WO2010140873A1 - Method for the renewable production of hydrogen from recoverable substances - Google Patents
Method for the renewable production of hydrogen from recoverable substances Download PDFInfo
- Publication number
- WO2010140873A1 WO2010140873A1 PCT/LV2009/000002 LV2009000002W WO2010140873A1 WO 2010140873 A1 WO2010140873 A1 WO 2010140873A1 LV 2009000002 W LV2009000002 W LV 2009000002W WO 2010140873 A1 WO2010140873 A1 WO 2010140873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkali metal
- hydrogen
- water
- reaction
- vessel
- Prior art date
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 39
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 39
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000126 substance Substances 0.000 title abstract description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 24
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 9
- 239000007858 starting material Substances 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 6
- 230000008929 regeneration Effects 0.000 claims description 5
- 238000011069 regeneration method Methods 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 18
- 229910052708 sodium Inorganic materials 0.000 abstract description 6
- 239000011734 sodium Substances 0.000 abstract description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 4
- -1 sodium Chemical class 0.000 abstract 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 3
- 239000000446 fuel Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/08—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/02—Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the invention relates to the field of hydrogen energy, in particular, to a method for the controlled production of hydrogen from regenerated starting materials immediately before its use, which also provides for the possibility of using renewable energy sources for the regeneration of starting materials.
- a known method of renewable production of hydrogen using regenerable starting materials [US4358291].
- a metal reaction is used with water, in particular aluminum, which usually forms a passivating film on the surface.
- the invention is aimed at solving the problem of eliminating this passivating film by placing aluminum in a medium that prevents the formation of an oxide film, and the use of liquid gallium, indium or their alloys is proposed as this medium.
- a passivating agent When aluminum is placed in water in the presence of a passivating agent, a reaction begins, as a result of which hydrogen is released. Direct use of the obtained hydrogen is envisaged.
- the resulting aluminum oxide and / or hydroxide is then reduced by electrolysis.
- the closest in technical essence to the present invention is a method for the renewable production of hydrogen using regenerable starting materials [US5286473], including the reaction of an alkali metal with a hydrogen-containing substance - water or hydrochloric acid (HCI).
- HCI hydrochloric acid
- the reaction of an alkali metal with a hydrogen-containing substance - water or hydrochloric acid (HCI) As a result of the reaction, hydrogen and either alkali metal hydroxide or alkali metal chloride are released, depending on which substance the metal reacted with.
- the obtained alkali metal hydroxide is mixed with hydrochloric acid in order to obtain alkali metal chloride.
- Alkali metal chloride as a by-product of hydrogen production, is heated in the presence of aluminum to 300–950 ° C to reduce the alkali metal and produce aluminum chloride.
- aluminum chloride is mixed with water in order to obtain hydrochloric acid and aluminum hydroxide, which then restore the electrolysis reactions.
- this invention allows to obtain hydrogen immediately before its use from regenerable starting materials.
- the main disadvantage of this method is the use of hydrochloric acid, the vapors of which are toxic, as well as the use of high temperature to carry out the reaction between metal chloride and aluminum, which creates additional energy costs, and a rather long and complicated technological process of chemical regeneration of the starting materials, which includes a lot of stages.
- the technical problem solved by the invention is to eliminate the emission of harmful substances during the hydrogen production cycle and recovery of the starting materials, as well as simplifying the technology of regeneration of the starting materials used for the production of hydrogen.
- the proposed method makes it possible to produce hydrogen and regenerate the starting materials without releasing harmful substances into the environment, is technologically simple and energy efficient.
- Alkali metal hydroxide can be regenerated by electrolysis using renewable energy sources. This avoids environmental pollution.
- Water for a controlled reaction with an alkali metal can be supplied as water vapor.
- An oxygen-free medium is created in the container in which the alkali metal is placed.
- the tank in which the alkali metal is placed can be filled with one gas or several gases selected from the group consisting of nitrogen, helium, argon, neon, krypton, xenon.
- the capacity in which the alkali metal is placed can be evacuated.
- Subsequent reduction of the alkali metal can be carried out in the same vessel in which the alkali metal reacted with water.
- the proposed method is implemented as follows.
- Example 1 Alkaline metal - sodium is placed in a container and vacuum this tank. Next, the tank is transported to the place where it is necessary to produce hydrogen. Water is metered into a container with sodium for controlled production of hydrogen. Hydrogen released as a result of the reaction from the reaction tank is withdrawn for direct use. Capacity with the formed sodium hydroxide is transported to a renewable energy source and electrolysis of sodium hydroxide is carried out.
- Example 2 Alkaline metal - lithium is placed in a container and fill this container with an inert gas. Next, the tank is transported to the place where it is necessary to produce hydrogen. Water is dosed in a container with lithium for the controlled production of hydrogen. Hydrogen released as a result of the reaction from the reaction tank is withdrawn for direct use. The container with the formed lithium hydroxide is transported to a renewable energy source and sodium hydroxide is electrolyzed.
- Example 3 Alkaline metal - sodium is placed in a container and fill this container with nitrogen. Next, the tank is transported to the place where it is necessary to produce hydrogen. Water is metered into a container with sodium for controlled production of hydrogen. Hydrogen released as a result of the reaction from the reaction tank is withdrawn for direct use. The electrolysis of sodium hydroxide is carried out in the same tank in which the alkali metal reacted with water.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
The invention relates to hydrogen power engineering, in particular to a method for the controlled production of hydrogen from recoverable initial substances immediately prior to the hydrogen use, which method also provides for the use of renewable energy sources for recovering initial substances. An alkali metal, i.e. sodium, is placed in a vessel in which a vacuum is then generated. Next, the vessel is transported to the place where the production of hydrogen is required. Water is supplied to the sodium-containing vessel in pre-measured amounts for the controlled production of hydrogen. The hydrogen released by the reaction is removed from the reaction vessel for direct use. The vessel containing the resultant sodium hydroxide is transported to a renewable energy source and sodium hydroxide electrolysis is carried out.
Description
Способ возобновляемого производства водорода из регенерируемых веществ Method for renewable production of hydrogen from regenerated substances
Изобретение относится к области водородной энергетики, в частности, к способу контролируемого получения водорода из регенерируемых исходных веществ непосредственно перед его использованием, предусматривающему также возможность использования возобновляемых источников энергии для регенерации исходных веществ.The invention relates to the field of hydrogen energy, in particular, to a method for the controlled production of hydrogen from regenerated starting materials immediately before its use, which also provides for the possibility of using renewable energy sources for the regeneration of starting materials.
В последнее время большое внимание уделяется поиску альтернативных источников энергии, в частности использованию водорода как альтернативы углеводородному топливу. Одной из проблем при использовании водорода как топлива является хранение водорода и его доставка к месту непосредственного использования, поскольку водород является взрывоопасным.Recently, much attention has been paid to the search for alternative energy sources, in particular the use of hydrogen as an alternative to hydrocarbon fuel. One of the problems when using hydrogen as a fuel is the storage of hydrogen and its delivery to the place of direct use, since hydrogen is explosive.
Известен способ возобновляемого получения водорода с использованием регенерируемых исходных веществ [US4358291]. Для получения водорода используют реакцию с водой металла, в частности, алюминия, обычно образующего на повехности пассивирующую пленку. Изобретение направлено на решение проблемы устранения этой пассивирующей пленки путем размещения алюминия в среде, предотвращающей образование оксидной пленки, и в качестве этой среды предложено использование жидкого галлия, индия или их сплавов. Когда алюминий в присутствии пассивирующего агента помещают в воду, начинается реакция, в результате которой выделяется водород. Предусмотрено непосредственное использование полученного водорода. Образовавшийся оксид и/или гидроксид алюминия далее восстанавливают электролизом.A known method of renewable production of hydrogen using regenerable starting materials [US4358291]. To produce hydrogen, a metal reaction is used with water, in particular aluminum, which usually forms a passivating film on the surface. The invention is aimed at solving the problem of eliminating this passivating film by placing aluminum in a medium that prevents the formation of an oxide film, and the use of liquid gallium, indium or their alloys is proposed as this medium. When aluminum is placed in water in the presence of a passivating agent, a reaction begins, as a result of which hydrogen is released. Direct use of the obtained hydrogen is envisaged. The resulting aluminum oxide and / or hydroxide is then reduced by electrolysis.
Однако основным недостатком данного изобретения является невозможность контролировать реакцию, т.е. по необходимости её прекращать и возобновлять.
Наиболее близким по технической сущности к предлагаемому изобретению является способ возобновляемого производства водорода с использованием регенерируемых исходных веществ [US5286473], включающий реакцию щелочного металла с водородосодержащим веществом - водой либо соляной кислотой (HCI). В результате реакции происходит выделение водорода и либо гидроксида щелочного металла, либо хлорида щелочного металла, в зависимости от того с каким веществом металл реагировал. Далее полученный гидроксид щелочного металла смешивают с соляной кислотой с целью получения хлорида щелочного метала. Хлорид щелочного метала, как побочный продукт получения водорода, нагревают в присутствии алюминия до 300-950 0C для восстановления щелочного металла и получения хлорида алюминия. Далее хлорид алюминия смешивют с водой, с целью получения соляной кислоты и гидроксида алюминия, который потом восстанавливают реакций электролиза. Таким образом данное изобретение позволяет получать водород непосредственно перед его использованием из регенерируемых исходных веществ.However, the main disadvantage of this invention is the inability to control the reaction, i.e. if necessary, stop and renew it. The closest in technical essence to the present invention is a method for the renewable production of hydrogen using regenerable starting materials [US5286473], including the reaction of an alkali metal with a hydrogen-containing substance - water or hydrochloric acid (HCI). As a result of the reaction, hydrogen and either alkali metal hydroxide or alkali metal chloride are released, depending on which substance the metal reacted with. Next, the obtained alkali metal hydroxide is mixed with hydrochloric acid in order to obtain alkali metal chloride. Alkali metal chloride, as a by-product of hydrogen production, is heated in the presence of aluminum to 300–950 ° C to reduce the alkali metal and produce aluminum chloride. Next, aluminum chloride is mixed with water in order to obtain hydrochloric acid and aluminum hydroxide, which then restore the electrolysis reactions. Thus, this invention allows to obtain hydrogen immediately before its use from regenerable starting materials.
Однако основным недостатком данного способа является использование соляной кислоты, пары которой являются токсичными, а также использование высокой температуры для проведения реакции между хлоридом метала и алюминием, что создает дополнительные энергозатраты, и достаточно длинный и сложный технологический процесс химической регенерации исходных веществ, включающий в себя много стадий. Технической задачей, решаемой предлагаемым изобретением, является устранение выделения вредных веществ во время цикла производства водорода и восстановления исходных веществ, а также упрощение технологии регенерации исходных веществ, используемых для производства водорода. В способе возобновляемого производства водорода с использованием регенерируемых исходных веществ, включающем реакцию щелочного металла с водой, выведение полученного водорода
из емкости протекания реакции для непосредственного использования и последующую регенерацию щелочного металла из полученнного гидроксида, согласно изобретению предложено, что в емкость, где размещен щелочной металл, дозированно подают воду для контролируемой реакции с щелочным металлом, а образовавшийся гидрооксид щелочного металла регенерируют путем электролиза.However, the main disadvantage of this method is the use of hydrochloric acid, the vapors of which are toxic, as well as the use of high temperature to carry out the reaction between metal chloride and aluminum, which creates additional energy costs, and a rather long and complicated technological process of chemical regeneration of the starting materials, which includes a lot of stages. The technical problem solved by the invention is to eliminate the emission of harmful substances during the hydrogen production cycle and recovery of the starting materials, as well as simplifying the technology of regeneration of the starting materials used for the production of hydrogen. In a method for the renewable production of hydrogen using regenerable starting materials, comprising reacting an alkali metal with water, removing the resulting hydrogen from the reaction vessel for direct use and the subsequent regeneration of the alkali metal from the obtained hydroxide, it is proposed according to the invention that water is dispensed into the vessel containing the alkali metal for a controlled reaction with the alkali metal, and the alkali metal hydroxide formed is regenerated by electrolysis.
Предложенный способ дает возможность производить водород и регенерировать исходные вещества без выделения вредных веществ в окружающую среду, является технологически простым и энергоэффективным.The proposed method makes it possible to produce hydrogen and regenerate the starting materials without releasing harmful substances into the environment, is technologically simple and energy efficient.
Гидрооксид щелочного металла путем электролиза можно регенерировать, используя возобновляемые источники энергии. Это позволяет избежать загрязнение окружающей среды.Alkali metal hydroxide can be regenerated by electrolysis using renewable energy sources. This avoids environmental pollution.
Воду для контролируемой реакции с щелочным металлом можно подавать в виде пара воды.Water for a controlled reaction with an alkali metal can be supplied as water vapor.
В емкости, в которой размещают щелочной металл, создают бескислородную среду.An oxygen-free medium is created in the container in which the alkali metal is placed.
Емкость, в которой размещают щелочной металл, можно заполнять одним газом или несколькими газами, выбранными из группы, включающей азот, гелий, аргон, неон, криптон, ксенон.The tank in which the alkali metal is placed can be filled with one gas or several gases selected from the group consisting of nitrogen, helium, argon, neon, krypton, xenon.
Емкость, в которой размещают щелочной металл, можно вакуумировать.The capacity in which the alkali metal is placed can be evacuated.
Последующее восстановление щелочного металла можно проводить в той же емкости, в которой протекала реакция щелочного металла с водой.Subsequent reduction of the alkali metal can be carried out in the same vessel in which the alkali metal reacted with water.
Предложенный способ реализуют следующим образом.The proposed method is implemented as follows.
Пример 1. Щелочной металл - натрий размещают в емкости и вакуумируют эту емкость. Далее емкость транспортируют к месту, где необходимо производить водород. В емкость с натрием дозированно подают воду для контролируемого получения водорода. Выделившийя в результате реакции водород из емкости протекания реакции выводят для непосредственного использования. Емкость с образовавшимся
гидроксидом натрия транспортируют к источнику возобновляемой энергии и проводят электролиз гидроксида натрия.Example 1. Alkaline metal - sodium is placed in a container and vacuum this tank. Next, the tank is transported to the place where it is necessary to produce hydrogen. Water is metered into a container with sodium for controlled production of hydrogen. Hydrogen released as a result of the reaction from the reaction tank is withdrawn for direct use. Capacity with the formed sodium hydroxide is transported to a renewable energy source and electrolysis of sodium hydroxide is carried out.
Пример 2. Щелочной металл - литий размещают в емкости и заполняют эту емкость инертным газом. Далее емкость транспортируют к месту, где необходимо производить водород. В емкость с литем дозированно подают воду для контролируемого получения водорода. Выделившийя в результате реакции водород из емкости протекания реакции выводят для непосредственного использования. Емкость с образовавшимся гидроксидом лития транспортируют к источнику возобновляемой энергии и проводят электролиз гидроксида натрия.Example 2. Alkaline metal - lithium is placed in a container and fill this container with an inert gas. Next, the tank is transported to the place where it is necessary to produce hydrogen. Water is dosed in a container with lithium for the controlled production of hydrogen. Hydrogen released as a result of the reaction from the reaction tank is withdrawn for direct use. The container with the formed lithium hydroxide is transported to a renewable energy source and sodium hydroxide is electrolyzed.
Пример 3. Щелочной металл - натрий размещают в емкости и заполняют эту емкость азотом. Далее емкость транспортируют к месту, где необходимо производить водород. В емкость с натрием дозированно подают воду для контролируемого получения водорода. Выделившийя в результате реакции водород из емкости протекания реакции выводят для непосредственного использования. Электролиз гидроксида натрия проводят в той же емкости, в которой протекала реакция щелочного металла с водой.
Example 3. Alkaline metal - sodium is placed in a container and fill this container with nitrogen. Next, the tank is transported to the place where it is necessary to produce hydrogen. Water is metered into a container with sodium for controlled production of hydrogen. Hydrogen released as a result of the reaction from the reaction tank is withdrawn for direct use. The electrolysis of sodium hydroxide is carried out in the same tank in which the alkali metal reacted with water.
Claims
1. Способ возобновляемого производства водорода с использованием регенерируемых исходных веществ, включающий реакцию щелочного металла с водой, выведение полученного водорода из емкости протекания реакции для непосредственного использования и последующую регенерацию щелочного металла из полученнного гидроксида, отличающийся тем, что в емкость, где размещен щелочной металл, дозированно подают воду для контролируемой реакции с щелочным металлом, а образовавшийся гидрооксид щелочного металла регенерируют путем электролиза.1. A method for the renewable production of hydrogen using regenerated starting materials, including the reaction of an alkali metal with water, removing the hydrogen obtained from the reaction vessel for direct use and subsequent regeneration of the alkali metal from the obtained hydroxide, characterized in that in the vessel where the alkali metal is placed, water is dosed for a controlled reaction with an alkali metal, and the resulting alkali metal hydroxide is regenerated by electrolysis.
2. Способ по п. 1, отличающийся тем, что воду для контролируемой реакции с щелочным металлом подают в виде пара воды. 2. The method according to p. 1, characterized in that the water for a controlled reaction with an alkali metal is supplied in the form of water vapor.
3. Способ по п. 1 или 2, отличающийся тем, что гидрооксид щелочного металла регенерируют путем электролиза, используя возобновляемые источники энергии.3. The method according to p. 1 or 2, characterized in that the alkali metal hydroxide is regenerated by electrolysis using renewable energy sources.
4. Способ по одному из п. п. 1-3, отличающийся тем, что последующее восстановление щелочного металла проводят в той же емкости, в которой протекала реакция щелочного металла с водой.4. The method according to one of claims 1 to 3, characterized in that the subsequent reduction of the alkali metal is carried out in the same tank in which the alkali metal reacted with water.
5. Способ по одному из п. п. 1-4, отличающийся тем, что в емкости, в которой размещают щелочной металл, создают бескислородную среду.5. The method according to one of claims 1 to 4, characterized in that an oxygen-free medium is created in the container in which the alkali metal is placed.
6. Способ по одному из п. п. 1-5, отличающийся тем, что емкость, в которой размещают щелочной металл, заполняют одним газом или несколькими газами, выбранными из группы, включающей азот, гелий, аргон, неон, криптон, ксенон.6. The method according to one of claims 1 to 5, characterized in that the container in which the alkali metal is placed is filled with one gas or several gases selected from the group consisting of nitrogen, helium, argon, neon, krypton, xenon.
7. Способ по одному из п. п. 1-5, отличающийся тем, что емкость, в которой размещают щелочной металл, вакуумируют. 7. The method according to one of claims 1 to 5, characterized in that the tank in which the alkali metal is placed is evacuated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/LV2009/000002 WO2010140873A1 (en) | 2009-06-05 | 2009-06-05 | Method for the renewable production of hydrogen from recoverable substances |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/LV2009/000002 WO2010140873A1 (en) | 2009-06-05 | 2009-06-05 | Method for the renewable production of hydrogen from recoverable substances |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140873A1 true WO2010140873A1 (en) | 2010-12-09 |
Family
ID=43297887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/LV2009/000002 WO2010140873A1 (en) | 2009-06-05 | 2009-06-05 | Method for the renewable production of hydrogen from recoverable substances |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010140873A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017041190A1 (en) * | 2015-09-08 | 2017-03-16 | Hanspeter Weber | Method for releasing hydrogen, use thereof and vehicle for same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994018117A1 (en) * | 1993-02-01 | 1994-08-18 | Nobuyasu Hasebe | Process for the production of hydrogen |
RU2023756C1 (en) * | 1991-06-27 | 1994-11-30 | Научно-производственное объединение "Государственный институт прикладной химии" | Medium for storage and exploitation of lithium and sodium |
WO2001017896A1 (en) * | 1999-09-03 | 2001-03-15 | Bergman Thomas W | Hydrogen delivery and carbon dioxide free delivery system for an electrochemical cell |
WO2005033366A1 (en) * | 2003-10-08 | 2005-04-14 | Artem Valerievich Madatov | Method of producing hydrogen and device therefor |
-
2009
- 2009-06-05 WO PCT/LV2009/000002 patent/WO2010140873A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2023756C1 (en) * | 1991-06-27 | 1994-11-30 | Научно-производственное объединение "Государственный институт прикладной химии" | Medium for storage and exploitation of lithium and sodium |
WO1994018117A1 (en) * | 1993-02-01 | 1994-08-18 | Nobuyasu Hasebe | Process for the production of hydrogen |
WO2001017896A1 (en) * | 1999-09-03 | 2001-03-15 | Bergman Thomas W | Hydrogen delivery and carbon dioxide free delivery system for an electrochemical cell |
WO2005033366A1 (en) * | 2003-10-08 | 2005-04-14 | Artem Valerievich Madatov | Method of producing hydrogen and device therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017041190A1 (en) * | 2015-09-08 | 2017-03-16 | Hanspeter Weber | Method for releasing hydrogen, use thereof and vehicle for same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100803074B1 (en) | Hydrogen generating composition and high purity hydrogen generating device using same | |
CN102906925B (en) | Electrochemical hydrogen catalyst dynamical system | |
JP2019048292A (en) | Power system | |
CN101948092B (en) | Hydrogen production method by hydrolysis of aluminum-calcium alloy | |
WO2006100915A1 (en) | Hydrogen forming apparatus, laser reduction apparatus, energy transformation apparatus method for forming hydrogen and electricity generation system | |
US8404199B2 (en) | Fluorine based vanadium boride nanoparticle synthesis | |
CN101160258A (en) | Apparatus and method for generating hydrogen | |
JP6446354B2 (en) | Hydrogen generator, hydrogen generation system, and fuel cell system | |
JPWO2008136087A1 (en) | Energy supply system | |
EP0013456A1 (en) | Method of regenerating disproportionated hydrides | |
CN114678553B (en) | Recycling method of waste proton exchange membrane electrolytic water film electrode | |
US8119094B2 (en) | Fluorine storage material | |
WO2010140873A1 (en) | Method for the renewable production of hydrogen from recoverable substances | |
TWI497809B (en) | Heterogeneous hydrogen-catalyst reactor | |
US20220177304A1 (en) | Desalination methods and devices using geothermal energy | |
US20180297841A1 (en) | System and process for generating hydrogen | |
JP2003012301A (en) | Composition for hydrogen gas generation, production method for hydrogen gas, production apparatus for hydrogen gas and generator | |
JP2013203571A (en) | Method and apparatus for producing fluorine gas | |
JP2016506347A (en) | Regeneration of spent hydride fuel | |
CN116621129A (en) | Preparation method of sodium bis (fluorosulfonyl) imide | |
CN115548501A (en) | A kind of multistage recovery and separation method and application of waste lithium ion battery electrolyte | |
JP4230169B2 (en) | Fluorine generation method | |
Mills et al. | Commercializable power source using heterogeneous hydrino catalysts | |
US20230024948A1 (en) | Method for producing metal borohydride from metal boron oxide | |
JP2015134709A (en) | Hydrogen production method, and hydrogen production apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845591 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09845591 Country of ref document: EP Kind code of ref document: A1 |