WO2010143257A1 - エレベータの制御装置 - Google Patents
エレベータの制御装置 Download PDFInfo
- Publication number
- WO2010143257A1 WO2010143257A1 PCT/JP2009/060473 JP2009060473W WO2010143257A1 WO 2010143257 A1 WO2010143257 A1 WO 2010143257A1 JP 2009060473 W JP2009060473 W JP 2009060473W WO 2010143257 A1 WO2010143257 A1 WO 2010143257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- operation mode
- elevator
- inertia
- speed
- actual
- Prior art date
Links
- 230000001172 regenerating effect Effects 0.000 claims abstract description 25
- 238000004364 calculation method Methods 0.000 claims abstract description 19
- 230000008929 regeneration Effects 0.000 claims description 13
- 238000011069 regeneration method Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012821 model calculation Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- SAZUGELZHZOXHB-UHFFFAOYSA-N acecarbromal Chemical compound CCC(Br)(CC)C(=O)NC(=O)NC(C)=O SAZUGELZHZOXHB-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
- B66B1/30—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
- B66B1/302—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor for energy saving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
- B66B1/30—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
- B66B1/304—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor with starting torque control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
- B66B1/30—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
- B66B1/308—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor with AC powered elevator drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/34—Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
- B66B1/3415—Control system configuration and the data transmission or communication within the control system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/20—Controlling the acceleration or deceleration
Definitions
- This invention relates to an elevator control device.
- FIG. 3 shows a conventional elevator control apparatus.
- a car 9 for raising and lowering a transported object such as a person or a baggage
- a counterweight 10 that balances the weight of the car 9 and the transported object are lifted and lowered, respectively. It is provided freely.
- a hoisting machine 11 that drives the elevator 9 (and the counterweight 10) is installed in the hoistway. The hoisting machine 11 is driven to rotate the elevator car 9 and the counterweight 10. It is converted into an up-and-down movement of the car 9 and the counterweight 10 via the main rope 12 that is suspended.
- the main rope 12 allows the car 9 and the counterweight 10 to be lifted and lowered freely as follows. That is, one end portion of the main rope 12 is locked to the top of the hoistway via a rope stop 13 on the side of the car 9, and the one end side of the main rope 12 can be rotated to the lower part of the car 9.
- the car 9 is suspended by being wound around the pair of car suspension wheels 9a provided.
- the main rope 12 is wound around the return wheel 14 on the side of the car 9 that is rotatably provided at the top of the hoistway, and the direction is changed.
- the main rope 12 is further wound around the drive sheave of the hoisting machine 11. It is wound around a counterwheel 14 on the counterweight 10 side that is rotatably provided at the top of the hoistway and is turned again, and then rotated to the upper portion of the counterweight 10 on the other end side of the main rope 12.
- the counterweight 10 is suspended by being freely wound around a weight suspension wheel 10a.
- the other end of the main rope 12 is locked to the top of the hoistway by a rope 13 on the counterweight 10 side, like the one end of the main rope 12.
- the hoisting machine 11 is rotationally driven by three-phase AC power supplied from a commercial power source 15.
- the three-phase AC power from the commercial power supply 15 is first converted into DC power by the converter 16.
- the DC power from the converter 16 is converted into three-phase AC power by the inverter 17 based on a command from the controller 18 and supplied to the hoisting machine 11.
- the hoisting machine 11 is provided with a speed detector 2 for detecting the actual rotational speed of the hoisting machine 11, that is, an actual speed.
- the actual speed of the hoisting machine 11 detected by the speed detector 2 is attached.
- the speed is sent to the controller 18.
- the controller 18 outputs a torque command value to the inverter 17 in accordance with the detection result of the actual speed by the speed detector 2.
- the hoisting machine 11 is rotationally driven by the three-phase AC power supplied from the commercial power supply 15 under the control of the controller 18.
- a speed command input means for inputting a speed command to the power unit, and a model calculation unit for calculating a model speed and a model torque assumed for the control target so that the model speed follows the speed command.
- a speed detector that detects an actual speed that is a rotational speed of the power unit, a compensation calculation unit that calculates an error compensation torque based on a difference between the model speed and the actual speed, the model torque and the error
- a torque command calculation unit for calculating a torque command from the compensation torque, and control so that the torque generated by the power unit matches the torque command.
- a torque control unit for driving the serial power unit, those with a inertia calculator for calculating the inertia of the control target based on the torque command is known (e.g., see Patent Document 1).
- the inertia calculator is necessary for accelerating the elevator car from the torque command input to the controlled object during operation of the elevator.
- the torque T ⁇ is obtained, and the inertia JM to be controlled is calculated by the following equation (1).
- JM T ⁇ ⁇ (1 / ⁇ ) ⁇ (D / 2) ⁇ (1 / KL) (1) (Where JM is the inertia to be controlled, T ⁇ is the torque required to accelerate the elevator car, ⁇ is the acceleration at that time, D is the sheave coefficient, and KL is the roping coefficient.)
- the weight detection that detects the weight of the load in the car, assuming that the difference between the inertia of the internal model and the entire control system is kept small with respect to the load change in the car and the followability of the speed control system is improved.
- an inertia calculator for calculating the inertia of the control system by adding the compensation inertia obtained based on the difference between the model speed and the actual speed of the power unit to the inertia set value, a speed command and the actual speed There is also known a configuration including a set value changing unit that changes the inertia set value based on the magnitude relationship (see, for example, Patent Document 3).
- a conventional elevator control device that can reduce the calculated model inertia error and improve the tracking accuracy with respect to the speed command, a plurality of sample inertias that are the inertia of the entire elevator measured when the car is raised and lowered
- a model that can be stored in association with the weight value of the load in the car, and is an estimated value of the inertia of the entire elevator based on the plurality of sample inertias stored in advance and the weight value corresponding to each sample inertia.
- an inertia calculation unit that calculates a primary approximation formula of inertia by a least square method and calculates the model inertia at the start of raising / lowering of the car based on the calculated primary approximation formula and the weight value. It is known (see, for example, Patent Document 4).
- Japanese Patent No. 4230139 Japanese Unexamined Patent Publication No. 2004-010224 Japanese Unexamined Patent Publication No. 2006-199444 Japanese Unexamined Patent Publication No. 2007-246262
- the regenerative state that is an operation mode peculiar to the elevator device is not considered, and the conversion efficiency is different between the regenerative operation and the power running operation.
- power running operation for example, upward operation in the state where the rated load is loaded in the car
- regenerative operation down operation in the same state
- the calculation (identification) result of inertia of the control system is different.
- the present invention has been made to solve such a problem, and a first object is to consider whether the operation mode of the elevator is a power running operation or a regenerative operation, and an accurate one according to the operation mode. It is possible to obtain an elevator control device that can calculate the inertia quickly and has good followability.
- the second object is to control an elevator that can inexpensively determine whether the operation mode of the elevator is a power running operation or a regenerative operation without adding a separate device such as an ammeter or a voltmeter. Get the device.
- An elevator control device includes a speed command input device that inputs a speed command to a power device provided in an elevator that is a control target, and a speed detection that detects an actual speed of the elevator car or the power device. Based on the motor, the speed command and the actual speed, a necessary torque is calculated so that the elevator operates according to the speed command, and a torque signal is output to the power device to drive the power device.
- An elevator control device comprising: a torque controller; an initial parameter setter for setting an initial value of a parameter used by the torque controller for calculation based on an inertia value of the elevator assumed in advance; and the power An operation mode discriminator for discriminating whether the operation mode of the device is a power running mode or a regenerative mode, and according to the speed command Based on whether the operation mode determined by the speed command, the actual speed and the torque signal and the operation mode discriminator is a power running mode or a regenerative mode when the power unit is operated,
- An inertia calculator that calculates an actual inertia value of the elevator, a parameter corrector that corrects the parameter used by the torque controller for calculation using the actual inertia value calculated by the inertia calculator, and It is set as the structure provided with.
- An elevator control device includes a speed command input device that inputs a speed command to a power device provided in an elevator that is a control target, and a speed detection that detects an actual speed of the elevator car or the power device. Based on the motor, the speed command and the actual speed, a necessary torque is calculated so that the elevator operates according to the speed command, and a torque signal is output to the power device to drive the power device.
- An elevator control device comprising: a torque controller; an initial parameter setter for setting an initial value of a parameter used by the torque controller for calculation based on an inertia value of the elevator assumed in advance; and the power An operation mode discriminator for discriminating whether the operation mode of the device is a power running mode or a regenerative mode, and according to the speed command Based on whether the operation mode determined by the speed command, the actual speed and the torque signal and the operation mode discriminator is a power running mode or a regenerative mode when the power unit is operated, An inertia calculator that calculates an actual inertia value of the elevator, a parameter corrector that corrects the parameter used by the torque controller for calculation using the actual inertia value calculated by the inertia calculator, and In consideration of whether the operation mode of the elevator is power running operation or regenerative operation, it is possible to quickly calculate an accurate inertia corresponding to the operation mode, and the followability is improved. There is an effect that it is good.
- FIG. 1 relates to Embodiment 1 of the present invention, and is an explanatory diagram showing the overall configuration of an elevator control device and the flow of signals.
- reference numeral 1 denotes a power unit that drives the elevator to be controlled.
- a speed detector 2 that detects the actual rotational speed of the power apparatus 1, that is, the actual speed, is attached to the power apparatus 1.
- Reference numeral 3 denotes a speed command input device for inputting a speed command to the power unit 1.
- the actual speed of the power unit 1 detected by the speed detector 2 and the speed command from the speed command input unit 3 are sent to the torque controller 4. Entered.
- the torque controller 4 receives the actual speed and the speed command, calculates a necessary torque so that the elevator operates according to the speed command, outputs a torque signal to the power unit 1, and drives the power unit 1. It is something to be made.
- the initial value of the control parameter used for the calculation by the torque controller 4 is set by the initial parameter setting unit 5 based on the assumed inertia value.
- the operation mode discriminator 6 discriminates whether the operation mode which is the operation state of the power unit 1 is the power running mode or the regeneration mode.
- the power running mode is, for example, an operating state that requires energy input from the outside of the power unit 1 to the inside of the power unit 1 when operating in the upward direction in a state where the rated load is loaded in the car 9.
- the regenerative mode is an operation state in which energy is output from the inside of the power unit 1 to the outside of the power unit 1 at the time of operation in a downward direction in a state where the rated load is loaded in the car 9, for example.
- the actual inertia value of the elevator is based on the speed command, the actual speed, and information from the torque controller 4 when the power unit 1 is operated according to the speed command with the parameters set by the initial parameter setter 5. Then, the inertia calculator 7 calculates the value.
- This inertia calculator 7 uses the torque signal input from the torque controller 4 to the power unit 1 during operation of the elevator, similarly to the conventional elevator control apparatus described in Patent Document 1 described above, and A torque T ⁇ necessary for accelerating the car 9 is obtained and the inertia JM to be controlled is calculated. At this time, the inertia JM is calculated according to the following equation (2).
- JM inertia to be controlled
- T ⁇ torque required for accelerating the elevator car
- ⁇ acceleration at that time
- D sheave coefficient
- KL roping coefficient
- E driving This is the conversion efficiency for each operation mode determined by the mode determiner 6.
- E ER in the regeneration mode.
- the elevator control device operates as follows. That is, first, a speed command is output from the speed command input device 3 to move the elevator. Next, the torque controller 4 calculates a torque for controlling the rotational drive of the power unit 1 in accordance with the speed command, and drives the power unit 1 based on the calculated torque. Subsequently, during operation of the power unit 1, the operation mode discriminator 6 determines whether the current operation mode of the power unit 1 is the power running mode or the regeneration mode.
- the speed detector may detect the actual speed of the car instead of detecting the actual rotational speed of the power unit, and set this as the actual speed.
- the elevator control device configured as described above includes a speed command input device that inputs a speed command to a power device provided in an elevator that is a control target, and a speed that detects an actual speed of the elevator car or the power device.
- a torque controller that calculates a necessary torque to operate the elevator according to the speed command based on the speed command and the actual speed, outputs a torque signal to the power unit, and drives the power unit;
- An initial parameter setting unit sets an initial value of a parameter used for calculation by an initial parameter setting unit based on an assumed inertia value of the elevator, and an operation mode discriminator determines an operation mode of the power plant.
- the actual inertia value of the elevator is calculated based on the speed command, actual speed and torque signal, and whether the operation mode discriminated by the operation mode discriminator is the power running mode or the regenerative mode.
- the parameter used for calculation by the torque controller is corrected.
- the inertia calculator calculates the actual inertia value of the elevator in proportion to the conversion efficiency determined in advance for each of the power running mode and the regeneration mode of the operation mode.
- FIG. FIG. 2 relates to Embodiment 2 of the present invention, and is an explanatory diagram showing the overall configuration of the elevator control device and the signal flow.
- the operation mode discriminator is based on the actual speed from the speed detector and the torque signal from the torque controller. The operation mode is determined.
- the operation mode discriminator 6 acquires the actual speed SPD of the power unit 1 from the speed detector 2 and outputs it from the torque controller 4 to the power unit 1 when determining the operation mode that is the operation state of the power unit 1.
- the torque signal TRQ to be acquired is acquired. Then, based on these actual speed SPD and torque signal TRQ, if these signs are the same (including the case where one is 0), it is determined that the operation mode is a power running mode, and these are different signs. If so, it is assumed that the operation mode is the regeneration mode.
- the determination of the operation mode by the operation mode discriminator 6 is performed based on the product value of the actual speed SPD and the torque signal TRQ, and when SPD ⁇ TRQ ⁇ 0, the power running mode, SPD ⁇ When TRQ ⁇ 0, the regeneration mode is determined.
- the positive and negative signs of the actual speed SPD and the torque signal TRQ for example, the upward direction of the car 9 may be positive and the downward direction may be negative.
- a power device 1 that drives the elevator, a speed detector 2 that detects the actual speed of the power device 1, and a power device.
- a speed command input device 3 that inputs a speed command for 1, a torque controller 4 that receives the actual speed and the speed command, calculates a necessary torque to operate the elevator according to the speed command, and drives the power unit 1;
- An initial parameter setting unit 5 for setting an initial value of a control parameter used for calculation by the torque controller 4 based on an assumed inertia value, an actual inertia value of the elevator, a speed command, an actual speed, and a torque controller 4 and the inertia calculator 7 that is calculated using the expression (2) based on the information from the operation mode discriminator 6, and the actual inertia calculated by the inertia calculator 7 Using, torque controller 4 is provided with a parameter modifier 8, for correcting the parameters used for the operation.
- the elevator control device operates as follows. That is, first, a speed command is output from the speed command input device 3 to move the elevator. Next, the torque controller 4 calculates a torque for controlling the rotational drive of the power unit 1 according to the speed command, and outputs the calculated torque signal TRQ to drive the power unit 1. Subsequently, during the operation of the power unit 1, the operation mode discriminator 6 determines the current sign by looking at the positive / negative of these based on the actual speed SPD from the speed detector 2 and the torque signal TRQ from the torque controller 4. It is determined whether the operation mode of the power unit 1 is the power running mode or the regeneration mode.
- the actual speed detected by the speed detector is used as the SPD used for discriminating the operation mode by the operation mode discriminator 6, but a speed command output from the speed command input device can also be used as the SPD.
- the speed detector may detect the actual speed of the car instead of detecting the actual rotational speed of the power unit, and use this as the actual speed as in the first embodiment. is there.
- the operation mode discriminator determines the speed command or the actual speed and the torque signal. Whether the operation mode of the elevator is the power running operation without adding a separate device such as an ammeter or a voltmeter (power meter) by determining whether the operation mode is the power running mode or the regenerative mode. It is possible to determine whether the operation is regenerative operation at a low cost. In addition, since no additional devices such as ammeters and voltmeters are required, the control device body and its packaging can be reduced in size and weight, and the efficiency of the control device production process can be improved. Is possible.
- the operation mode discriminator determines that the speed command or actual speed and the sign of the torque signal are the same sign if they are the same sign, and that the operation mode is the power running mode. Is determined to be in the regenerative mode.
- the present invention can be used for an elevator control device that obtains inertia (inertia) to be controlled and reflects the result in torque control of the power unit.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Elevator Control (AREA)
Abstract
Description
エレベータの図示しない昇降路内には、人や荷物等の運搬物を昇降させるための乗りかご9及びこの乗りかご9と運搬物の重量に釣合うような重さの釣合い重り10が、それぞれ昇降自在に設けられている。
また、昇降路内には、乗りかご9(及び釣合い重り10)の昇降を駆動する巻上機11が設置されており、この巻上機11の回転駆動が、乗りかご9及び釣合い重り10を吊持する主ロープ12を介して、乗りかご9及び釣合い重り10の昇降移動へと変換される。
なお、主ロープ12の他端部は、主ロープ12の一端部同様、昇降路頂部に釣合い重り10側の綱止め13により係止されている。
商用電源15からの三相交流電力は、まず、コンバータ16により直流電力に変換される。そして、コンバータ16からの直流電力は、インバータ17により、制御器18からの指令に基づいて三相交流電力に変換され、巻上機11へと供給される。
こうして、巻上機11は制御器18の制御の下、商用電源15から供給される三相交流電力により回転駆動される。
(ここで、JM:制御対象のイナーシャ、Tα:エレベータの乗りかごが加速するために必要なトルク、α:その際の加速度、D:シーブ係数、KL:ローピング係数、である。)
また、第2の目的は、別途電流計や電圧計等の機器を追加することなく、エレベータの運転モードが力行運転であるか回生運転であるかの判別を安価に行うことができるエレベータの制御装置を得るものである。
図1は、この発明の実施の形態1に係るもので、エレベータの制御装置の全体構成及び信号の流れを示す説明図である。
図において1は制御対象である当該エレベータの昇降を駆動する動力装置である。この動力装置1には、動力装置1の実際の回転速度すなわち実速度を検出する速度検出器2が取付けられている。
トルク制御器4が演算に用いる制御パラメータの初期値は、初期パラメータ設定器5により、予め想定されるイナーシャ値に基づいて設定される。
このイナーシャ算出器7は、前述した特許文献1に記載された従来のエレベータの制御装置と同様、エレベータの運転中にトルク制御器4から動力装置1に入力されるトルク信号を用いて、エレベータの乗りかご9が加速するために必要なトルクTαを求め、制御対象のイナーシャJMを算出するが、この際、次の(2)式に従って、イナーシャJMの算出を行う。
この変換効率Eは、力行モード時にはE=EPとされ、回生モード時にはE=ERとされる。これらのEP及びERの値は予め設定されており、イナーシャ算出器7はイナーシャJMの算出時において、運転モード判別器6から現在の運転モードを取得し、現在の運転モードが力行モードであればE=EPとし、現在の運転モードが回生モードであればE=ERとして(2)式により、変換効率Eに比例するようにしてイナーシャJMの算出を行う。
そして、パラメータ修正器8により、このイナーシャ算出器7により算出された実際のイナーシャ値を用いて、トルク制御器4が演算に用いるパラメータの修正が行われる。
すなわち、まず、エレベータを動かすために速度指令入力器3から速度指令が出力される。次に、トルク制御器4が、速度指令に従って動力装置1の回転駆動を制御するためのトルクを演算し、この演算したトルクに基づいて動力装置1を駆動する。
続いて、動力装置1の作動中において、運転モード判別器6により現在の動力装置1の運転モードが力行モードであるのか回生モードであるのかの判別を行う。
そして、パラメータ修正器8により、イナーシャ算出器7により算出されたイナーシャ値に基づき、トルク制御器4が演算に用いるパラメータの更新を行い、以後この更新されたパラメータによりトルク制御器4はトルクの演算を行う。
また、追従性が良好であるため、無駄なエネルギーの消費を抑えるとともに、エレベータ設備の長寿命化を図ることが可能である。
図2は、この発明の実施の形態2に係るもので、エレベータの制御装置の全体構成及び信号の流れを示す説明図である。
ここで説明する実施の形態2は、前述した実施の形態1の構成において、運転モード判別器は、速度検出器からの実速度及びトルク制御器からのトルク信号に基づいて、当該エレベータの現在の運転モードの判別を行うようにしたものである。
そして、これらの実速度SPD及びトルク信号TRQに基づいて、これらの正負について同符号(一方が0となる場合を含む)であれば運転モードは力行モードであると判断し、これらが異符号であれば運転モードは回生モードであるとする。
ここで、実速度SPD及びトルク信号TRQの正負の符号については、例えば、乗りかご9の上昇方向を正とし、下降方向を負とすることが考えられる。
すなわち、まず、エレベータを動かすために速度指令入力器3から速度指令が出力される。次に、トルク制御器4が、速度指令に従って動力装置1の回転駆動を制御するためのトルクを演算し、この演算したトルク信号TRQを出力して動力装置1を駆動する。
続いて、動力装置1の作動中において、運転モード判別器6により、速度検出器2からの実速度SPD及びトルク制御器4からのトルク信号TRQに基づいて、これらの正負を見ることにより現在の動力装置1の運転モードが力行モードか回生モードにあるのかの判別を行う。
そして、パラメータ修正器8により、イナーシャ算出器7により算出されたイナーシャ値に基づき、トルク制御器4が演算に用いるパラメータの更新を行い、以後この更新されたパラメータによりトルク制御器4はトルクの演算を行う。
また、速度検出器は動力装置の実際の回転速度を検出する代わりに、乗りかごの実際の速度を検出し、これを実速度とするようにしてもよい点は、実施の形態1と同様である。
また、電流計や電圧計等の機器の追加が不要であるから、制御装置本体及びその運搬時等の包装の小型軽量化を図ることができるとともに、制御装置の生産工程における効率を向上することが可能である。
2 速度検出器
3 速度指令入力器
4 トルク制御器
5 初期パラメータ設定器
6 運転モード判別器
7 イナーシャ算出器
8 パラメータ修正器
9 乗りかご
9a かご吊り車
10 釣合い重り
10a 重り吊り車
11 巻上機
12 主ロープ
13 綱止め
14 返し車
15 商用電源
16 コンバータ
17 インバータ
18 制御器
Claims (4)
- 制御対象であるエレベータに設けられた動力装置に速度指令を入力する速度指令入力器と、
前記エレベータの乗りかご又は前記動力装置の実速度を検出する速度検出器と、
前記速度指令及び前記実速度に基づいて、前記エレベータを前記速度指令の通りに動作させるよう必要トルクを演算し、前記動力装置へとトルク信号を出力して、前記動力装置を駆動させるトルク制御器と、を備えたエレベータの制御装置において、
前記トルク制御器が演算に用いるパラメータの初期値を、予め想定される前記エレベータのイナーシャ値に基づいて設定する初期パラメータ設定器と、
前記動力装置の運転モードが、力行モードであるか回生モードであるかを判別する運転モード判別器と、
前記速度指令に従って前記動力装置を動作させた際に、前記速度指令、前記実速度及び前記トルク信号並びに前記運転モード判別器により判別された前記運転モードが力行モードであるか回生モードであるかに基づいて、前記エレベータの実際のイナーシャ値を算出するイナーシャ算出器と、
前記イナーシャ算出器により算出された前記実際のイナーシャ値を用いて、前記トルク制御器が演算に用いる前記パラメータの修正を行うパラメータ修正器と、を備えたことを特徴とするエレベータの制御装置。 - 前記イナーシャ算出器は、前記運転モードの力行モード及び回生モードのそれぞれについて予め定められた変換効率に比例するようにして前記エレベータの前記実際のイナーシャ値を算出することを特徴とする請求項1に記載のエレベータの制御装置。
- 前記運転モード判別器は、前記速度指令又は前記実速度、及び、前記トルク信号に基づいて、前記運転モードが力行モードであるか回生モードであるかを判別することを特徴とする請求項1又は請求項2のいずれかに記載のエレベータの制御装置。
- 前記運転モード判別器は、前記速度指令又は前記実速度、及び、前記トルク信号の正負について、これらが同符号であれば前記運転モードが力行モードであると判断し、これらが異符号であれば前記運転モードが回生モードであると判断することを特徴とする請求項3に記載のエレベータの制御装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980159745XA CN102459048A (zh) | 2009-06-08 | 2009-06-08 | 电梯的控制装置 |
KR1020117028411A KR101261763B1 (ko) | 2009-06-08 | 2009-06-08 | 엘리베이터의 제어장치 |
JP2011518157A JP5310846B2 (ja) | 2009-06-08 | 2009-06-08 | エレベータの制御装置 |
EP09845782A EP2441721A1 (en) | 2009-06-08 | 2009-06-08 | Control device for elevator |
PCT/JP2009/060473 WO2010143257A1 (ja) | 2009-06-08 | 2009-06-08 | エレベータの制御装置 |
US13/319,749 US20120061187A1 (en) | 2009-06-08 | 2009-06-08 | Control device for elevator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/060473 WO2010143257A1 (ja) | 2009-06-08 | 2009-06-08 | エレベータの制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010143257A1 true WO2010143257A1 (ja) | 2010-12-16 |
Family
ID=43308528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/060473 WO2010143257A1 (ja) | 2009-06-08 | 2009-06-08 | エレベータの制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120061187A1 (ja) |
EP (1) | EP2441721A1 (ja) |
JP (1) | JP5310846B2 (ja) |
KR (1) | KR101261763B1 (ja) |
CN (1) | CN102459048A (ja) |
WO (1) | WO2010143257A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016113769A1 (ja) * | 2015-01-13 | 2016-07-21 | 三菱電機株式会社 | エレベータ制御装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20120414A1 (it) * | 2012-03-16 | 2013-09-17 | Efesys S R L | Sistema per il controllo remoto dei parametri e della diagnostica di un motore a commutazione elettronica |
CN109095301B (zh) * | 2018-09-25 | 2020-11-24 | 日立楼宇技术(广州)有限公司 | 一种电梯控制方法、装置、设备和介质 |
CN114644269B (zh) * | 2022-03-11 | 2023-08-01 | 上海三菱电梯有限公司 | 电梯驱动控制系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06321440A (ja) * | 1993-05-11 | 1994-11-22 | Mitsubishi Electric Corp | エレベーターの制御装置 |
JP2004010224A (ja) | 2002-06-05 | 2004-01-15 | Mitsubishi Electric Corp | エレベータの制御装置 |
JP2006199444A (ja) | 2005-01-20 | 2006-08-03 | Mitsubishi Electric Corp | エレベータの制御装置 |
JP2007246262A (ja) | 2006-03-17 | 2007-09-27 | Mitsubishi Electric Corp | エレベータの制御装置 |
JP2007252142A (ja) * | 2006-03-17 | 2007-09-27 | Yaskawa Electric Corp | 電動機制御方法およびその装置。 |
JP4230139B2 (ja) | 2001-10-23 | 2009-02-25 | 三菱電機株式会社 | エレベータの制御装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223387A (ja) * | 1985-07-19 | 1987-01-31 | Mitsubishi Electric Corp | エレベ−タの制御装置 |
JPS6356187A (ja) * | 1986-08-22 | 1988-03-10 | Nippon Oochisu Elevator Kk | 誘導電動機の速度制御装置 |
JPH1053378A (ja) * | 1996-06-07 | 1998-02-24 | Otis Elevator Co | エレベータの速度制御回路 |
US5929400A (en) * | 1997-12-22 | 1999-07-27 | Otis Elevator Company | Self commissioning controller for field-oriented elevator motor/drive system |
US5880416A (en) * | 1997-12-22 | 1999-03-09 | Otis Elevator Company | Automatic calibration of motor speed loop gain for an elevator motor control |
JP2005089097A (ja) * | 2003-09-17 | 2005-04-07 | Toshiba Elevator Co Ltd | エレベータ制御装置 |
JP4298649B2 (ja) * | 2004-12-28 | 2009-07-22 | 三菱電機ビルテクノサービス株式会社 | エレベータの制御装置 |
JP4855061B2 (ja) * | 2005-12-19 | 2012-01-18 | 三菱電機ビルテクノサービス株式会社 | エレベータ速度制御装置 |
WO2008099470A1 (ja) * | 2007-02-14 | 2008-08-21 | Mitsubishi Electric Corporation | エレベータ装置 |
JP5298506B2 (ja) * | 2007-11-09 | 2013-09-25 | 三菱電機株式会社 | エレベータの制御装置 |
FI119764B (fi) * | 2007-11-14 | 2009-03-13 | Kone Corp | Kuljetusjärjestelmän parametrien sovittaminen |
US9242833B2 (en) * | 2010-09-06 | 2016-01-26 | Mitsubishi Electric Corporation | Control device of elevator |
US8849465B2 (en) * | 2012-05-14 | 2014-09-30 | Mitsubishi Electric Research Laboratories, Inc. | System and method for controlling semi-active actuators arranged to minimize vibration in elevator systems |
-
2009
- 2009-06-08 WO PCT/JP2009/060473 patent/WO2010143257A1/ja active Application Filing
- 2009-06-08 EP EP09845782A patent/EP2441721A1/en not_active Withdrawn
- 2009-06-08 US US13/319,749 patent/US20120061187A1/en not_active Abandoned
- 2009-06-08 JP JP2011518157A patent/JP5310846B2/ja not_active Expired - Fee Related
- 2009-06-08 CN CN200980159745XA patent/CN102459048A/zh active Pending
- 2009-06-08 KR KR1020117028411A patent/KR101261763B1/ko not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06321440A (ja) * | 1993-05-11 | 1994-11-22 | Mitsubishi Electric Corp | エレベーターの制御装置 |
JP4230139B2 (ja) | 2001-10-23 | 2009-02-25 | 三菱電機株式会社 | エレベータの制御装置 |
JP2004010224A (ja) | 2002-06-05 | 2004-01-15 | Mitsubishi Electric Corp | エレベータの制御装置 |
JP2006199444A (ja) | 2005-01-20 | 2006-08-03 | Mitsubishi Electric Corp | エレベータの制御装置 |
JP2007246262A (ja) | 2006-03-17 | 2007-09-27 | Mitsubishi Electric Corp | エレベータの制御装置 |
JP2007252142A (ja) * | 2006-03-17 | 2007-09-27 | Yaskawa Electric Corp | 電動機制御方法およびその装置。 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016113769A1 (ja) * | 2015-01-13 | 2016-07-21 | 三菱電機株式会社 | エレベータ制御装置 |
JPWO2016113769A1 (ja) * | 2015-01-13 | 2017-05-25 | 三菱電機株式会社 | エレベータ制御装置 |
KR101901080B1 (ko) | 2015-01-13 | 2018-09-20 | 미쓰비시덴키 가부시키가이샤 | 엘리베이터 제어 장치 |
US10280038B2 (en) | 2015-01-13 | 2019-05-07 | Mitsubishi Electric Corporation | Elevator control device |
Also Published As
Publication number | Publication date |
---|---|
JP5310846B2 (ja) | 2013-10-09 |
KR20120023719A (ko) | 2012-03-13 |
US20120061187A1 (en) | 2012-03-15 |
JPWO2010143257A1 (ja) | 2012-11-22 |
CN102459048A (zh) | 2012-05-16 |
EP2441721A1 (en) | 2012-04-18 |
KR101261763B1 (ko) | 2013-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9114955B2 (en) | Control device for elevator | |
EP1731467B1 (en) | Control device of elevator | |
CN101918298A (zh) | 升降机系统的运动控制 | |
JP5310846B2 (ja) | エレベータの制御装置 | |
KR100574265B1 (ko) | 엘리베이터의 제어 장치 | |
JP5557815B2 (ja) | 省エネエレベータ | |
CN107200273B (zh) | 起重机的控制装置 | |
JP5554336B2 (ja) | エレベータの制御装置 | |
WO2005092764A1 (ja) | エレベータ制御装置 | |
JP4419517B2 (ja) | 昇降機械駆動用電動機の制御方法 | |
JP5634603B2 (ja) | エレベーター装置 | |
JP2012082060A (ja) | エレベータ制御装置 | |
JP2000166291A (ja) | クレーン制御装置 | |
JP2006193297A (ja) | エレベータ装置 | |
JPH0912266A (ja) | 天井クレーンの走行制御装置 | |
JP2009298582A (ja) | エレベータの制御装置 | |
JPWO2020070829A1 (ja) | エレベータの制御装置 | |
CN113474275B (zh) | 电梯的应急运转控制装置及方法 | |
JP2012111612A (ja) | 可変速エレベータの制御装置 | |
JP2009120356A (ja) | エレベータかご内乗車確認装置 | |
JP5031299B2 (ja) | エレベータ装置 | |
JP5939358B2 (ja) | エレベータの制御装置 | |
CN116281481A (zh) | 可变速电梯安全保护方法 | |
JPH04217572A (ja) | エレベータの荷重検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980159745.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845782 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011518157 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13319749 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009845782 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117028411 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |