WO2010134380A1 - Method for manufacturing electrochemical display device - Google Patents
Method for manufacturing electrochemical display device Download PDFInfo
- Publication number
- WO2010134380A1 WO2010134380A1 PCT/JP2010/054835 JP2010054835W WO2010134380A1 WO 2010134380 A1 WO2010134380 A1 WO 2010134380A1 JP 2010054835 W JP2010054835 W JP 2010054835W WO 2010134380 A1 WO2010134380 A1 WO 2010134380A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolytic solution
- substrate
- display
- manufacturing
- substrates
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 155
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 77
- 239000006185 dispersion Substances 0.000 claims abstract description 64
- 125000006850 spacer group Chemical group 0.000 claims abstract description 55
- 239000003792 electrolyte Substances 0.000 claims abstract description 40
- 239000002904 solvent Substances 0.000 claims abstract description 32
- 239000012298 atmosphere Substances 0.000 claims abstract description 9
- 229920005596 polymer binder Polymers 0.000 claims abstract description 9
- 239000002491 polymer binding agent Substances 0.000 claims abstract description 9
- 239000010419 fine particle Substances 0.000 claims abstract description 8
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 6
- 230000006837 decompression Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 21
- 239000004332 silver Substances 0.000 description 17
- 229910052709 silver Inorganic materials 0.000 description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 16
- 238000000576 coating method Methods 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229940021013 electrolyte solution Drugs 0.000 description 8
- 230000005484 gravity Effects 0.000 description 8
- 239000000975 dye Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- -1 γ-butyl lactone Chemical class 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 230000010365 information processing Effects 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000000565 sealant Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000006479 redox reaction Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 2
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- FHUFFVIITDISHQ-UHFFFAOYSA-N 2-ethoxyfuran Chemical compound CCOC1=CC=CO1 FHUFFVIITDISHQ-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- XUBKPYAWPSXPDZ-UHFFFAOYSA-N [Ba].OS(O)(=O)=O Chemical compound [Ba].OS(O)(=O)=O XUBKPYAWPSXPDZ-UHFFFAOYSA-N 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- MHJAJDCZWVHCPF-UHFFFAOYSA-L dimagnesium phosphate Chemical compound [Mg+2].OP([O-])([O-])=O MHJAJDCZWVHCPF-UHFFFAOYSA-L 0.000 description 1
- 229910000395 dimagnesium phosphate Inorganic materials 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- CKZMMOFDBUAGTN-UHFFFAOYSA-N n,n-dimethylformamide;n-methylformamide Chemical compound CNC=O.CN(C)C=O CKZMMOFDBUAGTN-UHFFFAOYSA-N 0.000 description 1
- QJQAMHYHNCADNR-UHFFFAOYSA-N n-methylpropanamide Chemical compound CCC(=O)NC QJQAMHYHNCADNR-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1516—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
- G02F1/161—Gaskets; Spacers; Sealing of cells; Filling or closing of cells
Definitions
- the present invention relates to a method of manufacturing an electrochemical display device capable of rewriting display using an electrochemical reaction.
- the display function is realized by modulating the light of self-luminous display devices such as CRT (Cathode Ray Tube) and PDP (Plasma Display Panel) and LCD (Liquid Crystal Display). Display devices are known.
- CRT Cathode Ray Tube
- PDP Plasma Display Panel
- LCD Liquid Crystal Display
- These display devices have an advantage of being bright and easy to see, but have a problem of high power consumption. Therefore, from the viewpoint of low power consumption, a display device that has memory characteristics that keeps an image once displayed in a non-powered state and operates at a low driving voltage is desired.
- ECD Electro-Chromic Display
- ECD Electro-Chromic Display
- ECD Electroposition Display
- ED Electrodeposition Display
- ECD utilizes a phenomenon in which an oxidation-reduction reaction occurs at an electrode on a substrate and a light absorption state of an electrochromic layer formed on the electrode reversibly changes, so that a desired character or image is displayed on the display unit. Is displayed.
- ED is a display device that uses an electrolytic solution containing silver or a compound having silver in a chemical structure. ED utilizes the fact that the light absorption state of the electrode reversibly changes due to the reaction in which silver is deposited on the electrode from the electrolytic solution and the reaction in which silver deposited on the electrode is dissolved in the electrolytic solution. Then, a desired character or image is displayed on the display unit.
- electrochemical display devices such as ECD and ED use the fact that the light absorption state changes due to the oxidation-reduction reaction at the electrodes. That is, the electrochemical display device can display an image on the display unit without an additional member such as a polarizing plate or a backlight, and the number of parts of the electrochemical display device is reduced. Therefore, the electrochemical display device is very excellent in terms of cost reduction and process saving at the time of manufacture as compared with other display devices.
- the conventional ECD and ED technologies have the following problems. That is, in the conventional ECD and ED, an electrolyte solution having a relatively low viscosity is used. Therefore, when ECD and ED are used for a long time, the electrolytic solution flows in the display portion, and the concentration of the electrolytic solution in the display portion becomes non-uniform. As a result, in some cases, display unevenness occurs in the display unit due to changes over time, and this display unevenness becomes a problem.
- the electrolyte solution having a high viscosity is sealed in the display unit by a liquid crystal dropping method, for example.
- the liquid crystal dropping method is a technique widely used as a manufacturing method for a large LCD.
- the liquid crystal dropping method first, a desired amount of electrolytic solution is dropped and supplied to either the upper or lower substrate. And an upper side and a lower side board
- the cell gap needs to be about 20 to 50 ⁇ m.
- spacers of an appropriate size (diameter) at an appropriate density between the upper and lower substrates, the cell gap in each part of the display unit becomes a desired range, and display unevenness due to variations in the cell gap. Can be suppressed.
- a wet spraying method using spraying or a dry spraying method using a gas flow can be cited.
- a method of supplying spacers to a substrate by applying an electrolytic solution in which the spacers are dispersed to the substrate has also been conventionally known (for example, Patent Document 1).
- the spacer distribution becomes non-uniform as the spacer diameter increases, resulting in a problem that the cell gap becomes non-uniform in each part of the display unit.
- Patent Document 1 when supplying an electrolytic solution in which spacers are dispersed to a substrate by a dispenser, when the specific gravity of the electrolytic solution with respect to the spacer is very large, the spacer is located above the electrolytic solution reservoir. Will be levitating. As a result, the number of spacers contained in the electrolyte in the reservoir is larger at the upper portion of the reservoir and lower at the lower portion of the reservoir. For this reason, the number of spaces included in the electrolyte solution varies at each discharge timing for the electrolyte solution discharged from the dispenser. This variation in the number of spacers also occurs when the specific gravity of the electrolyte with respect to the spacers is very small.
- an object of the present invention is to provide a method for manufacturing an electrochemical display device with good display characteristics.
- the manufacturing method is such that the electrolytic solution includes a polymer binder and metal oxide fine particles, and the electrolytic solution is applied onto one of the opposing substrates.
- a dispersion solvent in which spherical spacers are dispersed is applied on the substrate before the electrolytic solution is applied. It is applied to the first application position, and the electrolytic solution is applied after the dispersion solvent is dried.
- the spherical spacers contained in the dispersion solvent are supplied onto one substrate by the first stage coating process, and then the spherical spacers are formed by the second stage coating process.
- the electrolytic solution is supplied onto the supplied one substrate.
- the distribution of the spherical spacers dispersed between the two substrates after being bonded can be made uniform.
- the gap between the opposing substrates can be within a desired range for the electrochemical display device manufactured by this manufacturing method, and the gap is caused by the variation in the gap between the opposing substrates. Display unevenness can be suppressed.
- FIG. 1 is a plan view showing an example of the configuration of a display system according to an embodiment of the present invention.
- FIG. 2 is a front sectional view taken along line VV of FIG.
- FIG. 3 is a front view showing an example of the manufacturing process of the display panel.
- FIG. 4 is a perspective view showing an example of a seal portion formed on the upper substrate in the first embodiment.
- FIG. 5 is a front view showing an example of the manufacturing process of the display panel.
- FIG. 6 is a perspective view showing an example of a dispersion liquid application part applied to the lower substrate.
- FIG. 7 is a perspective view showing an example of the arrangement state of the spacers supplied to the lower substrate.
- FIG. 8 is a front view showing an example of the manufacturing process of the display panel.
- FIG. 1 is a plan view showing an example of the configuration of a display system according to an embodiment of the present invention.
- FIG. 2 is a front sectional view taken along line VV of FIG.
- FIG. 3 is
- FIG. 9 is a perspective view illustrating an example of an electrolytic solution application unit applied to the lower substrate.
- FIG. 10 is a front view showing an example of the manufacturing process of the display panel.
- FIG. 11 is a perspective view showing an example of a seal portion formed on the upper substrate in the second embodiment.
- FIG. 1 is a plan view showing an example of the configuration of the display system 1 according to the first embodiment of the present invention.
- FIG. 2 is a front sectional view taken along line VV in FIG.
- the display system 1 is a display device that displays characters, images, and the like on a non-volatile display unit that keeps display content even in a non-powered state.
- the display system 1 mainly includes an information processing device 5, a power supply 8, and a display panel 10.
- an XYZ orthogonal coordinate system in which the Z-axis direction is a vertical direction and the XY plane is a horizontal plane is appropriately attached as necessary to clarify the directional relationship. Yes.
- the information processing apparatus 5 is configured by a so-called personal computer or workstation, and is electrically connected to the display panel 10 through a signal line 6. As shown in FIG. 1, the information processing apparatus 5 mainly includes a memory 5a and a CPU 5b.
- the memory 5a is a volatile or non-volatile storage unit, and stores programs, data, and the like.
- the CPU 5b executes desired processing at desired timing according to the program. For example, the information processing apparatus 5 displays desired characters and images on the display panel 10 by transmitting an image signal to the display panel 10 via the signal line 6.
- the power supply 8 applies a drive voltage to the display panel 10 through the power supply line 9.
- the display panel 10 executes rewriting processing and erasing processing of characters and images displayed on the display panel 10 with power supplied from the power supply 8.
- the display panel 10 is a display device that realizes a display function by an electrochemical operation, such as ECD or ED. As shown in FIGS. 1 and 2, the display panel 10 has a thin display portion 12 in which an electrolytic solution 18 is sealed, and is used as electronic paper having the advantages of paper (lightness and flexibility). it can. The detailed configuration of the display panel 10 will be described later.
- the display panel 10 mainly includes a display unit 12, an upper electrode driver 20, a lower electrode driver 30, and a controller board 40.
- the display unit 12 is a thin display area, and each pixel (display element) operates by a so-called simple matrix driving method. As shown in FIG. 2, the display unit 12 mainly includes an upper substrate 13, a lower substrate 14, a seal unit 17, an electrolytic solution 18, and a spherical spacer 19. As a driving method for each pixel, an active matrix driving method in which each pixel is operated by an active element (transistor) may be employed.
- Each of the upper substrate 13 and the lower substrate 14 is a sheet body made of, for example, a resin film.
- the upper substrate 13 has a plurality of upper electrodes 13 a extending substantially along the Y-axis direction (horizontal first direction), and the lower substrate 14 has a substantially X-axis direction (horizontal second direction).
- a plurality of lower electrodes 14a extending along (direction) are provided. The positions where the upper electrode 13a and the lower electrode 14a intersect each function as a pixel (display element).
- the seal portion 17 is used as a partition wall that separates the enclosed space 12a formed between the upper substrate 13 and the lower substrate 14 from the space outside the enclosed space 12a.
- the seal part 17 is formed by, for example, a UV curable sealant applied to the lower substrate 14.
- the electrolytic solution 18 contains an electrolyte in a solvent and is enclosed in an enclosed space 12 a surrounded by the upper and lower substrates 13 and 14 and the seal portion 17.
- the electrolytic solution 18 of the present embodiment includes a polymer binder and metal oxide fine particles as an electrolyte.
- electrolyte means (1) a substance that dissolves in a solvent such as water or alcohol, and whose solution (electrolytic solution) exhibits ion conductivity (hereinafter, simply “narrow electrolyte”). (2) a mixture in which a narrowly defined electrolyte and another metal or compound (which may be either a narrowly defined electrolyte or a non-electrolyte) are mixed (hereinafter simply referred to as “broadly defined electrolyte”). ”)”.
- the electrolyte a mixture in which an organic solvent, an ionic liquid, a redox active substance, a supporting electrolyte, a complexing agent, a polymer binder, a white scattering material, and the like are selected as necessary is used.
- a boiling point of 120 to 300 ° C. that can remain in the electrolyte layer without causing volatilization after the electrolyte layer is formed.
- a range of organic solvents can be used, for example, propylene carbonate, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, butylene carbonate, ⁇ -butyl lactone, tetramethyl urea, sulfolane, dimethyl sulfoxide, 1,3- Dimethyl-2-imidazolidinone, 2- (N-methyl) -2-pyrrolidinone, hexamethylphosphortriamide, N-methylpropionamide, N, N-dimethylacetamide, N-methylacetamide, N, N-dimethylformamide N-methylform Amide, butyronitrile, propionitrile, acetonitrile, acetylacetone, 4-methyl-2-pentanone, 2-butanol, 1-butanol, 2-propanol, 1-propanol, acetic anhydride, ethyl acetate, ethyl propionate, dimethoxyethan
- carboxylic acid esters are preferable.
- examples thereof include propylene carbonate, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, and ⁇ -butyrolactone.
- a polymer binder is used from the viewpoint of increasing the viscosity of the electrolyte layer.
- the polymer binder is not particularly limited.
- the polymer binder may be selected from various polymer compounds such as butyral resin, polyvinyl alcohol, polyethylene glycol, and polyvinylidene fluoride from the viewpoint of display characteristics and electrolyte viscosity. it can.
- inorganic metal oxide fine particles are preferably used as a white scatterer that achieves white display by scattering.
- titanium dioxide anatase type or rutile type
- sulfuric acid Barium calcium carbonate, aluminum oxide, zinc oxide, magnesium oxide and zinc hydroxide, magnesium hydroxide, magnesium phosphate, magnesium hydrogen phosphate, alkaline earth metal salts, talc, kaolin, zeolite, acid clay, glass, etc. be able to.
- the spherical spacer 19 is a fine particle for controlling the gap G between the upper and lower substrates 13 and 14 facing each other.
- the spherical spacer 19 for example, micro true spheres such as acrylic resin, styrene resin, and vinyl resin that are used in liquid crystal displays and the like can be used.
- the average particle diameter is preferably in the range of 10 ⁇ m or more and 50 ⁇ m or less in order to ensure the dispersion stability in the electrolytic solution and to ensure white color due to the scattering effect of the metal fine particles dispersed in the electrolytic solution layer.
- the electrochemical display device is an electrodeposition display device (ED)
- the observation surface (in order to observe the displayed characters and images) of the upper and lower electrodes 13a and 14a of the display unit 12 One electrode close to the surface (observed by the user of the electrochemical display device) is provided with a transparent electrode such as an ITO (Indium Tin Oxide) electrode, and the other electrode is provided with a metal electrode such as a silver electrode. Yes.
- An electrolyte layer having silver or a compound containing silver in the chemical structure is sandwiched between the upper and lower electrodes 13a and 14a facing each other.
- the “compound containing silver or silver in the chemical structure” in the present embodiment is, for example, a compound such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compound, and silver ion.
- phase state species such as the solid state, the solubilized state in liquid, and the gas state, and the charged state species such as neutral, anionic, and cationic.
- the concentration of silver ions contained in the electrolytic solution 18 is preferably 0.2 (mol / kg) ⁇ [Ag] ⁇ 2.0 (mol / kg).
- the silver ion concentration is less than 0.2 (mol / kg)
- a dilute silver solution is formed and the driving speed is delayed.
- the silver ion concentration is higher than 2 (mol / kg)
- the solubility is deteriorated and precipitation tends to occur during low-temperature storage, which is disadvantageous.
- a polymer material is added to the electrolytic solution 18 as a binder for increasing the viscosity, and metal oxide fine particles such as TiO 2 and ZnO are dispersed as a white scattering material. Therefore, when each display element of the display unit 12 is in a transparent state, high-quality white is displayed on the display unit 12.
- the electrochemical display device is an electrochromic display device (ECD)
- ECD electrochromic display device
- a transparent electrode such as an ITO electrode is provided on one of the upper and lower electrodes 13a and 14a of the display unit 12 that is close to the observation surface.
- the other electrode is provided with an electrode having a tin oxide layer doped with antimony on the ITO electrode.
- An electrolyte layer having an electrochromic dye is provided between the upper and lower electrodes 13a and 14a facing each other.
- the “electrochromic dye” in the present embodiment is a compound that changes a light absorption state by accepting electrons, and an organic compound or a metal complex can be used.
- a pyridine compound As the organic compound, a pyridine compound, a conductive polymer, and a styryl compound can be used.
- Various viologen compounds described in JP-A No. 2002-328401, dyes described in JP-T-2004-537743, and others are known.
- a dye can be used.
- a developer or a color erasing agent may be used in combination as necessary.
- An organic compound or metal complex that can be used as an electroclock dye may be applied directly on the electrode.
- an electrochromic material may be applied and impregnated on the oxide by a method such as an inkjet method.
- a polymer material is added to the electrolytic solution 18 as a binder to increase the viscosity, and fine metal oxide particles such as TiO 2 and ZnO are dispersed as a white scattering material. ing. Therefore, when each display element of the display unit 12 is in a transparent state, high-quality white is displayed on the display unit 12.
- the upper electrode driver 20 gives an electric signal to each upper electrode 13a at a predetermined timing.
- the upper electrode driver 20 includes an FPC 21, a PCB substrate 22, and a driver IC 23, and is electrically connected to the controller board 40 via a signal / power line 25.
- the FPC (Flexible Printed Circuits) 21 is formed by bonding a conductive foil (for example, copper foil) on a film-like insulator (for example, polyimide), and the upper electrode 13a and the PCB substrate. 22 is electrically connected.
- the driver IC 23 is directly mounted on the FPC 21, and controls the voltage applied to the corresponding upper electrode 13a.
- the lower electrode driver 30 gives an electric signal to each lower electrode 14a at a predetermined timing.
- the lower electrode driver 30 includes an FPC 31, a PCB substrate 32, and a driver IC 33, and is electrically connected to the controller board 40 via a signal / power line 35.
- the FPC 31, like the FPC 21, is formed by bonding a conductive foil on a film-like insulator, and electrically connects the lower electrode 14a and the PCB substrate 32.
- the driver IC 33 is directly mounted on the FPC 31, and controls the voltage applied to the corresponding lower electrode 14a.
- the controller board 40 generates an electric signal to be given to the driver IC 23 of the upper electrode driver 20 and the driver IC 33 of the lower electrode driver 30 based on the image signal transmitted from the information processing apparatus 5. That is, the controller board 40 converts the image signal transmitted from the information processing device 5 into an electrical signal that can be used by the upper and lower electrode drivers 20 and 30.
- Manufacturing method of display panel> 3 to 10 are views for explaining a method of manufacturing the display panel 10 (electrochemical display device) in the present embodiment.
- a UV curable sealant 51 is applied to the surface of the upper substrate 13 on which the upper electrode 13 a is formed by the seal dispenser 50. Thereby, the seal portion 17 is formed on the upper substrate 13 (see FIGS. 3 and 4).
- the seal dispenser 50 has a storage portion 50a for storing the sealant 51. Further, the seal dispenser 50 moves relative to the upper substrate 13 (at least one of the holders (not shown) of the seal dispenser 50 and the upper substrate 13 may be movable), and the sealant. 51 can be continuously discharged. As a result, a substantially rectangular annular seal portion 17 is formed on the upper substrate 13, for example, as shown in FIG. 4.
- the shape of the seal part 17 is appropriately selected according to the shape of the display part 12.
- the shape of the seal part 17 is substantially annular.
- the seal portion 17 may be formed on the lower substrate 14 instead of the upper substrate 13.
- the dispersion liquid 61 is applied by the dispersion liquid dispenser 60 to the main surface of the lower substrate 14 on which the lower electrode 14a is formed (hereinafter also simply referred to as “application surface”) 14b. . That is, the first-stage coating process is executed. As a result, a substantially upper hemispherical (dome-shaped) dispersion applying unit 62 is formed on the lower substrate 14 (see FIGS. 5 and 6).
- each dispersion liquid coating part 62 formed on the lower substrate 14 is, for example, as shown in FIGS. It is set in a lattice shape along the axial direction and the Y-axis direction so that the distances between the adjacent dispersion liquid application portions 62 are substantially the same.
- the dispersion liquid dispenser 60 has a storage part 60 a for storing the dispersion liquid 61.
- the dispersion 61 is obtained by dispersing the spherical spacer 19 in a dispersion solvent.
- a dispenser in which a SUS needle having a nozzle inner diameter of 0.2 mm or more is attached to the tip preferably a volumetric dispenser is used.
- the dispersion solvent a solvent that does not dissolve the spherical spacer 19 (spacer particles) and has a boiling point in the range of 300 ° C. or lower and can be easily dried is desirable.
- esters such as propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, 2-methyl-2-propanol, glycerin, Alcohols such as hexylene glycol, cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether acetate, ketones such as acetone, methyl ethyl ketone, cyclohexanone, methoxybenzene, 1,2-dimethoxybenzene, diethylene glycol dimethyl ether, etc.
- Ethers hydrocarbons such as benzene, toluene, xylene, n-butylbenzene, diethylbenzene, tetralin, etc. It can be.
- the affinity between the dispersion 61 and the electrolytic solution 18 is improved, and unnecessary components are mixed into the electrolytic solution 18. Can be prevented. Therefore, the reliability of the electrolytic solution can be improved.
- a solvent for example, water or alcohol
- the specific gravity of the spherical spacer 19 is preferably 1.1 to 1.3 (g / cm 3 ), and the specific gravity of the dispersion solvent is preferably 0.75 to 1.5 (g / cm 3 ). is there. More preferably, in consideration of the dispersibility of the spherical spacer 19 with respect to the dispersion solvent, the spherical gravity is reduced so that the difference in specific gravity between the two becomes small (the difference between the two becomes 0.2 (g / cm 3 ) or less). The spacer 19 and the dispersion solvent are selected.
- the spherical spacer 19 is possible to suppress the spherical spacer 19 from being levitated above the storage portion 60a or sinking below the storage portion 60a. Therefore, it becomes possible to arrange the spherical spacers 19 uniformly in the reservoir 60a. As a result, the number of spherical spacers 19 contained per unit volume of the dispersion 61 discharged from the dispersion dispenser 60 is substantially the same regardless of the discharge timing.
- the spherical spacer 19 and the dispersion solvent are selected so that the difference in specific gravity between the dispersion solvent of the dispersion liquid 61 and the spherical spacer 19 is small, and a certain amount of the dispersion liquid 61 is discharged from the dispersion liquid dispenser 60.
- the number of the spherical spacers 19 included in each dispersion application unit 62 is substantially the same value (within a certain range).
- each dispersion liquid coating part 62 formed on the lower substrate 14 is heated.
- the dispersion solvent of each dispersion liquid application part 62 evaporates, and the spherical spacer 19 is merely placed on the lower substrate 14 (see FIG. 7).
- the electrolyte 18 is applied to the application surface 14 b of the lower substrate 14 by the electrolyte dispenser 70. That is, the second stage coating process is executed. As a result, a substantially upper hemispherical electrolyte application part 72 is formed on the lower substrate 14 (see FIGS. 8 and 9).
- each electrolytic solution application part 72 formed on the lower substrate 14 (that is, the application position of the electrolytic solution 18 (second application position)) is, for example, as shown in FIG. Is set so as to cover the spherical spacer 19 placed on the surface. That is, the position of each electrolytic solution application part 72 and the position (first application position) of the corresponding dispersion liquid application part 62 (one-dot chain line) are substantially the same. As a result, each spherical spacer 19, which is just placed on the lower substrate 14 and has a weak fixing force with respect to the lower substrate 14, is fixed on the lower substrate 14 by the electrolytic solution 18.
- the electrolytic solution dispenser 70 has a storage part 70a for storing and filling the electrolytic solution 18 prepared in advance prior to application.
- a volumetric dispenser is used in the same manner as the dispersion dispenser 60. Then, the electrolytic solution 18 is metered and applied by the electrolytic solution dispenser 70 so that the amount of the electrolytic solution 18 supplied onto the lower substrate 14 is substantially equal to the volume of the enclosed space 12a (FIGS. 8 and 8). 9).
- the area S1 (see FIG. 6) in which the dispersion solvent of the applied dispersion 61 (dispersion application unit 62) spreads on the lower substrate 14 is the applied electrolyte 18 (electrolyte).
- the application portion 72 is set to be smaller than the area S2 that spreads on the lower substrate 14.
- all the spherical spacers 19 supplied to the lower substrate 14 are positioned below any one of the electrolyte application portions 72 before the opposing substrates 13 and 14 are bonded together. For this reason, the spherical spacers 19 are uniformly distributed between the substrates 13 and 14, and as a result, unnecessary spherical spacers 19 are aggregated, resulting in a decrease in visibility of the display unit 12. This can be suppressed.
- the vacuum apparatus 90 is a vacuum bonding apparatus that bonds the upper and lower substrates 13 and 14 in a chamber 91 in a reduced pressure atmosphere.
- the vacuum apparatus 90 mainly includes an upper substrate holding part 93, a lower substrate holding part 94, and a vacuum pump 95.
- the upper substrate holding part 93 raises and lowers the upper substrate 13 along the direction of the arrow AR1 while holding the upper substrate 13 in the chamber 91.
- the lower substrate holding part 94 horizontally moves the lower substrate 14 in the XY plane while holding the lower substrate 14 in the chamber 91.
- the vacuum pump 95 is connected to the processing space 91a through a pipe 97.
- the atmosphere (gas) of the processing space 91a is exhausted, and the processing space 91a is reduced in pressure.
- the upper substrate 13 on which the seal portion 17 is formed is the lower substrate in which the spherical spacer 19 and the electrolyte 18 are applied to the upper substrate holding portion 93. 14 are delivered to the lower substrate holding portion 94.
- the upper and lower substrates 13 and 14 are aligned by the upper and lower substrate holders 93 and 94, and the upper and lower substrates 13 and 14 are positioned. In parallel with the positioning of the substrates 13 and 14, the processing space 91 a is decompressed by the vacuum pump 95.
- the upper substrate 13 is lowered by the upper substrate holder 93.
- the seal portion 17 of the upper substrate 13 comes into contact with the application surface 14b of the lower substrate 14, and the electrolyte 18 is pushed and spread between the upper and lower substrates 13 and 14, and the entire surface of the enclosed space 12a. To spread.
- each electrolytic solution application part 72 on the lower substrate 14 is a distance from the adjacent electrolytic solution application part 72 in a lattice shape along the X-axis direction and the Y-axis direction. Are set to be substantially the same. Further, the position of each electrolytic solution application part 72 of the lower substrate 14 is set so as to cover the spherical spacer 19 placed on the lower substrate 14.
- the spherical spacer 19 moves between the substrates 13 and 14 together with the electrolytic solution 18. It moves and is uniformly distributed between both substrates 13 and 14. Therefore, the variation in the gap G between the opposing substrates 13 and 14 can be reduced, and display unevenness due to the variation in the gap between the opposing substrates can be suppressed.
- both substrates 13 and 14 bonded together are irradiated with ultraviolet rays.
- the seal portion 17 is UV-cured, the substrates 13 and 14 are fixed by the seal portion 17, and the present manufacturing method ends.
- the application position of the electrolytic solution 18 to be applied by the second-stage coating process and the movement state of the electrolytic solution 18 that is pushed and moved when the substrates 13 and 14 are bonded to each other are taken into consideration.
- the application position (that is, the supply position of the spherical space) of the dispersion 61 to be applied by the application process in stages the distribution of the spherical spacers 19 dispersed between the substrates 13 and 14 after being bonded is determined. It can be made uniform.
- the gap G between the opposing substrates 13 and 14 is set to a desired range, and the display unevenness due to the variation in the gap G between the substrates 13 and 14 is displayed. Is suppressed.
- Second Embodiment> Next, a second embodiment of the present invention will be described.
- the display system 100 according to the second embodiment is compared with the display system 1 according to the first embodiment.
- (1) The structure of the seal portion 117 formed on the upper substrate is different, (2) The process of bonding the upper and lower substrates 113 and 14 is different, Is the same as in the first embodiment. Therefore, in the following, this difference will be mainly described.
- FIG. 11 is a perspective view showing an example of the seal portion 117 (117a, 117b) formed on the upper substrate 113 in the present embodiment.
- the inner seal portion 117a is used as a partition wall that separates a space formed between the upper substrate 113 and the lower substrate 14 and a space outside the enclosed space. Then, a space surrounded by the inner seal portion 117 a, the upper substrate 13, and the lower substrate 14 is filled with the electrolytic solution 18.
- the sealing agent 51 (see FIG. 3) is discharged from the seal dispenser 50, and the substantially rectangular annular inner seal portion 117a is formed on the upper substrate 113.
- the sealing agent 51 is discharged along the periphery of the inner seal portion 117a, and the outer seal portion 117b is formed around the inner seal portion 117a (see FIG. 11).
- the application process of the dispersion liquid 61, the drying process of the dispersion solvent, and the application process of the electrolytic solution 18 are executed by the same method as in the first embodiment.
- the upper substrate 113 in which the inner and outer seal portions 117a and 117b are formed is the upper substrate holding portion 93
- the lower substrate 14 in which the spherical spacer 19 and the electrolytic solution 18 are applied is the lower substrate holding portion 94.
- the upper and lower substrates 113 and 14 are aligned by the upper and lower substrate holders 93 and 94, and the upper and lower substrates 113 and 14 are positioned. In parallel with the positioning of the substrates 113 and 14, the processing space 91a is decompressed by the vacuum pump 95.
- the upper substrate 113 is lowered by the upper substrate holder 93.
- the inner and outer seal portions 117a and 117b of the upper substrate 113 are in contact with the application surface 14b of the lower substrate 14, and the electrolyte 18 is added to the upper and lower substrates 113 and 14 and the inner seal portion 117a. It is pushed out in the space surrounded by.
- both substrates 113 and 14 bonded together are irradiated with ultraviolet rays.
- the seal portions 117a and 117b are UV-cured, the both substrates 113 and 14 are fixed by the seal portions 117a and 117b, and the present manufacturing method ends.
- the distribution of the spherical spacers 19 dispersed between the substrates 113 and 14 after being bonded can be made uniform. Therefore, in the display panel 10 manufactured by the manufacturing method of the present embodiment, the gap G between the opposing substrates 113 and 14 is set to a desired range, and the display unevenness due to the variation in the gap G between the substrates 113 and 14 is displayed. Is suppressed.
- Example 1 the display panel 10 was created based on the manufacturing method of the first embodiment.
- a dispersion liquid having a dispersion of 1 wt% of a spherical spacer having a diameter of 30 ⁇ m (Micropearl GS-230 manufactured by Sekisui Chemical Co., Ltd.) in an ethylene glycol solvent is used as the dispersion liquid 61. Discharged.
- the hot plate 65 heats the lower substrate 14 at about 200 ° C. for about 5 minutes.
- a display panel in which the spherical spacer 19 was supplied to the lower substrate 14 by a dry spraying method and then supplied to the lower substrate 14 as the electrolytic solution 18 was created.
- Table 1 shows the experimental results of the display panels created in Example 1 and the comparative example.
- the display panel 10 is arranged as shown in FIG. 1 in each field (each column) of “upper left”, “lower left”, “center”, “upper right”, and “lower right” in Table 1.
- 2 shows gap G values (unit: ⁇ m) in the upper left, lower left, center, upper right, and lower right portions on the display unit 12.
- the fluctuation range of the gap G value in each part of the display unit 12 of Example 1 (a value obtained by subtracting the minimum gap G value from the maximum gap G value) R1 is 0.7 ( ⁇ m).
- the fluctuation range R2 of the gap G value in the comparative example is 17.4 ( ⁇ m). That is, the variation in the gap G value in Example 1 is very small compared to that in the comparative example.
- the spherical spacers 19 are uniformly dispersed in the electrolytic solution 18, and the gap G between the substrates 13 and 14 is kept substantially uniform in each part of the display unit 12. It is. Therefore, unlike the comparative example, the display panel 10 created by the manufacturing method of Example 1 can suppress display unevenness due to the gap G value variation.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Provided is a method for manufacturing an electrochemical display device having excellent display properties. To this end, in the electrochemical display device manufacturing method in which an electrolyte solution containing a polymer binder and metal oxide fine particles is applied to one of opposed substrates and the other substrate is adhered thereto under a decompression atmosphere to form a display portion, a dispersion solvent in which spherical spacers (19) are dispersed is applied onto a substrate (14) at a predetermined position to form a dispersion liquid-applied portion (62)before the electrolyte solution is applied, and the electrolyte solution is applied to form an electrolyte solution-applied portion (72) after the dispersion solvent is dried.
Description
本発明は、電気化学反応を利用して表示の書換えを行うことが可能な電気化学表示装置の製造方法に関する。
The present invention relates to a method of manufacturing an electrochemical display device capable of rewriting display using an electrochemical reaction.
従来より、CRT(Cathode Ray Tube)およびPDP(Plasma Display Panel)のように自発光する表示装置や、LCD(Liquid Crystal Display)のように自発光体の光を変調することにより表示機能を実現する表示装置が、知られている。
Conventionally, the display function is realized by modulating the light of self-luminous display devices such as CRT (Cathode Ray Tube) and PDP (Plasma Display Panel) and LCD (Liquid Crystal Display). Display devices are known.
これら表示装置は、明るく見やすいという利点を有する反面、消費電力が大きいという問題を有している。したがって、低消費電力という観点からは、一旦表示した画像を無電力状態で保持し続けるメモリ特性を有し、かつ、低駆動電圧で動作する表示装置が望まれる。
These display devices have an advantage of being bright and easy to see, but have a problem of high power consumption. Therefore, from the viewpoint of low power consumption, a display device that has memory characteristics that keeps an image once displayed in a non-powered state and operates at a low driving voltage is desired.
このようなメモリ特性および動作特性を備える表示装置として、エレクトロクロミック表示装置(Electro-Chromic Display:以下、単に、「ECD」と呼ぶ)や、エレクトロデポジション表示装置(Electrodeposition Display:以下、単に、「ED」と呼ぶ)が知られている。ECDおよびEDは、上側および下側基板の間に電解液が封入されることにより形成される薄型の表示部を有しており、紙の長所(軽量性および柔軟性)を備えた電子ペーパとして使用できる。
As a display device having such memory characteristics and operation characteristics, an electrochromic display device (Electro-Chromic Display: hereinafter simply referred to as “ECD”), an electrodeposition display device (Electrodeposition Display: hereinafter simply referred to as “ECD”). Called "ED"). ECD and ED have a thin display portion formed by sealing an electrolyte between upper and lower substrates, and as electronic paper with the advantages of paper (lightness and flexibility) Can be used.
ECDおよびECの表示原理は次の通りである。すなわち、ECDは、基板上の電極で酸化還元反応が生じ、電極上に形成されたエレクトロクロミック層の光吸収状態が可逆的に変化することを利用して、表示部に所望の文字や画像等を表示させる。
The display principle of ECD and EC is as follows. That is, ECD utilizes a phenomenon in which an oxidation-reduction reaction occurs at an electrode on a substrate and a light absorption state of an electrochromic layer formed on the electrode reversibly changes, so that a desired character or image is displayed on the display unit. Is displayed.
一方、EDは、銀または銀を化学構造中に有する化合物を含む電解液を使用する表示装置である。そして、EDは、電解液から電極上に銀が析出する反応と、電極上に析出した銀が電解液に溶解する反応と、により、電極の光吸収状態が可逆的に変化することを利用して、表示部に所望の文字や画像等を表示させる。
On the other hand, ED is a display device that uses an electrolytic solution containing silver or a compound having silver in a chemical structure. ED utilizes the fact that the light absorption state of the electrode reversibly changes due to the reaction in which silver is deposited on the electrode from the electrolytic solution and the reaction in which silver deposited on the electrode is dissolved in the electrolytic solution. Then, a desired character or image is displayed on the display unit.
このように、ECDおよびEDのような電気化学表示装置は、いずれも電極での酸化還元反応に起因し、光吸収状態が変化することを利用している。すなわち、電気化学表示装置は、偏光板やバックライトのような追加部材なしに、表示部に画像を表示することができ、電気化学表示装置の部品点数が削減される。したがって、電気化学表示装置は、他の表示装置と比較して、低コスト化、および製造時における省プロセス化の面で、非常に優れている。
Thus, electrochemical display devices such as ECD and ED use the fact that the light absorption state changes due to the oxidation-reduction reaction at the electrodes. That is, the electrochemical display device can display an image on the display unit without an additional member such as a polarizing plate or a backlight, and the number of parts of the electrochemical display device is reduced. Therefore, the electrochemical display device is very excellent in terms of cost reduction and process saving at the time of manufacture as compared with other display devices.
ただし、従来のECDおよびED技術は、次のような問題を有している。すなわち、従来のECDおよびEDでは、比較的低粘度の電解液が用いられている。そのため、ECDおよびEDが長期間使用されると、電解液が表示部内を流動し、表示部内における電解液の濃度が不均一となる。その結果、場合によっては、経時変化により表示部に表示ムラが発生し、この表示ムラが問題となる。
However, the conventional ECD and ED technologies have the following problems. That is, in the conventional ECD and ED, an electrolyte solution having a relatively low viscosity is used. Therefore, when ECD and ED are used for a long time, the electrolytic solution flows in the display portion, and the concentration of the electrolytic solution in the display portion becomes non-uniform. As a result, in some cases, display unevenness occurs in the display unit due to changes over time, and this display unevenness becomes a problem.
この経時変化に起因した表示ムラを解決する手法の1つとして、例えば、高分子バインダーを含む電解液を使用し、電解液を高粘度化する手法が挙げられる。この手法において、表示部内に密閉されている電解液は、その粘性のため、表示部内にてほとんど移動することがない。
As one of the techniques for solving the display unevenness caused by the change with time, for example, there is a technique of using an electrolytic solution containing a polymer binder and increasing the viscosity of the electrolytic solution. In this method, the electrolytic solution sealed in the display unit hardly moves in the display unit due to its viscosity.
また、高粘度化された電解液は、例えば、液晶滴下工法により表示部内に封入される。ここで、液晶滴下工法は、大型LCD用の製造方法として広く用いられている手法である。液晶滴下工法では、まず、所望量の電解液が、上側および下側基板のいずれかに滴下供給される。そして、上側および下側基板が減圧雰囲気下で貼り合わされ、両基板間で電解液が押し広げられることによって、両基板間に電解液が満たされる。
Further, the electrolyte solution having a high viscosity is sealed in the display unit by a liquid crystal dropping method, for example. Here, the liquid crystal dropping method is a technique widely used as a manufacturing method for a large LCD. In the liquid crystal dropping method, first, a desired amount of electrolytic solution is dropped and supplied to either the upper or lower substrate. And an upper side and a lower side board | substrate are bonded together in a pressure-reduced atmosphere, and electrolyte solution is satisfy | filled between both board | substrates by an electrolyte solution being spread between both board | substrates.
しかし、たとえ従来のECDおよびEDの電解液として高粘度電解液が使用されたとしても、上側および下側基板の間のギャップ(以下、単に、「セルギャップ」とも呼ぶ)がばらつくと、表示部の各部における電解液量が変動することになる。その結果、セルギャップのばらつきに応じた表示ムラが表示部に発生し、この表示ムラが問題となる。
However, even if a high-viscosity electrolyte is used as a conventional ECD and ED electrolyte, if the gap between the upper and lower substrates (hereinafter, also simply referred to as “cell gap”) varies, The amount of the electrolytic solution in each part of fluctuates. As a result, display unevenness corresponding to the variation in cell gap occurs in the display unit, and this display unevenness becomes a problem.
セルギャップのばらつきに起因した表示ムラを解決する手法の1つとして、例えば、上側および下側基板の間に球形のスペーサ(ビーズ)を配置する手法が挙げられる。ここで、高粘度電解液を用いた電気化学表示装置において、セルギャップは、20~50μm程度必要となる。適切なサイズ(径)のスペーサが、上側および下側基板の間に適切な密度で配置されることによって、表示部の各部におけるセルギャップは、所望範囲となり、セルギャップのばらつきに起因した表示ムラを抑制することができる。
As one of the techniques for solving the display unevenness caused by the cell gap variation, for example, there is a technique of arranging spherical spacers (beads) between the upper and lower substrates. Here, in the electrochemical display device using the high-viscosity electrolytic solution, the cell gap needs to be about 20 to 50 μm. By arranging spacers of an appropriate size (diameter) at an appropriate density between the upper and lower substrates, the cell gap in each part of the display unit becomes a desired range, and display unevenness due to variations in the cell gap. Can be suppressed.
また、スペーサを基板に供給する手法の1つとしては、例えば、スプレー噴霧による湿式散布法や、気体流による乾式散布法が挙げられる。さらに、スペーサを分散させた電解液を、基板に塗布することによって、基板にスペーサを供給する手法も、従来より知られている(例えば、特許文献1)。
Further, as one method for supplying the spacer to the substrate, for example, a wet spraying method using spraying or a dry spraying method using a gas flow can be cited. Furthermore, a method of supplying spacers to a substrate by applying an electrolytic solution in which the spacers are dispersed to the substrate has also been conventionally known (for example, Patent Document 1).
しかしながら、湿式散布法および乾式散布法において、スペーサの直径が増大するにつれてスペーサ分布が不均一になり、その結果、表示部の各部においてセルギャップが不均一になるという問題が生ずる。
However, in the wet spraying method and the dry spraying method, the spacer distribution becomes non-uniform as the spacer diameter increases, resulting in a problem that the cell gap becomes non-uniform in each part of the display unit.
また、特許文献1のように、スペーサが分散させられた電解液を、ディスペンサにより基板に供給する場合において、スペーサに対する電解液の比重が非常に大きい場合、スペーサは、電解液の貯留部の上方に浮揚することになる。これにより、この貯留部の電解液中に含まれるスペーサの個数は、貯留部の上部ほど多く、貯留部の下部ほど少ない。そのため、ディスペンサから吐出される電解液について、各吐出タイミングで電解液に含まれるスペースの個数が変動することになる。このスペーサ個数の変動は、スペーサに対する電解液の比重が非常に小さい場合にも、同様に生ずる。
In addition, as in Patent Document 1, when supplying an electrolytic solution in which spacers are dispersed to a substrate by a dispenser, when the specific gravity of the electrolytic solution with respect to the spacer is very large, the spacer is located above the electrolytic solution reservoir. Will be levitating. As a result, the number of spacers contained in the electrolyte in the reservoir is larger at the upper portion of the reservoir and lower at the lower portion of the reservoir. For this reason, the number of spaces included in the electrolyte solution varies at each discharge timing for the electrolyte solution discharged from the dispenser. This variation in the number of spacers also occurs when the specific gravity of the electrolyte with respect to the spacers is very small.
このように、特許文献1の技術において、スペーサに対する電解液の比重が大きく相違する場合、基板上にスペーサを均一に供給できない。その結果、表示部の各部においてセルギャップが不均一になるという問題が生ずる。
As described above, in the technique of Patent Document 1, when the specific gravity of the electrolyte with respect to the spacer is greatly different, the spacer cannot be uniformly supplied on the substrate. As a result, there arises a problem that the cell gap becomes nonuniform in each part of the display unit.
そこで、本発明では、表示特性の良い電気化学表示装置の製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for manufacturing an electrochemical display device with good display characteristics.
上記の課題を解決するため、第1の態様に係る製造方法は、電解液が高分子バインダーと金属酸化物微粒子とを含み、対向する基板のうちの一方の基板上に前記電解液を塗布し、他方の基板を減圧雰囲気下で貼り合わせて表示部を形成する電気化学的に動作する表示装置の製造方法において、前記電解液を塗布する前に、球形スペーサが分散する分散溶媒を基板上の第1塗布位置に塗布し、前記分散溶媒が乾燥した後に前記電解液を塗布することを特徴とする。
In order to solve the above-described problem, the manufacturing method according to the first aspect is such that the electrolytic solution includes a polymer binder and metal oxide fine particles, and the electrolytic solution is applied onto one of the opposing substrates. In the method of manufacturing an electrochemically operated display device in which the other substrate is bonded in a reduced pressure atmosphere to form a display portion, a dispersion solvent in which spherical spacers are dispersed is applied on the substrate before the electrolytic solution is applied. It is applied to the first application position, and the electrolytic solution is applied after the dispersion solvent is dried.
第1の態様に係る製造方法によれば、第1段階の塗布処理によって、分散溶媒に含まれる球形スペーサが一方の基板上に供給され、続いて、第2段階の塗布処理によって、球形スペーサが供給された一方の基板上に電解液が供給される。
According to the manufacturing method according to the first aspect, the spherical spacers contained in the dispersion solvent are supplied onto one substrate by the first stage coating process, and then the spherical spacers are formed by the second stage coating process. The electrolytic solution is supplied onto the supplied one substrate.
これにより、第2段階の塗布処理にて塗布される電解液の位置、および、両基板の貼り合わせ時に押し広げられて移動する電解液の移動状況、を考慮し、第1段階の塗布処理により塗布される分散溶媒の位置を決定することによって、貼り合わせられた後において両基板間に分散する球形スペーサの分布が均一化できる。
Thus, in consideration of the position of the electrolytic solution applied in the second-stage coating process and the movement state of the electrolyte solution that is pushed and moved when the two substrates are bonded together, By determining the position of the dispersion solvent to be applied, the distribution of the spherical spacers dispersed between the two substrates after being bonded can be made uniform.
そのため、第1の態様に係る製造方法は、本製造方法により製造された電気化学表示装置について、対向する基板間のギャップを所望範囲とすることができ、対向する基板間のギャップのばらつきに起因した表示ムラを抑制することができる。
Therefore, in the manufacturing method according to the first aspect, the gap between the opposing substrates can be within a desired range for the electrochemical display device manufactured by this manufacturing method, and the gap is caused by the variation in the gap between the opposing substrates. Display unevenness can be suppressed.
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<1.第1の実施の形態>
<1.1.表示システムの構成>
図1は、本発明の第1の実施の形態における表示システム1の構成の一例を示す平面図である。また、図2は、図1のV-V線から見た正面断面図である。 <1. First Embodiment>
<1.1. Display system configuration>
FIG. 1 is a plan view showing an example of the configuration of thedisplay system 1 according to the first embodiment of the present invention. FIG. 2 is a front sectional view taken along line VV in FIG.
<1.1.表示システムの構成>
図1は、本発明の第1の実施の形態における表示システム1の構成の一例を示す平面図である。また、図2は、図1のV-V線から見た正面断面図である。 <1. First Embodiment>
<1.1. Display system configuration>
FIG. 1 is a plan view showing an example of the configuration of the
ここで、表示システム1は、表示内容を無電力状態でも保持し続ける不揮発性の表示部に、文字や画像等を表示する表示装置である。図1に示すように、表示システム1は、主として、情報処理装置5と、電源8と、表示パネル10と、を有している。なお、図1および以降の各図には、それらの方向関係を明確にすべく必要に応じて適宜、Z軸方向を鉛直方向とし、XY平面を水平面とするXYZ直交座標系が、付されている。
Here, the display system 1 is a display device that displays characters, images, and the like on a non-volatile display unit that keeps display content even in a non-powered state. As shown in FIG. 1, the display system 1 mainly includes an information processing device 5, a power supply 8, and a display panel 10. In addition, in FIG. 1 and the subsequent drawings, an XYZ orthogonal coordinate system in which the Z-axis direction is a vertical direction and the XY plane is a horizontal plane is appropriately attached as necessary to clarify the directional relationship. Yes.
情報処理装置5は、いわゆるパーソナルコンピュータやワークステーションにより構成されており、信号線6を介して表示パネル10と電気的に接続されている。図1に示すように、情報処理装置5は、主として、メモリ5aと、CPU5bと、を有している。メモリ5aは、揮発性または不揮発性の記憶部であり、プログラムやデータ等を記憶する。CPU5bは、プログラムに従って、所望の処理を所望のタイミング実行させる。例えば、情報処理装置5は、信号線6を介し、表示パネル10に画像信号を送信することによって、表示パネル10に所望の文字や画像等を表示させる。
The information processing apparatus 5 is configured by a so-called personal computer or workstation, and is electrically connected to the display panel 10 through a signal line 6. As shown in FIG. 1, the information processing apparatus 5 mainly includes a memory 5a and a CPU 5b. The memory 5a is a volatile or non-volatile storage unit, and stores programs, data, and the like. The CPU 5b executes desired processing at desired timing according to the program. For example, the information processing apparatus 5 displays desired characters and images on the display panel 10 by transmitting an image signal to the display panel 10 via the signal line 6.
電源8は、電源線9を介して表示パネル10に駆動電圧を付与する。表示パネル10は、電源8から供給される電力によって、表示パネル10に表示される文字や画像等の書換え処理や消去処理を実行する。
The power supply 8 applies a drive voltage to the display panel 10 through the power supply line 9. The display panel 10 executes rewriting processing and erasing processing of characters and images displayed on the display panel 10 with power supplied from the power supply 8.
表示パネル10は、ECDやEDのように、電気化学的な動作により表示機能を実現する表示装置である。図1および図2に示すように、表示パネル10は、電解液18が封入された薄型の表示部12を有しており、紙の長所(軽量性および柔軟性)を備えた電子ペーパとして使用できる。なお、表示パネル10の詳細な構成については、後述する。
The display panel 10 is a display device that realizes a display function by an electrochemical operation, such as ECD or ED. As shown in FIGS. 1 and 2, the display panel 10 has a thin display portion 12 in which an electrolytic solution 18 is sealed, and is used as electronic paper having the advantages of paper (lightness and flexibility). it can. The detailed configuration of the display panel 10 will be described later.
<1.2.表示パネルの構成>
ここでは、表示パネル10の詳細な構成について説明する。図1に示すように、表示パネル10は、主として、表示部12と、上部電極用ドライバ20と、下部電極用ドライバ30と、コントローラボード40と、を備えている。 <1.2. Configuration of display panel>
Here, a detailed configuration of thedisplay panel 10 will be described. As shown in FIG. 1, the display panel 10 mainly includes a display unit 12, an upper electrode driver 20, a lower electrode driver 30, and a controller board 40.
ここでは、表示パネル10の詳細な構成について説明する。図1に示すように、表示パネル10は、主として、表示部12と、上部電極用ドライバ20と、下部電極用ドライバ30と、コントローラボード40と、を備えている。 <1.2. Configuration of display panel>
Here, a detailed configuration of the
表示部12は、薄型の表示領域であり、各画素(表示素子)は、いわゆる単純マトリックス駆動方式により動作する。図2に示すように、表示部12は、主として、上側基板13と、下側基板14と、シール部17と、電解液18と、球状スペーサ19と、を有している。なお、各画素の駆動方式としては、各画素をアクティブ素子(トランジスタ)により動作させるアクティブマトリックス駆動方式が採用されてもよい。
The display unit 12 is a thin display area, and each pixel (display element) operates by a so-called simple matrix driving method. As shown in FIG. 2, the display unit 12 mainly includes an upper substrate 13, a lower substrate 14, a seal unit 17, an electrolytic solution 18, and a spherical spacer 19. As a driving method for each pixel, an active matrix driving method in which each pixel is operated by an active element (transistor) may be employed.
上側基板13および下側基板14のそれぞれは、例えば樹脂フィルムにより構成されたシート体である。図1および図2に示すように、上側基板13には略Y軸方向(水平第1方向)に沿って延びる複数の上部電極13aが、下側基板14には略X軸方向(水平第2方向)に沿って延びる複数の下部電極14aが、それぞれ設けられている。そして、上部電極13aおよび下部電極14aの交差する位置が、それぞれ画素(表示素子)として機能する。
Each of the upper substrate 13 and the lower substrate 14 is a sheet body made of, for example, a resin film. As shown in FIGS. 1 and 2, the upper substrate 13 has a plurality of upper electrodes 13 a extending substantially along the Y-axis direction (horizontal first direction), and the lower substrate 14 has a substantially X-axis direction (horizontal second direction). A plurality of lower electrodes 14a extending along (direction) are provided. The positions where the upper electrode 13a and the lower electrode 14a intersect each function as a pixel (display element).
シール部17は、図2に示すように、上側基板13および下側基板14の間に形成される封入空間12aと、封入空間12aの外側の空間と、を隔てる隔壁として使用される。シール部17は、例えば、下側基板14に塗布されたUV硬化型シール剤により形成される。
As shown in FIG. 2, the seal portion 17 is used as a partition wall that separates the enclosed space 12a formed between the upper substrate 13 and the lower substrate 14 from the space outside the enclosed space 12a. The seal part 17 is formed by, for example, a UV curable sealant applied to the lower substrate 14.
電解液18は、溶媒に電解質を含有させたものであり、上側および下側基板13、14と、シール部17と、により囲まれる封入空間12aに封入される。本実施の形態の電解液18は、電解質として、高分子バインダーおよび金属酸化物微粒子を含んでいる。
The electrolytic solution 18 contains an electrolyte in a solvent and is enclosed in an enclosed space 12 a surrounded by the upper and lower substrates 13 and 14 and the seal portion 17. The electrolytic solution 18 of the present embodiment includes a polymer binder and metal oxide fine particles as an electrolyte.
ここで、本実施の形態において、「電解質」とは、(1)水やアルコール等の溶媒に溶け、その溶液(電解液)がイオン伝導性を示す物質(以下、単に「狭義の電解質」とも呼ぶ)だけでなく、(2)狭義の電解質と、他の金属または化合物等(狭義の電解質および非電解質のいずれであってもよい)と、を混合させた混合物(以下、単に「広義の電解質」とも呼ぶ)をも言うものとする。
Here, in the present embodiment, “electrolyte” means (1) a substance that dissolves in a solvent such as water or alcohol, and whose solution (electrolytic solution) exhibits ion conductivity (hereinafter, simply “narrow electrolyte”). (2) a mixture in which a narrowly defined electrolyte and another metal or compound (which may be either a narrowly defined electrolyte or a non-electrolyte) are mixed (hereinafter simply referred to as “broadly defined electrolyte”). ")".
本実施の形態において、電解質としては、有機溶媒、イオン性液体、酸化還元活性物質、支持電解質、錯化剤、高分子バインダー、および白色散乱物等が必要に応じて選択された混合物が使用される。
In the present embodiment, as the electrolyte, a mixture in which an organic solvent, an ionic liquid, a redox active substance, a supporting electrolyte, a complexing agent, a polymer binder, a white scattering material, and the like are selected as necessary is used. The
以下、本実施の形態の電解質の各構成要素について、さらに説明する。
Hereinafter, each component of the electrolyte of the present embodiment will be further described.
電解質層(封入空間12aに封入された状態の電解液18)で適用可能な有機溶媒としては、電解質層を形成した後、揮発を起こさず電解質層に留まることができる沸点が120~300℃の範囲にある有機溶媒を用いることができ、例えば、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート、ブチレンカーボネート、γ-ブチルラクトン、テトラメチル尿素、スルホラン、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン、2-(N-メチル)-2-ピロリジノン、ヘキサメチルホスホルトリアミド、N-メチルプロピオンアミド、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルホルムアミド、ブチロニトリル、プロピオニトリル、アセトニトリル、アセチルアセトン、4-メチル-2-ペンタノン、2-ブタノール、1-ブタノール、2-プロパノール、1-プロパノール、無水酢酸、酢酸エチル、プロピオン酸エチル、ジメトキシエタン、ジエトキシフラン、テトラヒドロフラン、エチレングリコール、ジエチレングリコール、トリエチレングリコールモノブチルエーテル等を挙げることができる。
As an organic solvent applicable in the electrolyte layer (electrolytic solution 18 in a state of being enclosed in the enclosed space 12a), a boiling point of 120 to 300 ° C. that can remain in the electrolyte layer without causing volatilization after the electrolyte layer is formed. A range of organic solvents can be used, for example, propylene carbonate, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, butylene carbonate, γ-butyl lactone, tetramethyl urea, sulfolane, dimethyl sulfoxide, 1,3- Dimethyl-2-imidazolidinone, 2- (N-methyl) -2-pyrrolidinone, hexamethylphosphortriamide, N-methylpropionamide, N, N-dimethylacetamide, N-methylacetamide, N, N-dimethylformamide N-methylform Amide, butyronitrile, propionitrile, acetonitrile, acetylacetone, 4-methyl-2-pentanone, 2-butanol, 1-butanol, 2-propanol, 1-propanol, acetic anhydride, ethyl acetate, ethyl propionate, dimethoxyethane, di Examples thereof include ethoxyfuran, tetrahydrofuran, ethylene glycol, diethylene glycol, triethylene glycol monobutyl ether and the like.
上記有機溶媒の中でも、カルボン酸エステル類が好ましい。例えば、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトンが挙げられる。
Among the above organic solvents, carboxylic acid esters are preferable. Examples thereof include propylene carbonate, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, and γ-butyrolactone.
また、本実施の形態の電解質層において、電解質層の粘度を高める観点から、高分子バインダーが用いられている。高分子バインダーとしては、特に制限はないが、例えば、ブチラール樹脂、ポリビニルアルコール、ポリエチレングリコール、ポリフッ化ビリニデン等の様々な高分子化合物の中から、表示特性や電解質の粘度の観点から選択することができる。
In the electrolyte layer of the present embodiment, a polymer binder is used from the viewpoint of increasing the viscosity of the electrolyte layer. The polymer binder is not particularly limited. For example, the polymer binder may be selected from various polymer compounds such as butyral resin, polyvinyl alcohol, polyethylene glycol, and polyvinylidene fluoride from the viewpoint of display characteristics and electrolyte viscosity. it can.
また、本実施の形態の電解質層において、散乱により白色表示を達成する白色散乱物としては、無機系金属酸化物の微粒子を用いることが好ましく、例えば、二酸化チタン(アナターゼ型あるいはルチル型)、硫酸バリウム、炭酸カルシウム、酸化アルミニウム、酸化亜鉛、酸化マグネシウムおよび水酸化亜鉛、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、アルカリ土類金属塩、タルク、カオリン、ゼオライト、酸性白土、ガラス等を挙げることができる。
In the electrolyte layer of the present embodiment, inorganic metal oxide fine particles are preferably used as a white scatterer that achieves white display by scattering. For example, titanium dioxide (anatase type or rutile type), sulfuric acid Barium, calcium carbonate, aluminum oxide, zinc oxide, magnesium oxide and zinc hydroxide, magnesium hydroxide, magnesium phosphate, magnesium hydrogen phosphate, alkaline earth metal salts, talc, kaolin, zeolite, acid clay, glass, etc. be able to.
球状スペーサ19は、対向する上側および下側基板13、14の間のギャップGを制御するための微粒子である。球状スペーサ19としては、例えば、液晶ディスプレイ等に使用されているアクリル樹脂製、スチロール樹脂、およびビニル樹脂等の微小真球を使用することができる。平均粒径は、電解液中での分散安定性、および電解液層内に分散させた金属微粒子の散乱効果による白色確保のため、10μm以上50μm以下の範囲にあることが好ましい。
The spherical spacer 19 is a fine particle for controlling the gap G between the upper and lower substrates 13 and 14 facing each other. As the spherical spacer 19, for example, micro true spheres such as acrylic resin, styrene resin, and vinyl resin that are used in liquid crystal displays and the like can be used. The average particle diameter is preferably in the range of 10 μm or more and 50 μm or less in order to ensure the dispersion stability in the electrolytic solution and to ensure white color due to the scattering effect of the metal fine particles dispersed in the electrolytic solution layer.
ここで、電気化学表示装置がエレクトロデポジション表示装置(ED)である場合、表示部12の上部および下部電極13a、14aのうち、観察面(表示された文字や画像等を観察するために、電気化学表示装置の使用者が観察する面)に近い一方の電極には、ITO(Indium Tin Oxide)電極等の透明電極が、他方の電極には銀電極等の金属電極が、それぞれ設けられている。対向する上部および下部電極13a、14aの間には、銀または銀を化学構造中に含む化合物、を有する電解質層が挟持されている。
Here, in the case where the electrochemical display device is an electrodeposition display device (ED), the observation surface (in order to observe the displayed characters and images) of the upper and lower electrodes 13a and 14a of the display unit 12, One electrode close to the surface (observed by the user of the electrochemical display device) is provided with a transparent electrode such as an ITO (Indium Tin Oxide) electrode, and the other electrode is provided with a metal electrode such as a silver electrode. Yes. An electrolyte layer having silver or a compound containing silver in the chemical structure is sandwiched between the upper and lower electrodes 13a and 14a facing each other.
これにより、上部および下部電極13a、14aの間に正負両極性の電圧が印加されると、両電極13a、14a上で銀の酸化還元反応が行われる。そのため、透明電極上では、還元状態の黒い銀画像と、酸化状態の透明な銀の状態と、が可逆的に切り替えられる。
Thus, when positive and negative voltages are applied between the upper and lower electrodes 13a and 14a, a silver oxidation-reduction reaction is performed on both the electrodes 13a and 14a. Therefore, on the transparent electrode, the black silver image in the reduced state and the transparent silver state in the oxidized state are switched reversibly.
また、本実施の形態における「銀または銀を化学構造中に含む化合物」は、例えば、酸化銀、硫化銀、金属銀、銀コロイド粒子、ハロゲン化銀、銀錯体化合物、および銀イオン等の化合物の総称であり、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、アニオン性、カチオン性等の荷電状態種は、特に問わない。
The “compound containing silver or silver in the chemical structure” in the present embodiment is, for example, a compound such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compound, and silver ion. There are no particular restrictions on the phase state species such as the solid state, the solubilized state in liquid, and the gas state, and the charged state species such as neutral, anionic, and cationic.
また、電解液18に含まれる銀イオン濃度は、0.2(モル/kg)≦[Ag]≦2.0(モル/kg)が好ましい。銀イオン濃度が、0.2(モル/kg)より少ない場合には、希薄な銀溶液となり駆動速度が遅延する。一方、銀イオン濃度が、2(モル/kg)よりも大きい場合には、溶解性が劣化し、低温保存時に析出が起きやすくなる傾向にあり不利である。
The concentration of silver ions contained in the electrolytic solution 18 is preferably 0.2 (mol / kg) ≦ [Ag] ≦ 2.0 (mol / kg). When the silver ion concentration is less than 0.2 (mol / kg), a dilute silver solution is formed and the driving speed is delayed. On the other hand, when the silver ion concentration is higher than 2 (mol / kg), the solubility is deteriorated and precipitation tends to occur during low-temperature storage, which is disadvantageous.
さらに、電解液18には、高粘度化のために高分子材料がバインダーとして添加されるとともに、白色散乱物としてTiO2やZnO等の金属酸化物微粒子が分散させられている。そのため、表示部12の各表示素子が透明状態となる場合において、表示部12には高品位の白色が表示される。
Further, a polymer material is added to the electrolytic solution 18 as a binder for increasing the viscosity, and metal oxide fine particles such as TiO 2 and ZnO are dispersed as a white scattering material. Therefore, when each display element of the display unit 12 is in a transparent state, high-quality white is displayed on the display unit 12.
一方、電気化学表示装置がエレクトロクロミック表示装置(ECD)である場合、表示部12の上部および下部電極13a、14aのうち、観察面に近い一方の電極には、ITO電極等の透明電極が、他方の電極にはITO電極上にアンチモンをドープした酸化スズ層を有する電極が、それぞれ設けられている。対向する上部および下部電極13a、14aの間には、エレクトロクロミック色素を有する電解質層が設けられている。
On the other hand, when the electrochemical display device is an electrochromic display device (ECD), a transparent electrode such as an ITO electrode is provided on one of the upper and lower electrodes 13a and 14a of the display unit 12 that is close to the observation surface. The other electrode is provided with an electrode having a tin oxide layer doped with antimony on the ITO electrode. An electrolyte layer having an electrochromic dye is provided between the upper and lower electrodes 13a and 14a facing each other.
これにより、上部および下部電極13a、14aの間に正負両極性の電圧が印加されると、観察面側の電極上でエレクトロクロミック色素の酸化還元反応が行われる。そのため、透明電極上では、エレクトロクロミックの着色状態が可逆的に切り替えられる。
Thereby, when a positive and negative voltage is applied between the upper and lower electrodes 13a and 14a, an electrochromic dye oxidation-reduction reaction is performed on the electrode on the observation surface side. Therefore, the electrochromic coloring state is reversibly switched on the transparent electrode.
また、本実施の形態における「エレクトロクロミック色素」は、電子の供受により光吸収状態を変化させる化合物であり、有機化合物や金属錯体が使用可能である。
Further, the “electrochromic dye” in the present embodiment is a compound that changes a light absorption state by accepting electrons, and an organic compound or a metal complex can be used.
有機化合物としては、ピリジン化合物や導電性高分子、スチリル化合物が使用可能であり、特開2002-328401号に記載の各種ビオロゲン化合物、特表2004-537743号に記載の色素、その他知られている色素を用いることができる。また、ロイコ型色素を用いる場合には、必要に応じて顕色剤あるいは消色剤を併用してかまわない。
As the organic compound, a pyridine compound, a conductive polymer, and a styryl compound can be used. Various viologen compounds described in JP-A No. 2002-328401, dyes described in JP-T-2004-537743, and others are known. A dye can be used. When a leuco dye is used, a developer or a color erasing agent may be used in combination as necessary.
エレクトロクロック色素として使用可能な有機化合物や金属錯体は、電極上に直接塗布されても良い。また、TiO2に代表される酸化物半導体ナノ構造が電極上に形成された後、エレクトロクロミック材料が、この酸化物上に、インクジェット法等の方法により塗布・含浸されてもよい。
An organic compound or metal complex that can be used as an electroclock dye may be applied directly on the electrode. In addition, after an oxide semiconductor nanostructure typified by TiO 2 is formed on an electrode, an electrochromic material may be applied and impregnated on the oxide by a method such as an inkjet method.
さらに、電解液18には、EDの場合と同様に、高粘度化のために高分子材料がバインダーとして添加されるとともに、白色散乱物としてTiO2やZnO等の金属酸化物微粒子が分散させられている。そのため、表示部12の各表示素子が透明状態となる場合において、表示部12には高品位の白色が表示される。
Further, as in the case of ED, a polymer material is added to the electrolytic solution 18 as a binder to increase the viscosity, and fine metal oxide particles such as TiO 2 and ZnO are dispersed as a white scattering material. ing. Therefore, when each display element of the display unit 12 is in a transparent state, high-quality white is displayed on the display unit 12.
上部電極用ドライバ20は、各上部電極13aに対して所定のタイミングで電気信号を与える。図1に示すように、上部電極用ドライバ20は、FPC21、PCB基板22、およびドライバIC23を有するとともに、信号・電源線25を介してコントローラボード40と電気的に接続されている。
The upper electrode driver 20 gives an electric signal to each upper electrode 13a at a predetermined timing. As shown in FIG. 1, the upper electrode driver 20 includes an FPC 21, a PCB substrate 22, and a driver IC 23, and is electrically connected to the controller board 40 via a signal / power line 25.
FPC(Flexible Printed Circuits:フレキシブルプリント配線板)21は、導体箔(例えば、銅箔)をフィルム状の絶縁体(例えば、ポリイミド)の上に接着して形成されており、上部電極13aおよびPCB基板22を電気的に接続する。ドライバIC23は、FPC21に直接実装されており、対応する上部電極13aに付与される電圧を制御する。
The FPC (Flexible Printed Circuits) 21 is formed by bonding a conductive foil (for example, copper foil) on a film-like insulator (for example, polyimide), and the upper electrode 13a and the PCB substrate. 22 is electrically connected. The driver IC 23 is directly mounted on the FPC 21, and controls the voltage applied to the corresponding upper electrode 13a.
下部電極用ドライバ30は、各下部電極14aに対して所定のタイミングで電気信号を与える。図1に示すように、下部電極用ドライバ30は、FPC31、PCB基板32、およびドライバIC33を有するとともに、信号・電源線35を介してコントローラボード40と電気的に接続されている。
The lower electrode driver 30 gives an electric signal to each lower electrode 14a at a predetermined timing. As shown in FIG. 1, the lower electrode driver 30 includes an FPC 31, a PCB substrate 32, and a driver IC 33, and is electrically connected to the controller board 40 via a signal / power line 35.
FPC31は、FPC21と同様に、導体箔をフィルム状の絶縁体の上に接着して形成されており、下部電極14aおよびPCB基板32を電気的に接続する。ドライバIC33は、FPC31に直接実装されており、対応する下部電極14aに付与される電圧を制御する。
The FPC 31, like the FPC 21, is formed by bonding a conductive foil on a film-like insulator, and electrically connects the lower electrode 14a and the PCB substrate 32. The driver IC 33 is directly mounted on the FPC 31, and controls the voltage applied to the corresponding lower electrode 14a.
コントローラボード40は、情報処理装置5から送信された画像信号に基づいて、上部電極用ドライバ20のドライバIC23、および下部電極用ドライバ30のドライバIC33に与える電気信号を生成する。すなわち、コントローラボード40は、情報処理装置5から送信された画像信号を、上部および下部電極用ドライバ20、30で使用可能な電気信号に変換する。
The controller board 40 generates an electric signal to be given to the driver IC 23 of the upper electrode driver 20 and the driver IC 33 of the lower electrode driver 30 based on the image signal transmitted from the information processing apparatus 5. That is, the controller board 40 converts the image signal transmitted from the information processing device 5 into an electrical signal that can be used by the upper and lower electrode drivers 20 and 30.
<1.3.表示パネルの製造方法>
図3ないし図10は、本実施の形態における表示パネル10(電気化学表示装置)の製造方法を説明するための図である。 <1.3. Manufacturing method of display panel>
3 to 10 are views for explaining a method of manufacturing the display panel 10 (electrochemical display device) in the present embodiment.
図3ないし図10は、本実施の形態における表示パネル10(電気化学表示装置)の製造方法を説明するための図である。 <1.3. Manufacturing method of display panel>
3 to 10 are views for explaining a method of manufacturing the display panel 10 (electrochemical display device) in the present embodiment.
表示パネル10の製造方法では、まず、シールディスペンサ50によって、上側基板13の主面のうち、上部電極13aが形成されている面に、UV硬化型のシール剤51が塗布される。これにより、上側基板13上にシール部17が形成される(図3および図4参照)。
In the method for manufacturing the display panel 10, first, a UV curable sealant 51 is applied to the surface of the upper substrate 13 on which the upper electrode 13 a is formed by the seal dispenser 50. Thereby, the seal portion 17 is formed on the upper substrate 13 (see FIGS. 3 and 4).
ここで、シールディスペンサ50は、シール剤51を貯留する貯留部50aを有している。また、シールディスペンサ50は、上側基板13に対して相対的に移動(シールディスペンサ50および上側基板13の保持部(図示省略)のうち、少なくとも一方が移動可能であればよい)しつつ、シール剤51を連続的に吐出できるように構成されている。これにより、上側基板13上には、例えば図4に示すように、略矩形環状のシール部17が形成される。
Here, the seal dispenser 50 has a storage portion 50a for storing the sealant 51. Further, the seal dispenser 50 moves relative to the upper substrate 13 (at least one of the holders (not shown) of the seal dispenser 50 and the upper substrate 13 may be movable), and the sealant. 51 can be continuously discharged. As a result, a substantially rectangular annular seal portion 17 is formed on the upper substrate 13, for example, as shown in FIG. 4.
なお、シール部17の形状は、表示部12の形状にしたがって、適宜選択される。例えば、円盤状の表示部12が作成される場合には、シール部17の形状は略円環状とされる。また、シール部17は、上側基板13でなく下側基板14に形成されてもよい。
In addition, the shape of the seal part 17 is appropriately selected according to the shape of the display part 12. For example, when the disk-shaped display part 12 is created, the shape of the seal part 17 is substantially annular. Further, the seal portion 17 may be formed on the lower substrate 14 instead of the upper substrate 13.
次に、分散液ディスペンサ60によって、下側基板14の主面のうち、下部電極14aが形成されている面(以下、単に、「塗布面」とも呼ぶ)14bに、分散液61が塗布される。すなわち、第1段階の塗布処理が実行される。これにより、下側基板14上には、略上半球状(ドーム状)の分散液塗布部62が形成される(図5および図6参照)。
Next, the dispersion liquid 61 is applied by the dispersion liquid dispenser 60 to the main surface of the lower substrate 14 on which the lower electrode 14a is formed (hereinafter also simply referred to as “application surface”) 14b. . That is, the first-stage coating process is executed. As a result, a substantially upper hemispherical (dome-shaped) dispersion applying unit 62 is formed on the lower substrate 14 (see FIGS. 5 and 6).
ここで、下側基板14上に形成される各分散液塗布部62の位置(すなわち、分散溶媒の塗布位置(第1塗布位置))は、例えば、図5および図6に示すように、X軸方向およびY軸方向に沿って格子状に、かつ、隣接する分散液塗布部62との距離が略同一となるように、設定されている。
Here, the position of each dispersion liquid coating part 62 formed on the lower substrate 14 (that is, the dispersion solvent application position (first application position)) is, for example, as shown in FIGS. It is set in a lattice shape along the axial direction and the Y-axis direction so that the distances between the adjacent dispersion liquid application portions 62 are substantially the same.
また、分散液ディスペンサ60は、分散液61を貯留する貯留部60aを有している。また、分散液61は、球状スペーサ19を分散溶媒に分散させたものである。分散液ディスペンサ60としては、例えば、ノズル内径0.2mm以上のSUS系ニードルを先端に装着したディスペンサ、好ましくは容量計量式のディスペンサが、用いられる。
Further, the dispersion liquid dispenser 60 has a storage part 60 a for storing the dispersion liquid 61. In addition, the dispersion 61 is obtained by dispersing the spherical spacer 19 in a dispersion solvent. As the dispersion liquid dispenser 60, for example, a dispenser in which a SUS needle having a nozzle inner diameter of 0.2 mm or more is attached to the tip, preferably a volumetric dispenser is used.
分散溶媒としては、球状スペーサ19(スペーサ粒子)を溶解しない溶媒であり、かつ、沸点が300℃以下の範囲となり容易に乾燥できる溶媒が望ましい。
As the dispersion solvent, a solvent that does not dissolve the spherical spacer 19 (spacer particles) and has a boiling point in the range of 300 ° C. or lower and can be easily dried is desirable.
たとえば、分散溶媒としては、水、アルコール、および電解質層に適用可能な有機溶媒のほか、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類、2-メチル-2-プロパノール、グリセリン、ヘキシレングリコール等のアルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテルアセテート等のセロソルブ類、アセトン、メチルエチルケトン、シクロヘキサノン、等のケトン類、メトキシベンゼン、1,2-ジメトキシベンゼン、ジエチレングリコールジメチルエーテル等のエーテル類、ベンゼン、トルエン、キシレン、n-ブチルベンゼン、ジエチルベンゼン、テトラリン等の炭化水素類等を上げることができる。
For example, as the dispersion solvent, water, alcohol, and organic solvents applicable to the electrolyte layer, esters such as propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, 2-methyl-2-propanol, glycerin, Alcohols such as hexylene glycol, cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether acetate, ketones such as acetone, methyl ethyl ketone, cyclohexanone, methoxybenzene, 1,2-dimethoxybenzene, diethylene glycol dimethyl ether, etc. Ethers, hydrocarbons such as benzene, toluene, xylene, n-butylbenzene, diethylbenzene, tetralin, etc. It can be.
特に、分散溶媒として、電解液に含まれる溶媒(例えば、水やアルコール等)が用いられる場合、分散液61および電解液18の親和性が向上するとともに、電解液18に不要な成分が混入することを防止できる。そのため、電解液の信頼性を向上させることができる。
In particular, when a solvent (for example, water or alcohol) contained in the electrolytic solution is used as the dispersion solvent, the affinity between the dispersion 61 and the electrolytic solution 18 is improved, and unnecessary components are mixed into the electrolytic solution 18. Can be prevented. Therefore, the reliability of the electrolytic solution can be improved.
また、球状スペーサ19の比重としては、1.1~1.3(g/cm3)が、分散溶媒の比重としては、0.75~1.5(g/cm3)が、それぞれ好適である。さらに好ましくは、分散溶媒に対する球状スペーサ19の分散性を考慮して、両者の比重の差が小さくなるよう(両者の差が、0.2(g/cm3)以下となるよう)に、球状スペーサ19および分散溶媒が選択される。
The specific gravity of the spherical spacer 19 is preferably 1.1 to 1.3 (g / cm 3 ), and the specific gravity of the dispersion solvent is preferably 0.75 to 1.5 (g / cm 3 ). is there. More preferably, in consideration of the dispersibility of the spherical spacer 19 with respect to the dispersion solvent, the spherical gravity is reduced so that the difference in specific gravity between the two becomes small (the difference between the two becomes 0.2 (g / cm 3 ) or less). The spacer 19 and the dispersion solvent are selected.
これにより、球状スペーサ19が、貯留部60aの上方に浮揚したり、貯留部60aの下方に沈降することを抑制できる。そのため、貯留部60a内において球状スペーサ19を均一に配置することが可能となる。その結果、分散液ディスペンサ60から吐出された分散液61の単位体積当たりに含まれる球状スペーサ19の個数は、吐出タイミングによらず略同一となる。
Thereby, it is possible to suppress the spherical spacer 19 from being levitated above the storage portion 60a or sinking below the storage portion 60a. Therefore, it becomes possible to arrange the spherical spacers 19 uniformly in the reservoir 60a. As a result, the number of spherical spacers 19 contained per unit volume of the dispersion 61 discharged from the dispersion dispenser 60 is substantially the same regardless of the discharge timing.
したがって、分散液61の分散溶媒および球状スペーサ19の比重の差が小さくなるように、球状スペーサ19および分散溶媒が選択され、かつ、分散液ディスペンサ60から一定量の分散液61が吐出されると、各分散液塗布部62に含まれる球状スペーサ19の個数は、略同一値(一定範囲内)となる。
Therefore, when the spherical spacer 19 and the dispersion solvent are selected so that the difference in specific gravity between the dispersion solvent of the dispersion liquid 61 and the spherical spacer 19 is small, and a certain amount of the dispersion liquid 61 is discharged from the dispersion liquid dispenser 60. The number of the spherical spacers 19 included in each dispersion application unit 62 is substantially the same value (within a certain range).
続いて、ホットプレート65によって、下側基板14が加熱され、下側基板14上に形成された各分散液塗布部62が加熱される。これにより、各分散液塗布部62の分散溶媒が蒸発し、球状スペーサ19は、下側基板14上に置かれただけの状態となる(図7参照)。
Subsequently, the lower substrate 14 is heated by the hot plate 65, and each dispersion liquid coating part 62 formed on the lower substrate 14 is heated. Thereby, the dispersion solvent of each dispersion liquid application part 62 evaporates, and the spherical spacer 19 is merely placed on the lower substrate 14 (see FIG. 7).
続いて、分散液61の分散溶媒が乾燥した後に、電解液ディスペンサ70によって、下側基板14の塗布面14bに、電解液18が塗布される。すなわち、第2段階の塗布処理が実行される。これにより、下側基板14上には、略上半球状の電解液塗布部72が形成される(図8および図9参照)。
Subsequently, after the dispersion solvent of the dispersion 61 is dried, the electrolyte 18 is applied to the application surface 14 b of the lower substrate 14 by the electrolyte dispenser 70. That is, the second stage coating process is executed. As a result, a substantially upper hemispherical electrolyte application part 72 is formed on the lower substrate 14 (see FIGS. 8 and 9).
ここで、下側基板14に形成される各電解液塗布部72の位置(すなわち、電解液18の塗布位置(第2塗布位置))は、例えば、図8に示すように、下側基板14に置かれた球状スペーサ19を覆う位置となるように、設定されている。すなわち、各電解液塗布部72の位置と、対応する分散液塗布部62(一点鎖線)の位置(第1塗布位置)とは、略同一となる。これにより、下側基板14上に置かれただけの状態であり、下側基板14に対する固着力が弱い各球状スペーサ19は、電解液18によって下側基板14上に固着される。
Here, the position of each electrolytic solution application part 72 formed on the lower substrate 14 (that is, the application position of the electrolytic solution 18 (second application position)) is, for example, as shown in FIG. Is set so as to cover the spherical spacer 19 placed on the surface. That is, the position of each electrolytic solution application part 72 and the position (first application position) of the corresponding dispersion liquid application part 62 (one-dot chain line) are substantially the same. As a result, each spherical spacer 19, which is just placed on the lower substrate 14 and has a weak fixing force with respect to the lower substrate 14, is fixed on the lower substrate 14 by the electrolytic solution 18.
また、電解液ディスペンサ70は、塗布に先立って予め調液された電解液18を貯留充填する貯留部70a、を有している。電解液ディスペンサ70としては、分散液ディスペンサ60と同様に、例えば容量計量式のディスペンサが用いられる。そして、下側基板14上に供給される電解液18の液量が封入空間12aの容積と略等量となるように、電解液ディスペンサ70により電解液18が計量塗布される(図8および図9参照)。
Further, the electrolytic solution dispenser 70 has a storage part 70a for storing and filling the electrolytic solution 18 prepared in advance prior to application. As the electrolytic solution dispenser 70, for example, a volumetric dispenser is used in the same manner as the dispersion dispenser 60. Then, the electrolytic solution 18 is metered and applied by the electrolytic solution dispenser 70 so that the amount of the electrolytic solution 18 supplied onto the lower substrate 14 is substantially equal to the volume of the enclosed space 12a (FIGS. 8 and 8). 9).
また、本実施の形態において、塗布された分散液61(分散液塗布部62)の分散溶媒が下側基板14上で広がる面積S1(図6参照)は、塗布された電解液18(電解液塗布部72)が下側基板14上で広がる面積S2よりも小さくなるように設定されている。
In the present embodiment, the area S1 (see FIG. 6) in which the dispersion solvent of the applied dispersion 61 (dispersion application unit 62) spreads on the lower substrate 14 is the applied electrolyte 18 (electrolyte). The application portion 72) is set to be smaller than the area S2 that spreads on the lower substrate 14.
これにより、対向する基板13、14が貼り合わせられる前の段階において、下側基板14に供給されたすべての球状スペーサ19は、いずれかの電解液塗布部72の下に位置することになる。そのため、球状スペーサ19は、両基板13、14の間に均一に分布させられることになり、その結果、不要な球状スペーサ19が凝集することに起因して、表示部12の視認性が低下することを抑制できる。
Thus, all the spherical spacers 19 supplied to the lower substrate 14 are positioned below any one of the electrolyte application portions 72 before the opposing substrates 13 and 14 are bonded together. For this reason, the spherical spacers 19 are uniformly distributed between the substrates 13 and 14, and as a result, unnecessary spherical spacers 19 are aggregated, resulting in a decrease in visibility of the display unit 12. This can be suppressed.
続いて、真空装置90によって、上側および下側基板13、14を貼り合わせる。ここで、真空装置90は、減圧雰囲気のチャンバ91で上側および下側基板13、14を貼り合わせる真空貼り合わせ装置である。図10に示すように、真空装置90は、主として、上側基板保持部93と、下側基板保持部94と、真空ポンプ95と、を有している。
Subsequently, the upper and lower substrates 13 and 14 are bonded together by the vacuum device 90. Here, the vacuum apparatus 90 is a vacuum bonding apparatus that bonds the upper and lower substrates 13 and 14 in a chamber 91 in a reduced pressure atmosphere. As shown in FIG. 10, the vacuum apparatus 90 mainly includes an upper substrate holding part 93, a lower substrate holding part 94, and a vacuum pump 95.
上側基板保持部93は、チャンバ91内で上側基板13を保持しつつ、上側基板13を矢印AR1方向に沿って昇降させる。一方、下側基板保持部94は、チャンバ91内で下側基板14を保持しつつ、下側基板14をXY平面内で水平移動させる。
The upper substrate holding part 93 raises and lowers the upper substrate 13 along the direction of the arrow AR1 while holding the upper substrate 13 in the chamber 91. On the other hand, the lower substrate holding part 94 horizontally moves the lower substrate 14 in the XY plane while holding the lower substrate 14 in the chamber 91.
真空ポンプ95は、配管97を介して処理空間91aと連通接続されている。真空ポンプ95が動作すると、処理空間91aの雰囲気(気体)は排出され、処理空間91aは減圧雰囲気とされる。
The vacuum pump 95 is connected to the processing space 91a through a pipe 97. When the vacuum pump 95 is operated, the atmosphere (gas) of the processing space 91a is exhausted, and the processing space 91a is reduced in pressure.
真空装置90による両基板13、14の貼り合わせ処理では、まず、シール部17が形成された上側基板13が、上側基板保持部93に、球状スペーサ19および電解液18が塗布された下側基板14が、下側基板保持部94に、それぞれ受け渡される。
In the bonding process of the substrates 13 and 14 by the vacuum device 90, first, the upper substrate 13 on which the seal portion 17 is formed is the lower substrate in which the spherical spacer 19 and the electrolyte 18 are applied to the upper substrate holding portion 93. 14 are delivered to the lower substrate holding portion 94.
次に、上側および下側基板保持部93、94によって、上側および下側基板13、14がアライメントされ、上側および下側基板13、14の位置決めが行われる。また、両基板13、14の位置決めと並行して、処理空間91aが、真空ポンプ95により減圧状態とされる。
Next, the upper and lower substrates 13 and 14 are aligned by the upper and lower substrate holders 93 and 94, and the upper and lower substrates 13 and 14 are positioned. In parallel with the positioning of the substrates 13 and 14, the processing space 91 a is decompressed by the vacuum pump 95.
続いて、上側基板保持部93により上側基板13が下降させられる。これにより、上側基板13のシール部17は、下側基板14の塗布面14bと当接するとともに、電解液18は、上側および下側基板13、14の間で押し広げられ、封入空間12aの全面に広がる。
Subsequently, the upper substrate 13 is lowered by the upper substrate holder 93. As a result, the seal portion 17 of the upper substrate 13 comes into contact with the application surface 14b of the lower substrate 14, and the electrolyte 18 is pushed and spread between the upper and lower substrates 13 and 14, and the entire surface of the enclosed space 12a. To spread.
ここで、図8に示すように、下側基板14上の各電解液塗布部72の位置は、X軸方向およびY軸方向に沿って格子状に、隣接する電解液塗布部72との距離が略同一となるように、設定されている。また、下側基板14の各電解液塗布部72の位置は、下側基板14に置かれた球状スペーサ19を覆う位置となるように、設定されている。
Here, as shown in FIG. 8, the position of each electrolytic solution application part 72 on the lower substrate 14 is a distance from the adjacent electrolytic solution application part 72 in a lattice shape along the X-axis direction and the Y-axis direction. Are set to be substantially the same. Further, the position of each electrolytic solution application part 72 of the lower substrate 14 is set so as to cover the spherical spacer 19 placed on the lower substrate 14.
これにより、対向する基板13、14の貼り合わせ時において、電解液18が両基板13、14の間に均一に押し広げられると、球状スペーサ19は、電解液18とともに両基板13、14間を移動し、両基板13、14間に均一に分布することになる。そのため、対向する基板13、14間のギャップGのばらつきを小さくすることができ、対向する基板間のギャップのばらつきに起因した表示ムラを抑制することができる。
As a result, when the electrolytic solution 18 is uniformly spread between the substrates 13 and 14 when the opposing substrates 13 and 14 are bonded together, the spherical spacer 19 moves between the substrates 13 and 14 together with the electrolytic solution 18. It moves and is uniformly distributed between both substrates 13 and 14. Therefore, the variation in the gap G between the opposing substrates 13 and 14 can be reduced, and display unevenness due to the variation in the gap between the opposing substrates can be suppressed.
続いて、貼り合わされた両基板13、14が、表示素子から離れた位置で、事前に塗布されたUV硬化樹脂等により仮止めされ、両基板13、14の相対的な位置が固定された後、処理空間91aが大気開放される。
Subsequently, after the bonded substrates 13 and 14 are temporarily fixed with a pre-applied UV curable resin or the like at a position away from the display element, and the relative positions of the substrates 13 and 14 are fixed. The processing space 91a is opened to the atmosphere.
続いて、貼り合わせた両基板13、14に紫外線が照射される。これにより、シール部17がUV硬化し、シール部17によって両基板13、14が固定されて、本製造方法が終了する。
Subsequently, both substrates 13 and 14 bonded together are irradiated with ultraviolet rays. As a result, the seal portion 17 is UV-cured, the substrates 13 and 14 are fixed by the seal portion 17, and the present manufacturing method ends.
<1.4.第1の実施の形態における製造方法の利点>
以上のように、本実施の形態の表示パネル10の製造方法では、第1段階の塗布処理により球状スペーサ19が分散された分散液61が、第2段階の塗布処理により電解液18が、それぞれ塗布される。 <1.4. Advantages of Manufacturing Method in First Embodiment>
As described above, in the method for manufacturing thedisplay panel 10 of the present embodiment, the dispersion liquid 61 in which the spherical spacers 19 are dispersed by the first stage coating process is used, and the electrolyte solution 18 is obtained by the second stage coating process. Applied.
以上のように、本実施の形態の表示パネル10の製造方法では、第1段階の塗布処理により球状スペーサ19が分散された分散液61が、第2段階の塗布処理により電解液18が、それぞれ塗布される。 <1.4. Advantages of Manufacturing Method in First Embodiment>
As described above, in the method for manufacturing the
これにより、第2段階の塗布処理により塗布される電解液18の塗布位置、および、両基板13、14の貼り合わせ時に押し広げられて移動する電解液18の移動状況、を考慮し、第1段階の塗布処理により塗布される分散液61の塗布位置(すなわち、球形スペースの供給位置)を決定することによって、貼り合わせられた後において両基板13、14間に分散する球状スペーサ19の分布が均一化できる。
Accordingly, the application position of the electrolytic solution 18 to be applied by the second-stage coating process and the movement state of the electrolytic solution 18 that is pushed and moved when the substrates 13 and 14 are bonded to each other are taken into consideration. By determining the application position (that is, the supply position of the spherical space) of the dispersion 61 to be applied by the application process in stages, the distribution of the spherical spacers 19 dispersed between the substrates 13 and 14 after being bonded is determined. It can be made uniform.
そのため、本実施の形態の製造方法により製造される表示パネル10について、対向する基板13、14間のギャップGが所望範囲とされ、両基板13、14間のギャップGのばらつきに起因した表示ムラが抑制される。
Therefore, in the display panel 10 manufactured by the manufacturing method of the present embodiment, the gap G between the opposing substrates 13 and 14 is set to a desired range, and the display unevenness due to the variation in the gap G between the substrates 13 and 14 is displayed. Is suppressed.
<2.第2の実施の形態>
次に、本発明の第2の実施の形態について説明する。この第2の実施の形態における表示システム100は、第1の実施の形態の表示システム1と比較して、
(1)上側基板に形成されるシール部117の構造が異なる点と、
(2)上側および下側基板113、14を貼り合わせる工程が異なる点と、
を除いては、第1の実施の形態と同じである。そこで、以下ではこの相違点を中心に説明する。 <2. Second Embodiment>
Next, a second embodiment of the present invention will be described. Thedisplay system 100 according to the second embodiment is compared with the display system 1 according to the first embodiment.
(1) The structure of theseal portion 117 formed on the upper substrate is different,
(2) The process of bonding the upper and lower substrates 113 and 14 is different,
Is the same as in the first embodiment. Therefore, in the following, this difference will be mainly described.
次に、本発明の第2の実施の形態について説明する。この第2の実施の形態における表示システム100は、第1の実施の形態の表示システム1と比較して、
(1)上側基板に形成されるシール部117の構造が異なる点と、
(2)上側および下側基板113、14を貼り合わせる工程が異なる点と、
を除いては、第1の実施の形態と同じである。そこで、以下ではこの相違点を中心に説明する。 <2. Second Embodiment>
Next, a second embodiment of the present invention will be described. The
(1) The structure of the
(2) The process of bonding the upper and
Is the same as in the first embodiment. Therefore, in the following, this difference will be mainly described.
なお、以下の説明において、第1の実施の形態の表示システム1における構成要素と同様な構成要素については同一符号を付している。これら同一符号の構成要素は、第1の実施の形態において説明済みであるため、本実施形態では説明を省略する。
In addition, in the following description, the same code | symbol is attached | subjected about the component similar to the component in the display system 1 of 1st Embodiment. Since the components with the same reference numerals have already been described in the first embodiment, description thereof will be omitted in the present embodiment.
<2.1.表示パネルの製造方法>
図11は、本実施の形態において上側基板113に形成されるシール部117(117a、117b)の一例を示す斜視図である。内側シール部117aは、上側基板113および下側基板14の間に形成される空間と、この封入空間の外側の空間と、を隔てる隔壁として使用される。そして、内側シール部117aと、上側基板13と、下側基板14と、で囲まれる空間に、電解液18が満たされる。 <2.1. Manufacturing method of display panel>
FIG. 11 is a perspective view showing an example of the seal portion 117 (117a, 117b) formed on theupper substrate 113 in the present embodiment. The inner seal portion 117a is used as a partition wall that separates a space formed between the upper substrate 113 and the lower substrate 14 and a space outside the enclosed space. Then, a space surrounded by the inner seal portion 117 a, the upper substrate 13, and the lower substrate 14 is filled with the electrolytic solution 18.
図11は、本実施の形態において上側基板113に形成されるシール部117(117a、117b)の一例を示す斜視図である。内側シール部117aは、上側基板113および下側基板14の間に形成される空間と、この封入空間の外側の空間と、を隔てる隔壁として使用される。そして、内側シール部117aと、上側基板13と、下側基板14と、で囲まれる空間に、電解液18が満たされる。 <2.1. Manufacturing method of display panel>
FIG. 11 is a perspective view showing an example of the seal portion 117 (117a, 117b) formed on the
本実施の形態の製造方法において、まず、シールディスペンサ50からシール剤51(図3参照)が吐出され、上側基板113上に略矩形環状の内側シール部117aが形成される。次に、内側シール部117aの周囲に沿ってシール剤51が吐出され、内側シール部117aの周囲に外側シール部117bが形成される(図11参照)。
In the manufacturing method of the present embodiment, first, the sealing agent 51 (see FIG. 3) is discharged from the seal dispenser 50, and the substantially rectangular annular inner seal portion 117a is formed on the upper substrate 113. Next, the sealing agent 51 is discharged along the periphery of the inner seal portion 117a, and the outer seal portion 117b is formed around the inner seal portion 117a (see FIG. 11).
続いて、第1の実施の形態と同様な手法によって、分散液61の塗布処理、分散溶媒の乾燥処理、および電解液18の塗布処理が実行される。
Subsequently, the application process of the dispersion liquid 61, the drying process of the dispersion solvent, and the application process of the electrolytic solution 18 are executed by the same method as in the first embodiment.
続いて、内側および外側シール部117a、117bが形成された上側基板113が、上側基板保持部93に、球状スペーサ19および電解液18が塗布された下側基板14が、下側基板保持部94に、それぞれ受け渡される。
Subsequently, the upper substrate 113 in which the inner and outer seal portions 117a and 117b are formed is the upper substrate holding portion 93, and the lower substrate 14 in which the spherical spacer 19 and the electrolytic solution 18 are applied is the lower substrate holding portion 94. To each.
続いて、上側および下側基板保持部93、94によって、上側および下側基板113、14がアライメントされ、上側および下側基板113、14の位置決めが行われる。また、両基板113、14の位置決めと並行して、真空ポンプ95により処理空間91aが減圧状態とされる。
Subsequently, the upper and lower substrates 113 and 14 are aligned by the upper and lower substrate holders 93 and 94, and the upper and lower substrates 113 and 14 are positioned. In parallel with the positioning of the substrates 113 and 14, the processing space 91a is decompressed by the vacuum pump 95.
続いて、上側基板保持部93により上側基板113が下降させられる。これにより、上側基板113の内側および外側シール部117a、117bは、下側基板14の塗布面14bと当接するとともに、電解液18は、上側および下側基板113、14と、内側シール部117aと、で囲まれる空間で押し広げられる。
Subsequently, the upper substrate 113 is lowered by the upper substrate holder 93. As a result, the inner and outer seal portions 117a and 117b of the upper substrate 113 are in contact with the application surface 14b of the lower substrate 14, and the electrolyte 18 is added to the upper and lower substrates 113 and 14 and the inner seal portion 117a. It is pushed out in the space surrounded by.
続いて、処理空間91aが大気開放されると、内側および外側シール部117a、117bの間の空間は、減圧状態のままとなる一方、外側シール部117bの外側の空間は、大気圧となる。この気圧差により、上側および下側基板113、14を押さえつける力が発生する。そのため、第1の実施の形態のように、両基板を仮止めする工程および仮止め用の治具が不要となる。
Subsequently, when the processing space 91a is opened to the atmosphere, the space between the inner and outer seal portions 117a and 117b remains in a reduced pressure state, while the space outside the outer seal portion 117b is at atmospheric pressure. Due to this pressure difference, a force for pressing the upper and lower substrates 113 and 14 is generated. Therefore, unlike the first embodiment, a step of temporarily fixing both substrates and a temporary fixing jig are not required.
続いて、貼り合わせた両基板113、14に紫外線が照射される。これにより、シール部117a、117bがUV硬化し、シール部117a、117bによって両基板113、14が固定されて、本製造方法が終了する。
Subsequently, both substrates 113 and 14 bonded together are irradiated with ultraviolet rays. As a result, the seal portions 117a and 117b are UV-cured, the both substrates 113 and 14 are fixed by the seal portions 117a and 117b, and the present manufacturing method ends.
<2.2.本実施の形態の製造方法の利点>
以上のように、本実施の形態の表示パネル110の製造方法では、第1の実施の形態と同様な分散液61の塗布処理、分散溶媒の乾燥処理、および電解液18の塗布処理が実行され、2段階の塗布処理が実行される。 <2.2. Advantages of the manufacturing method of the present embodiment>
As described above, in the method for manufacturing thedisplay panel 110 of the present embodiment, the same application process of the dispersion liquid 61, the drying process of the dispersion solvent, and the application process of the electrolytic solution 18 are performed as in the first embodiment. A two-stage coating process is performed.
以上のように、本実施の形態の表示パネル110の製造方法では、第1の実施の形態と同様な分散液61の塗布処理、分散溶媒の乾燥処理、および電解液18の塗布処理が実行され、2段階の塗布処理が実行される。 <2.2. Advantages of the manufacturing method of the present embodiment>
As described above, in the method for manufacturing the
これにより、第1の実施の形態の場合と同様に、貼り合わせられた後において両基板113、14間に分散する球状スペーサ19の分布が均一化できる。そのため、本実施の形態の製造方法により製造される表示パネル10について、対向する基板113、14間のギャップGが所望範囲とされ、両基板113、14間のギャップGのばらつきに起因した表示ムラが抑制される。
Thereby, as in the case of the first embodiment, the distribution of the spherical spacers 19 dispersed between the substrates 113 and 14 after being bonded can be made uniform. Therefore, in the display panel 10 manufactured by the manufacturing method of the present embodiment, the gap G between the opposing substrates 113 and 14 is set to a desired range, and the display unevenness due to the variation in the gap G between the substrates 113 and 14 is displayed. Is suppressed.
また、上側および下側基板113、14を貼り合わせる工程において、処理空間91aが、減圧状態から大気開放されると、この気圧差により上側および下側基板113、14を押さえつける力が発生する。これにより、第1の実施の形態のように両基板を仮止めする工程および仮止め用の治具が不要となる。そのため、貼り合わせられた上側および下側基板113、14をUV硬化するシール部117a、117bによって、容易に固定することができる。
Also, in the process of bonding the upper and lower substrates 113 and 14, when the processing space 91a is released from the decompressed state to the atmosphere, a force for pressing the upper and lower substrates 113 and 14 is generated due to this atmospheric pressure difference. Thereby, the step of temporarily fixing both substrates and the jig for temporary fixing as in the first embodiment are not required. Therefore, the bonded upper and lower substrates 113 and 14 can be easily fixed by the seal portions 117a and 117b for UV curing.
以下、本発明の効果を確認するために行った実施例について説明するが、本発明はこれらに限定されるものではない。
Hereinafter, examples carried out to confirm the effects of the present invention will be described, but the present invention is not limited to these examples.
実施例1では、第1の実施の形態の製造方法に基づいて、表示パネル10を作成した。なお、分散液61の塗布処理において、分散液ディスペンサ60からは、エチレングリコール溶媒に直径30μmの球形スペーサ(積水化学社製ミクロパールGS-230)を1wt%分散させた溶液が、分散液61として吐出される。また、分散液61の乾燥処理において、ホットプレート65は、下側基板14を、約200℃で、約5分間加熱する。
In Example 1, the display panel 10 was created based on the manufacturing method of the first embodiment. In addition, in the coating process of the dispersion liquid 61, a dispersion liquid having a dispersion of 1 wt% of a spherical spacer having a diameter of 30 μm (Micropearl GS-230 manufactured by Sekisui Chemical Co., Ltd.) in an ethylene glycol solvent is used as the dispersion liquid 61. Discharged. In the drying process of the dispersion 61, the hot plate 65 heats the lower substrate 14 at about 200 ° C. for about 5 minutes.
一方、比較例では、乾式散布法により球状スペーサ19を下側基板14に供給し、次に電解液18に下側基板14に供給した表示パネルを作成した。
On the other hand, in the comparative example, a display panel in which the spherical spacer 19 was supplied to the lower substrate 14 by a dry spraying method and then supplied to the lower substrate 14 as the electrolytic solution 18 was created.
表1は、実施例1および比較例で作成した表示パネルの実験結果を示す。表1の「左上部」、「左下部」、「中央部」、「右上部」、および「右下部」の各フィールド(各列)は、表示パネル10を図1に示すように配置した場合において、表示部12上の左上部、左下部、中央部、右上部、および右下部の各部におけるギャップG値(単位:μm)を示している。
Table 1 shows the experimental results of the display panels created in Example 1 and the comparative example. When the display panel 10 is arranged as shown in FIG. 1 in each field (each column) of “upper left”, “lower left”, “center”, “upper right”, and “lower right” in Table 1. 2 shows gap G values (unit: μm) in the upper left, lower left, center, upper right, and lower right portions on the display unit 12.
表1に示すように、実施例1の表示部12の各部におけるギャップG値の変動幅(最大のギャップG値から最小のギャップG値を減じたもの)R1は、0.7(μm)である一方、比較例におけるギャップG値の変動幅R2は、17.4(μm)である。すなわち、実施例1のギャップG値のばらつきは、比較例のものと比較して非常に小さい。
As shown in Table 1, the fluctuation range of the gap G value in each part of the display unit 12 of Example 1 (a value obtained by subtracting the minimum gap G value from the maximum gap G value) R1 is 0.7 (μm). On the other hand, the fluctuation range R2 of the gap G value in the comparative example is 17.4 (μm). That is, the variation in the gap G value in Example 1 is very small compared to that in the comparative example.
このように、本実例1の製造方法を用いることによって、球状スペーサ19は電解液18に均一に分散させられ、表示部12の各部において両基板13、14間のギャップGが略均一に保たれる。そのため、実施例1の製造方法で作成した表示パネル10は、比較例の場合と異なり、ギャップG値のばらつき起因した表示ムラを抑制することができる。
As described above, by using the manufacturing method of Example 1, the spherical spacers 19 are uniformly dispersed in the electrolytic solution 18, and the gap G between the substrates 13 and 14 is kept substantially uniform in each part of the display unit 12. It is. Therefore, unlike the comparative example, the display panel 10 created by the manufacturing method of Example 1 can suppress display unevenness due to the gap G value variation.
1、100 表示システム
10、110 表示パネル
12 表示部
13、113 上側基板
14 下側基板
17、117 シール部
18 電解液
19 球状スペーサ
20 上部電極用ドライバ
30 下部電極用ドライバ
40 コントローラボード
50 シールディスペンサ
51 シール剤
60 分散液ディスペンサ
61 スペーサ分散液
62 分散液塗布部
70 電解液ディスペンサ
72 電解液塗布部
90 真空装置 DESCRIPTION OF SYMBOLS 1,100 Display system 10,110Display panel 12 Display part 13,113 Upper board | substrate 14 Lower board | substrate 17,117 Seal part 18 Electrolytic solution 19 Spherical spacer 20 Upper electrode driver 30 Lower electrode driver 40 Controller board 50 Seal dispenser 51 Sealant 60 Dispersion dispenser 61 Spacer dispersion 62 Dispersion application part 70 Electrolyte dispenser 72 Electrolyte application part 90 Vacuum device
10、110 表示パネル
12 表示部
13、113 上側基板
14 下側基板
17、117 シール部
18 電解液
19 球状スペーサ
20 上部電極用ドライバ
30 下部電極用ドライバ
40 コントローラボード
50 シールディスペンサ
51 シール剤
60 分散液ディスペンサ
61 スペーサ分散液
62 分散液塗布部
70 電解液ディスペンサ
72 電解液塗布部
90 真空装置 DESCRIPTION OF SYMBOLS 1,100 Display system 10,110
Claims (4)
- 電解液が高分子バインダーと金属酸化物微粒子とを含み、対向する基板のうちの一方の基板上に前記電解液を塗布し、他方の基板を減圧雰囲気下で貼り合わせて表示部を形成する電気化学的に動作する表示装置の製造方法において、
前記電解液を塗布する前に、球形スペーサが分散する分散溶媒を基板上の第1塗布位置に塗布し、前記分散溶媒が乾燥した後に前記電解液を塗布することを特徴とする電気化学表示装置の製造方法。 An electrolyte containing a polymer binder and metal oxide fine particles, applying the electrolyte on one of opposing substrates, and bonding the other substrate in a reduced-pressure atmosphere to form a display portion In a method for manufacturing a chemically operated display device,
Before applying the electrolytic solution, a dispersion solvent in which spherical spacers are dispersed is applied to a first application position on a substrate, and the electrolytic solution is applied after the dispersion solvent is dried. Manufacturing method. - 前記分散溶媒の前記第1塗布位置と前記電解液の第2塗布位置は略同一であることを特徴とする請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the first application position of the dispersion solvent and the second application position of the electrolytic solution are substantially the same.
- 塗布された前記分散溶媒が前記一方の基板上で広がる面積は、塗布された前記電解液が前記一方の基板上で広がる面積よりも小さいことを特徴とする請求項2記載の製造方法。 The manufacturing method according to claim 2, wherein an area in which the applied dispersion solvent spreads on the one substrate is smaller than an area in which the applied electrolytic solution spreads on the one substrate.
- 前記分散溶媒は、前記電解液に含まれる溶媒を含むことを特徴とする請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the dispersion solvent contains a solvent contained in the electrolytic solution.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009121919 | 2009-05-20 | ||
JP2009-121919 | 2009-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010134380A1 true WO2010134380A1 (en) | 2010-11-25 |
Family
ID=43126069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054835 WO2010134380A1 (en) | 2009-05-20 | 2010-03-19 | Method for manufacturing electrochemical display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010134380A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180041392A (en) * | 2016-10-14 | 2018-04-24 | 현대자동차주식회사 | Liquid crystal-based film type smart window and the method for same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188235A (en) * | 1999-12-28 | 2001-07-10 | Seiko Epson Corp | Manufacturing method of liquid crystal device, liquid crystal device and electronic equipment |
JP2007047773A (en) * | 2005-07-12 | 2007-02-22 | Sekisui Chem Co Ltd | Method for manufacturing liquid crystal display device, liquid crystal display device, and spacer particle dispersion liquid |
JP2008145830A (en) * | 2006-12-12 | 2008-06-26 | Konica Minolta Holdings Inc | Method for manufacturing display device and display device |
-
2010
- 2010-03-19 WO PCT/JP2010/054835 patent/WO2010134380A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188235A (en) * | 1999-12-28 | 2001-07-10 | Seiko Epson Corp | Manufacturing method of liquid crystal device, liquid crystal device and electronic equipment |
JP2007047773A (en) * | 2005-07-12 | 2007-02-22 | Sekisui Chem Co Ltd | Method for manufacturing liquid crystal display device, liquid crystal display device, and spacer particle dispersion liquid |
JP2008145830A (en) * | 2006-12-12 | 2008-06-26 | Konica Minolta Holdings Inc | Method for manufacturing display device and display device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180041392A (en) * | 2016-10-14 | 2018-04-24 | 현대자동차주식회사 | Liquid crystal-based film type smart window and the method for same |
KR101896781B1 (en) | 2016-10-14 | 2018-09-07 | 현대자동차주식회사 | Liquid crystal-based film type smart window and the method for same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9323126B2 (en) | Electrophoretic particles, method for manufacturing electrophoretic particles, electrophoresis dispersion, display device, and electronic apparatus | |
CN107710064A (en) | Electric driven color-changing part, display device and its driving method | |
TW201144366A (en) | Electrophoretic media | |
WO2011021470A1 (en) | Method for manufacturing a transparent conductive substrate, transparent conductive substrate, and electrochemical display element | |
WO2006129429A1 (en) | Display element | |
JP2009075345A (en) | Electrophoretic display panel manufacturing method and electrophoretic display panel | |
JP4720961B2 (en) | Manufacturing method of display panel | |
JP5482396B2 (en) | Method for manufacturing electrophoretic display device | |
JP2016156930A (en) | Electrochromic display element, display device, information device, manufacturing method of electrochromic display element, electrochromic light control lens | |
JP2011133622A (en) | Method for manufacturing electrochemical display element, and electrochemical display element | |
JP2011164256A (en) | Electrochemical display element | |
WO2010134380A1 (en) | Method for manufacturing electrochemical display device | |
JP2011145537A (en) | Electro-optical device and electronic apparatus | |
JP2007133109A (en) | Electrophoretic display sheet manufacturing method, electrophoretic display device manufacturing method, electrophoretic display device, and electronic apparatus | |
JP4780255B1 (en) | Electrochemical display element | |
JP4569176B2 (en) | Display element | |
JP5316701B2 (en) | Electrochemical display element | |
JP6657615B2 (en) | Electrochromic device and driving method thereof | |
KR100920233B1 (en) | Particle injection method of electronic paper display device | |
JP5343427B2 (en) | Manufacturing method of display element | |
JP4848620B2 (en) | Direct-view reflection display | |
JP5177294B2 (en) | Electrochemical display element | |
JP2009080245A (en) | Electrophoretic display panel and image display device | |
JP4678075B2 (en) | Method for producing electrochemical display element | |
JP2009145461A (en) | Electrochemical display element and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10777615 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10777615 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |