[go: up one dir, main page]

WO2010134265A1 - Wireless communication apparatus, wireless communication method, and non-transitory computer readable medium in which communication control program is stored - Google Patents

Wireless communication apparatus, wireless communication method, and non-transitory computer readable medium in which communication control program is stored Download PDF

Info

Publication number
WO2010134265A1
WO2010134265A1 PCT/JP2010/002894 JP2010002894W WO2010134265A1 WO 2010134265 A1 WO2010134265 A1 WO 2010134265A1 JP 2010002894 W JP2010002894 W JP 2010002894W WO 2010134265 A1 WO2010134265 A1 WO 2010134265A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
polarization signal
interference
wireless communication
cross
Prior art date
Application number
PCT/JP2010/002894
Other languages
French (fr)
Japanese (ja)
Inventor
片貝陽一
川合雅浩
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2010134265A1 publication Critical patent/WO2010134265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/0021Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach in which the algorithm uses adaptive thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Definitions

  • the present invention relates to a wireless communication device, a wireless communication method, and a communication control program, and more particularly, to a wireless communication device that performs co-channel transmission, a wireless communication method, and a non-transitory computer-readable medium storing a communication control program.
  • a transmitter and a receiver that transmit and receive one polarization of the orthogonal polarization, and a transmitter and receiver that transmit and receive the other polarization Consists of a receiver.
  • Patent Document 1 discloses a technique for compensating for inter-polarization interference that occurs in co-channel transmission using orthogonal polarized waves.
  • One of the orthogonal polarization signals is a self-polarization signal, and the other polarization signal is a different polarization signal.
  • the characteristic deterioration is improved by compensating the cross-polarization interference component generated by the cross-polarization signal leaking into the self-polarization signal from the self-polarization signal.
  • cross-polarization based on the coefficient obtained from the correlation between the error signal and cross-polarization signal generated in the self-polarization signal due to the influence of the cross-polarization interference component
  • the interference component is compensated from the self-polarized signal.
  • Patent Document 2 discloses an adaptive modulation control apparatus that selects one channel coding rate from a plurality of channel coding rates based on an input received power ratio and an input interference power to noise power ratio.
  • Patent Document 3 discloses contents for determining a communication rate based on an error rate of received data and a good communication environment. Specifically, the wireless communication device performs threshold determination of the communication environment goodness, and changes the communication rate to a higher communication rate when the communication environment goodness exceeds the threshold. At this time, when the error rate is high, the wireless communication apparatus increases the communication environment goodness threshold, and when the error rate is low, the wireless communication apparatus decreases the communication environment goodness threshold. This prevents the error rate from becoming high due to the increase in the communication rate due to the adaptive modulation method, but increases the communication rate when the error rate is originally low and there is no need to keep the error rate low. Can be made.
  • Non-Patent Document 1 discloses a configuration of a wireless communication device of a digital microwave fixed communication system.
  • the wireless communication device uses the error rate of the signal after compensating for the cross-polarization interference component from its own polarization signal, Is estimated.
  • the wireless communication apparatus estimates the transmission path state using the signal after the control for compensating for the influence due to the state change of the transmission path is performed. That is, the wireless communication apparatus estimates the transmission path state using the own polarization signal after compensating for the cross polarization interference component caused by the transmission path state change, and accurately estimates the transmission path state change. I can't.
  • the present invention has been made to solve such a problem, and a wireless communication device, a wireless communication method, and a communication control program that can accurately estimate a state change of a transmission path are stored. It is an object to provide a typical computer readable medium.
  • a wireless communication apparatus is a wireless communication apparatus that performs co-channel transmission using orthogonal polarization signals, and one of the transmitted polarization signals is used as its own polarization signal.
  • a self-polarization signal receiving unit for receiving, a cross-polarization signal receiving unit for receiving a cross-polarization signal orthogonal to the self-polarization signal received by the self-polarization signal receiving unit, and the self-polarization signal receiving unit
  • a transmission path state estimation unit that estimates a transmission path state based on information on inter-polarization interference generated between the received polarization signal and the cross polarization signal received by the cross polarization signal reception unit; It is to be prepared.
  • the wireless communication apparatus is a wireless communication apparatus that performs co-channel transmission using orthogonal polarization signals, and one of the transmitted polarization signals is converted to its own polarization.
  • a self-polarization signal receiving unit that receives the signal as a signal
  • a cross-polarization signal receiving unit that receives a cross-polarization signal orthogonal to the self-polarization signal received by the self-polarization signal reception unit, and the self-polarization signal reception
  • An inter-polarization interference compensation unit that compensates for the inter-polarization interference generated between the own-polarization signal received by the unit and the cross-polarization signal received by the cross-polarization signal reception unit, and the inter-polarization interference compensation unit
  • a transmission path state estimation unit that estimates a transmission path state based on a weighting factor used to compensate for interference between polarizations.
  • a wireless communication method is a wireless communication method that performs co-channel transmission using orthogonal polarization signals, and a self-polarization signal that is one of the polarization signals and A step of detecting inter-polarization interference generated between the self-polarization signal and a cross-polarization signal orthogonal to the self-polarization signal, and a step of estimating a transmission path state based on the information on the inter-polarization interference.
  • a non-transitory computer readable medium storing a communication control program according to the fourth aspect of the present invention is a communication control program used for a wireless communication apparatus that performs co-channel transmission using orthogonal polarization signals.
  • a communication control program to be executed is stored.
  • a non-transitory computer-readable medium storing a wireless communication apparatus, a wireless communication method, and a communication control program that can accurately estimate a state change of a transmission path.
  • FIG. 1 is a configuration diagram of a wireless communication apparatus according to a first exemplary embodiment.
  • 1 is a configuration diagram of a wireless communication apparatus according to a first exemplary embodiment.
  • FIG. 6 is a diagram illustrating an operation related to compensation for inter-polarization interference according to the first exemplary embodiment;
  • FIG. 6 is a diagram for explaining an error signal according to the first embodiment.
  • FIG. 3 is a configuration diagram of a weighting factor determination unit according to the first exemplary embodiment. 3 is an information table used for determining a data rate according to the first embodiment;
  • FIG. 6 is a diagram for explaining modulation scheme switching according to the first embodiment;
  • FIG. 3 is a configuration diagram of a wireless communication apparatus according to a second exemplary embodiment.
  • FIG. 6 is a configuration diagram of a wireless communication apparatus according to a third embodiment. It is a flowchart concerning data rate determination.
  • FIG. 1 shows the configuration of a wireless communication apparatus according to Embodiment 1 of the present invention.
  • the wireless communication device is a wireless communication device that performs co-channel transmission using orthogonal polarization signals.
  • the wireless communication apparatus includes an own polarization signal receiving unit 1, a cross polarization signal receiving unit 2, a transmission path state estimation unit 3, and an antenna 10.
  • the own polarization signal receiving unit 1 receives one of the polarization signals transmitted from other wireless communication apparatuses as an own polarization signal via the antenna 10.
  • the received own polarization signal is output to the transmission path state estimation unit 3.
  • the cross polarization signal receiving unit 2 is a polarization signal transmitted from another wireless communication device, and receives a cross polarization signal orthogonal to the own polarization signal via the antenna 10.
  • the received cross polarization signal is output to the transmission path state estimation unit 3.
  • the antenna 10 receives the self-polarized signal and the cross-polarized signal.
  • two or more antennas may be provided, and the self-polarized signal and the cross-polarized signal may be received by different antennas. .
  • the transmission path state estimation unit 3 uses the information regarding the inter-polarization interference generated between the own polarization signal received by the own polarization signal reception unit 1 and the cross polarization signal received by the cross polarization signal reception unit 2. Based on this, the transmission path state is estimated. Specifically, the self-polarized signal and the cross-polarized signal are transmitted orthogonally, but an event occurs that the cross-polarized signal leaks into the self-polarized signal due to the deterioration of the transmission path condition or the like. . As a result, the self-polarized signal receives interference from the cross-polarized signal.
  • the transmission path state estimation unit 3 Judge that the condition is getting worse.
  • the transmission path state estimation unit 3 determines that the transmission path state is stable.
  • the wireless communication apparatus includes an antenna 10, an own polarization signal receiving unit 11, a power control unit (hereinafter referred to as AGC (Automatic Gain Control)) 12, a polarization signal receiving unit 21, an AGC 22, and an equalizer 31.
  • AGC Automatic Gain Control
  • AGC Automatic Gain Control
  • XPIC Cross polarization interference compensator
  • polarization signal coupling unit 33 error detection unit 34
  • interference amount calculation unit 35 data rate control unit 41
  • modulation A unit 42 and a transmission unit 43 are provided.
  • the transmission path state estimation unit 3 includes an equalizer 31, an XPIC 32, a polarization signal coupling unit 33, an error detection unit 34, and an interference amount calculation unit 35.
  • the own polarization signal receiving unit 11 receives one of the polarization signals transmitted from other wireless communication devices as the own polarization signal.
  • the own polarization signal receiving unit 11 converts an RF (Radio-Frequency) signal received by the antenna 10 into a baseband signal and outputs the baseband signal to the AGC 12.
  • the AGC 12 that has acquired the own polarization signal converges the received power of the own polarization signal to a certain output level.
  • the AGC 12 outputs a signal subjected to power control to the equalizer 31.
  • the cross polarization signal receiving unit 21 receives a polarization signal orthogonal to the self polarization signal as a cross polarization signal.
  • the cross polarization signal receiving unit 21 converts an RF (Radio Frequency) signal received by the antenna 10 into a baseband signal and outputs the baseband signal to the AGC 22.
  • the AGC 22 that has acquired the cross polarization signal converges the received power of the cross polarization signal to a constant output level.
  • the AGC 22 outputs a signal subjected to power control to the XPIC 32.
  • the equalizer 31 removes intersymbol interference of the own polarization signal acquired from the AGC 12.
  • the equalizer 31 is a transversal type automatic equalizer.
  • the transversal type automatic equalizer removes mutual interference between bits caused by multipath or the like.
  • the equalizer 31 removes intersymbol interference using error information from the ideal reception signal point of the own polarization signal detected by the error detection unit 34 described later.
  • the equalizer 31 outputs the own polarization signal from which the intersymbol interference is removed to the polarization signal coupling unit 33.
  • the XPIC 32 generates a component that compensates for the cross polarization interference included in the own polarization signal based on the cross polarization signal acquired from the AGC 22, and outputs the generated component to the polarization signal coupling unit 33.
  • the polarization signal combining unit 33 combines the component that compensates the cross-polarization interference acquired from the XPIC 32 with the self-polarization signal acquired from the equalizer 31, and generates a self-polarization signal that eliminates the cross-polarization interference. .
  • the polarization signal coupling unit 33 outputs the own polarization signal compensated for the cross polarization interference to the error detection unit 34.
  • operations of the XPIC 32, the polarization signal coupling unit 33, and the error detection unit 34 will be described in detail with reference to FIG.
  • the XPIC 32 includes a weighting factor determination unit 321, delay units 322_1 to 322_2N + 1, multipliers 323_1 to 323_2N + 1, and adders 324_1 to 324_2N + 1.
  • the cross polarization signal X j input to the XPIC 32 is input to the delay units 322_1 to 322_2N + 1, and 2N + 1 cross polarization signals (X ⁇ ) acquired at N times before and after T around a certain time T. N 1 to X N ). Further, the cross polarization signal X j is also input to the weighting factor determination unit 321. Cross-polarized signals X ⁇ N 1 to X N are input to multipliers 323_1 to 323_2N + 1, and are multiplied by the weighting factor acquired from weighting factor determining section 321. Multipliers 323_1 to 323_2N + 1 multiply the cross polarization signals X ⁇ N to X N by weighting factors to calculate the ratio of the inter-polarization interference in the cross polarization signals X ⁇ N to X N.
  • Multipliers 323_1 to 323_2N + 1 output the result of multiplying the cross polarization signal and the weighting coefficient to adders 324_1 to 324_2N + 1.
  • Adders 324_1 to 324_2N + 1 add all the values output from multipliers 323_1 to 323_2N + 1. Thereby, the inter-polarization interference between the own polarization signal and the cross polarization signal is calculated.
  • the adder 324_2N + 1 outputs the calculated inter-polarization interference to the polarization signal coupling unit 33.
  • the polarization signal coupling unit 33 adds (or subtracts) the inter-polarization interference acquired from the adder 324_2N + 1 to the own polarization signal (D in ) acquired from the equalizer 31 and leaks into the own polarization signal. Compensate for inter-polarization interference.
  • the own polarization signal (D out ) generated by the polarization signal coupling unit 33 is output to the error detection unit 34.
  • FIG. 4 shows the self-polarized signal (D in ) acquired from the equalizer 31 and the self-polarized signal (D out ) compensated for inter-polarization interference on the IQ plane. Further, FIG. 4 also shows ideal received signal points of a signal transmitted by QPSK modulation on the IQ plane. If the ideal reception signal point is a signal transmitted by QPSK modulation, a signal whose components are (1, 1) (1, -1) (-1, 1) (-1, -1) on the IQ plane It is determined as a point.
  • Error detector 34 the own polarization signal (D out), is detected as an error signal the difference between the distance of the nearest ideal signal point from the own polarization signal (D out) (E).
  • the error detector 34 outputs the detected error signal to the equalizer 31 and the XPIC 32.
  • the weighting factor determination unit 321 includes a correlation calculation unit 321_1 and an integration unit 321_2.
  • the correlation calculation unit 321_1 calculates the correlation between the error signal (E) acquired from the error detection unit 34 and the cross polarization signals X ⁇ N 1 to X N. Specifically, correlation calculation section 321_1 calculates the inner product value (E ⁇ X j ( ⁇ N ⁇ j ⁇ N)) of each cross-polarized signal X ⁇ N 1 to X N and error signal (E). Next, the weight coefficient C j is calculated from the inner product value and the absolute value of X j using the following equation (1).
  • the weighting coefficient C j calculated by the equation (1) indicates the ratio of the inter-polarization interference included in the cross polarization signal X j . Further, C j will be further described.
  • the cross polarization signal stored in the delay units 322_1 to 322_2N + 1 changes at regular intervals. For example, the cross polarization signal X j stored in the delay unit 322_1 moves to the delay unit 322_2 when the cross polarization signal X j + 1 is acquired.
  • the cross polarization signal X j + 1 is stored in the delay unit 322_1. In this way, every time a cross-polarized signal is acquired, the cross-polarized signal stored in the delay units 322_1 to 322_2N + 1 changes. Therefore, the integration unit 321_2 calculates the sum of the weighting coefficients of the delay unit 322_j (1 ⁇ j ⁇ 2N + 1) for a certain time. Specifically, the sum of the weighting coefficients is expressed by the following equation (2).
  • ⁇ in Equation (2) is an arbitrary coefficient.
  • Z is an arbitrary value and indicates the number of times to be added before a predetermined time elapses.
  • Weight coefficient determination unit 321 outputs the weighting coefficients C j calculated in this way to multipliers 323_1 ⁇ 323_2N + 1.
  • the XPIC 32 outputs the calculated 2N + 1 weighting factors C j to the interference amount calculation unit.
  • the interference amount calculation unit 35 calculates the total sum of the acquired weighting factors Cj using Expression (3).
  • the interference amount calculation unit 35 outputs the sum of the weighting factors C j calculated by the equation (3) to the data rate control unit 41.
  • the total sum of the weighting factors C j indicates the amount of interference between the polarized waves.
  • the data rate control unit 41 determines the data rate based on the sum value of the weighting factors Cj . Specifically, the data rate control unit 41 determines, for example, the modulation method and the modulation rate based on the information table that defines the relationship between the sum of the weight coefficients, the modulation method, and the modulation rate in FIG. C1 to C3 indicating the sum of the weighting coefficients have a relationship of C1 ⁇ C2 ⁇ C3.
  • the data rate control unit 41 determines that the state of the transmission path is stable, sets the modulation scheme to 16QAM, and sets the modulation speed to 3 Mbaud. Set a high data rate.
  • the data rate control unit 41 determines that the state of the transmission path is unstable, sets the modulation method to QPSK, and modulates the modulation. A low data rate with a speed of 1 Mbaud is set.
  • the setting values of the modulation scheme and modulation speed shown in FIG. 6 are merely examples, and the data rate control unit 41 can set other modulation schemes and modulation speeds. Alternatively, the data rate control unit 41 may set one of the modulation scheme and the modulation speed.
  • the modulation unit 42 modulates transmission data based on the modulation scheme and modulation speed set by the data rate control unit 41.
  • the modulation unit 42 outputs the modulated transmission data to the transmission unit 43.
  • the transmission unit 43 transmits the acquired transmission data via the antenna 10.
  • the radio communication apparatus calculates the interpolarization interference generated between the own polarization signal and the cross polarization signal, and is based on the weighting factor indicating the interpolarization interference. Thus, it is possible to accurately grasp the transmission path state.
  • the wireless communication apparatus directly grasps the transmission path state. For example, if the transmission path state is unstable, the data rate is set to a low speed and the transmission path state is stable. If so, an appropriate data rate can be set, such as setting the data rate at a high speed.
  • the wireless communication apparatus grasps the transmission path state based on the weight coefficient indicating the inter-polarization interference generated in the own polarization signal before compensating for the inter-polarization interference.
  • the transmission path state can be grasped quickly and directly.
  • the weighting coefficient indicating the inter-polarization interference is generated when the inter-polarization interference is compensated, and is not obtained by a circuit newly provided for the present invention.
  • the data rate can be controlled at an early stage by quickly grasping the transmission path state. This will be specifically described with reference to FIG.
  • Fig. 7 shows the relationship between the passage of time and the sum of the weighting factors.
  • C0 indicates a threshold value for switching the data rate.
  • C1 represents the total sum of the weight coefficients of the control limits that the XPIC 32 can perform cross polarization compensation.
  • the transmission path state is grasped based on the weighting factor according to the first embodiment of the present invention
  • the transmission path state is determined to be unstable at the threshold value C0 before reaching the control limit C1, Switch the data rate.
  • a QPSK modulation scheme that realizes a low data rate is set at the time when the sum of the weight coefficients reaches C0 (B).
  • a control time difference of time T occurs between when the transmission path state is grasped based on the weighting coefficient and when it is not.
  • switching the modulation method at an early stage it is possible to improve an event in which the error rate suddenly increases when the control limit C1 is exceeded and the data rate control cannot keep up with the change in the state of the transmission path.
  • the wireless communication apparatus outputs power control information from the AGC 12 to the data rate control unit 41.
  • the AGC 12 converges the received power of the own polarization signal to a certain output level. That is, the AGC 12 amplifies the power when the received power of the received polarization signal is lower than a predetermined value.
  • the received power of the self-polarized signal received by the wireless communication apparatus is attenuated by the influence of the distance of the wireless transmission path for communication and the buildings existing on the transmission path.
  • the AGC 12 outputs power control information to the data rate control unit 41.
  • the AGC 12 may output a power difference between a predetermined power value and the received power of the received own polarization signal to the data rate control unit 41.
  • the AGC 12 may output the received power value of the received own polarization signal to the data rate control unit 41.
  • the data rate control unit 41 determines the modulation scheme and the modulation speed based on the power control information acquired from the AGC 12 and the weighting factor that is information on the interference between polarizations.
  • the radio communication apparatus can determine the data rate based on the power control information and the information on the interference between polarizations.
  • the wireless communication apparatus according to the second embodiment of the present invention can accurately determine the transmission path state by increasing the parameters for determining the data rate, and therefore can determine an appropriate data rate. .
  • the wireless communication apparatus according to the third embodiment of the present invention includes an error detection unit 50.
  • Other configurations are the same as those in FIGS. 2 and 8.
  • the error detection unit 50 acquires the own polarization signal compensated for the inter-polarization interference from the polarization signal coupling unit 33.
  • the error detection unit 50 detects a code error included in the acquired own polarization signal.
  • a code error may be detected based on CRC (Cyclic Redundancy Check).
  • the code error detection method is not limited to the CRC, and other methods may be used to detect the code error.
  • the error detection unit 50 outputs information regarding the detected code error to the data rate control unit 41.
  • the error detection unit 50 may output the number of bits of the generated error to the data rate control unit 41.
  • an error rate indicating the number of generated error bits as a percentage may be output to the data rate control unit 41.
  • the data rate control unit 41 is based on the information regarding the code error acquired from the error detection unit 50, the power control information acquired from the AGC 12, and the weighting factor that is the information regarding the inter-polarization interference acquired from the interference amount calculation unit 35. Determine the data rate.
  • the radio communication apparatus can determine the data rate based on the code error information, the power control information, and the information on the inter-polarization interference.
  • the wireless communication apparatus can accurately determine the transmission path state by increasing parameters when determining the data rate, and therefore can determine an appropriate data rate. .
  • the present invention has been described as a hardware configuration, but the present invention is not limited to this.
  • the present invention can also realize arbitrary processing by causing a computer including a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), and the like to execute a program.
  • a computer including a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), and the like to execute a program.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media examples include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • step S1 the computer obtains 2N + 1 weighting factors C j from the XPIC 32.
  • step S2 the computer calculates the sum of the acquired weighting factors Cj .
  • step S3 the computer compares the sum of the weighting factors C j, a predetermined threshold value.
  • step S4 when the sum of weighting coefficients C j is smaller than a predetermined threshold, the computer determines a stable channel state, for example, select a 16QAM modulation scheme, to set the high-speed data rates.
  • step S5 if the sum of weighting coefficients C j is larger than a predetermined threshold value, the computer determines that the transmission path condition is unstable, for example, select the QPSK modulation scheme, sets the low-speed data rates .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Quality & Reliability (AREA)
  • Noise Elimination (AREA)

Abstract

Disclosed are a wireless communication apparatus, wireless communication method, and communication control program, wherein changes in the state of a communication channel can be estimated directly. The wireless communication apparatus is a wireless communication apparatus which performs co-channel transmission using orthogonally polarized signals. The wireless communication apparatus is provided with a polar signal reception unit (1) which receives one of the polarized signals transmitted to the wireless communication apparatus as a polar signal, and a cross polar signal reception unit (2) which receives a cross polar signal which is orthogonal to the polar signal that the polar signal reception unit (1) receives. Further, the wireless communication apparatus is provided with a communication channel status estimation unit (3) which estimates the state of the communication channel, based on information pertaining to the cross-polarization interference generated between the polar signal received by the polar signal reception unit (1) and the cross polar signal received by the cross polar signal reception unit (2).

Description

無線通信装置、無線通信方法及び通信制御プログラムが格納された非一時的なコンピュータ可読媒体Non-transitory computer-readable medium storing wireless communication apparatus, wireless communication method, and communication control program
 本発明は、無線通信装置、無線通信方法及び通信制御プログラムに関し、特にコチャンネル伝送を行う無線通信装置、無線通信方法及び通信制御プログラムが格納された非一時的なコンピュータ可読媒体に関する。 The present invention relates to a wireless communication device, a wireless communication method, and a communication control program, and more particularly, to a wireless communication device that performs co-channel transmission, a wireless communication method, and a non-transitory computer-readable medium storing a communication control program.
 ディジタルマイクロ波固定通信システムにおける、直交する偏波を用いたコチャンネル伝送では、直交する偏波の一方の偏波を送受信する送信器及び受信器と、もう一方の偏波を送受信する送信器及び受信器から構成される。 In co-channel transmission using orthogonal polarization in a digital microwave fixed communication system, a transmitter and a receiver that transmit and receive one polarization of the orthogonal polarization, and a transmitter and receiver that transmit and receive the other polarization Consists of a receiver.
 ここで、コチャンネル伝送を行う際の品質向上を図る技術について以下に説明する。 Here, the technology for improving the quality when performing co-channel transmission is described below.
 特許文献1には、直交する偏波を用いたコチャンネル伝送において発生する偏波間干渉を補償する手法が開示されている。直交する偏波信号の一方を自偏波信号とし、もう一方の偏波信号を異偏波信号とする。この時、自偏波信号に異偏波信号がもれこむことから生じる交差偏波干渉成分を、自偏波信号から補償することで、特性劣化を改善している。自偏波信号から交差偏波干渉成分を補償する際に、交差偏波干渉成分の影響で自偏波信号に生じる誤差信号と異偏波信号との相関から求められる係数に基づいて交差偏波干渉成分を自偏波信号から補償している。 Patent Document 1 discloses a technique for compensating for inter-polarization interference that occurs in co-channel transmission using orthogonal polarized waves. One of the orthogonal polarization signals is a self-polarization signal, and the other polarization signal is a different polarization signal. At this time, the characteristic deterioration is improved by compensating the cross-polarization interference component generated by the cross-polarization signal leaking into the self-polarization signal from the self-polarization signal. When compensating cross-polarization interference components from the self-polarization signal, cross-polarization based on the coefficient obtained from the correlation between the error signal and cross-polarization signal generated in the self-polarization signal due to the influence of the cross-polarization interference component The interference component is compensated from the self-polarized signal.
 特許文献2には、入力した受信電力比と入力した干渉電力対雑音電力比とに基づいて複数のチャネル符号化率から一つのチャネル符号化率を選択する適応変調制御装置について開示されている。 Patent Document 2 discloses an adaptive modulation control apparatus that selects one channel coding rate from a plurality of channel coding rates based on an input received power ratio and an input interference power to noise power ratio.
 特許文献3には、受信したデータのエラーレートと、通信環境良好度とに基づいて通信レートを決定する内容が開示されている。具体的には、無線通信装置は、通信環境良好度の閾値判定を行い、通信環境良好度が閾値を超えた場合に、通信レートをより高速な通信レートに変更する。この時、無線通信装置は、エラーレートが高い場合には、通信環境良好度の閾値を大きくし、エラーレートが低い場合には、通信環境良好度の閾値を小さくする。これにより、適応変調方式による通信レートの上昇に起因してエラーレートが高くなってしまうことを防止しつつ、エラーレートがもともと低く、エラーレートを低く抑える必要がない場合には、通信レートを上昇させることができる。 Patent Document 3 discloses contents for determining a communication rate based on an error rate of received data and a good communication environment. Specifically, the wireless communication device performs threshold determination of the communication environment goodness, and changes the communication rate to a higher communication rate when the communication environment goodness exceeds the threshold. At this time, when the error rate is high, the wireless communication apparatus increases the communication environment goodness threshold, and when the error rate is low, the wireless communication apparatus decreases the communication environment goodness threshold. This prevents the error rate from becoming high due to the increase in the communication rate due to the adaptive modulation method, but increases the communication rate when the error rate is originally low and there is no need to keep the error rate low. Can be made.
 非特許文献1には、ディジタルマイクロ波固定通信システムの無線通信装置の構成が開示されている。 Non-Patent Document 1 discloses a configuration of a wireless communication device of a digital microwave fixed communication system.
特開2004-112288号公報JP 2004-112288 A 特開2007-281780号公報JP 2007-281780 A 特開2007-324651号公報JP 2007-324651 A
 しかし、上述した特許文献1~3に開示している技術を用いた場合に、次のような問題が生じる。ディジタルマイクロ波固定通信システムの直交する偏波を用いたコチャンネル伝送において、無線通信装置は、自偏波信号から交差偏波干渉成分を補償した後の信号のエラーレートを用いて伝送路の状態を推定する。この時、無線通信装置は、伝送路の状態変化による影響を補償する制御がおこなわれた後の信号を用いて伝送路状態を推定する。つまり、無線通信装置は、伝送路の状態変化により生じる交差偏波干渉成分を補償した後の自偏波信号を用いて伝送路状態を推定することとなり、伝送路の状態変化を精度良く推定することができない。 However, the following problems arise when the techniques disclosed in Patent Documents 1 to 3 described above are used. In co-channel transmission using orthogonal polarization in a digital microwave fixed communication system, the wireless communication device uses the error rate of the signal after compensating for the cross-polarization interference component from its own polarization signal, Is estimated. At this time, the wireless communication apparatus estimates the transmission path state using the signal after the control for compensating for the influence due to the state change of the transmission path is performed. That is, the wireless communication apparatus estimates the transmission path state using the own polarization signal after compensating for the cross polarization interference component caused by the transmission path state change, and accurately estimates the transmission path state change. I can't.
 本発明は、このような問題点を解決するためになされたものであり、伝送路の状態変化を精度良く推定することができる無線通信装置、無線通信方法及び通信制御プログラムが格納された非一時的なコンピュータ可読媒体を提供することを目的とする。 The present invention has been made to solve such a problem, and a wireless communication device, a wireless communication method, and a communication control program that can accurately estimate a state change of a transmission path are stored. It is an object to provide a typical computer readable medium.
 本発明の第1の態様にかかる無線通信装置は、直交する偏波信号を用いてコチャンネル伝送を行う無線通信装置であって、送信された偏波信号の内のひとつを自偏波信号として受信する自偏波信号受信部と、前記自偏波信号受信部で受信する自偏波信号に直交した交差偏波信号を受信する交差偏波信号受信部と、前記自偏波信号受信部により受信された自偏波信号と前記交差偏波信号受信部により受信された交差偏波信号との間で生じる偏波間干渉に関する情報に基づいて伝送路状態を推定する伝送路状態推定部と、を備えるものである。 A wireless communication apparatus according to a first aspect of the present invention is a wireless communication apparatus that performs co-channel transmission using orthogonal polarization signals, and one of the transmitted polarization signals is used as its own polarization signal. A self-polarization signal receiving unit for receiving, a cross-polarization signal receiving unit for receiving a cross-polarization signal orthogonal to the self-polarization signal received by the self-polarization signal receiving unit, and the self-polarization signal receiving unit A transmission path state estimation unit that estimates a transmission path state based on information on inter-polarization interference generated between the received polarization signal and the cross polarization signal received by the cross polarization signal reception unit; It is to be prepared.
 また、本発明の第2の態様にかかる無線通信装置は、直交する偏波信号を用いてコチャンネル伝送を行う無線通信装置であって、送信された偏波信号の内のひとつを自偏波信号として受信する自偏波信号受信部と、前記自偏波信号受信部で受信する自偏波信号に直交する交差偏波信号を受信する交差偏波信号受信部と、前記自偏波信号受信部により受信された自偏波信号と前記交差偏波信号受信部により受信された交差偏波信号との間で生じる偏波間干渉を補償する偏波間干渉補償部と、前記偏波間干渉補償部にて偏波間干渉を補償するために用いる重み係数に基づいて伝送路状態を推定する伝送路状態推定部と、を備えるものである。 The wireless communication apparatus according to the second aspect of the present invention is a wireless communication apparatus that performs co-channel transmission using orthogonal polarization signals, and one of the transmitted polarization signals is converted to its own polarization. A self-polarization signal receiving unit that receives the signal as a signal, a cross-polarization signal receiving unit that receives a cross-polarization signal orthogonal to the self-polarization signal received by the self-polarization signal reception unit, and the self-polarization signal reception An inter-polarization interference compensation unit that compensates for the inter-polarization interference generated between the own-polarization signal received by the unit and the cross-polarization signal received by the cross-polarization signal reception unit, and the inter-polarization interference compensation unit And a transmission path state estimation unit that estimates a transmission path state based on a weighting factor used to compensate for interference between polarizations.
 また、本発明の第3の態様にかかる無線通信方法は、直交する偏波信号を用いてコチャンネル伝送を行う無線通信方法であって、偏波信号の内のひとつである自偏波信号と当該自偏波信号と直交する交差偏波信号との間に生じる偏波間干渉を検出するステップと、前記偏波間干渉に関する情報に基づいて伝送路状態を推定するステップと、を備えることである。 A wireless communication method according to the third aspect of the present invention is a wireless communication method that performs co-channel transmission using orthogonal polarization signals, and a self-polarization signal that is one of the polarization signals and A step of detecting inter-polarization interference generated between the self-polarization signal and a cross-polarization signal orthogonal to the self-polarization signal, and a step of estimating a transmission path state based on the information on the inter-polarization interference.
 また、本発明の第4の態様にかかる通信制御プログラムが格納された非一時的なコンピュータ可読媒体は、直交する偏波信号を用いてコチャンネル伝送を行う無線通信装置に用いられる通信制御プログラムであって、偏波信号の内のひとつである自偏波信号と当該自偏波信号と直交する交差偏波信号との間で生じる偏波間干渉に関する情報を取得するステップと、前記偏波間干渉に関する情報に基づいて伝送路状態を推定するステップと、前記偏波間干渉に関する情報に基づいて推定された伝送路状態に応じて送信信号のデータレートを設定するステップと、を無線通信装置の制御コンピュータに実行させる通信制御プログラムを格納したものである。 A non-transitory computer readable medium storing a communication control program according to the fourth aspect of the present invention is a communication control program used for a wireless communication apparatus that performs co-channel transmission using orthogonal polarization signals. A step of acquiring information relating to inter-polarization interference that occurs between a self-polarization signal that is one of the polarization signals and a cross-polarization signal that is orthogonal to the self-polarization signal; and A step of estimating a transmission line state based on information; and a step of setting a data rate of a transmission signal in accordance with the transmission line state estimated based on the information on the inter-polarization interference. A communication control program to be executed is stored.
 本発明により、伝送路の状態変化を精度良く推定することができる無線通信装置、無線通信方法及び通信制御プログラムが格納された非一時的なコンピュータ可読媒体を提供することができる。 According to the present invention, it is possible to provide a non-transitory computer-readable medium storing a wireless communication apparatus, a wireless communication method, and a communication control program that can accurately estimate a state change of a transmission path.
実施の形態1にかかる無線通信装置の構成図である。1 is a configuration diagram of a wireless communication apparatus according to a first exemplary embodiment. 実施の形態1にかかる無線通信装置の構成図である。1 is a configuration diagram of a wireless communication apparatus according to a first exemplary embodiment. 実施の形態1にかかる偏波間干渉の補償にかかる動作を示す図である。FIG. 6 is a diagram illustrating an operation related to compensation for inter-polarization interference according to the first exemplary embodiment; 実施の形態1にかかる誤差信号を説明する図である。FIG. 6 is a diagram for explaining an error signal according to the first embodiment. 実施の形態1にかかる重み係数決定部の構成図である。FIG. 3 is a configuration diagram of a weighting factor determination unit according to the first exemplary embodiment. 実施の形態1にかかるデータレートの決定に用いる情報テーブルである。3 is an information table used for determining a data rate according to the first embodiment; 実施の形態1にかかる変調方式の切り替えを説明する図である。FIG. 6 is a diagram for explaining modulation scheme switching according to the first embodiment; 実施の形態2にかかる無線通信装置の構成図である。FIG. 3 is a configuration diagram of a wireless communication apparatus according to a second exemplary embodiment. 実施の形態3にかかる無線通信装置の構成図である。FIG. 6 is a configuration diagram of a wireless communication apparatus according to a third embodiment. データレート決定にかかるフローチャートである。It is a flowchart concerning data rate determination.
 (実施の形態1)
 以下、図面を参照して本発明の実施の形態について説明する。図1は、本発明の実施の形態1にかかる無線通信装置の構成を示したものである。無線通信装置は、直交する偏波信号を用いてコチャンネル伝送を行う無線通信装置である。無線通信装置は、自偏波信号受信部1と、交差偏波信号受信部2と、伝送路状態推定部3と、アンテナ10とを備えている。
(Embodiment 1)
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a wireless communication apparatus according to Embodiment 1 of the present invention. The wireless communication device is a wireless communication device that performs co-channel transmission using orthogonal polarization signals. The wireless communication apparatus includes an own polarization signal receiving unit 1, a cross polarization signal receiving unit 2, a transmission path state estimation unit 3, and an antenna 10.
 自偏波信号受信部1は、他の無線通信装置から送信された偏波信号の内の一つを、アンテナ10を介して自偏波信号として受信する。受信した自偏波信号は、伝送路状態推定部3に出力される。 The own polarization signal receiving unit 1 receives one of the polarization signals transmitted from other wireless communication apparatuses as an own polarization signal via the antenna 10. The received own polarization signal is output to the transmission path state estimation unit 3.
 交差偏波信号受信部2は、他の無線通信装置から送信された偏波信号であり、自偏波信号と直交する交差偏波信号を、アンテナ10を介して受信する。受信した交差偏波信号は、伝送路状態推定部3に出力される。図1では、アンテナ10は、自偏波信号と交差偏波信号を受信するが、アンテナを2本以上設けて、自偏波信号と交差偏波信号をそれぞれ別のアンテナで受信してもよい。 The cross polarization signal receiving unit 2 is a polarization signal transmitted from another wireless communication device, and receives a cross polarization signal orthogonal to the own polarization signal via the antenna 10. The received cross polarization signal is output to the transmission path state estimation unit 3. In FIG. 1, the antenna 10 receives the self-polarized signal and the cross-polarized signal. However, two or more antennas may be provided, and the self-polarized signal and the cross-polarized signal may be received by different antennas. .
 伝送路状態推定部3は、自偏波信号受信部1により受信された自偏波信号と交差偏波信号受信部2により受信された交差偏波信号との間に生じる偏波間干渉に関する情報に基づいて伝送路状態を推定する。具体的には、自偏波信号と交差偏波信号は、直交して送信されるが、伝送路状態の悪化等の影響で交差偏波信号が自偏波信号にもれこむ事象が発生する。これにより、自偏波信号は、交差偏波信号の干渉を受ける。ここで、自偏波信号と交差偏波信号の偏波間干渉に関する情報として、例えば、干渉量もしくは偏波間干渉の補償に用いる重み係数等が大きい場合は、伝送路状態推定部3は、伝送路状態が悪化していると判断する。干渉量もしくは偏波間干渉の補償に用いる重み係数等が小さい場合は、伝送路状態推定部3は、伝送路状態が安定していると判断する。 The transmission path state estimation unit 3 uses the information regarding the inter-polarization interference generated between the own polarization signal received by the own polarization signal reception unit 1 and the cross polarization signal received by the cross polarization signal reception unit 2. Based on this, the transmission path state is estimated. Specifically, the self-polarized signal and the cross-polarized signal are transmitted orthogonally, but an event occurs that the cross-polarized signal leaks into the self-polarized signal due to the deterioration of the transmission path condition or the like. . As a result, the self-polarized signal receives interference from the cross-polarized signal. Here, as information on the inter-polarization interference between the self-polarized signal and the cross-polarized signal, for example, when the amount of interference or the weight coefficient used for compensation of the inter-polarization interference is large, the transmission path state estimation unit 3 Judge that the condition is getting worse. When the amount of interference or the weighting coefficient used for compensating for the polarization interference is small, the transmission path state estimation unit 3 determines that the transmission path state is stable.
 以上説明したように、図1にかかる構成の無線通信装置を用いることにより、受信した自偏波信号及び交差偏波信号の偏波間干渉に関する情報から伝送路状態を精度良く推定することができる。 As described above, by using the radio communication apparatus having the configuration shown in FIG. 1, it is possible to accurately estimate the transmission path state from the information related to the interference between the polarizations of the received own polarization signal and cross polarization signal.
 次に、図2を用いて本発明の実施の形態1にかかる無線通信装置の詳細な構成について説明する。無線通信装置は、アンテナ10と、自偏波信号受信部11と、電力制御部(以下、AGC(Automatic Gain Control))12と、偏波信号受信部21と、AGC22と、等化器31と、交差偏波間干渉補償器(以下、XPIC(Cross Polarization Interference Canceller))32と、偏波信号結合部33と、誤差検出部34と、干渉量算出部35と、データレート制御部41と、変調部42と、送信部43とを備えている。ここで、図1の自偏波信号受信部1は、自偏波信号受信部11とAGC12とを含み、交差偏波信号受信部2は、交差偏波信号受信部21とAGC22とを含み、伝送路状態推定部3は、等化器31とXPIC32と偏波信号結合部33と誤差検出部34と干渉量算出部35とを含むものとする。 Next, the detailed configuration of the wireless communication apparatus according to the first embodiment of the present invention will be described with reference to FIG. The wireless communication apparatus includes an antenna 10, an own polarization signal receiving unit 11, a power control unit (hereinafter referred to as AGC (Automatic Gain Control)) 12, a polarization signal receiving unit 21, an AGC 22, and an equalizer 31. Cross polarization interference compensator (hereinafter referred to as XPIC (Cross Polarization Interference Canceller)) 32, polarization signal coupling unit 33, error detection unit 34, interference amount calculation unit 35, data rate control unit 41, and modulation A unit 42 and a transmission unit 43 are provided. Here, the own polarization signal receiving unit 1 of FIG. 1 includes an own polarization signal receiving unit 11 and an AGC 12, and the cross polarization signal receiving unit 2 includes a cross polarization signal receiving unit 21 and an AGC 22. The transmission path state estimation unit 3 includes an equalizer 31, an XPIC 32, a polarization signal coupling unit 33, an error detection unit 34, and an interference amount calculation unit 35.
 自偏波信号受信部11は、他の無線通信装置から送信される偏波信号のうちの1つを自偏波信号として受信する。自偏波信号受信部11は、アンテナ10で受信したRF(Radio Frequency)信号をベースバンド信号に変換し、AGC12に出力する。自偏波信号を取得したAGC12は、自偏波信号の受信電力を一定の出力レベルに収束させる。AGC12は、電力制御を行った信号を等化器31に出力する。 The own polarization signal receiving unit 11 receives one of the polarization signals transmitted from other wireless communication devices as the own polarization signal. The own polarization signal receiving unit 11 converts an RF (Radio-Frequency) signal received by the antenna 10 into a baseband signal and outputs the baseband signal to the AGC 12. The AGC 12 that has acquired the own polarization signal converges the received power of the own polarization signal to a certain output level. The AGC 12 outputs a signal subjected to power control to the equalizer 31.
 交差偏波信号受信部21は、自偏波信号と直交する偏波信号を交差偏波信号として受信する。交差偏波信号受信部21は、アンテナ10で受信したRF(Radio Frequency)信号をベースバンド信号に変換し、AGC22に出力する。交差偏波信号を取得したAGC22は、交差偏波信号の受信電力を一定の出力レベルに収束させる。AGC22は、電力制御を行った信号をXPIC32に出力する。 The cross polarization signal receiving unit 21 receives a polarization signal orthogonal to the self polarization signal as a cross polarization signal. The cross polarization signal receiving unit 21 converts an RF (Radio Frequency) signal received by the antenna 10 into a baseband signal and outputs the baseband signal to the AGC 22. The AGC 22 that has acquired the cross polarization signal converges the received power of the cross polarization signal to a constant output level. The AGC 22 outputs a signal subjected to power control to the XPIC 32.
 等化器31は、AGC12から取得した自偏波信号の符号間干渉を取り除く。例えば、等化器31は、トランスバーサル形自動等化器である。トランスバーサル形自動等化器は、マルチパス等により生じたビット間の相互干渉を取り除く。ここで、等化器31は、後述する誤差検出部34で検出される、自偏波信号の理想受信信号点からの誤差情報を用いて符号間干渉を取り除く。等化器31は、符号間干渉を取り除いた自偏波信号を偏波信号結合部33に出力する。 The equalizer 31 removes intersymbol interference of the own polarization signal acquired from the AGC 12. For example, the equalizer 31 is a transversal type automatic equalizer. The transversal type automatic equalizer removes mutual interference between bits caused by multipath or the like. Here, the equalizer 31 removes intersymbol interference using error information from the ideal reception signal point of the own polarization signal detected by the error detection unit 34 described later. The equalizer 31 outputs the own polarization signal from which the intersymbol interference is removed to the polarization signal coupling unit 33.
 XPIC32は、AGC22から取得した交差偏波信号に基づいて、自偏波信号に含まれる交差偏波間干渉を補償する成分を生成し、偏波信号結合部33に出力する。偏波信号結合部33は、等化器31から取得した自偏波信号にXPIC32から取得した交差偏波間干渉を補償する成分を結合し、交差偏波間干渉を取り除いた自偏波信号を生成する。偏波信号結合部33は、交差偏波間干渉を補償した自偏波信号を誤差検出部34に出力する。ここで、XPIC32、偏波信号結合部33及び誤差検出部34の動作について、図3を用いて詳細に説明する。 The XPIC 32 generates a component that compensates for the cross polarization interference included in the own polarization signal based on the cross polarization signal acquired from the AGC 22, and outputs the generated component to the polarization signal coupling unit 33. The polarization signal combining unit 33 combines the component that compensates the cross-polarization interference acquired from the XPIC 32 with the self-polarization signal acquired from the equalizer 31, and generates a self-polarization signal that eliminates the cross-polarization interference. . The polarization signal coupling unit 33 outputs the own polarization signal compensated for the cross polarization interference to the error detection unit 34. Here, operations of the XPIC 32, the polarization signal coupling unit 33, and the error detection unit 34 will be described in detail with reference to FIG.
 XPIC32は、重み係数決定部321と、遅延部322_1~322_2N+1と、乗算器323_1~323_2N+1と加算器324_1~324_2N+1とを備えている。 The XPIC 32 includes a weighting factor determination unit 321, delay units 322_1 to 322_2N + 1, multipliers 323_1 to 323_2N + 1, and adders 324_1 to 324_2N + 1.
 XPIC32に入力された交差偏波信号Xは、遅延部322_1~322_2N+1に入力され、ある時間Tを中心として、Tから前後にN回のタイミングで取得した2N+1個の交差偏波信号(X-N~X)として格納される。また、交差偏波信号Xは、重み係数決定部321にも入力される。交差偏波信号X-N~Xは、乗算器323_1~323_2N+1に入力され、重み係数決定部321から取得した重み係数と乗算される。乗算器323_1~323_2N+1は、交差偏波信号X-N~Xに重み係数を乗算し、交差偏波信号X-N~Xにおける偏波間干渉の割合を算出する。 The cross polarization signal X j input to the XPIC 32 is input to the delay units 322_1 to 322_2N + 1, and 2N + 1 cross polarization signals (X ) acquired at N times before and after T around a certain time T. N 1 to X N ). Further, the cross polarization signal X j is also input to the weighting factor determination unit 321. Cross-polarized signals X −N 1 to X N are input to multipliers 323_1 to 323_2N + 1, and are multiplied by the weighting factor acquired from weighting factor determining section 321. Multipliers 323_1 to 323_2N + 1 multiply the cross polarization signals X −N to X N by weighting factors to calculate the ratio of the inter-polarization interference in the cross polarization signals X −N to X N.
 乗算器323_1~323_2N+1は、交差偏波信号と重み係数を乗算した結果を加算器324_1~324_2N+1に出力する。加算器324_1~324_2N+1は、乗算器323_1~323_2N+1から出力された値をすべて加算する。これにより、自偏波信号と交差偏波信号の偏波間干渉が算出される。加算器324_2N+1は、算出した偏波間干渉を偏波信号結合部33に出力する。 Multipliers 323_1 to 323_2N + 1 output the result of multiplying the cross polarization signal and the weighting coefficient to adders 324_1 to 324_2N + 1. Adders 324_1 to 324_2N + 1 add all the values output from multipliers 323_1 to 323_2N + 1. Thereby, the inter-polarization interference between the own polarization signal and the cross polarization signal is calculated. The adder 324_2N + 1 outputs the calculated inter-polarization interference to the polarization signal coupling unit 33.
 偏波信号結合部33は、等化器31から取得した自偏波信号(Din)に、加算器324_2N+1から取得した偏波間干渉を加算(もしくは減算)し、自偏波信号にもれこんだ偏波間干渉を補償する。偏波信号結合部33で生成された自偏波信号(Dout)は、誤差検出部34に出力される。 The polarization signal coupling unit 33 adds (or subtracts) the inter-polarization interference acquired from the adder 324_2N + 1 to the own polarization signal (D in ) acquired from the equalizer 31 and leaks into the own polarization signal. Compensate for inter-polarization interference. The own polarization signal (D out ) generated by the polarization signal coupling unit 33 is output to the error detection unit 34.
 ここで、重み係数の算出方法について図4と図5を用いて説明を行う。図4は、等化器31から取得した自偏波信号(Din)と、偏波間干渉を補償した自偏波信号(Dout)を、IQ平面上に示す。さらに、図4は、QPSK変調により送信された信号の理想受信信号点もIQ平面上に示す。理想受信信号点は、QPSK変調により送信された信号であれば、IQ平面上に成分を(1、1)(1、-1)(-1、1)(-1、-1)とする信号点として定められる。誤差検出部34は、自偏波信号(Dout)と、自偏波信号(Dout)から最も近い理想信号点の距離の差を誤差信号(E)として検出する。誤差検出部34は、検出した誤差信号を、等化器31とXPIC32に出力する。 Here, the calculation method of the weighting coefficient will be described with reference to FIGS. FIG. 4 shows the self-polarized signal (D in ) acquired from the equalizer 31 and the self-polarized signal (D out ) compensated for inter-polarization interference on the IQ plane. Further, FIG. 4 also shows ideal received signal points of a signal transmitted by QPSK modulation on the IQ plane. If the ideal reception signal point is a signal transmitted by QPSK modulation, a signal whose components are (1, 1) (1, -1) (-1, 1) (-1, -1) on the IQ plane It is determined as a point. Error detector 34, the own polarization signal (D out), is detected as an error signal the difference between the distance of the nearest ideal signal point from the own polarization signal (D out) (E). The error detector 34 outputs the detected error signal to the equalizer 31 and the XPIC 32.
 次に、図5を用いて、XPIC32の重み係数決定部321の構成例について説明する。重み係数決定部321は、相関計算部321_1と、積分部321_2を備えている。 Next, a configuration example of the weight coefficient determination unit 321 of the XPIC 32 will be described with reference to FIG. The weighting factor determination unit 321 includes a correlation calculation unit 321_1 and an integration unit 321_2.
 相関計算部321_1は、誤差検出部34から取得した誤差信号(E)と交差偏波信号X-N~Xとの相関を計算する。具体的には、相関計算部321_1は、それぞれの交差偏波信号X-N~Xと誤差信号(E)の内積値(E・X(-N≦j≦N))を計算する。次に、内積値と、Xの絶対値から、以下の式(1)を用いて、重み係数Cを算出する。 The correlation calculation unit 321_1 calculates the correlation between the error signal (E) acquired from the error detection unit 34 and the cross polarization signals X −N 1 to X N. Specifically, correlation calculation section 321_1 calculates the inner product value (E · X j (−N ≦ j ≦ N)) of each cross-polarized signal X −N 1 to X N and error signal (E). Next, the weight coefficient C j is calculated from the inner product value and the absolute value of X j using the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)で算出される重み係数Cは、交差偏波信号Xに含まれる偏波間干渉の割合を示す。また、Cについてさらに説明すると、遅延部322_1~322_2N+1に格納される交差偏波信号は、一定時間毎に変化する。例えば、遅延部322_1に格納された交差偏波信号Xは、交差偏波信号Xj+1が取得されることにより遅延部322_2に移動する。交差偏波信号Xj+1は、遅延部322_1に格納される。このように、交差偏波信号を取得するたびに、遅延部322_1~322_2N+1に格納される交差偏波信号は変化する。そこで、積分部321_2は、一定時間における遅延部322_j(1≦j≦2N+1)の重み係数の総和を計算する。具体的には、重み係数の総和は、以下の式(2)で示される。 The weighting coefficient C j calculated by the equation (1) indicates the ratio of the inter-polarization interference included in the cross polarization signal X j . Further, C j will be further described. The cross polarization signal stored in the delay units 322_1 to 322_2N + 1 changes at regular intervals. For example, the cross polarization signal X j stored in the delay unit 322_1 moves to the delay unit 322_2 when the cross polarization signal X j + 1 is acquired. The cross polarization signal X j + 1 is stored in the delay unit 322_1. In this way, every time a cross-polarized signal is acquired, the cross-polarized signal stored in the delay units 322_1 to 322_2N + 1 changes. Therefore, the integration unit 321_2 calculates the sum of the weighting coefficients of the delay unit 322_j (1 ≦ j ≦ 2N + 1) for a certain time. Specifically, the sum of the weighting coefficients is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)のαは、任意の係数とする。また、zは任意の値であり、一定時間経過するまでに加算する回数を示す。重み係数決定部321は、このようにして算出した重み係数Cを乗算器323_1~323_2N+1に出力する。 Α in Equation (2) is an arbitrary coefficient. Z is an arbitrary value and indicates the number of times to be added before a predetermined time elapses. Weight coefficient determination unit 321 outputs the weighting coefficients C j calculated in this way to multipliers 323_1 ~ 323_2N + 1.
 図2に戻り、XPIC32は、算出した2N+1個の重み係数Cを干渉量算出部に出力する。干渉量算出部35は、取得した重み係数Cの総和を、式(3)を用いて計算する。 Returning to FIG. 2, the XPIC 32 outputs the calculated 2N + 1 weighting factors C j to the interference amount calculation unit. The interference amount calculation unit 35 calculates the total sum of the acquired weighting factors Cj using Expression (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 干渉量算出部35は、式(3)で計算した重み係数Cの総和をデータレート制御部41に出力する。重み係数Cの総和は、偏波間干渉の干渉量を示す。 The interference amount calculation unit 35 outputs the sum of the weighting factors C j calculated by the equation (3) to the data rate control unit 41. The total sum of the weighting factors C j indicates the amount of interference between the polarized waves.
 データレート制御部41は、重み係数Cの総和の値により、データレートを決定する。具体的には、データレート制御部41は、図6の重み係数総和と変調方式と変調速度の関係を定義した情報テーブルに基づいて、例えば変調方式と変調速度を決定する。重み係数の総和を示すC1~C3は、C1<C2<C3の関係を有する。データレート制御部41は、干渉量算出部35から取得した重み係数の総和がC1より小さい場合は、伝送路の状態が安定していると判断して、変調方式を16QAMとし、変調速度を3Mbaudとする高速なデータレートを設定する。また、データレート制御部41は、干渉量算出部35から取得した重み係数の総和がC3よりも大きい場合は、伝送路の状態が不安定であると判断して、変調方式をQPSKとし、変調速度を1Mbaudとする低速なデータレートを設定する。図6で示した変調方式及び変調速度の設定値はあくまで1例であり、データレート制御部41は、他の変調方式及び変調速度を設定することも可能である。又は、データレート制御部41は、変調方式と変調速度のどちらか一方を設定することでもよい。 The data rate control unit 41 determines the data rate based on the sum value of the weighting factors Cj . Specifically, the data rate control unit 41 determines, for example, the modulation method and the modulation rate based on the information table that defines the relationship between the sum of the weight coefficients, the modulation method, and the modulation rate in FIG. C1 to C3 indicating the sum of the weighting coefficients have a relationship of C1 <C2 <C3. When the sum of the weighting coefficients acquired from the interference amount calculation unit 35 is smaller than C1, the data rate control unit 41 determines that the state of the transmission path is stable, sets the modulation scheme to 16QAM, and sets the modulation speed to 3 Mbaud. Set a high data rate. Further, when the sum of the weighting coefficients acquired from the interference amount calculation unit 35 is larger than C3, the data rate control unit 41 determines that the state of the transmission path is unstable, sets the modulation method to QPSK, and modulates the modulation. A low data rate with a speed of 1 Mbaud is set. The setting values of the modulation scheme and modulation speed shown in FIG. 6 are merely examples, and the data rate control unit 41 can set other modulation schemes and modulation speeds. Alternatively, the data rate control unit 41 may set one of the modulation scheme and the modulation speed.
 変調部42は、データレート制御部41が設定した変調方式及び変調速度に基づいて送信データを変調する。変調部42は、変調した送信データを送信部43に出力する。送信部43は、取得した送信データを、アンテナ10を介して送信する。 The modulation unit 42 modulates transmission data based on the modulation scheme and modulation speed set by the data rate control unit 41. The modulation unit 42 outputs the modulated transmission data to the transmission unit 43. The transmission unit 43 transmits the acquired transmission data via the antenna 10.
 以上説明したように、本発明の実施の形態1にかかる無線通信装置により、自偏波信号と交差偏波信号との間で生じる偏波間干渉を算出し、偏波間干渉を示す重み係数に基づいて、伝送路状態を精度良く把握することができる。 As described above, the radio communication apparatus according to the first embodiment of the present invention calculates the interpolarization interference generated between the own polarization signal and the cross polarization signal, and is based on the weighting factor indicating the interpolarization interference. Thus, it is possible to accurately grasp the transmission path state.
 また、本発明の実施の形態1にかかる無線通信装置は、伝送路状態を直接把握することにより、例えば伝送路状態が不安定であれば、データレートを低速に設定し、伝送路状態が安定していればデータレートを高速に設定するというように、適切なデータレートを設定することができる。 In addition, the wireless communication apparatus according to the first embodiment of the present invention directly grasps the transmission path state. For example, if the transmission path state is unstable, the data rate is set to a low speed and the transmission path state is stable. If so, an appropriate data rate can be set, such as setting the data rate at a high speed.
 また、本発明の実施の形態1にかかる無線通信装置は、偏波間干渉を補償する前に、自偏波信号に生じている偏波間干渉を示す重み係数に基づいて伝送路状態を把握することにより、迅速かつ直接的に伝送路状態を把握することができる。偏波間干渉を示す重み係数は、偏波間干渉を補償する際に生じるものであり、本発明のために新たに設けられた回路により求めるものではない。これより、回路規模を大きく増加させることなく、伝送路状態を把握することが可能である。さらに、迅速に伝送路状態を把握することにより、データレートの制御を早期に行うことができる。具体的に、図7を用いて説明する。 In addition, the wireless communication apparatus according to the first embodiment of the present invention grasps the transmission path state based on the weight coefficient indicating the inter-polarization interference generated in the own polarization signal before compensating for the inter-polarization interference. Thus, the transmission path state can be grasped quickly and directly. The weighting coefficient indicating the inter-polarization interference is generated when the inter-polarization interference is compensated, and is not obtained by a circuit newly provided for the present invention. Thus, it is possible to grasp the transmission path state without greatly increasing the circuit scale. Furthermore, the data rate can be controlled at an early stage by quickly grasping the transmission path state. This will be specifically described with reference to FIG.
 図7は、時間経過と重み係数の総和の関係を示す。C0は、データレートを切り替える閾値を示す。C1は、XPIC32が交差偏波間補償を行うことができる制御限界の重み係数の総和を示す。本発明の実施の形態1にかかる重み係数に基づいて伝送路状態の把握を行わない場合は、重み係数の総和が交差偏波間干渉の補償を行うことができる制御限界C1を超えた後に、符号誤りが検出される。つまり、制御限界C1までは、XPIC32が不安定な伝送路状態に起因して生じる交差偏波間干渉を補償しているため、符号誤りが多く発生しない。そのため、データレート制御部41は、重み係数の総和が制御限界C1に達するまで、例えば高いデータレートを実現する16QAM変調方式を設定する(A)。 Fig. 7 shows the relationship between the passage of time and the sum of the weighting factors. C0 indicates a threshold value for switching the data rate. C1 represents the total sum of the weight coefficients of the control limits that the XPIC 32 can perform cross polarization compensation. When the transmission path state is not grasped based on the weighting factor according to the first exemplary embodiment of the present invention, after the sum of the weighting factors exceeds the control limit C1 at which cross-polarization interference can be compensated, An error is detected. That is, until the control limit C1, the XPIC 32 compensates for cross-polarization interference caused by an unstable transmission path state, so that many code errors do not occur. Therefore, the data rate control unit 41 sets a 16QAM modulation scheme that realizes, for example, a high data rate until the sum of the weight coefficients reaches the control limit C1 (A).
 これに対して、本発明の実施の形態1にかかる重み係数に基づいて伝送路状態の把握を行う場合は、制御限界C1に達する前の閾値C0において、伝送路状態を不安定と判断し、データレートを切り替える。ここでは、重み係数の総和がC0に達した時間に、低いデータレートを実現するQPSK変調方式を設定する(B)。これより、重み係数に基づいて伝送路状態の把握を行う場合と行わない場合とでは、時間Tの制御時間差が生じる。また、早期に変調方式の切り替えを行うことで、制御限界C1を超えたときにエラーレートが急激に高くなり、データレート制御が伝送路の状態変化に追いつかなくなる事象を改善することができる。 On the other hand, when the transmission path state is grasped based on the weighting factor according to the first embodiment of the present invention, the transmission path state is determined to be unstable at the threshold value C0 before reaching the control limit C1, Switch the data rate. Here, a QPSK modulation scheme that realizes a low data rate is set at the time when the sum of the weight coefficients reaches C0 (B). As a result, a control time difference of time T occurs between when the transmission path state is grasped based on the weighting coefficient and when it is not. Further, by switching the modulation method at an early stage, it is possible to improve an event in which the error rate suddenly increases when the control limit C1 is exceeded and the data rate control cannot keep up with the change in the state of the transmission path.
 (実施の形態2)
 次に、図8を用いて本発明の実施の形態2にかかる無線通信装置の構成例について説明する。本発明の実施の形態2にかかる無線通信装置は、AGC12からデータレート制御部41に対して、電力制御情報を出力する。AGC12は、自偏波信号の受信電力を一定の出力レベルに収束させる。つまり、AGC12は、受信した自偏波信号の受信電力が所定の値よりも低い場合は、電力を増幅させる。無線通信装置において受信する自偏波信号の受信電力は、通信を行う無線伝送路の距離、伝送路上に存在する建築物等の影響により減衰する。AGC12は、電力制御情報をデータレート制御部41に出力する。例えば、AGC12は、所定の電力値と受信した自偏波信号の受信電力との電力差をデータレート制御部41に出力してもよい。もしくは、AGC12は、受信した自偏波信号の受信電力値をデータレート制御部41に出力してもよい。
(Embodiment 2)
Next, a configuration example of the wireless communication apparatus according to the second exemplary embodiment of the present invention will be described using FIG. The wireless communication apparatus according to the second embodiment of the present invention outputs power control information from the AGC 12 to the data rate control unit 41. The AGC 12 converges the received power of the own polarization signal to a certain output level. That is, the AGC 12 amplifies the power when the received power of the received polarization signal is lower than a predetermined value. The received power of the self-polarized signal received by the wireless communication apparatus is attenuated by the influence of the distance of the wireless transmission path for communication and the buildings existing on the transmission path. The AGC 12 outputs power control information to the data rate control unit 41. For example, the AGC 12 may output a power difference between a predetermined power value and the received power of the received own polarization signal to the data rate control unit 41. Alternatively, the AGC 12 may output the received power value of the received own polarization signal to the data rate control unit 41.
 データレート制御部41は、AGC12から取得した電力制御情報と、偏波間干渉に関する情報である重み係数に基づいて変調方式及び変調速度を決定する。 The data rate control unit 41 determines the modulation scheme and the modulation speed based on the power control information acquired from the AGC 12 and the weighting factor that is information on the interference between polarizations.
 以上説明したように、本発明の実施の形態2にかかる無線通信装置により、電力制御情報と、偏波間干渉に関する情報に基づいて、データレートを決定することができる。本発明の実施の形態2にかかる無線通信装置は、データレートを決定する際のパラメータを増やすことで、伝送路状態を的確に把握することができるため、適切なデータレートを決定することができる。 As described above, the radio communication apparatus according to the second embodiment of the present invention can determine the data rate based on the power control information and the information on the interference between polarizations. The wireless communication apparatus according to the second embodiment of the present invention can accurately determine the transmission path state by increasing the parameters for determining the data rate, and therefore can determine an appropriate data rate. .
 (実施の形態3)
 次に、図9を用いて本発明の実施の形態3にかかる無線通信装置の構成例について説明する。本発明の実施の形態3にかかる無線通信装置は、誤り検出部50を備えている。その他の構成については、図2及び図8と同様である。
(Embodiment 3)
Next, a configuration example of the wireless communication apparatus according to the third embodiment of the present invention will be described with reference to FIG. The wireless communication apparatus according to the third embodiment of the present invention includes an error detection unit 50. Other configurations are the same as those in FIGS. 2 and 8.
 誤り検出部50は、偏波信号結合部33から偏波間干渉を補償した自偏波信号を取得する。誤り検出部50は、取得した自偏波信号に含まれる符号誤りを検出する。たとえば、CRC(Cyclic Redundancy Check)に基づいて符号誤りを検出してもよい。符号誤り検出方法については、CRCに限定されるものではなく、その他の方法を用いて符号誤りを検出してもよい。誤り検出部50は、検出した符号誤りに関する情報をデータレート制御部41に出力する。例えば、誤り検出部50は、発生した誤りのビット数をデータレート制御部41に出力してもよい。又は、発生した誤りのビット数をパーセントで示した誤り率をデータレート制御部41に出力してもよい。 The error detection unit 50 acquires the own polarization signal compensated for the inter-polarization interference from the polarization signal coupling unit 33. The error detection unit 50 detects a code error included in the acquired own polarization signal. For example, a code error may be detected based on CRC (Cyclic Redundancy Check). The code error detection method is not limited to the CRC, and other methods may be used to detect the code error. The error detection unit 50 outputs information regarding the detected code error to the data rate control unit 41. For example, the error detection unit 50 may output the number of bits of the generated error to the data rate control unit 41. Alternatively, an error rate indicating the number of generated error bits as a percentage may be output to the data rate control unit 41.
 データレート制御部41は、誤り検出部50から取得した符号誤りに関する情報と、AGC12から取得した電力制御情報と、干渉量算出部35から取得した偏波間干渉とに関する情報である重み係数に基づいてデータレートを決定する。 The data rate control unit 41 is based on the information regarding the code error acquired from the error detection unit 50, the power control information acquired from the AGC 12, and the weighting factor that is the information regarding the inter-polarization interference acquired from the interference amount calculation unit 35. Determine the data rate.
 以上説明したように、本発明の実施の形態3にかかる無線通信装置により、符号誤り情報と、電力制御情報と、偏波間干渉に関する情報に基づいてデータレートを決定することができる。本発明の実施の形態3にかかる無線通信装置は、データレートを決定する際のパラメータを増やすことで、伝送路状態を的確に把握することができるため、適切なデータレートを決定することができる。 As described above, the radio communication apparatus according to the third embodiment of the present invention can determine the data rate based on the code error information, the power control information, and the information on the inter-polarization interference. The wireless communication apparatus according to the third embodiment of the present invention can accurately determine the transmission path state by increasing parameters when determining the data rate, and therefore can determine an appropriate data rate. .
 上述の実施の形態1~3では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、任意の処理を、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)等を含むコンピュータにプログラムを実行させることにより実現することも可能である。上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In Embodiments 1 to 3 described above, the present invention has been described as a hardware configuration, but the present invention is not limited to this. The present invention can also realize arbitrary processing by causing a computer including a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), and the like to execute a program. In the above example, the program can be stored and supplied to a computer using various types of non-transitory computer readable media. Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included. The program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 ここで、一例として、偏波間干渉に関する情報に基づいて、データレートを設定する処理内容をコンピュータに実行させるための手順について図10を用いて説明する。 Here, as an example, a procedure for causing the computer to execute the processing content for setting the data rate based on the information on the interference between polarizations will be described with reference to FIG.
 ステップS1では、コンピュータは、XPIC32から2N+1個の重み係数Cを取得する。ステップS2では、コンピュータは、取得した重み係数Cの総和を計算する。ステップS3では、コンピュータは、重み係数Cの総和と、予め定めた閾値を比較する。ステップS4では、重み係数Cの総和が予め定めた閾値よりも小さい場合、コンピュータは、安定した伝送路状態と判断し、例えば16QAM変調方式を選択し、高速なデータレートを設定する。ステップS5では、重み係数Cの総和が予め定めた閾値よりも大きい場合、コンピュータは、伝送路状態が不安定であると判断し、例えばQPSK変調方式を選択し、低速なデータレートを設定する。 In step S1, the computer obtains 2N + 1 weighting factors C j from the XPIC 32. In step S2, the computer calculates the sum of the acquired weighting factors Cj . In step S3, the computer compares the sum of the weighting factors C j, a predetermined threshold value. In step S4, when the sum of weighting coefficients C j is smaller than a predetermined threshold, the computer determines a stable channel state, for example, select a 16QAM modulation scheme, to set the high-speed data rates. In step S5, if the sum of weighting coefficients C j is larger than a predetermined threshold value, the computer determines that the transmission path condition is unstable, for example, select the QPSK modulation scheme, sets the low-speed data rates .
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2009年5月20日に出願された日本出願特願2009-121722を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-121722 filed on May 20, 2009, the entire disclosure of which is incorporated herein.
1 自偏波信号受信部
2 交差偏波信号受信部
3 伝送路状態推定部
11 自偏波信号受信部
12 電力制御部
21 交差偏波信号受信部
22 電力制御部
31 等化器
32 交差偏波間干渉補償器
33 偏波信号結合部
34 誤差検出部
35 干渉量算出部
41 データレート制御部
42 変調部
43 送信部
50 誤り検出部
321 重み係数決定部
321_1 相関計算部
321_2 積分部
322_1~322_2N+1 遅延部
323_1~323_2N+1 乗算器
324_1~324_2N+1 加算器
DESCRIPTION OF SYMBOLS 1 Self-polarization signal receiver 2 Cross-polarization signal receiver 3 Transmission path state estimation part 11 Self-polarization signal receiver 12 Power control part 21 Cross-polarization signal reception part 22 Power control part 31 Equalizer 32 Between cross-polarizations Interference compensator 33 Polarization signal coupling unit 34 Error detection unit 35 Interference amount calculation unit 41 Data rate control unit 42 Modulation unit 43 Transmission unit 50 Error detection unit 321 Weight coefficient determination unit 321_1 Correlation calculation unit 321_2 Integration units 322_1 to 322_2N + 1 Delay unit 323_1 to 323_2N + 1 multipliers 324_1 to 324_2N + 1 adders

Claims (13)

  1.  直交する偏波信号を用いてコチャンネル伝送を行う無線通信装置であって、
     送信された偏波信号の内のひとつを自偏波信号として受信する自偏波信号受信手段と、
     前記自偏波信号受信手段で受信する自偏波信号に直交した交差偏波信号を受信する交差偏波信号受信手段と、
     前記自偏波信号受信手段により受信された自偏波信号と前記交差偏波信号受信手段により受信された交差偏波信号との間で生じる偏波間干渉に関する情報に基づいて伝送路状態を推定する伝送路状態推定手段と、を備える無線通信装置。
    A wireless communication device that performs co-channel transmission using orthogonal polarization signals,
    An own polarization signal receiving means for receiving one of the transmitted polarization signals as an own polarization signal;
    A cross-polarization signal receiving means for receiving a cross-polarization signal orthogonal to the self-polarization signal received by the self-polarization signal receiving means;
    A transmission path state is estimated based on information on the inter-polarization interference generated between the own polarization signal received by the own polarization signal receiving unit and the cross polarization signal received by the cross polarization signal receiving unit. A wireless communication apparatus comprising: a transmission path state estimation unit.
  2.  前記伝送路状態推定手段は、前記自偏波信号受信手段により受信された自偏波信号と前記交差偏波信号受信手段により受信された交差偏波信号との間で生じる干渉量に基づいて伝送路状態を推定することを特徴とする請求項1記載の無線通信装置。 The transmission path state estimation means transmits based on the amount of interference generated between the own polarization signal received by the own polarization signal reception means and the cross polarization signal received by the cross polarization signal reception means. The wireless communication apparatus according to claim 1, wherein the road condition is estimated.
  3.  前記伝送路状態推定手段により推定された伝送路状態に応じて送信信号のデータレートを設定するデータレート制御手段をさらに備えることを特徴とする請求項1又は2記載の無線通信装置。 3. The wireless communication apparatus according to claim 1, further comprising data rate control means for setting a data rate of a transmission signal in accordance with the transmission path state estimated by the transmission path state estimation means.
  4.  前記自偏波信号受信手段により受信した自偏波信号から、当該自偏波信号と前記交差偏波信号との間で生じる偏波間干渉を補償する干渉補償手段と、
     前記干渉補償手段により偏波間干渉を補償された自偏波信号と、予め定められた参照信号との誤差を検出する誤差検出手段と、をさらに備え、
     前記干渉補償手段は、
     前記誤差検出手段により検出された誤差に基づいて、前記自偏波信号受信手段により受信した自偏波信号の次に受信する自偏波信号と、前記交差偏波信号受信手段により受信した交差偏波信号との間で生じる偏波間干渉を補償することを特徴とする請求項1~3のいずれか1項に記載の無線通信装置。
    Interference compensation means for compensating for inter-polarization interference generated between the own polarization signal and the cross polarization signal from the own polarization signal received by the own polarization signal receiving means;
    Error detecting means for detecting an error between the own polarization signal compensated for inter-polarization interference by the interference compensation means and a predetermined reference signal;
    The interference compensation means includes
    Based on the error detected by the error detection means, the own polarization signal received next to the own polarization signal received by the own polarization signal reception means and the cross polarization signal received by the cross polarization signal reception means. The radio communication apparatus according to any one of claims 1 to 3, wherein inter-polarization interference occurring with a wave signal is compensated.
  5.  前記伝送路状態推定手段は、前記干渉補償手段が前記自偏波信号から偏波間干渉の補償に用いる重み係数に基づいて伝送路状態を推定することを特徴とする請求項4記載の無線通信装置。 5. The radio communication apparatus according to claim 4, wherein the transmission path state estimation means estimates the transmission path state based on a weighting factor used by the interference compensation means for compensation of interpolarization interference from the own polarization signal. .
  6.  前記自偏波信号受信手段により受信された自偏波信号の受信電力を予め定められた電力に収束させるように制御する電力制御手段をさらに有し、
     前記データレート設定手段は、前記伝送路状態推定手段により推定された伝送路状態に加えて前記電力制御手段により制御された電力に基づいて前記送信信号のデータレートを設定することを特徴とする請求項3~5のいずれか1項に記載の無線通信装置。
    Further comprising power control means for controlling the received power of the own polarization signal received by the own polarization signal receiving means to converge to a predetermined power,
    The data rate setting means sets the data rate of the transmission signal based on the power controlled by the power control means in addition to the transmission path state estimated by the transmission path state estimation means. Item 6. The wireless communication device according to any one of Items 3 to 5.
  7.  前記データレート設定手段は、前記伝送路状態推定手段により推定された伝送路状態と前記電力制御手段により制御された電力に加えて前記干渉補償手段により偏波間干渉を除去された自偏波信号に発生するエラーレートに基づいてデータレートを設定することを特徴とする請求項6記載の無線通信装置。 The data rate setting means generates a self-polarized signal from which inter-polarization interference has been removed by the interference compensation means in addition to the transmission path state estimated by the transmission path state estimation means and the power controlled by the power control means. 7. The wireless communication apparatus according to claim 6, wherein a data rate is set based on an error rate that occurs.
  8.  直交する偏波信号を用いてコチャンネル伝送を行う無線通信装置であって、
     送信された偏波信号の内のひとつを自偏波信号として受信する自偏波信号受信手段と、
     前記自偏波信号受信手段で受信する自偏波信号に直交する交差偏波信号を受信する交差偏波信号受信手段と、
     前記自偏波信号受信手段により受信された自偏波信号と前記交差偏波信号受信手段により受信された交差偏波信号との間で生じる偏波間干渉を補償する偏波間干渉補償手段と、
     前記偏波間干渉補償手段にて偏波間干渉を補償するために用いる重み係数に基づいて伝送路状態を推定する伝送路状態推定手段と、を備える無線通信装置。
    A wireless communication device that performs co-channel transmission using orthogonal polarization signals,
    An own polarization signal receiving means for receiving one of the transmitted polarization signals as an own polarization signal;
    A cross-polarization signal receiving means for receiving a cross-polarization signal orthogonal to the self-polarization signal received by the self-polarization signal receiving means;
    An inter-polarization interference compensation unit for compensating for the inter-polarization interference generated between the own-polarization signal received by the own-polarization signal receiving unit and the cross-polarization signal received by the cross-polarization signal receiving unit;
    A wireless communication apparatus comprising: a transmission path state estimation unit that estimates a transmission path state based on a weighting factor used for compensating for the polarization interference by the interpolarization interference compensation unit.
  9.  直交する偏波信号を用いてコチャンネル伝送を行う無線通信方法であって、
     偏波信号の内のひとつである自偏波信号と当該自偏波信号と直交する交差偏波信号との間に生じる偏波間干渉を検出するステップと、
     前記偏波間干渉に関する情報に基づいて伝送路状態を推定するステップと、を備える無線通信方法。
    A wireless communication method for performing co-channel transmission using orthogonal polarization signals,
    Detecting an inter-polarization interference generated between a self-polarization signal that is one of the polarization signals and a cross-polarization signal orthogonal to the self-polarization signal;
    A wireless communication method comprising: estimating a transmission path state based on the information related to the inter-polarization interference.
  10.  前記偏波間干渉に関する情報に基づいて推定された伝送路状態に応じてデータレートを設定するステップをさらに備えることを特徴とする請求項9記載の無線通信方法。 10. The wireless communication method according to claim 9, further comprising a step of setting a data rate according to a transmission path state estimated based on information on the inter-polarization interference.
  11.  前記自偏波信号の受信電力を予め定められた電力に収束させるように制御するステップをさらに備え、
     前記偏波間干渉に関する情報に加えて前記制御された電力に基づいて前記送信信号のデータレートを設定することを特徴とする請求項10記載の無線通信方法。
    Further comprising the step of controlling the received power of the polarization signal to converge to a predetermined power,
    The radio communication method according to claim 10, wherein a data rate of the transmission signal is set based on the controlled power in addition to information on the interference between polarizations.
  12.  前記自偏波信号から前記交差偏波信号により与えられる干渉を除去した自偏波信号に発生するエラーレートを検出するステップをさらに備え、
     前記偏波間干渉に関する情報と前記制御された電力に加えて前記エラーレートに基づいて前記送信信号のデータレートを設定することを特徴とする請求項11記載の無線通信方法。
    Further comprising the step of detecting an error rate generated in the own polarization signal from which the interference given by the cross polarization signal is removed from the own polarization signal,
    The radio communication method according to claim 11, wherein a data rate of the transmission signal is set based on the error rate in addition to the information on the inter-polarization interference and the controlled power.
  13.  直交する偏波信号を用いてコチャンネル伝送を行う無線通信装置に用いられる通信制御プログラムが格納された非一時的なコンピュータ可読媒体であって、
     偏波信号の内のひとつである自偏波信号と当該自偏波信号と直交する交差偏波信号との間で生じる偏波間干渉に関する情報を取得するステップと、
     前記偏波間干渉に関する情報に基づいて伝送路状態を推定するステップと、
     前記偏波間干渉に関する情報に基づいて推定された伝送路状態に応じて送信信号のデータレートを設定するステップと、を無線通信装置の制御コンピュータに実行させる通信制御プログラムが格納された非一時的なコンピュータ可読媒体。
    A non-transitory computer-readable medium storing a communication control program used in a wireless communication apparatus that performs co-channel transmission using orthogonal polarization signals,
    Obtaining information relating to inter-polarization interference that occurs between a self-polarization signal that is one of the polarization signals and a cross-polarization signal that is orthogonal to the self-polarization signal;
    Estimating a transmission path state based on information on the inter-polarization interference;
    A step of setting a data rate of a transmission signal according to a transmission path state estimated based on the information on the interference between the polarizations, and a non-temporary storing a communication control program for causing a control computer of the wireless communication apparatus to execute Computer readable medium.
PCT/JP2010/002894 2009-05-20 2010-04-22 Wireless communication apparatus, wireless communication method, and non-transitory computer readable medium in which communication control program is stored WO2010134265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-121722 2009-05-20
JP2009121722 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010134265A1 true WO2010134265A1 (en) 2010-11-25

Family

ID=43125958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002894 WO2010134265A1 (en) 2009-05-20 2010-04-22 Wireless communication apparatus, wireless communication method, and non-transitory computer readable medium in which communication control program is stored

Country Status (1)

Country Link
WO (1) WO2010134265A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169492A1 (en) * 2011-06-07 2012-12-13 日本電気株式会社 Cross polarization interference cancellation device and cross polarization interference cancellation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093650A (en) * 1996-09-11 1998-04-10 Kokusai Electric Co Ltd Transceiver with variable modulation parameter adaptive modulation scheme
JPH10303871A (en) * 1997-04-30 1998-11-13 Nec Corp Line switching system
JP2002064439A (en) * 2000-08-15 2002-02-28 Japan Radio Co Ltd Cross-polarization interference measurement circuit
JP2007324651A (en) * 2006-05-30 2007-12-13 Kyocera Corp Communication apparatus and communication control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093650A (en) * 1996-09-11 1998-04-10 Kokusai Electric Co Ltd Transceiver with variable modulation parameter adaptive modulation scheme
JPH10303871A (en) * 1997-04-30 1998-11-13 Nec Corp Line switching system
JP2002064439A (en) * 2000-08-15 2002-02-28 Japan Radio Co Ltd Cross-polarization interference measurement circuit
JP2007324651A (en) * 2006-05-30 2007-12-13 Kyocera Corp Communication apparatus and communication control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169492A1 (en) * 2011-06-07 2012-12-13 日本電気株式会社 Cross polarization interference cancellation device and cross polarization interference cancellation method

Similar Documents

Publication Publication Date Title
EP2850796B1 (en) Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
KR101106692B1 (en) Apparatus and method for selecting operation mode of multi-input / output communication system
EP2932622B1 (en) Antenna reconfiguration for mimo communications when multiplicative noise limited
US8553550B2 (en) Wireless transmission device, wireless transmission method, program, and integrated circuit
KR101106684B1 (en) Receiver and method for multi-antenna system
WO2014090426A1 (en) Precoder weight selection for mimo communications when multiplicative noise limited
US9444575B2 (en) Wireless communication system, receiver, transmitter, and transmission rate control method
JP5069579B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
KR20160048360A (en) method and apparatus for receiving a signal based on a measurement of interference
JP4459254B2 (en) Wireless communication device
WO2010134265A1 (en) Wireless communication apparatus, wireless communication method, and non-transitory computer readable medium in which communication control program is stored
WO2009061061A1 (en) Method of cyclic delay diversity with the optimal cyclic delay value, and transmitter performing the same
JP6553169B2 (en) Delay spread estimation and utilization
US9854521B2 (en) Apparatus and method for cancelling interference in communication system supporting multi-user multiple-input multiple-output scheme
JP5340344B2 (en) Communication apparatus and communication method
WO2013096691A1 (en) Collaborative channel sounding in multi-antenna systems
US9077534B2 (en) Communications circuit including a linear quadratic estimator
JP5803429B2 (en) Receiver
KR102042198B1 (en) Apparatus and method for virtual receiver diversity in wireless communication system
US8976840B2 (en) Radio receiver for detecting an additive white Gaussian noise channel
JP2021190793A (en) Transmission power control device, radio communications system, transmission power control method, and program
KR20120045670A (en) Apparatus and method for determining channel state indicator in mobile communication system
JP7265943B2 (en) Equalizer, receiver, and program
JP4776292B2 (en) Communication apparatus and communication method
JP2018160753A (en) Radio communication device and delay processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP