被処理物(例えば、シリコン基板W)の表面上に形成されるI(ヨウ素)を含んだ何らかの堆積物が保護膜形成の一端を担っていることが考えられる。
Therefore, if iodine pentafluoride (IF 5 ) is used as an etching gas, a protective film is formed with a higher global warming potential (GWP) than when sulfur hexafluoride (SF 6 ) is used as an etching gas. The amount of gas used can also be reduced. Although the detailed mechanism has not yet been clarified, when iodine pentafluoride (IF 5 ) is adopted, I (iodine) formed on the surface of the object to be processed (for example, silicon substrate W) in the etching process. It is conceivable that some deposits included play a part in forming the protective film.
ところで、上述の製造装置100に備えられている制御部29は、コンピュータ60に接続されている。コンピュータ60は、上述の異方性ドライエッチングプロセスを実行するためのシリコン構造体10の製造プログラムにより、上述のプロセスを監視し、又は統合的に制御する。以下に、具体的な製造フローチャートを示しながら、シリコン構造体10の製造プログラムを説明する。尚、本実施形態では、上述の製造プログラムがコンピュータ60内のハードディスクドライブ、又はコンピュータ60に設けられた光ディスクドライブ等に挿入される光ディスク等の公知の記録媒体に保存されているが、この製造プログラムの保存先はこれに限定されない。また、この製造プログラムは、ローカルエリアネットワークやインターネット回線等の公知の技術を介して上述の各プロセスを監視し、又は制御することもできる。
Incidentally, the control unit 29 provided in the above-described manufacturing apparatus 100 is connected to the computer 60. The computer 60 monitors or comprehensively controls the above process by a manufacturing program of the silicon structure 10 for executing the above anisotropic dry etching process. Hereinafter, a manufacturing program for the silicon structure 10 will be described with reference to a specific manufacturing flowchart. In this embodiment, the above-described manufacturing program is stored in a known recording medium such as an optical disk inserted into a hard disk drive in the computer 60 or an optical disk drive provided in the computer 60. The storage destination of is not limited to this. The manufacturing program can also monitor or control each of the processes described above via a known technique such as a local area network or an Internet line.
図6は、本実施形態のシリコン構造体10の製造フローチャートである。
FIG. 6 is a manufacturing flowchart of the silicon structure 10 of the present embodiment.
図6に示すとおり、本実施形態のシリコン構造体10の製造プログラムが実行されると、まず、ステップS101において、シリコン基板Wがチャンバー20内に搬送された後、チャンバー20内のガスが排気される。その後、ステップS102~ステップS104において、チャンバー20内でシリコン基板Wが既述の条件により異方性ドライエッチングが行われる。
As shown in FIG. 6, when the manufacturing program for the silicon structure 10 of the present embodiment is executed, first, in step S101, after the silicon substrate W is transferred into the chamber 20, the gas in the chamber 20 is exhausted. The Thereafter, in steps S102 to S104, the silicon substrate W is subjected to anisotropic dry etching in the chamber 20 under the above-described conditions.
具体的には、まず、ステップS102において、本実施形態の保護膜形成工程を行うステップが実行される。次に、本実施形態のエッチング工程を行うステップが実行される(ステップS103)。
Specifically, first, in step S102, a step of performing the protective film forming process of the present embodiment is executed. Next, a step of performing the etching process of the present embodiment is executed (step S103).
その後、本実施形態のプログラムは、ステップS104に示すように、上述の保護膜形成工程を行うステップ(ステップS102)とエッチング工程を行うステップ(ステップS103)の各工程を当初設定されていた回数が繰り返して実行されたか否かを判断する。その結果、当初設定されていた回数が繰り返して実行された場合は、本実施形態のプログラムは異方性ドライエッチングを停止する(ステップS105)。他方、当初設定されていた回数が繰り返して実行されていない場合は、保護膜形成工程及びエッチング工程を再度行うステップが実行される(ステップS102,ステップS103)。
Thereafter, as shown in step S104, the program according to the present embodiment has the number of times that the respective steps of the step of performing the protective film forming step (step S102) and the step of performing the etching step (step S103) were initially set. It is determined whether or not it has been repeatedly executed. As a result, when the initially set number of times is repeatedly executed, the program of the present embodiment stops the anisotropic dry etching (step S105). On the other hand, when the initially set number of times is not repeatedly executed, a step of performing the protective film forming step and the etching step again is executed (steps S102 and S103).
異方性ドライエッチングが停止した後、本実施形態のプログラムは、ステップS105に示すように、シリコン基板Wが取り出される状態にし(ステップS106)、その後、本実施形態のプログラムが終了する。なお、このとき、チャンバー20が大気圧に回復した後にチャンバー内から直接基板Wが取り出されても良いが、チャンバー20に接続し得るローダー/アンローダー(図示されていない)を介して基板Wが取り出されてもよい。
After the anisotropic dry etching is stopped, the program of the present embodiment is brought into a state in which the silicon substrate W is taken out as shown in Step S105 (Step S106), and then the program of the present embodiment is finished. At this time, the substrate W may be directly taken out from the chamber after the chamber 20 is restored to the atmospheric pressure. However, the substrate W is connected via a loader / unloader (not shown) that can be connected to the chamber 20. It may be taken out.
本実施形態のシリコン構造体10の製造プログラムは、上述のとおり、エッチング工程及び保護膜形成工程における各条件等を統合的に制御する。本実施形態の製造プログラムが実行される結果、高い垂直性とともに良好な側壁形状を有するシリコン構造体が形成される。
The manufacturing program for the silicon structure 10 of the present embodiment integrally controls each condition in the etching process and the protective film forming process as described above. As a result of executing the manufacturing program of the present embodiment, a silicon structure having a high sidewall and a good sidewall shape is formed.
<第2の実施形態>
本実施形態では、開口幅が約50μmとなるように形成されたエッチングマスクを備えたシリコン基板が、第1の実施形態の異方性ドライエッチングプロセス条件と同じ条件でエッチングされた。図7は、本実施形態におけるシリコン構造体30の一部の断面SEM写真である。また、図8は、本実施形態におけるシリコン構造体30の一部(開口部付近)を拡大した断面SEM写真である。 <Second Embodiment>
In the present embodiment, a silicon substrate provided with an etching mask formed so as to have an opening width of about 50 μm was etched under the same conditions as the anisotropic dry etching process conditions of the first embodiment. FIG. 7 is a cross-sectional SEM photograph of a part of thesilicon structure 30 in the present embodiment. FIG. 8 is an enlarged cross-sectional SEM photograph of a part (near the opening) of the silicon structure 30 in the present embodiment.
本実施形態では、開口幅が約50μmとなるように形成されたエッチングマスクを備えたシリコン基板が、第1の実施形態の異方性ドライエッチングプロセス条件と同じ条件でエッチングされた。図7は、本実施形態におけるシリコン構造体30の一部の断面SEM写真である。また、図8は、本実施形態におけるシリコン構造体30の一部(開口部付近)を拡大した断面SEM写真である。 <Second Embodiment>
In the present embodiment, a silicon substrate provided with an etching mask formed so as to have an opening width of about 50 μm was etched under the same conditions as the anisotropic dry etching process conditions of the first embodiment. FIG. 7 is a cross-sectional SEM photograph of a part of the
その結果、図7に示すように、幅が約50μmであって深さが約20μmのトレンチ構造を備えるシリコン構造体30が得られる。なお、本実施形態の異方性ドライエッチング条件によるエッチング速度は、約2μm/min.(マイクロメートル/分)である。また、本実施形態における側壁の荒さは、図8に示すように、約0.1μmである。
As a result, as shown in FIG. 7, a silicon structure 30 having a trench structure with a width of about 50 μm and a depth of about 20 μm is obtained. Note that the etching rate under the anisotropic dry etching condition of this embodiment is about 2 μm / min. (Micrometers / minute). Further, the roughness of the side wall in this embodiment is about 0.1 μm as shown in FIG.
ところで、上述の各実施形態では、エッチングガスとして五フッ化ヨウ素(IF5)が用いられているが、これに限定されない。五フッ化ヨウ素(IF5)の代わりに三フッ化ヨウ素(IF3)や七フッ化ヨウ素(IF7)も上述の実施形態に適用され得る。また、上述の実施形態では、保護膜形成ガスとしてC4F8が用いられているが、これに限定されない。C4F8の代わりにC5F8やC4F6も上述の実施形態に適用され得る。また、上記のエッチングガス及び保護膜形成ガスは、それぞれが単一ガスのみで構成される必要はない。例えば、エッチングガスは、五フッ化ヨウ素(IF5)の他に酸素ガスやアルゴンガスを含んでいても良く、保護膜形成ガスは、C4F8等の他に酸素ガスを含んでいても良い。但し、上記エッチングガスに六フッ化硫黄(SF6)は含まれない。
Incidentally, in the embodiments described above, the iodine pentafluoride (IF 5) is used as the etching gas is not limited thereto. Instead of iodine pentafluoride (IF 5 ), iodine trifluoride (IF 3 ) and iodine heptafluoride (IF 7 ) can also be applied to the above-described embodiments. In the above-described embodiment, C 4 F 8 is used as the protective film forming gas, but the present invention is not limited to this. Instead of C 4 F 8 , C 5 F 8 and C 4 F 6 can also be applied to the above-described embodiment. Further, the etching gas and the protective film forming gas do not need to be composed of only a single gas. For example, the etching gas may contain oxygen gas or argon gas in addition to iodine pentafluoride (IF 5 ), and the protective film forming gas may contain oxygen gas in addition to C 4 F 8 or the like. good. However, sulfur hexafluoride (SF 6 ) is not included in the etching gas.
また、上述の各実施形態では、エッチングされる対象がトレンチであったが、これに限定されない。その対象がホールであっても、本発明と実質的に同様の効果が奏される。さらに、上述の各実施形態では、開口幅が1種類(約3μm又は約50μm)であったが、これに限定されない。仮に、開口幅が2種類以上であっても本発明を適用することができる。
Further, in each of the above-described embodiments, the object to be etched is a trench, but is not limited to this. Even if the object is a hole, substantially the same effect as the present invention can be obtained. Furthermore, in each of the above-described embodiments, there is one type of opening width (about 3 μm or about 50 μm), but the present invention is not limited to this. Even if there are two or more opening widths, the present invention can be applied.
また、上述の各実施形態では、まず保護膜形成工程が行われ、その後にエッチング工程が行われたが、この順序に限定されない。例えば、最初にエッチング工程が行われ、その後に保護膜形成工程が行われてもよい。一般的に、プラズマを最初に発生させる際、チャンバー内にプラズマ発生のための安定的な圧力を得るために、プラズマ化されるガスを数秒間ないし10秒間程度、先行して導入しておく必要がある。そうすると、地球温暖化係数(GWP)の高い保護膜形成ガスを最初に導入するよりも、五フッ化ヨウ素(IF5)のような地球温暖化係数(GWP)の低いエッチングガスを導入した方が、地球環境を考える上で好ましいといえる。また、最初にエッチング工程が行われ、その後に保護膜形成工程が行われても、シリコン構造体の形状については、上述の実施形態とほぼ同様の効果が奏される。他方、保護膜形成工程を最初に行うことにより、エッチングガスのプラズマに曝露される前にエッチングマスク上に有機堆積物が堆積することになるため、マスク選択比の向上に寄与し得る。
Further, in each of the above-described embodiments, the protective film forming step is first performed, and then the etching step is performed. However, the order is not limited. For example, an etching process may be performed first and then a protective film forming process may be performed. Generally, when plasma is generated for the first time, it is necessary to introduce a gas to be plasma in advance for several seconds to 10 seconds in order to obtain a stable pressure for generating plasma in the chamber. There is. Then, it is better to introduce an etching gas with a low global warming potential (GWP) such as iodine pentafluoride (IF 5 ) than to introduce a protective film forming gas with a high global warming potential (GWP) first. It can be said that it is preferable in considering the global environment. Moreover, even if an etching process is performed first and a protective film formation process is performed after that, about the shape of a silicon structure, there exists an effect similar to the above-mentioned embodiment. On the other hand, by performing the protective film formation step first, organic deposits are deposited on the etching mask before being exposed to the plasma of the etching gas, which can contribute to an improvement in the mask selectivity.
また、本実施形態の異方性エッチングを停止する直前の工程がエッチング工程に限定されることもない。保護膜形成工程が異方性エッチングを停止する直前に実行されても本実施形態の効果と同様の効果が奏される。すなわち、図6で示すフローチャートに基づけば、ステップS102とステップS103とが繰り返された上で、最終工程としてステップS102が実行された後に、異方性エッチングが停止(ステップS105)するプログラムも本実施形態の1つの変形例として適用され得る。
Also, the process immediately before stopping the anisotropic etching of the present embodiment is not limited to the etching process. Even if the protective film forming step is executed immediately before the anisotropic etching is stopped, the same effect as that of the present embodiment can be obtained. That is, based on the flowchart shown in FIG. 6, the program in which anisotropic etching is stopped (step S105) after step S102 is executed as a final process after step S102 and step S103 are repeated is also implemented. It can be applied as one variant of form.
加えて、上述の各実施形態では、エッチング工程においてのみ、ステージ電極へ高周波電力が印加されているが、これに限定されない。例えば、エッチング工程に加えて、保護膜形成工程においてもステージ電極に対して高周波電力が印加され得る。保護膜形成工程において高周波電力が印加されることにより、エッチングされた領域の底面の保護膜の形成を抑制する場合があるため、むしろエッチング速度の向上に寄与し得る。
In addition, in each of the above-described embodiments, high-frequency power is applied to the stage electrode only in the etching process, but the present invention is not limited to this. For example, in addition to the etching process, high-frequency power can be applied to the stage electrode also in the protective film forming process. Since high-frequency power is applied in the protective film forming step, formation of the protective film on the bottom surface of the etched region may be suppressed, which may rather contribute to an improvement in the etching rate.
さらに、プラズマ生成手段として上述の各実施形態ではICP(Inductively Coupled Plasma)を用いたが、本発明はこれに限定されない。他の高密度プラズマ、例えば、CCP(Capacitive-Coupled Plasma)やECR(Electron-Cyclotron Resonance Plasma)を用いても上述の実施形態の効果と同様の効果が奏され得る。以上、述べたとおり、本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
Furthermore, although ICP (Inductively Coupled Plasma) is used as the plasma generation means in each of the above-described embodiments, the present invention is not limited to this. The same effects as those of the above-described embodiments can be obtained even when other high-density plasma, for example, CCP (Capacitive-Coupled Plasma) or ECR (Electron-Cyclotron Resonance Plasma) is used. As described above, modifications that exist within the scope of the present invention are also included in the claims.
Claims (11)
- 高周波電力を印加することによりフッ化ヨウ素を含むエッチングガスをプラズマ化する第1工程と、高周波電力を印加することにより有機堆積物形成ガスをプラズマ化する第2工程とを交互に繰り返し行うことによって、シリコン領域を含む被処理物の前記シリコン領域をエッチングする工程を有する
シリコン構造体の製造方法。 By alternately and repeatedly performing a first step of converting an etching gas containing iodine fluoride into plasma by applying high-frequency power and a second step of converting organic deposit-forming gas into plasma by applying high-frequency power A method for manufacturing a silicon structure, comprising: etching the silicon region of an object to be processed including the silicon region. - 誘電結合型プラズマエッチング装置を用いて誘導コイルに高周波電力を印加することによりフッ化ヨウ素を含むエッチングガスをプラズマ化する第1工程と、前記誘導コイルに高周波電力を印加することにより有機堆積物形成ガスをプラズマ化する第2工程とを交互に繰り返し行うとともに、前記第1工程の間、シリコン領域を含む被処理物が載置されるステージ電極に高周波電力を印加することによって、前記シリコン領域をエッチングする工程を有する
シリコン構造体の製造方法。 A first step of converting an etching gas containing iodine fluoride into plasma by applying high-frequency power to the induction coil using a inductively coupled plasma etching apparatus, and forming organic deposits by applying high-frequency power to the induction coil The second step of turning the gas into plasma is alternately repeated, and during the first step, high-frequency power is applied to a stage electrode on which an object to be processed including the silicon region is placed. The manufacturing method of a silicon structure which has the process to etch. - 前記フッ化ヨウ素が、五フッ化ヨウ素(IF5)である
請求項1又は請求項2に記載のシリコン構造体の製造方法。 The method for producing a silicon structure according to claim 1, wherein the iodine fluoride is iodine pentafluoride (IF 5 ). - 前記第1工程の時間の長さを1としたときに、前記第2工程の時間の長さが0.11以上0.33以下である
請求項1又は請求項2に記載のシリコン構造体の製造方法。 3. The silicon structure according to claim 1, wherein the time length of the second step is 0.11 or more and 0.33 or less when the length of time of the first step is 1. 3. Production method. - 高周波電力を印加することによりフッ化ヨウ素を含むエッチングガスをプラズマ化する第1ステップと、高周波電力を印加することにより有機堆積物形成ガスをプラズマ化する第2ステップとを交互に繰り返し行うことによって、シリコン領域を含む被処理物の前記シリコン領域をエッチングするステップを有する
シリコン構造体の製造プログラム。 By alternately and repeatedly performing a first step of converting an etching gas containing iodine fluoride into plasma by applying high-frequency power and a second step of converting organic deposit-forming gas into plasma by applying high-frequency power And a step of etching the silicon region of the workpiece including the silicon region. - 誘電結合型プラズマエッチング装置を用いて誘導コイルに高周波電力を印加することによりフッ化ヨウ素を含むエッチングガスをプラズマ化する第1ステップと、前記誘導コイルに高周波電力を印加することにより有機堆積物形成ガスをプラズマ化する第2ステップとを交互に繰り返し行うとともに、前記第1ステップの間、シリコン領域を含む被処理物が載置されるステージ電極に高周波電力を印加することによって、前記シリコン領域をエッチングするステップを有する
シリコン構造体の製造プログラム。 A first step of converting an etching gas containing iodine fluoride into plasma by applying high-frequency power to the induction coil using a inductively coupled plasma etching apparatus, and forming organic deposits by applying high-frequency power to the induction coil The second step of turning the gas into plasma is alternately and repeatedly performed, and during the first step, high frequency power is applied to a stage electrode on which an object to be processed including the silicon region is placed. A silicon structure manufacturing program comprising the step of etching. - 前記フッ化ヨウ素が、五フッ化ヨウ素(IF5)である
請求項5又は請求項6に記載のシリコン構造体の製造プログラム。 The manufacturing program for a silicon structure according to claim 5 or 6, wherein the iodine fluoride is iodine pentafluoride (IF 5 ). - 前記第1ステップの時間の長さを1としたときに、前記第2ステップの時間の長さが0.11以上0.33以下である
請求項5又は請求項6に記載のシリコン構造体の製造プログラム。 7. The silicon structure according to claim 5, wherein the time length of the second step is 0.11 or more and 0.33 or less when the length of time of the first step is 1. 7. Manufacturing program. - 請求項5又は請求項6に記載の製造プログラムを記録した記録媒体。 A recording medium on which the manufacturing program according to claim 5 or 6 is recorded.
- 請求項5又は請求項6に記載の製造プログラムにより制御される制御部を備えた
シリコン構造体の製造装置。 A silicon structure manufacturing apparatus comprising a control unit controlled by the manufacturing program according to claim 5. - 請求項9に記載の記録媒体により制御される制御部を備えた
シリコン構造体の製造装置。 An apparatus for manufacturing a silicon structure, comprising: a control unit controlled by the recording medium according to claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010534310A JPWO2011001778A1 (en) | 2009-07-01 | 2010-06-02 | Manufacturing method of silicon structure, manufacturing apparatus thereof, and manufacturing program thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009157054 | 2009-07-01 | ||
JP2009-157054 | 2009-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011001778A1 true WO2011001778A1 (en) | 2011-01-06 |
Family
ID=43410858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059343 WO2011001778A1 (en) | 2009-07-01 | 2010-06-02 | Method for manufacturing silicon structure, device for manufacturing same, and program for manufacturing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2011001778A1 (en) |
TW (1) | TW201103087A (en) |
WO (1) | WO2011001778A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014079315A1 (en) * | 2012-11-23 | 2014-05-30 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Substrate etching method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5886214B2 (en) * | 2013-01-17 | 2016-03-16 | Sppテクノロジーズ株式会社 | Plasma etching method |
CN110211870B (en) * | 2019-06-18 | 2021-08-13 | 北京北方华创微电子装备有限公司 | Wafer thinning method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002239014A (en) * | 2001-02-19 | 2002-08-27 | Sumitomo Precision Prod Co Ltd | Needle-like body and method for manufacturing needle- like body |
JP2007027349A (en) * | 2005-07-15 | 2007-02-01 | Sumitomo Precision Prod Co Ltd | Etching method and etching device |
JP2008177209A (en) * | 2007-01-16 | 2008-07-31 | Taiyo Nippon Sanso Corp | Plasma etching method |
-
2010
- 2010-06-02 WO PCT/JP2010/059343 patent/WO2011001778A1/en active Application Filing
- 2010-06-02 JP JP2010534310A patent/JPWO2011001778A1/en active Pending
- 2010-06-29 TW TW99121223A patent/TW201103087A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002239014A (en) * | 2001-02-19 | 2002-08-27 | Sumitomo Precision Prod Co Ltd | Needle-like body and method for manufacturing needle- like body |
JP2007027349A (en) * | 2005-07-15 | 2007-02-01 | Sumitomo Precision Prod Co Ltd | Etching method and etching device |
JP2008177209A (en) * | 2007-01-16 | 2008-07-31 | Taiyo Nippon Sanso Corp | Plasma etching method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014079315A1 (en) * | 2012-11-23 | 2014-05-30 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Substrate etching method |
CN103832965A (en) * | 2012-11-23 | 2014-06-04 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Substrate etching method |
US9478439B2 (en) | 2012-11-23 | 2016-10-25 | Beijing Nmc Co., Ltd. | Substrate etching method |
Also Published As
Publication number | Publication date |
---|---|
TW201103087A (en) | 2011-01-16 |
JPWO2011001778A1 (en) | 2012-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5308080B2 (en) | Manufacturing method of silicon structure, manufacturing apparatus thereof, and manufacturing program thereof | |
KR20090091307A (en) | A silicon structure having a high aspect ratio opening, a manufacturing method thereof, a manufacturing apparatus thereof, and a manufacturing program thereof, and a method of manufacturing an etching mask for the silicon structure thereof | |
KR102267521B1 (en) | Method of Etching | |
TWI841579B (en) | Plasma processing method and plasma processing apparatus | |
JP2010021442A (en) | Plasma processing method and apparatus | |
Nguyen et al. | On the formation of black silicon in SF6-O2 plasma: The clear, oxidize, remove, and etch (CORE) sequence and black silicon on demand | |
JP5074009B2 (en) | Method and apparatus for manufacturing etching mask for silicon structure having high aspect ratio opening and manufacturing program therefor | |
JPH10172959A (en) | Dry etching method for polycide film | |
WO2011001778A1 (en) | Method for manufacturing silicon structure, device for manufacturing same, and program for manufacturing same | |
CN110783187A (en) | Plasma processing method and plasma processing apparatus | |
JP5749166B2 (en) | Manufacturing method of silicon structure, manufacturing apparatus thereof, and manufacturing program thereof | |
JP5172417B2 (en) | Manufacturing method of silicon structure, manufacturing apparatus thereof, and manufacturing program thereof | |
JP5177997B2 (en) | Silicon structure having high aspect ratio opening, manufacturing method thereof, manufacturing apparatus thereof, and manufacturing program thereof | |
JP6208017B2 (en) | Plasma etching method | |
JP5065726B2 (en) | Dry etching method | |
JP5443937B2 (en) | Manufacturing method of silicon structure, manufacturing apparatus thereof, and manufacturing program thereof | |
JP5416540B2 (en) | Manufacturing method of silicon structure, manufacturing apparatus thereof, and manufacturing program thereof | |
JP5284679B2 (en) | Plasma etching method | |
JP2009147000A (en) | Method of manufacturing semiconductor device | |
CN107507770B (en) | A kind of III-V semiconductor material etching method | |
JP2009194017A (en) | Manufacturing method for semiconductor device | |
JP4700922B2 (en) | Manufacturing method of semiconductor device | |
JP2007234961A (en) | Manufacturing method of semiconductor device | |
JP5815459B2 (en) | Plasma etching method | |
WO2006085917A2 (en) | A method of fabricating a nano-wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2010534310 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10793949 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10793949 Country of ref document: EP Kind code of ref document: A1 |