WO2010143852A2 - Wafer prober station in which the mechanical strength of a chuck is enhanced, and method for controlling same - Google Patents
Wafer prober station in which the mechanical strength of a chuck is enhanced, and method for controlling same Download PDFInfo
- Publication number
- WO2010143852A2 WO2010143852A2 PCT/KR2010/003638 KR2010003638W WO2010143852A2 WO 2010143852 A2 WO2010143852 A2 WO 2010143852A2 KR 2010003638 W KR2010003638 W KR 2010003638W WO 2010143852 A2 WO2010143852 A2 WO 2010143852A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- chuck
- information
- wafer
- pressure sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2891—Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
Definitions
- the present invention relates to a wafer prober station. Specifically, a wafer probe capable of measuring and correcting a position error occurring in a chuck due to an eccentric load applied to the chuck by a probe card as the overdrive of the Z-axis stage is performed. It's about a bur station.
- FIG. 1 is a block diagram showing a general wafer prober station as a whole.
- Conventional wafer prober station as shown in Figure 1, the probe device 11 for inspecting the wafer (W), the chuck 16 loaded with the wafer (W), the chuck 16 for driving the chuck 16
- movement are provided.
- the probe card 14 used for inspection is fixed to the DUT board 13 of the wafer prober station 10, and the wafer prober station is a vision sensor such as a CCD camera.
- the position of the contact electrode P on the wafer W and the probe 15 of the probe card and align the probe card 14 and the chuck 16 based on the determined position information.
- the control device 18 of the wafer prober station 10 drives the chuck feeder 17 on the basis of the determined positional information and is mounted on the probe 15 and the chuck 16 of the probe card 14.
- the probe card 14 and the wafer W are aligned so that the contact electrodes P of the wafer W face each other before performing overdriving for inspection.
- the controller 18 of the wafer prober station 10 overdrives the chuck and contacts the probe electrode P of the wafer W to the probe 15 to electrically Connect.
- the conventional wafer prober station 10 is initially set such that the probe 15 and the contact electrode P are precisely overdried with each other as the probe card 14 and the wafer are aligned.
- an unexpected deformation occurs in the probe card 14 or the probe 15 due to the inspection performed on the plurality of wafers W and the high temperature inspection environment. Therefore, the contact load applied to the contact electrode P by the probe 15 during the overdriving control is non-uniformly acting according to the position of the chuck. For this reason, when an eccentric load is applied to the chuck, the chuck cannot withstand the eccentric load and thus cannot maintain mechanical stiffness. As a result, the chuck undesirably moves in the XY axis direction. As the chuck moves in the XY axis direction by the eccentric load, the contact electrode P and the probe cannot be contacted correctly.
- An object of the present invention for solving the above problems is a mechanism for misaligning a contact between a probe and a contact electrode generated due to a limitation of mechanical stiffness of a chuck during an overdriving process for inspecting a wafer using a highly integrated and large-scale probe card. It is an object of the present invention to provide a wafer prober station that can be complemented in software without any design changes.
- a chuck for loading a wafer a chuck transfer device for supporting and transporting the chuck, including a probe card that has been aligned and installed to inspect the wafer
- the wafer prober station includes: a plurality of pressure sensors installed at a lower portion of a portion supporting the chuck in a vertical direction to sense pressure applied to the chuck; And overdriving the chuck by raising the Z-axis stage of the chuck transfer apparatus in a state where the wafer and the probe card on the chuck are aligned, and when the wafer and the probe card are contacted by overdriving, the plurality of pressure sensors
- the pressure displacement information of the chuck in the x direction and the y direction is calculated based on the detected pressure values, and the position error values of the x direction and the y direction with respect to the contact point of the probe and the contact electrode are calculated using the pressure displacement information.
- the pressure sensors are respectively installed at four corners of the mating surface to which the XY axis stage and the Z axis stage of the chuck feeder are coupled, and the rear corner of the left edge of the mating surface. And a first pressure sensor and a third pressure sensor at the front corners, respectively, and a second pressure sensor and a third pressure sensor at the rear corners and the front corners of the right corner of the coupling surface, respectively.
- the control device calculates left pressure information applied to the left side of the chuck by using the pressure values sensed by the first pressure sensor and the third pressure sensor, and detects from the second pressure sensor and the fourth pressure sensor. Calculate right pressure information applied to the right side of the chuck by using the pressure values, calculate rear pressure information applied to the rear of the chuck by using the pressure values detected from the first pressure sensor and the second pressure sensor, and Preferably, the front pressure information applied to the front of the chuck is calculated using the pressure values detected from the third pressure sensor and the fourth pressure sensor.
- the control device calculates a difference value between the left pressure information and the right pressure information to extract pressure displacement information in the x direction of the chuck, and the front pressure information and the rear pressure. Calculate the difference value of the information to extract the pressure displacement information in the y direction of the chuck, and the position error in the x direction and the y direction of the chuck by multiplying the pressure displacement information in the x direction and the y direction by a predetermined conversion gain value, respectively. It is desirable to estimate the values respectively.
- a control method includes: a chuck for loading a wafer, a chuck transfer device for supporting and transferring the chuck, a probe card installed to inspect the wafer, and a lower portion of the chuck supporting the vertical direction of the chuck; A method of controlling by the controller in a wafer prober station having a plurality of pressure sensors and a control device for controlling the same, the method comprising: (a) Z of the chuck feeder with the wafer on the chuck and the probe card aligned; Driving and driving the shaft stage; (b) calculating left pressure information, right pressure information, rear pressure information, and front pressure information based on pressure values detected from the plurality of pressure sensors, respectively; (d) calculating pressure displacement information for the x and y directions of the chuck, respectively, using the left, right, rear and front pressure information; (e) estimating position error values in the x and y directions with respect to the contact position of the probe and the contact electrode using the pressure displacement information; (f) controlling the movement of the controller in a wafer prober
- the pressure displacement information in the x direction of step (d) is composed of the difference between the left pressure information and the right pressure information
- the pressure displacement information in the y direction is the front pressure information
- the positional error values in the x and y directions of the step (e) are preferably calculated by multiplying the pressure displacement information in the x and y directions by the preset conversion gain values. .
- the wafer prober station detects and detects pressure values applied to the chuck when the probe of the probe card and the contact electrode of the wafer are contacted by a plurality of pressure sensors disposed between the Z axis stage and the XY axis stage.
- the used pressure values are used as a new feedback variable for overdriving control.
- the wafer prober station according to the present invention can improve the yield of wafer inspection by having a chuck having rigidity that can effectively cope with an increase in contact load caused by a recently enlarged probe card.
- FIG. 1 is a block diagram of a conventional wafer prober station.
- FIG. 2 is a block diagram of a wafer prober station in accordance with a preferred embodiment of the present invention.
- FIG 3 is a view showing the arrangement position of the pressure sensor of the wafer prober station in accordance with a preferred embodiment of the present invention.
- FIG. 4 is a diagram illustrating a structure of a pressure sensor of a wafer prober station according to an exemplary embodiment of the present invention.
- FIG. 5 is a block diagram of a controller of a wafer prober station according to a preferred embodiment of the present invention.
- FIG. 6 is a position control block diagram of a wafer prober station in accordance with a preferred embodiment of the present invention.
- FIG. 7 is a flowchart sequentially illustrating the operation of the transducer of the control device of the wafer prober station according to the preferred embodiment of the present invention.
- FIG. 8 is a control flowchart of a wafer prober station according to a preferred embodiment of the present invention.
- the present invention relates to a wafer prober station including a chuck for loading a wafer, a chuck transfer device for supporting and transferring the chuck, and a probe card that is aligned and installed to inspect the wafer.
- the apparatus may include a plurality of pressure sensors installed at a lower portion of the portion supporting the chuck in a vertical direction to sense pressure applied to the chuck; And overdriving the chuck by raising the Z-axis stage of the chuck transfer apparatus in a state where the wafer and the probe card on the chuck are aligned, and when the wafer and the probe card are contacted by overdriving, the plurality of pressure sensors
- the pressure displacement information of the chuck in the x direction and the y direction is calculated based on the detected pressure values, and the position error values of the x direction and the y direction with respect to the contact point of the probe and the contact electrode are calculated using the pressure displacement information.
- a control device for estimating and correcting the position of the contact point by controlling the movement of
- FIG. 2 is a block diagram of a wafer prober station in accordance with one embodiment of the present invention.
- the wafer prober station 1 includes a chuck 100 for loading a wafer W, a chuck transfer device 200, a probe device 300, a pressure sensor 400, and a control device 500. ).
- the wafer prober station having the above-described configuration overdrives the chuck while the wafer on the chuck and the probe card are aligned to bring the probe electrode of the probe card into contact with the contact electrode of the wafer.
- the wafer prober station according to the present invention is able to compensate for the unwanted movement of the chuck in the XY direction during overdriving due to the limitation of the mechanical rigidity of the chuck due to the eccentric load.
- FIG. 2 is a block diagram showing the overall wafer prober station according to the present invention.
- the probe device 300 includes a probe card 310, a tester 320, and a DUT board 330.
- the probe card 310 includes a probe 312 that makes electrical contact with the wafer to inspect the wafer W.
- the tester 320 operates in conjunction with the probe card 310 and performs various programs for inspecting whether the wafer W is defective.
- the DUT board 330 serves as an interface connecting the tester 320, the probe card 310, and the tester 320.
- the chuck feeder 200 is installed on the XY axis stage 210 that moves a plane and the XY axis stage 210, and the Z axis stage 220 that moves the chuck 100 up and down. ), A rotating shaft (not shown) for rotating the chuck about the Z axis. Since the configuration and operation of the chuck transfer device 200 is well known in the art, a detailed description thereof will be omitted.
- FIGS. 2 to 4. 3 is a view showing the arrangement position of the pressure sensor of the wafer prober station according to an embodiment of the present invention
- Figure 4 shows the structure of the pressure sensor of the wafer prober station according to an embodiment of the present invention Drawing.
- the pressure sensor 400 is disposed between the Z-axis stage 220 and the XY-axis stage 210. That is, the pressure sensor 400 is installed at the lower portion of the Z-axis stage 220 which is a mechanical part supporting the chuck 100 in the vertical direction so as to sense the pressure corresponding to the inclination of the chuck 100.
- the pressure sensor 400 is installed at four corners of the coupling surface to which the XY axis stage and the Z axis stage of the chuck transfer device are coupled, respectively, and the rear corner of the left edge of the coupling surface.
- a first pressure sensor 401 and a third pressure sensor 403 are installed at the front corners, respectively, and the second pressure sensor 402 and the fourth pressure sensor at the rear corners and the front corners of the right edge of the coupling surface, respectively.
- 404 is preferably installed. More specifically with respect to the installation position of the pressure sensor, the four pressure sensor 400 is installed on the protrusions protruding in the four corners of the upper surface of the XY axis stage (210).
- the pressure sensor 400 is disposed between the grooves of the Z-axis stage 220 and the protrusions of the XY-axis stage 210 to apply a pressure value applied to four corners of the Z-axis stage 220 vertically. Sensing and outputting to the control device 500.
- the pressure sensor 400 may use a load cell, a displacement gauge, a strain gauge, a capacitor sensor, and the like.
- the load cell which is the pressure sensor 400 according to the present embodiment, includes a pressing part 4002, a measuring part 4004, and a fixing part 4006.
- the pressing unit 4002 is coupled to the lower surface of the Z-axis stage 220 to receive external pressure acting on the chuck 100 transmitted through the Z-axis stage 220.
- a strain gauge is attached to the measuring unit 4004 and outputs a value that changes according to the pressure transmitted through the pressing unit 4002.
- the strain gauge of the measuring unit 4004 performs temperature compensation for changes in the surrounding environment.
- the fixing part 4006 includes a fastening part for fixing the load cell.
- FIG. 5 is a block diagram of the control device according to the present embodiment
- FIG. 6 is a position control block diagram of the wafer prober station 1 according to the present embodiment.
- the control apparatus 500 includes a position controller 510, a transducer 520, and a feedback signal processor 530.
- the feedback signal processor 530 receives target position information (X1, Y1, Z1), and the current position information (x, y ,,) of the chuck 100 from the encoder 450 for the X, Y, and Z axes. z) is fed back, the position error values ⁇ x, ⁇ y are fed back from the transducer, and the difference between the target position information X1, Y1, Z1 and the current position information (x, y, z) of the chuck 100; Contact error correction value ( ⁇ E) is generated using the position error value and, and provided to the position controller.
- the contact position correction value ⁇ E provided to the position controller 510 is expressed by Equation 1 below.
- the position controller 510 generates a drive control signal according to the contact error correction value provided from the feedback signal processor, and controls the chuck feeder 200 according to the drive control signal to control the chuck 100 on the X and Y axes. By moving along the Z axis and the ⁇ axis, the contact position of the chuck is corrected.
- the position controller 510 may be provided with various controllers such as a PID controller capable of real-time control, an intelligent controller such as fuzzy neural, and an optimum / adaptable controller.
- the transducer 520 generates and outputs position error values ⁇ x and ⁇ y in the x and y directions using four pressure values input from the pressure sensor 400.
- the operation of the converter will be described in more detail with reference to FIG. 7. 7 is a flowchart for sequentially explaining the operation of the converter 520 of the control device according to the present invention.
- the transducer calculates left pressure information applied to the left side of the chuck by summing pressure values detected from the first pressure sensor and the third pressure sensor, and the second pressure sensor and the fourth pressure.
- the right pressure information applied to the right side of the chuck is calculated by adding the pressure values detected from the sensor
- the back pressure information applied to the rear of the chuck is calculated by adding the pressure values detected from the first pressure sensor and the second pressure sensor.
- the front pressure information applied to the front of the chuck is calculated by adding the pressure values detected from the third pressure sensor and the fourth pressure sensor.
- the pressure displacement information in the x direction of the chuck is extracted by calculating the difference value between the left pressure information and the right pressure information, and the pressure displacement information in the y direction of the chuck is calculated by calculating the difference value between the front pressure information and the rear pressure information. Is extracted (step 710).
- the position error values ⁇ x and ⁇ y in the x and y directions of the chuck are respectively estimated by multiplying the pressure displacement information in the x and y directions by predetermined conversion gain values, respectively (step 720).
- the feedback signal processor 530 receives feedback of target position information, position error values of the estimated x direction and y direction, and current position information, and calculates a contact position correction value ⁇ E using these to the position controller. to provide.
- the control device includes an emergency control routine for preventing damage to the probe 312 and the contact electrode (P) by the process of correcting the positional error of the contact according to the eccentric load of the chuck 100 can do.
- an emergency control routine for preventing damage to the probe 312 and the contact electrode (P) by the process of correcting the positional error of the contact according to the eccentric load of the chuck 100 can do.
- Emergency control routine is performed. That is, the control device 500 is the wafer prober station 1 according to the present embodiment when one or more of the deviations of the pressure values input to the transducer 520 shown in FIG. 5 is outside the predetermined effective range.
- Performs a predetermined emergency control routine is to stop the operation being performed and to lower the chuck 100 along the Z axis. This may be variously provided according to the characteristics of the equipment.
- the probe card 310 is normally installed and aligned in advance.
- the control device 500 analyzes image information photographed by a vision sensor such as a CCD camera (not shown) to determine the position information of the probes 312 and the position information of the contact electrodes 212, respectively.
- the probe card 310 and the wafer W are aligned based on the detected position information of the probes 312 and the position information of the contact electrodes 212 (S810).
- the chuck 100 reaches the position (X1, Y1, Z1) before the overdriving is performed, and the alignment of the probe card 310 and the wafer W for the overdriving is completed.
- control device 500 targets position information X1, Y1, Z1 + for the position controller 510 according to a preset overdrive amount ⁇ z for contacting the contact electrode P with the probe 312. ⁇ z) is set (S820), and the Z stage is raised by a predetermined overdrive amount ⁇ z to overdrive the chuck (S830).
- the current position information (x, y, z) of the chuck 100 detected by the encoder 450 is obtained (S840), and the pressure values detected by the pressure sensors 400 are received (step 850). ), The left, right, rear and front pressure information is calculated using the input pressure values (step 860).
- the positional position correction value for correcting the positional error of the contact by feeding back the current positional information (x, y, z) and positional error value ( ⁇ x, ⁇ y) to the target positional information (X1, Y1, Z1 + ⁇ z) ⁇ E) is calculated and a drive control signal corresponding to the calculated contact position correction value ⁇ E is generated, and the driving of the chuck feeder 200 is controlled according to the drive control signal (S890).
- the wafer prober station 1 has a non-uniform contact between the probe 312 of the probe card 310 and the contact electrode 212 of the wafer W from the pressure sensor 400.
- the overdrive control can be performed while correcting in real time the displacement of the contact between the probe 312 and the contact electrode (P) due to the inclination of the chuck.
- the wafer prober station according to the present invention can be usefully used in the field of semiconductor inspection of a wafer prober station using a probe card.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
The present invention relates to a wafer prober station. The wafer prober station comprises: a plurality of pressure sensors arranged in the lower portion of a part for supporting a chuck in a vertical direction to sense the pressure applied to the chuck; and a control device which elevates a Z-axis stage of a chuck transfer device when a wafer and a probe card are arranged on the chuck, in order to overdrive the chuck, which calculates pressure variation information for an X-axis direction and a Y-axis direction of the chuck on the basis of the pressure values inputted from the plurality of pressure sensors when the wafer and the probe card contact each other by means of the overdriving, which estimates position error values in an X-axis direction and a Y-axis direction of the contact point between a probe and a contact electrode using the pressure variation information, and which controls the movement of an X-axis stage and a Y-axis stage of the chuck transfer device using the position error values to correct the position of the contact point.
Description
본 발명은 웨이퍼 프로버 스테이션에 관한 것으로, 구체적으로는, Z축 스테이지를 오버드라이빙함에 따라 프로브카드에 의해 척에 가해지는 편심 하중으로 인하여 척에 발생하는 위치 오차를 측정하고 보정할 수 있는 웨이퍼 프로버 스테이션에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer prober station. Specifically, a wafer probe capable of measuring and correcting a position error occurring in a chuck due to an eccentric load applied to the chuck by a probe card as the overdrive of the Z-axis stage is performed. It's about a bur station.
도 1은 일반적인 웨이퍼 프로버 스테이션을 전체적으로 도시한 블록도이다. 종래의 웨이퍼 프로버 스테이션은, 도1에 도시된 바와 같이, 웨이퍼(W)를 검사하기 위한 프로브장치(11), 웨이퍼(W)가 로딩되는 척(16), 척(16)을 구동하는 척이송장치(17), 전체적인 동작을 제어하는 제어장치(18)를 구비한다. 1 is a block diagram showing a general wafer prober station as a whole. Conventional wafer prober station, as shown in Figure 1, the probe device 11 for inspecting the wafer (W), the chuck 16 loaded with the wafer (W), the chuck 16 for driving the chuck 16 The conveying apparatus 17 and the control apparatus 18 which controls the whole operation | movement are provided.
종래의 웨이퍼 프로버 스테이션(10)은 검사에 사용되는 프로브카드(14)가 웨이퍼 프로버 스테이션(10)의 DUT보드(13)에 고정된 경우 웨이퍼 프로버 스테이션은 CCD 카메라와 같은 비전센서(도시되지 않음) 등을 이용하여 웨이퍼(W) 상의 접촉전극(P)과 프로브카드의 탐침(15)의 위치를 파악하고 이 파악된 위치정보를 토대로 프로브카드(14)와 척(16)을 정렬한다. 그리고, 웨이퍼 프로버 스테이션(10)의 제어장치(18)는 이 파악된 위치정보를 토대로 척이송장치(17)를 구동하여 프로브카드(14)의 탐침(15)과 척(16)에 장착된 웨이퍼(W)의 접촉전극(P)이 검사를 위해 오버드라이빙 수행 전 서로 대면하도록 프로브카드(14)와 웨이퍼(W)를 정렬시킨다. 프로브 카드와 웨이퍼가 정렬된 상태에서, 웨이퍼 프로버 스테이션(10)의 제어장치(18)는 척을 오버드라이빙시켜, 웨이퍼(W)의 접촉전극(P)을 탐침(15)에 접촉시켜 전기적으로 연결한다. In the conventional wafer prober station 10, the probe card 14 used for inspection is fixed to the DUT board 13 of the wafer prober station 10, and the wafer prober station is a vision sensor such as a CCD camera. The position of the contact electrode P on the wafer W and the probe 15 of the probe card, and align the probe card 14 and the chuck 16 based on the determined position information. . Then, the control device 18 of the wafer prober station 10 drives the chuck feeder 17 on the basis of the determined positional information and is mounted on the probe 15 and the chuck 16 of the probe card 14. The probe card 14 and the wafer W are aligned so that the contact electrodes P of the wafer W face each other before performing overdriving for inspection. With the probe card and wafer aligned, the controller 18 of the wafer prober station 10 overdrives the chuck and contacts the probe electrode P of the wafer W to the probe 15 to electrically Connect.
그러나, 종래의 웨이퍼 프로버 스테이션(10)은 프로브카드(14)와 웨이퍼의 정렬시킴에 따라 탐침(15)과 접촉전극(P)이 서로 정밀하게 오버드라이빙 되도록 초기에 설정되어 있다. 하지만, 여러 장의 웨이퍼(W)에 대한 검사 수행과 고온의 검사환경으로 인하여 프로브카드(14) 또는 탐침(15)에 예기치 못한 변형이 발생하게 된다. 따라서, 오버드라이빙 제어를 수행하는 과정에서 탐침(15)에 의해 접촉전극(P)에 가해지는 접촉하중이 척의 위치에 따라 불균일하게 작용하게 된다. 이러한 이유로 인하여 척에 편심 하중이 가해지는 경우, 척이 편심 하중을 견디지 못하여 기구적 강성을 유지하지 못하게 되고, 그 결과 척이 원치않게 XY축 방향으로 이동하게 되는 문제점이 발생한다. 이와 같이 편심 하중에 의해 척이 XY축 방향으로 이동함에 따라 접촉전극(P)과 탐침이 정확하게 접촉하지 못하게 된다. However, the conventional wafer prober station 10 is initially set such that the probe 15 and the contact electrode P are precisely overdried with each other as the probe card 14 and the wafer are aligned. However, an unexpected deformation occurs in the probe card 14 or the probe 15 due to the inspection performed on the plurality of wafers W and the high temperature inspection environment. Therefore, the contact load applied to the contact electrode P by the probe 15 during the overdriving control is non-uniformly acting according to the position of the chuck. For this reason, when an eccentric load is applied to the chuck, the chuck cannot withstand the eccentric load and thus cannot maintain mechanical stiffness. As a result, the chuck undesirably moves in the XY axis direction. As the chuck moves in the XY axis direction by the eccentric load, the contact electrode P and the probe cannot be contacted correctly.
이러한 척(16)의 기구적 강성의 한계로 인하여 발생하는 접촉전극(P)과 탐침(15)의 접촉 상의 오류는 웨이퍼(W)의 검사 수율을 저하시킨다. 그리고, 이러한 문제는, 검사대상인 웨이퍼와 함께 프로브카드가 고집적화되고, 최단 공정으로 웨이퍼를 검사하기 위해 프로브카드가 대형화됨에 따라 더욱 심각하게 대두된다. 또한, 최근 웨이퍼의 크기가 대형화되어지고 고집적화됨에 따라, 프로브카드에 의한 접촉하중이 더욱 증가되고 더욱 정밀한 검사가 요구되어지는 현실을 고려해 볼 때, 전술한 문제점을 야기하는 척의 기구적 강성으로 인한 문제점들은 더욱 비중이 높아지고 있다.An error in contact between the contact electrode P and the probe 15 generated due to the mechanical rigidity of the chuck 16 lowers the inspection yield of the wafer W. This problem is more serious as the probe card is highly integrated with the wafer to be inspected and the probe card is enlarged to inspect the wafer in the shortest process. In addition, as the size of wafers has recently increased in size and has been highly integrated, the problem due to the stiffness of the chuck causing the above-mentioned problems is considered in view of the fact that the contact load by the probe card is further increased and more precise inspection is required. They are getting more weighted.
전술한 문제점을 해결하기 위한 본 발명의 목적은, 고집적·대형화된 프로브카드를 이용한 웨이퍼의 검사를 위한 오버드라이빙 과정 중에 척의 기구적 강성의 한계로 인하여 발생하는 탐침과 접촉전극의 접점의 어긋남을 기구적 설계 변경없이 소프트웨어적으로 보완할 수 있는 웨이퍼 프로버 스테이션을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION An object of the present invention for solving the above problems is a mechanism for misaligning a contact between a probe and a contact electrode generated due to a limitation of mechanical stiffness of a chuck during an overdriving process for inspecting a wafer using a highly integrated and large-scale probe card. It is an object of the present invention to provide a wafer prober station that can be complemented in software without any design changes.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 제1 특징은, 웨이퍼를 로딩하는 척, 상기 척을 지지하여 이송하는 척이송장치, 상기 웨이퍼를 검사하기 위해 정렬 및 설치가 완료된 프로브카드를 포함하는 웨이퍼 프로버 스테이션에 관한 것으로, 상기 웨이퍼 프로버 스테이션은, 상기 척을 수직방향으로 지지하는 부분의 하부에 설치되어 척에 가해지는 압력을 감지하는 다수 개의 압력 센서; 및 상기 척 위의 웨이퍼와 프로브카드가 정렬된 상태에서 상기 척이송장치의 Z축 스테이지를 상승시켜 척을 오버드라이빙시키며, 오버 드라이빙에 의해 상기 웨이퍼와 상기 프로브카드가 접촉되면, 상기 다수개의 압력센서로부터 감지된 압력값들을 기초로 하여 상기 척의 x 방향 및 y 방향에 대한 압력 변위 정보들을 계산하고, 상기 압력 변위 정보들을 이용하여 탐침과 접촉전극의 접점에 대한 x 방향 및 y 방향의 위치 오차값들을 추정하고, 상기 위치 오차값들을 이용하여 상기 척이송장치의 XY축 스테이지의 이동을 제어하여 접점의 위치를 보정하는 제어 장치;를 구비한다. According to the first aspect of the present invention for achieving the above technical problem, a chuck for loading a wafer, a chuck transfer device for supporting and transporting the chuck, including a probe card that has been aligned and installed to inspect the wafer A wafer prober station, wherein the wafer prober station includes: a plurality of pressure sensors installed at a lower portion of a portion supporting the chuck in a vertical direction to sense pressure applied to the chuck; And overdriving the chuck by raising the Z-axis stage of the chuck transfer apparatus in a state where the wafer and the probe card on the chuck are aligned, and when the wafer and the probe card are contacted by overdriving, the plurality of pressure sensors The pressure displacement information of the chuck in the x direction and the y direction is calculated based on the detected pressure values, and the position error values of the x direction and the y direction with respect to the contact point of the probe and the contact electrode are calculated using the pressure displacement information. And a control device for estimating and correcting the position of the contact point by controlling the movement of the XY axis stage of the chuck feeder using the position error values.
전술한 특징의 웨이퍼 프로버 스테이션에 있어서, 상기 압력센서들은 척이송장치의 XY축 스테이지와 Z축 스테이지가 결합되는 결합면의 4개의 귀퉁이들에 각각 설치되는데, 상기 결합면의 좌측 모서리의 후방 귀퉁이 및 전방 귀퉁이에 각각 제1 압력 센서 및 제3 압력 센서가 설치되고, 상기 결합면의 우측 모서리의 후방 귀퉁이 및 전방 귀퉁이에 각각 제2 압력 센서 및 제3 압력 센서가 설치되며, In the wafer prober station of the above-mentioned feature, the pressure sensors are respectively installed at four corners of the mating surface to which the XY axis stage and the Z axis stage of the chuck feeder are coupled, and the rear corner of the left edge of the mating surface. And a first pressure sensor and a third pressure sensor at the front corners, respectively, and a second pressure sensor and a third pressure sensor at the rear corners and the front corners of the right corner of the coupling surface, respectively.
상기 제어장치는, 상기 제1압력센서 및 상기 제3압력센서로부터 감지된 압력값들을 이용하여 상기 척의 좌측에 가해지는 좌측 압력 정보를 계산하고, 상기 제2압력센서 및 상기 제4압력센서로부터 감지된 압력값들을 이용하여 상기 척의 우측에 가해지는 우측 압력 정보를 계산하며, 상기 제1압력센서 및 상기 제2압력센서로부터 감지된 압력값들을 이용하여 상기 척의 후방에 가해지는 후방 압력 정보를 계산하고, 상기 제3압력센서 및 상기 제4압력센서로부터 감지된 압력값들을 이용하여 상기 척의 전방에 가해지는 전방 압력 정보를 계산하는 것이 바람직하다. The control device calculates left pressure information applied to the left side of the chuck by using the pressure values sensed by the first pressure sensor and the third pressure sensor, and detects from the second pressure sensor and the fourth pressure sensor. Calculate right pressure information applied to the right side of the chuck by using the pressure values, calculate rear pressure information applied to the rear of the chuck by using the pressure values detected from the first pressure sensor and the second pressure sensor, and Preferably, the front pressure information applied to the front of the chuck is calculated using the pressure values detected from the third pressure sensor and the fourth pressure sensor.
전술한 특징에 따른 웨이퍼 프로버 스테이션에 있어서, 상기 제어장치는 상기 좌측 압력 정보와 상기 우측 압력 정보의 차이값을 계산하여 척의 x방향의 압력 변위 정보를 추출하고, 상기 전방 압력 정보와 상기 후방 압력 정보의 차이값을 계산하여 척의 y방향의 압력 변위 정보를 추출하며, 상기 x 방향 및 y 방향의 압력 변위 정보들에 사전에 정해진 변환이득값들을 각각 곱하여 상기 척의 x방향 및 y방향에 대한 위치오차값들을 각각 추정하는 것이 바람직하다. In the wafer prober station according to the above features, the control device calculates a difference value between the left pressure information and the right pressure information to extract pressure displacement information in the x direction of the chuck, and the front pressure information and the rear pressure. Calculate the difference value of the information to extract the pressure displacement information in the y direction of the chuck, and the position error in the x direction and the y direction of the chuck by multiplying the pressure displacement information in the x direction and the y direction by a predetermined conversion gain value, respectively. It is desirable to estimate the values respectively.
본 발명의 다른 특징에 따른 제어 방법은, 웨이퍼를 로딩하는 척, 상기 척을 지지하여 이송하는 척이송장치, 상기 웨이퍼를 검사하기 위해 설치된 프로브카드, 상기 척의 수직방향을 지지하는 부분의 하부에 설치되는 다수개의 압력센서 및 이들을 제어하는 제어장치를 구비하는 웨이퍼 프로버 스테이션에서 상기 제어장치에 의한 제어방법에 관한 것으로서, (a) 척위의 웨이퍼와 프로브카드가 정렬된 상태에서 상기 척이송장치의 Z축스테이지를 구동하여 오버 드라이빙시키는 단계; (b) 상기 다수개의 압력센서로부터 감지된 압력값들을 기초로 하여 좌측 압력 정보, 우측 압력 정보, 후방 압력 정보 및 전방 압력 정보를 각각 계산하는 단계; (d) 상기 좌측, 우측, 후방 및 전방 압력 정보를 이용하여 상기 척의 x방향 및 y 방향에 대한 압력 변위 정보들을 각각 계산하는 단계; (e) 상기 압력 변위 정보들을 이용하여 탐침과 접촉 전극의 접점 위치에 대한 x 방향 및 y 방향의 위치 오차값들을 추정하는 단계; (f) 상기 x 방향 및 y 방향에 대한 위치오차값들을 이용하여 상기 척이송장치의 XY축스테이지의 이동을 제어하여 접점 위치를 보정하는 단계;를 구비한다. According to another aspect of the present invention, a control method includes: a chuck for loading a wafer, a chuck transfer device for supporting and transferring the chuck, a probe card installed to inspect the wafer, and a lower portion of the chuck supporting the vertical direction of the chuck; A method of controlling by the controller in a wafer prober station having a plurality of pressure sensors and a control device for controlling the same, the method comprising: (a) Z of the chuck feeder with the wafer on the chuck and the probe card aligned; Driving and driving the shaft stage; (b) calculating left pressure information, right pressure information, rear pressure information, and front pressure information based on pressure values detected from the plurality of pressure sensors, respectively; (d) calculating pressure displacement information for the x and y directions of the chuck, respectively, using the left, right, rear and front pressure information; (e) estimating position error values in the x and y directions with respect to the contact position of the probe and the contact electrode using the pressure displacement information; (f) controlling the movement of the XY axis stage of the chuck feeder using position error values in the x and y directions to correct the contact position.
전술한 특징에 따른 제어 방법에 있어서, 상기 (d)단계의 x 방향에 대한 압력 변위 정보는 좌측 압력 정보와 우측 압력 정보의 차이값으로 이루어지며, y 방향에 대한 압력 변위 정보는 전방 압력 정보와 후방 압력 정보의 차이값으로 이루어지며, 상기 (e)단계의 x 방향 및 y 방향에 대한 위치오차값들은 각각 x, y 방향의 압력 변위 정보와 사전에 설정된 변환 이득값들을 곱하여 계산되는 것이 바람직하다. In the control method according to the above feature, the pressure displacement information in the x direction of step (d) is composed of the difference between the left pressure information and the right pressure information, the pressure displacement information in the y direction is the front pressure information and The positional error values in the x and y directions of the step (e) are preferably calculated by multiplying the pressure displacement information in the x and y directions by the preset conversion gain values. .
본 발명에 따른 웨이퍼 프로버 스테이션은, Z축스테이지와 XY축스테이지 사이에 배치되는 다수 개의 압력센서들로부터 프로브카드의 탐침과 웨이퍼의 접촉전극의 접촉시 척에 가해지는 압력값들을 감지하고, 감지된 압력값들을 오버드라이빙 제어의 새로운 피드백 변수로서 이용하게 된다. 그 결과, 척에 불균일하게 가해지는 편심하중으로 인하여 야기되는 탐침과 접촉전극의 접점 위치의 어긋남을 척이송장치의 기구적 설계 변경 없이 소프트웨어적으로 보정함으로써, 저렴하고 용이하게 웨이퍼 검사의 수율을 향상시킬 수 있다.The wafer prober station according to the present invention detects and detects pressure values applied to the chuck when the probe of the probe card and the contact electrode of the wafer are contacted by a plurality of pressure sensors disposed between the Z axis stage and the XY axis stage. The used pressure values are used as a new feedback variable for overdriving control. As a result, the deviation of the contact position between the probe and the contact electrode caused by the eccentric load applied unevenly to the chuck is compensated by software without changing the mechanical design of the chuck feeder, thereby improving the wafer inspection yield easily and inexpensively. You can.
특히, 본 발명에 따른 웨이퍼 프로버 스테이션은, 최근 대형화된 프로브카드에 의한 접촉하중의 증가에 효과적으로 대응할 수 있는 강성을 가진 척을 구비함으로써 웨이퍼 검사의 수율을 향상시킬 수 있다. In particular, the wafer prober station according to the present invention can improve the yield of wafer inspection by having a chuck having rigidity that can effectively cope with an increase in contact load caused by a recently enlarged probe card.
도 1은 종래의 웨이퍼 프로버 스테이션의 블록도이다1 is a block diagram of a conventional wafer prober station.
도 2는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버 스테이션의 블록도이다.2 is a block diagram of a wafer prober station in accordance with a preferred embodiment of the present invention.
도 3는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버 스테이션의 압력센서의 배치 위치를 표시한 도면이다.3 is a view showing the arrangement position of the pressure sensor of the wafer prober station in accordance with a preferred embodiment of the present invention.
도 4은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버 스테이션의 압력센서의 구조를 도시한 도면이다.4 is a diagram illustrating a structure of a pressure sensor of a wafer prober station according to an exemplary embodiment of the present invention.
도 5는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버 스테이션의 제어장치의 블록도이다.5 is a block diagram of a controller of a wafer prober station according to a preferred embodiment of the present invention.
도 6는 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버 스테이션의 위치제어블록도이다. 6 is a position control block diagram of a wafer prober station in accordance with a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버 스테이션의 제어 장치의 변환기의 동작을 순차적으로 설명하는 흐름도이다.7 is a flowchart sequentially illustrating the operation of the transducer of the control device of the wafer prober station according to the preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 실시예에 따른 웨이퍼 프로버 스테이션의 제어 절차도이다.8 is a control flowchart of a wafer prober station according to a preferred embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
1, 10 : 웨이퍼 프로버 스테이션 1, 10: wafer prober station
100 : 척100: Chuck
200 : 척이송장치 200: chuck feeder
300 : 프로브장치300: probe device
400 : 압력센서 400: pressure sensor
500 : 제어장치500 control device
510 : 위치제어기 510: position controller
520 : 변환기520: Converter
530 : 피드백 신호 처리부530: feedback signal processor
본 발명은, 웨이퍼를 로딩하는 척, 상기 척을 지지하여 이송하는 척이송장치, 상기 웨이퍼를 검사하기 위해 정렬 및 설치가 완료된 프로브카드를 포함하는 웨이퍼 프로버 스테이션에 관한 것으로, 상기 웨이퍼 프로버 스테이션은, 상기 척을 수직방향으로 지지하는 부분의 하부에 설치되어 척에 가해지는 압력을 감지하는 다수 개의 압력 센서; 및 상기 척 위의 웨이퍼와 프로브카드가 정렬된 상태에서 상기 척이송장치의 Z축 스테이지를 상승시켜 척을 오버드라이빙시키며, 오버 드라이빙에 의해 상기 웨이퍼와 상기 프로브카드가 접촉되면, 상기 다수개의 압력센서로부터 감지된 압력값들을 기초로 하여 상기 척의 x 방향 및 y 방향에 대한 압력 변위 정보들을 계산하고, 상기 압력 변위 정보들을 이용하여 탐침과 접촉전극의 접점에 대한 x 방향 및 y 방향의 위치 오차값들을 추정하고, 상기 위치 오차값들을 이용하여 상기 척이송장치의 XY축 스테이지의 이동을 제어하여 접점의 위치를 보정하는 제어 장치;를 구비한다. The present invention relates to a wafer prober station including a chuck for loading a wafer, a chuck transfer device for supporting and transferring the chuck, and a probe card that is aligned and installed to inspect the wafer. The apparatus may include a plurality of pressure sensors installed at a lower portion of the portion supporting the chuck in a vertical direction to sense pressure applied to the chuck; And overdriving the chuck by raising the Z-axis stage of the chuck transfer apparatus in a state where the wafer and the probe card on the chuck are aligned, and when the wafer and the probe card are contacted by overdriving, the plurality of pressure sensors The pressure displacement information of the chuck in the x direction and the y direction is calculated based on the detected pressure values, and the position error values of the x direction and the y direction with respect to the contact point of the probe and the contact electrode are calculated using the pressure displacement information. And a control device for estimating and correcting the position of the contact point by controlling the movement of the XY axis stage of the chuck feeder using the position error values.
이하, 첨부된 도면들을 참조하여 본 발명의 일 실시예에 따른 웨이퍼 프로버 스테이션에 대하여 구체적으로 설명한다.Hereinafter, a wafer prober station according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2를 참조하여 본 발명의 일 실시예에 따른 웨이퍼 프로버 스테이션에 대하여 설명한다. 도 2는 본 발명의 일 실시예에 따른 웨이퍼 프로버 스테이션의 블록도이다.A wafer prober station according to an embodiment of the present invention will be described with reference to FIG. 2. 2 is a block diagram of a wafer prober station in accordance with one embodiment of the present invention.
도 2에 도시된 바와 같이 웨이퍼 프로버 스테이션(1)은 웨이퍼(W)를 로딩하는 척(100), 척이송장치(200), 프로브장치(300), 압력센서(400), 제어장치(500)를 구비한다. 전술한 구성을 갖는 웨이퍼 프로버 스테이션은 척위의 웨이퍼와 프로브 카드가 정렬된 상태에서 척을 오버드라이빙시켜 웨이퍼의 접촉 전극과 프로브 카드의 탐침을 접촉시키게 된다. 본 발명에 따른 웨이퍼 프로버 스테이션은 편심하중에 의한 척의 기구적 강성의 한계로 인하여 오버드라이빙시에 척이 XY방향으로 원치않게 이동하는 것을 보정할 수 있게 된다. As shown in FIG. 2, the wafer prober station 1 includes a chuck 100 for loading a wafer W, a chuck transfer device 200, a probe device 300, a pressure sensor 400, and a control device 500. ). The wafer prober station having the above-described configuration overdrives the chuck while the wafer on the chuck and the probe card are aligned to bring the probe electrode of the probe card into contact with the contact electrode of the wafer. The wafer prober station according to the present invention is able to compensate for the unwanted movement of the chuck in the XY direction during overdriving due to the limitation of the mechanical rigidity of the chuck due to the eccentric load.
도 2 내지 도 7을 참조하여 본 발명에 따른 웨이퍼 프로버 스테이션(1)의 각 구성에 대해 구체적으로 설명한다. With reference to FIGS. 2-7, each structure of the wafer prober station 1 which concerns on this invention is demonstrated concretely.
도 2는 본 발명에 따른 웨이퍼 프로버 스테이션을 전체적으로 도시한 블록도이다. 프로브 장치(300)는, 도 2에 도시된 바와 같이, 프로브카드(310), 테스터(320), DUT보드(330)를 구비한다. 프로브카드(310)는 웨이퍼(W)를 검사하기 위해 웨이퍼와 전기적인 접촉을 수행하는 탐침(312)을 구비하고 있다. 테스터(320)는 프로브카드(310)와 연동되어 동작하며 웨이퍼(W)의 불량여부를 검사하기 위한 다양한 프로그램을 수행한다. DUT보드(330)는 테스터(320)와 프로브카드(310)와 테스터(320)를 연결시켜 주는 인터페이스 역할을 수행한다. Figure 2 is a block diagram showing the overall wafer prober station according to the present invention. As illustrated in FIG. 2, the probe device 300 includes a probe card 310, a tester 320, and a DUT board 330. The probe card 310 includes a probe 312 that makes electrical contact with the wafer to inspect the wafer W. The tester 320 operates in conjunction with the probe card 310 and performs various programs for inspecting whether the wafer W is defective. The DUT board 330 serves as an interface connecting the tester 320, the probe card 310, and the tester 320.
척이송장치(200)는, 도 2에 도시된 바와 같이, 평면을 움직이는 XY축스테이지(210), XY축스테이지(210)의 상부에 설치되어 척(100)을 상하로 움직이는 Z축스테이지(220), 척을 Z축을 기준으로 하여 회전시키는 회전축(도시되지 않음)으로 이루어져 있다. 이러한 척이송장치(200)의 구성 및 동작에 대해서는 공지기술이므로 구체적 설명은 생략한다.As shown in FIG. 2, the chuck feeder 200 is installed on the XY axis stage 210 that moves a plane and the XY axis stage 210, and the Z axis stage 220 that moves the chuck 100 up and down. ), A rotating shaft (not shown) for rotating the chuck about the Z axis. Since the configuration and operation of the chuck transfer device 200 is well known in the art, a detailed description thereof will be omitted.
이하에서는, 본 발명의 일 실시예에 따른 압력센서(400)에 도 2 내지 도 4를 참조하여 설명한다. 도 3은 본 발명의 일 실시예에 따른 웨이퍼 프로버 스테이션의 압력센서의 배치 위치를 도시한 도면이고, 도 4는 본 발명의 일 실시예에 따른 웨이퍼 프로버 스테이션의 압력센서의 구조를 도시한 도면이다. Hereinafter, the pressure sensor 400 according to an embodiment of the present invention will be described with reference to FIGS. 2 to 4. 3 is a view showing the arrangement position of the pressure sensor of the wafer prober station according to an embodiment of the present invention, Figure 4 shows the structure of the pressure sensor of the wafer prober station according to an embodiment of the present invention Drawing.
도 2 내지 도 4에 도시된 바와 같이, 압력센서(400)는 Z축스테이지(220)와 XY축스테이지(210) 사이에 배치된다. 즉, 압력센서(400)는 척(100)의 기울어짐에 대응하는 압력을 감지하도록 척(100)을 수직방향으로 지지하는 기구적 부분인 Z축스테이지(220)의 하부에 설치된다. As shown in FIGS. 2 to 4, the pressure sensor 400 is disposed between the Z-axis stage 220 and the XY-axis stage 210. That is, the pressure sensor 400 is installed at the lower portion of the Z-axis stage 220 which is a mechanical part supporting the chuck 100 in the vertical direction so as to sense the pressure corresponding to the inclination of the chuck 100.
압력센서(400)는, 도 3에 도시된 바와 같이, 척이송장치의 XY축 스테이지와 Z축 스테이지가 결합되는 결합면의 4개의 귀퉁이들에 각각 설치되는데, 상기 결합면의 좌측 모서리의 후방 귀퉁이 및 전방 귀퉁이에 각각 제1 압력 센서(401) 및 제3 압력 센서(403)가 설치되고, 상기 결합면의 우측 모서리의 후방 귀퉁이 및 전방 귀퉁이에 각각 제2 압력 센서(402) 및 제4 압력 센서(404)가 설치되는 것이 바람직하다. 압력센서의 설치 위치에 대하여 보다 구체적으로 설명하면, 4개의 압력센서(400)는 XY축스테이지(210) 상부면의 4개의 귀퉁이들에 돌출 형성된 돌출부들에 설치된다. 이에 대응하여 Z축스테이지(220) 하부면의 4개의 귀퉁이에는 제1 내지 제4압력센서(401, 402, 403, 404)가 설치된 돌출부들이 각각 인입될 수 있게 하는 홈들을 구비한다. 즉, 압력센서(400)는 Z축스테이지(220)의 각 홈들과 상기 XY축스테이지(210)의 돌출부들 사이에 배치되어 Z축스테이지(220)의 4개의 귀퉁이에 수직으로 가해지는 압력값을 감지하여 제어장치(500)로 출력한다. 여기서, 압력센서(400)는 로드셀, 변위계, 스트레인 게이지, 캐패시터 센서등을 사용할 수 있다.As shown in FIG. 3, the pressure sensor 400 is installed at four corners of the coupling surface to which the XY axis stage and the Z axis stage of the chuck transfer device are coupled, respectively, and the rear corner of the left edge of the coupling surface. And a first pressure sensor 401 and a third pressure sensor 403 are installed at the front corners, respectively, and the second pressure sensor 402 and the fourth pressure sensor at the rear corners and the front corners of the right edge of the coupling surface, respectively. 404 is preferably installed. More specifically with respect to the installation position of the pressure sensor, the four pressure sensor 400 is installed on the protrusions protruding in the four corners of the upper surface of the XY axis stage (210). Correspondingly, four corners of the lower surface of the Z-axis stage 220 are provided with grooves through which protrusions provided with the first to fourth pressure sensors 401, 402, 403, and 404 are respectively inserted. That is, the pressure sensor 400 is disposed between the grooves of the Z-axis stage 220 and the protrusions of the XY-axis stage 210 to apply a pressure value applied to four corners of the Z-axis stage 220 vertically. Sensing and outputting to the control device 500. Here, the pressure sensor 400 may use a load cell, a displacement gauge, a strain gauge, a capacitor sensor, and the like.
도 4에 도시된 바와 같이, 본 실시예에 따른 압력센서(400)인 로드셀은 가압부(4002), 측정부(4004), 고정부(4006)로 구성된다. 가압부(4002)는 Z축스테이지(220)의 하부면과 체결되어 Z축스테이지(220)를 통해 전달되는 척(100)에 작용하는 외부압력을 전달받는다. 측정부(4004)에는 스트레인 게이지가 부착되어 가압부(4002)를 통해 전달되는 압력에 따라 변화하는 값을 출력한다. 또한 측정부(4004)의 스트레인 게이지는 주변 환경 변화에 대한 온도 보상을 이행한다. 고정부(4006)는 로드셀의 고정을 위한 체결부를 구비한다.As shown in FIG. 4, the load cell, which is the pressure sensor 400 according to the present embodiment, includes a pressing part 4002, a measuring part 4004, and a fixing part 4006. The pressing unit 4002 is coupled to the lower surface of the Z-axis stage 220 to receive external pressure acting on the chuck 100 transmitted through the Z-axis stage 220. A strain gauge is attached to the measuring unit 4004 and outputs a value that changes according to the pressure transmitted through the pressing unit 4002. In addition, the strain gauge of the measuring unit 4004 performs temperature compensation for changes in the surrounding environment. The fixing part 4006 includes a fastening part for fixing the load cell.
이하, 제어장치(500)에 대해서 도5 및 도6을 참조하여 구체적으로 설명한다. 도 5는 본 실시예에 따른 제어장치의 블록도이고, 도 6은 본 실시예에 따른 웨이퍼 프로버 스테이션(1)의 위치제어블록도이다. 본 실시예에 따른 제어장치(500)는, 도5에 도시된 바와 같이, 위치제어기(510), 변환기(520) 및 피드백 신호 처리부(530)를 포함한다. Hereinafter, the control device 500 will be described in detail with reference to FIGS. 5 and 6. 5 is a block diagram of the control device according to the present embodiment, and FIG. 6 is a position control block diagram of the wafer prober station 1 according to the present embodiment. As shown in FIG. 5, the control apparatus 500 according to the present exemplary embodiment includes a position controller 510, a transducer 520, and a feedback signal processor 530.
상기 피드백 신호 처리부(530)는 목표 위치정보(X1,Y1,Z1)를 입력받고, X축, Y축, Z축에 대한 엔코더(450)로부터 척(100)의 현재 위치정보(x,y,z) 를 피드백받고, 변환기로부터 위치 오차값들(Δx, Δy)을 피드백받고, 목표 위치정보(X1,Y1,Z1)와 척(100)의 현재 위치정보(x,y,z)와의 차이값, 및 위치 오차값을 이용하여 접점오차보정값(ΔE)을 생성하여 위치 제어기로 제공한다. 여기서, 위치제어기(510)로 제공되는 접점위치보정값(ΔE)은 수학식 1과 같다.The feedback signal processor 530 receives target position information (X1, Y1, Z1), and the current position information (x, y ,,) of the chuck 100 from the encoder 450 for the X, Y, and Z axes. z) is fed back, the position error values Δx, Δy are fed back from the transducer, and the difference between the target position information X1, Y1, Z1 and the current position information (x, y, z) of the chuck 100; Contact error correction value (ΔE) is generated using the position error value and, and provided to the position controller. Here, the contact position correction value ΔE provided to the position controller 510 is expressed by Equation 1 below.
상기 위치제어기(510)는 피드백 신호 처리부로부터 제공되는 접점오차보정값에 따라 구동제어신호를 생성하고, 구동제어신호에 따라 척이송장치(200)를 제어하여 척(100)을 X축, Y축, Z축, θ축을 따라 이송시킴으로써, 척의 접점위치가 어긋남을 보정하게 된다. 여기서, 위치제어기(510)는 실시간 제어가 가능한 PID 제어기, 퍼지·뉴럴 등의 지능형 제어기, 최적·적응 제어기 등 다양한 제어기로 마련될 수 있다.The position controller 510 generates a drive control signal according to the contact error correction value provided from the feedback signal processor, and controls the chuck feeder 200 according to the drive control signal to control the chuck 100 on the X and Y axes. By moving along the Z axis and the θ axis, the contact position of the chuck is corrected. Here, the position controller 510 may be provided with various controllers such as a PID controller capable of real-time control, an intelligent controller such as fuzzy neural, and an optimum / adaptable controller.
상기 변환기(520)는 압력센서(400)로부터 입력되는 4개의 압력값들을 이용하여 x 방향 및 y 방향에 대한 위치 오차값(Δx, Δy)을 생성하여 출력한다. 상기 변환기의 동작을 도 7을 참조하여 보다 구체적으로 설명한다. 도 7은 본 발명에 따른 제어 장치의 변환기(520)의 동작을 순차적으로 설명하는 흐름도이다. The transducer 520 generates and outputs position error values Δx and Δy in the x and y directions using four pressure values input from the pressure sensor 400. The operation of the converter will be described in more detail with reference to FIG. 7. 7 is a flowchart for sequentially explaining the operation of the converter 520 of the control device according to the present invention.
도 7을 참조하면, 상기 변환기는 상기 제1압력센서 및 상기 제3압력센서로부터 감지된 압력값들을 합하여 상기 척의 좌측에 가해지는 좌측 압력 정보를 계산하고, 상기 제2압력센서 및 상기 제4압력센서로부터 감지된 압력값들을 합하여 척의 우측에 가해지는 우측 압력 정보를 계산하며, 상기 제1압력센서 및 상기 제2압력센서로부터 감지된 압력값들을 합하여 상기 척의 후방에 가해지는 후방 압력 정보를 계산하고, 상기 제3압력센서 및 상기 제4압력센서로부터 감지된 압력값들을 합하여 상기 척의 전방에 가해지는 전방 압력 정보를 계산한다(단계 700). 다음, 상기 좌측 압력 정보와 상기 우측 압력 정보의 차이값을 계산하여 척의 x방향의 압력 변위 정보를 추출하고, 상기 전방 압력 정보와 상기 후방 압력 정보의 차이값을 계산하여 척의 y방향의 압력 변위 정보를 추출한다(단계 710). 다음, 상기 x 방향 및 y 방향의 압력 변위 정보들에 사전에 정해진 변환이득값들을 각각 곱하여 상기 척의 x방향 및 y방향에 대한 위치오차값들(Δx, Δy)을 각각 추정한다(단계 720). Referring to FIG. 7, the transducer calculates left pressure information applied to the left side of the chuck by summing pressure values detected from the first pressure sensor and the third pressure sensor, and the second pressure sensor and the fourth pressure. The right pressure information applied to the right side of the chuck is calculated by adding the pressure values detected from the sensor, and the back pressure information applied to the rear of the chuck is calculated by adding the pressure values detected from the first pressure sensor and the second pressure sensor. In operation 700, the front pressure information applied to the front of the chuck is calculated by adding the pressure values detected from the third pressure sensor and the fourth pressure sensor. Next, the pressure displacement information in the x direction of the chuck is extracted by calculating the difference value between the left pressure information and the right pressure information, and the pressure displacement information in the y direction of the chuck is calculated by calculating the difference value between the front pressure information and the rear pressure information. Is extracted (step 710). Next, the position error values Δx and Δy in the x and y directions of the chuck are respectively estimated by multiplying the pressure displacement information in the x and y directions by predetermined conversion gain values, respectively (step 720).
상기 피드백 신호 처리부(530)는 목표 위치정보, 상기 추정된 x 방향 및 y 방향에 대한 위치 오차값들, 현재 위치정보들을 피드백받고, 이들을 이용하여 접점위치보정값(ΔE)를 계산하여 위치 제어기로 제공한다.The feedback signal processor 530 receives feedback of target position information, position error values of the estimated x direction and y direction, and current position information, and calculates a contact position correction value ΔE using these to the position controller. to provide.
한편, 본 실시예에 따른 제어 장치는 척(100)의 편심하중에 따른 접점의 위치오차를 보정하는 과정에 의하여 탐침(312) 및 접촉전극(P)이 손상되는 것을 막기 위한 비상제어루틴을 포함할 수 있다. 척(100)에 가해지는 압력값들의 편차들 중 하나이상이 사전에 설정된 유효범위를 벗어난 경우, 본 실시예에 따른 오버드라이빙 제어동작에 의해 접점의 위치오차의 자동 보정이 불가능한 것으로 판단하고 전술한 비상제어루틴을 수행된다. 즉, 제어장치(500)는 도5에 도시된 변환기(520)로 입력된 압력값들의 편차들 중 하나 이상이 사전에 정해진 유효범위를 벗어난 경우, 본 실시예에 따른 웨이퍼 프로버 스테이션(1)은 사전에 정해진 비상제어루틴을 수행한다. 비상제어루틴으로서 일반적으로 고려할 수 있는 것은 수행 중인 동작을 정지시키고 척(100)을 Z축을 따라 하강시키는 것이다. 이에 대해서는 장비의 특성에 따라 다양하게 마련될 수 있다.On the other hand, the control device according to the present embodiment includes an emergency control routine for preventing damage to the probe 312 and the contact electrode (P) by the process of correcting the positional error of the contact according to the eccentric load of the chuck 100 can do. When at least one of the deviations of the pressure values applied to the chuck 100 is outside the preset effective range, it is determined that the automatic correction of the position error of the contact is not possible by the overdriving control operation according to the present embodiment. Emergency control routine is performed. That is, the control device 500 is the wafer prober station 1 according to the present embodiment when one or more of the deviations of the pressure values input to the transducer 520 shown in FIG. 5 is outside the predetermined effective range. Performs a predetermined emergency control routine. A general consideration as an emergency control routine is to stop the operation being performed and to lower the chuck 100 along the Z axis. This may be variously provided according to the characteristics of the equipment.
이하, 도 7을 참조하여 본 발명의 일 실시예에 따른 웨이퍼 프로버 스테이션(1)의 제어 장치의 동작을 설명한다. 프로브카드(310)는 사전에 설치 및 정렬이 정상적으로 완료된 상태이다.Hereinafter, the operation of the control apparatus of the wafer prober station 1 according to an embodiment of the present invention will be described with reference to FIG. 7. The probe card 310 is normally installed and aligned in advance.
먼저, 제어장치(500)는 CCD카메라(도시되지 않음)와 같은 비전센서에 의해 촬영된 화상정보를 분석하여 탐침(312)들의 위치정보 및 접촉전극(212)들의 위치정보를 각각 파악하고, 이 파악된 탐침(312)들의 위치정보 및 접촉전극(212)들의 위치정보를 기초로 하여 프로브카드(310)와 웨이퍼(W)를 정렬시킨다(S810). 이에 의해, 척(100)은 오버드라이빙이 수행되기 전의 위치인 (X1,Y1,Z1)에 도달하고, 오버드라이빙 수행을 위한 프로브카드(310)와 웨이퍼(W)의 정렬이 완료된다.First, the control device 500 analyzes image information photographed by a vision sensor such as a CCD camera (not shown) to determine the position information of the probes 312 and the position information of the contact electrodes 212, respectively. The probe card 310 and the wafer W are aligned based on the detected position information of the probes 312 and the position information of the contact electrodes 212 (S810). As a result, the chuck 100 reaches the position (X1, Y1, Z1) before the overdriving is performed, and the alignment of the probe card 310 and the wafer W for the overdriving is completed.
다음, 제어장치(500)는 탐침(312)에 접촉전극(P)을 접촉시키기 위하여 사전에 설정된 오버드라이브량(Δz)에 따라 위치제어기(510)에 대한 목표 위치정보(X1,Y1,Z1+Δz)를 설정하고(S820), 사전에 정해진 오버드라이브량(Δz)만큼 Z스테이지를 상승시켜 척을 오버드라이빙시킨다(S830). Next, the control device 500 targets position information X1, Y1, Z1 + for the position controller 510 according to a preset overdrive amount Δz for contacting the contact electrode P with the probe 312. Δz) is set (S820), and the Z stage is raised by a predetermined overdrive amount Δz to overdrive the chuck (S830).
다음, 엔코더(450)에 의해 감지된 척(100)의 현재 위치정보(x,y,z)를 획득하고(S840), 각 압력센서(400)에 의해 감지된 압력값들을 입력받고(단계 850), 입력된 압력값들을 이용하여 좌측, 우측, 후방, 전방 압력 정보를 계산한다(단계 860). 다음, 상기 압력값들의 편차 중 하나 이상이 사전에 설정된 유효범위를 벗어나는지 여부를 판단하고(단계 870), 이 판단 결과 유효범위를 벗어난 것으로 판단되면 제어장치(500)는 사전에 마련된 비상제어루틴을 수행한다(단계 872). 그렇지 아니한 경우, 상기 좌측, 우측, 후방, 전방 압력 정보를 이용하여 위치제어기(510)의 피드백변수로 이용되는 x 방향 및 y 방향에 대한 위치 오차값들(Δx,Δy)을 계산하고(단계 880), 목표 위치정보(X1,Y1,Z1+Δz)에 현재 위치정보(x,y,z) 및 위치오차값(Δx,Δy)을 피드백하여 접점의 위치오차를 보정하기 위한 접점위치보정값(ΔE)을 계산하고 이 계산된 접점위치보정값(ΔE)에 대응하는 구동제어신호를 생성하고, 구동제어신호에 따라 척이송장치(200)의 구동을 제어한다(S890). Next, the current position information (x, y, z) of the chuck 100 detected by the encoder 450 is obtained (S840), and the pressure values detected by the pressure sensors 400 are received (step 850). ), The left, right, rear and front pressure information is calculated using the input pressure values (step 860). Next, it is determined whether at least one of the deviations of the pressure values is out of the preset valid range (step 870), and if it is determined that the deviation is out of the valid range, the control device 500 prepares the emergency control routine. Perform step 872. Otherwise, the position error values Δx and Δy for the x and y directions used as feedback variables of the position controller 510 are calculated using the left, right, rear and front pressure information (step 880). ), The positional position correction value for correcting the positional error of the contact by feeding back the current positional information (x, y, z) and positional error value (Δx, Δy) to the target positional information (X1, Y1, Z1 + Δz) ΔE) is calculated and a drive control signal corresponding to the calculated contact position correction value ΔE is generated, and the driving of the chuck feeder 200 is controlled according to the drive control signal (S890).
이와 같이, 본 발명의 일 실시예에 따른 웨이퍼 프로버 스테이션(1)은, 압력센서(400)로부터 프로브카드(310)의 탐침(312)과 웨이퍼(W)의 접촉전극(212)의 불균일 접촉에 의해 발생하는 척의 기울어짐을 곧 바로 감지하여 척의 기울어짐에 의한 탐침(312)과 접촉전극(P)의 접점의 어긋남을 실시간으로 보정하면서 오버드라이빙 제어를 수행할 수 있다.As described above, the wafer prober station 1 according to the exemplary embodiment of the present invention has a non-uniform contact between the probe 312 of the probe card 310 and the contact electrode 212 of the wafer W from the pressure sensor 400. By immediately detecting the inclination of the chuck generated by the overdrive control can be performed while correcting in real time the displacement of the contact between the probe 312 and the contact electrode (P) due to the inclination of the chuck.
본 발명에 따른 웨이퍼 프로버 스테이션은, 프로브카드를 이용한 웨이퍼 프로버 스테이션의 반도체 검사 분야에서 유용하게 사용될 수 있다.The wafer prober station according to the present invention can be usefully used in the field of semiconductor inspection of a wafer prober station using a probe card.
Claims (8)
- 웨이퍼를 로딩하는 척, 상기 척을 지지하여 이송하는 척이송장치, 상기 웨이퍼를 검사하기 위해 설치된 프로브카드를 포함하는 웨이퍼 프로버 스테이션에 있어서,A wafer prober station comprising a chuck for loading a wafer, a chuck transfer device for supporting and transferring the wafer, and a probe card installed to inspect the wafer,상기 척을 수직방향으로 지지하는 부분의 하부에 설치되어 척에 가해지는 압력을 감지하는 다수 개의 압력 센서; 및A plurality of pressure sensors installed under the portion supporting the chuck in a vertical direction to sense pressure applied to the chuck; And상기 척 위의 웨이퍼와 프로브카드가 정렬된 상태에서 상기 척이송장치의 Z축 스테이지를 상승시켜 척을 오버드라이빙시키며, 오버 드라이빙에 의해 상기 웨이퍼와 상기 프로브카드가 접촉되면, 상기 다수개의 압력센서로부터 감지된 압력값들을 기초로 하여 상기 척의 x 방향 및 y 방향에 대한 압력 변위 정보들을 계산하고, 상기 압력 변위 정보들을 이용하여 탐침과 접촉전극의 접점에 대한 x 방향 및 y 방향의 위치 오차값들을 추정하고, 상기 위치 오차값들을 이용하여 상기 척이송장치의 XY축 스테이지의 이동을 제어하여 접점의 위치를 보정하는 제어 장치;When the wafer on the chuck and the probe card are aligned, the Z-axis stage of the chuck transfer device is raised to overdrive the chuck, and when the wafer and the probe card are contacted by overdriving, the plurality of pressure sensors Based on the detected pressure values, pressure displacement information for the x direction and the y direction of the chuck is calculated, and position error values of the x direction and the y direction with respect to the contact point of the probe and the contact electrode are estimated using the pressure displacement information. And a control device for correcting the position of the contact point by controlling the movement of the XY axis stage of the chuck feeder using the position error values.를 구비하는 것을 특징으로 하는 웨이퍼 프로버 스테이션.Wafer prober station comprising a.
- 제1항에 있어서, 상기 압력센서들은 척이송장치의 XY축 스테이지와 Z축 스테이지가 결합되는 결합면의 4개의 귀퉁이들에 각각 설치되는 것을 특징으로 하는 웨이퍼 프로버 스테이션.The wafer prober station of claim 1, wherein the pressure sensors are respectively installed at four corners of a coupling surface to which the XY axis stage and the Z axis stage of the chuck transfer device are coupled.
- 제1항에 있어서, 상기 압력센서들은, 상기 결합면의 좌측 모서리의 후방 귀퉁이 및 전방 귀퉁이에 각각 제1 압력 센서 및 제3 압력 센서가 설치되고, 상기 결합면의 우측 모서리의 후방 귀퉁이 및 전방 귀퉁이에 각각 제2 압력 센서 및 제3 압력 센서가 설치되며, The pressure sensor of claim 1, wherein the pressure sensors are provided with a first pressure sensor and a third pressure sensor at the rear corners and the front corners of the left edge of the coupling surface, respectively, and the rear corners and the front corners of the right edge of the coupling surface. The second pressure sensor and the third pressure sensor are respectively installed in the상기 제어장치는, 상기 제1압력센서 및 상기 제3압력센서로부터 감지된 압력값들을 이용하여 상기 척의 좌측에 가해지는 좌측 압력 정보를 계산하고, 상기 제2압력센서 및 상기 제4압력센서로부터 감지된 압력값들을 이용하여 상기 척의 우측에 가해지는 우측 압력 정보를 계산하며, 상기 제1압력센서 및 상기 제2압력센서로부터 감지된 압력값들을 이용하여 상기 척의 후방에 가해지는 후방 압력 정보를 계산하고, 상기 제3압력센서 및 상기 제4압력센서로부터 감지된 압력값들을 이용하여 상기 척의 전방에 가해지는 전방 압력 정보를 계산하며, The control device calculates left pressure information applied to the left side of the chuck by using the pressure values sensed by the first pressure sensor and the third pressure sensor, and detects from the second pressure sensor and the fourth pressure sensor. Calculate right pressure information applied to the right side of the chuck by using the pressure values, calculate rear pressure information applied to the rear of the chuck by using the pressure values detected from the first pressure sensor and the second pressure sensor, and Calculating front pressure information applied to the front of the chuck by using the pressure values detected from the third pressure sensor and the fourth pressure sensor,상기 제어 장치는 상기 좌측 압력 정보, 우측 압력 정보, 전방 압력 정보, 후방 압력 정보를 이용하여 척의 x 방향 및 y 방향에 대한 압력 변위 정보를 추출하는 것을 특징으로 하는 웨이퍼 프로버 스테이션.And the control device extracts pressure displacement information in the x and y directions of the chuck using the left pressure information, right pressure information, front pressure information, and back pressure information.
- 제3항에 있어서, 상기 제어장치는 상기 좌측 압력 정보와 상기 우측 압력 정보의 차이값을 계산하여 척의 x방향의 압력 변위 정보를 추출하고, 상기 전방 압력 정보와 상기 후방 압력 정보의 차이값을 계산하여 척의 y방향의 압력 변위 정보를 추출하는 것을 특징으로 하는 웨이퍼 프로버 스테이션.The apparatus of claim 3, wherein the control device calculates a difference value between the left pressure information and the right pressure information to extract pressure displacement information in the x direction of the chuck, and calculates a difference value between the front pressure information and the rear pressure information. And extracting pressure displacement information in the y direction of the chuck.
- 제1항에 있어서, 상기 제어장치는, 상기 x 방향 및 y 방향의 압력 변위 정보들에 사전에 정해진 변환이득값들을 각각 곱하여 상기 척의 x방향 및 y방향에 대한 위치오차값들을 각각 추정하는 것을 특징으로 하는 웨이퍼 프로버 스테이션.The apparatus of claim 1, wherein the control device estimates position error values in the x direction and the y direction of the chuck by multiplying the pressure displacement information in the x direction and the y direction by predetermined conversion gain values, respectively. Wafer prober station.
- 웨이퍼를 로딩하는 척, 상기 척을 지지하여 이송하는 척이송장치, 상기 웨이퍼를 검사하기 위해 설치된 프로브카드, 상기 척의 수직방향을 지지하는 부분의 하부에 설치되는 다수개의 압력센서 및 이들을 제어하는 제어장치를 구비하는 웨이퍼 프로버 스테이션에서 상기 제어장치에 의한 제어방법에 있어서,A chuck for loading a wafer, a chuck transfer device for supporting and transporting the chuck, a probe card installed to inspect the wafer, a plurality of pressure sensors installed at a lower portion of the vertical support of the chuck, and a control device for controlling them. In the wafer prober station having a control method by the control device,(a) 척위의 웨이퍼와 프로브카드가 정렬된 상태에서 상기 척이송장치의 Z축스테이지를 구동하여 오버 드라이빙시키는 단계;(a) overdriving by driving the Z-axis stage of the chuck feeder with the wafer on the chuck and the probe card aligned;(b) 상기 다수개의 압력센서로부터 감지된 압력값들을 기초로 하여 좌측 압력 정보, 우측 압력 정보, 후방 압력 정보 및 전방 압력 정보를 각각 계산하는 단계;(b) calculating left pressure information, right pressure information, rear pressure information, and front pressure information based on pressure values detected from the plurality of pressure sensors, respectively;(d) 상기 좌측, 우측, 후방 및 전방 압력 정보를 이용하여 상기 척의 x방향 및 y 방향에 대한 압력 변위 정보들을 각각 계산하는 단계;(d) calculating pressure displacement information for the x and y directions of the chuck, respectively, using the left, right, rear and front pressure information;(e) 상기 압력 변위 정보들을 이용하여 탐침과 접촉 전극의 접점 위치에 대한 x 방향 및 y 방향의 위치 오차값들을 추정하는 단계;(e) estimating position error values in the x and y directions with respect to the contact position of the probe and the contact electrode using the pressure displacement information;(f) 상기 x 방향 및 y 방향에 대한 위치오차값들을 이용하여 상기 척이송장치의 XY축스테이지의 이동을 제어하여 접점 위치를 보정하는 단계;(f) correcting the contact position by controlling the movement of the XY axis stage of the chuck feeder using the position error values in the x and y directions;를 구비하는 웨이퍼 프로버 스테이션의 제어방법.Method of controlling a wafer prober station having a.
- 제6항에 있어서, 상기 (e)단계의 x 방향 및 y 방향에 대한 위치오차값들은 각각 x, y 방향의 압력 변위 정보와 사전에 설정된 변환 이득값들을 곱하여 계산되는 것을 특징으로 하는 웨이퍼 프로버 스테이션의 제어 방법. 7. The wafer prober of claim 6, wherein the position error values in the x and y directions of the step (e) are calculated by multiplying the pressure displacement information in the x and y directions by the preset conversion gain values, respectively. How to control the station.
- 제6항에 있어서, 상기 (d)단계의 x 방향에 대한 압력 변위 정보는 좌측 압력 정보와 우측 압력 정보의 차이값으로 이루어지며, y 방향에 대한 압력 변위 정보는 전방 압력 정보와 후방 압력 정보의 차이값으로 이루어지는 것을 특징으로 하는 웨이퍼 프로버 스테이션의 제어 방법. According to claim 6, wherein the pressure displacement information in the x direction of the step (d) consists of the difference between the left pressure information and the right pressure information, the pressure displacement information in the y direction of the front pressure information and the rear pressure information A method for controlling a wafer prober station, comprising a difference value.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090050888 | 2009-06-09 | ||
KR10-2009-0050888 | 2009-06-09 | ||
KR10-2009-0105199 | 2009-11-02 | ||
KR1020090105199A KR101089593B1 (en) | 2009-06-09 | 2009-11-02 | Wafer prober station and its control method that complements the mechanical rigidity of the chuck |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010143852A2 true WO2010143852A2 (en) | 2010-12-16 |
WO2010143852A3 WO2010143852A3 (en) | 2011-03-31 |
Family
ID=43309342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/003638 WO2010143852A2 (en) | 2009-06-09 | 2010-06-07 | Wafer prober station in which the mechanical strength of a chuck is enhanced, and method for controlling same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010143852A2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6777968B1 (en) * | 1999-10-06 | 2004-08-17 | Tokyo Electron Limted | Probing method and probing apparatus in which steady load is applied to main chuck |
JP2006019537A (en) * | 2004-07-02 | 2006-01-19 | Tokyo Electron Ltd | Probe device |
US20070057683A1 (en) * | 2005-09-09 | 2007-03-15 | Tokyo Electron Limited | Method for controlling parallelism between probe card and mounting table, storage medium storing inspection program, and inspection apparatus |
KR20090053210A (en) * | 2007-11-22 | 2009-05-27 | (주) 쎄믹스 | Coaxial axis position control device and method of wafer prober |
US20090134894A1 (en) * | 2007-11-22 | 2009-05-28 | Tokyo Electron Limited | Inspection apparatus |
KR20100130540A (en) * | 2009-06-03 | 2010-12-13 | 주식회사 쎄믹스 | Wafer probe station capable of active tilt control of chuck and its control method |
-
2010
- 2010-06-07 WO PCT/KR2010/003638 patent/WO2010143852A2/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6777968B1 (en) * | 1999-10-06 | 2004-08-17 | Tokyo Electron Limted | Probing method and probing apparatus in which steady load is applied to main chuck |
JP2006019537A (en) * | 2004-07-02 | 2006-01-19 | Tokyo Electron Ltd | Probe device |
US20070057683A1 (en) * | 2005-09-09 | 2007-03-15 | Tokyo Electron Limited | Method for controlling parallelism between probe card and mounting table, storage medium storing inspection program, and inspection apparatus |
KR20090053210A (en) * | 2007-11-22 | 2009-05-27 | (주) 쎄믹스 | Coaxial axis position control device and method of wafer prober |
US20090134894A1 (en) * | 2007-11-22 | 2009-05-28 | Tokyo Electron Limited | Inspection apparatus |
KR20100130540A (en) * | 2009-06-03 | 2010-12-13 | 주식회사 쎄믹스 | Wafer probe station capable of active tilt control of chuck and its control method |
Also Published As
Publication number | Publication date |
---|---|
WO2010143852A3 (en) | 2011-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101090333B1 (en) | Wafer probe station capable of active tilt control of chuck and its control method | |
US8013621B2 (en) | Inspection method and program for inspecting electrical characteristics of a semiconductor wafer | |
US11476138B2 (en) | Diagnostic system of substrate transfer hand | |
US8215890B2 (en) | Semiconductor wafer robot alignment system and method | |
EP1488893A2 (en) | Connector gripping device, connector inspection system comprising the device, and connector connection system | |
KR100834176B1 (en) | Charge eliminating apparatus and method, and program storage medium | |
KR20080026068A (en) | Wafer center detection method and recording medium recording the method | |
US7265536B2 (en) | Procedure for reproduction of a calibration position of an aligned and afterwards displaced calibration substrate in a probe station | |
CN111742399A (en) | Contact accuracy assurance method, contact accuracy assurance mechanism, and inspection device | |
WO2010140814A2 (en) | Wafer probe station capable of actively controlling tilt of chuck and controlling method thereof | |
KR101966513B1 (en) | Inspection method, inspection apparatus and inspection program for circuit board | |
WO2010143852A2 (en) | Wafer prober station in which the mechanical strength of a chuck is enhanced, and method for controlling same | |
JP4302778B2 (en) | Gripping device for positioning a sheet-like object | |
EP0341629A2 (en) | Printed circuit board and a method of recognizing the position of surface mounted parts | |
KR20100056727A (en) | Wafer probe station and method thereof | |
KR101089593B1 (en) | Wafer prober station and its control method that complements the mechanical rigidity of the chuck | |
US11022644B2 (en) | Inspection apparatus and inspection method | |
CN111223786B (en) | Inspection device system | |
KR101408164B1 (en) | Trasfer module | |
JP3237851U (en) | Detection device and bending prevention device | |
JP2009184069A (en) | Wafer carrying device and method of adjusting the same | |
KR101218572B1 (en) | Automatic connecting apparatus for testing plane display device | |
JP2021052065A (en) | Control method of inspection device and inspection device | |
WO2023058817A1 (en) | Method for inspecting via hole of wafer | |
WO2012043995A2 (en) | Wafer alignment-rear surface test device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10786335 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10786335 Country of ref document: EP Kind code of ref document: A2 |