[go: up one dir, main page]

WO2010137384A1 - Radiation detection device and method of manufacturing this device - Google Patents

Radiation detection device and method of manufacturing this device Download PDF

Info

Publication number
WO2010137384A1
WO2010137384A1 PCT/JP2010/054411 JP2010054411W WO2010137384A1 WO 2010137384 A1 WO2010137384 A1 WO 2010137384A1 JP 2010054411 W JP2010054411 W JP 2010054411W WO 2010137384 A1 WO2010137384 A1 WO 2010137384A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
radiation detection
manufacturing
recess
Prior art date
Application number
PCT/JP2010/054411
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 星野
寧 中野
尚大 岡田
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2010137384A1 publication Critical patent/WO2010137384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers

Definitions

  • the present invention relates to a radiation detection apparatus having high sensitivity and high resolution and a method for manufacturing the same.
  • the radiation detection apparatus disclosed in Patent Document 1 is manufactured by attaching and integrating a phosphor intensifying screen prepared by applying a phosphor on a support to a light detection element.
  • the phosphor layer is made of a uniform phosphor, so that light that has been incident and converted into visible light also travels radially in the phosphor layer. In some cases, the light generated on the pixel is incident on an adjacent photodetecting element and the sharpness is impaired. In addition, in order to capture a large amount of radiation and convert it into visible light with a phosphor, it is required to make the thickness of the phosphor layer as thick as possible. When the thickness of the layer is increased, there is a problem that the sharpness is further deteriorated.
  • the phosphor intensifying screen and the photodetector are bonded and integrated through an adhesive, so that the light generated from the phosphor is reflected and scattered by the adhesive and reaches the light detection element. In some cases, the amount of light decreased and the sensitivity decreased.
  • a high-sensitivity and sharp radiation detection apparatus for example, as disclosed in Patent Document 2, photodetection elements as pixels two-dimensionally arranged on a substrate, and corresponding to each of these pixels
  • a radiation detection apparatus in which a phosphor embedded panel configured by embedding phosphors in a plurality of recesses formed on a substrate at a predetermined pitch is bonded and integrated in a state where the recesses and pixels correspond to each other in position. It has been known. Further, in this document, as a method for solving the above-described problem that the sharpness is impaired, a radiation detection apparatus in which a phosphor layer corresponds one-on-one for each pixel is disclosed.
  • the radiation incident on the fluorescent plate is converted into visible light in the phosphor separated for each pixel, and the visible light generated for each separated phosphor layer is applied to each pixel of the light detection element. Incident light is converted into an electric signal, whereby high sharp image characteristics can be obtained.
  • the production of the radiation detection apparatus disclosed in the above-mentioned Patent Document 2 is performed by first preparing a substrate with a recess and filling the phosphor with a vapor deposition method or a melting method to form a phosphor-embedded panel, which is detected by light.
  • a radiation detection apparatus is manufactured by bonding and integrating with the element.
  • bubbles and microcracks are mixed when the phosphor is uniformly filled in the concave portion, and variations in sensitivity (sensitivity variations) of each detection element due to the mixture of bubbles and the like. , Non-uniform sensitivity distribution), low yield and high cost.
  • Patent Document 3 as a method for improving the above-described mixing of bubbles or the like, radiation detection in which a scintillator having a uniform outer shape, which has been prepared in advance so as to conform to the shape of the recess, is inserted into the recess and joined to the adjacent isolation wall. An apparatus is disclosed.
  • the required diagnostic performance has increased, and a high resolution of the photodetector has been demanded, and the pixel size of the photodetector element is desired to be 200 ⁇ m or less.
  • the pixel size of the photodetector element is desired to be 200 ⁇ m or less.
  • a scintillator having such a size and shape is inserted into the recess.
  • JP-A-9-145845 Japanese Patent Laid-Open No. 5-60871 JP-A-10-90420
  • the present invention has been made in view of the above problems and situations, and a problem to be solved is to provide a radiation detection apparatus with high sensitivity and high resolution, and an inexpensive and simple method for manufacturing a radiation detection apparatus. .
  • a method of manufacturing a radiation detector having a plurality of phosphors and light detection elements each for converting at least X-rays or ⁇ -rays into visible light, and (i) a light reflection corresponding to each of the light detection elements on a one-to-one basis
  • a step of filling a phosphor precursor in the recess of the light reflecting film having a recess surrounded by a material and (ii) a step of uniformly reacting the phosphor precursor in the recess to obtain a phosphor
  • a method for manufacturing a radiation detection apparatus comprising the step of bonding the phosphor in the recess and the light detection element.
  • a radiation detection apparatus produced by the method for manufacturing a radiation detection apparatus according to 1 or 2 above.
  • the manufacturing method of the radiation detection apparatus of the present invention is a manufacturing method of a radiation detector having a plurality of phosphors and photodetecting elements each converting at least X-rays or ⁇ -rays into visible light, and (i) the light detection A step of filling a phosphor precursor in the concave portion of the light reflecting film having a concave portion surrounded by a light reflecting material corresponding to each of the elements, and (ii) uniforming the phosphor precursor in the concave portion And (iii) bonding the phosphor in the concave portion and the photodetecting element.
  • This feature is a technical feature common to the inventions according to claims 1 to 3.
  • the recess is shielded and reacted. According to the manufacturing method of the present invention, a radiation detection apparatus having high sensitivity and high resolution can be obtained.
  • FIG. 1 is a diagram showing a structure of a radiation detection apparatus viewed from the side according to an embodiment of the present invention.
  • the two surfaces (lower part of the phosphor 2 in FIG. 1) and the light detecting element 3 provided in the light detecting layer 6 are joined and provided in a one-to-one correspondence.
  • the light reflecting film 1 makes light generated in the phosphor incident on each of the light detecting elements (pixels) corresponding one-to-one.
  • the light reflecting film 1 may be a continuous lattice pattern or a discontinuous pattern such as a dot. May be formed. Further, the light reflecting film 1 may be formed as a single light reflecting material, or may be in a form in which only the portion in contact with the phosphor is surrounded by the light reflecting material using means such as vapor deposition or plating.
  • the light reflecting material may be a reflective material that reflects visible light when the light generated in the phosphor layer is visible light. Specifically, aluminum, silver, silicon, white glass or the like is preferably used.
  • a light reflecting film such as a lattice pattern is formed of a phosphor, it not only functions as a pattern reflecting film but also functions as a light emitting film, so that higher sensitivity can be achieved.
  • Phosphor 2 for example, CsI (Tl), CsI (Na ), CaF 2 (Eu), NaI (Tl), BGO [Bi 4 Ge 3 O 12], CdWO 4, LiI (Eu) , BeF 2, CeF 3
  • a scintillator material having a function of converting radiation such as X-rays and ⁇ -rays into visible light.
  • the organic scintillator material containing an aromatic compound can also be used as a scintillator material.
  • the light detection element 3 is not particularly limited, and a solid-state imaging element such as a CCD or a CMOS is preferably used. Further, either an area sensor or a line sensor may be used.
  • a light reflecting film is formed.
  • the means for forming the recesses in the light reflecting film is not particularly limited, and various means such as nanoimprinting, dicing, sand blasting, and laser processing are used.
  • FIG. 2 shows means for forming a light reflection film by applying glass paste in a screen mesh lattice pattern by screen printing and drying a plurality of times.
  • the glass paste 9 that has flowed out through the liquid retainer 8 is scanned with the squeegee 10 using the screen mesh 7 to produce the light reflecting film 1a in the middle of manufacturing, which is shown in FIG. 2), the reflective film 1 can be formed repeatedly as shown in FIG.
  • the phosphor precursor is filled in the recess shown in FIG.
  • the term “phosphor precursor” as used herein represents a raw material that constitutes the phosphor composition, and does not exhibit the characteristics of the phosphor itself, but adds some reaction means such as heat treatment to the phosphor precursor. By doing so, it becomes a phosphor.
  • the method of filling the phosphor precursor is not particularly limited, and a method of filling powder particles, a solution in which the phosphor precursor is dissolved, or the like is preferably used.
  • FIG. 3 shows an aqueous solution in which cesium iodide (CsI) and thallium sulfate (Tl 2 SO 4 ) are dissolved as the phosphor precursor solution 11 as shown in FIGS. 3 (b) and 3 (c).
  • CsI cesium iodide
  • Tl 2 SO 4 thallium sulfate
  • a powdered phosphor precursor 12 obtained by drying an aqueous solution in which cesium iodide (CsI) and thallium sulfate (Tl 2 SO 4 ) are dissolved to a desired particle diameter by means of spray drying or the like is formed into a concave portion by a vibrator.
  • a method of filling the inside is also preferably used.
  • the particle diameter of the phosphor precursor is preferably 1/5 to 1/200 of the diameter of the recess.
  • the method of mixing the small particles and the large particles to fill the phosphor precursor in the recess Easy to make uniform.
  • each recess may be individually shielded with a single shielding object.
  • the entire object may be collectively shielded by one piece as in the shielding object (Example 2) 13b in FIG. 4, or may be individually shielded for each recess as in the shielding object (Example 3) 13c in FIG. good.
  • the reaction is not particularly limited, but generally indicates heat treatment.
  • heat treatment in an inert atmosphere at about 400 to 700 ° C. for 4 to 10 hours is preferably used for the reaction of the CsI: Tl phosphor. .
  • bonding refers to bonding with heat, an adhesive, or the like. Needless to say, it is necessary to align and bond the phosphor surface in the concave portion of the light reflecting film surface and the light detecting element in a one-to-one correspondence. It is preferable to perform alignment by enlarging with a CCD camera or the like so that the scintillator has a one-to-one correspondence with each of the light detection elements.
  • the phosphor surface when it remains in a non-flat state by the above-described method, it may be bonded to the light detection layer after performing a flattening process by CMP (Chemical Mechanical Polish) or the like.
  • CMP Chemical Mechanical Polish
  • the radiation scintillator panels of Comparative Example 1, Example 1, and Example 2 were produced.
  • Comparative Example 1 A white glass paste was applied to a 50 cm ⁇ 50 cm glass substrate with a solid thickness of 30 ⁇ m and dried, and then applied by screen printing and dried using a screen with a mesh pattern of 254 ⁇ m pitch, openings 227 ⁇ m, and partition walls 27 ⁇ m. This was repeated for 12 layers. Thereafter, baking was performed in air at 550 ° C. to form a light reflecting film having a plurality of convex portions having an opening of 227 ⁇ m and a partition wall height of 450 ⁇ m.
  • Example 1 A light reflecting film having a plurality of convex portions with openings of 100 ⁇ m and partition height of 450 ⁇ m is formed using a screen having a mesh pattern of 127 ⁇ m pitch, openings of 100 ⁇ m, and partition wall portions of 27 ⁇ m so as to be half the pitch of Comparative Example 1. did.
  • the light reflecting film was filled in an aqueous solution in which CsI and Tl 2 SO 4 were mixed at a concentration of 1: 0.3 mol%, and filled in the recesses. After that, as a result of evaporating water by vacuum drying, the dry powder was filled by 100 ⁇ m from the bottom of the recess, and thus the above-described operations from filling to drying were repeated 5 times.
  • the upper part of the light reflecting film filled with the dry powder in the concave portion was covered with a glass substrate and baked at 650 ° C. for 10 hours to obtain a CsI: Tl scintillator panel 2.
  • Example 2 A dry powder made by the same manufacturing method as in Comparative Example 1 is sealed with a glass substrate on the top of the light reflecting film filled in the void volume in the recess of the same light reflecting film as in Example 1. And firing at 650 ° C. for 10 hours to obtain a CsI: Tl scintillator panel 3.
  • Luminance, image defects, and MTF were measured and calculated from the output data obtained for each sample of the radiation detectors 1 to 3 by the following method.
  • the radiation detection apparatus of the present invention As is apparent from the results shown in Table 1, according to the radiation detection apparatus of the present invention, the light converted into visible light by the phosphor 2 is converged without being diverged and enters the light detection element 3. Therefore, it is possible to realize a radiation detection apparatus having remarkably superior resolution and sensitivity as compared with the conventional radiation detection apparatus by an inexpensive and simple method.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Provided are a high-sensitivity, high-resolution radiation detection device and a method of manufacturing an inexpensive and handy radiation detection device. The aforementioned radiation detection device and method of manufacturing a radiation detection device pertain to a method of manufacturing a radiation detection device having a plurality of fluorescent bodies which convert at least X-rays or γ-rays into visible light, as well as a plurality of light detection elements, and are characterized by comprising (i) a process where fluorescent precursors are filled into recesses which are formed in a light reflection film, which are enclosed by a light reflection material, and each of which is in one-to-one correspondence with one of the aforementioned light detection elements, (ii) a process where the aforementioned fluorescent precursors are caused to uniformly react in the recesses, thereby obtaining fluorescent bodies, and (iii) a process where fluorescent bodies in the aforementioned recesses are joined to the aforementioned light detection elements.

Description

放射線検出装置及びその製造方法Radiation detection apparatus and manufacturing method thereof
 本発明は、高感度且つ高解像度である放射線検出装置及びその製造方法に関する。 The present invention relates to a radiation detection apparatus having high sensitivity and high resolution and a method for manufacturing the same.
 従来、光検出素子と蛍光体とを用いた放射線検出装置について、多くの提案がなされている。高感度な放射線検出装置として、例えば、特許文献1に開示されているように、基板上に二次元配列された画素としての光検出素子に、蛍光体層として増感紙を積層して貼り合わせて一体化した放射線検出装置が知られている。当該放射線検出装置では、蛍光板に入射した放射線は、蛍光体中で可視光に変換され、一様に散乱しながら光検出素子の各画素に入射し、電気信号に変換されることによって画像特性が得られる。 Conventionally, many proposals have been made on radiation detection devices using light detection elements and phosphors. As a high-sensitivity radiation detection device, for example, as disclosed in Patent Document 1, an intensifying screen is laminated as a phosphor layer and bonded to a photodetection element as a pixel two-dimensionally arranged on a substrate. An integrated radiation detection device is known. In the radiation detection apparatus, the radiation incident on the fluorescent plate is converted into visible light in the phosphor, is incident on each pixel of the light detection element while being uniformly scattered, and is converted into an electrical signal, whereby image characteristics are improved. can get.
 上記特許文献1で開示されている放射線検出装置は、光検出素子に、支持体に蛍光体を塗布して作製された蛍光体増感紙を貼り合わせて一体化することによって作製される。 The radiation detection apparatus disclosed in Patent Document 1 is manufactured by attaching and integrating a phosphor intensifying screen prepared by applying a phosphor on a support to a light detection element.
 しかしながら、この様に作製された放射線検出装置においては、蛍光体層は一様な蛍光体からなるので入射して可視光に変換された光も一様に蛍光体層内を放射状に進み、ある画素上で発生した光は隣接する光検出素子にも入射してしまい鮮鋭度が損なわれる場合があった。また、蛍光体により、多くの放射線を捕らえて可視光に変換するには、蛍光体層の厚さをできるだけ厚くすることが求められるが、蛍光体増感紙においては、前記理由で、蛍光体層の厚さを厚くするとますます鮮鋭度が損なわれてしまうという問題があった。また、蛍光体増感紙と光検出器とを、接着剤を介して貼り合わせ、一体化するために、その接着剤により、蛍光体から発生した光が反射、散乱され、光検出素子に達する光量が減少し、感度の低下が生ずる場合があった。 However, in the radiation detection apparatus manufactured in this way, the phosphor layer is made of a uniform phosphor, so that light that has been incident and converted into visible light also travels radially in the phosphor layer. In some cases, the light generated on the pixel is incident on an adjacent photodetecting element and the sharpness is impaired. In addition, in order to capture a large amount of radiation and convert it into visible light with a phosphor, it is required to make the thickness of the phosphor layer as thick as possible. When the thickness of the layer is increased, there is a problem that the sharpness is further deteriorated. In addition, the phosphor intensifying screen and the photodetector are bonded and integrated through an adhesive, so that the light generated from the phosphor is reflected and scattered by the adhesive and reaches the light detection element. In some cases, the amount of light decreased and the sensitivity decreased.
 一方、高感度で高鮮鋭な放射線検出装置として、例えば、特許文献2に開示されているように、基板上に二次元配列された画素としての光検出素子と、これらの画素ごとに対応するように、所定のピッチで基板に形成された複数の凹部に蛍光体を埋め込んで構成された蛍光体埋め込みパネルとを、凹部と画素が位置的に対応した状態で貼り合わせ、一体化した放射線検出装置が知られている。また、当該文献においては、前述の鮮鋭度が損なわれるという問題の改善方法として、蛍光体層が画素ごとに一対一に対応した放射線検出装置が開示されている。当該放射線検出装置では、蛍光板に入射した放射線は、画素毎に分離した蛍光体中で、可視光に変換され、この分離した蛍光体層ごとに発生した可視光が、光検出素子の各画素に入射し、電気信号に変換されることにより、高鮮鋭な画像特性が得られる。 On the other hand, as a high-sensitivity and sharp radiation detection apparatus, for example, as disclosed in Patent Document 2, photodetection elements as pixels two-dimensionally arranged on a substrate, and corresponding to each of these pixels In addition, a radiation detection apparatus in which a phosphor embedded panel configured by embedding phosphors in a plurality of recesses formed on a substrate at a predetermined pitch is bonded and integrated in a state where the recesses and pixels correspond to each other in position. It has been known. Further, in this document, as a method for solving the above-described problem that the sharpness is impaired, a radiation detection apparatus in which a phosphor layer corresponds one-on-one for each pixel is disclosed. In the radiation detection apparatus, the radiation incident on the fluorescent plate is converted into visible light in the phosphor separated for each pixel, and the visible light generated for each separated phosphor layer is applied to each pixel of the light detection element. Incident light is converted into an electric signal, whereby high sharp image characteristics can be obtained.
 上記特許文献2に開示されている放射線検出装置の作製は、まず凹部付きの基板を用意し、その中に蛍光体を蒸着法や溶融法で充填し、蛍光体埋め込みパネルとし、それを光検出素子と貼り合わせ、一体化することにより、放射線検出装置が作製される。しかしながら、このような放射線検出装置は、凹部内に均一に蛍光体を充填する際に気泡やマイクロクラックが混入し、その気泡等の混入に起因する各検出素子の感度上のばらつき(感度のばらつき、感度分布の不均一)が大きく、歩留まりが低くコストがかかることが問題となる。 The production of the radiation detection apparatus disclosed in the above-mentioned Patent Document 2 is performed by first preparing a substrate with a recess and filling the phosphor with a vapor deposition method or a melting method to form a phosphor-embedded panel, which is detected by light. A radiation detection apparatus is manufactured by bonding and integrating with the element. However, in such a radiation detection device, bubbles and microcracks are mixed when the phosphor is uniformly filled in the concave portion, and variations in sensitivity (sensitivity variations) of each detection element due to the mixture of bubbles and the like. , Non-uniform sensitivity distribution), low yield and high cost.
 特許文献3においては、前述の気泡等の混入の改善方法として、予め凹部形状に適合するように作製された均一外形状のシンチレータが凹部に挿入され、かつ隣接する隔離壁と接合された放射線検出装置が開示されている。 In Patent Document 3, as a method for improving the above-described mixing of bubbles or the like, radiation detection in which a scintillator having a uniform outer shape, which has been prepared in advance so as to conform to the shape of the recess, is inserted into the recess and joined to the adjacent isolation wall. An apparatus is disclosed.
 しかしながら、近年、要求される診断性能は高くなり、光検出器の高分解能が求められており、光検出素子の画素サイズとしては200μm以下が望まれる。さらに、蛍光体により放射線を可視光に変換する率をできるだけ上げるためには、蛍光体層の厚さをできるだけ厚くすることが求められるが、このような大きさ且つ形状のシンチレータを凹部に挿入し、かつ隣接する隔離壁と接合することは、工業的に非常に困難でコストがかかることが問題となる。 However, in recent years, the required diagnostic performance has increased, and a high resolution of the photodetector has been demanded, and the pixel size of the photodetector element is desired to be 200 μm or less. Furthermore, in order to increase the rate at which radiation is converted into visible light by the phosphor as much as possible, it is required to make the phosphor layer as thick as possible. A scintillator having such a size and shape is inserted into the recess. In addition, it is very difficult and costly industrially to join the adjacent separating wall.
特開平9-145845号公報JP-A-9-145845 特開平5-60871号公報Japanese Patent Laid-Open No. 5-60871 特開平10-90420号公報JP-A-10-90420
 本発明は、上記問題・状況にかんがみてなされたものであり、その解決課題は、高感度かつ高解像度である放射線検出装置、及び安価かつ簡便な放射線検出装置の製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and a problem to be solved is to provide a radiation detection apparatus with high sensitivity and high resolution, and an inexpensive and simple method for manufacturing a radiation detection apparatus. .
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.少なくともX線又はγ線を可視光に変換する蛍光体と光検出素子とをそれぞれ複数有する放射線検出器の製造方法であって、(i)当該光検出素子の各々に一対一対応する、光反射材で囲われた凹部を持つ光反射膜の当該凹部内に蛍光体前駆物質を充填する工程と、(ii)当該蛍光体前駆物質を凹部内で均一に反応させて蛍光体を得る工程と、(iii)当該凹部内の蛍光体と前記光検出素子とを接合する工程とを有することを特徴とする放射線検出装置の製造方法。 1. A method of manufacturing a radiation detector having a plurality of phosphors and light detection elements each for converting at least X-rays or γ-rays into visible light, and (i) a light reflection corresponding to each of the light detection elements on a one-to-one basis A step of filling a phosphor precursor in the recess of the light reflecting film having a recess surrounded by a material, and (ii) a step of uniformly reacting the phosphor precursor in the recess to obtain a phosphor, (Iii) A method for manufacturing a radiation detection apparatus, comprising the step of bonding the phosphor in the recess and the light detection element.
 2.前記蛍光体前駆物質を凹部内で均一に反応させて蛍光体を得る工程において、凹部内を遮蔽して反応させることを特徴とする前記1に記載の放射線検出装置の製造方法。 2. 2. The method of manufacturing a radiation detecting apparatus according to 1 above, wherein in the step of obtaining the phosphor by uniformly reacting the phosphor precursor in the recess, the reaction is performed while shielding the recess.
 3.前記1又は前記2に記載の放射線検出装置の製造方法により作製されたことを特徴とする放射線検出装置。 3. A radiation detection apparatus produced by the method for manufacturing a radiation detection apparatus according to 1 or 2 above.
 本発明の上記手段により、高感度かつ高解像度である放射線検出装置、及び安価かつ簡便な放射線検出装置の製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a radiation detection apparatus having high sensitivity and high resolution, and an inexpensive and simple method for manufacturing a radiation detection apparatus.
放射線検出装置の構造を示す概念図Conceptual diagram showing the structure of the radiation detector ガラスペーストをスクリーン印刷により、スクリーンメッシュの格子パターン状に塗布、乾燥を複数回繰り返して光反射膜を形成する手段を示す概念図Conceptual diagram showing a means for forming a light reflecting film by applying glass paste to a screen mesh lattice pattern by screen printing and drying a plurality of times repeatedly 蛍光体前駆物質溶解液を光反射膜表面の凹部内に充填した後に溶媒を除去する工程を繰返し、蛍光体前駆物質を凹部内に完全に充填する方法を示す概念図The conceptual diagram which shows the method of filling the fluorescent substance precursor completely in a recessed part by repeating the process of removing a solvent after filling the fluorescent substance precursor solution in the concave part of the light reflecting film surface 蛍光体前駆物質を囲むように凹部上部を遮蔽物で遮蔽する態様例を示す図The figure which shows the example of an aspect which shields the recessed part upper part with a shield so that a fluorescent substance precursor may be enclosed
 本発明の放射線検出装置の製造方法は、少なくともX線又はγ線を可視光に変換する蛍光体と光検出素子とをそれぞれ複数有する放射線検出器の製造方法であって、(i)当該光検出素子の各々に一対一対応する、光反射材で囲われた凹部を持つ光反射膜の当該凹部内に蛍光体前駆物質を充填する工程と、(ii)当該蛍光体前駆物質を凹部内で均一に反応させて蛍光体を得る工程と、(iii)当該凹部内の蛍光体と前記光検出素子とを接合する工程とを有することを特徴とする。この特徴は、請求項1から請求項3に係る発明に共通する技術的特徴である。 The manufacturing method of the radiation detection apparatus of the present invention is a manufacturing method of a radiation detector having a plurality of phosphors and photodetecting elements each converting at least X-rays or γ-rays into visible light, and (i) the light detection A step of filling a phosphor precursor in the concave portion of the light reflecting film having a concave portion surrounded by a light reflecting material corresponding to each of the elements, and (ii) uniforming the phosphor precursor in the concave portion And (iii) bonding the phosphor in the concave portion and the photodetecting element. This feature is a technical feature common to the inventions according to claims 1 to 3.
 本発明の実施態様としては、本発明の効果発現の観点から、前記蛍光体前駆物質を凹部内で均一に反応させて蛍光体を得る工程において、凹部内を遮蔽して反応させることが好ましい。本発明の製造方法によれば、高感度かつ高解像度である放射線検出装置を得ることができる。 As an embodiment of the present invention, from the viewpoint of manifestation of the effect of the present invention, in the step of obtaining the phosphor by uniformly reacting the phosphor precursor in the recess, it is preferable that the recess is shielded and reacted. According to the manufacturing method of the present invention, a radiation detection apparatus having high sensitivity and high resolution can be obtained.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail.
 以下、本発明の実施の形態について図面を参照しながら説明する。図1は本発明の実施の形態における放射線検出装置を横から見た構造を示した図である。この放射線検出装置では、光反射材で囲われた凹部の形状を複数持つ光反射膜1の各凹部内に蛍光体2が形成された蛍光体層5の光反射材で覆われていない蛍光体2表面(図1蛍光体2の下部)と、光検出層6に設けられた光検出素子3とが一対一対応で接合して設けられている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a structure of a radiation detection apparatus viewed from the side according to an embodiment of the present invention. In this radiation detection apparatus, the phosphor that is not covered with the light reflecting material of the phosphor layer 5 in which the phosphor 2 is formed in each concave portion of the light reflecting film 1 having a plurality of concave shapes surrounded by the light reflecting material. The two surfaces (lower part of the phosphor 2 in FIG. 1) and the light detecting element 3 provided in the light detecting layer 6 are joined and provided in a one-to-one correspondence.
 この蛍光体内で発した光は、光反射層で反射されるのでより多くの光を光検出素子(画素)に導くことができる。また、同時に隣接する光検出素子に漏れる光を極力減ずることができるので、高鮮鋭な画像を得ることを可能にする。 Since the light emitted in the phosphor is reflected by the light reflecting layer, more light can be guided to the light detecting element (pixel). In addition, since light leaking to the adjacent photodetecting elements can be reduced as much as possible, a highly sharp image can be obtained.
 光反射膜1は、蛍光体中で発生した光を一対一に対応した各光検出素子(画素)に入射させるものであって、連続した格子状パターンとしても、ドットのような不連続なパターンとして形成されてもよい。また、光反射膜1は光反射材単体でも形成されてもよく、蛍光体と接する部分だけを蒸着やめっき等の手段を用いて光反射材が囲っている形態でもよい。光反射材としては蛍光体層中で発生した光が可視光の場合には可視光を反射させる反射物質であればよい。具体的にはアルミニウムや銀、シリコン、白色ガラス等が好ましく用いられる。 The light reflecting film 1 makes light generated in the phosphor incident on each of the light detecting elements (pixels) corresponding one-to-one. The light reflecting film 1 may be a continuous lattice pattern or a discontinuous pattern such as a dot. May be formed. Further, the light reflecting film 1 may be formed as a single light reflecting material, or may be in a form in which only the portion in contact with the phosphor is surrounded by the light reflecting material using means such as vapor deposition or plating. The light reflecting material may be a reflective material that reflects visible light when the light generated in the phosphor layer is visible light. Specifically, aluminum, silver, silicon, white glass or the like is preferably used.
 また、格子状パターン等の光反射膜を蛍光体で形成するならば、パターン反射膜として作用するばかりでなく発光膜としても作用し、より高感度化を図ることができる。 Further, if a light reflecting film such as a lattice pattern is formed of a phosphor, it not only functions as a pattern reflecting film but also functions as a light emitting film, so that higher sensitivity can be achieved.
 蛍光体2は、例えばCsI(Tl),CsI(Na),CaF(Eu),NaI(Tl),BGO〔BiGe12〕,CdWO,LiI(Eu),BeF,CeFなどのX線、γ線等の放射線を可視光に変換する機能を有するシンチレータ材料とから構成されている。なお、シンチレータ材料としては、更に芳香族化合物を含む有機シンチレータ材料も用いることができる。 Phosphor 2, for example, CsI (Tl), CsI (Na ), CaF 2 (Eu), NaI (Tl), BGO [Bi 4 Ge 3 O 12], CdWO 4, LiI (Eu) , BeF 2, CeF 3 And a scintillator material having a function of converting radiation such as X-rays and γ-rays into visible light. In addition, as a scintillator material, the organic scintillator material containing an aromatic compound can also be used.
 光検出素子3は、特に限定なく、CCDあるいはCMOSなどの固体撮像素子が好ましく用いられる。またエリアセンサあるいはラインセンサのいずれでもよい。 The light detection element 3 is not particularly limited, and a solid-state imaging element such as a CCD or a CMOS is preferably used. Further, either an area sensor or a line sensor may be used.
 次に、本発明に係る蛍光体層5の製造工程を図2および図3に基づき説明する。まず、光反射膜を形成する。光反射膜における凹部形成の手段に特に限定はなく、ナノインプリントやダイシング、サンドブラスト、レーザー加工等の様々な手段が用いられる。 Next, the manufacturing process of the phosphor layer 5 according to the present invention will be described with reference to FIGS. First, a light reflecting film is formed. The means for forming the recesses in the light reflecting film is not particularly limited, and various means such as nanoimprinting, dicing, sand blasting, and laser processing are used.
 図2には、ガラスペーストをスクリーン印刷により、スクリーンメッシュの格子パターン状に塗布、乾燥を複数回繰り返して光反射膜を形成する手段を示したものである。図2(a)のようにスクリーンメッシュ7を用いて、液留め8を通して流れ出たガラスペースト9を、スキージ10で走査して、製造途中の光反射膜1aを作成し、これを図2(b)、図2(c)のように繰り返して反射膜1を作成することができる。 FIG. 2 shows means for forming a light reflection film by applying glass paste in a screen mesh lattice pattern by screen printing and drying a plurality of times. As shown in FIG. 2 (a), the glass paste 9 that has flowed out through the liquid retainer 8 is scanned with the squeegee 10 using the screen mesh 7 to produce the light reflecting film 1a in the middle of manufacturing, which is shown in FIG. 2), the reflective film 1 can be formed repeatedly as shown in FIG.
 次に、図3(a)で示される凹部内に蛍光体前駆物質を充填する。ここでいう「蛍光体前駆物質」とは、蛍光体組成を構成する原材料を表したものでこれ自体が蛍光体の特性を示すわけではなく、蛍光体前駆物質に熱処理等の何らかの反応手段を付加することで蛍光体となるものである。蛍光体前駆物質の充填方法に特に限定はなく、粉末粒子や蛍光体前駆物質を溶解した溶液等を充填する方法が好ましく用いられる。 Next, the phosphor precursor is filled in the recess shown in FIG. The term “phosphor precursor” as used herein represents a raw material that constitutes the phosphor composition, and does not exhibit the characteristics of the phosphor itself, but adds some reaction means such as heat treatment to the phosphor precursor. By doing so, it becomes a phosphor. The method of filling the phosphor precursor is not particularly limited, and a method of filling powder particles, a solution in which the phosphor precursor is dissolved, or the like is preferably used.
 図3には、蛍光体前駆物質溶解液11としてヨウ化セシウム(CsI)と硫酸タリウム(TlSO)を溶解した水溶液を図3(b)、図3(c)で示されるように光反射膜表面の凹部内に充填した後に溶媒を乾燥して除去する工程を繰返し、蛍光体前駆物質12を図3(d)のように凹部内に完全に充填されたら終了とする方法を示したものである。また、ヨウ化セシウム(CsI)と硫酸タリウム(TlSO)を溶解した水溶液を噴霧乾燥等の手段により所望の粒子径になるよう乾燥した粉末状の蛍光体前駆物質12を振動機で凹部内に充填する方法も好ましく用いられる。その際、蛍光体前駆物質の粒子径は凹部直径の1/5から1/200であることが好ましく、更には小粒子と大粒子を混合して充填する方法が凹部内の蛍光体前駆物質を均一にしやすい。 3 shows an aqueous solution in which cesium iodide (CsI) and thallium sulfate (Tl 2 SO 4 ) are dissolved as the phosphor precursor solution 11 as shown in FIGS. 3 (b) and 3 (c). The process of drying and removing the solvent after filling in the recesses on the surface of the reflective film was repeated, and a method of finishing when the phosphor precursor 12 was completely filled in the recesses as shown in FIG. Is. Further, a powdered phosphor precursor 12 obtained by drying an aqueous solution in which cesium iodide (CsI) and thallium sulfate (Tl 2 SO 4 ) are dissolved to a desired particle diameter by means of spray drying or the like is formed into a concave portion by a vibrator. A method of filling the inside is also preferably used. At this time, the particle diameter of the phosphor precursor is preferably 1/5 to 1/200 of the diameter of the recess. Furthermore, the method of mixing the small particles and the large particles to fill the phosphor precursor in the recess Easy to make uniform.
 次に、凹部内に完全に充填された蛍光体前駆物質12を凹部内で均一に反応させて蛍光体を得る。本発明においては、蛍光体前駆物質12を囲むように凹部上部を、例えば図4で例示する遮蔽物13a、13b、または13cのいずれかで遮蔽して反応させることが好ましい。図4(a)の遮蔽物(例1)13aように、各凹部を一枚の遮蔽物で個々に遮蔽しても良い。あるいは図4の遮蔽物(例2)13bのように一枚で全体を一括して遮蔽しても、または図4の遮蔽物(例3)13cのように個別に凹部ごとに遮蔽しても良い。遮蔽しないで反応させると、凹部内の蛍光体組成が均一になりにくく、凹部表層と底部で感度バラツキを生じてしまい、歩留まりが悪化したり発光輝度が低くなる場合がある。遮蔽の仕方に特に限定はないが、できるだけ蛍光体だけで満たされるようにすることが望ましい。ここで反応とは特に限定はないが、一般的には熱処理を示し、例えばCsI:Tl蛍光体の反応には400~700℃程度で4~10時間の不活性雰囲気での熱処理が好ましく用いられる。 Next, the phosphor precursor 12 completely filled in the recess is reacted uniformly in the recess to obtain a phosphor. In the present invention, it is preferable to react the upper part of the recess so as to surround the phosphor precursor 12 with, for example, one of the shielding objects 13a, 13b, or 13c illustrated in FIG. As shown in the shielding object (Example 1) 13a in FIG. 4A, each recess may be individually shielded with a single shielding object. Alternatively, the entire object may be collectively shielded by one piece as in the shielding object (Example 2) 13b in FIG. 4, or may be individually shielded for each recess as in the shielding object (Example 3) 13c in FIG. good. If the reaction is performed without shielding, the phosphor composition in the recesses is difficult to be uniform, and sensitivity variations occur between the surface and the bottom of the recesses, and the yield may be deteriorated or the emission luminance may be lowered. There is no particular limitation on the way of shielding, but it is desirable that the shielding is filled with phosphor as much as possible. Here, the reaction is not particularly limited, but generally indicates heat treatment. For example, heat treatment in an inert atmosphere at about 400 to 700 ° C. for 4 to 10 hours is preferably used for the reaction of the CsI: Tl phosphor. .
 反応が終了して蛍光体が得られたら遮蔽物12を取り外し、別途形成された光検出層と接合して、放射線検出装置が完成する。本発明では接合とは熱や接着剤等で、貼り合わせる事をいう。光反射膜表面の凹部内の蛍光体表面と光検出素子の各々が一対一対応するように位置合わせして貼り合わせることが必要であることは言うまでもない。CCDカメラ等で拡大して光検出素子の各々にシンチレータが一対一対応するように位置あわせを行う事が好ましい。 When the reaction is completed and the phosphor is obtained, the shielding object 12 is removed and bonded to a separately formed photodetection layer to complete the radiation detection apparatus. In the present invention, bonding refers to bonding with heat, an adhesive, or the like. Needless to say, it is necessary to align and bond the phosphor surface in the concave portion of the light reflecting film surface and the light detecting element in a one-to-one correspondence. It is preferable to perform alignment by enlarging with a CCD camera or the like so that the scintillator has a one-to-one correspondence with each of the light detection elements.
 なお、上述の手法で蛍光体表面が平坦でない状態で残る場合は、CMP(Chemical Mechanical Polish)などで平坦化処理を行った後に光検出層と貼り合わせることも考えられる。 In addition, when the phosphor surface remains in a non-flat state by the above-described method, it may be bonded to the light detection layer after performing a flattening process by CMP (Chemical Mechanical Polish) or the like.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the embodiment of the present invention is not limited thereto.
 下記の方法に従って、比較例1、実施例1、及び実施例2の放射線シンチレータパネルを作製した。 According to the following method, the radiation scintillator panels of Comparative Example 1, Example 1, and Example 2 were produced.
 比較例1
 50cm×50cmのガラス基板上に白色ガラスペーストを30μmの膜厚でベタ塗り乾燥させた後、スクリーン印刷により、254μmピッチ、開口227μm、隔壁部27μmのメッシュパターンのスクリーンを用いて塗布、乾燥し、これを12層繰り返した。その後550℃空気中で焼成を行い、開口227μm、隔壁高さ450μmの凸部を複数もつ光反射膜を形成した。
Comparative Example 1
A white glass paste was applied to a 50 cm × 50 cm glass substrate with a solid thickness of 30 μm and dried, and then applied by screen printing and dried using a screen with a mesh pattern of 254 μm pitch, openings 227 μm, and partition walls 27 μm. This was repeated for 12 layers. Thereafter, baking was performed in air at 550 ° C. to form a light reflecting film having a plurality of convex portions having an opening of 227 μm and a partition wall height of 450 μm.
 その後、CsIとTlIを1:0.3mol%になるように混合した粉体を凹部内の空孔体積に見合う量を光反射膜上に散布した後、CsI、TlIの融点以上となる650℃8hrで溶融焼成してCsI:Tlシンチレータパネル1を得た。 After that, a powder in which CsI and TlI are mixed so as to be 1: 0.3 mol% is sprayed on the light reflecting film in an amount corresponding to the void volume in the concave portion, and then the melting point of CsI and TlI becomes 650 ° C. or higher. CsI: Tl scintillator panel 1 was obtained by melting and firing for 8 hours.
 実施例1
 比較例1のピッチの半分のピッチとなるように、127μmピッチ、開口100μm、隔壁部27μmのメッシュパターンのスクリーンを用いて、開口100μm、隔壁高さ450μmの凸部を複数もつ光反射膜を形成した。次に、光反射膜をCsIとTlSOを1:0.3mol%になるように混合した水溶液中に満たし、凹部内に充填した。この後、水を真空乾燥で蒸発させた結果、凹部底部より100μmだけ乾燥粉体が充填されていたので前述した充填から乾燥までの操作を5回繰返した。次いで凹部内に乾燥粉体が充填された光反射膜の上部にガラス基板でふたをして650℃10hrで焼成してCsI:Tlシンチレータパネル2を得た。
Example 1
A light reflecting film having a plurality of convex portions with openings of 100 μm and partition height of 450 μm is formed using a screen having a mesh pattern of 127 μm pitch, openings of 100 μm, and partition wall portions of 27 μm so as to be half the pitch of Comparative Example 1. did. Next, the light reflecting film was filled in an aqueous solution in which CsI and Tl 2 SO 4 were mixed at a concentration of 1: 0.3 mol%, and filled in the recesses. After that, as a result of evaporating water by vacuum drying, the dry powder was filled by 100 μm from the bottom of the recess, and thus the above-described operations from filling to drying were repeated 5 times. Next, the upper part of the light reflecting film filled with the dry powder in the concave portion was covered with a glass substrate and baked at 650 ° C. for 10 hours to obtain a CsI: Tl scintillator panel 2.
 実施例2
 比較例1と同様の製法で作られた乾燥粉体が、実施例1と同じ光反射膜の凹部内の空孔体積に充填された光反射膜の上部に、ガラス基盤で蓋をして密閉し、650℃10hrで焼成してCsI:Tlシンチレータパネル3を得た。
Example 2
A dry powder made by the same manufacturing method as in Comparative Example 1 is sealed with a glass substrate on the top of the light reflecting film filled in the void volume in the recess of the same light reflecting film as in Example 1. And firing at 650 ° C. for 10 hours to obtain a CsI: Tl scintillator panel 3.
 (放射線検出装置の作成)
 光検出素子としてPaxScan2520(Varian Medical Systems:画素サイズ127μm)を用いて、シンチレータパネル1~3のシンチレータ露出面と光検出素子を接合した。その際、CCDカメラで拡大して光検出素子の各々に、比較例1の試料は一つおきに、実施例1、2の試料はシンチレータが一対一対応するように位置あわせを行った後、端部を接着して固定し放射線検出装置1~3を作成した。
(Create radiation detector)
PaxScan 2520 (Varian Medical Systems: pixel size 127 μm) was used as the light detection element, and the scintillator exposed surfaces of the scintillator panels 1 to 3 were bonded to the light detection element. At that time, after enlarging with a CCD camera, each photodetection element was aligned so that every other sample of Comparative Example 1 and the samples of Examples 1 and 2 corresponded one-to-one with the scintillator, Radiation detectors 1 to 3 were prepared by adhering and fixing the ends.
 (評価方法)
 放射線検出装置1~3の各試料に対して得られた出力データより下記の方法により、発光輝度と画像欠陥、MTFを測定・算出した。
(Evaluation methods)
Luminance, image defects, and MTF were measured and calculated from the output data obtained for each sample of the radiation detectors 1 to 3 by the following method.
 (発光輝度の測定)
 管電圧80kVpのX線を各試料の裏面(蛍光体層が形成されていない面)から照射し、蛍光体層から放射された光の発光量を上記光検出素子で検出・測定し、その測定値を「瞬時発光輝度(感度)」とした。ただし、表1中、輝度を示す値は、比較例1の試料の瞬時発光輝度を1.00としたときの相対値である。瞬時発光輝度が高ければ感度が高いといえる。なお表1では瞬時発光輝度を輝度と略記した。
(Measurement of emission luminance)
X-ray with a tube voltage of 80 kVp is irradiated from the back of each sample (the surface on which the phosphor layer is not formed), and the amount of light emitted from the phosphor layer is detected and measured by the above-described photodetection element. The value was defined as “instantaneous light emission luminance (sensitivity)”. However, in Table 1, the value indicating the luminance is a relative value when the instantaneous emission luminance of the sample of Comparative Example 1 is 1.00. If the instantaneous light emission luminance is high, it can be said that the sensitivity is high. In Table 1, instantaneous light emission luminance is abbreviated as luminance.
 (画像欠陥)
 管電圧80kVpのX線を各試料の裏面(蛍光体層が形成されていない面)から照射し、蛍光体層から放射された光を上記光検出素子で検出・測定し、感度むらが主原因となっている各画素における欠陥の個数を測定した。ただし、表1中、画像欠陥がない状態を1.00としたときの相対値である。即ち、100画素中に10個の画像欠陥が認められた場合、相対値は0.90となる。
(Image defect)
X-ray with tube voltage of 80 kVp is irradiated from the back of each sample (surface on which the phosphor layer is not formed), and the light emitted from the phosphor layer is detected and measured by the above-mentioned photodetection element. The number of defects in each pixel is measured. However, in Table 1, it is a relative value when a state having no image defect is 1.00. That is, when 10 image defects are recognized in 100 pixels, the relative value is 0.90.
 (MTFの算出)
 鉛製のMTFチャートを通して管電圧80kVpのX線を各試料の裏面(蛍光体層が形成されていない面)から照射し、画像データを光検出素子で検出してハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して当該ハードディスクに記録されたX線像の変調伝達関数(MTF(Modulation Transfer Function))を算出した。その算出結果(空間周波数1サイクル/mmにおけるMTF値(%))を下記表1に示す。なお、表1中の調査結果において、MTF値が高いほど鮮鋭性に優れている。
(Calculation of MTF)
X-rays with a tube voltage of 80 kVp were irradiated from the back surface (surface on which the phosphor layer was not formed) of each sample through a lead MTF chart, and the image data was detected by a light detection element and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer to calculate the modulation transfer function (MTF (Modulation Transfer Function)) of the X-ray image recorded on the hard disk. The calculation results (MTF value (%) at a spatial frequency of 1 cycle / mm) are shown in Table 1 below. In the survey results in Table 1, the higher the MTF value, the better the sharpness.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、本発明の放射線検出装置によれば、蛍光体2で可視光に変換された光は、発散することなく収束されて光検出素子3に入射するため、従来の放射線検出装置に比べて格段に解像度及び感度が優れた放射線検出装置が安価かつ簡便な方法で実現可能となる。 As is apparent from the results shown in Table 1, according to the radiation detection apparatus of the present invention, the light converted into visible light by the phosphor 2 is converged without being diverged and enters the light detection element 3. Therefore, it is possible to realize a radiation detection apparatus having remarkably superior resolution and sensitivity as compared with the conventional radiation detection apparatus by an inexpensive and simple method.
 1 光反射膜
 1a 製造途中の光反射膜
 2 蛍光体
 3 光検出素子
 4 基板
 5 蛍光体層
 6 光検出層
 7 スクリーンメッシュ
 8 液留め
 9 ガラスペースト
 10 スキージ
 11 蛍光体前駆物質溶液
 12 蛍光体前駆物質
 13a 遮蔽物(例1)
 13b 遮蔽物(例2)
 13c 遮蔽物(例3)
DESCRIPTION OF SYMBOLS 1 Light reflection film 1a Light reflection film in the middle of manufacture 2 Phosphor 3 Photodetection element 4 Substrate 5 Phosphor layer 6 Photo detection layer 7 Screen mesh 8 Liquid retaining 9 Glass paste 10 Squeegee 11 Phosphor precursor solution 12 Phosphor precursor material 13a Shield (Example 1)
13b Shield (Example 2)
13c Shield (Example 3)

Claims (3)

  1.  少なくともX線又はγ線を可視光に変換する蛍光体と光検出素子とをそれぞれ複数有する放射線検出器の製造方法であって、(i)当該光検出素子の各々に一対一対応する、光反射材で囲われた凹部を持つ光反射膜の当該凹部内に蛍光体前駆物質を充填する工程と、(ii)当該蛍光体前駆物質を凹部内で均一に反応させて蛍光体を得る工程と、(iii)当該凹部内の蛍光体と前記光検出素子とを接合する工程とを有することを特徴とする放射線検出装置の製造方法。 A method of manufacturing a radiation detector having a plurality of phosphors and light detection elements each for converting at least X-rays or γ-rays into visible light, and (i) a light reflection corresponding to each of the light detection elements on a one-to-one basis A step of filling a phosphor precursor in the recess of the light reflecting film having a recess surrounded by a material, and (ii) a step of uniformly reacting the phosphor precursor in the recess to obtain a phosphor, (Iii) A method for manufacturing a radiation detection apparatus, comprising the step of bonding the phosphor in the recess and the light detection element.
  2.  前記蛍光体前駆物質を凹部内で均一に反応させて蛍光体を得る工程において、凹部内を遮蔽して反応させることを特徴とする請求項1に記載の放射線検出装置の製造方法。 The method for manufacturing a radiation detection apparatus according to claim 1, wherein in the step of uniformly reacting the phosphor precursor in the recess to obtain the phosphor, the recess is shielded and reacted.
  3.  請求項1又は請求項2に記載の放射線検出装置の製造方法により作製されたことを特徴とする放射線検出装置。 A radiation detection apparatus produced by the method for manufacturing a radiation detection apparatus according to claim 1 or 2.
PCT/JP2010/054411 2009-05-29 2010-03-16 Radiation detection device and method of manufacturing this device WO2010137384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009130183 2009-05-29
JP2009-130183 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137384A1 true WO2010137384A1 (en) 2010-12-02

Family

ID=43222508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054411 WO2010137384A1 (en) 2009-05-29 2010-03-16 Radiation detection device and method of manufacturing this device

Country Status (1)

Country Link
WO (1) WO2010137384A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140444A1 (en) * 2012-03-21 2013-09-26 株式会社島津製作所 Scintillator, method for producing same, radiation detector, and method for producing same
WO2014202424A1 (en) * 2013-06-17 2014-12-24 Siemens Aktiengesellschaft Method for producing a diaphragm for x-ray radiation and diaphragm for x-ray radiation
JP2018511028A (en) * 2014-03-13 2018-04-19 ウニベルシテ ド テクノロジ ド トロワUniversite De Technologie De Troyes Method, crystal, and use thereof for optimizing the collection of photons in a scintillator crystal
JP2021507306A (en) * 2017-12-22 2021-02-22 ルミレッズ リミテッド ライアビリティ カンパニー Wavelength conversion layer patterning for LED arrays

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303045A (en) * 2000-04-19 2001-10-31 Konica Corp Inorganic fluorescent substance
JP2002189079A (en) * 2000-12-20 2002-07-05 Canon Inc Radiation detector and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303045A (en) * 2000-04-19 2001-10-31 Konica Corp Inorganic fluorescent substance
JP2002189079A (en) * 2000-12-20 2002-07-05 Canon Inc Radiation detector and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140444A1 (en) * 2012-03-21 2013-09-26 株式会社島津製作所 Scintillator, method for producing same, radiation detector, and method for producing same
WO2014202424A1 (en) * 2013-06-17 2014-12-24 Siemens Aktiengesellschaft Method for producing a diaphragm for x-ray radiation and diaphragm for x-ray radiation
JP2018511028A (en) * 2014-03-13 2018-04-19 ウニベルシテ ド テクノロジ ド トロワUniversite De Technologie De Troyes Method, crystal, and use thereof for optimizing the collection of photons in a scintillator crystal
JP2021507306A (en) * 2017-12-22 2021-02-22 ルミレッズ リミテッド ライアビリティ カンパニー Wavelength conversion layer patterning for LED arrays
JP7018511B2 (en) 2017-12-22 2022-02-10 ルミレッズ リミテッド ライアビリティ カンパニー Wavelength conversion layer patterning for LED arrays

Similar Documents

Publication Publication Date Title
CN1837795B (en) Probe assembly and method of manufacturing the same
WO2017041221A1 (en) Methods for making an x-ray detector
US7547895B2 (en) Imaging assembly and inspection method
JP2011007552A (en) Scintillator panel, radiation detection device, and method of manufacturing the scintillator panel
WO2017091989A1 (en) Packaging methods of semiconductor x-ray detectors
US20040251420A1 (en) X-ray detectors with a grid structured scintillators
CN101689556A (en) Method of making a radiation detector
JPH09325185A (en) Radiation detector, its manufacture, fluorographic apparatus and ct scanner
JP2011021924A (en) Scintillator panel, radiation detection device, and method of manufacturing scintillator panel
WO2010137384A1 (en) Radiation detection device and method of manufacturing this device
CN106154302A (en) A kind of ray detection flat panel detector scintillator panel and preparation method thereof
JP2011257339A (en) Radiation image detection device
US9684083B2 (en) X-ray detector panel
US12038543B2 (en) X-ray high-absorptivity detection system and image imaging method
KR20200075227A (en) High-resolution Hybrid Radiation Detector
Hell et al. The evolution of scintillating medical detectors
JP2011232197A (en) Scintillator panel and radiation image detection device
JP2004317300A (en) Plane radiation detector and its manufacturing method
KR20220064678A (en) Radiation Detector using Scintillator having High Sensitivity and High Resolution
JP2014215135A (en) Radiation imaging apparatus, manufacturing method of the same, and radiation inspection device
KR101202787B1 (en) X-ray detector and Method for the same
KR20200009931A (en) Radiation Detector for Implementing Low Dose and High Resolution using Backside Light-Receiving Structure
KR101955994B1 (en) Scintillator panel and method for manufacturing the same
JPH04290985A (en) Neutron detector
JPH0442640B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP