[go: up one dir, main page]

WO2011000857A1 - CO-CATALYST IN TiO2 FILMS - Google Patents

CO-CATALYST IN TiO2 FILMS Download PDF

Info

Publication number
WO2011000857A1
WO2011000857A1 PCT/EP2010/059256 EP2010059256W WO2011000857A1 WO 2011000857 A1 WO2011000857 A1 WO 2011000857A1 EP 2010059256 W EP2010059256 W EP 2010059256W WO 2011000857 A1 WO2011000857 A1 WO 2011000857A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
metal
mixtures
potential
present
Prior art date
Application number
PCT/EP2010/059256
Other languages
German (de)
French (fr)
Inventor
Alexandra Seeber
Götz-Peter SCHINDLER
Florina Corina Patcas
Günter Heinz Bruno KREISEL
Susan Schaefer
Sarah Anna Saborowski
Doreen Keil
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2011000857A1 publication Critical patent/WO2011000857A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds

Definitions

  • the present invention relates to a photocatalyst comprising at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, wherein the ribbon potential of the photocatalyst to at least 0.05 eV compared to the photocatalyst without this at least one metal is increased, a method for increasing the flat-band potential of a photocatalyst, wherein the photocatalyst with at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), Lanthanides, actinides and mixtures thereof, the use of at least one metal selected from Groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof to increase the ribbon potential of a photocatalyst, and the use of the photocatalyst according to the invention i
  • Photocatalysts comprising at least one photocatalytically active material and processes for their preparation are already known from the prior art.
  • DE 198 41 650 A1 discloses a process for the preparation of nanocrystalline metal oxide and mixed metal oxide layers on barrier layer-forming metals, in which the coating by anodization with spark discharge in an electrolyte, which at least one or more complexing agents, preferably chelating preferably with functional group N-CH 2 -COOH, one or more metal alkoxides and at least one alcohol, preferably secondary or tertiary alcohols.
  • the properties of the photocatalytically active layers obtained can additionally be influenced by adding further components, such as iron or ruthenium ions, electrically neutral microparticles or nanoparticles, etc., to the electrolyte of the anodization in order to obtain them to insert the photocatalytically active layer.
  • DE 10 2005 043 865 A1 relates to a further development of the method according to the already cited DE 198 41 650 A1.
  • the electrolyte in which the anodization of the substrate is carried out for example gadolinium (III) acetylacetonate hydrate and / or cerium (III) acetylacetonate hydrate in a concentration of less than 0.01 mol / l and optionally further components are added.
  • DE 10 2005 050 075 A1 discloses a method for depositing metals, preferably noble metals, on adherent metal oxide and mixed metal oxide layers.
  • a corresponding substrate is first provided with a metal oxide or a mixed metal oxide layer.
  • the metal cations present in this oxide layer are then reduced in value by an electrochemical treatment, for example titanium 4+ is reduced to titanium 3+ .
  • the substrate thus treated which has an oxide layer in which metal cations are present in reduced form, is subsequently treated with a preferably aqueous solution in which preferably noble metals are present in oxidized form.
  • the amount of elemental metal present on or within the oxide layer after performing this process can be adjusted by the extent to which the metal cations that are reduced in the oxide layer by the electrochemical treatment at the beginning of the process.
  • an excitation wavelength of less than 400 nm is specified, wherein the addition of doping elements, in particular transition metal elements, contributes to the absorption in the visible range, and thus also the activity of the catalyst in this region of the light , is increased.
  • doping elements in particular transition metal elements
  • photocatalysts known from the prior art have activities when used in photocatalyzed reactions, for example in the production of water. Hydrogen from water and / or alcohols, which are still to be improved. There is also a need for photocatalysts that are useful not only for the reduction of protons to molecular hydrogen but also for other chemical reactions.
  • the photocatalyst according to the invention containing at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, wherein the ribbon potential of the photocatalyst at least 0.05 eV compared to the photocatalyst without this at least one metal is increased, solved.
  • the objects are further achieved by a method for increasing the ribbon potential of a photocatalyst, wherein the photocatalyst is loaded with at least one metal selected from Groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof the use of at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof for increasing the ribbon potential of a photocatalyst, and by the use of the photocatalyst according to the invention in chemical reactions.
  • the photocatalyst is loaded with at least one metal selected from Groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof the use of at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof for increasing the ribbon potential of
  • the process according to the invention relates to a photocatalyst comprising at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, wherein the ribbon potential of the photocatalyst is at least 0.05 eV compared to the photocatalyst without this at least one metal is increased.
  • the metal loading of the photocatalyst of the present invention causes the ribbon potential of the photocatalyst to be increased by at least 0.05 eV from the flat-band potential of the corresponding photocatalyst without metal loading.
  • the flat band potential is increased by at least 0.1 eV, compared to the flat band potential of the corresponding photocatalyst without metal loading.
  • an energy band of a photocatalyst is understood to mean an energy range in which there are many energetically dense quantum-physically possible states.
  • the so-called conduction band is the lowest unoccupied or partially occupied band
  • the valence band is the highest fully occupied band.
  • the so-called band gap is the potential at which there is no excess charge and as a result the bands are not bent.
  • Methods for determining the flat band potential are, for example, the capacitance measurement, in particular the evaluation of the Mott-Schottky plot, or the suspension method which was first published in 1983 by Bard et al. M- D. Ward, JR White, AJ Bard; Journal of American Chemical Society 105 (1983) 27-31 and later published in 1994 by Roy et al., AM Roy, GC De, N.
  • Photocatalysts which contain titanium dioxide and at least one metal as metal loading are generally already known from the prior art. The metal loadings reduce the electron-hole pair recombination and thus improve the activity of the catalysts.
  • the catalysts according to the invention can also catalyze chemical reactions which require increased energy. This is not possible by the photocatalysts known from the prior art.
  • the photocatalyst according to the invention is present on a substrate.
  • the substrate is selected from the group consisting of metals, semiconductors, glass substrates, ceramic substrates, Cellulosefa- fibers and plastic substrates, preferably electrically conductive plastic substrates, and mixtures or alloys thereof.
  • the substrate is particularly preferably a metal selected from the group consisting of titanium, aluminum, zirconium, tantalum, further barrier layer-forming materials and mixtures or alloys thereof.
  • the substrate of the photocatalyst according to the invention is a sheet-shaped metal, for example a metal sheet or a metal mesh.
  • the substrate can have all possible shapes and surface textures.
  • the substrates can be planar, curved, for example convex or concave, symmetrical or asymmetrical in shape.
  • the surface of the substrate used can be smooth and / or porous.
  • the present invention preferably present substrate may have all known to the expert dimensions that are sufficiently current-conducting.
  • width, thickness and length of the present invention substrates there are no general restrictions, for example, rectangular or square shaped substrates with edge lengths of 0.5 to 100 mm, in particular 5 to 50 mm used. Very particular preference is given to using rectangular metal substrates with the dimensions 5 to 10 mm ⁇ 60 to 100 mm.
  • the photocatalyst according to the invention preferably contains titanium dioxide as the photoactive substance.
  • the photocatalyst according to the invention is titanium dioxide.
  • the present titanium dioxide may be in the anatase or rutile modification or a mixture thereof, or may be partially in the amorphous state.
  • the photocatalyst according to the invention is preferably present on the substrate as a layer.
  • the thickness of this layer is generally not limited.
  • the layer of titanium dioxide has a layer thickness of 1 to 200 ⁇ m, preferably 5 to 150 ⁇ m, particularly preferably 10 to 80 ⁇ m.
  • Methods for determining the layer thickness are known to the person skilled in the art, for example according to the eddy current method (DIN EN ISO 2360, DIN 50984) with the layer thickness measuring device Surfix® (from Phynix).
  • the layer present on the substrate generally has a BET specific surface area of from 10 to 200 m 2 / g, preferably from 20 to 100 m 2 / g, particularly preferably from 30 to 80 m 2 / g.
  • BET Brunauer-Emmett-Teller
  • the average pore size of the present photocatalyst, in particular titanium dioxide, is generally 0.1 to 20 nm, preferably 1 to 15 nm, more preferably 2.5 to 10 nm.
  • the photocatalyst according to the invention contains at least one metal as metal loading selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, preferably from the group consisting of V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La and mixtures thereof, most preferably Pd, Cu or Pt or mixtures thereof.
  • the at least one metal present on the photocatalyst according to the invention may be in elemental form or as a compound, preferably as an oxide.
  • the preferred present palladium or platinum is preferably present in elemental form.
  • the copper present in a further preferred embodiment is preferably in oxidic form (Cu 2 O or CuO).
  • the at least one metal is present on the photocatalyst according to the invention in an amount which is sufficient to increase the ribbon potential of the photocatalyst according to the invention by at least 0.05 eV.
  • the at least one metal in an amount of 0.001 to 5 wt .-%, more preferably 0.01 to 3 wt%, most preferably 0.1 to 1, 5 wt .-%, each based on the total Photocatalyst, before.
  • the photocatalyst according to the invention can be prepared by methods known to those skilled in the art.
  • the photocatalyst according to the invention is prepared by the following process, comprising at least the steps (A) and (B):
  • Step (A) of the method of the invention comprises electrochemically treating the at least one substrate in an electrolyte containing at least one precursor compound of the photocatalyst to obtain a photocatalyst-coated substrate.
  • step (A) of the process according to the invention is carried out in accordance with the process described in DE 198 41 650 A1.
  • the disclosure of DE 198 41 650 A1 is therefore fully part of this invention.
  • the electrochemical treatment in step (A) is anodization, more preferably an anodization with spark discharge.
  • at least one substrate is generally introduced into a corresponding electrolyte and subjected to an electrochemical treatment.
  • the electrolyte used in step (A) generally contains the components necessary to form a layer of photocatalyst.
  • an aqueous electrolyte is used in step (A) of the process according to the invention, i. H. the solvent used is water.
  • the, preferably aqueous, electrolyte according to step (A) contains one or more of the following components selected from the group consisting of complexing agents, alcohols and mixtures thereof.
  • At least one complexing agent is present, for example, in a concentration of 0.01 to 5 mol / l, preferably 0.05 to 2 mol / l, particularly preferably 0.075 to 0.125 mol / l .
  • the preferably aqueous electrolyte used in step (A) of the process according to the invention preferably contains at least one alcohol, for example in a concentration of 0.01 to 5 mol / l, preferably 0.02 to 2 mol / l, particularly preferably 0.55 to 0.75 mol / l, before.
  • the electrolyte used in step (A) of the process according to the invention preferably contains at least one alcohol, preferably secondary or tertiary alcohols, for example isopropanol, or mixtures thereof, for example in a concentration of 0.01 to 5 mol / l, preferably 0.02 to 2 mol / l, more preferably 0.55 to 0.75 mol / l, before.
  • at least one alcohol preferably secondary or tertiary alcohols, for example isopropanol, or mixtures thereof, for example in a concentration of 0.01 to 5 mol / l, preferably 0.02 to 2 mol / l, more preferably 0.55 to 0.75 mol / l, before.
  • At least one metal alkoxide in particular at least one titanium alkoxide is used, for example tetraethylortho complexes, in particular tetraethyl orthotitanate. or mixtures thereof.
  • the at least one precursor compound of the photocatalyst is generally present in a concentration which permits advantageous performance of step (A), preferably in a concentration of 0.01 to 5 mol / l, preferably 0.02 to 1 mol / l, for example 0.04 to 0.1 mol / l.
  • the electrolyte according to step (A) may contain further additives known to the person skilled in the art, for example buffer substances, preferably salts selected from the group consisting of ammonium hydroxide, ammonium acetate and mixtures thereof. These are added, for example, in order to keep the pH of the electrolyte in a corresponding range during the process.
  • the optionally present pH buffer substances are present in the amounts in which they give the corresponding desired pH, preferably these compounds are present in concentrations of 0.001 to 0.1 mol / l, more preferably 0.005 to 0.008 mol / l.
  • other solvents may also be present in the electrolyte, for example ketones, such as acetone. These additional solvents are preferably present in an amount of from 0.01 to 2 mol / l, preferably from 0.2 to 0.8 mol / l, more preferably from 0.3 to 0.7 mol / l.
  • step (A) of the process according to the invention is known in the art in principle.
  • the following are the preferred process parameters of step (A) of the process according to the invention.
  • the duty cycle (tstrom / tstroms) vt is generally 0.1 to 1.0, preferably 0.3 to 0.7.
  • the frequency f is generally 1.0 to 2.0 kHz, preferably 1.2 to 1.8 kHz.
  • the voltage feed dU / dt in step (A) of the process according to the invention is generally 10 to 100 V / s, preferably 10 to 50 V / s, particularly preferably 10 to 30 V / s.
  • Step (A) is generally carried out at a voltage of 10 to 500 V, preferably 100 to 450 V, more preferably 150 to 400 V.
  • the coating time in step (A) of the process according to the invention depends on the substrate size and is for example 10 to 500 s, preferably 50 to 200 s, particularly preferably 75 to 150 s.
  • the current intensity I is generally 0.5 to 100 A, preferably 1 to 50 A, particularly preferably 2 to 25 A.
  • the amount of photocatalyst deposited in step (A) of the process according to the invention depends on the production parameters set and is, for example, 1 to 50 mg / cm 2 .
  • the layer of, for example, titanium dioxide produced in step (A) generally has the properties described above. Further details can be found in DE 198 41 650 A1.
  • the substrate is degreased before step (A).
  • the substrate can be treated with an aqueous solution comprising at least one surface-active substance, optionally with simultaneous heating and / or action of ultrasound.
  • the degreased substrate may be rinsed with a suitable solvent, preferably water, prior to the electrochemical treatment step (A).
  • a substrate coated with photocatalyst, in particular titanium dioxide is obtained.
  • This can be used according to the invention directly in step (B).
  • the substrate after step (A) with a suitable solvent, preferably water, rinsed off.
  • the thermal treatment of the coated substrate is generally carried out for a sufficiently long time, for example 0.1 to 5 hours, preferably 0.5 to 3 hours.
  • the thermal treatment can be carried out at constant or increasing temperature.
  • An increasing temperature is realized according to the invention, for example, with a heating rate of 15 to 30 ° C / min.
  • Step (B) of the process comprises treating the photocatalyst-coated substrate in another electrolyte containing at least one precursor compound of the at least one metal to obtain the photocatalyst of the present invention.
  • the further electrolyte contains all components which are necessary in order to apply the at least one metal as metal loading in accordance with step (B) of the process according to the invention to the photocatalyst-coated substrate.
  • Suitable metals are mentioned above. Suitable precursor compounds for these metals are generally all compounds which can be converted into the corresponding metals under the conditions present in step (B) of the process according to the invention.
  • suitable precursor compounds for the at least one metal are salts and / or complex compounds of the abovementioned preferred metals.
  • particularly suitable salts are salts of organic mono- or dicarboxylic acids, in particular alcoholates, formates, acetates, propionates and oxalates or mixtures thereof.
  • halides for example fluorides, chlorides, bromides, nitrates and sulfates or mixtures thereof.
  • step (B) acetates or halides, especially chlorides.
  • This at least one precursor compound is generally present in the electrolyte according to step (B) of the process according to the invention in a concentration of 0.1 to 20 mmol / L, preferably 0.5 to 1 mmol / L.
  • step (B) an aqueous electrolyte is preferably used, ie the solvent used for the electrolyte according to step (B) is water.
  • the at least one precursor compound of the at least one metal are in the electrolyte in accordance with step (B), if appropriate, further additives known to the person skilled in the art.
  • the precursor compounds present in the electrolyte according to step (B) are optionally stabilized by addition of an acid, for example HNO 3 , for example in a concentration of 0.1 to 10% by volume.
  • step (B) of the process according to the invention can be carried out by all methods known to the person skilled in the art.
  • light is understood as meaning high-energy electromagnetic radiation, in particular light in a wavelength range either between 200 and 400 nm ("UV light") or between 400 and 700 nm (“visible light”).
  • the light preferably used in step (B) is produced by corresponding daylight or UV lamps, for example Xe (Hg) arc lamp, diode arrays, tube lamps and combinations thereof. It is also possible according to the invention to use other high-energy electromagnetic radiation which, in addition to the preferred wavelengths, also has other wavelengths.
  • the light intensity, in particular of the UV radiation, in step (B) is generally 0.1 to 30 mW / cm 2 , preferably 0.5 to 10 mW / cm 2 , particularly preferably 2 to 5 mW / cm 2 .
  • Step (B) of the process according to the invention is carried out, for example, by bringing the substrate obtained from step (A), which is coated with photocatalyst, into contact in a corresponding reactor with the electrolyte according to step (B).
  • any reactor known to the person skilled in the art can be used as the reactor, for example a cuvette.
  • a reactor is used which is permeable to the wavelength range of the light used.
  • the at least one light source is then placed at a suitable distance from the cuvette to irradiate the substrate in the electrolyte according to step (B) with light.
  • the irradiation is carried out for a time sufficient to apply a sufficient amount of metal to the substrate, for example 1 to 200 minutes, preferably 1 to 30 minutes, most preferably 3 to 10 minutes.
  • the present invention also relates to a method for increasing the ribbon potential of a photocatalyst, wherein the photocatalyst with at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, preferably from the group consisting of V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La and mixtures thereof, most preferably Pd, Cu or Pt or mixtures thereof, is loaded.
  • the metal loading takes place by photochemical deposition of the at least one metal on titanium dioxide.
  • the flat band potential is increased by at least 0.05 eV, more preferably at least 0.1 eV, relative to the photocatalyst without metal loading.
  • the method according to the invention for increasing the ribbon potential of a photocatalyst comprises at least the abovementioned steps (A) and (B). Therefore, what has been said about the production method of the photocatalyst of the present invention applies.
  • the present invention also relates to the use of at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, preferably from the group consisting of V, Zr, Ce, Zn, Au, Ag , Cu, Pd, Pt, Ru, Rh, La and mixtures thereof, very particularly preferably Pd, Cu or Pt or mixtures thereof for increasing the ribbon potential of a photocatalyst, in particular titanium dioxide. Details and preferred embodiments are already mentioned in the inventive method and apply accordingly for this use. Due to the increased ribbon potential, the photocatalyst according to the invention is suitable for catalyzing chemical reactions.
  • Examples of corresponding reactions are, for example, the reduction of protons to molecular hydrogen in aqueous and / or alcoholic solutions, the reduction of CO or CO 2 in hydrocarbon compounds such as methanol, formaldehyde or formic acid or the reduction of organic compounds such as methylene blue.
  • the present invention also relates to the use of a photocatalyst according to the invention in chemical reactions, preferably in the reduction of protons to molecular hydrogen in aqueous and / or alcoholic solutions Reduction of CO or CO 2 in hydrocarbon compounds such as methanol, formaldehyde or formic acid and the reduction of organic compounds such as methylene blue.
  • a photocatalyst according to the invention in chemical reactions, preferably in the reduction of protons to molecular hydrogen in aqueous and / or alcoholic solutions Reduction of CO or CO 2 in hydrocarbon compounds such as methanol, formaldehyde or formic acid and the reduction of organic compounds such as methylene blue.
  • hydrocarbon compounds such as methanol, formaldehyde or formic acid
  • organic compounds such as methylene blue
  • the sample for 1 hour at 400 0 C is annealed.
  • the quantities of titanium dioxide are 2-3 mg per sample.
  • Example 2 Application of the Metals as Metal Loading by Photo Deposition
  • Photo-deposition is a method to deposit metals on the Ti ⁇ 2 surface.
  • an electron-hole pair is produced on the semiconductor.
  • the generated electron is used in photo- deposition to reduce metal cations from a precursor solution on the titanium dioxide surface.
  • the photocatalyst-coated substrates prepared in Example 1 are introduced together with 4 ml of a solution of the corresponding precursor compound into a glass cuvette (Hellma GmbH & Co. KG, layer thickness 13 mm, volume 1 ml).
  • a glass cuvette Hellma GmbH & Co. KG, layer thickness 13 mm, volume 1 ml.
  • the cuvette is made of glass B270 Superwite, whose transmission according to the manufacturer is more than 80% at wavelengths between 360 nm and 2500 nm.
  • the light source is a 300 W Xe (Hg) lamp (company L. OT Oriel).
  • the light intensity is set to 2.3 mW / cm 2 over the distance to the lamp. After 10 minutes of irradiation, the layer is rinsed with distilled water.
  • the precursor compound used is a 0.6 mM K 2 PdCl 4 solution with concentrated HNO 3 for stabilization.
  • a 0.6 mM K 2 PtCl 4 solution is used as a precursor compound.
  • the precursor solution used is a 0.6 mM HAuCl 4 solution.
  • a 0.6 mM Cu (OOCCH 3 ) 2 solution is used as a precursor compound.
  • the capacitance is determined by means of electrochemical impedance spectroscopy at an electrochemical level with PGSTAT20 (potentiostat / galvanostat) from Autolab® (eco chemie). The measurements can be converted directly into the Mott-Schottky plots using the software FRA (Frequency Response Analysis) Version 2.1.
  • FRA Frequency Response Analysis
  • FIG. 1 shows Mott-Schottky plots of the photocatalysts according to the invention according to Examples 2.1 to 2.4 and titanium dioxide without further metal according to Example 1.
  • the measurement takes place at a frequency of 1000 Hz at a pH of 5.8.
  • the layer thickness is 2.5 mg / cm 2 TiO 2 .
  • the flat-band potential can be calculated from V0 obtained by extrapolating the linear region from the abscissa section of the x-axis according to the following formula (I).
  • Table 3 According to Mott-Schottky flat band potentials EFb for TiO 2 - photocatalyst without metal loading according to Example 1 and for photocatalysts according to the invention according to Examples 2.1 to 2.4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a photocatalyst which contains at least one metal selected from groups 3 to 12 of the periodic system of elements (according to IUPAC), lanthanoids, actinoids and mixtures thereof, the flatband voltage of the photocatalyst being increased by at least 0.05 eV compared to the photocatalyst without said at least one metal. The invention also relates to a method for increasing the flatband voltage of a photocatalyst, said photocatalyst being loaded with at least one metal selected from groups 3 to 12 of the periodic system of elements (according to IUPAC), lanthanoids, actinoids and mixtures thereof, to the use of at least one metal selected from groups 3 to 12 of the periodic system of elements (according to IUPAC), lanthanoids, actinoids and mixtures thereof for increasing the flatband voltage of a photocatalyst, and to the use of the photocatalyst according to the invention in chemical reactions.

Description

Co-Katalysatoren in TiC>2-Filmen Beschreibung Die vorliegende Erfindung betrifft einen Photokatalysator, enthaltend wenigstens ein Metall ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, wobei das Flachbandpotential des Photokatalysators um wenigstens 0,05 eV gegenüber dem Photokatalysator ohne dieses wenigstens eine Metall erhöht ist, ein Verfahren zur Erhöhung des Flach- bandpotentials eines Photokatalysators, wobei der Photokatalysator mit wenigstens einem Metall ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, beladen wird, die Verwendung wenigstens eines Metalls ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon zur Erhöhung des Flachbandpotentials eines Photokatalysators, sowie die Verwendung des erfindungsgemäßen Photokatalysators in chemischen Reaktionen. Co-catalysts in TiC> 2 films The present invention relates to a photocatalyst comprising at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, wherein the ribbon potential of the photocatalyst to at least 0.05 eV compared to the photocatalyst without this at least one metal is increased, a method for increasing the flat-band potential of a photocatalyst, wherein the photocatalyst with at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), Lanthanides, actinides and mixtures thereof, the use of at least one metal selected from Groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof to increase the ribbon potential of a photocatalyst, and the use of the photocatalyst according to the invention i n chemical reactions.
Photokatalysatoren enthaltend wenigstens ein photokatalytisch aktives Material, sowie Verfahren zu ihrer Herstellung sind aus dem Stand der Technik bereits bekannt. Photocatalysts comprising at least one photocatalytically active material and processes for their preparation are already known from the prior art.
DE 198 41 650 A1 offenbart ein Verfahren zur Darstellung von nanokristallinen Metalloxid- und Mischmetalloxid-Schichten auf Sperrschicht-bildenden Metallen, bei dem die Beschichtung durch Anodisation unter Funkenentladung in einem Elektrolyten, welcher zumindest einen oder mehrere Komplexbildner, vorzugsweise Chelatbildner mit vor- zugsweise der funktionellen Gruppe N-CH2-COOH, ein oder mehrere Metallalkoxide sowie wenigstens einen Alkohol, vorzugsweise sekundäre oder tertiäre Alkohole, enthält. Gemäß DE 198 41 650 A1 können durch geeignete Wahl der Konzentrationsbereiche der Elektrolysebad-Komponenten, sowie durch die einstellbaren Parameter des Anodisations-Prozesses vorbestimmte Schichteigenschaften, insbesondere hinsichtlich Haftfestigkeit, Halbleitereffekt, Oberflächenbeschaffenheit, Photo- und Elektrochromie, sowie hinsichtlich katalytischer Aktivität, einzeln oder in ihrer Kombination, erzielt werden. Dieses Dokument offenbart des Weiteren, dass die Eigenschaften der erhaltenen photokatalytisch aktiven Schichten zusätzlich beeinflusst werden können, indem dem Elektrolyten der Anodisation weitere Komponenten, wie beispielsweise Eisen- oder Rutheniumionen, elektrisch neutrale Mikro- oder Nanoteilchen, etc., zugesetzt werden, um diese in die photokatalytisch aktive Schicht einzufügen. DE 198 41 650 A1 discloses a process for the preparation of nanocrystalline metal oxide and mixed metal oxide layers on barrier layer-forming metals, in which the coating by anodization with spark discharge in an electrolyte, which at least one or more complexing agents, preferably chelating preferably with functional group N-CH 2 -COOH, one or more metal alkoxides and at least one alcohol, preferably secondary or tertiary alcohols. According to DE 198 41 650 A1, by a suitable choice of the concentration ranges of the electrolytic bath components, as well as by the adjustable parameters of the anodization process, predetermined layer properties, in particular with regard to adhesive strength, semiconductor effect, surface condition, photo and electrochromism, as well as with regard to catalytic activity, individually or in their combination. This document further discloses that the properties of the photocatalytically active layers obtained can additionally be influenced by adding further components, such as iron or ruthenium ions, electrically neutral microparticles or nanoparticles, etc., to the electrolyte of the anodization in order to obtain them to insert the photocatalytically active layer.
DE 10 2005 043 865 A1 betrifft eine Weiterentwicklung des Verfahrens gemäß der bereits zitierten DE 198 41 650 A1. Um die photokatalytische Aktivität der erhaltenen Schichten weiter zu steigern, werden gemäß DE 10 2005 043 865 A1 dem Elektroly- ten, in dem die Anodisation des Substrates durchgeführt wird, beispielsweise Gadolini- um(lll)-acetylacetonathydrat und/oder Cer(lll)-acetylacetonathydrat in einer Konzentration kleiner 0,01 mol/l und gegebenenfalls weitere Komponenten zugesetzt. DE 10 2005 050 075 A1 offenbart ein Verfahren zur Abscheidung von Metallen, vorzugsweise Edelmetallen, auf haftfesten Metalloxid- und Mischmetalloxid-Schichten. Dazu wird zunächst ein entsprechendes Substrat mit einer Metalloxid- bzw. einer Mischmetalloxid-Schicht versehen. Die in dieser Oxidschicht vorliegenden Metall- Kationen werden dann durch eine elektrochemische Behandlung in ihrer Wertigkeit reduziert, beispielsweise wird Titan4+ zu Titan3+ reduziert. Das so behandelte Substrat, welches eine Oxidschicht aufweist, in der Metall-Kationen in reduzierter Form vorliegen, wird anschließend mit einer vorzugsweise wässrigen Lösung behandelt, in der vorzugsweise Edelmetalle in oxidierter Form vorliegen. Aufgrund der Reduktionspotentiale der Edelmetall-Kationen bzw. der in der Oxidschicht vorliegenden Metall-Kationen erfolgt eine Abscheidung der Metalle aus der wässrigen Lösung auf der Oxidschicht in elementarer Form, während gleichzeitig die in der Oxidschicht vorliegenden reduzierten Metall-Kationen in ihre ursprüngliche oxidierte Form, d. h. Titan3+ zu Titan4+, überführt werden. Die Menge an elementarem Metall, welches nach Durchführung dieses Verfahrens auf bzw. in der Oxidschicht vorliegt, kann durch den Umfang, in dem die Metall-Kationen, die in der Oxidschicht durch die elektrochemische Behandlung zu Beginn des Verfahrens reduziert werden, eingestellt werden. DE 10 2005 043 865 A1 relates to a further development of the method according to the already cited DE 198 41 650 A1. In order to further increase the photocatalytic activity of the layers obtained, according to DE 10 2005 043 865 A1, the electrolyte in which the anodization of the substrate is carried out, for example gadolinium (III) acetylacetonate hydrate and / or cerium (III) acetylacetonate hydrate in a concentration of less than 0.01 mol / l and optionally further components are added. DE 10 2005 050 075 A1 discloses a method for depositing metals, preferably noble metals, on adherent metal oxide and mixed metal oxide layers. For this purpose, a corresponding substrate is first provided with a metal oxide or a mixed metal oxide layer. The metal cations present in this oxide layer are then reduced in value by an electrochemical treatment, for example titanium 4+ is reduced to titanium 3+ . The substrate thus treated, which has an oxide layer in which metal cations are present in reduced form, is subsequently treated with a preferably aqueous solution in which preferably noble metals are present in oxidized form. Due to the reduction potentials of the noble metal cations or of the metal cations present in the oxide layer, deposition of the metals from the aqueous solution on the oxide layer takes place in elementary form, while simultaneously reducing the reduced metal cations present in the oxide layer to their original oxidized form, ie titanium 3+ to titanium 4+ . The amount of elemental metal present on or within the oxide layer after performing this process can be adjusted by the extent to which the metal cations that are reduced in the oxide layer by the electrochemical treatment at the beginning of the process.
M. Ashokkumar et al., Int. J. Hydrogen Energy, Vol. 23, No. 6, Seiten 427-438, 1998, offenbaren halbleitende, teilchenförmige Systeme zur photokatalytischen Herstellung von Wasserstoff. Demnach sollen Katalysatoren, die für die Reduktion von Wasser zu Wasserstoff geeignet sind, ein Leitungsband aufweisen, welches oberhalb des Wasserstoff-Reduktions-Niveaus liegt, und ein Valenzband aufweisen, welches unterhalb des Wasser-Oxidations-Niveaus liegt. Des Weiteren offenbart dieses Dokument, dass eine Reihe von Faktoren zur katalytischen Aktivität dieser Katalysatoren beiträgt, bei- spielsweise Oberfläche und/oder Herstellungsmethode, beispielsweise durch thermische oder photochemische Beschichtung. Für Photokatalysatoren auf Basis von Tiθ2 wird eine Anregungswellenlänge von weniger als 400 nm angegeben, wobei die Zugabe von Dotierungselementen, insbesondere Übergangsmetallelementen, dazu beiträgt, dass die Absorption im sichtbaren Bereich, und damit auch die Aktivität des Katalysa- tors in diesem Bereich des Lichtes, erhöht wird. Dass durch eine Metallbeladung mit speziellen Metallen die Lage des Flachbandpotentials des Photokatalysators beein- flusst werden kann, wird in dem genannten Dokument nicht offenbart. M. Ashokkumar et al., Int. J. Hydrogen Energy, Vol. 6, pages 427-438, 1998 disclose semiconducting particulate systems for the photocatalytic production of hydrogen. Accordingly, catalysts suitable for the reduction of water to hydrogen should have a conduction band which is above the hydrogen reduction level and have a valence band which is below the water oxidation level. Furthermore, this document discloses that a number of factors contribute to the catalytic activity of these catalysts, for example surface and / or production method, for example by thermal or photochemical coating. For photocatalysts based on TiO 2 , an excitation wavelength of less than 400 nm is specified, wherein the addition of doping elements, in particular transition metal elements, contributes to the absorption in the visible range, and thus also the activity of the catalyst in this region of the light , is increased. The fact that the position of the ribbon potential of the photocatalyst can be influenced by metal loading with special metals is not disclosed in the abovementioned document.
Die aus dem Stand der Technik bekannten Photokatalysatoren weisen Aktivitäten beim Einsatz in photokatalysierten Reaktionen, beispielsweise bei der Herstellung von Was- serstoff aus Wasser und/oder Alkoholen, auf, die noch zu verbessern sind. Des Weiteren besteht Bedarf nach Photokatalysatoren, die nicht nur für die Reduktion von Protonen zu molekularem Wasserstoff, sondern auch für andere chemische Reaktionen geeignet sind. The photocatalysts known from the prior art have activities when used in photocatalyzed reactions, for example in the production of water. Hydrogen from water and / or alcohols, which are still to be improved. There is also a need for photocatalysts that are useful not only for the reduction of protons to molecular hydrogen but also for other chemical reactions.
Diese Aufgaben werden durch den erfindungsgemäßen Photokatalysator, enthaltend wenigstens ein Metall ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, wobei das Flachbandpotential des Photokatalysators um wenigstens 0,05 eV gegenüber dem Photokatalysator ohne dieses wenigstens eine Metall erhöht ist, gelöst. These objects are achieved by the photocatalyst according to the invention containing at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, wherein the ribbon potential of the photocatalyst at least 0.05 eV compared to the photocatalyst without this at least one metal is increased, solved.
Die Aufgaben werden des Weiteren gelöst durch ein Verfahren zur Erhöhung des Flachbandpotentials eines Photokatalysators, wobei der Photokatalysator mit wenigstens einem Metall ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, beladen wird, durch die Verwendung wenigstens eines Metalls ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon zur Erhöhung des Flachbandpotentials eines Photokatalysators, sowie durch die Verwendung des erfindungsgemäßen Photokatalysators in che- mischen Reaktionen. The objects are further achieved by a method for increasing the ribbon potential of a photocatalyst, wherein the photocatalyst is loaded with at least one metal selected from Groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof the use of at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof for increasing the ribbon potential of a photocatalyst, and by the use of the photocatalyst according to the invention in chemical reactions.
Das erfindungsgemäße Verfahren betrifft einen Photokatalysator, enthaltend wenigstens ein Metall ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, wobei das Flachbandpotential des Photokatalysators um wenigstens 0,05 eV gegenüber dem Photokatalysator ohne dieses wenigstens eine Metall erhöht ist. Die Metallbeladung des erfindungsgemäßen Photokatalysators bewirkt, dass das Flachbandpotential des Photokatalysators um wenigstens 0,05 eV gegenüber dem Flachbandpotential des entsprechenden Photokatalysators ohne Metallbeladung, erhöht ist. The process according to the invention relates to a photocatalyst comprising at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, wherein the ribbon potential of the photocatalyst is at least 0.05 eV compared to the photocatalyst without this at least one metal is increased. The metal loading of the photocatalyst of the present invention causes the ribbon potential of the photocatalyst to be increased by at least 0.05 eV from the flat-band potential of the corresponding photocatalyst without metal loading.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Photokatalysators ist das Flachbandpotential um wenigstens 0,1 eV, gegenüber dem Flachbandpotential des entsprechenden Photokatalysators ohne Metallbeladung, erhöht. Im Allgemeinen wird unter einem Energieband eines Photokatalysators ein Energiebereich verstanden, in dem viele energetisch sehr dicht liegende quantenphysikalisch mögliche Zustände existieren. Im absoluten Nullpunkt gilt, dass das so genannte Leitungsband das niedrigste unbesetzte oder nur teilweise besetzte Band ist, und das Valenzband das höchste vollständig besetzte Band ist. Zwischen diesen Energiebän- dem liegt ein so genannter verbotener Bereich, die so genannte Bandlücke. Unter dem Flachbandpotential versteht man das Potential, bei welchem kein Ladungsüberschuss existiert und die Bänder in Folge dessen nicht verbogen sind. Bei einem n-Halbleiter liegt das Ferminiveau (Niveau bei dem die Aufenthaltswahrscheinlichkeit eines Elektrons = Vi ist) kurz unterhalb des Leitungsbands. Man kann näherungsweise bei einem n-Halbleiter davon ausgehen, dass das Flachbandpotential der unteren Kante des Leitungsbands entspricht. Methoden zur Bestimmung des Flachbandpotentials sind beispielsweise die Kapazitätsmessung, insbesondere die Auswertung des Mott-Schottky- Plots, oder die Suspensionsmethode welche erstmals 1983 von Bard et al.M- D. Ward, J. R. White, A. J. Bard; Journal of American Chemical Society 105 (1983) 27-31 veröf- fentlicht und später 1994 von Roy et al., A. M. Roy, G. C. De, N. Sasmal, S. S. Bhatta- charyy; International Journal of Hydrogen Energy 20 (1994) 627-630 weiter modifiziert wurde, bei der die Photospannung in Abhängigkeit vom pH-Wert mit Hilfe eines E- lektronenakzeptors bestimmt wird. Aus dem Stand der Technik sind im Allgemeinen bereits Photokatalysatoren bekannt, die Titandioxid und wenigstens ein Metall als Metallbeladung enthalten. Die Metallbeladungen vermindern die Elektron-Loch-Paar Rekombination und verbessern so die Aktivität der Katalysatoren. Furube et al., A. Furube, T. Asahi, H. Masuhara, H. Yama- shita, M. Anpo Chemical Physics Letters 336 (2001 ) 424-430 geben an, dass durch Metalle mit einer höheren Austrittsarbeit als die des Halbleiters (das Ferminiveau dieser Metalle ist niedriger als das des Halbleiters) eine Schottky-Barriere ausgebildet wird, welche die Elektron-Loch-Paar Rekombination unterdrückt. Es kommt zu einer Verarmungszone im Halbleiter und die Energiebänder werden zu niedrigeren Energien verbogen, an der Metall-Halbleiter-Grenzschicht wird eine so genannte Schottky Bar- riere ausgebildet, die mit Pt als Beladungsmetall am höchsten ist. Bei diesen Katalysatoren des Standes der Technik ist durch die Metallbeladung das Flachbandpotential jedoch nicht erhöht. In a preferred embodiment of the photocatalyst according to the invention, the flat band potential is increased by at least 0.1 eV, compared to the flat band potential of the corresponding photocatalyst without metal loading. In general, an energy band of a photocatalyst is understood to mean an energy range in which there are many energetically dense quantum-physically possible states. In absolute zero, the so-called conduction band is the lowest unoccupied or partially occupied band, and the valence band is the highest fully occupied band. Between these energy bands lies a so-called forbidden area, the so-called band gap. Under the Ribbon potential is the potential at which there is no excess charge and as a result the bands are not bent. For an n-type semiconductor, the Fermi level (level at which the probability of electron residence = Vi) is just below the conduction band. It can be assumed approximately with an n-type semiconductor that the flat-band potential corresponds to the lower edge of the conduction band. Methods for determining the flat band potential are, for example, the capacitance measurement, in particular the evaluation of the Mott-Schottky plot, or the suspension method which was first published in 1983 by Bard et al. M- D. Ward, JR White, AJ Bard; Journal of American Chemical Society 105 (1983) 27-31 and later published in 1994 by Roy et al., AM Roy, GC De, N. Sasmal, SS Bhattacharyy; International Journal of Hydrogen Energy 20 (1994) 627-630, in which the photovoltage is determined as a function of the pH value with the aid of an electron acceptor. Photocatalysts which contain titanium dioxide and at least one metal as metal loading are generally already known from the prior art. The metal loadings reduce the electron-hole pair recombination and thus improve the activity of the catalysts. Furube et al., A. Furube, T. Asahi, H. Masuhara, H. Yasmitha, M. Anpo Chemical Physics Letters 336 (2001) 424-430 indicate that metals with a higher work function than those of the semiconductor (the Fermi level of these metals is lower than that of the semiconductor) a Schottky barrier is formed, which suppresses the electron-hole pair recombination. A depletion zone occurs in the semiconductor and the energy bands are bent to lower energies. At the metal-semiconductor boundary layer, a so-called Schottky barrier is formed, which is highest with Pt as the loading metal. In these prior art catalysts, however, the ribbon potential is not increased by the metal loading.
Die durch einen Halbleiter katalysierte Reduktion von Wasser erfolgt nur, wenn das Leitungsband des Halbleiters bereits ohne Metallbeladung oberhalb des für die Reduktion von 2 H+ zu H2 notwendigen Potentials liegt, d. h. bei pH = 7 oberhalb -0,41 V. Das Valenzband muss unterhalb dem Energieniveau der Oxidation von 2 H2O zu O2 liegen, d. h. unterhalb 1 ,23 V. Die aus dem Stand der Technik bekannten Photokatalysatoren können allerdings keine photochemischen Reaktionen katalysieren, die eine höhere Energie benötigen als die Reduktion von Protonen zu Wasserstoff, da die durch die Bandlücke zwischen Lei- tungs- und Valenzband definierte Energie nicht ausreicht. Da bei dem erfindungsgemäßen Photokatalysator das Flachbandpotential erhöht ist und die Bandlücke zwi- sehen Leitungs- und Valenzband bleibt gleichzeitig konstant bleibt, was durch diffuse Reflexion festgestellt werden kann, ist somit auch das Valenzband verschoben. Daher können durch die erfindungsgemäßen Katalysatoren auch chemische Reaktionen, die eine erhöhte Energie benötigen, katalysiert werden. Dies ist durch die aus dem Stand der Technik bekannten Photokatalysatoren nicht möglich. The reduction of water catalyzed by a semiconductor takes place only when the conduction band of the semiconductor already without metal loading is above the potential necessary for the reduction of 2 H + to H 2 , ie at pH = 7 above -0.41 V. The valence band must below the energy level of the oxidation of 2 H 2 O to O 2 , ie below 1, 23 V. However, the photocatalysts known from the prior art can not catalyze photochemical reactions which require a higher energy than the reduction of protons to hydrogen, since the energy defined by the band gap between the conduction and valence bands is insufficient. Since in the photocatalyst according to the invention, the flat band potential is increased and the band gap between see line and valence band remains constant at the same time, which diffuse Reflection can be found, thus the valence band is shifted. Therefore, the catalysts according to the invention can also catalyze chemical reactions which require increased energy. This is not possible by the photocatalysts known from the prior art.
Der erfindungsgemäße Photokatalysator liegt in einer bevorzugten Ausführungsform auf einem Substrat vor. In a preferred embodiment, the photocatalyst according to the invention is present on a substrate.
Im Allgemeinen sind für den erfindungsgemäßen Photokatalysator alle Substrate ge- eignet, die mit wenigstens einem photokatalytisch aktiven Metalloxid, d. h. einem Photokatalysator, beschichtet werden können. In einer bevorzugten Ausführungsform des erfindungsgemäßen Photokatalysators ist das Substrat ausgewählt aus der Gruppe bestehend aus Metallen, Halbleitern, Glassubstraten, Keramiksubstraten, Cellulosefa- sern und Kunststoffsubstraten, bevorzugt elektrisch leitfähigen Kunststoffsubstraten, und Mischungen oder Legierungen davon. Besonders bevorzugt ist das Substrat ein Metall, ausgewählt aus der Gruppe bestehend aus Titan, Aluminium, Zirkonium, Tantal, weiteren sperrschichtbildenden Materialien und Mischungen bzw. Legierungen davon. In general, all substrates are suitable for the photocatalyst according to the invention, which with at least one photocatalytically active metal oxide, d. H. a photocatalyst, can be coated. In a preferred embodiment of the photocatalyst according to the invention, the substrate is selected from the group consisting of metals, semiconductors, glass substrates, ceramic substrates, Cellulosefa- fibers and plastic substrates, preferably electrically conductive plastic substrates, and mixtures or alloys thereof. The substrate is particularly preferably a metal selected from the group consisting of titanium, aluminum, zirconium, tantalum, further barrier layer-forming materials and mixtures or alloys thereof.
In einer besonders bevorzugten Ausführungsform ist das Substrat des erfindungsge- mäßen Photokatalysators ein flächig ausgeformtes Metall, beispielsweise ein Metallblech oder ein Metallnetz. Erfindungsgemäß kann das Substrat alle möglichen Formen und Oberflächenbeschaffenheiten aufweisen. Die Substrate können erfindungsgemäß plan, gebogen, beispielsweise konvex oder konkav, symmetrisch oder asymmetrisch ausgeformt sein. Die Oberfläche des eingesetzten Substrates kann glatt und/oder po- rös sein. In a particularly preferred embodiment, the substrate of the photocatalyst according to the invention is a sheet-shaped metal, for example a metal sheet or a metal mesh. According to the invention, the substrate can have all possible shapes and surface textures. According to the invention, the substrates can be planar, curved, for example convex or concave, symmetrical or asymmetrical in shape. The surface of the substrate used can be smooth and / or porous.
Das erfindungsgemäß bevorzugt vorliegende Substrat kann alle dem Fachmann bekannten Abmessungen aufweisen, die ausreichend stromleitend sind. Bezüglich der Breite, Dicke und der Länge der erfindungsgemäß vorliegenden Substrate bestehen keine generellen Beschränkungen, beispielsweise werden rechteckig oder quadratisch geformte Substrate mit Kantenlängen von 0,5 bis 100 mm, insbesondere 5 bis 50 mm, verwendet. Ganz besonders bevorzugt werden rechteckige Metallsubstrate mit den Maßen 5 bis 10 mm x 60 bis 100 mm eingesetzt. Der erfindungsgemäße Photokatalysator enthält als photoaktive Substanz bevorzugt Titandioxid. In einer besonders bevorzugten Ausführungsform ist der erfindungsgemäße Photokatalysator Titandioxid. Das vorliegende Titandioxid kann in der Anatas oder Rutil Modifikation oder einer Mischung davon oder auch teilweise im amorphen Zustand vorliegen. Bevorzugt liegt der erfindungsgemäße Photokatalysator auf dem Substrat als Schicht vor. Die Dicke dieser Schicht unterliegt im Allgemeinen keiner Beschränkung. Beispielsweise weist die Schicht aus Titandioxid eine Schichtdicke von 1 bis 200 μm, bevorzugt 5 bis 150 μm, besonders bevorzugt 10 bis 80 μm, auf. Verfahren zur Bestim- mung der Schichtdicke sind dem Fachmann bekannt, beispielsweise nach dem Wirbelstromverfahren (DIN EN ISO 2360, DIN 50984) mit dem Schichtdickenmessgerät Surfix® (Fa. Phynix). The present invention preferably present substrate may have all known to the expert dimensions that are sufficiently current-conducting. With regard to the width, thickness and length of the present invention substrates, there are no general restrictions, for example, rectangular or square shaped substrates with edge lengths of 0.5 to 100 mm, in particular 5 to 50 mm used. Very particular preference is given to using rectangular metal substrates with the dimensions 5 to 10 mm × 60 to 100 mm. The photocatalyst according to the invention preferably contains titanium dioxide as the photoactive substance. In a particularly preferred embodiment, the photocatalyst according to the invention is titanium dioxide. The present titanium dioxide may be in the anatase or rutile modification or a mixture thereof, or may be partially in the amorphous state. The photocatalyst according to the invention is preferably present on the substrate as a layer. The thickness of this layer is generally not limited. For example, the layer of titanium dioxide has a layer thickness of 1 to 200 μm, preferably 5 to 150 μm, particularly preferably 10 to 80 μm. Methods for determining the layer thickness are known to the person skilled in the art, for example according to the eddy current method (DIN EN ISO 2360, DIN 50984) with the layer thickness measuring device Surfix® (from Phynix).
Die auf dem Substrat vorliegende Schicht weist im Allgemeinen eine spezifische Ober- fläche BET von 10 bis 200 m2/g, bevorzugt 20 bis 100 m2/g, besonders bevorzugt 30 bis 80 m2/g, auf. Verfahren zur Bestimmung der spezifischen Schichtdicke sind dem Fachmann bekannt, beispielsweise nach Brunauer-Emmett-Teller (BET) aus der N2- Adsorptionsisotherme (DIN 66131 ). Die durchschnittliche Porengröße des vorliegenden Photokatalysators, insbesondere Titandioxid, beträgt im Allgemeinen 0,1 bis 20 nm, bevorzugt 1 bis 15 nm, besonders bevorzugt 2,5 bis 10 nm. Verfahren zur Bestimmung der Porengröße sind dem Fachmann bekannt, beispielsweise die BJH-Methode. Der erfindungsgemäße Photokatalysator enthält wenigstens ein Metall als Metallbeladung ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, bevorzugt aus der Gruppe bestehend aus V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La und Mischungen davon, ganz besonders bevorzugt Pd, Cu oder Pt oder Mischungen davon. The layer present on the substrate generally has a BET specific surface area of from 10 to 200 m 2 / g, preferably from 20 to 100 m 2 / g, particularly preferably from 30 to 80 m 2 / g. Methods for determining the specific layer thickness are known to the person skilled in the art, for example according to Brunauer-Emmett-Teller (BET) from the N 2 adsorption isotherm (DIN 66131). The average pore size of the present photocatalyst, in particular titanium dioxide, is generally 0.1 to 20 nm, preferably 1 to 15 nm, more preferably 2.5 to 10 nm. Methods for determining the pore size are known to the person skilled in the art, for example the BJH method , The photocatalyst according to the invention contains at least one metal as metal loading selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, preferably from the group consisting of V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La and mixtures thereof, most preferably Pd, Cu or Pt or mixtures thereof.
Das auf dem erfindungsgemäßen Photokatalysator vorliegende wenigstens eine Metall kann in elementarer Form oder als Verbindung, bevorzugt als Oxid, vorliegen. Das bevorzugt vorliegende Palladium oder Platin liegt bevorzugt in elementarer Form vor. Das in einer weiteren bevorzugten Ausführungsform vorliegende Kupfer liegt bevorzugt in oxidischer Form (Cu2O oder CuO), vor. The at least one metal present on the photocatalyst according to the invention may be in elemental form or as a compound, preferably as an oxide. The preferred present palladium or platinum is preferably present in elemental form. The copper present in a further preferred embodiment is preferably in oxidic form (Cu 2 O or CuO).
Das wenigstens eine Metall liegt auf dem erfindungsgemäßen Photokatalysator in einer Menge vor, die ausreicht, um das Flachbandpotential des erfindungsgemäßen Photokatalysators um wenigstens 0,05 eV zu erhöhen. Bevorzugt liegt das wenigstens eine Metall in einer Menge von 0,001 bis 5 Gew.-%, besonders bevorzugt 0,01 bis 3 Gew.- %, ganz besonders bevorzugt 0,1 bis 1 ,5 Gew.-%, jeweils bezogen auf den gesamten Photokatalysator, vor. The at least one metal is present on the photocatalyst according to the invention in an amount which is sufficient to increase the ribbon potential of the photocatalyst according to the invention by at least 0.05 eV. Preferably, the at least one metal in an amount of 0.001 to 5 wt .-%, more preferably 0.01 to 3 wt%, most preferably 0.1 to 1, 5 wt .-%, each based on the total Photocatalyst, before.
Im Prinzip kann der erfindungsgemäße Photokatalysator nach dem Fachmann bekann- ten Verfahren hergestellt werden. In einer besonders bevorzugten Ausführungsform wird der erfindungsgemäße Photokatalysator durch das folgende Verfahren, mindestens umfassend die Schritte (A) und (B), hergestellt: In principle, the photocatalyst according to the invention can be prepared by methods known to those skilled in the art. In a particularly preferred embodiment, the photocatalyst according to the invention is prepared by the following process, comprising at least the steps (A) and (B):
(A) Elektrochemische Behandlung des wenigstens einen Substrates in einem Elektrolyten enthaltend wenigstens eine Vorläuferverbindung des Photokatalysators, um ein mit Photokatalysator beschichtetes Substrat zu erhalten und (B) Behandlung des mit Photokatalysator beschichteten Substrates in einem weiteren Elektrolyten enthaltend wenigstens eine Vorläuferverbindung des wenigstens einen Metalls, um den erfindungsgemäßen Photokatalysator zu erhalten. (A) electrochemically treating the at least one substrate in an electrolyte containing at least one precursor compound of the photocatalyst to obtain a photocatalyst-coated substrate; and (B) treating the photocatalyst-coated substrate in another electrolyte containing at least one precursor compound of the at least one metal; to obtain the photocatalyst of the present invention.
Im Folgenden werden die einzelnen Schritte des erfindungsgemäßen Verfahrens de- tailliert beschrieben: The individual steps of the method according to the invention are described in detail below:
Schritt (A): Step (A):
Schritt (A) des erfindungsgemäßen Verfahrens umfasst die elektrochemische Behand- lung des wenigstens einen Substrates in einem Elektrolyten enthaltend wenigstens eine Vorläuferverbindung des Photokatalysators, um ein mit Photokatalysator beschichtetes Substrat zu erhalten. Step (A) of the method of the invention comprises electrochemically treating the at least one substrate in an electrolyte containing at least one precursor compound of the photocatalyst to obtain a photocatalyst-coated substrate.
Im Prinzip wird Schritt (A) des erfindungsgemäßen Verfahrens gemäß dem in DE 198 41 650 A1 beschriebenen Verfahren durchgeführt. Die Offenbarung der DE 198 41 650 A1 ist daher vollumfänglich Bestandteil dieser Erfindung. In principle, step (A) of the process according to the invention is carried out in accordance with the process described in DE 198 41 650 A1. The disclosure of DE 198 41 650 A1 is therefore fully part of this invention.
In einer bevorzugten Ausführungsform ist die elektrochemische Behandlung in Schritt (A) eine Anodisation, besonders bevorzugt eine Anodisation unter Funkenentladung. Dazu wird im Allgemeinen wenigstens ein Substrat in einen entsprechenden Elektrolyten eingebracht und einer elektrochemischen Behandlung unterzogen. In a preferred embodiment, the electrochemical treatment in step (A) is anodization, more preferably an anodization with spark discharge. For this purpose, at least one substrate is generally introduced into a corresponding electrolyte and subjected to an electrochemical treatment.
Der in Schritt (A) eingesetzte Elektrolyt enthält im Allgemeinen die Komponenten, die zur Erzeugung einer Schicht aus Photokatalysator notwendig sind. In einer bevorzug- ten Ausführungsform wird in Schritt (A) des erfindungsgemäßen Verfahrens ein wäss- riger Elektrolyt eingesetzt, d. h. das verwendete Lösungsmittel ist Wasser. The electrolyte used in step (A) generally contains the components necessary to form a layer of photocatalyst. In a preferred embodiment, an aqueous electrolyte is used in step (A) of the process according to the invention, i. H. the solvent used is water.
In einer bevorzugten Ausführungsform enthält der, bevorzugt wässrige, Elektrolyt gemäß Schritt (A) eine oder mehrere der folgenden Komponenten ausgewählt aus der Gruppe bestehend aus Komplexbildnern, Alkoholen und Mischungen davon. Bevorzugte Komplexbildner sind N-Chelatbildner mit mindestens einem Rest -NR'-CH2-COOH mit R' = H, Alkyl oder Aryl, beispielsweise ausgewählt aus der Gruppe bestehend aus Ethylendiamintetraacetat-di-Natriumsalz (EDTA-Na2), Nitrilotriacetat- tri-Natriumsalz (NTA-Naß) und Mischungen davon. In dem in Schritt (A) des erfindungsgemäßen Verfahrens eingesetzten Elektrolyten liegt wenigstens ein Komplexbildner beispielsweise in einer Konzentration von 0,01 bis 5 mol/l, bevorzugt 0,05 bis 2 mol/l, besonders bevorzugt 0,075 bis 0,125 mol/l, vor. Der in Schritt (A) des erfindungsgemäßen Verfahrens eingesetzte, bevorzugt wässrige, Elektrolyt enthält bevorzugt wenigstens einen Alkohol beispielsweise in einer Konzentration von 0,01 bis 5 mol/l, bevorzugt 0,02 bis 2 mol/l, besonders bevorzugt 0,55 bis 0,75 mol/l, vor. Der in Schritt (A) des erfindungsgemäßen Verfahrens eingesetzte Elektrolyt enthält bevorzugt wenigstens einen Alkohol, vorzugsweise sekundäre oder tertiäre Alkohole, beispielsweise Isopropanol, oder Mischungen davon, beispielsweise in einer Konzentration von 0,01 bis 5 mol/l, bevorzugt 0,02 bis 2 mol/l, besonders bevorzugt 0,55 bis 0,75 mol/l, vor. In a preferred embodiment, the, preferably aqueous, electrolyte according to step (A) contains one or more of the following components selected from the group consisting of complexing agents, alcohols and mixtures thereof. Preferred complexing agents are N-chelating agents having at least one -NR'-CH 2 -COOH radical with R '= H, alkyl or aryl, for example selected from the group consisting of ethylenediaminetetraacetate-di-sodium salt (EDTA-Na 2 ), nitrilotriacetate tri Sodium salt (NTA-Na ß ) and mixtures thereof. In the electrolyte used in step (A) of the process according to the invention, at least one complexing agent is present, for example, in a concentration of 0.01 to 5 mol / l, preferably 0.05 to 2 mol / l, particularly preferably 0.075 to 0.125 mol / l , The preferably aqueous electrolyte used in step (A) of the process according to the invention preferably contains at least one alcohol, for example in a concentration of 0.01 to 5 mol / l, preferably 0.02 to 2 mol / l, particularly preferably 0.55 to 0.75 mol / l, before. The electrolyte used in step (A) of the process according to the invention preferably contains at least one alcohol, preferably secondary or tertiary alcohols, for example isopropanol, or mixtures thereof, for example in a concentration of 0.01 to 5 mol / l, preferably 0.02 to 2 mol / l, more preferably 0.55 to 0.75 mol / l, before.
Als Vorläuferverbindung für den Photokatalysator, insbesondere Titandioxid, wird in dem Elektrolyten in Schritt (A) des erfindungsgemäßen Verfahrens bevorzugt wenigstens ein Metallalkoxid, insbesondere wenigstens ein Titanalkoxid, eingesetzt, beispielsweise Tetraethylortho-Komplexe, insbesondere Tetraethylorthotitanat. oder Mi- schungen davon. As a precursor compound for the photocatalyst, in particular titanium dioxide, in the electrolyte in step (A) of the process according to the invention preferably at least one metal alkoxide, in particular at least one titanium alkoxide is used, for example tetraethylortho complexes, in particular tetraethyl orthotitanate. or mixtures thereof.
Die wenigstens eine Vorläuferverbindung des Photokatalysators liegt im Allgemeinen in einer Konzentration vor, die eine vorteilhafte Durchführung von Schritt (A) ermöglicht, bevorzugt in einer Konzentration von 0,01 bis 5 mol/l, vorzugsweise 0,02 bis 1 mol/l, beispielsweise 0,04 bis 0,1 mol/l. The at least one precursor compound of the photocatalyst is generally present in a concentration which permits advantageous performance of step (A), preferably in a concentration of 0.01 to 5 mol / l, preferably 0.02 to 1 mol / l, for example 0.04 to 0.1 mol / l.
Des Weiteren können in dem Elektrolyten gemäß Schritt (A) weitere, dem Fachmann bekannte Additive vorliegen, beispielsweise Puffer-Substanzen, bevorzugt Salze ausgewählt aus der Gruppe bestehend aus Ammoniumhydroxid, Ammoniumacetat und Mischungen davon. Diese werden beispielsweise zugesetzt, um den pH-Wert des E- lektrolyten während des Verfahrens in einem entsprechenden Bereich zu halten. Die gegebenenfalls vorhandenen pH-Puffersubstanzen liegen in den Mengen vor, in denen sie den entsprechenden gewünschten pH-Wert ergeben, bevorzugt liegen diese Verbindungen in Konzentrationen von 0,001 bis 0,1 mol/l, besonders bevorzugt 0,005 bis 0,008 mol/l, vor. In einer weiteren bevorzugten Ausführungsform können in dem Elektrolyten neben Wasser auch weitere Lösungsmittel vorliegen, beispielsweise Ketone wie Aceton. Diese zusätzlichen Lösungsmittel liegen bevorzugt in einer Menge von 0,01 bis 2 mol/l, vorzugsweise 0,2 bis 0,8 mol/l, insbesondere bevorzugt 0,3 bis 0,7 mol/l, vor. Furthermore, the electrolyte according to step (A) may contain further additives known to the person skilled in the art, for example buffer substances, preferably salts selected from the group consisting of ammonium hydroxide, ammonium acetate and mixtures thereof. These are added, for example, in order to keep the pH of the electrolyte in a corresponding range during the process. The optionally present pH buffer substances are present in the amounts in which they give the corresponding desired pH, preferably these compounds are present in concentrations of 0.001 to 0.1 mol / l, more preferably 0.005 to 0.008 mol / l. In a further preferred embodiment, in addition to water, other solvents may also be present in the electrolyte, for example ketones, such as acetone. These additional solvents are preferably present in an amount of from 0.01 to 2 mol / l, preferably from 0.2 to 0.8 mol / l, more preferably from 0.3 to 0.7 mol / l.
Die elektrochemische Behandlung durch Anodisation unter Funkenentladung ist dem Fachmann im Prinzip bekannt. Im Folgenden werden die bevorzugten Verfahrensparameter von Schritt (A) des erfindungsgemäßen Verfahrens genannt. The electrochemical treatment by anodization with spark discharge is known in the art in principle. The following are the preferred process parameters of step (A) of the process according to the invention.
In Schritt (A) des erfindungsgemäßen Verfahrens beträgt das Tastverhältnis (tstrom/tstromios) vt im Allgemeinen 0,1 bis 1 ,0, bevorzugt 0,3 bis 0,7. Die Frequenz f beträgt im Allgemeinen 1 ,0 bis 2,0 kHz, bevorzugt 1 ,2 bis 1 ,8 kHz. Der Spannungsvorschub dU/dt beträgt in Schritt (A) des erfindungsgemäßen Verfahrens im Allgemeinen 10 bis 100 V/s, bevorzugt 10 bis 50 V/s, besonders bevorzugt 10 bis 30 V/s. Schritt (A) wird im Allgemeinen bei einer Spannung von 10 bis 500 V, bevorzugt 100 bis 450 V, besonderes bevorzugt 150 bis 400 V, durchgeführt. Die Beschichtungszeit in Schritt (A) des erfindungsgemäßen Verfahrens ist von der Substratgröße abhängig und beträgt beispielsweise 10 bis 500 s, bevorzugt 50 bis 200 s, insbesondere bevorzugt 75 bis 150 s. In Schritt (A) des erfindungsgemäßen Verfahrens beträgt die Stromstärke I im Allgemeinen 0,5 bis 100 A, bevorzugt 1 bis 50 A, insbesondere bevorzugt 2 bis 25 A. In step (A) of the method according to the invention, the duty cycle (tstrom / tstroms) vt is generally 0.1 to 1.0, preferably 0.3 to 0.7. The frequency f is generally 1.0 to 2.0 kHz, preferably 1.2 to 1.8 kHz. The voltage feed dU / dt in step (A) of the process according to the invention is generally 10 to 100 V / s, preferably 10 to 50 V / s, particularly preferably 10 to 30 V / s. Step (A) is generally carried out at a voltage of 10 to 500 V, preferably 100 to 450 V, more preferably 150 to 400 V. The coating time in step (A) of the process according to the invention depends on the substrate size and is for example 10 to 500 s, preferably 50 to 200 s, particularly preferably 75 to 150 s. In step (A) of the process according to the invention, the current intensity I is generally 0.5 to 100 A, preferably 1 to 50 A, particularly preferably 2 to 25 A.
Die Menge an in Schritt (A) des erfindungsgemäßen Verfahrens abgeschiedenem Photokatalysator ist von den eingestellten Herstellparametern abhängig und beträgt bei- spielsweise 1 bis 50 mg/cm2. Die in Schritt (A) erzeugte Schicht aus beispielsweise Titandioxid weist im Allgemeinen die oben beschriebenen Eigenschaften auf. Weitere Details hierzu sind der DE 198 41 650 A1 zu entnehmen. The amount of photocatalyst deposited in step (A) of the process according to the invention depends on the production parameters set and is, for example, 1 to 50 mg / cm 2 . The layer of, for example, titanium dioxide produced in step (A) generally has the properties described above. Further details can be found in DE 198 41 650 A1.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Substrat vor Schritt (A) entfettet. Verfahren dazu sind dem Fachmann bekannt, beispielsweise kann das Substrat mit einer wässrigen Lösung enthaltend wenigstens eine oberflächenaktive Substanz behandelt werden, gegebenenfalls unter gleichzeitigem Erhitzen und/oder Einwirkung von Ultraschall. Nach Behandeln mit einer solchen wässrigen Lösung kann das entfettete Substrat vor der elektrochemischen Behandlung ge- maß Schritt (A) mit einem geeigneten Lösungsmittel, bevorzugt Wasser, abgespült werden. In a preferred embodiment of the method according to the invention, the substrate is degreased before step (A). Processes for this purpose are known to the person skilled in the art, for example the substrate can be treated with an aqueous solution comprising at least one surface-active substance, optionally with simultaneous heating and / or action of ultrasound. After treating with such an aqueous solution, the degreased substrate may be rinsed with a suitable solvent, preferably water, prior to the electrochemical treatment step (A).
Nach Schritt (A) des erfindungsgemäßen Verfahrens wird ein mit Photokatalysator, insbesondere Titandioxid, beschichtetes Substrat erhalten. Dieses kann erfindungsge- maß direkt in Schritt (B) eingesetzt werden. Es ist erfindungsgemäß auch möglich, dass das Substrat nach Schritt (A) mit einem geeigneten Lösungsmittel, bevorzugt Wasser, abgespült wird. Des Weiteren ist es möglich und bevorzugt das nach Schritt (A) erhaltene beschichtete Substrat thermisch zu behandeln, beispielsweise bei einer Temperatur von 100 bis 600 0C, bevorzugt 200 bis 500 0C, besonders bevorzugt 300 bis 450 0C. Das thermische Behandeln des beschichteten Substrates wird im Allgemeinen für eine genügend lange Zeit durchgeführt, beispielsweise 0,1 bis 5 Stunden, bevorzugt 0,5 bis 3 Stunden. Das thermische Behandeln kann bei konstanter oder ansteigender Temperatur erfolgen. Eine ansteigende Temperatur wird erfindungsgemäß beispielsweise mit einer Aufheizrate von 15 bis 30 °C/min realisiert. After step (A) of the process according to the invention, a substrate coated with photocatalyst, in particular titanium dioxide, is obtained. This can be used according to the invention directly in step (B). It is also possible according to the invention that the substrate after step (A) with a suitable solvent, preferably water, rinsed off. Furthermore, it is possible and preferable to treat the coated substrate obtained after step (A) thermally, for example at a temperature of 100 to 600 ° C., preferably 200 to 500 ° C., more preferably 300 to 450 ° C. The thermal treatment of the coated substrate is generally carried out for a sufficiently long time, for example 0.1 to 5 hours, preferably 0.5 to 3 hours. The thermal treatment can be carried out at constant or increasing temperature. An increasing temperature is realized according to the invention, for example, with a heating rate of 15 to 30 ° C / min.
Schritt (B): Step (B):
Schritt (B) des Verfahrens umfasst die Behandlung des mit Photokatalysator beschichteten Substrates in einem weiteren Elektrolyten, enthaltend wenigstens eine Vorläufer- Verbindung des wenigstens einen Metalls, um den erfindungsgemäßen Photokatalysator zu erhalten. Step (B) of the process comprises treating the photocatalyst-coated substrate in another electrolyte containing at least one precursor compound of the at least one metal to obtain the photocatalyst of the present invention.
Im Allgemeinen enthält der weitere Elektrolyt gemäß Schritt (B) des Verfahrens alle Komponenten, die notwendig sind, um das wenigstens eine Metall als Metallbeladung gemäß Schritt (B) des erfindungsgemäßen Verfahrens auf das mit Photokatalysator beschichtete Substrat aufzubringen. In general, according to step (B) of the process, the further electrolyte contains all components which are necessary in order to apply the at least one metal as metal loading in accordance with step (B) of the process according to the invention to the photocatalyst-coated substrate.
Geeignete Metalle sind oben genannt. Als geeignete Vorläuferverbindungen für diese Metalle sind im Allgemeinen alle Verbindungen geeignet, die unter den in Schritt (B) des erfindungsgemäßen Verfahrens vorliegenden Bedingungen in die entsprechenden Metalle umgewandelt werden können. Als geeignete Vorläuferverbindungen für das wenigstens eine Metall sind beispielsweise Salze und/oder Komplexverbindungen der oben genannten bevorzugten Metalle genannt. Beispiele für besonders geeignete Salze sind Salze von organischen Mono- oder Dicarbonsäuren, insbesondere Alkoholate, Formiate, Acetate, Propionate und Oxalate oder Mischungen davon. Geeignet sind auch Halogenide, beispielsweise Fluoride, Chloride, Bromide, Nitrate und Sulfate oder Mischungen davon. Besonders bevorzugt werden als Vorläuferverbindungen für das wenigstens eine Metall in Schritt (B) Acetate oder Halogenide, insbesondere Chloride, eingesetzt. Diese wenigstens eine Vorläuferverbindung liegt in dem Elektrolyten ge- maß Schritt (B) des erfindungsgemäßen Verfahrens im Allgemeinen in einer Konzentration von 0,1 bis 20 mmol/L, bevorzugt 0,5 bis 1 mmol/L vor. Suitable metals are mentioned above. Suitable precursor compounds for these metals are generally all compounds which can be converted into the corresponding metals under the conditions present in step (B) of the process according to the invention. Examples of suitable precursor compounds for the at least one metal are salts and / or complex compounds of the abovementioned preferred metals. Examples of particularly suitable salts are salts of organic mono- or dicarboxylic acids, in particular alcoholates, formates, acetates, propionates and oxalates or mixtures thereof. Also suitable are halides, for example fluorides, chlorides, bromides, nitrates and sulfates or mixtures thereof. Particular preference is given to using as the precursor compounds for the at least one metal in step (B) acetates or halides, especially chlorides. This at least one precursor compound is generally present in the electrolyte according to step (B) of the process according to the invention in a concentration of 0.1 to 20 mmol / L, preferably 0.5 to 1 mmol / L.
In Schritt (B) wird bevorzugt ein wässriger Elektrolyt eingesetzt, d. h. das für den Elektrolyten gemäß Schritt (B) verwendete Lösungsmittel ist Wasser. Neben der wenigstens einen Vorläuferverbindung des wenigstens einen Metalls liegen in dem Elektrolyten gemäß Schritt (B) gegebenenfalls weitere, dem Fachmann bekannte Additive vor. Beispielsweise sind die in dem Elektrolyten gemäß Schritt (B) vorliegenden Vorläuferverbindungen gegebenenfalls durch Zugabe einer Säure, beispielsweise HNO3, stabilisiert, beispielsweise in einer Konzentration von 0,1 bis 10 Vol.-%. In step (B), an aqueous electrolyte is preferably used, ie the solvent used for the electrolyte according to step (B) is water. In addition to the at least one precursor compound of the at least one metal are in the electrolyte in accordance with step (B), if appropriate, further additives known to the person skilled in the art. For example, the precursor compounds present in the electrolyte according to step (B) are optionally stabilized by addition of an acid, for example HNO 3 , for example in a concentration of 0.1 to 10% by volume.
Die Behandlung gemäß Schritt (B) des erfindungsgemäßen Verfahrens kann durch alle dem Fachmann bekannten Methoden erfolgen. In einer bevorzugten Ausführungsform erfolgt die Behandlung in Schritt (B), d. h. die Metallbeladung, durch photochemische Abscheidung des wenigstens einen Metalls auf den Photokatalysator, insbesondere durch Bestrahlen mit Licht (photochemische Behandlung). The treatment according to step (B) of the process according to the invention can be carried out by all methods known to the person skilled in the art. In a preferred embodiment, the treatment in step (B), d. H. the metal loading, by photochemical deposition of the at least one metal on the photocatalyst, in particular by irradiation with light (photochemical treatment).
Im Rahmen der vorliegenden Erfindung wird unter Licht, energiereiche elektromagnetische Strahlung, insbesondere Licht in einem Wellenlängenbereich entweder zwischen 200 und 400 nm („UV-Licht") oder zwischen 400 und 700 nm („sichtbares Licht") ver- standen. Erfindungsgemäß wird das in Schritt (B) bevorzugt verwendete Licht durch entsprechende Tageslicht- oder UV-Lampen, beispielsweise Xe(Hg)-Bogenlampe, Di- odenarrays, Rohrlampen und Kombinationen davon, erzeugt. Es ist erfindungsgemäß auch möglich, andere energiereiche elektromagnetische Strahlung zu verwenden, die neben den bevorzugten Wellenlängen auch andere Wellenlängen aufweist. Die Lichtin- tensität, insbesondere der UV-Strahlung, in Schritt (B) beträgt im Allgemeinen 0,1 bis 30 mW/cm2, bevorzugt 0,5 bis 10 mW/cm2, besonders bevorzugt 2 bis 5 mW/cm2. In the context of the present invention, light is understood as meaning high-energy electromagnetic radiation, in particular light in a wavelength range either between 200 and 400 nm ("UV light") or between 400 and 700 nm ("visible light"). According to the invention, the light preferably used in step (B) is produced by corresponding daylight or UV lamps, for example Xe (Hg) arc lamp, diode arrays, tube lamps and combinations thereof. It is also possible according to the invention to use other high-energy electromagnetic radiation which, in addition to the preferred wavelengths, also has other wavelengths. The light intensity, in particular of the UV radiation, in step (B) is generally 0.1 to 30 mW / cm 2 , preferably 0.5 to 10 mW / cm 2 , particularly preferably 2 to 5 mW / cm 2 .
Schritt (B) des erfindungsgemäßen Verfahrens wird beispielsweise durchgeführt, indem das aus Schritt (A) erhaltene Substrat, welches mit Photokatalysator beschichtet ist, in einem entsprechenden Reaktor mit dem Elektrolyten gemäß Schritt (B) in Kontakt gebracht wird. Als Reaktor kann erfindungsgemäß jeder dem Fachmann bekannte Reaktor verwendet werden, beispielsweise eine Küvette. Insbesondere wird ein Reaktor verwendet, welcher für den Wellenlängenbereich des verwendeten Lichts durchlässig ist. Step (B) of the process according to the invention is carried out, for example, by bringing the substrate obtained from step (A), which is coated with photocatalyst, into contact in a corresponding reactor with the electrolyte according to step (B). According to the invention, any reactor known to the person skilled in the art can be used as the reactor, for example a cuvette. In particular, a reactor is used which is permeable to the wavelength range of the light used.
Die wenigstens eine Lichtquelle wird dann in einem entsprechenden Abstand von der Küvette aufgestellt, um das Substrat in dem Elektrolyten gemäß Schritt (B) mit Licht zu bestrahlen. Die Bestrahlung wird für einen Zeitraum durchgeführt, der ausreicht, um eine genügende Menge Metall auf das Substrat aufzubringen, beispielsweise 1 bis 200 min., bevorzugt 1 bis 30 min., insbesondere bevorzugt 3 bis 10 min. The at least one light source is then placed at a suitable distance from the cuvette to irradiate the substrate in the electrolyte according to step (B) with light. The irradiation is carried out for a time sufficient to apply a sufficient amount of metal to the substrate, for example 1 to 200 minutes, preferably 1 to 30 minutes, most preferably 3 to 10 minutes.
In Schritt (B) wird das wenigstens eine Metall auf die auf dem wenigstens einem Substrat vorliegende Schicht aus Photokatalysator aufgebracht. Des Weiteren betrifft die vorliegende Erfindung auch ein Verfahren zur Erhöhung des Flachbandpotentials eines Photokatalysators, wobei der Photokatalysator mit wenigstens einem Metall ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, bevorzugt aus der Gruppe bestehend aus V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La und Mischungen davon, ganz besonders bevorzugt Pd, Cu oder Pt oder Mischungen davon, beladen wird. In step (B), the at least one metal is deposited on the layer of photocatalyst present on the at least one substrate. Furthermore, the present invention also relates to a method for increasing the ribbon potential of a photocatalyst, wherein the photocatalyst with at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, preferably from the group consisting of V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La and mixtures thereof, most preferably Pd, Cu or Pt or mixtures thereof, is loaded.
In einer bevorzugten Ausführungsform erfolgt die Metallbeladung durch photochemi- sehe Abscheidung des wenigstens einen Metalls auf Titandioxid. In a preferred embodiment, the metal loading takes place by photochemical deposition of the at least one metal on titanium dioxide.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Flachbandpotential um wenigstens 0,05 eV, besonders bevorzugt wenigstens 0,1 eV, gegenüber dem Photokatalysator ohne Metallbeladung erhöht. In a further preferred embodiment of the method according to the invention, the flat band potential is increased by at least 0.05 eV, more preferably at least 0.1 eV, relative to the photocatalyst without metal loading.
In einer besonders bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren zur Erhöhung des Flachbandpotentials eines Photokatalysators mindestens die oben genannten Schritte (A) und (B). Daher gilt das bezüglich des Herstellungsverfahrens des erfindungsgemäßen Photokatalysators Gesagte. In a particularly preferred embodiment, the method according to the invention for increasing the ribbon potential of a photocatalyst comprises at least the abovementioned steps (A) and (B). Therefore, what has been said about the production method of the photocatalyst of the present invention applies.
Die vorliegende Erfindung betrifft auch die Verwendung wenigstens eines Metalls ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, bevorzugt aus der Gruppe bestehend aus V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La und Mischungen davon, ganz besonders bevorzugt Pd, Cu oder Pt oder Mischungen davon zur Erhöhung des Flachbandpotentials eines Photokatalysators, insbesondere Titandioxid. Details und bevorzugte Ausführungsformen sind bereits der erfindungsgemäßen Verfahren genannt und gelten für diese Verwendung entsprechend. Aufgrund des erhöhten Flachbandpotentials ist der erfindungsgemäße Photokatalysator geeignet, chemische Reaktionen zu katalysieren. Beispiele für entsprechende Reaktionen sind beispielsweise die Reduktion von Protonen zu molekularem Wasserstoff in wässrigen und/oder alkoholischen Lösungen, die Reduktion von CO oder CO2 in Kohlenwasserstoffverbindungen wie zum Beispiel Methanol, Formaldehyd oder Amei- sensäure oder die Reduktion von organischen Verbindungen wie beispielsweise Methylenblau. The present invention also relates to the use of at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof, preferably from the group consisting of V, Zr, Ce, Zn, Au, Ag , Cu, Pd, Pt, Ru, Rh, La and mixtures thereof, very particularly preferably Pd, Cu or Pt or mixtures thereof for increasing the ribbon potential of a photocatalyst, in particular titanium dioxide. Details and preferred embodiments are already mentioned in the inventive method and apply accordingly for this use. Due to the increased ribbon potential, the photocatalyst according to the invention is suitable for catalyzing chemical reactions. Examples of corresponding reactions are, for example, the reduction of protons to molecular hydrogen in aqueous and / or alcoholic solutions, the reduction of CO or CO 2 in hydrocarbon compounds such as methanol, formaldehyde or formic acid or the reduction of organic compounds such as methylene blue.
Daher betrifft die vorliegende Erfindung auch die Verwendung eines erfindungsgemäßen Photokatalysators in chemischen Reaktionen, bevorzugt in der Reduktion von Pro- tonen zu molekularem Wasserstoff in wässrigen und/oder alkoholischen Lösungen, die Reduktion von CO oder CO2 in Kohlenwasserstoffverbindungen wie zum Beispiel Methanol, Formaldehyd oder Ameisensäure und die Reduktion von organischen Verbindungen wie beispielsweise Methylenblau. Die vorliegende Erfindung wird durch die folgenden Beispiele näher erläutert. Beispiele Therefore, the present invention also relates to the use of a photocatalyst according to the invention in chemical reactions, preferably in the reduction of protons to molecular hydrogen in aqueous and / or alcoholic solutions Reduction of CO or CO 2 in hydrocarbon compounds such as methanol, formaldehyde or formic acid and the reduction of organic compounds such as methylene blue. The present invention will be further illustrated by the following examples. Examples
Beispiel 1 : Herstellung des Photokatalysators Example 1: Preparation of the photocatalyst
Es werden 1 cm x 1 cm TiC>2-Schichten auf 3 cm x 1 cm Titansubstraten erzeugt. Die elektrochemische Beschichtung erfolgt in dem in Tabelle 1 genannten, wässrigen E- lektrolyten mit den in Tabelle 2 genannten Beschichtungsparametern: Tabellei : Zusammensetzung des Elektrolyten 1 cm x 1 cm TiC> 2 layers are produced on 3 cm x 1 cm titanium substrates. The electrochemical coating takes place in the aqueous electrolyte mentioned in Table 1 with the coating parameters listed in Table 2: TABLE I Composition of the electrolyte
Figure imgf000015_0001
Figure imgf000015_0001
Tabelle 2: Beschichtungsparameter  Table 2: Coating parameters
Figure imgf000015_0002
Figure imgf000015_0002
Nach der Beschichtung wird die Probe für 1 Stunde bei 400 0C getempert. Die Titandioxidmengen betragen pro Probe 2-3 mg. After coating, the sample for 1 hour at 400 0 C is annealed. The quantities of titanium dioxide are 2-3 mg per sample.
Beispiel 2: Aufbringung der Metalle als Metallbeladung mittels Photoabscheidung Die Photoabscheidung ist eine Methode, um Metalle auf der Tiθ2-Oberfläche abzuscheiden. Durch die Einstrahlung von Lichtenergie größer der Bandlückenenergie des Halbleiters wird am Halbleiter ein Elektron-Loch-Paare erzeugt. Das generierte Elektron wird bei der Photoabscheidung genutzt, um Metallkationen aus einer Precursorlö- sung auf der Titandioxidoberfläche zu reduzieren. Example 2: Application of the Metals as Metal Loading by Photo Deposition Photo-deposition is a method to deposit metals on the Tiθ 2 surface. As a result of the irradiation of light energy greater than the bandgap energy of the semiconductor, an electron-hole pair is produced on the semiconductor. The generated electron is used in photo- deposition to reduce metal cations from a precursor solution on the titanium dioxide surface.
Die in Beispiel 1 hergestellten mit Photokatalysator beschichteten Substrate werden zusammen mit 4 mL einer Lösung der entsprechenden Vorläuferverbindung in eine Glasküvette (Firma Hellma GmbH & Co. KG; Schichtdicke 13 mm; Volumen 1 O mL) gegeben. Bei diesem Reaktionsgefäß ist von Vorteil, dass das Licht auf eine plane Oberfläche trifft. Die Küvette ist aus dem Glas B270 Superwite, dessen Transmission laut Hersteller mehr als 80 % bei Wellenlängen zwischen 360 nm und 2500 nm beträgt. Als Lichtquelle dient eine 300 W Xe(Hg)-Lampe (Firma L. OT Oriel). Die Einstellung der Lichtintensität auf 2,3 mW/cm2 erfolgt über den Abstand zur Lampe. Nach 10 min Bestrahlung wird die Schicht mit destilliertem Wasser abgespült. The photocatalyst-coated substrates prepared in Example 1 are introduced together with 4 ml of a solution of the corresponding precursor compound into a glass cuvette (Hellma GmbH & Co. KG, layer thickness 13 mm, volume 1 ml). In this reaction vessel is advantageous that the light strikes a flat surface. The cuvette is made of glass B270 Superwite, whose transmission according to the manufacturer is more than 80% at wavelengths between 360 nm and 2500 nm. The light source is a 300 W Xe (Hg) lamp (company L. OT Oriel). The light intensity is set to 2.3 mW / cm 2 over the distance to the lamp. After 10 minutes of irradiation, the layer is rinsed with distilled water.
Beispiel 2.1 Example 2.1
Als Vorläuferverbindung wird eine 0,6 mM K2PdCl4-Lösung mit konzentrierter HNO3 zur Stabilisierung verwendet. The precursor compound used is a 0.6 mM K 2 PdCl 4 solution with concentrated HNO 3 for stabilization.
Beispiel 2.2 Example 2.2
Als Vorläuferverbindung wird eine 0,6 mM K2PtCl4-Lösung verwendet. As a precursor compound, a 0.6 mM K 2 PtCl 4 solution is used.
Beispiel 2.3 Example 2.3
Als Vorläuferlösung wird eine 0,6 mM HAuCI4 Lösung verwendet. Beispiel 2.4 The precursor solution used is a 0.6 mM HAuCl 4 solution. Example 2.4
Als Vorläuferverbindung wird eine 0,6 mM Cu(OOCCH3)2 Lösung verwendet. As a precursor compound, a 0.6 mM Cu (OOCCH 3 ) 2 solution is used.
Beispiel 3: Bestimmung des Flachbandpotentials nach Mott-Schottky Example 3 Determination of the Mott-Schottky Flatband Potential
Bei der Bestimmung des Flachbandpotentials nach Mott-Schottky werden Kapazitätsmessungen mit Hilfe der Mott-Schottky Gleichung ausgewertet. Für diese Messungen werden die Materialien aus den Beispielen 1 und 2.1 bis 2.4 als Arbeitselektrode betrieben. Weitere Bestandteile des Versuchsaufbaus sind eine Pt-Gegenelektrode und eine Ag/AgCI-Referenzelektrode (3M KCl). Als Elektrolyt werden 40 mL einer 1 M KCl Lösung in einem 100 ml_ großen Becherglas verwendet. Die Elektroden werden in den Elektrolyten eingetaucht. Die Arbeitselektrode wird nur mit dem TiO2-beschichteten Drittel eingetaucht. When determining the Mott-Schottky flat-band potential, capacitance measurements are evaluated using the Mott-Schottky equation. For these measurements, the materials of Examples 1 and 2.1 to 2.4 are operated as a working electrode. Further components of the experimental set-up are a Pt counterelectrode and an Ag / AgCl reference electrode (3M KCl). The electrolyte is 40 mL of 1 M KCl Solution used in a 100 ml beaker. The electrodes are immersed in the electrolyte. The working electrode is immersed only with the TiO 2 -coated third.
Für die Bestimmung des Flachbandpotentials nach Mott-Schottky wird die Kapazität mittels elektrochemischer Impendanzspektroskopie an einem Elektrochemiestand mit PGSTAT20 (Potentiostat/Galvanostat) der Firma Autolab®(eco chemie) bestimmt. Die Messungen können mit Hilfe der Software FRA (Frequency Response Analysis) Version 2.1 direkt in die Mott-Schottky-Plots umgewandelt werden. For the determination of the Mott-Schottky flat-band potential, the capacitance is determined by means of electrochemical impedance spectroscopy at an electrochemical level with PGSTAT20 (potentiostat / galvanostat) from Autolab® (eco chemie). The measurements can be converted directly into the Mott-Schottky plots using the software FRA (Frequency Response Analysis) Version 2.1.
In Figur 1 sind Mott-Schottky-Plots von der erfindungsgemäßen Photokatalysatoren gemäß den Beispielen 2.1 bis 2.4, sowie Titandioxid ohne weiteres Metall gemäß Beispiel 1 abgebildet. Die Messung erfolgt bei einer Frequenz von 1000 Hz bei einem pH- Wert von 5,8. Die Schichtdicke beträgt 2,5mg/cm2 TiO2. FIG. 1 shows Mott-Schottky plots of the photocatalysts according to the invention according to Examples 2.1 to 2.4 and titanium dioxide without further metal according to Example 1. The measurement takes place at a frequency of 1000 Hz at a pH of 5.8. The layer thickness is 2.5 mg / cm 2 TiO 2 .
Das Flachbandpotential kann aus VO, welches man durch Extrapolation des linearen Bereiches aus dem Abszissenabschnitt der x Achse erhält, nach der folgenden Formel (I) berechnet werden. The flat-band potential can be calculated from V0 obtained by extrapolating the linear region from the abscissa section of the x-axis according to the following formula (I).
F - F - - F - F - -
(I) (I)
Für die verschiedenen Katalysatoren werden die in Tabelle 3 aufgeführten Flachbandpotentiale ermittelt. For the various catalysts, the flat band potentials listed in Table 3 are determined.
Tabelle 3: Nach Mott-Schottky ermittelte Flachbandpotentiale EFb für TiO2- Photokatalysator ohne Metallbeladung gemäß Beispiel 1 und für erfindungsgemäße Photokatalysatoren gemäß den Beispielen 2.1 bis 2.4. Table 3: According to Mott-Schottky flat band potentials EFb for TiO 2 - photocatalyst without metal loading according to Example 1 and for photocatalysts according to the invention according to Examples 2.1 to 2.4.
Figure imgf000017_0001
Figure imgf000017_0001

Claims

Patentansprüche claims
1. Photokatalysator, enthaltend wenigstens ein Metall ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Acti- noiden und Mischungen davon, dadurch gekennzeichnet, dass das Flachbandpotential des Photokatalysators um wenigstens 0,05 eV gegenüber dem Photokatalysator ohne dieses wenigstens eine Metall erhöht ist. Photocatalyst comprising at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, Actinoids and mixtures thereof, characterized in that the ribbon potential of the photocatalyst to at least 0.05 eV compared to the photocatalyst without this at least one metal is increased.
2. Photokatalysator nach Anspruch 1 , dadurch gekennzeichnet, dass der Photoka- talysator auf einem Substrat vorliegt. 2. Photocatalyst according to claim 1, characterized in that the photocatalyst is present on a substrate.
3. Photokatalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das wenigstens eine Metall ausgewählt ist aus der Gruppe bestehend aus V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La und Mischungen davon. 3. Photocatalyst according to claim 1 or 2, characterized in that the at least one metal is selected from the group consisting of V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La and mixtures thereof ,
4. Photokatalysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das wenigstens eine Metall in einer Menge von 0,001 bis 5 Gew.-%, bezogen auf den gesamten Photokatalysator, vorliegt. 4. A photocatalyst according to any one of claims 1 to 3, characterized in that the at least one metal in an amount of 0.001 to 5 wt .-%, based on the total photocatalyst, is present.
5. Verfahren zur Erhöhung des Flachbandpotentials eines Photokatalysators, dadurch gekennzeichnet, dass der Photokatalysator mit wenigstens einem Metall ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mischungen davon, beladen wird. 5. A method for increasing the ribbon potential of a photocatalyst, characterized in that the photocatalyst is loaded with at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Metallbeladung durch photochemische Abscheidung des wenigstens einen Metalls auf den Photokatalysator erfolgt. 6. The method according to claim 5, characterized in that the metal loading takes place by photochemical deposition of the at least one metal on the photocatalyst.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Flach- bandpotential um wenigstens 0,05 eV gegenüber dem Photokatalysator ohne7. The method according to claim 5 or 6, characterized in that the ribbon potential by at least 0.05 eV compared to the photocatalyst without
Metallbeladung erhöht wird. Metal loading is increased.
8. Verwendung wenigstens eines Metalls ausgewählt aus den Gruppen 3 bis 12 des Periodensystems der Elemente (nach IUPAC), Lanthanoiden, Actinoiden und Mi- schungen davon zur Erhöhung des Flachbandpotentials eines Photokatalysators. 8. Use of at least one metal selected from groups 3 to 12 of the Periodic Table of the Elements (according to IUPAC), lanthanides, actinides and mixtures thereof for increasing the ribbon potential of a photocatalyst.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass das wenigstens eine Metall ausgewählt ist aus der Gruppe bestehend aus V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La und Mischungen davon. 9. Use according to claim 8, characterized in that the at least one metal is selected from the group consisting of V, Zr, Ce, Zn, Au, Ag, Cu, Pd, Pt, Ru, Rh, La and mixtures thereof.
10. Verwendung eines Photokatalysators gemäß einem der Ansprüche 1 bis 4 in chemischen Reaktionen. 10. Use of a photocatalyst according to any one of claims 1 to 4 in chemical reactions.
PCT/EP2010/059256 2009-07-01 2010-06-30 CO-CATALYST IN TiO2 FILMS WO2011000857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09164323.9 2009-07-01
EP09164323 2009-07-01

Publications (1)

Publication Number Publication Date
WO2011000857A1 true WO2011000857A1 (en) 2011-01-06

Family

ID=42653960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/059256 WO2011000857A1 (en) 2009-07-01 2010-06-30 CO-CATALYST IN TiO2 FILMS

Country Status (1)

Country Link
WO (1) WO2011000857A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204301A (en) * 2012-03-06 2014-12-10 液体光有限公司 Reducing carbon dioxide to products
CN105126923A (en) * 2015-08-25 2015-12-09 东北林业大学 Sliver-titanium composite film loaded wood base material capable of degrading formaldehyde under visible light irradiation, and preparation method of sliver-titanium composite film loaded wood base material
CN107916446A (en) * 2017-11-16 2018-04-17 重庆大学 The clean manufacturing of chloroacetaldehyde oxime and its RuO used2@TNTs anodes
CN109750339A (en) * 2019-03-25 2019-05-14 四川农业大学 Photoelectrode with absorbing visible light and near-infrared mixed morphology structure and preparation method
CN112102893A (en) * 2020-08-25 2020-12-18 华南理工大学 TiO for analyzing multi-factor influence2Method for photocatalytic oxidation of formaldehyde

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315963B1 (en) * 2000-03-22 2001-11-13 Samuel E. Speer Method and apparatus for the enhanced treatment of fluids via photolytic and photocatalytic reactions
US6409928B1 (en) * 1997-01-31 2002-06-25 Lynntech, Inc. Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant
US20030050196A1 (en) * 2001-07-16 2003-03-13 Noritake Co., Limited Photocatalyst compositions and methods for making the same
US20050163673A1 (en) * 2004-01-23 2005-07-28 Johnson John T. Fluidized-bed reactor system
WO2008001405A2 (en) * 2006-06-26 2008-01-03 Politecnico Di Milano Metal or metalized fabrics coated with nanostructured titanium dioxide
US20090162567A1 (en) * 2007-12-19 2009-06-25 Industrial Technology Research Institute Method for manufacturing high performance photocatalytic filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409928B1 (en) * 1997-01-31 2002-06-25 Lynntech, Inc. Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant
US6315963B1 (en) * 2000-03-22 2001-11-13 Samuel E. Speer Method and apparatus for the enhanced treatment of fluids via photolytic and photocatalytic reactions
US20030050196A1 (en) * 2001-07-16 2003-03-13 Noritake Co., Limited Photocatalyst compositions and methods for making the same
US20050163673A1 (en) * 2004-01-23 2005-07-28 Johnson John T. Fluidized-bed reactor system
WO2008001405A2 (en) * 2006-06-26 2008-01-03 Politecnico Di Milano Metal or metalized fabrics coated with nanostructured titanium dioxide
US20090162567A1 (en) * 2007-12-19 2009-06-25 Industrial Technology Research Institute Method for manufacturing high performance photocatalytic filter

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BARD; M. D. WARD; J. R. WHITE; A. J. BARD ET AL., JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 105, 1983, pages 27 - 31
BERANEK ET AL: "Surface-modified anodic TiO2 films for visible light photocurrent response", ELECTROCHEMISTRY COMMUNICATION, ELSEVIER, AMSTERDAM, NL LNKD- DOI:10.1016/J.ELECOM.2006.11.011, vol. 9, no. 4, 1 April 2007 (2007-04-01), pages 761 - 766, XP022015829, ISSN: 1388-2481 *
FURUBE; A. FURUBE; T. ASAHI; H. MASUHARA; H. YAMASHITA; M. ANPO ET AL., CHEMICAL PHYSICS LETTERS, vol. 336, 2001, pages 424 - 430
KUMARI ET AL: "A photoelectrochemical study of nanostructured Cd-doped titanium oxide", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB LNKD- DOI:10.1016/J.IJHYDENE.2006.07.017, vol. 32, no. 9, 23 May 2007 (2007-05-23), pages 1299 - 1302, XP022093254, ISSN: 0360-3199 *
M. ASHOKKUMAR ET AL., INT. J. HYDROGEN ENERGY, vol. 23, no. 6, 1998, pages 427 - 438
PARAMASIVAM ET AL: "Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles", ELECTROCHEMISTRY COMMUNICATION, ELSEVIER, AMSTERDAM, NL LNKD- DOI:10.1016/J.ELECOM.2007.11.001, vol. 10, no. 1, 6 November 2007 (2007-11-06), pages 71 - 75, XP022397699, ISSN: 1388-2481 *
ROY; A. M. ROY; G. C. DE; N. SASMAL; S. S. BHATTACHARYY ET AL., INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 20, 1994, pages 627 - 630
SHINYA HIGASHIMOTO ET AL: "Electrochemically Assisted Photocatalysis of Hybrid WO3/TiO2 Films: Effect of the WO3 Structures on Charge Separation Behavior", TOPICS IN CATALYSIS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 47, no. 3-4, 14 February 2008 (2008-02-14), pages 148 - 154, XP019616034, ISSN: 1572-9028 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204301A (en) * 2012-03-06 2014-12-10 液体光有限公司 Reducing carbon dioxide to products
CN105126923A (en) * 2015-08-25 2015-12-09 东北林业大学 Sliver-titanium composite film loaded wood base material capable of degrading formaldehyde under visible light irradiation, and preparation method of sliver-titanium composite film loaded wood base material
CN107916446A (en) * 2017-11-16 2018-04-17 重庆大学 The clean manufacturing of chloroacetaldehyde oxime and its RuO used2@TNTs anodes
CN107916446B (en) * 2017-11-16 2019-07-30 重庆大学 The clean manufacturing of chloroacetaldehyde oxime and its RuO used2@TNTs anode
CN109750339A (en) * 2019-03-25 2019-05-14 四川农业大学 Photoelectrode with absorbing visible light and near-infrared mixed morphology structure and preparation method
CN112102893A (en) * 2020-08-25 2020-12-18 华南理工大学 TiO for analyzing multi-factor influence2Method for photocatalytic oxidation of formaldehyde

Similar Documents

Publication Publication Date Title
DE1571721C3 (en) Electrode for use in electrolytic processes
Nakamura et al. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes
DE69529420T2 (en) PHOTOCATALYTICALLY FUNCTIONAL MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
DE102007038045B4 (en) Process for the production of a palladium / carbon catalyst
Nurdin et al. Plasmonic silver—N/TiO2 effect on photoelectrocatalytic oxidation reaction
DE2636447C2 (en) Manganese dioxide electrodes
DE102010043085A1 (en) Electrode for electrolytic chlorine production
Chen et al. Photoelectrochemical oxidation of azo dye and generation of hydrogen via CN co-doped TiO2 nanotube arrays
Ta et al. Photoelectrochemical stability of WO3/Mo-doped BiVO4 heterojunctions on different conductive substrates in acidic and neutral media
EP2581971A1 (en) Catalyst coating and method for its production
DE69819675T2 (en) Hydrogen production from water using a photocatalysis-electrolysis hybrid system
DE112016005605T5 (en) Photocatalytic water splitting with cobalt oxide / titania / palladium nanocomposite catalysts
Reyes-Gil et al. Characterization of photoactive centers in N-doped In2O3 visible photocatalysts for water oxidation
DE60222534T2 (en) OXIDSULFID PHOTOCATALYZER FOR USE IN THE DECOMPOSITION OF WATER BY VISIBLE LIGHT
DE69801290T2 (en) Metallic material with photocatalytic activity and manufacturing process
WO2011000857A1 (en) CO-CATALYST IN TiO2 FILMS
DE2543033C2 (en) Process for the production of a coated electrode and its use
DE69521588T2 (en) Stable coating solutions for the formation of electrocatalytic coatings from mixed oxides on metal or metallized supports and processes for the production of dimensionally stable anodes using these solutions
WO2021198079A1 (en) Photocatalytically active particulate material based on zns, method for the production and use thereof
DE19911738A1 (en) Titanium dioxide photocatalyst doped with Fe · 3 ·· + · ions
Kwiatkowski et al. Enhancement of visible light photoelectrocatalytic activity of ZnO (core)/TiO2 (shell) composite by N-doping and decorating with Au0 nanoparticles
DE10007480A1 (en) Bipolar electrode with semiconductor coating and associated process for electrolytic water splitting
DE112005002798T5 (en) Process for the preparation of a metal oxide film
EP2397579A1 (en) Electrode for obtaining chlorine through electrolysis
EP2448673A1 (en) Method for producing a photocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10727427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10727427

Country of ref document: EP

Kind code of ref document: A1