WO2010143613A1 - 画素回路および表示装置 - Google Patents
画素回路および表示装置 Download PDFInfo
- Publication number
- WO2010143613A1 WO2010143613A1 PCT/JP2010/059636 JP2010059636W WO2010143613A1 WO 2010143613 A1 WO2010143613 A1 WO 2010143613A1 JP 2010059636 W JP2010059636 W JP 2010059636W WO 2010143613 A1 WO2010143613 A1 WO 2010143613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- wiring
- active element
- pixel
- predetermined
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3659—Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
- G09G2300/0861—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
- G09G2300/0866—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0876—Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3258—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
Definitions
- the present invention relates to a display device such as a liquid crystal display device suitable for a portable information terminal such as a mobile phone, and more particularly to reduction of power consumption when a still image is displayed on such a display device.
- a liquid crystal display device In a portable information terminal such as a mobile phone, a liquid crystal display device is generally used as a display means.
- a liquid crystal display device Since mobile phones and the like are driven by batteries, there is a strong demand for reducing power consumption. For this reason, contents that require constant display (time, battery exhaustion, etc.) are displayed on the reflective sub-panel. In recent years, both the normal display and the continuous display in the reflective type have been required on the same main panel.
- the power consumption for driving the liquid crystal panel is governed by the power consumption for driving the source line (data signal line) by the source driver as the data signal line driving circuit, and is generally expressed by the following equation.
- P indicates power consumption for driving the liquid crystal panel
- f indicates a refresh frequency
- C represents a load capacitance driven by the source driver
- V represents a driving voltage by the source driver
- n represents the number of scanning lines
- m represents the number of source lines.
- the refresh frequency during the constant display is also lowered.
- the potential of the pixel electrode fluctuates due to a leakage current or the like through a switching element such as a thin film transistor in the liquid crystal display device.
- the refresh frequency is lowered, the display brightness of each pixel varies, and this variation is observed as flicker.
- the refresh frequency is lowered, the average potential in each frame period is also lowered, so that there is a possibility that display quality is lowered such that sufficient contrast cannot be obtained.
- Patent Document 1 discloses a liquid crystal display device in which a static memory is provided in each pixel group in an array substrate having a plurality of pixel groups provided in a matrix. According to such a liquid crystal display device, since the potential of the pixel electrode can be kept constant without refreshing, it is possible to always display with low power consumption.
- an object of the present invention is to provide a display device that can sufficiently reduce power consumption necessary for constant display of a still image while avoiding a decrease in display quality due to flicker and a decrease in contrast and suppressing a decrease in aperture ratio.
- a first aspect of the present invention is a pixel circuit for forming pixels of an image to be displayed on a display device, First and second active elements; A predetermined electrode that forms a capacitor for holding pixel data, The predetermined electrode is connected to a predetermined first wiring via the first active element and is connected to a control terminal of the first active element via the second active element, The control terminal of the first active element is capacitively coupled to a predetermined second wiring, The control terminal of the second active element is connected to a predetermined third wiring.
- the display device includes a plurality of data signal lines and a plurality of scanning signal lines intersecting the plurality of data signal lines,
- the predetermined electrode is connected to one of the plurality of data signal lines through the third active element,
- the control terminal of the third active element is connected to one of the plurality of scanning signal lines.
- the predetermined electrode is capacitively coupled to a predetermined fourth wiring.
- a fourth aspect of the present invention is a display device, A pixel circuit according to the first aspect of the present invention provided for each pixel of an image to be displayed; A plurality of data signal lines, The pixel circuit is connected to one of the plurality of data signal lines; The predetermined electrodes in the pixel circuit are arranged in a matrix.
- a fifth aspect of the present invention is a display device, A pixel circuit according to the first aspect of the present invention provided for each pixel of an image to be displayed; A plurality of data signal lines, The pixel circuit is connected to one of the plurality of data signal lines; At least one of the first, second, and third wirings is shared by the plurality of pixel circuits.
- a sixth aspect of the present invention is an active matrix display device, A pixel circuit according to the first aspect of the present invention provided for each pixel of an image to be displayed; A plurality of data signal lines; A plurality of scanning signal lines intersecting the plurality of data signal lines, The pixel circuit is connected to one of the plurality of scanning signal lines and to one of the plurality of data signal lines, The pixel circuit further includes a third active element having a control terminal connected to the scanning signal line, The predetermined electrode in the pixel circuit is connected to the data signal line through the third active element.
- a seventh aspect of the present invention is an active matrix display device according to the fourth or fifth aspect of the present invention, A plurality of scanning signal lines crossing the plurality of data signal lines;
- the pixel circuit is connected to one of the plurality of scanning signal lines and to one of the plurality of data signal lines,
- the pixel circuit further includes a third active element having a control terminal connected to the scanning signal line,
- the predetermined electrode in the pixel circuit is connected to the data signal line through the third active element.
- At least one of the first, second, and third wirings is shared by a plurality of pixel circuits connected to the same scanning signal line.
- At least one of the first, second, and third wirings is shared by all pixel circuits.
- At least one of the first, second, and third wirings is shared by all pixel circuits.
- An eleventh aspect of the present invention is a display device, A pixel circuit according to the first aspect of the present invention provided for each pixel of an image to be displayed; A plurality of data signal lines, A first operation mode for supplying a voltage from the first wiring to the predetermined electrode; The pixel circuit is connected to one of the plurality of data signal lines; In the first operation mode, the second active element is applied based on a relative value of the voltage of the predetermined electrode with reference to the voltage of the third wiring by applying a predetermined voltage pulse to the second wiring. The voltage supply is performed by the first active element when is turned off.
- a twelfth aspect of the present invention is the fourth, fifth or ninth aspect of the present invention,
- the pixel circuit is connected to one of the plurality of data signal lines;
- the second active element is applied based on a relative value of the voltage of the predetermined electrode with reference to the voltage of the third wiring by applying a predetermined voltage pulse to the second wiring.
- the voltage supply is performed by the first active element when is turned off.
- a first operation mode for supplying a voltage from the first wiring to the predetermined electrode is connected to one of the plurality of data signal lines;
- the second active element is applied based on a relative value of the voltage of the predetermined electrode with reference to the voltage of the third wiring by applying a predetermined voltage pulse to the second wiring.
- the voltage supply is performed by the first active element when is turned off.
- a fourteenth aspect of the present invention provides any one of the eleventh to thirteenth aspects of the present invention, In the first operation mode, By applying a predetermined voltage pulse to the second wiring, the first active element is turned on or off according to the relative value of the voltage of the predetermined electrode with respect to the voltage of the third wiring, When the first active element is turned on, the voltage of the first wiring is applied to the predetermined electrode through the first active element.
- the second voltage is based on the relative value of the voltage of the predetermined electrode with reference to the voltage of the third wiring.
- the voltage supply is performed by the first active element when the active element is turned off.
- the second wiring is provided for each scanning signal line, In the first operation mode, by selectively applying the voltage pulse to the second wiring in units of scanning signal lines, the relative value of the voltage of the predetermined electrode with reference to the voltage of the third wiring.
- the voltage supply is performed by the first active element when the second active element is turned off.
- the voltage of the second wiring when the voltage pulse is not applied is the voltage of the second wiring when the voltage pulse is applied.
- the voltage of the second wiring when the voltage pulse is not applied is equal to the voltage of the second wiring when the voltage pulse is applied. It is characterized by being higher than the voltage.
- the first active element When a voltage within a predetermined range with reference to the voltage of the third wiring is applied to the predetermined electrode, the first active element is turned on when the voltage pulse is applied to the second wiring. When the voltage pulse is not applied to the second wiring, the first active element is turned off, and a voltage within another predetermined range outside the predetermined range is applied to the predetermined electrode. When the voltage is applied, the voltage of the first wiring and the voltage pulse are set so that the first active element is turned off regardless of whether the voltage pulse is applied to the second wiring. The voltage of the second wiring including the voltage and the voltage of the third wiring are set.
- a predetermined voltage not more than an upper limit value and not less than a lower limit value of a voltage to be applied to the predetermined electrode in order to hold pixel data in the capacitor is applied to the third wiring.
- a first operation mode for supplying a voltage from the first wiring to the predetermined electrode In the first operation mode, The third active element is turned off by applying an inactive signal to the scanning signal line connected to the control terminal of the third active element; The voltages of the plurality of data signal lines are fixed to a predetermined voltage.
- the 21st aspect of the present invention is the 20th aspect of the present invention, In the first operation mode, when the first active element is in an OFF state, the off-resistance of the first active element and the third active element are between the voltage of the first wiring and the predetermined voltage. A voltage obtained by dividing the voltage by the off-resistance of is supplied to the predetermined electrode.
- the predetermined voltage is obtained by dividing a voltage between the voltage of the first wiring and the predetermined voltage by an off resistance of the first active element and an off resistance of the third active element. It is characterized in that it is set to be approximately equal to the lowest voltage among the voltages to be applied to the predetermined electrode in order to hold the pixel data in the capacitor.
- the predetermined voltage is substantially 0 by dividing a voltage between the voltage of the first wiring and the predetermined voltage by an off resistance of the first active element and an off resistance of the third active element. It is set so that it may become equal to.
- a second operation mode for supplying a data signal indicating a pixel to be formed by the pixel circuit to the predetermined electrode In the second operation mode, The third active element is turned on by applying an active signal to the scanning signal line connected to the control terminal of the third active element, The data signal is applied to the predetermined electrode through the data signal line and the third active element when the third active element is in an ON state.
- a voltage for turning on the second active element is applied to the third wiring regardless of a voltage applied to the predetermined electrode.
- a voltage for turning off the second active element is applied to the third wiring regardless of a voltage applied to the predetermined electrode.
- a third operation mode for updating a voltage of the predetermined electrode so that a polarity of a voltage applied to the capacitor for holding the pixel data is reversed;
- the plurality of scanning signal lines are driven so that the polarity is inverted, and the voltage with the inverted polarity is applied to the predetermined electrode through the data signal line.
- a voltage with the polarity reversed is applied to the predetermined electrode through the data signal line so that the polarity is the same in the same frame.
- the pixel circuit is connected to one of the plurality of data signal lines;
- the second active element is applied based on a relative value of the voltage of the predetermined electrode with reference to the voltage of the third wiring by applying a predetermined voltage pulse to the second wiring. Is supplied by the first active element when is turned off, The period in which the polarity is inverted in the third operation mode is longer than 10 times the period in which the voltage pulse is applied in the first operation mode.
- the thirtieth aspect of the present invention is the twenty-seventh or twenty-eighth aspect of the present invention.
- pixel data constituting image data for at least one frame stored in a predetermined memory is passed through the data signal line and the third active element as a voltage with the polarity reversed.
- the predetermined electrode is provided.
- a thirty-first aspect of the present invention is a display device, A pixel circuit according to the first aspect of the present invention provided for each pixel of an image to be displayed; A plurality of scanning signal lines; A plurality of data signal lines intersecting the plurality of scanning signal lines; A fourth wiring, The pixel circuit is connected to one of the plurality of scanning signal lines and to one of the plurality of data signal lines, The fourth wiring is characterized in that it is capacitively coupled to the predetermined electrodes of all the pixel circuits.
- the fourth wiring is characterized in that it is capacitively coupled to the predetermined electrodes of all the pixel circuits.
- a thirty-third aspect of the present invention is a display device, A pixel circuit according to the first aspect of the present invention provided for each pixel of an image to be displayed; A plurality of scanning signal lines; A plurality of data signal lines intersecting the plurality of scanning signal lines; A fourth wiring provided for each scanning signal line, The pixel circuit is connected to one of the plurality of scanning signal lines and to one of the plurality of data signal lines, Each of the fourth wirings is capacitively coupled to the predetermined electrode of a plurality of pixel circuits connected to a corresponding scanning signal line.
- Each of the fourth wirings is capacitively coupled to the predetermined electrode of a plurality of pixel circuits connected to a corresponding scanning signal line.
- a voltage corresponding to the voltage of a predetermined electrode that forms a capacitor for holding pixel data is applied to the control terminal of the first active element via the second active element.
- the second active element is turned off, and when the predetermined voltage pulse is applied to the second wiring,
- the voltage of the control terminal changes in a direction to turn on the active element (typically, the voltage rises).
- the voltage of the predetermined electrode can be refreshed.
- the refresh in the conventional liquid crystal display device a voltage having a polarity different from the voltage held in the pixel capacitor as the pixel data is written as the pixel data, but the refresh in the present invention is the same as the capacitor formed by the predetermined electrode. This means that a polarity voltage is written again as pixel data. Even if the voltage of the predetermined electrode fluctuates due to a leak current after a desired voltage is applied to the predetermined electrode by such refresh, if the voltage is within the predetermined range, a voltage pulse is applied to the second wiring. By applying, the desired voltage can be applied from the first wiring via the first active element.
- the period of polarity inversion driving is increased in the case of a liquid crystal display while suppressing deterioration in display quality, and power consumption necessary for displaying a still image Can be reduced.
- the configuration necessary for the refresh operation is simple, a conventional method for displaying a still image while suppressing power consumption by using a memory provided in a display unit in a constant display mode of a mobile phone or the like. Compared with the configuration, it is possible to suppress a decrease in the aperture ratio.
- the third active element is connected to the third active element by applying an active signal to the scanning signal line connected to the control terminal to turn it on.
- a voltage can be applied to the predetermined electrode from the data signal line. That is, pixel data can be written to the pixel circuit via the data signal line and the third active element.
- the predetermined electrode forming the capacitor for holding the pixel data is capacitively coupled to the fourth wiring, by applying a predetermined voltage to the fourth wiring.
- the voltage applied to the predetermined electrode as pixel data from the data signal line can be stably held.
- a voltage serving as pixel data is applied to each pixel circuit including the predetermined electrodes arranged in a matrix via the data signal line, and each pixel circuit corresponds to the voltage.
- An image is displayed by forming pixels.
- the plurality of pixel circuits since at least one of the first, second, and third wirings is shared by the plurality of pixel circuits, the plurality of pixel circuits include the at least one wiring.
- a predetermined voltage or voltage pulse can be applied in common and simultaneously through one wiring.
- an active matrix display device is configured using a pixel circuit having the same configuration as the pixel circuit according to the second aspect of the present invention. The same effect as the second aspect is achieved.
- the scanning signal A predetermined voltage or voltage pulse can be commonly and simultaneously applied to the plurality of pixel circuits for each line through the at least one wiring.
- At least one of the first, second, and third wirings is shared by all the pixel circuits.
- a predetermined voltage or voltage pulse can be applied in common and simultaneously through at least one wiring.
- the voltage of the predetermined electrode with respect to the voltage of the third wiring is set.
- the second active element is turned off based on the relative value, voltage supply from the first wiring to the pixel electrode is performed by the first active element, so that voltage fluctuation of the predetermined electrode due to leakage current is suppressed. can do.
- the fourteenth aspect of the present invention in the first operation mode, by applying a predetermined voltage pulse to the second wiring, a relative value of the voltage of the predetermined electrode with reference to the voltage of the third wiring. Accordingly, the first active element is turned on or off, and when the first active element is turned on, the voltage of the first wiring is applied to the predetermined electrode, so that voltage fluctuation of the predetermined electrode due to leakage current is suppressed. be able to. As a result, it is possible to lengthen the period of polarity inversion driving in the case of liquid crystal display while suppressing deterioration in display quality, and to reduce power consumption necessary for displaying a still image.
- the voltage pulse since the voltage pulse is simultaneously applied to all the second wirings in the first operation mode, the relative value of the voltage of the predetermined electrode with reference to the voltage of the third wiring. In response to this, a refresh operation in which voltage is supplied from the first wiring to the predetermined electrode by the first active element is collectively performed for all the pixel circuits. Therefore, the voltage pulse for the refresh operation can be generated with a simple configuration.
- the voltage pulse is selectively applied to the second wiring in units of scanning signal lines, so the voltage of the predetermined electrode based on the voltage of the third wiring.
- a refresh operation in which a voltage is supplied from the first wiring to the predetermined electrode by the first active element according to the relative value is performed for each pixel circuit group corresponding to one scanning signal line. For this reason, the peak current due to the refresh operation is reduced as compared with the case of the batch refresh operation.
- the voltage of the second wiring when the voltage pulse is not applied is applied with the voltage pulse.
- the voltage is lower than the voltage of the second wiring at that time, and the refresh as described above is performed by applying the voltage pulse to the second wiring.
- the first active element is a P-channel transistor
- the voltage of the second wiring when the voltage pulse is not applied is higher than the voltage of the second line when the voltage pulse is applied. The voltage becomes high, and the above refresh is performed by applying the voltage pulse to the second wiring.
- the first active element when a voltage within a predetermined range with reference to the voltage of the third wiring is applied to the predetermined electrode, when a voltage pulse is applied to the second wiring
- the second active element is turned off, the first active element is turned on, and the voltage of the first wiring is applied to the predetermined electrode.
- the first active element when the voltage pulse is not applied to the second wiring, or when a voltage within another predetermined range outside the predetermined range is applied to the predetermined electrode, the first active element is turned off.
- the voltage of the first wiring is not applied to the predetermined electrode, and the voltage of the predetermined electrode does not change.
- the voltage of the third wiring is equal to or lower than the upper limit value of the voltage to be applied to the predetermined electrode in order to hold the pixel data in the capacitor of the pixel circuit.
- the predetermined voltage is greater than or equal to the value.
- the voltage of each data signal line is fixed to a predetermined voltage in the first operation mode, so that the driving by the data signal line driving circuit is suppressed, and the data signal line driving circuit Since the output buffer and the like can be stopped, the power consumption of the display device can be greatly reduced.
- the first voltage is set between the voltage of the first wiring and the predetermined voltage that is the voltage of the data signal line. Since the voltage obtained by dividing by the off resistance of the active element and the off resistance of the third active element, that is, the voltage by the off resistance division is supplied to the predetermined electrode, the voltage of the predetermined electrode is divided into the off resistance division When the voltage to be applied to the predetermined electrode is applied to the predetermined electrode, the voltage of the predetermined electrode hardly varies.
- the voltage applied from the data signal line to the predetermined electrode to hold the pixel data in the capacitor of the pixel circuit is in the range from 0 to the predetermined positive voltage
- the first operation the voltage (predetermined voltage) of each data signal line is set so that the voltage due to the off-resistance division is approximately equal to the lowest voltage among the voltages to be applied to the predetermined electrode.
- a voltage other than the lowest voltage among the voltages to be applied to the predetermined electrode is applied from the first wiring, and the lowest voltage (substantially equal to) is applied to the first active element and the third voltage.
- the voltage due to the off-resistance division is substantially equal to zero.
- a voltage other than the vicinity of 0 among the voltages to be applied to the predetermined electrode is applied from the first wiring, and a substantially zero voltage is connected between the first active element and the third active element
- a data signal is applied to the predetermined electrode through the data signal line and the third active element when the third active element is in the ON state.
- data is written from the data signal line to the pixel circuit.
- the voltage of the predetermined electrode is applied to the control terminal of the first active element, It is suppressed that one active element is turned on.
- a data signal can be supplied from the data signal line to the predetermined electrode in the same manner as in a normal pixel circuit.
- the first active element is suppressed from being turned on regardless of the voltage of the predetermined electrode.
- the voltage of the control terminal can be set, and a data signal can be applied from the data signal line to the predetermined electrode in the same manner as in a normal pixel circuit.
- the inverted voltage of the polarity is applied via the data signal line so that the polarity of the voltage applied to the capacitor for holding the pixel data is inverted. Therefore, for example, in a liquid crystal display device, an image display by AC driving is used to prevent display deterioration due to ion accumulation on the electrode side due to application of DC voltage to the liquid crystal or alteration of liquid crystal material. It can be performed.
- the polarity of the voltage applied to the capacitor for holding the pixel data is the same within the same frame, and the polarity inversion period of the data signal is long. Therefore, low power consumption can be achieved.
- the period in which the polarity is inverted in the third operation mode is longer than 10 times the period in which the voltage pulse is applied to the second wiring in the first operation mode.
- the frequency of driving the data signal line or the like for polarity inversion in the case of liquid crystal display can be greatly reduced while suppressing the voltage fluctuation of the predetermined electrode due to the current. As a result, it is possible to sufficiently reduce power consumption required for displaying a still image (always displaying) while avoiding display quality deterioration due to flicker and contrast reduction.
- the pixel data stored in the predetermined memory is applied to the predetermined electrode through the data signal line or the like as the inverted voltage of the polarity.
- the polarity can be reversed without separately providing a circuit for inverting the polarity.
- the predetermined electrode forming the capacitor for holding the pixel data is capacitively coupled to the fourth wiring, a predetermined voltage is applied to the fourth wiring.
- the voltage taken into the pixel circuit as pixel data from the data signal line can be stably held.
- the predetermined electrode forming the capacitor for holding the pixel data is capacitively coupled to the fourth wiring, a predetermined voltage is applied to the fourth wiring.
- the voltage taken into the pixel circuit as pixel data from the data signal line can be stably held.
- FIG. 1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a first embodiment of the present invention.
- FIG. 3 is a circuit diagram illustrating a configuration of a pixel circuit in the first embodiment. It is a figure which shows the operating condition of the writing period and self-refresh period in the continuous display mode of the said 1st Embodiment. It is a timing block diagram for demonstrating each operation period in the continuous display mode of the said 1st Embodiment.
- FIG. 6 is a signal waveform diagram (A to I) for explaining an operation in a writing period in the constant display mode of the first embodiment.
- FIG. 6 is a signal waveform diagram (A to H) for explaining an operation in a self-refresh period in the constant display mode of the first embodiment.
- FIG. 6 is a circuit diagram (A to D) for explaining each operation when a positive high voltage is applied to the pixel liquid crystal in the constant display mode of the first embodiment.
- FIG. 6 is a circuit diagram (AD) for explaining each operation when a positive low voltage is applied to the pixel liquid crystal in the constant display mode of the first embodiment.
- FIG. 5 is a circuit diagram (A to D) for explaining each operation when a negative low voltage is applied to the pixel liquid crystal in the constant display mode of the first embodiment.
- FIG. 6 is a circuit diagram (A to D) for explaining each operation when a negative high voltage is applied to the pixel liquid crystal in the normal display mode of the first embodiment. It is a block diagram for demonstrating the modification of the said 1st Embodiment.
- FIG. 6 is a circuit diagram illustrating a configuration of a pixel circuit when the present invention is applied to still another liquid crystal display device. It is a circuit diagram which shows the structure of the pixel circuit at the time of applying this invention to an organic electroluminescence display.
- FIG. 1 is a block diagram showing the configuration of the liquid crystal display device according to the first embodiment of the present invention
- FIG. 2 is a circuit diagram showing the configuration of the pixel circuit 112 in this embodiment.
- the liquid crystal display device according to this embodiment has a transmissive normal display mode and a reflective continuous display mode.
- the continuous display mode includes a write mode, a refresh mode, and a polarity inversion mode.
- the operation mode in which the display is performed in the transmissive mode at the normal time when the moving image is required corresponds to the normal display mode, and the still image is reduced in the reflective mode.
- the operation mode of displaying with power consumption corresponds to the constant display mode.
- the present invention is not limited to such applications and configurations.
- the liquid crystal display device includes an active matrix type display unit 100 using an active matrix substrate 101, a source driver 300 as a data signal line driving circuit, and a scanning signal line driving circuit. And a display control circuit 200 for controlling the source driver 300, the gate driver 410, and the common electrode drive circuit 600.
- the source driver 300, the gate driver 410, and the common electrode driving circuit 600 are illustrated as components that are separate from the active matrix substrate 101 in the display unit 100, but some or all of them are active.
- the pixel circuit 112 may be formed integrally with the matrix substrate 101. This is the same in other embodiments.
- the display unit 100 in the liquid crystal display device includes a pair of electrode substrates that sandwich a liquid crystal layer, and a polarizing plate is attached to the outer surface of each electrode substrate.
- One of the pair of electrode substrates is an active matrix substrate 101.
- gate lines GL (1) to GL (N) as a plurality (N) of scanning signal lines are formed on an insulating substrate such as glass.
- CS lines as a plurality (N) of auxiliary capacitance lines corresponding to the gate lines GL (1) to GL (N), and the gate lines GL (1) to GL (N), respectively.
- Source lines SL1 to SLM as a plurality (M) of data signal lines, and corresponding to the intersections of the gate lines GL (1) to GL (N) and the source lines SL1 to SLM in a matrix.
- a plurality of (N ⁇ M) pixel circuits 112 are formed.
- the plurality of CS lines are connected to each other. For this reason, this is indicated by one reference symbol “CSL”, and the voltage applied to the CS line CSL is indicated by the reference symbol “CS”.
- each pixel circuit 112 corresponds to any one of the gate lines GL (1) to GL (N) and any one of the source lines SL1 to SLM. Are connected to the corresponding gate line GL (i) and the source line SLj, and are also connected to the CS line CSL corresponding to the gate line GL (i).
- each pixel circuit 112 includes a main circuit 112a having a configuration similar to that of a pixel circuit in a conventional liquid crystal display device, and a self-refresh circuit 112b.
- the main circuit 112a of the pixel circuit 112 includes a pixel electrode Ep and a thin film transistor T3 as an active element having a gate terminal connected to the corresponding gate line GL (i).
- the thin film transistor T3 operates as a switching element, and the pixel electrode Ep is connected to the corresponding source line SLj through the thin film transistor T3.
- the refresh data line RLL, the reference line RFL, and the boost signal line BSL are further provided along the gate lines GL (1) to GL (N), respectively. Is formed. As shown in FIG. 1, refresh data lines RLL formed along each gate line GL (i) are connected to each other and connected to the display control circuit 200, and formed along each gate line GL (i). The boost signal lines BSL are also connected to each other and connected to the display control circuit 200. Further, the reference lines RFL formed along the respective gate lines GL (i) are also connected to each other and connected to the display control circuit 200. Has been.
- the other of the pair of electrode substrates in the display unit 100 is referred to as a counter substrate 102, and a common electrode (also referred to as a “counter electrode”) Ec is formed on the entire surface of a transparent insulating substrate such as glass. Is formed.
- the common electrode Ec is provided in common to the plurality of (N ⁇ M) pixel circuits 112, and is disposed so as to face the pixel electrodes Ep in the plurality of pixel circuits 112 via a liquid crystal layer. Yes.
- Each pixel circuit 112 in the active matrix substrate 101 constitutes a pixel forming portion together with a common electrode Ec and a liquid crystal layer provided in common. In the pixel forming portion, a liquid crystal capacitance is formed by the pixel electrode Ep and the common electrode Ec.
- auxiliary capacitance element Cs is formed in parallel with the liquid crystal capacitance Clc in order to reliably hold the voltage in the liquid crystal capacitance Clc. That is, in the active matrix substrate 101, the auxiliary capacitance element Cs is formed by the CS line CSL and the pixel electrode Ep facing each other with an insulating film or the like interposed therebetween. Therefore, the capacity to write and hold the data signal S (j) as the pixel data (hereinafter, this capacity is referred to as “pixel capacity” and is indicated by the symbol “Cp”) includes the liquid crystal capacity Clc and the auxiliary capacity. Element (hereinafter also referred to as “auxiliary capacitor”) Cs.
- the main circuit 112a described above has a function of capturing and holding the data signal S (j) as pixel data.
- the self-refresh circuit 112b functions as an active pull-up circuit for performing a refresh operation described later.
- the self-refresh circuit includes a thin film transistor (hereinafter referred to as “first transistor”) T1 as a first active element, a thin film transistor (hereinafter referred to as “second transistor”) T2 as a second active element, and a boost capacitor element. Cbst.
- first transistor thin film transistor
- second transistor thin film transistor
- boost capacitor element boost capacitor element
- a connection point (hereinafter referred to as “node N1”) between the thin film transistor (hereinafter referred to as “third transistor”) T3 as the active element of the main circuit 112a and the pixel electrode Ep is connected via the first transistor T1 of the self-refresh circuit 112b. It is connected to the refresh data line RLL, and the gate terminal of the first transistor T1 is connected to one end of the boost capacitor element Cbst (hereinafter, the node including this is referred to as “node N2”).
- One end (node N1) of the boost capacitor element Cbst is connected to the pixel electrode Ep via the second transistor T2, and the other end of the boost capacitor element Cbst is connected to the boost signal line BSL.
- the gate terminal of the second transistor T2 is connected to the reference line RFL.
- the pixel electrode Ep in each pixel circuit 112 is given a potential according to an image to be displayed by a source driver 300 and a gate driver 410 that operate as described later, and the common electrode Ec is supplied with a common potential Vcom generated by the common electrode driving circuit 600 (this common potential Vcom is also referred to as “opposing voltage” or “common voltage”).
- this common potential Vcom is also referred to as “opposing voltage” or “common voltage”.
- a voltage corresponding to the potential difference between the pixel electrode Ep and the common electrode Ec is applied to the liquid crystal, and image transmission is performed by controlling the amount of light transmitted through the liquid crystal layer by this voltage application.
- a polarizing plate is used to control the amount of transmitted light by applying a voltage to the liquid crystal layer.
- the polarizing plate is disposed so as to be normally black.
- the common voltage Vcom is not a fixed value, but is generated by the common electrode driving circuit 600 so as to alternately switch between a predetermined H level (5 V) and a predetermined L level (0 V) (this The driving of the common electrode (counter electrode) Ec by the common voltage Vcom is called “counter AC driving”). More specifically, the common voltage Vcom is generated so as to alternately switch between the predetermined H level and the predetermined L level every horizontal period in the normal display mode, and in the normal display mode, the common voltage Vcom is generated in the frame period. It is generated so as to switch alternately between the predetermined H level and the predetermined L level every integer multiple period.
- the common voltage Vcom is alternately switched between the predetermined H level and the predetermined L level every p frame periods (p is an integer of 2 or more, Dozens to hundreds).
- the source line SL1 is such that the polarity of the voltage applied to the liquid crystal is inverted every frame period and also every display line (every scanning line) within each frame.
- ⁇ SLM, gate lines GL (1) ⁇ GL (N), and common electrode Ec are driven. That is, by these driving operations, the pixel data is indicated such that a positive voltage is applied to the pixel liquid crystal (pixel capacitance Clc) of each pixel circuit 112 in the horizontal period in which the common voltage Vcom is at the predetermined L level.
- a voltage is applied to each pixel electrode Ep through the source line SLj.
- the lines GL (1) to GL (N) and the common electrode Ec are driven. That is, by these driving operations, the pixel data is indicated such that a positive voltage is applied to the pixel liquid crystal (pixel capacitance Clc) of each pixel circuit 112 in the frame period in which the common voltage Vcom is at the predetermined L level. A voltage is applied to each pixel electrode Ep through the source line SLj. In addition, in the frame period in which the common voltage Vcom is at the predetermined H level, a voltage indicating pixel data is applied to each pixel circuit 112 via each source line SLj so that a negative voltage is applied to the pixel liquid crystal of each pixel circuit 112. It is given to the pixel electrode Ep.
- the display control circuit 200 receives a data signal Dv representing an image to be displayed and a timing signal Ct from an external signal source, and as a signal for causing the display unit 100 to display an image based on the signals Dv and Ct.
- Digital image signal DA and data side timing control signal Stc to be supplied to the source driver 300, scanning side timing control signal Gtc to be supplied to the gate driver 410, common voltage control signal to be supplied to the common electrode driving circuit 600, and active matrix substrate
- a boost signal BST, a reference voltage REF, and a refresh voltage RL to be supplied to the boost signal line BSL, the reference line RFL, and the refresh data line RLL in 101 are generated.
- the refresh voltage RL in the present embodiment is equal to a relatively high voltage (5 V) among the voltages (5 V and 0 V) to be applied to the pixel electrode Ep when an image is displayed with two gradations.
- the source driver 300 applies an analog voltage corresponding to the pixel value for one display line of the image represented by the digital image signal DA based on the digital image signal DA and the data side timing control signal Stc to the data signal S (1 ) To S (M) are generated every horizontal period (every 1H), and these data signals S (1) to S (M) are applied to the source lines SL1 to SLM, respectively.
- the source driver 300 in the constant display mode, the source driver 300 generates binary voltages as data signals S (1) to S (M) instead of the analog voltage for each horizontal period, and these data signals S (1 ) To S (M) are applied to the source lines SL1 to SLM, respectively (details will be described later).
- the data signals S (1) to S (S) so that the polarity of the voltage applied to the liquid crystal layer is inverted every frame period and also every display line in each frame. M) is output (hereinafter referred to as “line inversion driving method”). Accordingly, in the normal display mode, the source driver 300 inverts the polarity (with reference to the common voltage Vcom) of the data signal S (j) applied to each source line SLj every horizontal period. On the other hand, in the writing period described later in the constant display mode of the present embodiment, the polarity of the voltage applied to the liquid crystal layer is inverted every p frame periods (p is an integer of 2 or more), and each pixel in each frame period.
- a driving method in which data signals S (1) to S (M) are output so that the polarity of the voltage applied to the pixel liquid crystal based on the pixel data written in the circuit 112 is the same within the same frame.
- “Drive system” the source driver 300 inverts the polarity (based on the common voltage Vcom) of the data signal S (j) applied to each source line SLj every p frame period in the writing period of the constant display mode.
- the gate driver 410 Based on the scanning side timing control signal Gtc, the gate driver 410 writes each data signal S (1) to S (M) to each pixel circuit 112 in each frame period (each vertical scanning period) of the digital image signal DA. , The gate lines GL (1) to GL (N) are sequentially selected almost every horizontal period.
- the source lines SL1 to SLM, the gate lines GL (1) to GL (N), and the common electrode Ec (CS line CSL) are driven to form image data representing an image to be displayed.
- Each pixel data is given to the corresponding pixel circuit 112 as a data signal S (j), whereby the light transmittance in the liquid crystal is controlled to display the image.
- S (j) data signal
- full-color moving images and still images are displayed in the normal display mode, and limited multi-color still images, that is, multi-color still images are displayed in the constant display mode.
- FIG. 3 is a diagram showing operating conditions in the constant display mode of the present embodiment
- FIG. 4 is a timing block diagram for explaining each operation period in the constant display mode of the liquid crystal display device according to the present embodiment.
- each pixel data representing a still image to be displayed is written as binary data in the corresponding pixel circuit 112 (pixel capacitance Cp thereof) (deformation).
- this writing operation is referred to as “always display mode writing operation”.
- a writing operation by giving each pixel data representing an image to be displayed in the normal display mode to the corresponding pixel circuit 112 (pixel capacitance Cp thereof) as a data signal S (j) is a “normal display mode writing operation”. That's it.
- write operation when the distinction between the write operations in both display modes is clear from the context or the like, or when it is not necessary to distinguish between the write operations in both display modes, it is simply referred to as “write operation”. Further, a period during which the constant display mode writing operation is performed is referred to as “always display mode writing period” or simply “writing period”, and an operation mode corresponding to the constant display mode writing period is referred to as “writing mode”.
- pixel data is written to the pixel circuit 112 by one display line in one horizontal period (also referred to as “1H period”), and is also referred to as one vertical period (“1V period” or “1 frame period”). ), Pixel data for one screen is written.
- FIG. 5 is a signal waveform diagram for explaining the operation of the present embodiment during the constant display mode writing period.
- black display refers to a state that blocks light, that is, a non-lighting state
- white display refers to a state that transmits light, that is, a lighting state. Therefore, for example, a state of transmitting red, green, or blue light is also included in the “white display”.
- a low voltage V1 or ⁇ V1 is applied to the pixel liquid crystal corresponding to the black display pixel, and a high voltage V2 or ⁇ V2 is applied to the pixel liquid crystal corresponding to the white display pixel.
- the present invention is not limited to these operating conditions, and in the liquid crystal display device implementing the present invention, appropriate operating conditions may be set in accordance with characteristics indicating the relationship between liquid crystal applied voltage and luminance. That's fine.
- data signals S (1) to S (M) representing images to be displayed as shown in FIGS. 5B and 5C are applied to the source lines SL1 to SLM.
- the third transistor T3 is turned on, and the corresponding source The voltage of the line SLj is applied to the pixel electrode Ep through the third transistor T3.
- the data signal S (j) as the voltage of the source line SLj is written as pixel data in the pixel capacitor Cp corresponding to the pixel electrode Ep.
- the voltage of the data signal S (j) is held until a new data signal S (j) is written in the pixel capacitor Cp in the next frame period.
- a voltage corresponding to the difference between the potential of the pixel electrode Ep corresponding to the voltage of the data signal S (j) and the common potential Vcom is applied to the liquid crystal, and the light transmittance in the liquid crystal is controlled.
- pixel data (data signal S (j)) written to each pixel circuit 112 in the constant display mode is binary data.
- a boost voltage is applied by applying a voltage to the reference line RFL so that the second transistor T2 is always on regardless of the voltage applied to the pixel electrode Ep.
- the signal BST is active or inactive (regardless of whether a voltage pulse is applied to the boost signal line BSL)
- the first transistor T1 is prevented from being turned on.
- the self-refresh circuit 112b does not operate.
- the method for preventing the self-refresh circuit 112b from operating during the pixel data writing operation is not limited to this.
- a reference voltage REF that always turns off the second transistor T2 regardless of the voltage applied to the pixel electrode Ep is applied to the reference line RFL, and the boost signal The first transistor T1 may be always turned off by applying a low voltage to the line BSL. In this way, the self-refresh circuit 112b does not operate.
- a voltage that always turns off the second transistor T2 regardless of the voltage applied to the pixel electrode Ep is applied to the reference line RFL, and the second transistor T2
- the voltage at the node N2 (the gate terminal of the first transistor T1) may be set to a voltage that suppresses the ON of the first transistor T1 immediately before the signal is turned off, and the boost signal BST may be maintained inactive. Even in this case, the self-refresh circuit 112b does not operate.
- FIG. 4 is a signal waveform diagram for explaining the refresh operation.
- FIG. 3 shows the voltage value of each signal as an operation condition in the self-refresh period in which the refresh operation is performed, together with the operation condition in the write period.
- the reference symbol “P (i, j)” is used, and the “pixel circuit P (i, j)” is the i-th gate line GL. It is assumed that the pixel circuit 112 connected to (i) and the jth source line SLj is shown (see FIG. 1). Further, the voltage (hereinafter also referred to as “pixel voltage”) of the pixel electrode Ep in the pixel circuit P (i, j) is denoted by “Vpix (i, j)” or “Vpix” (FIG. 5H). (I), see FIGS. 6G and 6H).
- a voltage of 3 V is applied as the reference voltage REF to the reference line RFL as shown in FIG. 6E (details of voltage setting will be described later), and one frame period as shown in FIG. 6F.
- a voltage pulse is applied to the boost signal line BSL as the boost signal BST every time, so that all the pixel circuits P (i, j) for one screen are collectively refreshed.
- polarity inversion driving is performed to invert the polarity of the voltage applied to each pixel liquid crystal in the display unit 100, that is, the polarity of the voltage applied to the liquid crystal capacitance Clc of each pixel circuit P (i, j).
- polarity inversion driving is performed every time n cycles of refresh for one screen are executed.
- FIG. 7 to 10 are circuit diagrams for explaining the operation of the pixel circuit 112 in the constant display mode writing period and the self-refresh period of the present embodiment.
- numerical values attached to signal lines, voltage lines, and the like indicate voltage values corresponding to the operating conditions of FIG. 3, and a dotted circle indicates that the transistor to which the line is attached is in an ON state. The dotted x mark indicates that the transistor to which it is attached is off.
- FIG. 7 shows a case where the applied voltage to the pixel liquid crystal (applied voltage to the liquid crystal capacitance Clc) is a positive high voltage (5 V), and FIG. 8 shows a case where the applied voltage to the pixel liquid crystal is a positive low voltage (0 V).
- 9 shows the case where the voltage applied to the pixel liquid crystal is a negative low voltage (0V)
- FIG. 10 shows the case where the voltage applied to the pixel liquid crystal is a negative high voltage ( ⁇ 5V).
- Show. 7A, FIG. 8A, FIG. 9A, and FIG. 10A show the writing operation in the constant display mode writing period (writing mode)
- FIG. 8B, FIG. 9B, and FIG. 10B show the holding operation in the constant display mode writing period
- the liquid crystal display device is a normally black type, and a low voltage (0 V) that is a liquid crystal application voltage corresponding to black display is referred to as “L level liquid crystal application voltage”, and liquid crystal application corresponding to white display is applied.
- the high voltage (5V, ⁇ 5V) which is a voltage is referred to as “H level liquid crystal applied voltage”, but the invention is not limited to such a normally black type.
- the operation in the constant display mode of the present embodiment will be described with reference to FIGS.
- the output buffer for outputting the data signals S (1) to S (M) in the circuit in the source driver 300 stops operating.
- -5V is applied to the source lines SL1 to SLM as a fixed voltage.
- a circuit for this purpose may be realized as a separate component from the source driver 300, and can be formed integrally with the pixel circuit 112 on the active matrix substrate 101 using a thin film transistor, for example.
- the scanning signal G (i) is When the gate line GL (i) is selected at the H level (8 V: active), the third transistor T3 is turned on, and the 5 V data signal S (corresponding to the positive polarity H level liquid crystal applied voltage).
- the constant display mode writing period ends.
- a self-refresh period begins, and a refresh operation is first performed.
- the scanning signals G (1) to G (N) are all L level ( ⁇ 5V), and the third transistor T3 is turned off during the self-refresh period (FIGS. 7C and 7D). ).
- 3 V is applied to the reference line RFL as the reference voltage REF during the self-refresh period.
- boost signal lines BSL formed along each gate line GL (i) are connected to each other and supplied with the same boost signal BST (FIG. 1). That is, batch refresh is employed. Therefore, in the self-refresh period, as shown in FIG. 6F, a voltage pulse is applied as the boost signal BST to the boost signal line BSL every frame period (one vertical period: 1 V period), and the boost signal BST Becomes H level (5 V) every frame period.
- the second transistor T2 is turned off if the relative value Vpix-REF of the pixel voltage Vpix relative to the reference voltage REF is greater than -Vth. If the relative value Vpix-REF is smaller than -Vth, the second transistor T2 is turned on.
- the boost signal line BSL by applying the voltage pulse to the boost signal line BSL, the voltage at the node N2 rises and the first transistor T1 is turned on.
- the refresh voltage RL 5 V
- the refresh voltage RL 5 V
- the boost signal When the signal BST is set to the H level, the current Iref shown in FIG. 7C flows, and the pixel voltage Vpix (i, j) is restored to the reference voltage (5 V) of the H level (FIG. 6 (G)).
- a pixel circuit P (i, j) that applies a positive high voltage to the pixel liquid crystal that is, a pixel circuit P (i, j) in which a 5V data signal is written as pixel data.
- a voltage pulse as the boost signal BST is applied to the boost signal line BSL every predetermined period (16.7 ms, which is one frame period in the present embodiment).
- the pixel data is refreshed.
- the pixel voltage Vpix does not greatly decrease from the H level reference voltage (5 V) (FIG. 6G), and the voltage applied to the pixel liquid crystal is almost positive.
- the H level liquid crystal applied voltage (5 V) is maintained.
- the reference voltage REF is applied during the self-refresh period.
- the voltage (S (j)) of the source line SLj is maintained at ⁇ 5 V during the self-refresh period (FIG. 6B). Therefore, the off-resistance of the first transistor T1 and the third transistor are between the voltage of the refresh data line RLL, that is, the refresh voltage RL (5V) and the voltage of the source line SLj, that is, the voltage of the data signal S (j) ( ⁇ 5V).
- the voltage obtained by dividing by the resistance ratio of T3 to the off-resistance (hereinafter referred to as “voltage by off-resistance division”) is approximately 0 V when the off-resistances of the first and third transistors T1 and T3 are substantially equal to each other. It is.
- the voltage due to the off-resistance division is substantially equal to the reference voltage (0 V) of the positive L level of the pixel electrode Ep connected to the connection point (node N1) between the first transistor T1 and the third transistor T3. Therefore, even if the voltage of the pixel electrode Ep, that is, the pixel voltage Vpix varies slightly from the reference voltage (0 V) of the positive L level during the holding operation in the writing period (FIG. 8B), the self-refresh period In FIG. 8, the fluctuation is eliminated (FIGS. 8C and 8D).
- the equivalent resistance of the pixel liquid crystal is sufficiently smaller than the off resistances of the first and third transistors T1 and T3 (for example, about two digits smaller), in this embodiment, the leakage current in the pixel liquid crystal is a problem. Must not. Therefore, in the refresh period, the voltage Vpix of the pixel electrode Ep hardly varies (FIG. 6H), and the applied voltage to the pixel liquid crystal is maintained at approximately 0 V (positive L level liquid crystal applied voltage).
- each source line SLj As described above, by setting the voltage of each source line SLj to ⁇ 5 V during the self-refresh period, it is possible to suppress the fluctuation of the pixel voltage due to the leakage current.
- the voltage setting of each source line SLj more generally, there are two types of voltage applied to each source line SLj as a data signal S (j) in accordance with a still image to be displayed in the constant display mode writing period. Of the voltages (here, 0V and 5V), attention is paid to another voltage (0V) different from the refresh voltage RL (5V). That is, the higher voltage among the voltages to be applied to the pixel electrode Ep as the data signal S (j) is the first voltage (5 V), and the lower voltage is the second voltage (0 V). Pay attention.
- the voltage between the voltage RL of the refresh data line RLL and the voltage of the source line SLj is divided by the off resistance of the first transistor T1 and the off resistance of the third transistor T3. What is necessary is just to determine the voltage which should be given to each source line SLj so that the voltage (voltage by off-resistance division
- the voltage obtained by the off-resistance division may be made substantially equal to the lowest voltage among the plurality of types of voltages.
- Vpix can be maintained within a predetermined range in the vicinity of the reference voltage (0 V or 5 V) (FIGS. 6G and 6H).
- polarity inversion period of this embodiment the voltage of each pixel electrode is inverted so that the polarity of the voltage applied to each pixel liquid crystal is inverted by the same operation as that in the constant display mode writing period (see FIG. 5 and the like). Is updated.
- the operation mode corresponding to this polarity inversion period is called “polarity inversion mode”.
- the polarity is inverted without changing the absolute value of the voltage applied to each pixel liquid crystal before and after the polarity inversion period.
- a memory (hereinafter referred to as “external memory”) provided in an electronic device or the like that uses the liquid crystal display device according to the present embodiment, still image data (at least for one frame) to be displayed in the constant display mode. Data) is stored.
- the liquid crystal display device according to the present embodiment receives image data from the external memory during the polarity inversion period, and considers the polarity inversion using the source driver 300 based on the pixel data constituting the image data. The same operation as the constant display mode writing operation is performed.
- the source driver 300 includes a memory capable of storing at least one frame of image data, this memory is used as a memory for storing the image data of the still image instead of the external memory. May be.
- the common AC voltage Vcom and the common voltage Vcom are used because the polarity of the applied voltage to the pixel liquid crystal is inverted so that the polarity is the same within the same frame.
- the interval of the polarity inversion period can be expanded within a range that does not cause a problem from the viewpoint of liquid crystal deterioration, and the display quality is not deteriorated due to flicker or contrast reduction, as in the present embodiment.
- the configuration of the pixel circuit is simplified as compared with the conventional configuration that displays a still image while suppressing power consumption.
- a decrease in the aperture ratio can be suppressed, so that a decrease in the brightness of the display image can be prevented and a good display (moving image display or the like) in the normal display mode can be maintained.
- the boost signal lines BSL formed along the gate lines GL (1) to GL (N) in the active matrix substrate 101 are connected to each other and connected to the display control circuit 200.
- boost signal lines BSL (1) to BSL (N) are provided as N control signal lines arranged along the gate lines GL (1) to GL (N), respectively. N) may be provided, and these boost signal lines BSL (1) to BSL (N) may be independently driven by the gate driver 412 without being connected to each other.
- the gate driver 412 functions not only as a scanning signal line driving circuit but also as a boost driving circuit, and boost signals BS (1) to BS to be applied to the boost signal lines BSL (1) to BSL (N), respectively.
- (N) is sequentially generated as a signal that becomes active.
- one screen refresh (frame refresh) is performed. Is executed.
- the boost signal lines BSL (1) to BSL (N) are driven independently to perform sequential refresh, the combined boost signal lines BSL are driven to perform batch refresh. As compared with the above, the peak current is reduced.
- the CS lines CSL formed along each of the gate lines GL (1) to GL (N) in the active matrix substrate 101 are connected to each other and also connected to the common electrode Ec.
- a common voltage Vcom is applied to both the line CSL and the common electrode Ec (FIG. 1).
- N CS lines CS (1) to CS (N) arranged along the gate lines GL (1) to GL (N), respectively, are provided, and these CS lines CS (1 ) To CS (N) may be driven independently and separately from the common electrode Ec.
- the moving image display in the normal display mode in the above embodiment can be performed in a partial region of the panel, that is, the moving image partial drive display can be performed.
- the boost signal line BSL or BSL (i) is formed along each gate line GL (i), and one gate line GL (i) is formed.
- the configuration of the boost signal line BSL or BSL (i) is not limited to such a configuration.
- the boost signal line BSL corresponding to each gate line GL (i) is separated into two (left and right). May be separated).
- boost signal lines BSL formed along odd-numbered gate lines GL (1), GL (3),... Are connected to each other on one side (for example, the left side) of the active matrix substrate 101 and are even-numbered.
- the boost signal lines BSL formed along the gate lines GL (2), GL (4),... May be connected to each other on the other side (for example, the right side) of the active matrix substrate 101.
- a modification similar to the modification of the configuration of the boost signal line BSL or BSL (i) is also possible for the refresh data line RLL and the reference line RFL.
- the normal display in the above embodiment It is easy to display a moving image in the mode and a still image in the constant display mode simultaneously on the same panel (partial drive for moving image display), and it is possible to reduce power consumption in the display including the moving image. .
- the refresh voltage RL applied from the refresh data line RLL to the pixel electrode Ep through the first transistor T1 in the self-refresh period is the source in the always-on display mode write period or polarity inversion period. It is equal to the voltage of the data signal S (j) (H level reference voltage 5V) applied to the pixel electrode Ep via the line SLj, but instead is lower than the voltage of the data signal S (j). It is preferable to set the voltage as the refresh voltage RL. This is because the common voltage Vcom is corrected based on a so-called pull-in voltage, and the same correction should be made for the voltage RL of the refresh data line RLL as the video voltage supply line.
- a voltage lower than the voltage of the data signal S (j) by the pull-in voltage is set as the refresh voltage RL. It is preferable to do this. Further, the voltage of the data signal S (j) that should give the pixel electrode Ep a voltage higher than the voltage required for white display from the characteristic indicating the relationship between the liquid crystal applied voltage and the luminance in the normally black liquid crystal display device. If so (so-called overdrive), a lower voltage capable of white display may be set as the refresh voltage RL.
- the opposed AC drive method is adopted as described above, but the present invention is not limited to this.
- the potential of the common electrode Ec is fixed and the voltage of the data signal S (j) is applied to the pixel electrode, the potential of the CS line CSL is changed so that the potential difference between the pixel electrode Ep and the common electrode Ec increases.
- a driving method may be employed.
- the polarity inversion of the voltage applied to the liquid crystal employs the line inversion driving method in the normal display mode and the frame inversion driving method in the constant display mode.
- the present invention is not limited to such a configuration.
- the line inversion driving method may be adopted in both the normal display mode and the constant display mode, or the frame inversion driving method may be adopted in both the normal display mode and the constant display mode.
- each pixel circuit 112 can perform only two types of display, that is, black display (non-lighting state) and white display (lighting state), but a predetermined number of adjacent two or more pixel circuits.
- P (i, j) as a display unit, gradation display based on area gradation can be performed.
- the boost capacitance element Cbst used for refreshing in each pixel circuit 112 is provided for each pixel circuit 112. Instead, a predetermined number of pixels equal to or greater than two is provided.
- One boost capacitor element Cbst may be provided for each circuit 112. For example, three pixel circuits P (i, j), P (i, j + 1), and P (i, j + 2) for forming R (red), G (green), and B (blue) pixels, respectively, are displayed.
- P (i, j), P (i, j + 1), and P (i, j + 2) for forming R (red), G (green), and B (blue) pixels, respectively, are displayed.
- the three pixel circuits P (i, j), P (i, j + 1), and P (i, j + 2) can share one boost capacitor element Cbst. According to such a configuration, since the aperture ratio is improved as compared with the first embodiment, it is possible to suppress a decrease in luminance of the display image due to the introduction of the self-refresh function.
- all the pixel circuits 112 formed on the active matrix substrate 101 have the configuration for the self-refresh function (self-refresh circuit 112b).
- self-refresh circuit 112b the configuration for the self-refresh function
- a liquid crystal display device described in Japanese Unexamined Patent Application Publication No. 2007-334224 is provided with two types of pixel portions, a transmissive pixel portion and a reflective pixel portion, and display is performed using the reflective pixel portion in the constant display mode.
- a configuration for the self-refresh function may be provided only in the reflective pixel portion.
- the pixel circuit 112 is configured using an N-channel thin film transistor as shown in FIG. 2, but a P-channel thin film transistor is used instead of the N-channel thin film transistor. It is also possible to adopt the configuration described above. Also in the liquid crystal display device having such a configuration, the pixel circuit can be operated in the same manner as in the first embodiment by inverting the positive / negative of the power supply voltage and the voltage value indicated as the above-described operation condition. The same effect can be obtained. Further, according to the present invention, the transistors T1 to T3 in the pixel circuit 112 are not limited to the above-described thin film transistors, and other active elements may be used instead of the thin film transistors as components of the pixel circuit 112.
- the pixel capacitor Cp for holding the pixel data in the pixel circuit 112 includes the liquid crystal capacitor Clc and the auxiliary capacitor Cs.
- a configuration composed only of the liquid crystal capacitance Clc (a configuration not including the auxiliary capacitance Cs), that is, a capacitance for holding pixel data is formed by the pixel electrode Ep and a common electrode (counter electrode) Ec opposed to the pixel electrode Ep through the liquid crystal layer.
- the structure formed may be sufficient.
- an analog amplifier Amp is built in the pixel circuit, and a voltage held in an auxiliary capacitor (holding capacitor) Cs as pixel data forms a liquid crystal capacitor Clc via the analog amplifier Amp.
- the structure given to may be sufficient.
- the pixel capacitance Cp for holding the pixel data is composed only of the auxiliary capacitance (holding capacitance) Cs.
- the first embodiment has been described by taking a liquid crystal display device as an example, but the present invention is not limited to this, and a capacitor corresponding to the pixel capacitor Cp for holding pixel data is used.
- the present invention can be applied to any display device that has an image based on the voltage held in the capacitor.
- the present invention can be applied to an organic EL (Electroluminescenece) display device that displays an image by holding a voltage corresponding to pixel data in a capacitor corresponding to a pixel capacitor.
- FIG. 15 is a circuit diagram showing an example of a pixel circuit of such an organic EL display device.
- each pixel circuit includes a self-refresh circuit including first and second transistors T1 and T2 and a boost capacitor element Cbst.
- the present invention is applied to a display device and its pixel circuit, and in particular, can be effectively applied to a liquid crystal display device suitable for a portable information terminal such as a mobile phone and its pixel circuit.
- SYMBOLS 100 Display part 101 ... Active matrix substrate 102 ... Opposite substrate 112 ... Pixel circuit 112a ... Main circuit 112b ... Self-refresh circuit 200 ... Display control circuit 300 ...
- Source driver (data signal line drive circuit) 410: Gate driver (scanning signal line driving circuit) 412... Gate driver (scanning signal line drive circuit, boost drive circuit) 600 ... Common electrode driving circuit GL (i) ... Gate line (i 1 to N) (scanning signal line) CSL ... CS line (4th wiring) VL ...
- RLL Refresh data line (first wiring)
- RFL Reference line (third wiring)
- Ep pixel electrode
- Ec common electrode (counter electrode)
- Clc liquid crystal capacitance
- Cs auxiliary capacitance (auxiliary capacitance element)
- Cbst Boost capacitor element
- T3 Third transistor (third active element) Vcom ... common voltage Vpix ...
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
P∝f・C・V・V・n・m …(1)
ここで、Pは液晶パネルの駆動のための消費電力を示し、fはリフレッシュ周波数を示し、1フレーム分の画素データの単位時間当たりのリフレッシュ(書き換え)回数である。Cはソースドライバによって駆動される負荷容量を示し、Vはソースドライバによる駆動電圧を示し、nは走査線数を示し、mはソースライン数を示している。
第1および第2のアクティブ素子と、
画素データを保持するための容量を形成する所定電極とを備え、
前記所定電極は、前記第1のアクティブ素子を介して所定の第1配線に接続されると共に前記第2のアクティブ素子を介して前記第1のアクティブ素子の制御端子に接続され、
前記第1のアクティブ素子の制御端子は所定の第2配線に容量結合し、
前記第2のアクティブ素子の制御端子は所定の第3配線に接続されていることを特徴とする。
第3のアクティブ素子を更に備え、
前記表示装置は、複数のデータ信号線と当該複数のデータ信号線に交差する複数の走査信号線とを有し、
前記所定電極は、前記第3のアクティブ素子を介して前記複数のデータ信号線のいずれかに接続され、
前記第3のアクティブ素子の制御端子は、前記複数の走査信号線のいずれかに接続されていることを特徴とする。
前記所定電極は所定の第4配線に容量結合していることを特徴とする。
表示すべき画像の画素毎に設けられた、本発明の第1の局面に係る画素回路と、
複数のデータ信号線とを備え、
前記画素回路は、前記複数のデータ信号線のいずれかに接続されており、
前記画素回路における前記所定電極は、マトリクス状に配置されていることを特徴とする。
表示すべき画像の画素毎に設けられた、本発明の第1の局面に係る画素回路と、
複数のデータ信号線とを備え、
前記画素回路は、前記複数のデータ信号線のいずれかに接続されており、
前記第1、第2および第3配線のうち少なくとも1つの配線は、複数の前記画素回路によって共有されていることを特徴とする。
表示すべき画像の画素毎に設けられた、本発明の第1の局面に係る画素回路と、
複数のデータ信号線と、
前記複数のデータ信号線に交差する複数の走査信号線と備え、
前記画素回路は、前記複数の走査信号線のいずれかに接続されると共に前記複数のデータ信号線のいずれかに接続され、
前記画素回路は、前記走査信号線に制御端子が接続された第3のアクティブ素子を更に備え、
前記画素回路における前記所定電極は、前記第3のアクティブ素子を介して前記データ信号線に接続されていることを特徴とする。
前記複数のデータ信号線に交差する複数の走査信号線を更に備え、
前記画素回路は、前記複数の走査信号線のいずれかに接続されると共に前記複数のデータ信号線のいずれかに接続され、
前記画素回路は、前記走査信号線に制御端子が接続された第3のアクティブ素子を更に備え、
前記画素回路における前記所定電極は、前記第3のアクティブ素子を介して前記データ信号線に接続されていることを特徴とする。
前記第1、第2および第3配線のうち少なくとも1つの配線は、同一の走査信号線に接続された複数の画素回路によって共有されていることを特徴とする。
前記第1、第2および第3配線のうち少なくとも1つの配線は、全ての画素回路によって共有されていることを特徴とする。
前記第1、第2および第3配線のうち少なくとも1つの配線は、全ての画素回路によって共有されていることを特徴とする。
表示すべき画像の画素毎に設けられた、本発明の第1の局面に係る画素回路と、
複数のデータ信号線とを備え、
前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記画素回路は、前記複数のデータ信号線のいずれかに接続され、
前記第1動作モードでは、前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする。
前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記画素回路は、前記複数のデータ信号線のいずれかに接続され、
前記第1動作モードでは、前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする。
前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記画素回路は、前記複数のデータ信号線のいずれかに接続され、
前記第1動作モードでは、前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする。
前記第1動作モードでは、
前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に応じて前記第1のアクティブ素子がオンまたはオフされ、
前記第1のアクティブ素子がオンされた場合に前記第1配線の電圧が前記第1のアクティブ素子を介して前記所定電極に与えられることを特徴とする。
前記第1動作モードでは、前記第2配線の全てに前記電圧パルスを同時に印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする。
前記第2配線は前記走査信号線毎に設けられており、
前記第1動作モードでは、前記第2配線に前記走査信号線単位で選択的に前記電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする。
前記第1のアクティブ素子がNチャネル形トランジスタである場合には、前記電圧パルスが印加されていないときの前記第2配線の電圧は、前記電圧パルスが印加されているときの前記第2配線の電圧よりも低く、
前記第1のアクティブ素子がPチャネル形トランジスタである場合には、前記電圧パルスが印加されていないときの前記第2配線の電圧は、前記電圧パルスが印加されているときの前記第2配線の電圧よりも高いことを特徴とする。
前記第3配線の電圧を基準とする所定範囲内の電圧が前記所定電極に与えられている場合には、前記第2配線に前記電圧パルスが印加されたときに前記第1のアクティブ素子がオン状態となって、前記第2配線に前記電圧パルスが印加されていないときに前記第1のアクティブ素子がオフ状態となり、かつ、前記所定範囲外の他の所定範囲内の電圧が前記所定電極に与えられている場合には、前記第2配線に前記電圧パルスが印加されているか否かに拘わらず前記第1のアクティブ素子がオフ状態となるように、前記第1配線の電圧、前記電圧パルスを含む前記第2配線の電圧、および前記第3配線の電圧が設定されていることを特徴とする。
前記第1動作モードでは、前記容量に画素データを保持させるために前記所定電極に与えるべき電圧の上限値以下かつ下限値以上の所定電圧が前記第3配線に与えられていることを特徴とする。
前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記第1動作モードでは、
前記第3のアクティブ素子の制御端子に接続された走査信号線に非アクティブな信号を与えることにより前記第3のアクティブ素子がオフ状態とされ、
前記複数のデータ信号線の電圧は所定電圧に固定されることを特徴とする。
前記第1動作モードにおいて、前記第1のアクティブ素子がオフ状態であるときには、前記第1配線の電圧と前記所定電圧との間を前記第1のアクティブ素子のオフ抵抗と前記第3のアクティブ素子のオフ抵抗とによって分圧することにより得られる電圧が前記所定電極に供給されることを特徴とする。
前記所定電圧は、前記第1配線の電圧と前記所定電圧との間を前記第1のアクティブ素子のオフ抵抗と前記第3のアクティブ素子のオフ抵抗とによって分圧することにより得られる電圧が、前記容量に画素データを保持させるために前記所定電極に与えるべき電圧のうち最も低い電圧に略等しくなるように設定されていることを特徴とする。
前記所定電圧は、前記第1配線の電圧と前記所定電圧との間を前記第1のアクティブ素子のオフ抵抗と前記第3のアクティブ素子のオフ抵抗とによって分圧することにより得られる電圧が略0に等しくなるように設定されていることを特徴とする。
前記画素回路によって形成すべき画素を示すデータ信号を前記所定電極に与えるための第2動作モードを有し、
前記第2動作モードでは、
前記第3のアクティブ素子の制御端子に接続された走査信号線にアクティブな信号を与えることにより前記第3のアクティブ素子がオンされ、
前記第3のアクティブ素子がオン状態であるときに前記データ信号が前記データ信号線および前記第3のアクティブ素子を介して前記所定電極に与えられることを特徴とする。
前記第2動作モードでは、前記所定電極に与えられる電圧に拘わらず前記第2のアクティブ素子をオン状態とする電圧が前記第3配線に与えられていることを特徴とする。
前記第2動作モードでは、前記所定電極に与えられる電圧に拘わらず前記第2のアクティブ素子をオフ状態とする電圧が前記第3配線に与えられていることを特徴とする。
前記画素データを保持するための前記容量に印加される電圧の極性が反転するように前記所定電極の電圧を更新するための第3動作モードを有し、
前記第3動作モードでは、前記極性が反転するように、前記複数の走査信号線が駆動されて、前記極性の反転された電圧が前記データ信号線を介して前記所定電極に与えられることを特徴とする。
前記第3動作モードでは、前記極性が同一フレーム内で同一となるように前記極性の反転された電圧が前記データ信号線を介して前記所定電極に与えられることを特徴とする。
前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記画素回路は、前記複数のデータ信号線のいずれかに接続され、
前記第1動作モードでは、前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われ、
前記第3動作モードにおいて前記極性が反転される周期は、前記第1動作モードにおいて前記電圧パルスが印加される周期の10倍よりも長いことを特徴とする。
前記第3動作モードでは、所定のメモリに格納された少なくとも1フレーム分の画像データを構成する画素データが、前記極性の反転された電圧として前記データ信号線および前記第3のアクティブ素子を介して前記所定電極に与えられることを特徴とする。
表示すべき画像の画素毎に設けられた、本発明の第1の局面に係る画素回路と、
複数の走査信号線と、
前記複数の走査信号線に交差する複数のデータ信号線と、
第4配線とを備え、
前記画素回路は、前記複数の走査信号線のいずれかに接続されると共に前記複数のデータ信号線のいずれかに接続され、
前記第4配線は、全ての前記画素回路の前記所定電極に容量結合していることを特徴とする。
第4配線を更に備え、
前記第4配線は、全ての前記画素回路の前記所定電極に容量結合していることを特徴とする。
表示すべき画像の画素毎に設けられた、本発明の第1の局面に係る画素回路と、
複数の走査信号線と、
前記複数の走査信号線に交差する複数のデータ信号線と、
前記走査信号線毎に設けられた第4配線とを備え、
前記画素回路は、前記複数の走査信号線のいずれかに接続されると共に前記複数のデータ信号線のいずれかに接続され、
前記第4配線のそれぞれは、対応する走査信号線に接続された複数の画素回路の前記所定電極に容量結合していることを特徴とする。
前記走査信号線毎に設けられた第4配線を更に備え、
前記第4配線のそれぞれは、対応する走査信号線に接続された複数の画素回路の前記所定電極に容量結合していることを特徴とする。
<1.第1の実施形態>
<1.1 液晶表示装置の構成>
図1は、本発明の第1の実施形態に係る液晶表示装置の構成を示すブロック図であり、図2は、本実施形態における画素回路112の構成を示す回路図である。本実施形態に係る液晶表示装置は、透過型での通常表示モードと、反射型での常時表示モードとを有しており、常時表示モードには、書込モード、リフレッシュモード、および極性反転モードを有する。例えば、この液晶表示装置が携帯電話等で使用される場合、動画表示を必要とする通常時に透過型モードで表示を行うという動作モードが通常表示モードに相当し、反射型モードにおいて静止画を低消費電力で表示するという動作モードが常時表示モードに相当する。ただし、本発明は、このような用途や構成に限定されるものではない。
図3は、本実施形態の常時表示モードにおける動作条件を示す図であり、図4は、本実施形態に係る液晶表示装置の常時表示モードにおける各動作期間を説明するためのタイミングブロック図である。本実施形態では、通常表示モードから常時表示モードに入ると、まず、表示すべき静止画を表す各画素データがそれに対応する画素回路112(の画素容量Cp)に2値データとして書き込まれる(変形例においても同様)。以下において、この書き込み動作を「常時表示モード書込動作」という。一方、通常表示モードにおいて表示すべき画像を表す各画素データをそれに対応する画素回路112(の画素容量Cp)にデータ信号S(j)として与えることによる書き込み動作を「通常表示モード書込動作」という。ただし、両表示モードの書き込み動作の区別が文脈等から明らかな場合や両表示モードの書き込み動作を区別する必要のない場合には、単に「書込動作」という。また、常時表示モード書込動作が行われる期間を「常時表示モード書込期間」または単に「書込期間」といい、常時表示モード書込期間に対応する動作モードを「書込モード」という。常時表示モード書込期間では、1水平期間(「1H期間」ともいう)に1表示ラインずつ画素データが画素回路112に書き込まれ、1垂直期間(「1V期間」または「1フレーム期間」ともいう)で1画面分の画素データが書き込まれる。
画素液晶に正極性の高電圧を印加する画素回路P(i,j)では、図7(A)に示すように、共通電圧Vcom(=CS)は0Vであり、走査信号G(i)がHレベル(8V:アクティブ)であってゲートラインGL(i)が選択されているときに、第3トランジスタT3がオン状態となり、正極性のHレベル液晶印加電圧に対応する5Vのデータ信号S(j)がソースラインSLjから第3トランジスタT3を介して画素電極Epに与えられる。その後、走査信号G(i)がLレベル(-5V:非アクティブ)になると、図7(B)に示すように、画素電圧Vpix=5Vが画素データとして画素容量Cpに保持される。
画素液晶に正極性の低電圧を印加する画素回路P(i,j)では、図8(A)に示すように、共通電圧Vcom(=CS)は0Vであり、常時表示モード書込期間において走査信号G(i)がHレベルであるときに、正極性のLレベル液晶印加電圧(0V)に対応する0Vのデータ信号S(j)が画素電極Epに与えられる。その後、走査信号G(i)がLレベル(-5V)になると、図8(B)に示すように、第3トランジスタT3がオフ状態となり、画素電極Epの電圧すなわち画素電圧Vpix=0Vが画素データとして画素容量Cpに保持される。これにより、当該画素回路P(i,j)の画素液晶には正極性の低電圧(0V)が印加される。
画素液晶に負極性の低電圧を印加する画素回路P(i,j)では、図9(A)に示すように、共通電圧Vcom(=CS)は5Vであり、常時表示モード書込期間に、負極性のLレベル液晶印加電圧(0V)に対応する5Vのデータ信号S(j)が画素電極Epに与えられる。このため、常時表示モード書込期間およびセルフ・リフレッシュ期間における当該画素回路P(i,j)の動作は、図9に示す通りであり、共通電圧Vcomが5Vであることを除き、画素液晶に正極性の高電圧を印加する画素回路P(i,j)の動作すなわち図7に示す動作と実質的に同じである。
画素液晶に負極性の高電圧を印加する画素回路P(i,j)では、図10(A)に示すように、共通電圧Vcom(=CS)は5Vであり、常時表示モード書込期間に、負極性のHレベル液晶印加電圧(-5V)に対応する0Vのデータ信号S(j)が画素電極Epに与えられる。このため、常時表示モード書込期間およびセルフ・リフレッシュ期間における当該画素回路P(i,j)の動作は、図10に示す通りであり、共通電圧Vcomが5Vであることを除き、画素液晶に正極性の低電圧を印加する画素回路P(i,j)の動作すなわち図8に示す動作と実質的に同じである。
本実施形態の極性反転期間では、常時表示モード書込期間の動作と同様の動作(図5等参照)により、各画素液晶に印加されていた電圧の極性が反転するように各画素電極の電圧が更新される。この極性反転期間に対応する動作モードは「極性反転モード」と呼ばれる。ここで、各画素液晶への印加電圧の絶対値を極性反転期間の前後で変えずに極性が反転される。また、本実施形態に係る液晶表示装置を使用する電子機器等に設けられたメモリ(以下「外部メモリ」という)には、常時表示モードにおいて表示すべき静止画の画像データ(少なくとも1フレーム分のデータ)が格納されている。本実施形態に係る液晶表示装置は、極性反転期間において、その外部メモリから画像データを受け取り、その画像データを構成する画素データに基づき、ソースドライバ300を使用して、上記極性反転に考慮しつつ常時表示モード書込動作と同様の動作を行う。なお、少なくとも1フレーム分の画像データを格納可能なメモリがソースドライバ300に含まれている場合には、上記外部メモリに代えて、このメモリを当該静止画の画像データの格納用のメモリとして使用してもよい。
上記のように本実施形態によれば、セルフ・リフレッシュ期間において、図6(G)(H)に示すように、画素回路112におけるリーク電流による画素電圧Vpixの変動がリフレッシュ動作によって抑えられ、または、ソースラインSLjの電圧設定に基づく上記オフ抵抗分割による電圧の画素電極Epへの供給によって当該変動が解消される。これにより、画素電圧Vpixが書込時点の規準電圧(本実施形態では0Vまたは5V)の近傍の範囲内に維持され、各画素液晶への印加電圧もその規準電圧に対応した電圧に維持される。このため、常時表示モードにおいて極性反転期間の間隔を液晶劣化の観点から問題を生じない範囲で拡大することができ、フリッカやコントラスト低下による表示品位の低下を回避しつつ、本実施形態のように16.7ms×(59+1)=1000ms(1秒)の間隔でソースドライバ300による極性反転駆動を行うことができる。これにより、表示品位の低下を回避しつつ常時表示モードでの静止画の表示(常時表示)に必要な消費電力を十分に低減することができる。なお本実施形態では、極性反転駆動が行われる周期は上記のように1000ms(1秒)であってリフレッシュ動作の周期(ブースト信号線BSTに電圧パルスが印加される周期=16.7ms)の60倍であるが、10倍程度以上であれば常時表示モードでの静止画の表示における消費電力の低減に十分に有効である。
上記実施形態では、アクティブマトリクス基板101においてゲートラインGL(1)~GL(N)のそれぞれに沿って形成されたブースト信号線BSLは、互いに接続されて表示制御回路200に接続されている。しかし、これに代えて、図11に示すように、ゲートラインGL(1)~GL(N)にそれぞれに沿って配置されたN本の制御信号線としてブースト信号線BSL(1)~BSL(N)を設け、これらのブースト信号線BSL(1)~BSL(N)を互いに接続せずにゲートドライバ412によって独立に駆動するようにしてもよい。この場合、ゲートドライバ412は、走査信号線駆動回路として機能すると共にブースト駆動回路としても機能し、ブースト信号線BSL(1)~BSL(N)にそれぞれ印加すべきブースト信号BS(1)~BS(N)を順次的にアクティブとなる信号として生成する。この場合、ブースト信号線BSL(1)~BSL(N)へのアクティブなブースト信号BS(1)~BS(N)の順次的な印加が1通り終了すると、1画面分のリフレッシュ(フレームリフレッシュ)が実行されたことになる。このようにブースト信号線BSL(1)~BSL(N)を独立に駆動して順次的なリフレッシュを行えば、1つに結合されたブースト信号線BSLを駆動して一括的なリフレッシュを行う場合に比べ、ピーク電流が低減される。
上記第1の実施形態では、既述のように対向AC駆動方式が採用されているが、本発明はこれに限定されるものではない。例えば、共通電極Ecの電位を固定し、データ信号S(j)の電圧を画素電極に与えた後に画素電極Epと共通電極Ecとの間の電位差が拡大するようにCSラインCSLの電位を変化させる駆動方式が採用されてもよい。
101 …アクティブマトリクス基板
102 …対向基板
112 …画素回路
112a …主回路
112b …セルフ・リフレッシュ回路
200 …表示制御回路
300 …ソースドライバ(データ信号線駆動回路)
410 …ゲートドライバ(走査信号線駆動回路)
412 …ゲートドライバ(走査信号線駆動回路、ブースト駆動回路)
600 …共通電極駆動回路
GL(i) …ゲートライン(i=1~N)(走査信号線)
CSL …CSライン(第4配線)
VL …電源ライン(第4配線)
BSL …ブースト信号線(第2配線)
BSL(i) …ブースト信号線(i=1~N)(第2配線)
RLL …リフレッシュデータ線(第1配線)
RFL …リファレンス線(第3配線)
SLj …ソースライン(j=1~M)(データ信号線)
P(i,j) …画素回路(i=1~N,j=1~M)
Ep …画素電極
Ec …共通電極(対向電極)
Clc …液晶容量
Cs …補助容量(補助容量素子)
Cbst …ブースト容量素子
T1 …第1トランジスタ(第1のアクティブ素子)
T2 …第2トランジスタ(第2のアクティブ素子)
T3 …第3トランジスタ(第3のアクティブ素子)
Vcom …共通電圧
Vpix …画素電圧
G(i) …走査信号(i=1~N)
CS …CSラインの電圧(CS信号)
BST …ブースト信号
BS(i) …ブースト信号(i=1~N)
S(j) …データ信号(j=1~M)
RL …リフレッシュ電圧
REF …リファレンス電圧
Claims (34)
- 表示装置において表示すべき画像の画素を形成するための画素回路であって、
第1および第2のアクティブ素子と、
画素データを保持するための容量を形成する所定電極とを備え、
前記所定電極は、前記第1のアクティブ素子を介して所定の第1配線に接続されると共に前記第2のアクティブ素子を介して前記第1のアクティブ素子の制御端子に接続され、
前記第1のアクティブ素子の制御端子は所定の第2配線に容量結合し、
前記第2のアクティブ素子の制御端子は所定の第3配線に接続されていることを特徴とする、画素回路。 - 第3のアクティブ素子を更に備え、
前記表示装置は、複数のデータ信号線と当該複数のデータ信号線に交差する複数の走査信号線とを有し、
前記所定電極は、前記第3のアクティブ素子を介して前記複数のデータ信号線のいずれかに接続され、
前記第3のアクティブ素子の制御端子は、前記複数の走査信号線のいずれかに接続されていることを特徴とする、請求項1に記載の画素回路。 - 前記所定電極は所定の第4配線に容量結合していることを特徴とする、請求項1に記載の画素回路。
- 表示すべき画像の画素毎に設けられた、請求項1に記載の画素回路と、
複数のデータ信号線とを備え、
前記画素回路は、前記複数のデータ信号線のいずれかに接続されており、
前記画素回路における前記所定電極は、マトリクス状に配置されていることを特徴とする、表示装置。 - 表示すべき画像の画素毎に設けられた、請求項1に記載の画素回路と、
複数のデータ信号線とを備え、
前記画素回路は、前記複数のデータ信号線のいずれかに接続されており、
前記第1、第2および第3配線のうち少なくとも1つの配線は、複数の前記画素回路によって共有されていることを特徴とする、表示装置。 - アクティブマトリクス型の表示装置であって、
表示すべき画像の画素毎に設けられた、請求項1に記載の画素回路と、
複数のデータ信号線と、
前記複数のデータ信号線に交差する複数の走査信号線と備え、
前記画素回路は、前記複数の走査信号線のいずれかに接続されると共に前記複数のデータ信号線のいずれかに接続され、
前記画素回路は、前記走査信号線に制御端子が接続された第3のアクティブ素子を更に備え、
前記画素回路における前記所定電極は、前記第3のアクティブ素子を介して前記データ信号線に接続されていることを特徴とする、表示装置。 - アクティブマトリクス型の表示装置であって、
前記複数のデータ信号線に交差する複数の走査信号線を更に備え、
前記画素回路は、前記複数の走査信号線のいずれかに接続されると共に前記複数のデータ信号線のいずれかに接続され、
前記画素回路は、前記走査信号線に制御端子が接続された第3のアクティブ素子を更に備え、
前記画素回路における前記所定電極は、前記第3のアクティブ素子を介して前記データ信号線に接続されていることを特徴とする、請求項4または5に記載の表示装置。 - 前記第1、第2および第3配線のうち少なくとも1つの配線は、同一の走査信号線に接続された複数の画素回路によって共有されていることを特徴とする、請求項6または7に記載の表示装置。
- 前記第1、第2および第3配線のうち少なくとも1つの配線は、全ての画素回路によって共有されていることを特徴とする、請求項4または5に記載の表示装置。
- 前記第1、第2および第3配線のうち少なくとも1つの配線は、全ての画素回路によって共有されていることを特徴とする、請求項6または7に記載の表示装置。
- 表示すべき画像の画素毎に設けられた、請求項1に記載の画素回路と、
複数のデータ信号線とを備え、
前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記画素回路は、前記複数のデータ信号線のいずれかに接続され、
前記第1動作モードでは、前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする、表示装置。 - 前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記画素回路は、前記複数のデータ信号線のいずれかに接続され、
前記第1動作モードでは、前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする、請求項4、5または9に記載の表示装置。 - 前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記画素回路は、前記複数のデータ信号線のいずれかに接続され、
前記第1動作モードでは、前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする、請求項6から8、および請求項10のいずれか1項に記載の表示装置。 - 前記第1動作モードでは、
前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に応じて前記第1のアクティブ素子がオンまたはオフされ、
前記第1のアクティブ素子がオンされた場合に前記第1配線の電圧が前記第1のアクティブ素子を介して前記所定電極に与えられることを特徴とする、請求項11から13のいずれか1項に記載の表示装置。 - 前記第1動作モードでは、前記第2配線の全てに前記電圧パルスを同時に印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする、請求項11から13のいずれか1項に記載の表示装置。
- 前記第2配線は前記走査信号線毎に設けられており、
前記第1動作モードでは、前記第2配線に前記走査信号線単位で選択的に前記電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われることを特徴とする、請求項13に記載の表示装置。 - 前記第1のアクティブ素子がNチャネル形トランジスタである場合には、前記電圧パルスが印加されていないときの前記第2配線の電圧は、前記電圧パルスが印加されているときの前記第2配線の電圧よりも低く、
前記第1のアクティブ素子がPチャネル形トランジスタである場合には、前記電圧パルスが印加されていないときの前記第2配線の電圧は、前記電圧パルスが印加されているときの前記第2配線の電圧よりも高いことを特徴とする、請求項11から14のいずれか1項に記載の表示装置。 - 前記第3配線の電圧を基準とする所定範囲内の電圧が前記所定電極に与えられている場合には、前記第2配線に前記電圧パルスが印加されたときに前記第1のアクティブ素子がオン状態となって、前記第2配線に前記電圧パルスが印加されていないときに前記第1のアクティブ素子がオフ状態となり、かつ、前記所定範囲外の他の所定範囲内の電圧が前記所定電極に与えられている場合には、前記第2配線に前記電圧パルスが印加されているか否かに拘わらず前記第1のアクティブ素子がオフ状態となるように、前記第1配線の電圧、前記電圧パルスを含む前記第2配線の電圧、および前記第3配線の電圧が設定されていることを特徴とする、請求項17に記載の表示装置。
- 前記第1動作モードでは、前記容量に画素データを保持させるために前記所定電極に与えるべき電圧の上限値以下かつ下限値以上の所定電圧が前記第3配線に与えられていることを特徴とする、請求項11から18のいずれか1項に記載の表示装置。
- 前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記第1動作モードでは、
前記第3のアクティブ素子の制御端子に接続された走査信号線に非アクティブな信号を与えることにより前記第3のアクティブ素子がオフ状態とされ、
前記複数のデータ信号線の電圧は所定電圧に固定されることを特徴とする、請求項6から8、および請求項10のいずれか1項に記載の表示装置。 - 前記第1動作モードにおいて、前記第1のアクティブ素子がオフ状態であるときには、前記第1配線の電圧と前記所定電圧との間を前記第1のアクティブ素子のオフ抵抗と前記第3のアクティブ素子のオフ抵抗とによって分圧することにより得られる電圧が前記所定電極に供給されることを特徴とする、請求項20に記載の表示装置。
- 前記所定電圧は、前記第1配線の電圧と前記所定電圧との間を前記第1のアクティブ素子のオフ抵抗と前記第3のアクティブ素子のオフ抵抗とによって分圧することにより得られる電圧が、前記容量に画素データを保持させるために前記所定電極に与えるべき電圧のうち最も低い電圧に略等しくなるように設定されていることを特徴とする、請求項21に記載の表示装置。
- 前記所定電圧は、前記第1配線の電圧と前記所定電圧との間を前記第1のアクティブ素子のオフ抵抗と前記第3のアクティブ素子のオフ抵抗とによって分圧することにより得られる電圧が略0に等しくなるように設定されていることを特徴とする、請求項22に記載の表示装置。
- 前記画素回路によって形成すべき画素を示すデータ信号を前記所定電極に与えるための第2動作モードを有し、
前記第2動作モードでは、
前記第3のアクティブ素子の制御端子に接続された走査信号線にアクティブな信号を与えることにより前記第3のアクティブ素子がオンされ、
前記第3のアクティブ素子がオン状態であるときに前記データ信号が前記データ信号線および前記第3のアクティブ素子を介して前記所定電極に与えられることを特徴とする、請求項6から8、請求項10、請求項13、および請求項20から23のいずれか1項に記載の表示装置。 - 前記第2動作モードでは、前記所定電極に与えられる電圧に拘わらず前記第2のアクティブ素子をオン状態とする電圧が前記第3配線に与えられていることを特徴とする、請求項24に記載の表示装置。
- 前記第2動作モードでは、前記所定電極に与えられる電圧に拘わらず前記第2のアクティブ素子をオフ状態とする電圧が前記第3配線に与えられていることを特徴とする、請求項24に記載の表示装置。
- 前記画素データを保持するための前記容量に印加される電圧の極性が反転するように前記所定電極の電圧を更新するための第3動作モードを有し、
前記第3動作モードでは、前記極性が反転するように、前記複数の走査信号線が駆動されて、前記極性の反転された電圧が前記データ信号線を介して前記所定電極に与えられることを特徴とする、請求項6から8、請求項10、請求項13、および請求項20から26のいずれか1項に記載の表示装置。 - 前記第3動作モードでは、前記極性が同一フレーム内で同一となるように前記極性の反転された電圧が前記データ信号線を介して前記所定電極に与えられることを特徴とする、請求項27に記載の表示装置。
- 前記第1配線から前記所定電極への電圧供給のための第1動作モードを有し、
前記画素回路は、前記複数のデータ信号線のいずれかに接続され、
前記第1動作モードでは、前記第2配線に所定の電圧パルスを印加することにより、前記第3配線の電圧を基準とする前記所定電極の電圧の相対的な値に基づき前記第2のアクティブ素子がオフ状態となる場合に前記第1のアクティブ素子によって前記電圧供給が行われ、
前記第3動作モードにおいて前記極性が反転される周期は、前記第1動作モードにおいて前記電圧パルスが印加される周期の10倍よりも長いことを特徴とする、請求項27または28に記載の表示装置。 - 前記第3動作モードでは、所定のメモリに格納された少なくとも1フレーム分の画像データを構成する画素データが、前記極性の反転された電圧として前記データ信号線および前記第3のアクティブ素子を介して前記所定電極に与えられることを特徴とする、請求項27または28に記載の表示装置。
- 表示すべき画像の画素毎に設けられた、請求項1に記載の画素回路と、
複数の走査信号線と、
前記複数の走査信号線に交差する複数のデータ信号線と、
第4配線とを備え、
前記画素回路は、前記複数の走査信号線のいずれかに接続されると共に前記複数のデータ信号線のいずれかに接続され、
前記第4配線は、全ての前記画素回路の前記所定電極に容量結合していることを特徴とする、表示装置。 - 第4配線を更に備え、
前記第4配線は、全ての前記画素回路の前記所定電極に容量結合していることを特徴とする、請求項6から30のいずれか1項に記載の表示装置。 - 表示すべき画像の画素毎に設けられた、請求項1に記載の画素回路と、
複数の走査信号線と、
前記複数の走査信号線に交差する複数のデータ信号線と、
前記走査信号線毎に設けられた第4配線とを備え、
前記画素回路は、前記複数の走査信号線のいずれかに接続されると共に前記複数のデータ信号線のいずれかに接続され、
前記第4配線のそれぞれは、対応する走査信号線に接続された複数の画素回路の前記所定電極に容量結合していることを特徴とする、表示装置。 - 前記走査信号線毎に設けられた第4配線を更に備え、
前記第4配線のそれぞれは、対応する走査信号線に接続された複数の画素回路の前記所定電極に容量結合していることを特徴とする、請求項6から8、請求項10、請求項13、および請求項20から30のいずれか1項に記載の表示装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080025947.8A CN102804251B (zh) | 2009-06-12 | 2010-06-07 | 像素电路和显示装置 |
US13/375,614 US8704809B2 (en) | 2009-06-12 | 2010-06-07 | Pixel circuit and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009140833 | 2009-06-12 | ||
JP2009-140833 | 2009-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010143613A1 true WO2010143613A1 (ja) | 2010-12-16 |
Family
ID=43308868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059636 WO2010143613A1 (ja) | 2009-06-12 | 2010-06-07 | 画素回路および表示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8704809B2 (ja) |
CN (1) | CN102804251B (ja) |
WO (1) | WO2010143613A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012121056A1 (ja) * | 2011-03-10 | 2012-09-13 | シャープ株式会社 | 画素回路及び表示装置 |
CN103176319A (zh) * | 2011-12-20 | 2013-06-26 | 上海天马微电子有限公司 | 显示面板及其驱动方法 |
CN106205525A (zh) * | 2016-07-13 | 2016-12-07 | 京东方科技集团股份有限公司 | 液晶显示面板的驱动方法和液晶显示面板 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011027598A1 (ja) * | 2009-09-07 | 2011-03-10 | シャープ株式会社 | 画素回路及び表示装置 |
US8836680B2 (en) * | 2011-08-04 | 2014-09-16 | Sharp Kabushiki Kaisha | Display device for active storage pixel inversion and method of driving the same |
CN105679279B (zh) * | 2016-04-18 | 2018-01-19 | 京东方科技集团股份有限公司 | 自刷新显示驱动装置、驱动方法及显示装置 |
KR102579142B1 (ko) | 2016-06-17 | 2023-09-19 | 삼성디스플레이 주식회사 | 화소와 이를 이용한 유기전계발광 표시장치 및 그의 구동방법 |
KR102559544B1 (ko) | 2016-07-01 | 2023-07-26 | 삼성디스플레이 주식회사 | 표시 장치 |
CN108806582B (zh) * | 2018-07-02 | 2021-06-18 | 上海中航光电子有限公司 | 阵列基板、电子纸式显示面板及其驱动方法和显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6169283A (ja) * | 1984-09-13 | 1986-04-09 | Sony Corp | 液晶デイスプレイ装置 |
JPS6174481A (ja) * | 1984-09-20 | 1986-04-16 | Sony Corp | 前置増幅回路 |
JP2004212924A (ja) * | 2003-01-03 | 2004-07-29 | Au Optronics Corp | 液晶パネルの電力消費を低める方法 |
JP2005018088A (ja) * | 1995-02-16 | 2005-01-20 | Toshiba Corp | 液晶表示装置 |
JP2006343563A (ja) * | 2005-06-09 | 2006-12-21 | Sharp Corp | 液晶表示装置 |
JP2007502068A (ja) * | 2003-08-08 | 2007-02-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 信号増幅用回路、及びアクティブマトリクス装置における同回路の使用 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3630489B2 (ja) | 1995-02-16 | 2005-03-16 | 株式会社東芝 | 液晶表示装置 |
JP3413043B2 (ja) * | 1997-02-13 | 2003-06-03 | 株式会社東芝 | 液晶表示装置 |
JP3681580B2 (ja) * | 1999-07-09 | 2005-08-10 | 株式会社日立製作所 | 液晶表示装置 |
US7230597B2 (en) * | 2001-07-13 | 2007-06-12 | Tpo Hong Kong Holding Limited | Active matrix array devices |
US7170479B2 (en) * | 2002-05-17 | 2007-01-30 | Semiconductor Energy Laboratory Co., Ltd. | Display device and driving method thereof |
GB0308167D0 (en) * | 2003-04-09 | 2003-05-14 | Koninkl Philips Electronics Nv | Active matrix array device electronic device and operating method for an active matrix device |
JP4484451B2 (ja) * | 2003-05-16 | 2010-06-16 | 奇美電子股▲ふん▼有限公司 | 画像表示装置 |
KR100637458B1 (ko) * | 2004-05-25 | 2006-10-20 | 삼성에스디아이 주식회사 | 유기전계 발광 표시 패널 |
JP4846999B2 (ja) * | 2004-10-20 | 2011-12-28 | 株式会社 日立ディスプレイズ | 画像表示装置 |
JP4990761B2 (ja) * | 2005-05-18 | 2012-08-01 | ティーピーオー、ホンコン、ホールディング、リミテッド | 表示装置 |
KR100635511B1 (ko) * | 2005-09-30 | 2006-10-17 | 삼성에스디아이 주식회사 | 유기 전계발광 표시장치 |
JP2007334224A (ja) | 2006-06-19 | 2007-12-27 | Toshiba Matsushita Display Technology Co Ltd | 液晶表示装置 |
KR100799692B1 (ko) * | 2006-07-25 | 2008-02-01 | 삼성전자주식회사 | 리프레쉬 회로, 이를 포함하는 화상 표시 장치 및 픽셀전압의 리프레쉬 방법 |
US8059142B2 (en) * | 2007-01-04 | 2011-11-15 | Micron Technology, Inc. | Digital display |
US7446596B1 (en) * | 2007-05-25 | 2008-11-04 | Atmel Corporation | Low voltage charge pump |
GB2453372A (en) * | 2007-10-05 | 2009-04-08 | Cambridge Display Tech Ltd | A pixel driver circuit for active matrix driving of an organic light emitting diode (OLED) |
JP5236324B2 (ja) * | 2008-03-19 | 2013-07-17 | グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー | 表示パネル |
TWI402513B (zh) * | 2008-08-18 | 2013-07-21 | Raydium Semiconductor Corp | 電容值測量電路 |
TW201009420A (en) * | 2008-08-18 | 2010-03-01 | Au Optronics Corp | Color sequential liquid crystal display and pixel circuit thereof |
US8836350B2 (en) * | 2009-01-16 | 2014-09-16 | Microchip Technology Incorporated | Capacitive touch sensing using an internal capacitor of an analog-to-digital converter (ADC) and a voltage reference |
-
2010
- 2010-06-07 WO PCT/JP2010/059636 patent/WO2010143613A1/ja active Application Filing
- 2010-06-07 US US13/375,614 patent/US8704809B2/en not_active Expired - Fee Related
- 2010-06-07 CN CN201080025947.8A patent/CN102804251B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6169283A (ja) * | 1984-09-13 | 1986-04-09 | Sony Corp | 液晶デイスプレイ装置 |
JPS6174481A (ja) * | 1984-09-20 | 1986-04-16 | Sony Corp | 前置増幅回路 |
JP2005018088A (ja) * | 1995-02-16 | 2005-01-20 | Toshiba Corp | 液晶表示装置 |
JP2004212924A (ja) * | 2003-01-03 | 2004-07-29 | Au Optronics Corp | 液晶パネルの電力消費を低める方法 |
JP2007502068A (ja) * | 2003-08-08 | 2007-02-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 信号増幅用回路、及びアクティブマトリクス装置における同回路の使用 |
JP2006343563A (ja) * | 2005-06-09 | 2006-12-21 | Sharp Corp | 液晶表示装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012121056A1 (ja) * | 2011-03-10 | 2012-09-13 | シャープ株式会社 | 画素回路及び表示装置 |
CN103176319A (zh) * | 2011-12-20 | 2013-06-26 | 上海天马微电子有限公司 | 显示面板及其驱动方法 |
CN103176319B (zh) * | 2011-12-20 | 2015-09-09 | 上海天马微电子有限公司 | 显示面板及其驱动方法 |
CN106205525A (zh) * | 2016-07-13 | 2016-12-07 | 京东方科技集团股份有限公司 | 液晶显示面板的驱动方法和液晶显示面板 |
Also Published As
Publication number | Publication date |
---|---|
US20120075251A1 (en) | 2012-03-29 |
CN102804251B (zh) | 2015-06-17 |
US8704809B2 (en) | 2014-04-22 |
CN102804251A (zh) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010143612A1 (ja) | 画素回路および表示装置 | |
JP5351974B2 (ja) | 表示装置 | |
JP5346381B2 (ja) | 画素回路及び表示装置 | |
WO2010143613A1 (ja) | 画素回路および表示装置 | |
JP5346380B2 (ja) | 画素回路及び表示装置 | |
JP5452616B2 (ja) | 画素回路及び表示装置 | |
US8378945B2 (en) | Liquid crystal display device | |
WO2011052272A1 (ja) | 画素回路及び表示装置 | |
WO2011052472A1 (ja) | 画素回路及び表示装置 | |
JP4420080B2 (ja) | 走査線駆動回路、電気光学装置及び電子機器 | |
JP5346379B2 (ja) | 画素回路及び表示装置 | |
WO2011052266A1 (ja) | 画素回路及び表示装置 | |
US7369187B2 (en) | Liquid crystal display device and method of driving the same | |
JP5351975B2 (ja) | 画素回路及び表示装置 | |
JP5342657B2 (ja) | 表示装置 | |
WO2011114580A1 (ja) | 画素回路及び表示装置 | |
US20160071493A1 (en) | Display device and display method thereof for compensating pixel voltage loss | |
US20070229429A1 (en) | Liquid crystal display device and driving method thereof | |
US8913046B2 (en) | Liquid crystal display and driving method thereof | |
WO2012056804A1 (ja) | 表示装置 | |
JP4957169B2 (ja) | 電気光学装置、走査線駆動回路および電子機器 | |
KR20120050113A (ko) | 액정 표시 장치 및 그 구동 방법 | |
US20120169750A1 (en) | Display device and drive method for display device | |
JP2010044295A (ja) | 電気光学装置、その駆動方法および電子機器 | |
JP2002169520A (ja) | 電気光学装置、パターン発生回路および電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080025947.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10786144 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13375614 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10786144 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |