WO2010140384A1 - 太陽電池封止膜の保存用または運搬用包装体、および太陽電池封止膜の保存または運搬方法 - Google Patents
太陽電池封止膜の保存用または運搬用包装体、および太陽電池封止膜の保存または運搬方法 Download PDFInfo
- Publication number
- WO2010140384A1 WO2010140384A1 PCT/JP2010/003749 JP2010003749W WO2010140384A1 WO 2010140384 A1 WO2010140384 A1 WO 2010140384A1 JP 2010003749 W JP2010003749 W JP 2010003749W WO 2010140384 A1 WO2010140384 A1 WO 2010140384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- sealing film
- package
- cell sealing
- ethylene
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6735—Closed carriers
- H01L21/67363—Closed carriers specially adapted for containing substrates other than wafers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/24—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/24—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
- B65D81/26—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D85/00—Containers, packaging elements or packages, specially adapted for particular articles or materials
- B65D85/30—Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
- B65D85/48—Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6735—Closed carriers
- H01L21/67366—Closed carriers characterised by materials, roughness, coatings or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6735—Closed carriers
- H01L21/67369—Closed carriers characterised by shock absorbing elements, e.g. retainers or cushions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6735—Closed carriers
- H01L21/67376—Closed carriers characterised by sealing arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6735—Closed carriers
- H01L21/67389—Closed carriers characterised by atmosphere control
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a package for storing or transporting a solar cell sealing film, and a method for storing or transporting a solar cell sealing film.
- a solar cell module is usually a solar cell produced by providing an electrode for extracting electric charge from single crystal or polycrystalline silicon, a transparent front substrate, a solar cell sealing film, a solar cell, a solar cell sealing film, and a back surface protection. Sheets and the like are sequentially laminated, vacuum-sucked with these, and then the solar cell sealing film is fixed by a lamination method or the like.
- the solar cell sealing film needs to have flexibility to prevent destruction of the solar cell due to physical impact, and sealability and adhesiveness to prevent corrosion of the electrode in the solar cell due to intrusion of moisture and the like. In particular, it is required to bond and seal between the transparent front substrate and the solar battery cell and between the solar battery element and the back surface protective sheet.
- a silane compound having a reactive group such as an alkoxysilyl group that exhibits excellent adhesion to an inorganic material such as glass has been used as an adhesion-imparting agent.
- a silane-modified resin obtained by polymerizing an ethylenically unsaturated silane compound and another polymerization resin is used as an adhesiveness imparting agent (see, for example, Patent Document 1).
- the solar cell encapsulating film when cross-linking curing is performed by thermocompression bonding, the solar cell encapsulating film is bonded to a crosslinking agent such as an organic peroxide or a solar cell, and long-term durability. It has been proposed to add various additives for imparting (see, for example, Patent Document 2).
- the solar cell sealing film may be stored in a state containing various additives such as an unreacted cross-linking agent and adhesive until the solar cell module is manufactured, or may be transported to a solar cell module manufacturing factory. It is common.
- the present invention is for storing or transporting a solar cell sealing film capable of storing or transporting the solar cell sealing film while maintaining an adhesive force with a substrate, solar cell, or the like to a practical level or higher. It is an object of the present invention to provide a package and a storage or transport method.
- the present invention relates to a package for storing or transporting a solar cell sealing film, and a method for storing or transporting a solar cell sealing film.
- a packaging body comprising a solar cell sealing film containing a silane compound and / or a silane-modified resin, and a packaging bag for packaging the solar cell sealing film, the absolute inside of the packaging body
- the amount of the silane compound contained in the solar cell sealing film is 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer.
- a method for storing or transporting a solar cell encapsulating film containing a silane compound and / or a silane-modified resin, wherein the solar cell encapsulating film is packaged in a packaging bag so that the internal absolute humidity is 1 to 15 g / m includes obtaining the package of 3, a step to save or transported over 50 hours at the package in a dark place, a storage or transportation method of the solar cell sealing film.
- a surface-side transparent protective member a sealing layer made of a solar cell sealing film taken out of the package according to [1] or a cured product thereof, and a solar cell sealed by the sealing layer
- a solar cell module comprising a cell and a back surface side protection member, wherein the sealing layer is sandwiched between the front surface side transparent protection member and the back surface side protection member arranged to face each other.
- a surface-side transparent protective member, a solar battery cell, a solar cell sealing film taken out from the package according to [1], and a back-side protective member are laminated in this order; 1st process of laminating
- the adhesive force of the said sealing film can fully be exhibited at the time of solar cell module manufacture, preventing the fall of the adhesive force of the said sealing film in the preservation
- FIG. 1 It is a schematic diagram which shows an example of the preparation methods of the package body of this invention. It is sectional drawing which shows an example of a structure of a solar cell module. It is a top view which shows an example of a structure of the light-receiving surface and back surface of a photovoltaic cell.
- the package of the present invention comprises a solar cell sealing film containing a silane compound and / or a silane-modified resin, and a packaging bag for packaging the solar cell sealing film.
- the package for storage or transportation of the solar cell sealing film has an absolute humidity of 1 to 15 g / m 3 .
- the present invention also relates to a storage / transport method using the package and a solar cell module using a solar cell sealing film using the package.
- the manufacturing method of a solar cell sealing film, the package of a solar cell sealing film, and a solar cell module is demonstrated in detail.
- ⁇ is used to define a numerical range, but “ ⁇ ” in the present invention includes a boundary value.
- 10 to 100 is 10 or more and 100 or less.
- the solar cell encapsulating film contains a resin as a main constituent, an adhesion-imparting agent, and various additives blended as necessary.
- the adhesiveness imparting agent may be a silane-modified resin modified with a silane modifier. Further, when a silane-modified resin is used as an adhesiveness imparting agent, the silane-modified resin itself can be used as a resin that is a main component.
- the resin as the main constituent component examples include ethylene homopolymers and copolymers of ethylene and at least one copolymer component other than ethylene (hereinafter referred to as “ethylene copolymer” or “ethylene-based polymer”). Also called).
- the ethylene copolymer may be a random copolymer of ethylene and a copolymer component or a block copolymer, but is preferably a random copolymer.
- the copolymer component in the ethylene copolymer examples include ⁇ -olefins having 3 to 20 carbon atoms, cyclic olefins, vinyl acetate, and the like.
- Examples of ⁇ -olefins having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like are included.
- cyclic olefins examples include norbornene derivatives, tricyclo-3-decene derivatives, tricyclo-3-undecene derivatives, tetracyclo-3-dodecene derivatives, pentacyclo-4-pentadecene derivatives, pentacyclopentadecadiene derivatives, pentacyclo-3-pentadecenes.
- tetracyclo [4.4.0.12,5.17,10] -3-dodecene derivatives and hexacyclo [6.6.1.13, 6.110, 13.02, 7.09,14] -4 -Heptadecene derivatives are preferred, and tetracyclo [4.4.0.12,5.17,10] -3-dodecene is particularly preferred.
- copolymer components ( ⁇ -olefin, cyclic olefin and vinyl acetate) in the ethylene copolymer may be used alone or in combination of two or more.
- a copolymer of vinyl acetate and ethylene is suitably used because it has high transparency, flexibility, adhesiveness and durability, and excellent compatibility with various additives.
- EVA ethylene-vinyl acetate copolymer
- a peroxide is added to give sufficient heat resistance, and the crosslinking reaction is carried out by heating when producing a solar cell module. Need to be cured. Since this cross-linking process requires time, the production efficiency of the solar cell module tends to deteriorate. Further, during the above heating, the vinyl acetate component is decomposed to generate acetic acid gas and the like, which may deteriorate the electrodes in the solar battery cell.
- ethylene / ⁇ -olefin copolymers and ethylene / cyclic olefin copolymers have excellent heat resistance, so it is necessary to add a peroxide to the solar cell sealing film and perform a heat-curing reaction when manufacturing the solar cell module. Absent. Therefore, compared with the case where the above EVA is used, the manufacturing efficiency of the solar battery module is excellent, and the possibility of the deterioration of the solar battery cell due to the generation of the decomposition gas is low.
- an ethylene / ⁇ -olefin copolymer or an ethylene / cyclic olefin copolymer is used as a resin as a main constituent component of the solar cell sealing film, it is preferable to add an adhesion-imparting agent described later.
- an adhesion-imparting agent described later.
- the resin that is a main constituent of the solar cell sealing film it is preferable to use an ethylene / ⁇ -olefin copolymer that satisfies all of the following requirements a) to e).
- Each requirement will be described below.
- a) The density is 900 to 940 kg / m 3 .
- Melting peak temperature based on differential scanning calorimetry (DSC) is 90-125 ° C.
- c) According to JIS K-6721, the melt flow rate (MFR2) measured at 190 ° C. and a load of 2.16 kg is 0.1 to 100 g / 10 min.
- the value of Mw / Mn is 1.2 to 3.5.
- e) The metal residue is 50 ppm or less.
- the density of the ethylene / ⁇ -olefin copolymer is 900 to 940 kg / m 3 , preferably 900 to 935 kg / m 3 , more preferably 900 to 930 kg / m 3 , more preferably 900 to 925 kg / m 3 , particularly preferably 905 ⁇ 925kg / m 3, most preferably 905 ⁇ 923kg / m 3.
- the density of the ethylene / ⁇ -olefin copolymer is less than 900 kg / m 3 , the heat resistance of the solar cell encapsulating film tends to decrease.
- the glass and the electrodes may slip gradually, and the glass may slide down.
- the density of the ethylene / ⁇ -olefin copolymer is more than 940 kg / m 3 , the flexibility of the solar cell sealing film is reduced, and when the solar cell module is laminated, the crystal cell cracks and the silver electrode Separation may occur. In addition, it may be necessary to increase the temperature during lamination molding.
- the density of the ethylene / ⁇ -olefin copolymer depends on the proportion of the copolymer component such as ⁇ -olefin.
- the proportion of the copolymer component in the ethylene / ⁇ -olefin copolymer is determined by the composition ratio of the copolymer component and ethylene in the polymerization system (copolymer component / ethylene) ( For example, Walter Kaminsky, Makromol. Chem. 193, p.606 (1992)). Therefore, the density of the resulting ethylene / ⁇ -olefin copolymer can be increased or decreased by increasing or decreasing the value of the ratio of “copolymerization component / ethylene”.
- the melting peak temperature of the ethylene / ⁇ -olefin copolymer based on differential scanning calorimetry (DSC) is 90 to 125 ° C., preferably 90 to 120 ° C., more preferably 90 to 115 ° C.
- DSC differential scanning calorimetry
- the melting peak temperature of the ethylene / ⁇ -olefin copolymer is more than 125 ° C., the flexibility of the solar cell sealing film is lowered, and when the solar cell module is laminated, the crystal cell cracks and the silver electrode Separation may occur. In addition, it may be necessary to increase the temperature during lamination molding.
- the melting peak temperature of the ethylene / ⁇ -olefin copolymer depends on the proportion of the copolymer component such as ⁇ -olefin as well as the density. The smaller the proportion of the copolymer component, the higher the melting peak temperature of the resulting ethylene / ⁇ -olefin copolymer. On the other hand, the higher the proportion of the copolymer component, the lower the melting peak temperature of the resulting ethylene / ⁇ -olefin copolymer.
- the proportion of the copolymer component in the ethylene / ⁇ -olefin copolymer is determined by the composition ratio of the copolymer component and ethylene in the polymerization system (copolymer component / ethylene) ( For example, Walter Kaminsky, Makromol. Chem. 193, p.606 (1992)). Therefore, the melting peak temperature of the obtained ethylene / ⁇ -olefin copolymer can be changed by increasing or decreasing the value of the ratio of “copolymerization component / ethylene”.
- the melt flow rate (MFR2) of the ethylene / ⁇ -olefin copolymer measured at 190 ° C. and a load of 2.16 kg is 0.1 to 100 g / 10 min, preferably Is 0.5 to 50 g / 10 min, more preferably 0.5 to 20 g / 10 min.
- MFR2 of the ethylene / ⁇ -olefin copolymer is less than 0.1 g / 10 min, the fluidity is lowered and the productivity at the time of extrusion molding is lowered.
- the MFR2 of the ethylene / ⁇ -olefin copolymer is more than 100 g / 10 min, the fluidity is too high and sheet molding is difficult. Further, mechanical properties such as tensile strength of the obtained solar cell sealing film are lowered.
- MFR2 depends on the molecular weight of the ethylene / ⁇ -olefin copolymer. Specifically, the smaller the MFR2 value, the larger the molecular weight, and the larger the MFR2 value, the smaller the molecular weight. Further, it is known that the molecular weight of an ethylene copolymer such as an ethylene / ⁇ -olefin copolymer depends on the composition ratio of hydrogen and ethylene (hydrogen (H 2 ) / ethylene) in the polymerization system. (For example, Kazuo Soka, KODASHA, “CATALYTIC OLEFIN POLYMERISATION”, page 376 (1990)). Therefore, a desired MFR2 ethylene / ⁇ -olefin copolymer can be produced by appropriately increasing or decreasing the value of the ratio of “hydrogen (H 2 ) / ethylene” in the polymerization system.
- the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the ethylene / ⁇ -olefin copolymer as measured by gel permeation chromatography (GPC) is 1.2-3. 5, preferably 1.2 to 3.2, more preferably 1.2 to 2.8. If the Mw / Mn of the ethylene / ⁇ -olefin copolymer is less than 1.2, it becomes a living polymer, and the amount of catalyst per unit weight of the ethylene / ⁇ -olefin copolymer to be produced increases, resulting in production costs. Is expensive and industrially disadvantageous.
- the Mw / Mn of the ethylene / ⁇ -olefin copolymer is more than 3.5, the impact strength of the resulting solar cell encapsulating film tends to decrease.
- the ethylene / ⁇ -olefin copolymer becomes sticky, and the solar cell sealing film (sheet) becomes difficult to peel off due to blocking.
- the Mw / Mn of the ethylene / ⁇ -olefin copolymer generally depends on the composition distribution. For example, in the case of batch type slurry polymerization, Mw / Mn becomes small if the conversion rate of the copolymerization component is kept low. On the other hand, when the conversion rate of the copolymer component is increased, Mw / Mn increases. Further, by shortening the polymerization time, the conversion rate of the copolymerization component is lowered, the alteration of the active species of the polymerization catalyst is suppressed, the composition distribution is narrowed, and Mw / Mn tends to be reduced. On the other hand, by increasing the polymerization time, the conversion rate of the copolymerization component is increased, the active species of the polymerization catalyst is altered, the composition distribution is widened, and Mw / Mn tends to increase.
- the metal residue in the ethylene / ⁇ -olefin copolymer is 50 ppm by weight or less, preferably 0.1 to 45 ppm by weight, more preferably 0.1 to 40 ppm by weight. If the metal residue in the ethylene / ⁇ -olefin copolymer is less than 0.1 ppm by weight, the deashing operation of the polymerization catalyst may be essential. For this reason, plant fixed cost, utility cost, etc. become high, and product cost may become high. Further, since a large amount of acid or alkali used for the deashing treatment is required, there is a high possibility that the acid or alkali remains in the obtained ethylene / ⁇ -olefin copolymer.
- an electrode etc. may corrode by the influence of the remaining acid and alkali.
- the metal residue in the ethylene / ⁇ -olefin copolymer is more than 50 ppm by weight, the volume resistivity and the dielectric breakdown resistance are lowered due to the influence of the metal residue.
- the metal residue in the ethylene / ⁇ -olefin copolymer depends on the polymerization activity of the polymerization catalyst (for example, metallocene compound).
- the polymerization catalyst for example, metallocene compound.
- the amount of the polymerization catalyst relative to the monomer can be reduced, so that metal residues in the resulting ethylene / ⁇ -olefin copolymer can be reduced. Therefore, it can be said that the use of a polymerization catalyst having a high polymerization activity is one of the preferred methods for obtaining an ethylene / ⁇ -olefin copolymer with a small amount of metal residues.
- polymerization at the optimum polymerization temperature of the polymerization catalyst increasing the polymerization pressure as much as possible, or increasing the monomer concentration per polymerization catalyst, etc., increase the polymerization activity of the polymerization catalyst, resulting in ethylene / ⁇ - This is a suitable technique for reducing metal residues in the olefin copolymer.
- a polymerization catalyst that uses an organoaluminum oxy compound, a compound that reacts with a metallocene compound to form an ion pair, or an organoaluminum compound the addition amount of these polymerization catalysts can be reduced as much as possible.
- improving the polymerization activity using various techniques can also be a suitable technique for reducing metal residues.
- the ethylene / ⁇ -olefin copolymer can be produced by a polymerization reaction using a conventionally known catalyst component capable of synthesizing an ethylene-based polymer.
- the catalyst component include Ziegler-Natta catalysts and metallocene compounds.
- a metallocene compound having a high polymerization activity per unit transition metal exhibiting a polymerization activity is preferable because an ethylene / ⁇ -olefin copolymer with a small amount of metal residue can be obtained without performing a deashing treatment.
- metallocene compound for example, the metallocene compounds described in JP-A-2006-077261, JP-A-2008-231265, JP-A-2005-314680 and the like can be used. In addition, you may use the metallocene compound of a structure different from the metallocene compound described in these patent documents. Two or more metallocene compounds may be used in combination.
- Examples of (II-1) an organoaluminum oxy compound, (II-2) a compound that reacts with the metallocene compound (I) to form an ion pair, and (II-3) an organoaluminum compound include, for example, The metallocene compounds described in JP-0777261, JP2008-231265, and JP2005-314680 can be used. In addition, you may use the metallocene compound of a structure different from the metallocene compound described in these patent documents. These metallocene compounds may be individually added to the polymerization reaction system, or those previously brought into contact with each other may be input to the polymerization reaction system. Further, for example, a metallocene compound may be supported on a particulate inorganic oxide carrier described in JP-A-2005-314680 and used in that state.
- Polymerization can be performed by any of the conventionally known gas phase polymerization methods; liquid phase polymerization methods such as slurry polymerization methods and solution polymerization methods. Preferably, it is carried out by a gas phase polymerization method or a slurry polymerization method which is highly active and reduces metal residues.
- Slurry polymerization and solution polymerization are carried out using propane, butane, pentane, hexane, heptane, octane, decane, dodecane, kerosene and other aliphatic hydrocarbons; cyclopentane, cyclohexane, methylcyclopentane and other alicyclic hydrocarbons; benzene, toluene Aromatic hydrocarbons such as xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene, dichloromethane or mixtures thereof, or an inert hydrocarbon medium. Of these inert hydrocarbon solvents, aliphatic hydrocarbons and alicyclic hydrocarbons are preferred.
- the ethylene / ⁇ -olefin copolymer obtained by the above polymerization method may be subjected to a conventionally known deashing treatment to remove the catalyst component and the fine inorganic oxide support.
- an adhesion-imparting agent such as a silane compound described later.
- a radically polymerizable unsaturated compound is added as an adhesion auxiliary component together with an adhesion imparting agent, and polymerized by a known method such as a graft polymerization method to increase the adhesion between the transparent front substrate or the like and the copolymer. It is preferable to improve.
- a radically polymerizable unsaturated compound what has polar groups, such as a hydrogen bondable functional group, is preferable.
- Examples of the radically polymerizable unsaturated compound that is an adhesion auxiliary component include a hydroxyl group-containing ethylenically unsaturated compound, an amino group-containing ethylenically unsaturated compound, an epoxy group ethylenically unsaturated compound, an aromatic vinyl compound, an unsaturated carboxylic acid, or Derivatives thereof, vinyl ester compounds, vinyl chloride, carbodiimide compounds and the like can be mentioned. Of these, unsaturated carboxylic acids or derivatives thereof are particularly preferred.
- the compound examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, nadic acid [trademark] (endocis-bicyclo [2.2. 1) unsaturated carboxylic acids such as hept-5-ene-2,3-dicarboxylic acid), and derivatives thereof.
- “derivatives” include acid halides, amides, imides, anhydrides, esters, and the like.
- Such derivatives include, for example, maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, 2-methylmaleic anhydride, 2-chloromaleic anhydride, 2,3-dimethylmaleic anhydride, 4- Methyl-4-cyclohexene-1,2-dicarboxylic anhydride monomethyl maleate, dimethyl maleate, glycidyl malate, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, etc. Is mentioned.
- unsaturated carboxylic acids and their derivatives can be used alone or in combination of two or more. Of these, unsaturated dicarboxylic acids or their anhydrides are preferred, and maleic acid, nadic acid or their acid anhydrides are particularly preferred.
- the amount of the adhesion auxiliary component is usually 0.1 to 5 parts by weight, preferably 0.1 to 4 parts by weight, based on 100 parts by weight of the ethylene / ⁇ -olefin copolymer or ethylene / cyclic olefin copolymer. Part. It is preferable that the blending amount of the adhesive strength auxiliary component is in the above range since the adhesive strength of the solar cell sealing film is sufficiently improved and the transparency and flexibility of the sealing film are not adversely affected.
- the solar cell sealing film used in the present invention contains an adhesion-imparting agent in order to improve the adhesion of the solar cell sealing film to solar cells and protective members.
- the adhesiveness imparting agent may be a silane compound added to a resin that is a main constituent, or a silane-modified resin obtained by graft polymerization of a polymerizable silane compound such as an ethylenically unsaturated silane compound to a resin that is a main constituent. Good. Moreover, you may use both a silane compound and a silane modified resin.
- silane compound and the silane-modified resin those having a reactive group such as an alkoxy group or a halogen group bonded to a silicon atom are preferably used. This is because the reactive group reacts with the surface of the member that contacts the solar cell sealing film in the solar cell module, which will be described later, to form a physical bond such as a chemical bond or a hydrogen bond. This is because it is considered that the adhesiveness with a member or the like is greatly improved.
- a surface protection member etc. which are comprised by inorganic substances, such as a photovoltaic cell comprised by silicon
- the activity of the reactive group possessed by the silane compound or the silane-modified resin is high, and the greater the number of reactive groups, the better the adhesiveness. However, if the activity of the reactive group is too high, the adhesion-imparting agent reacts when the solar cell sealing film is stored and transported, and when the solar cell module is manufactured using the sealing film, the adhesiveness is reduced. There is a risk that it cannot be granted.
- the silane compound used as the adhesion-imparting agent is preferably a silane coupling agent.
- the silane coupling agent include ⁇ -chloropropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris- ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-ethoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, and N- ⁇ - ( Aminoethyl) - ⁇ -aminopropyltrimethoxysilane and the like.
- alkoxysilanes are preferably used from the viewpoint of the stability of the adhesion-imparting agent. This is because alkoxysilanes are relatively stable at room temperature and in a neutral pH range. On the other hand, when producing a solar cell module, there exists a problem that the adhesive force of a solar cell sealing film is hard to express from the stability.
- the blending amount of these silane compounds is preferably 0.1 to 3.0 parts by weight and preferably 0.2 to 1.5 parts by weight with respect to 100 parts by weight of the resin as the main constituent component. More preferred.
- the silane-modified resin can be produced by a known method.
- the method for producing the silane-modified resin is not particularly limited, but for example, it is preferably produced by graft polymerization of a resin as a main constituent and a polymerizable silane compound using an organic peroxide.
- graft polymerization using the main constituent resin as the main chain and the polymerizable silane compound as the side chain the degree of freedom of reactive groups such as alkoxyl groups in the polymerizable silane compound that contributes to adhesive strength is increased, resulting in higher efficiency. This is because adhesion to the surface of the surface protection member in the solar cell module is improved.
- polymerizable silane compound conventionally known compounds can be used, and there is no particular limitation.
- An ethylenically unsaturated silane compound can be used as the polymerizable silane compound.
- Specific examples of the ethylenically unsaturated silane compound include vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxyethoxysilane), ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -Methacryloxypropyltrimethoxysilane and the like.
- the amount of modification by the polymerizable silane compound is usually 0.1 to 5 parts by weight, preferably 0.1 to 4 parts by weight, with respect to 100 parts by weight of the resin as the main component. This is because when the amount of modification by the polymerizable silane compound is in the above range, the transparency, flexibility and the like of the ethylene copolymer are not adversely affected while the adhesiveness of the ethylene copolymer is sufficiently improved.
- the proportion of silicon atoms (Si) contained in the solar cell sealing film is preferably 300 to 4000 ppm, more preferably 400 to 3000 ppm, based on the weight of the solar cell sealing film.
- the ratio of silicon atoms (Si) contained in the solar cell sealing film is determined by, for example, wet-decomposing the solar cell sealing film and then adjusting the volume with pure water, and then using an ICP emission spectrometer (ICPS, manufactured by Shimadzu Corporation). -8100), it can be measured by quantifying silicon atoms (Si) (unit: mg / l).
- the solar cell sealing film used in the present invention may contain various additives such as a crosslinking aid.
- a reaction accelerator may be added to the solar cell sealing film in order to increase the reactivity of the adhesion imparting agent.
- the solar cell sealing film does not substantially contain a reaction accelerator.
- the said reaction accelerator may reduce the weather resistance and insulation of a solar cell sealing film, and may reduce the power generation efficiency of a solar cell module.
- the reaction accelerator known ones can be used, and are not particularly limited. Specific examples include silanol condensation catalysts such as dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctate, and dioctyltin dilaurate. .
- substantially free refers to a case of 0.05 parts by weight or less, and 0.03 parts by weight or less with respect to 100 parts by weight of the total resin constituting the solar cell sealing film. Preferably, it is 0 part by weight.
- the solar cell sealing film can contain a crosslinking agent.
- the crosslinking agent can improve the heat resistance and weather resistance of the solar cell encapsulating film by crosslinking the resin as the main constituent.
- a crosslinking agent an organic peroxide that generates radicals at 100 ° C. or higher is generally preferable.
- the crosslinking agent is more preferably an organic peroxide having a half-life of 10 hours decomposition temperature of 70 ° C. or higher.
- organic peroxides examples include 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 3-di-t-butyl peroxide, t-dicumyl peroxide, 2 , 5-Dimethyl-2,5-di (t-butylperoxy) hexyne, dicumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxyisopropyl) benzene, n-butyl-4,4-bis ( t-butylperoxy) butane, 2,2-bis (t-butylperoxy) butane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) 3, 3,5-trimethylcyclohexane, t-butyl peroxybenzoate, benzoyl peroxide and the like are included.
- the content of the crosslinking agent is 0.1 to 3.0 with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer. It is preferably part by weight, more preferably 0.2 to 2.0 parts by weight.
- the crosslinking aid can improve the durability of the solar cell encapsulating film by increasing the crosslinking reactivity of the resin as the main constituent component such as ethylene / ⁇ -olefin copolymer.
- the crosslinking aid include trifunctional crosslinking aids such as triallyl isocyanurate and triallyl isocyanate, and trimethylolpropane triacrylate.
- additives examples include colorants, UV absorbers, anti-aging agents, anti-discoloring agents, heat stabilizers, UV (weather resistance) stabilizers, and light stabilizers.
- colorants include inorganic pigments such as metal oxides and metal powders; organic pigments such as azo, phthalocyanine, azo, and acidic or basic dye lakes.
- UV absorbers examples include benzophenone series such as 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone; 2- (2′-hydroxy-5-methylphenyl) benzo Benzotriazoles such as triazoles; hindered amines such as phenyl salsylates and pt-butylphenyl salsylates.
- antioxidants examples include amines, phenols, bisphenyls and hindered amines. More specific examples of the antioxidant include di-t-butyl-p-cresol and bis (2,2,6,6-tetramethyl-4-piperazyl) sebacate.
- ultraviolet light (weather resistance) stabilizer examples include dibutylhydroxytoluene.
- hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, methylhydroquinone, and the like may be included in order to improve the stability of the resin as the main constituent component such as an ethylene / ⁇ -olefin copolymer.
- Such a solar cell encapsulating film is a method in which a resin composition containing the above-mentioned components is melt-kneaded using a T-die extruder, extruded as a molten resin sheet, and then cooled and solidified (melt extrusion method). Or can be obtained by a method (calender method) or the like in which a molten resin is sandwiched between a plurality of rollers and rolled into a film shape.
- the thickness of the solar cell sealing film is, for example, about 100 to 2000 ⁇ m.
- the solar cell sealing film may be embossed on the surface in order to improve cushioning properties in the heat curing step and to suppress blocking in the storage and transport steps.
- the package of the present invention comprises a solar cell sealing film containing a silane compound and / or a silane-modified resin, and a packaging bag for packaging the solar cell sealing film.
- the absolute humidity inside the package is 1 to 15 g / m 3 .
- the solar cell encapsulating film is cut or rolled into a predetermined size and laminated in a sheet shape, and then packed in a packaging bag, and stored or transported as a package with the inside adjusted to a predetermined humidity.
- a predetermined humidity By maintaining the humidity inside the package appropriately, the reaction of the adhesion-imparting agent contained in the solar cell sealing film can be suppressed.
- sufficient adhesive force can be expressed in a solar cell sealing film.
- the package may be sealed with an adhesive tape from the standpoint of enhancing the sealing property.
- the packaging bag may have high gas barrier properties and water vapor barrier properties in order to suppress the volatilization of the crosslinking agent and additives, and to maintain the humidity inside the package and the amount of water contained in the inside.
- the water vapor permeability of the packaging bag is preferably at 1g / (24hr ⁇ m 2) or less, more preferably 0.1g / (24hr ⁇ m 2) or less.
- the moisture permeability can be measured at a temperature of 40 ° C. and a relative humidity of 90% RH according to JIS Z 0208.
- the packaging bag preferably contains a polyolefin resin from the viewpoint of good gas barrier properties and water vapor barrier properties.
- the polyolefin resin may be a homopolymer or a copolymer of a plurality of copolymer components.
- Examples of polyolefin resins include polyethylene resins (including high density polyethylene and low density polyethylene), polypropylene resins, ethylene / ⁇ -olefin copolymer resins, and the like.
- the packaging bag may contain a resin other than the polyolefin resin.
- resins include polyester.
- the packaging bag is preferably formed of a laminated sheet of a resin layer containing a polyolefin resin and an aluminum sheet in order to improve gas barrier properties and water vapor barrier properties.
- a resin layer containing a polyolefin resin and an aluminum sheet in order to improve gas barrier properties and water vapor barrier properties.
- the polyolefin resin contained in the packaging bag preferably has heat sealability.
- the heat sealing temperature (melting temperature) of the polyolefin resin is preferably 80 to 160 ° C. from the viewpoint that it is difficult to melt during storage or transportation and that heat sealing is easy.
- the polyolefin resin is more preferably low density polyethylene, polypropylene, or the like from the viewpoint of having good gas barrier properties and heat sealing properties.
- the thickness of the packaging bag is preferably 50 to 200 ⁇ m in consideration of the strength of the sheet, handleability, gas barrier properties, and the like.
- the packaging bag packed with the solar cell sealing film may be further sealed with an adhesive tape.
- the pressure-sensitive adhesive tape includes a base film and a pressure-sensitive adhesive layer.
- the adhesive layer of the adhesive tape contains an adhesive resin and a tackifier.
- the adhesive resin include known acrylic, rubber-based, and silicon-based adhesive resins.
- Acrylic and rubber-based adhesive resins are obtained by crosslinking a main polymer with a crosslinking agent.
- the rubber-based polymer contained in the adhesive resin include an isobutylene polymer.
- the acrylic copolymer contained in the adhesive resin include an acrylic copolymer containing a repeating unit derived from n-butyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, ethyl acrylate, or the like. included.
- the copolymer component in the acrylic copolymer is a component having a double bond in the molecule, specifically, vinyl acetate, acrylonitrile, styrene or the like.
- the adhesive tape is obtained, for example, by mixing an adhesive resin as a main agent, a tackifier, and a solvent for adjusting the viscosity as necessary;
- the coating liquid is made of paper, plastic, etc. It can obtain by apply
- the thickness of the adhesive layer is, for example, preferably 5 to 50 ⁇ m, and more preferably 10 to 30 ⁇ m. This is because if the pressure-sensitive adhesive layer is too thin, it is difficult to obtain the desired pressure-sensitive adhesive property, and if the pressure-sensitive adhesive layer is too thick, the adhesive force is too strong and it becomes difficult to take out the solar cell sealing film in the package.
- the absolute humidity inside the package is 1 to 15 g / m 3 , and more preferably 3 to 8 g / m 3 .
- the reactive group of the silane compound and / or silane-modified resin (adhesion imparting agent) contained in the solar cell sealing film is appropriately activated by moisture. For this reason, while being able to suppress the excessive reaction of the said reactive group in the preservation
- the reactive group when the absolute humidity inside the package is too high, the reactive group is excessively activated, so that the adhesive force of the solar cell sealing film is reduced.
- the reactive group is an alkoxysilyl group and the absolute humidity inside the package is too high, the alkoxysilyl group is converted into a stable siloxane bond, which reduces the adhesion of the solar cell sealing film. Become.
- the package of the present invention exhibits its effect more particularly with respect to the silane-modified resin obtained by silane modification of a part or the whole of the ethylene / ⁇ -olefin copolymer or the ethylene / ⁇ -olefin copolymer.
- the adhesive strength is lower than when EVA is used. This is because it is necessary to add a large amount of an adhesion-imparting agent such as a silane compound or a silane-modified resin in order to supplement the force.
- the absolute humidity inside the package can be adjusted by the following method. For example, a solar cell sealing film placed in a dry atmosphere and a sufficient amount of a humidity control material that has been conditioned in advance in a desired humidity atmosphere are enclosed in a packaging bag in a dry atmosphere. As a result, a necessary amount of moisture is generated from the humidity control material and supplied into the package, so that the absolute humidity in the package can be adjusted within a desired range.
- the absolute humidity inside the package can be measured by a known method. Although not particularly limited, for example, by inserting a handy digital thermo-hygrometer “TRH-CH” (manufactured by Shinei Technology Co., Ltd.) into the package, the absolute humidity inside the package can be measured.
- TRH-CH handy digital thermo-hygrometer
- a humidity control agent in the package to adjust the humidity inside the package together with the solar cell sealing film.
- the humidity control agent those which do not react with additives such as a crosslinking agent contained in the solar cell sealing film are preferable.
- Specific examples include B-type silica gel, calcium chloride, and magnesium chloride.
- the moisture content of the humidity control agent for example, by holding it under a predetermined temperature and humidity in advance before being put in the package in order to keep the humidity inside the package in a suitable range. For example, by holding at a temperature of 15 to 30 ° C., preferably 20 to 25 ° C. and a relative humidity of 10 to 45% RH, preferably 15 to 35% RH for 24 hours or more, preferably 48 hours or more. It is preferable to use a humidity control agent in which the amount of water is adjusted.
- the amount of the humidity control agent to be put in the package body depends on the size of the inner space of the package body, the amount of the solar cell sealing film to be put in the package body, the amount of the additive or the adhesion imparting agent contained in the solar cell sealing film. It is adjusted accordingly.
- the package can be produced by any known method, and the production method is not particularly limited.
- Examples of a method for producing a package include a method in which a laminate of solar cell sealing films is packed in a packaging bag, and then the opening of the packaging bag is fixed with heat seal or adhesive tape; a bottom-sealed bag-shaped packaging bag And a method of sealing the opening with a heat seal or an adhesive tape after the laminated body of the solar cell sealing film is put into the container.
- FIG. 1 is a schematic diagram showing an example of a method for producing a package according to the present invention.
- a bottom-sealed bag-shaped packaging bag 12 is first prepared, and a solar cell sealing film 14 is placed therein.
- the opening 12A of the packaging bag 12 is bent so as not to overlap with the solar cell sealing film as much as possible.
- the folded portion is sealed with the adhesive tape 16, whereby the package 10 can be obtained.
- Adhesive tape is affixed so that it may be located on the part which the edge part of the solar cell sealing film 14 and the packaging bag 12 have overlapped.
- the obtained package is transported or stored in a dark place.
- the dark place is preferably a place not exposed to direct sunlight at 30 ° C. or lower, preferably 25 ° C. or lower.
- the package is preferably stored or transported by being further packed in a packaging container such as cardboard from the viewpoint of improving heat insulation.
- the package is stored or transported in the dark for 50 hours or longer, preferably 100 hours or longer. By being stored for 50 hours or more, the adhesive strength of the solar cell sealing film can be maintained at a high level by moisture inside the package.
- Solar cell module The solar cell sealing film preserve
- Types of solar cells include silicon-based (for example, crystalline silicon-based, thin-film silicon-based), compound-based (for example, CIGS-based), organic-based (for example, dye-sensitized system), and the like. An example in which the solar battery cell is silicon will be described below.
- FIG. 2 is a cross-sectional view showing an example of the configuration of a solar cell module.
- the solar cell module 20 includes a plurality of crystalline silicon solar cells 22 electrically connected by an interconnector 29 and a pair of opposed surfaces sandwiching the solar cells.
- a side transparent protective member 24 and a back side protective member 26 are provided.
- a sealing layer 28 is filled between these protective members and the plurality of solar cells 22.
- the sealing layer 28 is obtained by laminating a solar battery sealing film, and is in contact with the electrodes formed on the light receiving surface and the back surface of the solar battery cell 22.
- the electrode is a current collecting member formed on each of the light receiving surface and the back surface of the solar battery cell 22 and includes a power collecting wire, a tabbed bus, a back electrode layer, and the like which will be described later.
- FIG. 3 is a plan view showing an example of the configuration of the light receiving surface and the back surface of the solar battery cell.
- the light receiving surface 22A of the solar battery cell collects a large number of line-shaped collector wires 32, collects charges from the collector wires 32, and interconnector 29 (see FIG. 2).
- a bus bar with a tab (bus bar) 34 ⁇ / b> A connected thereto.
- a conductive layer (back electrode) 36 is formed on the entire back surface 22B of the solar battery cell, and charges are collected from the conductive layer 36 thereon, and an interconnector 29 ( A tabbed bus bar (bus bar) 34B is formed to be connected to the bus bar (see FIG. 2).
- the line width of the collector line 32 is, for example, about 0.1 mm; the line width of the tabbed bus 34A is, for example, about 2 to 3 mm; and the line width of the tabbed bus 34B is, for example, about 5 to 7 mm. is there.
- the thickness of the current collector 32, the tabbed bus 34A and the tabbed bus 34B is, for example, about 20 to 50 ⁇ m.
- the current collector 32, the tabbed bus 34A, and the tabbed bus 34B contain a highly conductive metal.
- highly conductive metals include gold, silver, copper, and the like. From the viewpoint of high conductivity and high corrosion resistance, silver, silver compounds, alloys containing silver, and the like are preferable.
- the conductive layer 36 contains not only a highly conductive metal but also a highly light reflective component such as aluminum from the viewpoint of improving the photoelectric conversion efficiency of the solar battery cell by reflecting the light received on the light receiving surface. It is preferable.
- the current collector 32, the tabbed bus 34 ⁇ / b> A, the tabbed bus 34 ⁇ / b> B, and the conductive layer 36 are formed by applying, for example, screen printing, a conductive material paint containing the highly conductive metal on the light receiving surface 22 ⁇ / b> A or the back surface 22 ⁇ / b> B of the solar battery cell. It is formed by applying to a coating thickness of 50 ⁇ m, drying, and baking at, for example, 600 to 700 ° C. as necessary.
- the surface side transparent protective member 24 is disposed on the light receiving surface side of the solar battery cell 22, it needs to be transparent (see FIG. 2).
- the surface side transparent protective member 24 include a transparent glass plate and a transparent resin film.
- the back surface side protection member 26 does not need to be transparent, and the material is not particularly limited. Examples of the back surface side protection member 26 include a glass substrate and a plastic film, but a glass substrate is preferably used from the viewpoint of durability and transparency.
- the solar cell module 20 can be obtained by any manufacturing method.
- the solar cell module 20 is, for example, a step of obtaining a laminate in which the back surface side protective member 26, the solar cell sealing film, the plurality of solar cells 22, the solar cell sealing film, and the front side transparent protective member 24 are stacked in this order; A step of pressing and laminating the laminate with a laminator or the like, and simultaneously heating and integrating as necessary; after the step, the laminate is further heat-treated as necessary to crosslink the sealing film. It can obtain by the process of making it harden
- the heating and pressing conditions may be, for example, 130 ° C., 3 minutes under vacuum, and 4 minutes under pressure, depending on the type of solar cell sealing film.
- the heat treatment conditions can be, for example, 150 ° C. and 40 minutes, mainly for the purpose of crosslinking the solar cell sealing film.
- the thin-film silicon-based solar cell module is: 1) front side transparent protective member (glass substrate) / thin film solar cell / sealing layer / back side protective member. It may be a laminate of this order; 2) a laminate of a front side transparent protective member / sealing layer / thin film solar cell / sealing layer / back side protection member in this order.
- the front-side transparent protective member, the back-side protective member, and the sealing layer are the same as in the case of “(1) Crystalline silicon solar cell module” described above.
- the thin film photovoltaic cell in the aspect of 1) includes, for example, a transparent electrode layer / pin type silicon layer / back electrode layer in this order.
- the transparent electrode layer include semiconductor-based oxides such as In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (In 2 O 3 with Sn added).
- the back electrode layer includes, for example, a silver thin film layer. Each layer is formed by a plasma CVD (chemical vapor deposition) method or a sputtering method.
- the sealing layer is disposed in contact with the back electrode layer (for example, a silver thin film layer). Since the transparent electrode layer is formed on the front surface side transparent protective member, the sealing layer is often not disposed between the front surface side protective member and the transparent electrode layer.
- the thin-film solar cell in the aspect of 2) includes, for example, a transparent electrode layer / pin type silicon layer / metal foil, or a metal thin film layer (for example, a silver thin film layer) disposed on a heat-resistant polymer film in this order.
- a transparent electrode layer / pin type silicon layer / metal foil or a metal thin film layer (for example, a silver thin film layer) disposed on a heat-resistant polymer film in this order.
- the metal foil include stainless steel foil.
- Examples of the heat resistant polymer film include a polyimide film.
- the transparent electrode layer and the pin type silicon layer are formed by the CVD method or the sputtering method as described above. That is, the pin-type silicon layer is formed on a metal foil or a metal thin film layer disposed on a heat-resistant polymer film; and the transparent electrode layer is formed on a pin-type silicon layer. Moreover, the metal thin film layer arrange
- the sealing layer is disposed between the transparent electrode layer and the front surface side protective member; and between the metal foil or the heat resistant polymer film and the back surface side protective member.
- the sealing layer obtained from the solar cell sealing film is in contact with the electrodes of the solar cell current collector, the tab-attached busbar, the conductive layer, and the like.
- the thin-film solar battery in the aspect of 2) is thinner than the crystalline silicon solar battery in the aspect of 1), the thin-film solar battery is pressurized during the manufacture of the solar battery module or from the outside during the module operation. Not easily damaged by impact. For this reason, the flexibility of the solar cell sealing film used in the thin film solar cell module may be lower than that used in the crystalline silicon solar cell module.
- the electrode of the thin film solar cell is a metal thin film layer as described above, when it is deteriorated by corrosion, the power generation efficiency may be significantly reduced.
- an ethylene / ⁇ -olefin copolymer which is less flexible than EVA but does not necessarily require a crosslinking agent as a generation source of cracked gas is a thin film according to the embodiment 2) as a main constituent of the solar cell sealing film. It is more suitably used as a solar cell sealing film for a solar cell module.
- MFR2 According to JIS K-6721, MFR2 (g / 10 min) was measured at 190 ° C. and a 2.16 kg load.
- Metal residue After wet decomposition of the ethylene-based polymer, it is made up to volume with pure water, and an aluminum, zirconium, titanium, hafnium, ICP emission analyzer (“ICPS-8100” manufactured by Shimadzu Corporation) is used. And magnesium was quantified. The total amount of these metal elements was defined as “metal residue (ppm)”.
- the above polymerization was repeated.
- a pellet of the polymer (A) (ethylene polymer (A) P) was obtained.
- Synthesis Example 2 Ethylene Polymer (B) Operation similar to “3. Polymerization” in Synthesis Example 1 except that the hydrogen content of the mixed gas of ethylene and hydrogen was changed to 0.5 mol%, the amount of hexane was changed to 870 ml, and the amount of 1-hexene was changed to 230 ml. As a result, 130 g of an ethylene polymer (B) was obtained. Table 1 shows the measurement results of density, MFR2, Mw / Mn, and metal residue of the obtained ethylene-based polymer (B). Moreover, the same polymerization is repeated, and the resulting ethylene polymer (B) is extruded using a single screw extruder to produce ethylene polymer (B) pellets (ethylene polymer (B) P). Obtained.
- the surface of the solar cell encapsulating film was subjected to a graining process (diamond lattice shape of 130 ⁇ m ⁇ 130 ⁇ m ⁇ depth 60 ⁇ m). In addition, it was 420 ppm when the amount of Si in the obtained solar cell sealing film was measured by the method similar to the measuring method of a metal residue using the ICP emission spectrometer.
- Example 2 The absolute humidity inside the package was set to 7.3 g / cm 3 (relative humidity: 35% RH), and 100 g of B-type silica gel left as a humidity control agent in an environment of 23 ° C. and 35% relative humidity for 40 hours.
- a package was obtained in the same manner as in Example 1 except that was used. Further, the package was stored under the same conditions as in Example 1 except that the storage time was 1000 hours.
- Example 3 The absolute humidity inside the package was 2.9 g / cm 3 (relative humidity: 15% RH), and 100 g of B-type silica gel left as a humidity control agent in an environment of 23 ° C. and 15% relative humidity for 40 hours.
- a package was obtained in the same manner as in Example 1 except that was used. Further, the package was stored under the same conditions as in Example 1 described above.
- Example 1 Comparative Example 1 Except that the absolute humidity inside the package was 0.0 g / cm 3 (relative humidity: ⁇ 2.5% RH) and that 100 g of calcium oxide was used as a humidity control agent, the same as in Example 1 above. Thus, a package was obtained. Further, the package was stored under the same conditions as in Example 1 described above.
- Comparative Example 2 A package was obtained in the same manner as in Comparative Example 1 described above. Further, the package was stored under the same conditions as in Example 1 except that the storage time was 1000 hours.
- Example 3 The absolute humidity inside the package was 17.3 g / cm 3 (relative humidity: 60% RH), and 100 g of B-type silica gel left as a humidity control agent in an environment of 23 ° C. and 60% RH for 40 hours A package was obtained in the same manner as in Example 1 except that was used. Further, the package was stored under the same conditions as in Example 1 described above.
- Example 4 Except for using a blend obtained by dry blending in advance 80 parts by weight of ethylene polymer (B) P and 20 parts by weight of ethylene polymer (B) modified body (1) P described above A package was obtained in the same manner as in Example 1. Further, the package was stored under the same conditions as in Example 1 described above.
- Example 5 The absolute humidity inside the package was set to 7.3 g / cm 3 (relative humidity: 35% RH), and 100 g of B-type silica gel left as a humidity control agent in an environment of 23 ° C. and 35% relative humidity for 40 hours.
- a package was obtained in the same manner as in Example 4 except that was used.
- the package was stored under the same conditions as in Example 4 except that the storage time was 1000 hours.
- Example 4 Similar to Example 4 except that the absolute humidity inside the package was 0.0 g / cm 3 (relative humidity: ⁇ 2.5% RH) and that 100 g of calcium oxide was used as the humidity control agent. Thus, a package was obtained. Further, the package was stored under the same conditions as in Example 4 described above.
- Comparative Example 5 A package was obtained in the same manner as in Comparative Example 4 described above. Further, the package was stored under the same conditions as in Example 4 except that the storage time was 1000 hours.
- Example 6 The absolute humidity inside the package was 17.3 g / cm 3 (relative humidity: 60% RH), and 100 g of B-type silica gel left as a humidity control agent in an environment of 23 ° C. and 60% RH for 40 hours A package was obtained in the same manner as in Example 4 except that was used. Further, the package was stored under the same conditions as in Example 4 described above.
- peel evaluation The peel strength (initial and after 500 hours of wet heat resistance) of the solar cell sealing film taken out from the package after storage obtained in Examples 1 to 5 and Comparative Examples 1 to 6 was measured. In addition, the measuring method of peel strength is shown below. Moreover, the measurement results of peel strength are shown in Tables 2 and 3.
- peel strength (initial) A transparent glass plate and a solar cell sealing film having a thickness of 0.5 mm were laminated and placed on a hot plate (temperature adjusted to 150 ° C.) disposed in a vacuum laminator. After reducing the vacuum for 2 minutes, the mixture was heated for 6 minutes to obtain a laminate of transparent glass plate / solar cell sealing film. The obtained laminate was cut into a width of 15 mm, and the peel strength (initial) of the solar cell sealing film was measured. The peel strength was measured three times at 23 ° C. using a tensile tester “Instron 1123” manufactured by Instron Co., with a 180 ° peel between spans of 30 mm, a tensile speed of 30 mm / min, and an average value was adopted.
- the peel strength (initial) of the solar cell sealing films taken out from the packaging bodies of Examples 1 to 5 is the solar cell sealing film taken out from the packaging bodies of Comparative Examples 1 to 6
- the peel strength (initial) was sufficiently high.
- the peel strength (after 500 hours of moist heat resistance) of the solar cell sealing films taken out from the packaging bodies of Examples 1 to 5 and Comparative Examples 1, 2, 4, and 5 was sufficiently high.
- the solar cell sealing film taken out from the package of Comparative Examples 3 and 6 was broken when it was peeled from the transparent glass substrate to measure its peel strength. This is thought to be because the solar cell sealing film was hardened and the flexibility was impaired because the humidity inside the package during storage was too high.
- the solar cell sealing film which can manufacture the solar cell module by which destruction of the photovoltaic cell, corrosion of the electrode by penetration
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Photovoltaic Devices (AREA)
- Sealing Material Composition (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Packaging Frangible Articles (AREA)
- Packages (AREA)
Abstract
Description
[1]シラン化合物および/またはシラン変性樹脂を含む太陽電池封止膜と、前記太陽電池封止膜を包装する包装袋と、を含んでなる包装体であって、前記包装体の内部の絶対湿度が1~15g/m3である、太陽電池封止膜の保存用または運搬用の包装体。
a)密度が900~940kg/m3である。
b)示差走査熱量測定(DSC)に基づく融解ピーク温度が90~125℃である。
c)JIS K-6721に準拠し、190℃、2.16kg荷重にて測定されるメルトフローレート(MFR2)が0.1~100g/10分である。
d)Mw/Mnの値が1.2~3.5である。
e)金属残渣が50重量ppm以下である。
太陽電池封止膜は、主たる構成成分となる樹脂と、接着性付与剤と、必要に応じて配合される各種添加剤と、を含むものである。なお、接着性付与剤は、シラン変性剤で変性させたシラン変性樹脂であってもよい。また、接着性付与剤としてシラン変性樹脂を用いた場合は、このシラン変性樹脂自体を主たる構成成分となる樹脂として用いることができる。
a)密度が900~940kg/m3である。
b)示差走査熱量測定(DSC)に基づく融解ピーク温度が90~125℃である。
c)JIS K-6721に準拠し、190℃、2.16kg荷重にて測定されるメルトフローレート(MFR2)が0.1~100g/10分である。
d)Mw/Mnの値が1.2~3.5である。
e)金属残渣が50ppm以下である。
エチレン・α-オレフィン共重合体の密度は900~940kg/m3であり、好ましくは900~935kg/m3、さらに好ましくは900~930kg/m3、より好ましくは900~925kg/m3、特に好ましくは905~925kg/m3、最も好ましくは905~923kg/m3である。エチレン・α-オレフィン共重合体の密度が900kg/m3未満であると、太陽電池封止膜の耐熱性が低下する傾向にある。このため、太陽電池モジュールを傾けた状態で発電した場合、ガラスや電極が徐々に滑ってしまいガラスが滑り落ちてしまうことがある。一方、エチレン・α-オレフィン共重合体の密度が940kg/m3超であると、太陽電池封止膜の柔軟性が低下し、太陽電池モジュールをラミネートする際に結晶セルの割れや銀電極の剥離が生ずることがある。また、ラミネート成形時の温度を高くする必要性が生ずる場合がある。
示差走査熱量測定(DSC)に基づくエチレン・α-オレフィン共重合体の融解ピーク温度は90~125℃であり、好ましくは90~120℃、さらに好ましくは90~115℃である。エチレン・α-オレフィン共重合体の融解ピーク温度が90℃未満であると、太陽電池封止膜の耐熱性が低下する傾向にある。このため、太陽電池モジュールを傾けた状態で発電した場合、ガラスや電極が徐々に滑ってしまいガラスが滑り落ちてしまうことがある。一方、エチレン・α-オレフィン共重合体の融解ピーク温度が125℃超であると、太陽電池封止膜の柔軟性が低下し、太陽電池モジュールをラミネートする際に結晶セルの割れや銀電極の剥離が生ずることがある。また、ラミネート成形時の温度を高くする必要性が生ずる場合がある。
JIS K-6721に準拠し、190℃、2.16kg荷重にて測定されるエチレン・α-オレフィン共重合体のメルトフローレ-ト(MFR2)は、0.1~100g/10分であり、好ましくは0.5~50g/10分、さらに好ましくは0.5~20g/10分である。エチレン・α-オレフィン共重合体のMFR2が0.1g/10分未満であると流動性が低下し、押出成形時の生産性が低下する。一方、エチレン・α-オレフィン共重合体のMFR2が100g/10分超であると流動性が高すぎるため、シート成形が困難である。また、得られる太陽電池封止膜の引張強度等の機械物性が低下する。
ゲルパーミエーションクロマトグラフィー(GPC)で測定される、エチレン・α-オレフィン共重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は1.2~3.5であり、好ましくは1.2~3.2、さらに好ましくは1.2~2.8である。エチレン・α-オレフィン共重合体のMw/Mnが1.2未満であると、リビングポリマーとなり、製造しようとするエチレン・α-オレフィン共重合体の単位重量当りの触媒量が増大して製造コストが高くなり、工業的に不利である。一方、エチレン・α-オレフィン共重合体のMw/Mnが3.5超であると、得られる太陽電池封止膜の衝撃強度が低下する傾向にある。また、エチレン・α-オレフィン共重合体がべたついてしまい、ブロッキングにより太陽電池封止膜(シート)が剥離し難くなる。
エチレン・α-オレフィン共重合体中の金属残渣は50重量ppm以下であり、好ましくは0.1~45重量ppm、さらに好ましくは0.1~40重量ppmである。エチレン・α-オレフィン共重合体中の金属残渣が0.1重量ppm未満であると、重合触媒の脱灰操作が必須となることがある。このため、プラント固定費、用役費等が高くなり、製品コストが高くなる場合がある。さらに、脱灰処理に用いる酸あるいはアルカリも多量必要となるため、得られるエチレン・α-オレフィン共重合体に酸やアルカリが残存する可能性が高くなる。このため、残存した酸やアルカリの影響で電極等が腐食してしまう可能性がある。一方、エチレン・α-オレフィン共重合体中の金属残渣が50重量ppm超であると、金属残渣の影響で体積固有抵抗および絶縁破壊抵抗が低下する。
本発明の包装体は、シラン化合物および/またはシラン変性樹脂を含む太陽電池封止膜と、前記太陽電池封止膜を包装する包装袋と、を含んでなるものであり、前記包装体の内部の絶対湿度が1~15g/m3である。
保存および運搬された太陽電池封止膜は、太陽電池モジュールにおける太陽電池セルの封止部材(封止層)として好ましく用いられる。太陽電池セルの種類には、シリコン系(例えば結晶シリコン系、薄膜シリコン系)、化合物系(例えば、CIGS系)、有機系(例えば、色素増感系)などが含まれる。太陽電池セルがシリコン系である例で、以下説明する。
図2は、太陽電池モジュールの構成の一例を示す断面図である。図2に示されるように、太陽電池モジュール20は、インターコネクタ29により電気的に接続された複数の結晶シリコン系の太陽電池セル22と、それを挟持する、対向して配置された一対の表面側透明保護部材24と裏面側保護部材26とを有している。これらの保護部材と複数の太陽電池セル22との間には、封止層28が充填されている。封止層28は、太陽電池封止膜を貼り合わせて得られるものであり、太陽電池セル22の受光面および裏面に形成された電極と接している。電極とは、太陽電池セル22の受光面および裏面にそれぞれ形成された集電部材であり、後述する集電線、タブ付用母線、および裏面電極層などを含む。
薄膜シリコン系の太陽電池モジュールは、1)表面側透明保護部材(ガラス基板)/薄膜太陽電池セル/封止層/裏面側保護部材をこの順に積層したもの;2)表面側透明保護部材/封止層/薄膜太陽電池セル/封止層/裏面側保護部材をこの順に積層したもの等でありうる。表面側透明保護部材、裏面側保護部材および封止層は、前述の「(1)結晶シリコン系の太陽電池モジュール」の場合と同様である。
(1)密度
メルトフローレート(MFR2)測定後のストランドを1時間かけて室温まで徐冷した後、密度勾配管法により密度(kg/cm3)を測定した。
パーキンエルマー社製の「DSC7」を使用し、試料5mg程度を専用アルミパンに詰め、(i)0℃から200℃までを320℃/minで昇温、(ii)200℃で5分間保持、(iii)200℃から0℃までを10℃/minで降温、(iv)0℃でさらに5分間保持、(v)10℃/minで昇温する際の吸熱曲線を測定した。測定した吸熱曲線における溶融ピークのピーク頂点を「融解ピーク温度(℃)」とした。なお、複数の溶融ピークが検出された場合には、最も高温側で検出されるピークのピーク頂点を「融解ピーク温度(℃)」とした。
JIS K-6721に準拠し、190℃、2.16kg荷重にてMFR2(g/10分)を測定した。
Waters社製のゲル浸透クロマトグラフ「Alliance GPC-2000型」を使用して分子量分布(Mw/Mn)を測定した。なお、測定条件を以下に示す。
分離カラム:東ソー社製の「TSKgel GNH6-HT」2本および「TSKgel GNH6-HTL」2本
カラムサイズ:直径7.5mm、長さ300mm
カラム温度:140℃
移動相:o-ジクロロベンゼン(和光純薬工業社製)(但し、酸化防止剤としてBHT(武田薬品社製)0.025重量%を含む)
流速:1.0ml/分
試料濃度:15mg/10ml
試料注入量:500μl
検出器:示差屈折計
標準ポリスチレン:Mw<1000、Mw>4×106 ・・・東ソー社製
1000≦Mw≦4×106 ・・・プレッシャーケミカル社製
エチレン系重合体を湿式分解後、純水にて定容し、ICP発光分析装置(島津製作所社製、「ICPS-8100」)を使用してアルミニウム、ジルコニウム、チタン、ハフニウム、およびマグネシウムを定量化した。これらの金属元素の合計量を「金属残渣(ppm)」とした。
先ず、包装体内部の温度および相対湿度から、湿り空気線図を用いて算出した絶対湿度(g/cm3)に、包装体内部の空間体積(cm3)を乗じることにより算出した。
(合成例1)エチレン系重合体(A)
1.固体触媒成分の調製
特開平9-328520号公報に記載の方法にて、メタロセン化合物であるジメチルシリレンビス(3-メチルシクロペンタジエニル)ジルコニウムジクロリドを含有する固体触媒成分を調製した。得られた固体触媒成分1g当りのジルコニウム含有量は2.3mgであった。
特開平9-328520号公報に記載の方法にて、上記で得られた固体触媒成分4gと、1-ヘキセンと、エチレンとを使用し、3gのポリエチレンが予備重合された予備重合触媒を得た。得られた予備重合触媒1g当りのジルコニウム含有量は2.2mgであった。
充分に窒素置換した内容積2リットルのステンレス製オートクレーブに、脱水精製したヘキサンを800ml装入した。系内をエチレンと水素の混合ガス(水素含有割合:0.7mol%)で置換した。系内を60℃とし、トリイソブチルアルミニウム1.5mmol、1-ヘキセン200ml、および上記の予備重合触媒を、ジルコニウム原子換算で0.015mgを添加した。
エチレンと水素の混合ガスの水素含有割合を0.5mol%、ヘキサンの量を870ml、1-ヘキセンの量を230mlに代えたこと以外は、上記合成例1における「3.重合」と同様の操作によりエチレン系重合体(B)を130g得た。得られたエチレン系重合体(B)の密度、MFR2、Mw/Mn、および金属残渣の測定結果を表1に示す。また、同様の重合を繰り返し行い、得られたエチレン系重合体(B)単軸押出機を使用して押し出すことによりエチレン系重合体(B)のペレット(エチレン系重合体(B)P)を得た。
エチレン系重合体(B)50重量部、エチレン系重合体(B)P50重量部、ラジカル重合性不飽和化合物として無水マレイン酸1.3重量部、および有機過酸化物として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン0.1重量部をドライブレンドした。その後、サーモ・プラスチック社製の単軸押出機(スクリュー径:20mmφ、L/D=28)にて、ダイス温度=210℃の条件で押し出すことによりエチレン系重合体(B)変性体(1)のペレット(エチレン系重合体(B)変性体(1)P)を得た。
(実施例1)
(1)シラン変性とシート成形
エチレン系重合体(A)P90重量部と、エチレン系重合体(B)P10重量部とを予めドライブレンドした。得られたブレンド物に、エチレン性不飽和シラン化合物としてγ-メタクリロキシプロピルトリメトキシシランを0.5重量部、有機過酸化物として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンを0.05重量部、紫外線吸収剤として2-ヒドロキシ-4-ノルマル-オクチルオキシベンゾフェノンを0.4重量部、ラジカル捕捉剤としてビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケートを0.1重量部、および耐熱安定剤としてトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト0.1重量部を添加してドライブレンドし、エチレン系重合体のブレンド物を得た。
長さ2000cm×幅60cmに裁断した太陽電池封止膜を直径7.6cmの紙管に巻きつけて積層ロール体を得た。得られた積層ロール体と、調湿剤として23℃で相対湿度25%RHの環境下で40時間放置したB型シリカゲル100gとを、相対湿度25%RHの雰囲気中、厚さ80μmの防湿袋(ポリエチレンテレフタラートフィルム12μm、ポリエチレンフィルム15μm、アルミニウムシート7μm、ポリエチレンフィルム15μm、および直鎖状低密度ポリエチレンフィルム30μmをこの順番で積層した積層シートからなる包装袋(エーディーワイ社製の「Aタイプアルミ防湿袋」、水蒸気透過率:0.38g/(24hr・m2))に入れた。包装袋の開口部を折り曲げた後(図1の(A)および(B)を参照)、包装袋の折り曲げ部を180℃で1秒間加熱してヒートシールにより封止し、包装体を得た(図1の(C)を参照)。得られた包装体内部の絶対湿度は5.2g/cm3であり、相対湿度は25RH%であった。また、包装体内の太陽電池封止膜の体積は5.4Lであり、太陽電池封止膜以外の空間の体積は13.9Lであった。この包装体を23℃、相対湿度40%RHの環境下で100時間保管した。
包装体内部の絶対湿度を7.3g/cm3(相対湿度:35%RH)としたこと、および調湿剤として23℃で相対湿度35%RHの環境下で40時間放置したB型シリカゲル100gを用いたこと以外は、前述の実施例1と同様にして包装体を得た。また、保管時間を1000時間としたこと以外は前述の実施例1と同様の条件で包装体を保管した。
包装体内部の絶対湿度を2.9g/cm3(相対湿度:15%RH)としたこと、および調湿剤として23℃で相対湿度15%RHの環境下で40時間放置したB型シリカゲル100gを用いたこと以外は、前述の実施例1と同様にして包装体を得た。また、前述の実施例1と同様の条件で包装体を保管した。
包装体内部の絶対湿度を0.0g/cm3(相対湿度:<2.5%RH)としたこと、および調湿剤として酸化カルシウム100gを用いたこと以外は、前述の実施例1と同様にして包装体を得た。また、前述の実施例1と同様の条件で包装体を保管した。
前述の比較例1と同様にして包装体を得た。また、保管時間を1000時間としたこと以外は前述の実施例1と同様の条件で包装体を保管した。
包装体内部の絶対湿度を17.3g/cm3(相対湿度:60%RH)としたこと、および調湿剤として23℃で相対湿度60%RHの環境下で40時間放置したB型シリカゲル100gを用いたこと以外は、前述の実施例1と同様にして包装体を得た。また、前述の実施例1と同様の条件で包装体を保管した。
エチレン系重合体(B)P80重量部と、エチレン系重合体(B)変性体(1)P20重量部と、を予めドライブレンドして得られたブレンド物を用いたこと以外は、前述の実施例1と同様にして包装体を得た。また、前述の実施例1と同様の条件で包装体を保管した。
包装体内部の絶対湿度を7.3g/cm3(相対湿度:35%RH)としたこと、および調湿剤として23℃で相対湿度35%RHの環境下で40時間放置したB型シリカゲル100gを用いたこと以外は、前述の実施例4と同様にして包装体を得た。また、保存時間を1000時間としたこと以外は前述の実施例4と同様の条件で包装体を保管した。
包装体内部の絶対湿度を0.0g/cm3(相対湿度:<2.5%RH)としたこと、および調湿剤として酸化カルシウム100gを用いたこと以外は、前述の実施例4と同様にして包装体を得た。また、前述の実施例4と同様の条件で包装体を保管した。
前述の比較例4と同様にして包装体を得た。また、保管時間を1000時間としたこと以外は前述の実施例4と同様の条件で包装体を保管した。
包装体内部の絶対湿度を17.3g/cm3(相対湿度:60%RH)としたこと、および調湿剤として23℃で相対湿度60%RHの環境下で40時間放置したB型シリカゲル100gを用いたこと以外は、前述の実施例4と同様にして包装体を得た。また、前述の実施例4と同様の条件で包装体を保管した。
実施例1~5および比較例1~6で得られた保管後の包装体から取り出した太陽電池封止膜のピール強度(初期および耐湿熱500時間後)を測定した。なお、ピール強度の測定方法を以下に示す。また、ピール強度の測定結果を表2および3に示す。
透明ガラス板と厚さ0.5mmの太陽電池封止膜とを積層し、真空ラミネーター内に配置したホットプレート(150℃に温度調整済)上に載せた。2分間真空減圧した後、6分間加熱して、透明ガラス板/太陽電池封止膜の積層体を得た。得られた積層体を15mm幅に切り出し、太陽電池封止膜のピール強度(初期)を測定した。なお、ピール強度は、インストロン社製の引張試験機「Instron1123」を使用し、180度ピールにてスパン間30mm、引張速度30mm/分、23℃で3回測定し、平均値を採用した。
JIS C8917に準拠し、スガ試験機社製のキセノンウェザーメーター「XL75特殊仕様」を使用し、試験槽内温度85℃、湿度85%の条件下で、上記「(1)ピール強度(初期)」で得た積層体の促進試験を500時間行った。促進試験後の積層体を用いて、上記「(1)ピール強度(初期)」と同様の操作によりピール強度(耐湿熱500時間後)を測定した。
12 包装袋
12A 開口部
14 太陽電池封止膜
16 粘着テープ
20 太陽電池モジュール
22 太陽電池セル
22A 受光面
22B 裏面
24 表面側透明保護部材
26 裏面側保護部材
28 封止層
29 インターコネクタ
32 集電線
34A、34B タブ付用母線
36 導電層
Claims (16)
- シラン化合物および/またはシラン変性樹脂を含む太陽電池封止膜と、前記太陽電池封止膜を包装する包装袋と、を含んでなる包装体であって、
前記包装体の内部の絶対湿度が1~15g/m3である、太陽電池封止膜の保存用または運搬用の包装体。 - 前記太陽電池封止膜の主たる構成成分がエチレン・α-オレフィン共重合体である、請求項1に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 前記エチレン・α-オレフィン共重合体が下記a)~e)の要件を全て満たす、請求項2に記載の太陽電池封止膜の保存用または運搬用の包装体。
a)密度が900~940kg/m3である。
b)示差走査熱量測定(DSC)に基づく融解ピーク温度が90~125℃である。
c)JIS K-6721に準拠し、190℃、2.16kg荷重にて測定されるメルトフローレート(MFR2)が0.1~100g/10分である。
d)Mw/Mnの値が1.2~3.5である。
e)金属残渣が50重量ppm以下である。 - 前記シラン化合物および/または前記シラン変性樹脂がアルコキシシリル基を有する、請求項1に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 前記太陽電池封止膜に含まれる前記シラン化合物の量が、前記エチレン・α-オレフィン共重合体100重量部に対して0.1~3.0重量部である、請求項2に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 前記シラン変性樹脂が、前記エチレン・α-オレフィン共重合体100重量部に対して、重合性シラン化合物0.1~5重量部をグラフト変性させた変性体である、請求項2に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 前記太陽電池封止膜に含まれる珪素原子(Si)の割合が、前記太陽電池封止膜の重量を基準として300~4000ppmである、請求項1に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 前記太陽電池封止膜が積層体である、請求項1に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 前記包装袋がポリオレフィン樹脂を含んでなる、請求項1に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 前記包装袋の水蒸気透過率が1g/(24hr・m2)以下である、請求項1に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 包装体内にさらに調湿剤を含む、請求項1に記載の太陽電池封止膜の保存用または運搬用の包装体。
- 前記調湿剤が、シリカゲル、塩化カルシウム、および塩化マグネシウムよりなる群から選ばれる少なくとも1種である、請求項11に記載の太陽電池封止膜の保存用または運搬用の包装体。
- シラン化合物および/またはシラン変性樹脂を含む太陽電池封止膜の保存または運搬方法であって、
前記太陽電池封止膜を包装袋で包装することにより内部の絶対湿度が1~15g/m3の包装体を得る工程と、
前記包装体を暗所に置いて50時間以上保存または運搬する工程と、
を含む、太陽電池封止膜の保存または運搬方法。 - 表面側透明保護部材と、
請求項1に記載の包装体から取り出した太陽電池用封止膜又はその硬化物からなる封止層と、
前記封止層により封止された太陽電池セルと、
裏面側保護部材と、を備え、
前記封止層が、対向して配置された前記表面側透明保護部材と前記裏面側保護部材との間に挟持されている、太陽電池モジュール。 - 表面側透明保護部材と、請求項1に記載の包装体から取り出した第1の太陽電池用封止膜と、太陽電池セルと、請求項1に記載の包装体から取り出した第2の太陽電池用封止膜と、裏面側保護部材と、をこの順に積層して積層体を形成する第1の工程と、
前記第1の工程で得られた前記積層体を貼り合わせて一体化する第2の工程と、
を含む太陽電池モジュールの製造方法。 - 表面側透明保護部材と、太陽電池セルと、請求項1に記載の包装体から取り出した太陽電池用封止膜と、裏面側保護部材と、をこの順に積層し;または
表面側透明保護部材と、請求項1に記載の包装体から取り出した太陽電池用封止膜と、太陽電池セルと、裏面側保護部材と、をこの順に積層し積層体を形成する第1の工程と、
前記第1の工程で得られた前記積層体を貼り合わせて一体化する第2の工程と、
を含む太陽電池モジュールの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/376,049 US20120073655A1 (en) | 2009-06-05 | 2010-06-04 | Package body for storing or transporting solar cell sealing film and method for storing or transporting solar cell sealing film |
CN201080024967.3A CN102459027B (zh) | 2009-06-05 | 2010-06-04 | 太阳能电池密封膜的包装体、及保存或运输方法 |
EP10783172.9A EP2439150B1 (en) | 2009-06-05 | 2010-06-04 | Package body for storing or transporting solar cell sealing film and method for storing or transporting solar cell sealing film |
JP2011518288A JP5683460B2 (ja) | 2009-06-05 | 2010-06-04 | 太陽電池封止膜の保存用または運搬用包装体、および太陽電池封止膜の保存または運搬方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009136608 | 2009-06-05 | ||
JP2009-136608 | 2009-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140384A1 true WO2010140384A1 (ja) | 2010-12-09 |
Family
ID=43297527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/003749 WO2010140384A1 (ja) | 2009-06-05 | 2010-06-04 | 太陽電池封止膜の保存用または運搬用包装体、および太陽電池封止膜の保存または運搬方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120073655A1 (ja) |
EP (1) | EP2439150B1 (ja) |
JP (1) | JP5683460B2 (ja) |
KR (1) | KR20120023736A (ja) |
CN (1) | CN102459027B (ja) |
TW (1) | TWI503993B (ja) |
WO (1) | WO2010140384A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012195561A (ja) * | 2011-03-01 | 2012-10-11 | Dainippon Printing Co Ltd | 太陽電池モジュール用封止材シート |
CN103140940A (zh) * | 2010-10-08 | 2013-06-05 | 三井化学株式会社 | 太阳能电池密封材料及太阳能电池模块 |
WO2016121990A1 (ja) * | 2015-01-30 | 2016-08-04 | 大日本印刷株式会社 | 太陽電池モジュール用の封止材シート及び太陽電池モジュール |
JPWO2015199029A1 (ja) * | 2014-06-27 | 2017-04-20 | 三井化学東セロ株式会社 | 太陽電池封止材用樹脂組成物、太陽電池封止材および太陽電池モジュール |
JP2017098555A (ja) * | 2012-06-26 | 2017-06-01 | 三井化学東セロ株式会社 | 太陽電池封止シート、並びに太陽電池モジュール及びその製造方法 |
JPWO2016047524A1 (ja) * | 2014-09-24 | 2017-06-22 | 三井化学東セロ株式会社 | 封止シートの梱包体、および封止シートの保管方法 |
JP2018177360A (ja) * | 2017-04-21 | 2018-11-15 | 三井化学株式会社 | 包装体、金属部材の保存または運搬方法、および金属/樹脂複合構造体の製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5785794B2 (ja) * | 2011-06-27 | 2015-09-30 | 株式会社ブリヂストン | 太陽電池用封止膜及びこれを用いた太陽電池 |
CN103771033B (zh) * | 2014-02-25 | 2016-07-06 | 深圳市华星光电技术有限公司 | 液晶模组包装袋 |
DE102014112406A1 (de) * | 2014-08-28 | 2016-03-03 | Infineon Technologies Ag | Einbettung additiver Partikel in einer Verkapselung einer elektronischen Vorrichtung |
JP2016074467A (ja) * | 2014-10-08 | 2016-05-12 | 旭硝子株式会社 | ガラス板梱包体、及びガラス板の梱包方法 |
JP2016078940A (ja) * | 2014-10-17 | 2016-05-16 | 旭硝子株式会社 | ガラス板梱包体 |
US20170338360A1 (en) * | 2014-10-30 | 2017-11-23 | Dow Global Technologies Llc | PV Module with Film Layer Comprising Micronized Silica Gel |
CN106032189A (zh) * | 2015-03-20 | 2016-10-19 | 南京瀚宇彩欣科技有限责任公司 | 显示面板的包装袋结构及显示面板的包装箱结构 |
JP6806702B2 (ja) | 2015-05-26 | 2021-01-06 | ドナルドソン カンパニー,インコーポレイティド | エンクロージャのためのカスタマイズ可能な湿度を有する吸着体アセンブリ |
US20190067503A1 (en) * | 2015-11-04 | 2019-02-28 | Borealis Ag | A photovoltaic module |
JP7375902B1 (ja) * | 2022-12-23 | 2023-11-08 | 信越化学工業株式会社 | 石英ガラスクロスの梱包方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05235393A (ja) * | 1992-02-25 | 1993-09-10 | Matsushita Electric Ind Co Ltd | 太陽電池モジュール |
JPH09328520A (ja) | 1996-06-10 | 1997-12-22 | Mitsui Petrochem Ind Ltd | エチレン系重合体 |
JP2004214641A (ja) | 2002-12-16 | 2004-07-29 | Dainippon Printing Co Ltd | 太陽電池モジュール用充填材シートおよびそれを使用した太陽電池モジュール |
JP2005314680A (ja) | 2004-03-31 | 2005-11-10 | Mitsui Chemicals Inc | オレフィン重合体の製造方法 |
JP2006077261A (ja) | 2005-12-02 | 2006-03-23 | Mitsui Chemicals Inc | エチレン系重合体 |
JP2006229060A (ja) * | 2005-02-18 | 2006-08-31 | Mitsubishi Heavy Ind Ltd | 太陽電池パネル製造方法 |
JP2007103738A (ja) * | 2005-10-05 | 2007-04-19 | Mitsui Chemicals Inc | 太陽電池封止材、太陽電池封止用シート、およびそれらを用いた太陽電池モジュール。 |
JP2007281135A (ja) | 2006-04-05 | 2007-10-25 | Bridgestone Corp | 太陽電池用封止膜及びこの封止膜を用いた太陽電池 |
JP2008231265A (ja) | 2007-03-20 | 2008-10-02 | Mitsui Chemicals Inc | エチレン系共重合体よりなるフィルムまたはシートならびに積層体 |
JP2009136608A (ja) | 2007-12-10 | 2009-06-25 | Yokohama Rubber Co Ltd:The | ゴルフクラブヘッドおよびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060201544A1 (en) * | 2002-12-16 | 2006-09-14 | Isao Inoue | Filler sheet for solar cell module, and solar cell module using the same |
CN100481524C (zh) * | 2003-09-10 | 2009-04-22 | 大日本印刷株式会社 | 太阳能电池组件用填充材料层、太阳能电池组件 |
ATE461231T1 (de) * | 2004-03-17 | 2010-04-15 | Dow Global Technologies Inc | Katalysatorzusammensetzung mit shuttlung-mittel für die herstellung von ethylen- multiblockcopolymer |
CN101138095B (zh) * | 2005-03-08 | 2010-10-06 | 三井-杜邦聚合化学株式会社 | 太阳能电池密封材料 |
CN101548393A (zh) * | 2005-07-26 | 2009-09-30 | 太阳能公司 | 通过使用多个光电区的集成式太阳能电池对太阳电池板进行制造的方法及系统 |
US20080115825A1 (en) * | 2006-09-20 | 2008-05-22 | Patel Rajen M | Electronic Device Module Comprising an Ethylene Multi-Block Copolymer |
-
2010
- 2010-06-04 EP EP10783172.9A patent/EP2439150B1/en active Active
- 2010-06-04 US US13/376,049 patent/US20120073655A1/en not_active Abandoned
- 2010-06-04 WO PCT/JP2010/003749 patent/WO2010140384A1/ja active Application Filing
- 2010-06-04 TW TW099118183A patent/TWI503993B/zh active
- 2010-06-04 JP JP2011518288A patent/JP5683460B2/ja active Active
- 2010-06-04 KR KR1020117028781A patent/KR20120023736A/ko not_active Ceased
- 2010-06-04 CN CN201080024967.3A patent/CN102459027B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05235393A (ja) * | 1992-02-25 | 1993-09-10 | Matsushita Electric Ind Co Ltd | 太陽電池モジュール |
JPH09328520A (ja) | 1996-06-10 | 1997-12-22 | Mitsui Petrochem Ind Ltd | エチレン系重合体 |
JP2004214641A (ja) | 2002-12-16 | 2004-07-29 | Dainippon Printing Co Ltd | 太陽電池モジュール用充填材シートおよびそれを使用した太陽電池モジュール |
JP2005314680A (ja) | 2004-03-31 | 2005-11-10 | Mitsui Chemicals Inc | オレフィン重合体の製造方法 |
JP2006229060A (ja) * | 2005-02-18 | 2006-08-31 | Mitsubishi Heavy Ind Ltd | 太陽電池パネル製造方法 |
JP2007103738A (ja) * | 2005-10-05 | 2007-04-19 | Mitsui Chemicals Inc | 太陽電池封止材、太陽電池封止用シート、およびそれらを用いた太陽電池モジュール。 |
JP2006077261A (ja) | 2005-12-02 | 2006-03-23 | Mitsui Chemicals Inc | エチレン系重合体 |
JP2007281135A (ja) | 2006-04-05 | 2007-10-25 | Bridgestone Corp | 太陽電池用封止膜及びこの封止膜を用いた太陽電池 |
JP2008231265A (ja) | 2007-03-20 | 2008-10-02 | Mitsui Chemicals Inc | エチレン系共重合体よりなるフィルムまたはシートならびに積層体 |
JP2009136608A (ja) | 2007-12-10 | 2009-06-25 | Yokohama Rubber Co Ltd:The | ゴルフクラブヘッドおよびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2439150A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103140940A (zh) * | 2010-10-08 | 2013-06-05 | 三井化学株式会社 | 太阳能电池密封材料及太阳能电池模块 |
CN103140940B (zh) * | 2010-10-08 | 2014-04-23 | 三井化学株式会社 | 太阳能电池密封材料及太阳能电池模块 |
US8772625B2 (en) | 2010-10-08 | 2014-07-08 | Mitsui Chemicals, Inc. | Encapsulating material for solar cell and solar cell module |
JP2012195561A (ja) * | 2011-03-01 | 2012-10-11 | Dainippon Printing Co Ltd | 太陽電池モジュール用封止材シート |
JP2017098555A (ja) * | 2012-06-26 | 2017-06-01 | 三井化学東セロ株式会社 | 太陽電池封止シート、並びに太陽電池モジュール及びその製造方法 |
JPWO2015199029A1 (ja) * | 2014-06-27 | 2017-04-20 | 三井化学東セロ株式会社 | 太陽電池封止材用樹脂組成物、太陽電池封止材および太陽電池モジュール |
JPWO2016047524A1 (ja) * | 2014-09-24 | 2017-06-22 | 三井化学東セロ株式会社 | 封止シートの梱包体、および封止シートの保管方法 |
WO2016121990A1 (ja) * | 2015-01-30 | 2016-08-04 | 大日本印刷株式会社 | 太陽電池モジュール用の封止材シート及び太陽電池モジュール |
JP2018177360A (ja) * | 2017-04-21 | 2018-11-15 | 三井化学株式会社 | 包装体、金属部材の保存または運搬方法、および金属/樹脂複合構造体の製造方法 |
JP2022126721A (ja) * | 2017-04-21 | 2022-08-30 | 三井化学株式会社 | 包装体、金属部材の保存または運搬方法、および金属/樹脂複合構造体の製造方法 |
JP7348709B2 (ja) | 2017-04-21 | 2023-09-21 | 三井化学株式会社 | 包装体、金属部材の保存または運搬方法、および金属/樹脂複合構造体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102459027B (zh) | 2015-01-28 |
JP5683460B2 (ja) | 2015-03-11 |
US20120073655A1 (en) | 2012-03-29 |
EP2439150A4 (en) | 2014-03-19 |
JPWO2010140384A1 (ja) | 2012-11-15 |
EP2439150B1 (en) | 2020-12-23 |
KR20120023736A (ko) | 2012-03-13 |
CN102459027A (zh) | 2012-05-16 |
TW201110359A (en) | 2011-03-16 |
TWI503993B (zh) | 2015-10-11 |
EP2439150A1 (en) | 2012-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5683460B2 (ja) | 太陽電池封止膜の保存用または運搬用包装体、および太陽電池封止膜の保存または運搬方法 | |
US10566480B2 (en) | Sealing material for solar cell modules, and manufacturing method thereof | |
KR101367050B1 (ko) | 에틸렌계 수지 조성물, 태양 전지 봉지재 및 그것을 이용한 태양 전지 모듈 | |
CN104137277B (zh) | 太阳能电池密封用片组件 | |
CN104105773B (zh) | 太阳能电池密封材和太阳能电池模块 | |
CN102958996B (zh) | 太阳能电池密封材料用树脂组合物、太阳能电池密封材料及使用其的太阳能电池组件 | |
EP3163631B1 (en) | Resin composition for solar cell encapsulating material, solar cell encapsulating material, and solar cell module | |
JP5444039B2 (ja) | 樹脂組成物、太陽電池封止材及びそれを用いた太陽電池モジュール | |
CN104081536B (zh) | 太阳能电池密封材及太阳能电池模块 | |
JP5636221B2 (ja) | 太陽電池封止材用樹脂組成物 | |
CN102971863B (zh) | 太阳能电池密封材料及使用其的太阳能电池组件 | |
CN104247042B (zh) | 太阳能电池密封材及太阳能电池模块 | |
JP2011012243A (ja) | エチレン系樹脂組成物、太陽電池封止材及びそれを用いた太陽電池モジュール | |
JP5560099B2 (ja) | 太陽電池封止材用樹脂組成物 | |
JP5824902B2 (ja) | 太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材と太陽電池モジュール | |
CN107148678A (zh) | 太阳能电池模块 | |
CN104380481A (zh) | 太阳能电池密封材及太阳能电池模块 | |
JP2010267853A (ja) | 太陽電池封止膜の保存用または運搬用包装体、および太陽電池封止膜の保存または運搬方法 | |
JP2012231048A (ja) | 太陽電池モジュール封止用シートおよび太陽電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080024967.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10783172 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011518288 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117028781 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13376049 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010783172 Country of ref document: EP |